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Abstract

This paper presents rational inattention as a new, transdiagnostic theory of infor-

mation seeking in neurodevelopmental conditions that have uneven cognitive and

socio-emotional profiles, including developmental language disorder (DLD), dyslexia,

dyscalculia and autism. Rational inattention holds that the optimal solution tominimiz-

ingepistemicuncertainty is to avoid imprecise information sources. Thekey theoretical

contribution of this report is to endogenize imprecision, making it a function of the

primary neurocognitive difficulties that have been invoked to explain neurodivergent

phenotypes, including deficits in auditory perception, working memory, procedural

learning and the social brain network. We argue that disengagement with information

sources with low endogenous precision (e.g. speech in DLD, orthography-phonology

mappings in dyslexia, numeric stimuli in dyscalculia and social signals in autism) con-

stitutes resource-rational behaviour.We demonstrate the strength of this account in a

series of computational simulations. In experiment 1, we simulate information seeking

in artificial agents mimicking an array of neurodivergent phenotypes, which optimally

explore a complex learning environment containing speech, text, numeric stimuli and

social cues. In experiment 2, we simulate optimal information seeking in a cross-modal

dual-task paradigm and qualitatively replicate empirical data from children with and

withoutDLD. Across experiments, simulated agents’ only aimwas tomaximally reduce

epistemic uncertainty, with no difference in reward across information sources. We

show that rational inattention emerges naturally in specific neurodivergent pheno-

types as a function of low endogenous precision. For instance, an agent mimicking

the DLD phenotype disengages with speech (and preferentially engages with alter-

native precise information sources) because endogenous imprecision renders speech

not conducive to information gain. Because engagement is necessary for learning, sim-

ulation demonstrates how optimal information seeking may paradoxically contribute

negatively to an already delayed learning trajectory in neurodivergent children.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
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Research Highlights

∙ We present the first comprehensive theory of information seeking in neurodiver-

gent children to date, centred on the notion of rational inattention.

∙ We demonstrate the strength of this account in a series of computational simula-

tions involving artificial agents mimicking specific neurodivergent phenotypes that

optimally explore a complex learning environment containing speech, text, numeric

stimuli, and social cues.

∙ Weshowhowoptimal information seekingmay, paradoxically, contribute negatively

to an already delayed learning trajectory in neurodivergent children.

∙ This report advances our understanding of the factors shaping short-term decision

making and long-term learning in neurodivergent children.

1 INTRODUCTION

The idea that children play an active role in their learning is well recog-

nised. Whether through gaze direction, auditory attention or physical

engagement, there is growing evidence that children preferentially

allocate their cognitive and motor resources to environmental stimuli

aboutwhich they areuncertain (Chenet al., 2022; Fandakova&Gruber,

2021; Kidd & Hayden, 2015; Poli et al., 2020; Twomey &Westermann,

2018). Yet, to date, active informationseeking has only been studied in

neurotypical children.We are not aware of any account of information

seeking in children affected by neurodevelopmental conditions such

as developmental language disorder (DLD), developmental dyslexia,

developmental dyscalculia and autism spectrum condition. The pur-

pose of the current report is to present an account of information

seeking that is consistent with both neurotypical and neurodivergent

behaviour, and todemonstrate the strengthof this account in a seriesof

computational simulations that qualitatively replicatebehavioural data

from neurodivergent children.

Our account is centred on the notion of rational inattention, which

we argue may be a fundamental, transdiagnostic characteristic of neu-

rodivergent learning and development. The central message of this

paper is that perhaps paradoxically, optimal information seeking may

contribute negatively to an already delayed learning trajectory in

neurodivergent children. Through the provision of a computational

framework of neurodivergent information seeking, this report lends

necessary traction to established ideas of compensatory strategies

and the Matthew effect. Moreover, this report motivates a further

reassessment of the factors contributing to apparently unconventional

attentional behaviour in neurodivergent children. It is often claimed

that specific neurodivergent phenotypes (e.g. DLD or dyslexia) can

be attributed to an atypically constrained attentional capacity, a fac-

tor which may be improved through attention training (e.g. Ebert &

Kohnert, 2009; Gathercole & Baddeley, 1990; Holmes et al., 2015).

In contrast, the computational simulations presented in the current

report show how apparently unconventional attentional behaviour

in neurodivergent children may reflect optimal information seeking

given low endogenous precision in the absence of any functionally dis-

crete attentional bottleneck. This position is consistent with empirical

evidence suggesting that attention training programmes have limited

impact, and raises important questions about the deployment of such

programmes in clinical settings (Shipstead et al., 2012; Jones & West-

ermann, 2022). The current report is, therefore, of both theoretical and

clinical significance.

1.1 Information seeking in neurotypical and
neurodivergent children

Thedrive to learnaboutour environmentshasbeenexplained in anum-

ber of complementary ways. Curiosity-based accounts centre around

intrinsic reward, pragmatic accounts centre around learning to sup-

port good decision making (Gershman & Burke, 2022), and affective

accounts maintain that uncertainty is stress provoking and should be

avoided (Peters et al., 2017). What these accounts share is the belief

that implicit and explicit decision making tends towards acting and

engaging with the environment in a way that resolves the individual’s

epistemic uncertainty.

On the surface, neurodevelopmental disorders present a problem

for accounts arguing that children preferentially engage with informa-

tion sources about which they are uncertain (e.g. Chen et al., 2022;

Poli et al., 2020). Information gaps are the defining feature of neurode-

velopmental disorders. To simplify greatly, focussing on what might

reasonably be considered canonical areas of difficulty: Children with

DLD demonstrate greater uncertainty about speech than their peers;
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children with dyslexia demonstrate greater uncertainty about spelling

and phonology; children with dyscalculia demonstrate greater uncer-

tainty about numeracy; and many children with autism demonstrate

greater uncertainty about social cues1. Yet, these information gaps

do not encourage preferential engagement. On the contrary, neurodi-

vergent children are characteristically seen to engage less with those

information sources with which they have primary difficulty (Ashke-

nazi et al., 2009; Jones et al., 2018; Moriuchi et al., 2017; Smolak et al.,

2020; Soriano-Ferrer & Morte-Soriano, 2017; Stanovich, 2009; West

et al., 2021; Annaz et al., 2009). There is, then, an apparent incongruity

between neurotypical and neurodivergent information seeking: Neu-

rotypical children characteristically engage with information sources

about which they are uncertain, while neurodivergent children char-

acteristically disengage with those specific information sources about

which they are uncertain.

A range of neurocognitivemechanisms have been invoked to explain

neurodivergent developmental profiles. Thesemechanisms range from

low-level neural noise to deficits in auditory perception or working

memory, to deficits in procedural or statistical learning or the develop-

ment of the social brain network (Bishop & McArthur, 2005a, 2005b;

Gray et al., 2019; Hancock et al., 2017; Lindsay et al., 1999). Yet,

while these neurocognitive deficits might explain difficulties in learning

a specific information type, for instance, speech, text, numeric stim-

uli or social cues, they cannot explain a child disengaging with these

information types. This is because it is in principle possible to remain

engaged with a stimulus about which you are uncertain. Indeed, as

described above, engaging with stimuli about which we are uncer-

tain in an effort to reduce epistemic uncertainty and act accordingly

appears to be a relatively stable feature of human decision making

(Gottlieb et al., 2013; Parr & Friston, 2017). This considered, primary

neurocognitive deficits might in fact be expected to promote pref-

erential engagement, just as blurring images encourages preferential

engagement in infants (Chen et al., 2022). Yet this is not what is seen.

The notion of expected information gainmaybe key to reconciling this

apparent incongruity between neurotypical and neurodivergent infor-

mation seeking. The point here is that information seeking is guided

not only by information gaps, which suggest an implicit or explicit

awareness of a difference between a knowledge state and inferred

states of the world, but also by expectations about which information

sources are likely to reliably reduce epistemic uncertainty (Addyman&

Mareschal, 2013; Baer et al., 2018; Bazhydai et al., 2020; Cittern et al.,

2018; Gershman et al., 2015; Gottlieb et al., 2013; Poli et al., 2020,

Twomey&Westermann, 2018). For instance, engagement preferences

for informative over redundant visual sequences are observed empiri-

cally among 5-month olds (Addyman & Mareschal, 2013; see also Poli

et al., 2020). Similarly, when solving an object labelling task, 12-month-

olds preferentially engage with adult informants who they expect to

be reliable rather than those who they expect not to have the required

information (Bazhydai et al., 2020). Relatedworkwith infants indicates

that stimuli that are neither redundant nor complex to the point of

resembling noise may bemaximally engaging (Kidd et al., 2012).

Collectively this work illustrates how engagement preferences are

shaped by the nature of the different information sources that pop-

ulate a child’s environment. Information sources with a distinct and

meaningful signal may reliably support learning, while noisy informa-

tion sources may not (Parr & Friston, 2017; Addyman & Mareschal,

2013). A ‘resource-rational’ information seeking child should, there-

fore, preferentially allocate their finite cognitive and motor resources

to precise information sources that reliably reduce their epistemic

uncertainty and allocate few cognitive and motor resources to impre-

cise information sources that do not reliably reduce epistemic uncer-

tainty (Gershman et al., 2015; Gershman & Bhui, 2020; Gershman

& Burke, 2022). This latter disengagement profile has been termed

rational inattention; a phrase borrowed from economic theory to

describe why rational agents ignore certain information sources that

are available to them (Gershman & Burke, 2022). Applied to cogni-

tive psychology, the rational inattention framework proposes that the

active avoidanceof unreliable information sourceswith lowprecision is

essential tooptimising learningunder constraints on timeandcognitive

andmotor resources, enabling the individual to navigate their environ-

ment successfully (Gershman et al., 2015). To be clear, it is in our view

not necessary for a child to possess formal metacognitive awareness

regarding the precision of the many different information sources that

populate their environment. Instead, all that is required is for the child

to recognise that engagement with a certain information source did or

did not effectively resolve epistemic uncertainty in the past and that

without evidence to the contrary, this pattern may well hold in similar

situations in the future.

The key theoretical contribution of the current report is to endo-

genize low information source reliability to make it a function of

the primary neurocognitive differences that have been proposed to

explain neurodivergent profiles, including differences in auditory per-

ception, working memory, procedural learning and the development

of the social brain network. Rational inattention is not a theory of the

fundamental nature of neurocognitive differences, with respect to

which there is a long tradition includingmuch computationalmodelling

work (e.g. Joanisse & Seidenberg, 2003; Johnson et al., 2021; Jones

et al., 2023; Thomas et al., 2011, 2019). Instead, rational inattention

is a general theory of how such fundamental differences, the nature

of which is ‘bracketed out’ using low endogenous signal precision as

proxy, shape children’s information seeking and learning. Indeed, given

assumed differences in underlying mechanism and complex patterns

of comorbidity, it is plausible that a truly transdiagnostic theory of

neurodivergent information seeking can only operate at this level

of abstraction. Our view is that primary neurocognitive differences

render different information sources endogenously imprecise, war-

ranting disengagement with these information sources because they

are not reliably conducive to information gain. A child with DLD may

disengage from speech because endogenous imprecision renders

expected information gain low with respect to speech. Likewise, a

child with dyslexia may disengage from orthography and phonology, a

child with dyscalculia may disengage from numeric stimuli, and a child

with autism may disengage from social cues. Crucially, disengagement

of this sort reflects entirely resource-rational behaviour. Imprecise

information sources are unreliable and should be avoided by an ideal

learner that optimally explores its environment whether the source of
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imprecision is extrinsic or intrinsic to the learner (Parr&Friston, 2017).

This line of reasoning resolves the apparent incongruity between neu-

rotypical and neurodivergent information seeking outlined above, in

which neurotypical children preferentially engage with information

sources about which they are uncertain and neurodivergent children

preferentially disengagewith those specific information sources about

which they are thought to be uncertain. The point of reconciliation is

that all children preferentially engagewith stimuli that reliably support

information gain, and this profilemaybemoderated by both exogenous

and endogenous noise. In this sense, rational inattention is not only

unconstrained by primary neurocognitive differences and diagnostic

labels (e.g. DLD or dyslexia), but also by the broader neurotypical and

neurodivergent distinction, which may be conceptualised in terms of

continuous rather than discrete differences in degrees of endogenous

signal noise. Our focus on neurodivergence in this paper therefore

reflects our position that the attentional and exploratory behaviour of

children with pronounced areas of learning difficulty may be explained

under a general principle that traverses neurotypical and neurodi-

vergent development. Namely, the principle of minimising epistemic

uncertainty. Once again, we want to emphasise that the neurodiver-

gent child need not possess formal metacognitive awareness that their

experience of a given information source is imprecise relative to some

abstract baseline or normative standard. Indeed, we consider explicit

knowledge of this kind to be implausible. Rather, the child takes the

world as it comes and engages or disengageswith an information source

to the degree that it resolves their epistemic uncertainty.

1.2 Empirical evidence of rational inattention in
neurodivergent children

Evidence that rational inattention may be at play in neurodivergent

child behaviour comes from a number of sources. For instance, some

autism research indicates preferential engagement with non-social

over social cues and also enhanced knowledge of non-social cues such

as a mechanical systems, maps or timetables (Baron-Cohen, 2009;

Moriuchi et al., 2017; Annaz et al., 2009). Findings like this have

motivated explanatory frameworks of autism centred around a form

of empathizing and systematizing distinction (e.g. Baron-Cohen, 2009).

Under this view, while socio-cognitive understanding is seen as a rel-

ative weakness, the understanding of non-social phenomena, including

mechanical systems, is in somecases seen as a relative strength (Baron-

Cohen, 2009, p. 71). Such gains may plausibly be attributed to an

attentional boost effect (Gershman & Burke, 2022). That is, actively

discounting an information source with low endogenous precision

(here social signals) frees up cognitive and motor resources for allo-

cation to endogenously precise information sources (here non-social

signals) that have relatively high subjective epistemic value, result-

ing in enhanced learning for those information sources. Attentional

boost effects like this are an important prediction of rational inatten-

tion theory (Gershman & Burke, 2022) and may be an important signal

to probe for in future empirical inquiries into neurodivergent infor-

mation seeking. The picture is, however, unlikely to be clear cut, with

numerous factors including the child’s specific constellation of difficul-

ties and their learning environment determining whether attentional

boost effects are in fact observed.

Similar effects are reported by Leclercq et al. (2015), who provide

perhaps some of the best examples of adaptive engagement prefer-

ences in neurodivergent children to date. Leclercq et al. (2015) used

what is known as a cross-modal dual-task paradigm, in which a lin-

guistic and a non-linguistic task are administered concurrently. In this

study, children with and without DLD aged 9–11 years were tested

in a non-word span task and a non-verbal visual search task that

required participants to identify the complete circle in an array of bro-

ken circles. Importantly, the non-word encoding phase happened at

the same time as the visual search task, with a non-word recall test

conducted later after the visual search task was complete. A striking

feature of Leclercq et al.’s (2015) data was that children with DLD

outperformed same-age peers without DLD in the visual search task

(note that Kaldy et al., 2011 report a similar advantage in children

with autism). Despite the small sample size of Leclercq et al.’s (2015)

study,whichmakes replicationessential, this performanceadvantage is

intriguing because there is little empirical basis for assuming that chil-

dren with DLD are in general better at visual search than their peers.

Indeed, amuch larger study of 242 childrenwith DLD reported slightly

below-population-mean performance in tasks measuring non-verbal

cognition (Conti-Ramsden et al., 2012). Furthermore, as Leclercq et al.

(2015) note, the apparent visual search performance advantage is not

easily reconciledwith theattentional capacitybottleneckhypothesis of

DLD (e.g. Anobile et al., 2013; Askenazi & Henik, 2010; Ebert & Kohn-

ert, 2011; Rabiner & Coie, 2000). Were a domain-general attentional

bottleneck causally implicated in these children’s language learning dif-

ficulties, pronounced deficits may be expected in both the speech and

shape tasks. Alternatively, were a domain-specific attentional capac-

ity deficit implicated in these children’s language learning difficulties

(i.e. a deficit in language processing alone), we would predict perfor-

mance deficits in the speech task, but crucially we would not expect

any performance gain in the shape processing task. Only through the

adaptive discounting of the subjectively imprecise speech stimuli and

the resulting attentional boost for the simultaneously presented shape

stimuli, which are expected to reliably support information gain and

overall task performance, may we explain this performance advan-

tage. Importantly, Leclercq et al. (2015) report that language-matched

control children, too, show a performance advantage relative to age-

matched control children in the visual search task. This speaks to the

idea that rational inattention is unconstrained by the neurotypical and

neurodivergent distinction. Rather, all children preferentially engage

with stimuli that reliably support information gain. In this instance,

both childrenwith DLD and younger children without DLD, who them-

selves have relatively immature language skills, preferentially engage

with visual stimuli plausibly because they find this component of the

dual task easier than the verbal component.

Each of the empirical examples described so far in this section

illustrates gross differences in engagement preferences across very

different types of signals, that is, preferential engagement with non-

social over social signals in children with autism, and preferential
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engagement with visual shapes over auditory speech in children with

DLD. These case studies provide good empirical examples of rational

inattention in neurodivergent children, and it is this sort of gross dif-

ference in engagement profile that we recreate in the computational

simulations that follow. However, rational inattention may similarly

explain fine-grained differences in attention to specific features of

a single information source (Bates et al., 2019; Gershman & Burke,

2022, 2022). For instance, preferential engagement with the semantic

rather than phonological features of written text is sometimes seen

among children with dyslexia, who characteristically struggle to

decode letter sounds (a phenomenon termed semantic bootstrapping;

Muter & Snowling, 2009). Rational inattention is, therefore, assumed

to operate at various levels of granularity both within and across

information sources, reflecting the child’s efforts to maximise their

learning progress in order to achieve their subjective aims. This means

that even when a neurodivergent child appears to be engaged with a

given information source, they may be engaged with that information

source in a very different way than their neurotypical peers, with

very different consequences for their learning over time. Sims (2016)

describes this sort of variation in engagement preference in terms of

cost function mismatch, where the term ‘cost function’ describes the

uncertainty (or error) that the individual is trying to reduce through

engagement and learning. Here, the claim is that individuals faced

with matched stimuli in a matched environment will differ in how

they engage with that material as a function of expected information

gain given their subjective aims. Crucially, Sims (2016) demonstrates

empirically that how individuals are expected to engage (e.g. by an

experimenter) and how subjects actually engage can differ quite dra-

matically. Such differences in engagement are of course not unique to

neurodivergent children – rational inattention is a general principle

and there will be variance in how all children attend to a shared array

of environmental stimuli. However, the empirical research touched

on in this section indicates that specific neurobiological obstacles

to learning may force specific, relatively unconventional modes of

engagement that may be as pronounced as an aversion to the eyes or

as subtle as semantic bootstrapping.

1.3 Rational inattention and long-term learning

The paradox at the heart of the theoretical framework developed in

this report is that even though disengaging with information sources

associated with low endogenous precision is ‘optimal’ or ‘rational’ in

the short-term, it is expected to have a detrimental effect on the child’s

overall learning trajectory. Thus, while rational inattention is resource-

optimal, it comes with a cost. This is because rational inattention

precludes practice with difficult information sources, which interven-

tion studies suggest are often in principle learnable (e.g. Rinaldi et al.,

2021), and so may, therefore, deepen long-term learning delays that

negatively affect educational outcomes andwellbeing (Conti-Ramsden

et al., 2018). For instance, a child with DLD may reasonably attend to

peer behaviour (an endogenously reliable cue) over verbal instructions

(an endogenously unreliable cue) in their classroom to rapidly reduce

their epistemic uncertainty and determine what they have to do at

the moment. However, this engagement profile (sometimes termed a

compensatory strategy2; Muter & Snowling, 2009) may come with the

long-term cost of fewer well-developedmemories of natural speech.

Negative cycles of learning like this are often referred to as a (nega-

tive) Matthew effect, in reference to the ideas that ‘the rich get richer’

and ‘the poor get poorer’ (Stanovich, 2009). TheMatthew effect is per-

haps most commonly cited in dyslexia research, where it is argued that

children who struggle to read engage less with text and so learn fewer

grapheme–phoneme mappings and words than their peers, which in

turn makes it more difficult to read (Soriano-Ferrer & Morte-Soriano,

2017; Stanovich, 2009). To the extent that we consider the active

avoidance of an information source to be an important contributing

factor in the delayed learning trajectory of a neurodivergent child,

there is an overlap between the rational inattention framework devel-

oped in this report and the notion of the Matthew effect. In this sense,

the current report may be understood as making the case for greater

transdiagnostic awareness of the Matthew effect; an important idea

with respect to which there is already somework (e.g. Foster, 2023).

Yet, there is also a critical difference between the rational inatten-

tion framework developed in this paper and the Matthew effect as

it is commonly described. Namely, much of the literature citing the

Matthew effect argues that a failure to acquire a given skill reduces

the child’s implicit motivation to engage with a relevant information

source, further curtailing learning (Pfost et al., 2014; Soriano-Ferrer

& Morte-Soriano, 2017). Put plainly, the assumption is often that the

child does not like, for instance, reading and so does everything in their

power to avoid it. In contrast, the rational inattention framework pro-

moted in this paper makes no assumptions regarding a child’s affective

motivation to disengage with a specific information source. We do not

doubt that this dynamic is also at play. However, our claim is instead

that actively discounting information sources associated with low pre-

cision is resource-rational behaviour for any agent that is trying to

learn maximally about its environment, whether the source of impre-

cision is extrinsic or part of the individual’s neurocognitive makeup

as it is in neurodivergent children. This is not a question of reduced

enthusiasm stemming from failures to acquire a specific skill, but of

acting rationally to reduce epistemic uncertainty in order to achieve

subjective aims given finite cognitive and motor resources and a neu-

robiological obstacle that restricts the endogenous precision of certain

information sources. Rational inattention theory entails a description

of neurodivergent child behaviour as optimal in the face of primary

neurobiological constraints, rather than as deficient or demotivated.

This trade-off between short-term effectiveness and long-term

costs is not unique to the novel application of rational inattention the-

ory pursued in this report, though it is perhaps thrown into sharp relief

by the applicationof rational inattention toneurodivergent child devel-

opment. On the contrary, the tendency to allocate cognitive andmotor

resources in a way that secures immediate rather than deferred gain is

well recognised (Gershman & Bhui, 2020; Gershman & Burke, 2022).

People act to reduce epistemic uncertainty because they want and

need to get things done in the here and now, and the so-called tempo-

ral discounting of expected long-term information gain likely reflects
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the drive to respond to immediate curiosities and challenges coupled

with a difficulty envisioning how current decisions will predict out-

comes way down the line (Gabaix & Laibson, 2017; Gershman & Bhui,

2020; Gershman & Burke, 2022). Rational inattention remains ‘ratio-

nal’ because it implies an optimal way to gather information so that

we can act accordingly within a reasonable time horizon – whether

out of implicit or explicit motivation – whatever the consequences for

long-term learning.

2 SIMULATIONS

This project is associated with a fully documented Open Science

Framework repository, which enables readers to replicate our simula-

tions and experiment further with ourmodel: https://osf.io/jey7q/.

2.1 Experiment 1: Simulating rational inattention
in a complex learning environment

In this section, we use a computational model to demonstrate that

disengagement with an information source emerges naturally as the

optimal solution to the reduction of epistemic uncertainty given

constraints on endogenous precision. Several mathematical and com-

putational frameworks have been used to study human information

seeking, and the current manuscript shares with some of these frame-

works a description of human behaviour as resource rational (Bates

et al., 2019; Feldman & Friston, 2010; Gershman & Burke, 2022; Got-

tlieb et al., 2013; Oudeyer et al., 2007; Parr & Friston, 2017; Twomey

& Westermann, 2018). In the current study, we take a connectionist

approach, using artificial neural networks comprising simple nodes and

connecting weights that are a broad computational analogy to biologi-

cal neurons and synapses. Theweights linking nodes adapt dynamically

to the input that the network receives, mimicking biological synap-

tic plasticity in response to environmental stimulation. By controlling

features of the input and the network architecture, we are able to

develop and test theories of emergent cognitive phenomena and child

behaviour (Mareschal &Thomas, 2007; Twomey&Westermann, 2018;

Westermann et al., 2009;Westermann & Ruh, 2012).

2.2 Model architecture

We modelled neurotypical and neurodivergent information seeking

using autoencoder neural networks (Figure 1). Autoencoders have

been used to simulate a wide range of child behaviours, from categori-

sation and visual object processing to curiosity-driven learning and

language acquisition (Jones & Brandt, 2020; Mareschal et al., 2000;

Twomey &Westermann, 2018;Westermann et al., 2009;Westermann

&Mareschal, 2004, 2012). Autoencoders are a class of self-supervised

neural network, which form representations of their learning envi-

ronment by adaptively updating internal weights to minimise the

difference between the input they receive and a re-construction of

F IGURE 1 Four-path autoencoder neural network.

that input that they produce. The difference between network input

and output is quantified as a mean squared error (MSE). For instance,

a 28× 28 black andwhite bitmap imagemay be passed to the network,

transformed across the networks hidden layers and then output as a

28 × 28 re-constructed version of the input image3. The hidden layers

of an autoencoder are smaller than the input and output layers and

this enforces a processing bottleneckwhichmeans that reconstruction

is normally imperfect. The MSE is the sum of the squared differences

between each input pixel value and each corresponding output pixel

value. Over time (or training epochs), an error is reduced by updating

(raising or lowering) connection weights across the autoencoder using

the backpropagation algorithm. This results in a distributed internal

representation of the input stimuli that is optimal given the network’s

capacity and the task at hand, a notion that aligns well with the

principle of efficient neural encoding (Barlow, 2012). Autoencoders

therefore constitute an ideal choice for modelling optimal learning

under constraints on cognitive and motor resources (Sims, 2016;

Twomey &Westermann, 2018;Westermann et al., 2009;Westermann

& Ruh, 2012).

Figure1 illustrates the structureof the autoencoder used in this first

series of simulations. This is a four-path autoencoder, which takes in

and reconstructs abstract schematic inputs from four different infor-

mation sources: speech, text (i.e. orthography-phonology mappings),

numeric stimuli and social cues. The network reconstructs each input

from each information source and calculates the corresponding MSE.

EachMSE is then added together to produce a global error, which is the

quantity that the system minimises through backpropagation-driven

parameter updating. Our intention here is to capture the notion that

the agent seeks to reduce their overall uncertainty (i.e. global error)

by engaging selectively with their environment. To achieve this, a key

innovation of our computational model is that the MSE from each

information source is weighted (i.e. by the speech weight, text weight,

numeric weight and social weight). These weights are normalised to

sum to one across the network and so are initially each set to 0.25 (i.e.
1

n
, wheren is thenumberof channels). The global error is, therefore, the
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F IGURE 2 Abstract input patterns, ‘schematic spike trains’.

sum of eachMSE times the weight for each information source:

Global error = speechMSE × speech weight + text MSE × text weight

+numeric MSE × numeric weight + social MSE

× social weight

Over 100 training epochs, the weights connecting hidden layers are

optimised using the backpropagation algorithm to reduce the global

error. Crucially, the speech MSE weight, text MSE weight, numeric

MSE weight and social MSE weight – what we might collectively call

the engagement weights – are also optimised during training via the

backpropagation of global error. The network therefore dynamically

optimises the weight for each information source as a function of how

much engaging with that information source reduces the global error,

that is, how much engagement enhances the network’s overall ability

to represent information in its environment. If each information source

is equally epistemically valuable in terms of its contribution to the

reduction of global error, each information source engagement weight

will remain at its initialisation value of 0.25. However, if one informa-

tion source is less epistemically valuable, then that information source

will be de-weighted, meaning that its MSE feeds less into the pooled

global error that is backpropagated across the network in order to

shape overall network structure. The fact that the engagementweights

are normalised to one captures the idea of finite cognitive and motor

resources. Preferentially engaging with one information source nec-

essarily entails dis-engaging with another information source to some

degree. In essence, the domains of speech, text, numeric stimuli and

social cues are competing for attention to enable the learner to max-

imise their learning progress. The neural network shown in Figure 1

is, therefore, able to simulate fully emergent engagement preferences

that are driven by optimising overall learning in a complex environment

given resource constraints.

2.3 Stimuli

In this first series of simulations, we used abstract 28 × 28 bitmap

images as model input. These inputs may be thought of as schematic

spike trains that are associated with stimuli from the different infor-

mation sources that we are modelling, namely speech, text, numeric

stimuli and social cues (Figure 2). The input schematic spike trains

elicited by stimuli from each information source had a unique gen-

eral pattern. For instance, the speech spike trains followed the pattern

(from top to bottom) long bar, short left-aligned bar, short right-aligned

bar, short left-aligned bar, short right-aligned bar and long bar (see the

‘speech’ panel in Figure 2). However, each spike train presented to the

network was unique in terms of the specific location of its scattered

black pixels, the number of whichwas identical across input exemplars.

During training, eachnetworkwas exposed to100 randomly generated

unique input exemplars from each of the four information sources.

In order to simulate neurotypical and neurodivergent information

seeking, we controlled the degree of input noise that networks experi-

enced to align with canonical areas of difficulty commonly associated

with various neurodivergent phenotypes. Noise was generated by ran-

domly redistributing a percentage (0%–25%) of the input’s black pixels

into whitespace. The result of this process is shown in Figure 3. A

baseline, neurotypical model received input with zero noise in each

information source. Neurodivergent phenotypes were then modelled

by adding noise to one or more information sources to align with

the areas of difficulty that a child with a certain neurodevelopmen-

tal disorder may be reasonably expected to have. To simulate DLD,

for instance, we added noise to speech, to simulate dyslexia we added

noise to text (orthography-phonologymappings), to simulate dyscalcu-

lia we added noise to the numeric information source, and to simulate

autism we added noise to the social information source. Comorbidity

was simulated by adding noise tomultiple information sources concur-

rently. Once again, we note that rational inattention is unconstrained

by diagnostic labels and indeed by the broader neurotypical and neu-

rodivergent distinction. The labels used throughout these simulations

(e.g.DLD) areof course arbitrary and simply reflect different degreesof

endogenous noise in a canonical information channel (e.g. speech). We

consider this necessary to clearly build intuition regarding how a gen-

eralised learning principle can help shape very different developmental

trajectories.

The purpose of designing stimuli at this level of abstraction is to

remain agnostic about the underlying nature of the various neurocog-

nitive differences that can affect child development, which remains

an area of much controversy. For instance, as we touched on above,

whether DLD is the result of auditory perceptual deficits or deficits

in working memory or procedural learning remains keenly debated.

Each of these cognitive mechanisms is aligned with a different neural
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F IGURE 3 Input schematic spike trains with different degrees of noise.

substrate (e.g. the basilar membrane or frontal-basil ganglia circuits).

Moreover, comorbidity is the norm and not the exception in neuro-

divergent development, a factor which further complicates theorizing

about the nature of the complex constellation of mechanisms that

underly neurodiverse phenotypes (Astle et al., 2022). Accordingly, in

the simulations that follow, we take the very general view that a

neurodivergent child has relatively noisy representations of the infor-

mation source – ormultiple information sources – that sits at the heart

of their condition at some level. Focussing again on canonical areas

of difficulty: Children with DLD commonly demonstrate uncertainty

about speech; children with dyslexia demonstrate uncertainty about

orthographic-phonemic mapping (which we label text for brevity),

children with dyscalculia demonstrate uncertainty about numeracy,

and some children with autism demonstrate uncertainty about social

cues. Throughout these simulations, we are asking what does opti-

mal information seeking look like given generalised noisy representations

affecting disparate information sources?withoutmaking any claims about

the primary nature or neurobiological locus of the underlying neural

noise.

2.4 Results and discussion

To show that networks are indeed forming the types of internal

representations of their input that we expect, we begin by presenting

the raw inputs and output reconstructions from a single network

modelling each phenotype. In the results shown, networks simulating

neurotypical information seeking received clean input stimuli from

each information source. Networks simulating dyscalculia and autism

were affected by 25% noise in the numeric and social information

streams respectively. Comorbid DLD and dyslexia were simulated by

adding 10%noise to both the speech and text (orthographic-phonemic)

information sources. Figure 4 shows that the trained autoencoders

in each group are indeed generally picking up on the underlying

patterns which are common to each of the four classes of randomised

schematic spike trains that they received as input (see Figure 2).

Looking carefully, you may also be able to identify a greater number

of dispersed grey pixels in the re-constructed spike trains from the

relevant noisy information source (or sources) in each neurodiver-

gent simulation (e.g. with respect to numeric stimuli in dyscalculia).

This is evidence that the associated input noise is constraining

learning.

Figure 5 shows dynamic changes in the weighting of each informa-

tion source over time,which as a reminderwas initialised at 0.25 across

information sources at the outset of learning. This point is important

because it means that there is no prior engagement preference for any

information source and that engagement preferences are an emergent

property of maximising overall learning. The results shown represent

the average engagement profile over time for 10 networks in each

condition and may be read as exploratory trajectories through time

in a complex learning environment containing speech, text, numeric

stimuli and social cues.

Figure 5 confirms that engagement with each information source is

equivalent at the outset of learning regardless of the simulated pheno-

type (i.e. weights are uniformly initialised at 0.25; see the initial value at

the y-axis in each panel). Yet, engagement becomes increasingly asym-

metrical in the neurodivergent simulations as a function of learning

optimisation (i.e. minimising global error) given endogenous noise. For

instance, the networks simulating dyscalculia and autism disengage

with numeric and social signals entirely by around 60 epochs, as neural

noise renders these information sources not conducive to informa-

tion gain. Similarly, the networksmodelling comorbidDLDand dyslexia

slowly disengage with speech and text in order to maximise their

overall learning. In the absence of any constraints on disengagement,
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F IGURE 4 Example inputs and reconstructions from a randomly sampled trained network in each group.

F IGURE 5 Engagement by phenotype over time.

ideal preferential engagementweightswill reach asymptote at approx-

imately
1

n
, where n is the number of information sources unaffected by

neural noise.

Importantly, the engagement profiles shown in Figure 5 are in a

cyclical relationship with network learning, which is shown by the

simulated phenotype in Figure 6. Figure 6 shows the mean squared

re-construction error rates associated with stimuli from each infor-

mation source over time, given a certain canonical input noise profile

that aligns broadly with each phenotype (see above). Error is under-

standably higher for the relevant noisy information source, and this

effect deepens learning delays over time (i.e., error rates may steadily

increase) in line with the disengagement profiles shown in Figure 5.

In conjunction, Figures 5 and 6 illustrate the cyclical relationship

that exists between engagement and learning. Reducing epistemic

uncertainty fosters continued preferential engagement and, when

there is still more to learn, preferential engagement further reduces

epistemic uncertainty. On the other hand, networks disengage with

information sources that do not reduce epistemic uncertainty, deep-

ening long-term learning deficits with respect to specific information

sources.
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F IGURE 6 Learning (error reduction) by phenotype over time.

Using broadly the same setup, we conducted further simulations

to demonstrate that rational inattention is essential to maximising

overall learning given finite attentional resources and constraints on

endogenous precision. These simulations involved two conditions:

active learning and clamped learning. In the active learning condition,

the procedure was identical to that described so far in this section.

That is, the error from each information source is weighted by the

relevant engagement weight before being fed into the pooled error

and then backpropagated. This is a dynamic learning condition in

which individual information sources can be engaged with more or

less in order tomaximise overall learning. In contrast, the new clamped

learning condition involved fixing each engagement weight (i.e. speech

weight, textweight, numericweight and socialweight) to 0.25 through-

out training. This, then, is a non-active learning simulation, in which the

artificial agent must allocate 25% of its resources to each information

source and attempt to learn from it regardless of the degree to which

that information source is immediately uncertainty reducing. Ratio-

nally inattentive information seeking is not permitted in this clamped

condition. The results of this comparison between active learning and

clamped learning are shown for a simulated neurotypical agent and a

simulated DLD agent below. Results again reflect the mean learning

profile of 10 networks in each group, and in the DLD group input noise

on the speech channel was set to 25%.

Figure 7 (Neurotypical) shows that whether the neurotypical agent

is engaged in clamped or active learning has little effect on reducing

global error. This is because each information source in the simu-

lated learning environment is precise and comparable and therefore

equally epistemically valuable. On the other hand, Figure 7 (DLD)

shows that active information seeking – in this case, the active avoid-

ance of endogenously noisy speech input – is essential to reducing

overall uncertainty about the complex learning environment in which

the neurodivergent agent is situated. Figure 7 shows rational inat-

tention to be a hallmark of optimal, resource-rational neurodivergent

information seeking and learning. If the DLD agent is forced via clamp-

ing to engage symmetrically with all four information sources, overall

error will be higher than if it is free to engage and disengage on the

basis of expected information gain. This effect can be unpacked further

by looking at themean individual information source error rates for the

DLDsimulationnetworks in the clampedandactive learning conditions

(Figure 8).

Figure 8 shows that active learning promotes relatively low error

rates for precise information sources (text, numeric stimuli and social

cues in Figure 8; the circle markers have lower error than the cross

markers) but that active learning promotes relatively high error rates

for imprecise information source (speech). This is the result of the

active learning networks being able to freely disengage with imprecise

information sources, highlighting our central claim that optimal in-the-

moment information seeking may, paradoxically, contribute negatively

to an already delayed learning trajectory in neurodivergent chil-

dren (see the upward trend in the circle-marked speech line relative

to the cross-marked speech line in Figure 8). Conversely, clamping

engagement weights – promoting sustained engagement – results in

better learning for imprecise information sources (in this instance

speech).

The critical point, then, is that rational inattention characterises

optimal information seeking given finite attentional resources and

constraints on endogenous signal precision, providing proof of concept

for the rational inattention framework developed in the current report.

Rational inattention in this context cannot be attributed to any lack of

affectivemotivation to engagewith an information source or indeed to

any form of processing capacity bottleneck, neither of which features

in our model. Instead, each of the exploratory trajectories shown
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F IGURE 7 Clamped and active neurotypical and neurodivergent learning.

F IGURE 8 DLD simulation information source error rates in clamped and active conditions.

in Figure 5 (and indeed throughout this section), both neurotypical

and neurodivergent, captures entirely optimal, resource-rational

behaviour. Nevertheless, optimal in-the-moment information seeking

can be shown to deepen learning delays over time, particularly when

direct engagement is not encouraged (Figure 8).

2.5 Experiment 2: Simulating rational inattention
and attentional boost effects in the cross-modal
dual-task paradigm

In this section, we ‘zoom in’ to simulate information seeking in a rel-

atively simple learning environment containing just two information

sources: speech and visual stimuli. The simulations presented in this

section aim to re-create the cross-modal dual-task paradigm data col-

lected by Leclercq et al. (2015), who tested children with and without

DLD in a non-word span task and a non-verbal visual search task that

required participants to identify the complete circle in an array of bro-

ken circles. In this study, the non-word encoding phase happened at

the same time as the visual search task, with the non-word recall task

then conducted afterwards. The striking feature of Leclercq et al.’s

TABLE 1 Non-word repetition task performance (proportion of
syllables accurately repeated) and visual search task performance
(proportion of visual targets identified) in a cross-modal dual-task
paradigm. The values shown aremeans, with standard deviations in
brackets. Controls= age-matched controls aged 9–11.

Task DLD (n= 21) Controls (n= 21)

Non-word repetition 0.47 (0.16) 0.52 (0.23)

Visual search 0.83 (0.13) 0.73 (0.13)

(2015) results is that children with DLD outperformed same-age chil-

dren without DLD in the visual search task. The relevant data from

Leclercq et al. (2015, p. 727, tab. 2) are reprinted in Table 1.

The empirical results shown in Table 1 – namely the so-called atten-

tional boost effect –maybeexplainedbyexpected informationgain. That

is, age-matched neurotypical (control) children expect to learn from

both visual and verbal information sources, and so engage symmetri-

cally with each modality. In contrast, children with DLD find the visual

task easier than the verbal task, and so preferentially engage with the

visual stimuli, resulting in an attentional boost effect for visual search.

Given that the neurocognitive makeup of children with DLD means
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F IGURE 9 Two-path autoencoder.

that they tend to have difficulty with speech processing, this consti-

tutes entirely resource rational behaviour – rational inattention – and

enables the child to maximise their overall learning given the task at

hand.

2.6 Model architecture

The autoencoder neural network used in this section was identical

to that shown in Figure 1, with the exception that it was capable

of processing just two information sources: auditory verbal stimuli

and visual shape stimuli (Figure 9). This meant that the network’s two

engagementweights– that is, theauditoryweight and thevisualweight

– were initialised to 0.5 (i.e.
1

n
, where n is the number of channels).

Leclercq et al.’s (2015) paradigm required children to produce two

responses. In the visual shape task, children were required to point

to the complete circle in a visual array, and in the auditory verbal

task, childrenwere required toverbally reproducenon-words that they

heard during the encoding phase. In the simulations that follow, these

responses (i.e. pointing and non-word articulation) are inferred from

the mean squared reconstruction errors for visual and auditory ver-

bal inputs respectively. A low visual reconstruction error means that

the system has formed a robust internal representation of the detail

of the visual stimuli that it has encountered, including the location of

the accurate target and neighbouring distractors. Similarly, a low audi-

tory verbal reconstruction error means that the system has formed a

robust internal representation of the detail in thespeech stimuli that it

has encountered, one that would be necessary to accurately articulate

the non-word at test.

2.7 Stimuli

Stimuli were once again 28 × 28 bitmap images. However, the images

used in this sectionwere engineered to broadly replicate those used by

Leclercq et al. (2015). Over 100 training epochs, the two-path autoen-

coderwas presented concurrentlywith randomly generated schematic

spectrograms (auditory input) and randomly generated arrays of four

circles (visual input; see Figure 10). The auditory inputs represented

non-words from four classes (Figure 10, schematic auditory spectro-

gram patterns zero to three). Within each class, the location and width

of the synthetic formants (i.e. the high-energy density regions of the

spectrogram) were pre-defined. However, each spectrogram exemplar

generatedhad randomlydistributedbreaksofwhite spaceacross these

formants that made it unique. The visual inputs comprised 28 × 28

bitmap images containing four circles, one of which was complete and

three of which had a break in a randomly generated location for each

exemplar. The location of the complete circle also differed across train-

ing exemplars, whether in the top left, top right, bottom left or bottom

right. Networks were exposed to 100 training exemplars in each input

modality: 25 speech exemplars from each of the four classes of non-

word and 25 visual arrays with the complete circle in each of the four

quadrants.

Following the procedure described in the first series of simula-

tions, we then degraded the auditory input representations shown in

Figure 10 at different rates. This meant re-distributing a percentage

of black pixels into whitespace (Figure 11). Once again, this reflects

the general notion that children with DLD have canonical difficulties

with speechprocessing and should not be interpreted as a commitment

to any claim about the neurobiological nature or locus of these chil-

dren’s difficulties. Rather, we are asking what does optimal information

seeking look like given generalised noisy representations affecting speech

processing? Specifically, our simulations aimed to determine whether

optimal information seeking can in principle explain the behavioural

profile reported by Leclercq et al. (2015), namely the attentional boost

effect (Table 1).

3 RESULTS AND DISCUSSION

Figure 12 shows sample inputs and reconstructions from neural net-

works with different degrees of auditory neural noise. Like Figure 4,

the purpose of this figure is to demonstrate what exactly it is that

networks are learning in each condition. Remember that each input

passed to the network is generated on the fly and is entirely unique.

Yet, after 100 epochs of dynamic adaptation, networks have learned a

general distribution that enables them to reproduce each new visual

or auditory input encountered more or less accurately (given the con-

sistency of underlying patterns; Figure 10). Trained networks are able

to accurately represent the location of the complete circle and, in the

absenceof excessiveneural noise, thekeyenergybands in the synthetic

auditory spectrograms.

Increased re-construction error for auditory stimuli is visible in

Figure 12 as auditory noise levels rise from 0 to 25%. Once again,

this is evidence of endogenous noise necessarily inhibiting learning.

The networks are unable to learn the underlying input distribution,

which is simply too distorted, and so produce ‘fuzzy’ re-constructions.

As emphasised in the previous simulations, learning interacts with

engagement profile, with learning successes fostering preferential

engagement and vice versa. Figure 13 shows engagement preferences

across auditory speech stimuli and visual stimuli in the simulated cross-

modal dual-task paradigm as a function of auditory noise level. Lines

represent means, with n = 10 networks in each group. The take-

home message is that, as in the preceding simulations, noise fosters
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F IGURE 10 Auditory and visual input used in the cross-modal dual-task paradigm simulations.

F IGURE 11 Input auditory representations with different degrees of noise.

resource-rational preferential disengagement (here, with the auditory

information stream).

Interestingly, networks with no auditory noise (n = 10) first pref-

erentially engage with auditory stimuli (as do those with 5 and 10%

noise), suggesting that engagement with the auditory spectrograms

is initially the most expedient way to reduce global error. Later,

at around 80 epochs when learning is more advanced, networks

appear to shift towards preferential engagement with the visual stim-

uli. This particular simulation therefore appears to capture synthetic

exploitation–exploration behaviour.

As soon as significant noise enters the auditory stream networks

become rationally inattentive to that stream and instead preferentially

engage with the visual information source in order to optimise their

overall learning. In the extreme case of a noise level of 25%, this

occurs quite dramatically within 40 epochs, by which time the (n= 10)

neural networks in this group engage exclusively with the visual

stimuli. Figure 13 therefore neatly captures how rational inattention

is unconstrained by any hard-and-fast neurotypical and neurodivergent

distinction and may instead be conceptualised in terms of a response

to continuous degrees of endogenous signal noise.

Of course, in the child’s environment, there are factors which will

preclude such absolute disengagement with an information source

like speech, such as a need to communicate with caregivers and later

to participate in educational tasks at school. Such encounters may

be broadly aligned with the notion of clamped engagement that we

explored in Experiment 1 because they limit the extent to which dis-

engagement is possible and in doing somaymitigate long-term learning

deficits (Figure8). Formal programmesof clinical interventionmaycon-

fer similar effects by facilitating deep, structured engagement with

difficult information sources. Engagement preferences are expected

to become increasingly symmetrical as the quality of the child’s long-

term speech representations improves. This may be expected to

take the child from a profile resembling the higher noise engage-

ment trends shown in Figure 13 to a profile resembling the lower

noise engagement trends shown in Figure 13 (see also Figures 5 and

8).

The rationally inattentive behaviour shown in Figure 13 is in a

cyclical relationship with learning. Figure 14a shows auditory task

error by auditory (i.e. speech) noise level. As in the human data from

Leclercq et al. (2015), generalised noisy representations affecting
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F IGURE 12 Example inputs and re-constructions from a randomly sampled trained network at each noise level.

F IGURE 13 Engagement preferences in the simulated
cross-modal dual-task paradigm as a function of synthetic speech
processing deficits.

speech processing unsurprisingly correspond to worse performance

on the auditory task. Importantly, though, Figure 14b shows that sim-

ulation using the dual-path autoencoder does recover the apparent

attentional boost effects seen in Leclercq et al. (2015; see Table 1 of

the current study). That is, higher auditory stream noise was associ-

ated with higher rates of success on the visual search task (i.e. visual

task error is lower at higher auditory verbal noise levels). Each pattern

of findings shown in Figure 14 of course relates to the preferential dis-

engagement with the auditory signal and the preferential engagement

with the visual signal that are illustrated in Figure 13; a pattern that can

itself be driven only by expected information gain given endogenous

noise.

The results of the simulations in this and the previous section

align neatly with an expansive behavioural and computational liter-

ature on resource-rational information seeking (Bates et al., 2019;

Bazhydai et al., 2020; Chen et al., 2022; Feldman & Friston, 2010;

Gershman et al., 2015; Poli et al., 2020; Sims, 2016; Twomey & West-

ermann, 2018). In summary, agents preferentially engage with infor-

mation sources associated with high expected information gain and

are rationally inattentive to information sources associated with low

expected information gain. Importantly, this principle holds whether

 14677687, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/desc.13492 by B

angor U
niversity M

ain L
ibrary, W

iley O
nline L

ibrary on [09/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



JONES ET AL. 15 of 19

F IGURE 14 Auditory and visual task error by the degree of auditory verbal noise.

the noise source that renders an information source not conducive to

information gain is exogeneous or endogenous to the agent (Parr &

Friston, 2017). Rational inattentive information seeking may, where

the learning and testing environment is appropriately constrained

and appropriately configured, be evident in attentional boost effects

(Figure 14b).

4 GENERAL DISCUSSION

Many of the ideas considered in this paper have a long history, from the

idea that neurodivergent children allocate attention unconventionally

to notions of compensatory strategies and the Matthew effect (Muter

& Snowling, 2009; Stanovich, 2009). This paper has presented ratio-

nal inattention as a coherent scheme for integrating and developing

these ideas, and for putting the under-researched notion that neurodi-

vergent children play an active role in shaping their learning front and

centre. Our focus in this report was on information seeking, which, as

we emphasised at the outset, may be driven by numerous extrinsic or

intrinsic factors. We presented a series of computational simulations

inwhich rational inattention emergednaturally in artificial agentsmim-

icking specific neurodivergent phenotypes and qualitatively replicated

child empirical data from Leclercq et al. (2015).

This paper began by describing an apparent incongruity between

a well-reported drive to resolve epistemic uncertainty in neurotypi-

cal children and the active avoidance of difficult information sources

that is commonly seen in neurodivergent children. We argued that

this incongruity can be resolved through the notion of expected infor-

mation gain. Actively disengaging with imprecise information sources

is resource-rational behaviour for any agent with finite cognitive and

motor resources that is trying to learn maximally about its environ-

ment in order to achieve its aims, whether the source of imprecision is

extrinsic or part of the individual’s neurocognitive makeup, resulting,

for instance, from a fundamental neurobiological obstacle that per-

turbs endogenous precision. Rational inattention therefore provides

a unified framework in which both neurotypical and neurodivergent

attention and engagement preferences are shaped by expectations

about the degree to which the different information sources that pop-

ulate the child’s environment support information gain. Importantly,

neurodivergent children do not need tometa-reason that their sensory

experience is imprecise relative to an abstract and indeed inaccessible

baseline. All children need to know is that in general engagement with

a certain information source does or does not resolve their epistemic

uncertainty.

Strong and lasting engagement preferences can be induced by

apparently subtle perturbations in exogenous stimulus precision

(Bates et al., 2019; Bourgeois et al., 2016; Chen et al., 2022; Della

Libera & Chelazzi, 2009; Fandakova & Gruber, 2021; Sims, 2016).

The rational inattention framework therefore suggests that a neu-

rocognitive deficit with only a relatively subtle direct influence on

the endogenous precision of sensory experience may nevertheless

have a substantial effect on behavioural engagement preferences over

time, with subsequent cascading effects that dramatically shape long-

term learning outcomes with respect to specific information types.

The neurodivergent child’s environment will contain a wide array of

information sources associated with different degrees of endogenous

precision, and an expectation that a certain information source within

that environment is not immediately conducive to information gain and

goal fulfilment relative to othersmayquickly drive disengagementwith

that information source and a re-distribution of engagement prefer-

ences. A great deal of a neurodivergent child’s day-to-day behaviour

may be shaped by rational inattention, as the child adopts perhaps

unconventional ways of engaging with their environment and their

caregivers and peers becomenaturally responsive to those behaviours.

Yet, rational inattention precludes direct practice with endogenously

imprecise information sources,which are in principle learnable to some

degree, and is, therefore, expected to foster deeper delays in key skill

development. The central message of this paper, then, is that, perhaps

paradoxically, optimal information seeking may contribute negatively

to an already delayed learning trajectory in neurodivergent children.

The extent to which rational inattention may explain neurodiver-

gent behaviour over and above an assumed primary neurocognitive

deficit, such as a deficit in auditory processing or working memory,

remains unclear. This is the essential question raised by the current

report:Howmuchof the delayed learning trajectory andbehaviour of a neu-

rodivergent child is the direct result of a fundamental neurocognitive deficit,

and howmuchmay be attributed to optimal information seeking – that is, to

rational inattention – given fundamental, and in certain cases feasibly very
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subtle, neurocognitive constraints? For instance, wewonder howmuch of

the behavioural data readily attributed to a functionally discrete atten-

tional capacity bottleneck (e.g. difficulties attending to speech in DLD)

may instead be attributed to the child’s engagement being regulated by

the fact that past experience has shown that a particular information

source is not immediately conducive to effective information gain.

Future research should aim to determine how well the evidence of

attentional boost effects reported in this manuscript (e.g. data from

Leclercq et al., 2015) replicates across different information sources

(including speech, text, numeric stimuli and social cues) and among chil-

dren with different types of learning difficulty. Future research should

also aim to devise paradigms that help to separate out disengagement

profiles that are (i) affective-motivational (i.e. in line with theMatthew

effect literature) and (ii) epistemic (i.e. in line with the rational inatten-

tion framework developed in the current manuscript). Studying how

engagementpreferences are shapedby continuousdegreesof underly-

ing difficulty rather than recruiting participants based on the presence

or absence of a clinical diagnosis might be particularly insightful.

Determining the factors that contribute to online disengage-

ment profiles associated with long-term learning delays may inform

the development of effective programs of clinical intervention that

improve outcomes for neurodivergent children. The simulations pre-

sented in the current report suggest that existing teaching and inter-

vention methods that promote deep engagement and aim explicitly

to boost the quality of the child’s long-term awareness of specific

features of a given information source confer gains in part by temper-

ing the child’s disengagement preference for that information source

and promoting self-driven information seeking and learning. In con-

trast, the current report suggests that widely used attention training

programmes (e.g. Cogmed; see Shipstead et al., 2012) may in cer-

tain cases be ineffective because they wrongly target the secondary

effects of primary neurocognitive deficits. That is, attention training

programmes may in certain cases be targeting emergent (rather than

causally implicated) disengagement behaviours that are optimal in the

face of primary neurobiological constraints. The rational inattention

framework therefore raises further questions about the use of atten-

tion training in a clinical context (see also Shipstead et al., 2012; Jones

&Westermann, 2022).

5 CONCLUSION

This paper has presented rational inattention as a new, transdiagnos-

tic theory of information seeking in children with neurodevelopmental

conditions including DLD, dyslexia, dyscalculia and autism. Our argu-

ment is not that every unconventional engagement profile can be

explained exclusively in terms of rational inattention. The picture is

complex, and attentional capacity limitations, deficits in long-term

learning, and a child’s affective motivation to engage with an informa-

tion source may all play an important role in explaining why neurodi-

vergent children characteristically disengage (or engageunconvention-

ally) with information sources aboutwhich they are uncertain. Rational

inattention is just one piece of this puzzle. But it maywell be integral to

understanding neurodivergent behaviour and learning.
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ENDNOTES
1We fully appreciate that this overlooks huge complexity in the aetiology

and phenotypes of different neurodevelopmental disorders. However, we

believe this ‘bird’s eye view’ approach with a focus on broad canonical

areas of difficulty to be justified in the context of developing a gener-

alised, transdiagnostic account of neurodivergent information seeking.

This is a pointwedevelop further below.Ultimately, the argumentwework

towards steps away not only from the underlying nature of neurocogni-

tive differences and diagnostic labels (e.g. DLD or dyslexia) but also from

the broader neurotypical and neurodivergent distinction with respect to the
principles of optimal information seeking.

2Our own view is that the term ‘strategy’ may be too rich in the sense of

Haith (1998). Elaborate strategizing is not required. Once again, the child

simply takes the world as it comes and interacts with an information source

to thedegree that theyexpect they learn from it. This is aposition reflected

in the computational simulations that follow, which illustrate engagement

with an information source as a function of expected learning but do not

evidence strategizing or meta-reasoning.
3Note that our autoencoder incorporated convolutional hidden layers,

rather than vanilla feed-forward hidden layers. This enables the network

to learn and later combine simple features like the edges of shapes. There

is a strong precedent for incorporating convolution of this sort into com-

putational models of auditory and visual processing (e.g. Chung & Abbott,

2021; Cohen et al., 2020; DiCarlo & Cox, 2007; Francl & McDermott,

2022).
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