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Abstract: Long time series land cover classification information is the basis for scientific research on
urban sprawls, vegetation change, and the carbon cycle. The rapid development of cloud computing
platforms such as the Google Earth Engine (GEE) and access to multi-source satellite imagery from
Landsat and Sentinel-2 enables the application of machine learning algorithms for image classification.
Here, we used the random forest algorithm to quickly achieve a time series land cover classification
at different scales based on the fixed land classification sample points selected from images acquired
in 2022, and the year-by-year spectral differences of the sample points. The classification accuracy
was enhanced by using multi-source remote sensing data, such as synthetic aperture radar (SAR)
and digital elevation model (DEM) data. The results showed that: (i) the maximum difference
(threshold) of the sample points without land class change, determined by counting the sample
points of each band of the Landsat time series from 1986 to 2022, was 0.25; (ii) the kappa coefficient
and observed accuracy of the same sensor from Landsat 8 are higher than the results of the TM and
ETM+ sensor data from 2013 to 2022; and (iii) the addition of a mining land cover type increases
the kappa coefficient and overall accuracy mean values of the Sentinel 2 image classification for a
complex mining and forest area. Among the land classifications via multi-source remote sensing, the
combined variables of Spectral band + Index + Terrain + SAR result in the highest accuracy, but the
overall improvement is limited. The method proposed is applicable to remotely sensed images at
different scales and the use of sensors under complex terrain conditions. The use of the GEE cloud
computing platform enabled the rapid analysis of remotely sensed data to produce land cover maps
with high accuracy and a long time series.

Keywords: Google Earth Engine; sample migration; land classification; multi-source remote sensing;
spontaneous forest; machine learning; AI Earth

1. Introduction

Land cover classification is important in enabling detailed studies of temporal and spa-
tial environmental change, land resource management, and sustainable development [1,2].
Changes in land cover can affect the carbon (C) balance; for example, a study in Shandong
Province, China, showed that, between 2010 and 2020, land cover change resulted in the
loss of 106 × 104 t C stored in vegetation [3].

The classification of land cover is usually based on natural geographic features such as
vegetation type, climatic conditions and topographic features that enable the construction of
different types of thematic classification, e.g., urban land [4], biogeoclimatic ecosystems [5],
and forest types [6]. Land classification methods traditionally rely on the historical data
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of land classification and field observations than can require a large amount of time and
resources to process, as image-based land classification was mainly achieved through
the visual interpretation of photogrammetry. Subsequently, the availability of remotely
sensed data enabled land classification based on the statistical analysis of spectral features
extracted from image pixels [7]. As the availability and diversity of multi-source remote
sensing data has increased there have been opportunities to greatly improve the accuracy
of land classification.

Remote sensing has an important role in determining land cover types, as multi-
sensor-derived waveband information can be used to classify land use cover quickly and
reproducibly at different temporal and spatial scales [8]. For example, Tadese et al. [9] used
remote sensing data as a basis for analyzing and understanding the long-term dynamics
of land use and land cover change in the Awash River Basin. Remote sensing imagery
can also be used to generate macro time series land cover datasets for a region, country,
or even globally. An example is the Global Land Cover 30 series (GlobeLand30) dataset,
which consists of ten primary land cover classes, i.e., water bodies, wetland, artificial
surfaces, cultivated land, permanent snow/ice, forest, shrubland, grassland, bareland, and
tundra [10]. The release of GlobeLand30 provided a database for large-scale land cover
change studies and has been used for large regional-scale studies [11]. Whilst the above
studies demonstrate the value of land classification at the spatial scale, the datasets are only
available for specific years and are not regularly updated, as the spectral characteristics
of land cover or landscape features can vary interannually. As a result, the sample points
selected for analysis in one year are not optimal for other years, which can create issues
related to training datasets and model migratability [12]. To resolve this limitation, a sample
point migration approach was developed, which enables the migration of classification
thresholds for a feature from a single chronology to a long time series dataset [13].

The Google Earth Engine (GEE) has been recognized as a powerful tool for processing
large-scale Earth observation data, with the ability to access and process large amounts of
multi-source, multi-scale, and time series remote sensing data via a cloud platform [14].
The GEE provides access to a variety of datasets in an integrated system, including various
satellite image sources, geophysical data, climate data, and demographic data that facilitate
the use of time series and multi-source datasets for land cover mapping [15,16]. For example,
Sidhu et al. [17] made use of the GEE platform’s utility in processing raster and vector
image manipulations for the spatio-temporal analysis of urban and wetland land cover
types in two subregions of Singapore, affirming the spatio-temporal analysis capabilities of
GEE. However, most existing studies focus on one land cover type or generate land cover
maps for certain areas at specific times of image collection. As a result, these studies often
find it difficult to incorporate long time series datasets. The utility of the GEE for land
cover detection using annual Landsat-derived normalized difference vegetation index time
series data was demonstrated by Huang et al. [18] to create a dynamic map of the land
cover change in Beijing over a 30-year period with an overall accuracy of 86.61%

The multi-petabyte curated catalogue of the geospatial datasets available in the GEE
permits and improves classification results by reducing the likelihood of dataset gaps and
uncertainty through the provision of multiple sources of data [19]. Multi-source remote
sensing data is particularly effective at improving the efficiency of land cover classification
as the data fusion and integration of spectral, spatio-temporal, and thermal information
from multiple sensors can improve the accuracy of classification [20]. For example, Li
et al. [21] generated a land cover map of the entire African continent at a resolution of 10 m
using a combination of Sentinel-2, Landsat-8, Nighttime Light, and MODIS data.

Machine learning algorithms such as maximum likelihood [22], support vector ma-
chines [23], and random forest (RF) [24] are recognized as accurate and effective methods
for analyzing large dimensional and complex spatio-temporal data when compared to
traditional parametric algorithms [25]. The selection of a good classification method is
a key factor in the classification process that is dependent on the analysis objectives; for
example, RF is one of the most frequently used supervised machine learning methods
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due to its high efficiency and accuracy in identifying single-class elements such as urban
number spaces [26] in remotely sensed imagery, as well as its ability to distinguish between
multiple land types [27,28], time series data [29], and complex farming areas [30]. The
improvement of machine learning methods to achieve efficient, fast, and accurate land
classification for long time series remains a focus of research.

In this study, we implemented the RF classifier in the GEE to perform time series
land classification at different spatial scales with Landsat-8 and Sentinel-2 datasets for
the vegetation growing season in 2022. Our overarching aim was to use different land
classification models constructed using multi-source remote sensing variables to establish
an efficient, accurate, and general land classification model for time series datasets, and to
identify land classification sample points and migration thresholds based on the differences
in the sample point image values without land classification changes. Our objectives were
to (1) determine the threshold value of sample point migration based on no change in land
class; (2) analyze the accuracy of the land classification model produced using a 36-year
time series of Landsat remote sensing imagery and high-precision Sentinel imagery based
on those threshold values; and (3) determine the optimal RF land classification model based
on different combinations of multi-source remote sensing variables and compare the impact
of image resolution on the classification accuracy.

2. Materials and Methods
2.1. Study Area

Shanxi Province is located within the Loess Plateau and the Yellow River Basin
(N34◦34′–40◦44′, E110◦14′–114◦33′) and occupies a total area of 156,700 km2. Mountains
account for more than 80% of the total surface area of the region, with its topography
highest in the northeast and lowest in the southwest, with an average altitude of 1500 m.
Shanxi Province is an important coal energy base in China, with its retained reserves of coal
resources reaching 270.9 billion metric tons. Additionally, Shanxi Province contains seven
national nature reserves and is an important ecological barrier between mining activities
and the Yellow River Basin. Within the Jinzhong coal base of Shanxi Province, the Huodong
National Coal Planning Area covers a total area of 4110 km2. The region is widely forested
and includes the Taiyue Mountain National Forest Park that is an intimate mix of mining
and forestry operations. The study area and land classification sample sites are shown in
Figure 1.

2.2. Data Sources

The Landsat series of satellites collect data at a resolution of 30 m and have been
providing fundamental data for long time series scientific research on a global scale since
their launch in 1972. In this study, remotely sensed data from 1 June 2022 to 31 August 2022
was used to capture the spectral reflectance of vegetation and assist in the identification
and extraction of information on land cover types, such as forests and grasslands, while
effectively distinguishing bare ground and other landscape features.

Sentinel-2 satellite data offers 13 spectral bands, which include four 10 m, six 20 m,
and three 60 m spatial resolution bands. MultiSpectral Instrument (MSI), Level-1C data
is the standard of the Sentinel-2 archive and represents the top of the atmosphere (TOA)
reflectance. Sentinel-2 imagery is commonly used to monitor land use and land cover
change on a global scale and is designed to provide high-resolution, multispectral remote
sensing data for monitoring surface change and environmental conditions.

In addition to the above images, we used the National Aeronautics and Space Admin-
istration (NASA) digital elevation model (DEM) and Sentinel-1 synthetic aperture radar
(SAR) as multi-source remote sensing images for land classification. All the multi-source
remote sensing images involved in land classification are shown in Table 1.
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Figure 1. Overview of the study area. (a) Landsat 8 RGB image of Shanxi province in 2022; the red 
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Figure 1. Overview of the study area. (a) Landsat 8 RGB image of Shanxi province in 2022; the red
outline is the Huodong mining area. (b) Sentinel-2 RGB image of the Huodong mining area in 2022.

Table 1. Multi-source remote sensing image data, at two different resolutions, used in this analysis.

Name Earth Engine Snippet Date Resolution

Landsat 5 LANDSAT/LT05/C02/T1_L2 “16 March 1984”–“5 May 2012” 30 m
Landsat 7 LANDSAT/LE07/C02/T1_L2 “28 May 1999” 30 m
Landsat 8 LANDSAT/LC08/C02/T1_L2 “18 March 2013” 30 m
Sentinel 1 COPERNICUS/S1_GRD “3 October 2014” 10 m
Sentinel 2 COPERNICUS/S2 “23 June 2015” 10 m

DEM NASA/NASADEM_HGT/001 “11 February 2000” 30 m

The workflow of this analysis comprised the four phases described below: (1) pre-
processing acquired imagery; (2) sample-point threshold acquisition; (3) land classification;
and (4) accuracy assessment (Figure 2).

2.3. Image Pre-Processing

The pre-processing of optical remote sensing images included image stitching, de-
clouding, mosaicking, and cropping. In particular, the image de-clouding methods all
remove clouds and cloud shadow elements by labeling the QA quality bands of Landsat
and Sentinel-2 data and operating the mask bit by bit. The mosaic processes of the images
were fused using the median method, which in turn resulted in the Landsat series of images
from 1986–2022 and Sentinel-2 remote sensing images of the vegetation growing seasons
from 2019–2022, respectively.

The Sentinel-1 polarized data from the GEE has officially undergone ground range
detection (GRD) boundary noise removal, thermal noise removal, radiometric calibration,
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and radiometric correction processes. In this study, the VV and VH polarization bands in
the interferometric wide swath (IW) mode, which are suitable for remote sensing studies
of land surfaces, were selected. The DEM data were reprojected and resampled to extract
variables such as elevation, slope, and aspect as topographic factors to participate in the
construction of the land classification model.
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2.4. Sample Point Selection

The land classification of Shanxi Province was divided into six types: forest land,
grassland, arable land, bare land, water bodies, and impervious surfaces. Additionally, a
mining land type was added to the land classification system to account for the Huodong
mining area and to assist in the differentiation of the mining and forest in the Taiyue
Mountain National Forest Park complex area.

Fixed sample points for different land classifications were selected by importing the
sample points into Google Earth to determine their accuracy by comparing high-resolution
remote sensing images. A total of 1507 sample points from the Landsat imagery and
1235 sample points from the Sentinel imagery were selected. In total, 70% of the sample
points were used as training sample points and 30% as validation sample points in the
classification process; the specific land classification sample points are shown in Table 2.

Table 2. Number of sample points for each land classification.

Image Samples Land Classification
TotalForest Water Crop Grass Building Bare Mining

Landsat
Training 139 104 227 176 274 135 0 1055

Validation 59 44 97 76 118 58 0 452

Sentinel
Training 150 29 160 141 195 21 168 864

Validation 65 12 69 60 84 9 72 371

2.5. Technical Method
2.5.1. Sample Migration

Spectral features and indices are common methods used to analyze remotely sensed
imagery. Spectral features are calculated from ratios or differences between the reflectance
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or emissivity in different bands of the remotely sensed image. These features and indices
can be used to extract feature information, monitor vegetation cover, and monitor water
quality, among other things. In this study, the Normalized Difference Vegetation Index
(NDVI), Normalized Difference Built-up Index (NDBI), Normalized Difference Water Index
(NDWI), and Difference Vegetation Index (DVI) were used to calculate the difference in
values between the forest, grassland, and cropland, respectively, from year to year, and
NDBI and DVI were used to calculate the difference between built-up (working) land
and bare land. The spectral characteristics of unchanged land types are counted over a
number of years so that a reasonable range of thresholds can be determined. In the GEE,
the ee.spectralDistance function was used for image difference statistics. The main purpose
of this function is to compute the per-pixel spectral distance between two images.

2.5.2. Random Forest Algorithm

Random forest was used to train a decision tree with randomly selected samples
and features from the dataset, with the results of the decision trees assessed to obtain a
combined result. The advantage of using the RF algorithm is that it avoids the problem of
overfitting and is reliable for handling data such as missing values and outliers.

2.5.3. Feature Model Construction

Comparison of the single and multi-source remote sensing variables was conducted by
combining different dimensions of remote sensing variables to investigate their influence
on the land classification results. Four remote sensing feature variables were selected:
spectral band, spectral index, Terrain features, and SAR data, with the specific variable
factors shown in Table 3. In the construction of the multi-source remote sensing variables,
five combinations of spectral band, spectral band + spectral index, spectral band + SAR,
spectral band + spectral index + SAR, and spectral band + spectral index + terrain features
+ SAR were used, respectively.

Table 3. Multi-source remote sensing feature variables.

Multi-Source Remote Sensing Image Variable Factors

Spectral Band Blue, Green, Red, Nir, Swir1, Swir2
Spectral Index NDVI, NDBI, NDWI, RVI, DVI

Terrain Elevation, Slope, Aspect
SAR HH, HV

2.5.4. Accuracy Assessment

Accuracy of the classification results was determined by calculating the overall accu-
racy (OA) as a ratio of the number of samples correctly classified to the total number of
samples, which is a common measure of classifier performance. The Kappa coefficient is a
statistic used to measure the agreement between classifiers or evaluators. It can be used to
assess the agreement between two evaluators on a classification task. Kappa coefficient
values range from −1 to 1, with higher values indicating a better agreement.

3. Results
3.1. The Determination of Thresholds

A total of 180 sample points without land classification change were selected by com-
paring remote sensing images of the same period from 1986 to 2022, these used 30 sample
points per land cover class and included data from each spectral band (Blue, Green, Red,
Swir1, Swir2) and spectral index (NDVI, NDBI, NDW) for each point year by year to obtain
the maximum and minimum value range (Table 4). The results show that Landsat can vary
somewhat in its image classifications between bands and indices, but the fluctuation range
is between 0.01 and 0.25. The variation between land classes indicated that water bodies are
the most stable followed by grasslands; the bands associated with forests fluctuated more
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in the NDVI and NDWI indices. The final upper threshold value for the land classification
sample points was set at 0.25 for Landsat long time series land classification.

Table 4. Threshold information of each band for sample points without land class change.

Band
Landcover

Forest Water Crop Grassland Building Bare

Blue 0.13 0.07 0.12 0.11 0.15 0.04
Green 0.08 0.08 0.12 0.09 0.12 0.08
Red 0.02 0.05 0.06 0.04 0.15 0.11

Swir1 0.13 0.07 0.18 0.04 0.25 0.24
Swir2 0.06 0.05 0.10 0.02 0.21 0.19
NDVI 0.25 0.07 0.20 0.13 0.12 0.11
NDBI 0.04 0.03 0.23 0.08 0.01 0.02
NDWI 0.23 0.05 0.12 0.04 0.15 0.09

DVI 0.14 0.01 0.19 0.01 0.02 0.02

3.2. Land Classification of Landsat Imagery

Land cover classification, using Landsat remote sensing images from 1986–2022, was
conducted using a sample point migration threshold of 0.25 and the accuracy was assessed
using the OA and kappa coefficient where the number of migrated sample points were
counted (Figure 3). The results show that the classification accuracy of the images was
highest in the years closer to the 2022 initial land classification, while the difference between
the kappa coefficient and OA became larger as the number of years from the 2022 initial land
classification sample points increased. However, the overall land classification accuracy
remained high, with the lowest kappa coefficient being 0.60 and the lowest OA being
0.75 in 1999. The number of classification sample points decreases as the number of years
from 2022 increases, with the migrated sample point data remaining stable at 900, which
accounts for approximately 60% of the original number of sample points. It is noteworthy
that the differences between the Landsat TM/ETM and OIL sensor technology can explain
the lower accuracy of results from the start of the study in 1986 until 2012.
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Figure 3. 1986–2022 Landsat land classification and sample sites. The y-axis on the left of the figure
represents the accuracy of the Kappa coefficient and the overall accuracy, and the y-axis on the right
represents the number of sample points for land classification.
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3.3. Land Classification of Sentinel-2 Images

To verify the generality of this paper among different remote sensing images and its
reproducibility under complex terrain conditions, we selected the Huodong national plan-
ning mining area in Shanxi Province and its complex terrain conditions as the study area,
and added a mining class to the land classification system for Sentinel-2 high-resolution
remote sensing images from 2019 to 2022. The land cover classification accuracies in dif-
ferent threshold ranges (0.1–0.4) were assessed separately by counting each waveband for
the different years of the land class (Table 5). The results show that the land classification
accuracy is higher when the threshold value of the training sample’s point migration is set
in the range of 0.20–0.30 and the number of sample points for year-by-year land classifica-
tion after threshold screening is maintained at about 70% of the original number, which can
meet the number of sample points required for land classification to a greater extent. At
the same time, the kappa coefficients between 2019 and 2021 are stable around 0.90, while
the OA is also maintained around 0.91.

Table 5. Land classification accuracies for different thresholds in 2019–2021.

Threshold Method
2019 2020 2021

Accuracy Number of Samples Accuracy Number of Samples Accuracy Number of Samples

0.1
Kappa 0.333

19
0.639

56
0.582

11OA 0.500 0.923 0.684

0.15
Kappa 0.707

108
0.644

160
0.867

70OA 0.818 0.792 0.896

0.20
Kappa 0.829

560
0.910

681
0.935

556OA 0.874 0.949 0.941

0.25
Kappa 0.884

863
0.886

956
0.914

901OA 0.907 0.908 0.931

0.30
Kappa 0.901

1028
0.914

1094
0.870

1055OA 0.919 0.931 0.910

0.35
Kappa 0.882

1112
0.921

1157
0.889

1132OA 0.903 0.904 0.876

0.40
Kappa 0.846

1173
0.891

1193
0.926

1176OA 0.875 0.905 0.893

3.4. Multi-Source Remote Sensing Images for Land Classification
3.4.1. Sentinel-2 Multi-Source Remote Sensing Land Classification

A combination of multi-source remote sensing variables improved the model accuracy
of land classification (Table 6; Figure 4), and the model accuracy is improved with an
increase in the number of variables, especially the combination of Spectral band + Index
+ SAR. In 2019, for example, the kappa coefficient eventually increased from 0.863 for a
single Spectral band to 0.910 for the Spectral band + Index + Terrain + SAR, whilst the
OA also increased from 0.888 to 0.927 for that sample variable combination. In addition,
compared to the 2022 participation in land classification accuracy, the sample points after
threshold screening can be used to eliminate the misclassification of sample points in the
selection process, so that the 2019–2021 land classification accuracy is better than the 2022
land classification accuracy.

Table 6. Land classification accuracy of sentinel-2 multi-source remote sensing variables in 2019–2022.

Variable Combinations
2019 2020 2021 2022

Kappa OA Kappa OA Kappa OA Kappa OA

Spectral band 0.863 0.888 0.877 0.900 0.867 0.893 0.860 0.887
Spectral band + Index 0.874 0.907 0.878 0.900 0.867 0.892 0.883 0.905
Spectral band + SAR 0.866 0.890 0.878 0.901 0.907 0.924 0.875 0.896

Spectral band + Index + SAR 0.903 0.915 0.913 0.929 0.896 0.916 0.900 0.915
Spectral band + Index + Terrain + SAR 0.910 0.927 0.880 0.903 0.921 0.936 0.889 0.919
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3.4.2. Landsat Multi-Source Remote Sensing Land Classification

The land classification accuracy of Landsat-8 (Table 7; Figure 5) with various combina-
tions of variables is lower than those of the multi-source remote sensing land classification
based on Sentinel-2 imagery. In 2022, for example, the highest land classification accuracy
is achieved with the combination of Spectral band + Index + SAR, and the model combina-
tion of Spectral band + SAR is better than that of Spectral band + Index. The years 2019
and 2020 have the best accuracy for the full variable combination, while the best variable
combination for 2021 and 2022 is Spectral band + Index + SAR.

Table 7. Landsat 8’s multi-source remote sensing variables’ land classification accuracy for the years
2019–2022.

Variable Combinations
2019 2020 2021 2022

Kappa OA Kappa OA Kappa OA Kappa OA

Spectral band 0.833 0.864 0.828 0.864 0.836 0.869 0.881 0.903
Spectral band + index 0.837 0.868 0.835 0.866 0.851 0.879 0.828 0.861
Spectral band + SAR 0.848 0.877 0.870 0.896 0.846 0.876 0.882 0.903

Spectral band + index + SAR 0.831 0.864 0.866 0.894 0.871 0.894 0.917 0.933
Spectral band + index + Terrain + SAR 0.872 0.897 0.892 0.913 0.848 0.878 0.900 0.919
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3.4.3. Comparative Analysis of the Accuracy of Land Classification Products

The Landsat 8 and Sentinel-2 remote sensing images of the land classification results
in 2020 are shown in Table 8; in the Huodong mining area, forest and grassland areas, as a
whole, accounted for about 80% of the whole study area, of which forest land accounted
for about 40%, while coal mine land accounted for about 1.5% of the whole study area, and
the water and bare ground accounted for only between 0.2 and 0.3%.

Table 8. Land classification results of different remote sensing images in 2020.

Land Classification
Landsat Sentinel

Area (km2) Percentage of Total Area (%) Area (km2) Percentage of Total Area (%)

Forest 1187.62 40.43 1163.98 39.68
Water 7.05 0.24 6.22 0.21
Crop 486.41 16.69 536.17 18.28
Grass 1161.89 39.55 1139.87 38.85

Building 48.11 1.64 48.77 1.66
Bare 8.29 0.28 8.00 0.27

Mining 34.41 1.17 34.58 1.18

Three high-resolution land classification products from 2022 were obtained for the
comparison of forested land classification results at resolutions ranging from 10 to 30 m
(Table 9). However, notably, in the list of the classification products shown in Table 9, the
JAXA/ALOS/PALSAR/YEARLY/FNF4 products does contain both forest and non-forest
land classes. Despite this subtle difference in the classification procedure and imagery
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resolution, the area of forested land ranged from 1136.74 to 1418.27 km2, with both the
highest and lowest area estimates being produced at a 10 m resolution.

Table 9. Comparative analysis of forested land classification products in 2022.

Earth Engine Snippet Resolution (m) Area (km2)

ESA/WorldCover/v100 10 1418.27
GOOGLE/DYNAMICWORLD/V1 10 1136.74

JAXA/ALOS/PALSAR/YEARLY/FNF4 25 1147.41
LANDSAT/LC08/C02/T1_L2 30 1187.62

COPERNICUS/S2_SR 10 1163.98

4. Discussion

In this study, the utility of the GEE cloud computing platform for building land
cover classification models using multiple sources of Landsat and Sentinel remote sensing
imagery at different spatial resolutions over a 36-year time series was assessed. High-
accuracy spatiotemporal land cover classification maps can help to reveal the impact of
human activities such as coal mining and urban expansion on land use over time, which
could enhance our understanding of the impact of population growth and changes in
demography, and provide an evidence base to facilitate future government policy decisions;
for example, creating accurate assessments of the spatiotemporal changes in forest C stocks
in the context of C accounting and net-zero targets [31].

Cloud computing platforms such as GEE, PIE-Engine, and AI Earth have improved our
access to the high-performance computing necessary to process large and complex datasets
and facilitated an increase in both the speed and accuracy of land cover classification. The
approach used in this study was to use the GEE platform to conduct classification based on
sample point migration and determine the sample point threshold value required to detect
a land cover classification change. The selection of the sample points’ migration method
has the advantage of not requiring new sample points to be chosen for each time period
image, thereby improving the efficiency of the classification process [13].

The fusion of multi-source remote sensing data into composite data products has
been shown to improve the accuracy of land cover classification [32]. In this study, when
assessing the classification of both Landsat and Sentinel multispectral images, differences
in the classification for crops and grassland were apparent because the imagery obtained
for the vegetative growing season did not have substantial differences in the image spectra
between grassland and crops. This finding supports the need for multiple sources of
remotely sensed images obtained with different sensors (e.g., the SAR and multispectral
data available in the Landsat and Sentinel series of images) to accurately classify land cover.

In our comparison of publicly available land classification products (Table 8), the
land classification results for forested land ranged between 1136.74 and 1418.27 km2 for
the Google and ESA products, respectively, which is broadly consistent with our own
classification of the forest land area. The higher estimation of forested land area by the ESA
product is likely due to its inclusion of sparse forest land in the classification of forested
land, whereas the variance between the other four products is only 50.88 km2 despite their
differences in image resolution.

Land cover classification based on the non-parametric RF algorithm is able to handle
multi-dimensional and non-linear data sources whilst also removing the requirement for a
balanced number of individual sample points [27], unlike the non-parametric minimum
distance, maximum likelihood, and Bayesian classification methods. The combination of
multi-source remote sensing data and the RF method has been shown to perform land
cover classification effectively and accurately. Random forest methods of land cover classifi-
cation have generated higher accuracy outputs compared to other non-parametric machine
learning methods such as support vector machines and artificial neural networks [33,34].

The generation of accurate land cover maps over a 36-year period has several chal-
lenges relating to the detection of land cover change and technological advances. Sensor
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technology is continually evolving, which has improved the diversity, quality, and quantity
of the remote sensing datasets available for analysis. The difference in the satellite sen-
sors between the Landsat-8 Operational Land Imager (OLI) and Sentinel-2 MultiSpectral
Instrument (MSI) did not have a large impact on the land cover classification results of
the same area, despite the higher resolution of the Sentinel-2-acquired datasets, which, in
theory, should facilitate a more accurate land cover classification and reduce the misclassi-
fication of features and the necessity of filtering imagery [35,36]. However, the fusion of
multi-source remote sensing datasets that incorporate textural features [37] has resulted in
greater improvements in classification than relying on the increased resolution of images.
For example, the fusion of datasets from different sensors has been shown to improve the
accuracy of land classification [38], forest biomass estimation [39], and natural disaster
monitoring [40]. The complex topography and forest species’ composition and density in
the typical mountainous mining area used in this study demonstrated that the effective
integration of topographic features such as elevation and slope can be more conducive to
distinguishing forests from buildings and crops.

5. Conclusions

The GEE remote sensing cloud platform was used for rapid land cover classification
using Landsat 5, 7, 8, and Sentinel-2 remotely sensed images with a time series spanning
36 years. Single sample point migration was used to produce a time series land cover
classification map at both the provincial–regional scale and the scale of mining opera-
tions. The final sample point migration threshold value that corresponded to no change
in classification was 0.25. The optimal combination of the multi-source remote sensing
variables used to parameterize the RF machine learning algorithm was the Spectral band
+ Index + terrain + SAR combination for both Landsat 8- and Sentinel-2-generated data.
The RF model produced a classification map with a highest accuracy for the year 2022
using the Landsat 8 data, with an OA of 0.90 and a Kappa coefficient of 0.919. Our analysis
suggests that a higher accuracy can be achieved when imagery with a higher spatial and
temporal resolution is used. Further work, assessing the combination of low-resolution
remotely sensed imagery and machine learning techniques will enable the assessment of a
global-scale land cover classification map over a long time series. As sensor technology
develops, we expect that the accuracy of land cover classification will continue to improve,
enabling the future identification of land cover classes that have not yet been considered.

To aid visualization and interpretation, a GEE-based land classification based on spec-
tral differences (1984–present) application was developed and is available at the following
URL: https://bqt2000204051.users.earthengine.app/view/land-classification-of-landsat-
imagery (accessed on 1 October 2023). The main purpose of this land classification program
is to allow users to input a predetermined set of land classification points for a specific year,
choose a designated threshold, and utilize the RF algorithm to classify land images from
1984 to the current year.
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