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ABSTRACT

Migrating animals perform astonishing seasonal movements by orienting and navigating over thousands of kilometres
with great precision. Many migratory species use cues from the sun, stars, landmarks, olfaction and the Earth’s magnetic
field for this task. Among vertebrates, songbirds are the most studied taxon in magnetic-cue-related research. Despite
multiple studies, we still lack a clear understanding of when, where and how magnetic cues affect the decision-making
process of birds and hence, their realised migratory behaviour in the wild. This understanding is especially important
to interpret the results of laboratory experiments in an ecologically appropriate way. In this review, we summarise the
current findings about the role of magnetic cues for migratory decisions in songbirds. First, we review the methodological
principles for orientation and navigation research, specifically by comparing experiments on caged birds with experi-
ments on free-flying birds. While cage experiments can show the sensory abilities of birds, studies with free-flying birds
can characterise the ecological roles of magnetic cues. Second, we review the migratory stages, from stopover to endur-
ance flight, in which songbirds use magnetic cues for their migratory decisions and incorporate this into a novel concep-
tual framework. While we lack studies examining whether and when magnetic cues affect orientation or navigation
decisions during flight, the role of magnetic cues during stopover is relatively well studied, but mostly in the laboratory.
Notably, many such studies have produced contradictory results so that understanding the biological importance of mag-
netic cues for decisions in free-flying songbirds is not straightforward. One potential explanation is that reproducibility of
magnetic-cue experiments is low, probably because variability in the behavioural responses of birds among experiments
1s high. We are convinced that parts of this variability can be explained by species-specific and context-dependent reac-
tions of birds to the study conditions and by the bird’s high flexibility in whether they include magnetic cues in a decision
or not. Ultimately, this review should help researchers in the challenging field of magnetoreception to design experiments
meticulously and interpret results of such studies carefully by considering the migration ecology of their focal species.

KRey words: bird migration, orientation, navigation, geomagnetic map, migration ecology, magnetoreception, magnetic
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I. INTRODUCTION

Migration is a worldwide and widespread phenomenon in
animals, which may travel up to tens of thousands of kilo-
metres and connect different continents and oceans during
their seasonal movements (Milner-Gulland, Fryxell &
Sinclair, 2011). Migratory birds perform these movements
with astonishing orientation and navigation capabilities,
including returning to specific locations after a journey of sev-
eral thousands of kilometres (Mouritsen, 2018). For example,
pied flycatchers (Ficedula hypoleuca) return to the same forest
patch in Europe, often to the same nest box, every breeding
season after overwintering in the same trees in sub-Saharan
Africa year after year (Salewski, Bairlein & Leisler, 2002;
Harvey e al., 1984). Similarly striking side fidelity has been
observed in other songbird species (Salewski, Bairlein &
Leisler, 2000; Price, 1981). This accuracy has fascinated peo-
ple for centuries (Bairlein et al., 2014) and may be even more
astonishing when considering that many songbird migrants
travel at night and reach their population-specific wintering
grounds without parental or social guidance during the
autumnal inaugural migration. This requires an innate
migratory program which determines, at its most basic,
how long to migrate for and in which direction (clock-and-
compass orientation) (Berthold, 1991; Mouritsen &
Mouritsen, 2000; Mouritsen, 19984) and how to respond
behaviourally and physiologically to variation in environmen-
tal conditions en route (Jenni & Schaub, 2003; Schmaljohann,
Eikenaar & Sapir, 2022).

Next to ‘orientation’, i.e. use of a ‘compass to determine
the direction of movement, migratory birds can also

‘navigate’, i.e. determine their location on a ‘map’ and use
this information to decide on a compass direction towards
the migratory destination (Griffin, 1952). The latter includes
‘true navigation’, i.e. returning to a known location from an
unknown place (Holland, 2014). Available cues for orienta-
tion and navigation are celestial cues (star patterns, the sun’s
position and the sun’s polarisation pattern), the Earth’s mag-
netic field, landmarks and olfactory cues (reviewed in
Mouritsen, 2018). The Earth’s magnetic field provides two
major information types: first, its dipolar magnetic character-
istic provides information about direction for compass orien-
tation (Fig. 1A). Second, its specific properties, namely
intensity, inclination angle and declination angle, provide
predictable geographical gradients around the globe, serving
as map information for navigation (Fig. 1B-F).

With regard to the perception and use of these magnetic
cues, songbirds are the most studied taxon among vertebrates
and have been key model organisms for over half a century
(Merkel & Wiltschko, 1965; Emlen, 19706). This might be
explained by songbirds having several characteristics that
make them especially suited for orientation and navigation
rescarch. Many songbird species, especially long-distance
migrants, predominantly migrate at night and independently
of other individuals (Papi & Wallraff, 1982; Newton, 2008).
As most juveniles are not guided by parents, siblings or con-
specifics during their first migration to the unfamiliar winter-
ing grounds (Newton, 2008; Pulido, 2007), they provide
excellent naive experimental units for studying orientation,
while the study of adults allows investigation of experienced
birds with successful previous migrations. Additionally, most
songbirds follow a stop-and-go strategy during migration

Biological Reviews (2024) 000-000 © 2024 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

85U8017 SUOWWOD AT 8|t (dde 8y} Ag peusenob a1e seoile O ‘8sN JO S8|nJ o} Akeid18uljUO 8|1 UO (SUONIPUOO-PUB-SWBIW0D A8 1M Ake.q1BuUO//:SANY) SUONIPUOD pue swie | 8y} &8s *[1202/S0/60] Uo Ariqiauliuo Ae|im ‘Areiqi ur N AisieAlun Jobueg Aq Z80ET AIG/TTTT OT/I0p/W00 A8 | Ake.q 1 jpuluo//Sdny wouy pepeojumod ‘0 *XG8TE9YT



Magnetic cues in songbird migration ecology

o

Intensity

\\:4 )

opT

Inclination O

20° 30°

10° 20°

Declination m

80° 60° 40° 20° 0°

20° -40° -60° -80°

Fig. 1. Properties of the Earth’s magnetic field. (A) The Earth’s magnetic field behaves roughly as if there is a bar magnet in the centre of
the Earth. This results in a horizontal directional component with geographic North (gN) and magnetic North (mIN) almost aligned. This
property is known to most people through the use of a classical compass. (B) The magnetic field intensity varies around the globe and is
highest at the poles (~60 p'T) and lowest in the equator region (~30 pT). (C, D) The inclination angle is defined as the angle at which the
magnetic field lines cross the Earth’s surface. At the magnetic poles, the field lines are perpendicular to the surface (90°), whereas they are
parallel at the magnetic equator (0°). This feature can be used by birds as a compass to identify poleward and equatorward directions.
(E, F) The declination angle is defined as the angular difference between the geographic and magnetic North pole. It therefore displays
the error of a magnetic compass compared to true geographical North at a given location. When both poles are aligned, the angle is 0°.
Maps in B, D and F show selected isolines derived from NCEI (2019). Due to their projection, maps do not show the poles.

o

(Akesson & Hedenstrom, 2007; Delingat e al., 2006) with
migratory flights during the night (Alerstam, 1990;
Schmaljohann, Liechti & Bruderer, 2007), and stopover
periods to accumulate energy, rest and recover during
the day (Schmaljohann ¢ al., 2022). This allows researchers
to separate migratory activity during the night from other
activities at the stopover site during the day. Their small size
further requires less space in an experimental setup, e.g. in

orientation cages (Emlen & Emlen, 1966; Merkel & Fromme,
1958), and allows adequate caging facilities for large sample
sizes. Advantageously, even under caged conditions many
songbirds show key behavioural characteristics that can be
directly linked to migration behaviour in the wild. Specifically,
orientation behaviour in funnel cages correlates with their van-
ishing bearing in free flight (Mouritsen, 19984). Further, the
amount of migratory restlessness (ugunruhe), 1.e. nocturnal
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movements in caged birds during migration season, predicts
the actual departure motivation in the wild on a night-
to-night level (Eikenaar et al., 2014; Berthold, 1973) and
the start of migratory restlessness correlates positively with
departure timing within the night (Schmaljohann
etal.,, 2015).

Despite an extensive literature on magnetoreception in
songbirds, we still lack a clear understanding of when, where
and how songbirds use magnetic cues for their migratory
decisions in the wild. This becomes particularly obvious
when considering the low repeatability, reproducibility and
replicability in magnetic-cue-related studies, which show
very high variability in the birds’ behavioural responses to
similar experimental manipulations [e.g. compare Cochran,
Mouritsen & Wikelski (2004) with Chernetsov et al. (2011);
Chernetsov et al. (2017) with Chernetsov et al. (2020); or
Fransson et al. (2001) with Bulte e al. (2017)]. One reason
for the high variability might lie in the fact that behavioural
decisions of songbirds are based on a complex interplay
of intrinsic (e.g. age, energy stores) and extrinsic (e.g. wind
conditions, time of season) factors (Miiller et al, 2016;
Schmaljohann et al., 2022; Jenni & Schaub, 2003). Considering
the decision-making processes of the birds and how they might
differ depending on the migration ecology of the species could
help to design more meaningful experiments and thus increase
the probability of obtaining more repeatable, reproducible
and replicable results. We therefore encourage researchers
of magnetoreception and readers of the animal orientation
and navigation literature to consider the migratory ecology
of the study species when exploring how songbirds use mag-
netic cues for their migratory decisions.

The first objective of this review is to summarise the meth-
odological approaches for assessing magnetic-cue-related
hypotheses in migratory songbirds and evaluate their contri-
bution to understanding these processes in the wild. Our sec-
ond objective is to review the specific roles of magnetic cues
in the context of migration ecology by focussing on the
decision-making processes of songbirds in the wild. For this,
we summarise how birds might perceive directional compass
information and geographical map information. We then
provide a conceptual framework investigating how magnetic
cues might affect migratory decisions from stopovers to active
migratory flight towards their destination. Additionally, we
provide as supporting information (see online supporting
information, Table S1) a comprehensive list of the primary
literature for each magnetic-cue-related hypothesis. Finally,
we hope that our conceptual framework will be an important
step to proper evaluation of the findings of future cage and
free-flight studies in the field of magnetoreception in an eco-
logical context.

II. METHODOLOGICAL APPROACHES

To study the significance of magnetic cues for orientation-
and navigation-related hypotheses in migratory songbirds,

Thiemo Karwinkel and others

most experimental approaches follow a common structure
incorporating two steps. The first step involves a manipula-
tion altering the information provided by a magnetic cue that
the bird might access (Fig. 2A). In the second step, the
response of the bird to this manipulation is recorded, often
in restricted environments, i.e. cage experiments, but also
in free flight (Fig. 2B). Table S1 provides a list of magnetic-
cue-related orientation and navigation hypotheses for migra-
tory songbirds.

(1) Manipulation of perceived magnetic information

An altered magnetic information perception for the bird can
be achieved either by (i) manipulating the cue itself, or by
() manipulating the (hypothesised) biological sensor for mag-
netic perception (Fig. 2A).

(@) Magnetic cue manipulation

Strategically selected study sites and times can provide natu-
ral ‘near-experimental’ setups to study magnetic orientation
and navigation behaviour, e.g. natural magnetic anomalies
caused by magnetic minerals in the Earth’s crust (Alerstam,
1987; Skiles, 1985) or weather events (Able, 19824). As the
Earth’s magnetic field varies constantly with patterns occur-
ring on a scale from decades (secular variation) to days
(Bloxham & Gubbins, 1985), one can also use this natural var-
iation for correlative studies (Benitez-Paez et al., 2021; Wynn
et al., 2020, 2022a,b).

Besides natural changes in the magnetic field, its three
major components (Fig. 1) can be changed artificially:
() intensity (Fig. 1B); (#) inclination (e.g. Wiltschko
et al., 1993; Fig. 1C,D), including the (horizontal) direction
of field lines (e.g. Cochran et al., 2004; Fig. 1A; see Section-
III); and (uz) declination (e.g. Chernetsov et al., 2017, 2020;
Fig. 1E,F). The magnetic field can also be cancelled out,
Le. true-zero magnetic fields (Mouritsen, 19984), or con-
stantly moved, providing a non-specific magnetic stimulus
(Elbers et al., 2017). Further, one can imitate the magnetic
field of other locations by specifically changing the compo-
nents of the magnetic field, which is called ‘virtual (magnetic)
displacement’. Virtual magnetic displacement can be applied
either instantaneously (Kishkinev et al., 2015) or continuously
over several days/weeks, simulating a slow migration
through space (Fransson e al., 2001; Bulte et al., 2017).
Nevertheless, care should be taken to select a magnetically
unequivocal virtual location, as certain combinations
of magnetic properties may be repeated across the globe
(Schneider et al, 2023). Helmholtz-coils (e.g. in
Wiltschko, 1968) and three-dimensional Merritt-coils
(Merritt, Purcell & Stroink, 1983) are used most frequently,
but other coil arrangements (e.g. Alldred & Scollar 4-Coil,
Lee-Whiting 4-Coil, Rubens 5-Coil) have been used as well
(Kirschvink, 1992). As the magnetic field is only manipulated
in a restricted space within the coil system (usually <1 m?),
birds have to be caged.
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Alongside virtual displacement, actual physical displace-
ment has been used for decades for navigational studies
(e.g. Perdeck, 1958; Thorup et al., 2007; Holland et al., 2009;
Mewaldt, Cowley & Won, 1973; Mewaldt, 1964; Chernetsov,
Kishkinev & Mouritsen, 20085). With a physical displacement,
the magnetic cues also change, but interpretations of behavioural
responses related to the location change must be made carefully,
as other cues, such as landscape and odour, will likely alter as
well. During transportation, the birds may experience a
gradual shift in the magnetic cues or other environmental
conditions, such as timing of sunrise and sunset events. If they
consider these shifts, they may gradually adjust their behav-
1our to the new conditions, so that the effects of the displace-
ment might be less than expected.

The most non-specific method to manipulate the per-
ceived magnetic field for a bird is by attaching magnets to
the bird. This method was first applied to pigeons
(e.g. Larkin & Keeton, 1976; Keeton, 1971), and later to sea-
birds (e.g. Mouritsen et al., 2003; Massa et al., 1991), but only
recently to songbirds (Packmor et al., 2021).

Further conclusions about the use of the magnetic field by
birds can be drawn from manipulation of other cues that are
hypothesised to interact with and complement magnetic
cues, such as location of sunset (e.g. Moore, 1985), polari-
sation pattern (e.g. Muheim, Phillips & Akesson, 2006
Schmaljohann ¢t al., 20135), and stellar cues (e.g. Mouritsen &
Larsen, 2001).

(b) Magnetic sensor manipulation

Instead of manipulating the cues, manipulations can also take
place on the level of the biological (magnetic) sensor (Fig. 2B).
Currently, there are three sensor types proposed: (7 the
radical-pair-based mechanism in the eye (Hore & Mouritsen,
2016); () a magnetic-particle-based mechanism (Wiltschko
et al., 2006), likely located i the upper beak and innervated
by the ophthalmic branch of the trigeminal nerve (Beason &
Semm, 1996; Heyers et al., 2010; Kishkinev et al., 2013); and
(i) a magnetoreceptor in the inner ear, either based on magne-
tite (Wu & Dickman, 2011; but see Malkemper e al., 2019)
or on electromagnetic induction (Nimpf e al, 2019;
Jungerman & Rosenblum, 1980). Electromagnetic induction

Fig. 2. Graphical summary of methods used to assess magnetic-
cue related hypotheses in songbirds. (A) Experiments generally start
with the manipulation of the perceived magnetic cue information.
This can be done by manipulating the magnetic cue itself or the
corresponding sensory structures of the bird. (B) This
experimental manipulation is then followed by recording the
bird’s behavioural response. This can be done either in a caged
setup or by recording the birds in free flight in the wild. See main
text for detailed description of methods. ‘Attaching magnets’
adopted from Packmor et al. (2021); ‘section trigeminal nerve’
adopted from Kishkinev ¢t al. (2013); ‘brain lesion” adopted from
Zapka et al. (2009); all graphics adopted with permission.
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was first described for aquatic animals (Lohmann &
Johnsen, 2000; Paulin, 1995) and was recently suggested to be
the basis of a magnetic compass and/or map sense in pigeons
(Nimpf & Keays, 2022). Experimental proof for a role of elec-
tromagnetic induction in songbird navigation is currently lack-
ing, hence we focus herein on the first two mechanisms.

Formerly, it was assumed that there is a clear functional
separation of the two sensors proposed for songbirds: the
radical-pair-based sensor in the eye provides compass
information, i.e. magnetic direction, and the magnetic-
particle-based sensor in the upper beak provides geomag-
netic map information, i.e. magnetic location (see Section III).
However, recent findings question this strict separation, as
the radical-pair-based sensor might contribute to the geo-
magnetic map by providing information on declination
(Chernetsov ¢ al., 2017) and/or inclination (Fig. 1C-F).

The radical-pair-based mechanism has been experimen-
tally disturbed by electromagnetic radiation in the ~0.1 to
~100 MHz frequency range (e.g. Leberecht e al., 2023; see
Table S1 for more references) or by inactivating the puta-
tively corresponding brain region, named Cluster N (Zapka
et al., 2009). Manipulation of the putative magnetic-
particle-based mechanism has been attempted either by
nerve section or anaesthesia of the trigeminal nerve to dis-
able neuronal transmission (Kishkinev et al, 2013;
Beason & Semm, 1996) or by modifying the mechanism
by remagnetisation of the assumed magnetic particles
using magnetic pulses (Holland & Helm, 2013; see
Table S1 for more references, e.g. Wiltschko et al., 1994;
Karwinkel e al., 2022a).

A general problem with disrupting the hypothesised mag-
netic sensors is that some manipulations, like surgery, electro-
magnetic radiation exposure or magnetic pulsing, affect the
whole organism. Therefore, such manipulations can poten-
tially impact multiple non-target areas of the body, such as
other sensory organs or even physiological traits, both of
which could unintentionally cause the observed behaviour.
For such manipulations, convincing sham, ie. control,
groups are difficult to achieve, as they do not necessarily
impact non-target traits to the same extent as the treatment
manipulation. In particular when birds show disorientation
after manipulation, it is difficult to assign this with certainty
to an effect on magnetic navigation/orientation behaviour,
rather than to a non-magnetic-cue related unspecific effect,
as indicated in other species groups. For example, a magnetic
pulse was found to alter gene expression in rainbow trout
(Oncorhynchus mykiss) (Fitak et al., 2017). Furthermore, the
effects of low-level electromagnetic radiation appear to be
more complex in other species groups (e.g. murine rodents,
turtles, newts) than reflected in the songbird literature. There
it alters the direction, rather than only increasing the scatter
in directional responses. Additionally, the directional
response in the laboratory in the non-songbird taxa scems
to be dependent on the similarity of the electromagnetic envi-
ronment to the natural, ie. capture, location (Landler
et al., 2015; Phillips et al., 2022; J.B. Phillips, personal com-
munication). These examples outside the songbird literature
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highlight that magnetic treatments may lead to unintended
and unexpected responses of the study animal and that we,
consequently, must always question critically whether alter-
native reasons may explain the results of a study.

(2) Recording the bird’s behavioural response

The second part of the methodological approaches involves
measurements of the birds’ behavioural responses to the
manipulations described above, from which conclusions
about their use of the magnetic field can be drawn. In gen-
eral, these studies can be divided into two categories:
(1) experiments with caged birds, often performed in labora-
tory environments and (z2) experiments with free-flying birds
in their natural environment (Fig. 2B, Table S1).

(@) Recording behaviour in caged environments

In captive birds, responses regarding orientation and naviga-
tion abilities are typically tested in small funnel-shaped orien-
tation arenas called Emlen-funnels (Emlen & Emlen, 1966)
(Fig. 2B). During the night in the migration period birds
hop in a preferred direction in these circular funnel arenas,
leaving footprints and/or scratches on the inclined funnel
wall that are assumed to reflect their preferred migratory
direction. Although other methods (e.g. videotaping with
automated image analysis; use of electric signals triggered
when a bird perches in different positions in a cage) have
been developed to record the bird’s preferred direction digi-
tally (Merkel & Fromme, 1958; Mouritsen et al., 2004;
Mouritsen & Larsen, 2001; Muheim et al,, 2014), many
researchers still prefer to record manually the scratches on
paper produced by the bird on the funnel wall, and this
method remained unchanged for decades (e.g. Emlen &
Emlen, 1966; Leberecht et al., 2023). One reason for this is
that electrical devices emit electromagnetic radiation that
could disrupt the magnetic compass in songbirds (Engels
et al., 2014), perhaps making it impossible to study magnetic
responses of birds using electronic methods.

Other migratory traits studied less frequently in relation to
the Earth’s magnetic field in caged birds include migratory
restlessness (ugunruhe; the amount of nocturnal movement)
(Bulte ¢t al., 2017) and physiological responses such as accu-
mulation of energy (Bulte e al., 2017; Fransson et al., 2001;
Kullberg et al,, 2007) or hormone responses (Henshaw
et al., 2009).

(b) Recording behaviour in free flight

Behavioural responses to manipulations can be also recorded
in free flight (Fig. 2B), but one has to consider carefully the
temporal resolution of the method used. For example, ring
recoveries can provide sufficient behavioural data to answer
research questions, but often require long study periods (usu-
ally >10 years) and large sample sizes (Perdeck, 1958; Wynn
et al., 2020, 2022b). For an immediate response, 1.e. within a
day of treatment, a simple method 1s to observe visually the
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vanishing bearings of migratory songbirds at night by attach-
ing a light stick to the bird and tracking its flight direction
using binoculars. The spatial resolution of this method is lim-
ited to about 0.7-2 km (Mouritsen, 19984; Dierschke &
Delingat, 2003). Radio tracking can substantially extend this
range to ~5-20 km, with researchers manually tracking
radio-tagged birds with handheld antennas over time
(Holland, 2010; Schmaljohann et al., 2013b) and space
(Cochran et al., 2004; Holland e al., 2009). In recent
years, automated radio-receiving arrays (e.g. Smolinsky
et al., 2013; Miiller et al., 2018; Brown & Taylor, 2017)
advanced this technique by excluding observer biases inher-
ent in manual tracking and integrating single radio-receiving
stations to continental-wide networks (Taylor et al., 2017).
The lightest available radio tags are only 0.13 g and provide
signals for a few weeks with a time resolution of a few seconds
(e.g. NanoPin tag, Lotek Wireless Inc., Canada). Recent
advances 1n satellite tracking techniques allow recording the
behaviour of migrating birds at a higher spatial resolution,
but even the lightest tags are at present too heavy for most
songbird species (McKinnon & Love, 2018; Bridge
et al., 2011) and therefore satellite tags tend to be used for
non-passerine orientation and navigation research (e.g.
Wikelski et al., 2015; Mouritsen et al., 2003; Gagliardo
et al., 2013; Thorup et al., 2020).

Data from a wide spatial range derived from radio-
receiving networks and satellite tracking is valuable because
vanishing bearings of free-flying birds for the first few kilo-
metres must be interpreted carefully, as the initial direction
does not necessarily represent the preferred migratory direc-
tion (Brown & Taylor, 2015; Sjoberg & Nilsson, 2015).
Vanishing bearings may also reflect movements within a
stopover landscape (Schmaljohann & Eikenaar, 2017;
Taylor et al., 2011), depend on energy stores and weather
conditions (Schmaljohann & Naef-Daenzer, 2011) or might
simply reflect escape behaviour after handling.

Species that may breed or winter in the vicinity of the
experimental site may already be at their migratory destina-
tion. In this case, their behaviour, including vanishing bear-
ing, are not necessarily related to orientation or navigation.
Therefore, researchers using vanishing bearings must ensure
that experimental birds are still on active migration, do not
perform landscape movements and have not reached their
migratory destination. Comparison with known species- or
population-specific routes from ring recoveries (Spina
et al., 2022) can increase confidence in the validity of vanish-
ing bearings.

Besides tracking directional responses, other behavioural
responses, such as the day-to-day and within-the-night
departure decisions (Miller et al,, 2016), could also be
affected by experimental manipulations but are often not
considered in orientation and navigation studies.

Other methods to monitor the flight directions of free-
flying nocturnal migrants include radar (e.g. Nievergelt,
Liechti & Bruderer, 1999), infrared-cameras (e.g. Mirzaei
et al, 2012) and the moon-watching method (Liechti,
Bruderer & Paproth, 1995; Liechti, 2001), but these are not

suited to observing individuals after an experimental
manipulation. Such observation methods therefore require
‘near-experimental’ designs by using natural variation of
environmental cues, such as magnetic anomalies (Alerstam,
1987), ecological barriers (Fortin, Liechti & Bruderer, 1999)
or specific landmarks, such as mountain ridges (Liechti
et al., 1996; Hilgerloh, Weinbecker & Zehtindjiev, 2006), dif-
ferent timings within the year (Zehtindjiev & Liechti, 2003) or
natural variation in cloud cover (Able, 19824).

(¢) Comparison of caged versus free-flight experiments

In comparison with free-flight experiments, cage experi-
ments have the advantage that the surrounding environment
can be controlled for confounding effects, enabling a causal
link to the experimental manipulation. A disadvantage is that
the caged environment is highly unnatural in many respects
(restricted space, feeding conditions, intensity of natural radi-
ation, light, etc.), which might reduce the bird’s motivation or
even its ability to show natural behaviour. Further, the exper-
imental manipulation of environmental cues in laboratories,
especially of landscape or celestial cues, might not be suffi-
ciently realistic to elicit natural behaviour. Consequently, results
obtained in the laboratory do not necessarily reflect responses to
the same treatment in the wild, where other cues than the
manipulated one are available. For example, birds might ignore
a manipulated magnetic cue when other important cues for
their decision are present. Thus, the assumption that results
obtained in artificial environments predict birds’ behaviour in
the wild is not inevitably correct and should be made with cau-
tion (see Table Sl for contrasting results). Therefore, any
hypotheses generated in the laboratory should be re-examined
with free-flying birds to assess their ecological relevance.
When researchers temporarily house wild-caught migra-
tory birds for either cage-based or free-flight experiments
upon release, they need to consider how the feeding condi-
tions may have changed from the natural to the artificial
environment. On the one hand, birds with low levels of fuel
(body fat) that continue to lose body mass during stopovers
(ie. are in low-quality food conditions), will continue to
exhibit migratory restlessness the next night and continue
migration. By contrast, birds that gain fuel during stopovers
(i.e. are in high-quality food conditions, e.g. with ad libitum
food), may suppress restlessness until they have replenished
their fuel levels. Thus, a counterintuitive suppression of
migratory motivation of apparently fat birds might be misin-
terpreted as an effect of the experimental manipulation.
Therefore, in cage studies, an interplay of food availability,
changes in food availability and the current energy stores of
an individual bird is likely to affect its decision-making pro-
cess significantly (Biebach, 1985; Biebach, Friedrich &
Heine, 1986; Klinner et al., 2020; Gwinner, Schwabl &
Schwabl-Benzinger, 1988). Further, birds that show little
restlessness, 1.e. little migratory motivation, but move for
instance within an Emlen funnel in a certain direction could
be misinterpreted as intending to migrate in that direction,
even though they have a low probability of resuming
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migration towards the seasonally appropriate destination
(Eikenaar ef al., 2014). While in many studies the activity of
the birds needs to exceed a certain level before their orienta-
tion is taken into account (Leberecht e al., 2023), any
decrease in migratory restlessness and related behaviour
could be wrongly interpreted if the ecology of the individual
bird is not considered.

Studying free-flying songbirds comes with several
limitations. First, it is difficult to manipulate the birds during
flight because the low body mass of many songbird species
(<100 g) restricts the total mass of devices for manipulation
and tracking to a maximum of 3-5 g (Casper, 2009). Manipu-
lations involving changes to the polarisation pattern
(Schmaljohann et al., 2013b; Muheim et al., 2006b), exposure
to electromagnetic radiation (Schwarze et al., 20164; Engels
et al, 2014) or the properties of the magnetic field
(Mouritsen, 19985) have so far not been applied in free flight.
Consequently, to study the birds” behavioural responses to
these manipulations in free flight, it is currently only feasible
to manipulate the birds on the ground and then release them.
As the points in time at which songbirds make their decision to
resume migration from stopover and to determine their flight
direction remain unclear, it is not straightforward to deter-
mine when to manipulate the birds optimally to potentially
affect their migration decisions. There is correlative evidence
for one night-migratory songbird species, the northern
wheatear (Oenanthe oenanthe), suggesting that the departure
decision is made at least several hours before sunset
(Eikenaar et al., 20200), but this might vary among species
dependent on their specific migration ecology. This timing
issue can be overcome by using long-lasting or permanent
manipulations of free-flying birds, such as magnetic pulsing
(with effects found up to 10 days; e.g. Holland &
Helm, 2013), attaching magnets (lasting days to weeks,
depending on attachment; Packmor et al., 2021) or nerve sec-
tions (probably permanent; Kishkinev e al., 2013). However,
such permanent manipulations pose an ethical challenge and
the low recapture probability of wild birds on migration
makes it almost impossible to reverse the manipulation after
the end of the experiment.

III. MAGNETIC CUES IN SONGBIRD MIGRATION
ECOLOGY

(1) Perception of directional information

The magnetic field of the Earth roughly resembles the mag-
netic field of a bar magnet centred in the axis between the
poles (Skiles, 1985) (Fig. 1A). This arrangement provides
directional magnetic characteristics for orientation on the
Earth’s surface. The horizontal (parallel to the Earth’s sur-
face) component of the magnetic field line can be used for ori-
entation, as it always points towards one magnetic pole. The
human-made compass is based on this polarity characteristic
of the magnetic field, whereas birds use an inclination com-
pass. They compare the magnetic vector, 1.e. the axial
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direction of the magnetic field line in space, with the gravity
vector (orthogonal to Earth’s surface) to determine a pole-
ward and equatorward direction (Wiltschko &
Wiltschko, 1972). Inclination, defined as angle of the inter-
section between the magnetic field lines and the Earth’s sur-
face (Fig. 1C), varies between 90° at the magnetic poles and
0° at the magnetic equator (Skiles, 1985) (Fig. 1D). In con-
trast to the horizontal compass, i.e. human-made compass,
the inclination compass does not discriminate between north
and south but instead provides information about polewards
and equatorwards directions. It was shown that songbirds can
use inclination angles for orientation up to 85-87° (Akesson
et al., 2001; Lefeldt et al., 2015) and down to at least 5°
(Schwarze et al., 20165), meaning that the magnetic compass is
not functional in the close vicinity of the magnetic poles (inclina-
tion angle 90°) and the magnetic equator (inclination angle 0°),
respectively.

Alongside the magnetic field, other cues have also been
shown to provide directional information: the sun or its sky-
light polarisation pattern (Able & Able, 1993; Muheim
et al., 20065; Phillips & Moore, 1992), sunrise and sunset
direction (Moore, 19875; Schmidt-Koenig, 1990) and the
positions of the stars (Emlen, 1970a; Wagner & Sauer,
1957; McLaren, Schmaljohann & Blasius, 2022) (Fig. 3A),
but not the moon (Moore, 19874). Notably, songbirds seem
to use the different compass systems flexibly and switch
between them depending on their availability, as shown by
compass redundancy in experiments with caged birds
(Mouritsen, 19985; Sandberg, Ottosson & Pettersson, 1991;
Packmor et al., 2021) (Table S1). Observations from free-
flying birds that orient appropriately even when certain cues
are not available, e.g. during overcast skies or at magnetic
anomalies, also suggest redundancy of the star and magnetic
compass in the wild (Alerstam, 1987; Griffin, 1973;
Able, 19824) (Table S1).

The relative importance of the different directional com-
pass cues, their hierarchy and calibration, and their use in
the wild is still subject to debate. For the magnetic compass,
three hypotheses for compass calibration have been pro-
posed: (z) the magnetic compass is calibrated by sunset cues;
() the magnetic compass is calibrated by polarisation
cues; and (z7) the star compass is calibrated by the magnetic
compass (Table S1). Notably, cue-conflict experiments have
revealed contrasting results under free-flight conditions
(Schmaljohann et al., 20135; Sandberg et al., 2000; Cochran
et al., 2004; Chernetsov et al., 2011; Sjoberg & Muheim,
2016) and cage experiments where compass cues were metic-
ulously controlled for (Muheim et al., 2006b; Sjoberg &
Muheim, 2016; Moore, 1985; Phillips & Moore, 1992)
(Table S1). The topic of cue hierarchy and compass calibra-
tion is intensively discussed in Sjoberg & Muheim (2016),
Pakhomov & Chernetsov (2020) and Liu & Chernetsov
(2012). Here, we briefly summarise the two contrasting opin-
ions: Sjoberg & Muheim (2016) present a structured flow
chart for daily decisions of cue integration during migration
devised to explain the contradictory results of the cue-conflict
experiments under different conditions. By contrast, Pakhomov
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& Chernetsov (2020) and Liu & Chernetsov (2012) stress the
natural high variability of cue integration of birds and do not
try to propose a consensus concept.

(2) Perception of geographical location

In addition to directional information where information for
a bearing is obtained independent of the actual location, the
arrangement of the Earth’s magnetic field can also provide
positional information. This is possible due to its parameters
changing in a predictable way over most parts of the globe
(Fig. 1). They are commonly referred to as ‘geomagnetic
map cues’ (but with inconsistent use in the literature) and
we refer to this term herein when positional rather than
directional information from the Earth’s magnetic field 1s dis-
cussed, whether in one or two dimensions.

The intensity of the magnetic field shows a gradient from
the equator towards the poles (Fig. 1B) (Skiles, 1985) and
can therefore be used for latitude determination. Due to nat-
ural fluctuations in magnetic intensity, the accuracy of this
component for navigation of fast-moving animals is limited
to 10-30 km (Mouritsen, 2018). Magnetic inclination
also shows a gradient from the equator to the poles
(Skiles, 1985) and thus can provide latitudinal information
for most parts of the world (Fig. 1D). Consequently, magnetic
inclination might provide two sources of information for
migrating songbirds: () as an orientation, i.e. compass, cue
(see Section III.1), and () as a navigation, i.e. positional,
cue. While there is evidence for the use of inclination
(Wiltschko & Wiltschko, 1992; Wynn et al., 20225) as a geo-
magnetic map cue, convincing evidence for the biological
importance of magnetic intensity for songbird navigation,
similar to that shown for sea turtles (Lohmann &
Lohmann, 1996), is currently lacking. Notably, as magnetic
navigation might be easier when isolines are orthogonal, a
bi-coordinate map of magnetic intensity and inclination for
position determination may be less useful for navigation in
many parts of the world (compare Fig. 1B,D) (Schneider
et al., 2023; Bostrom, Akesson & Alerstam, 20124; Wynn
et al., 2022a,b).

The third spatial component of the magnetic field is decli-
nation, which describes the angular deviation between mag-
netic and geographical North at a specific location (Fig. 1E).
This is not a purely magnetic cue because it relies on a geo-
graphical compass derived from other cues (e.g. celestial
cues). Declination angle has a pronounced east-west gradi-
ent between ~—20 and 20° in North America and between
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around —10 and 20° in Europe (Skiles, 1985) (Fig. 1F). A
study in Europe suggested that reed warblers (Acrocephalus scir-
paceus) use declination for navigation (Chernetsov et al., 2017),
while another study failed to show this for songbirds such as
the European robin (Erithacus rubecula) and the garden war-
bler (Sylvia borin) (Chernetsov et al., 2020) (Table S1). Combi-
nation of declination information with magnetic intensity
or inclination information could provide a reliable
bi-coordinate map across much of the Earth (Wynn
et al., 2022b), but whether songbirds make use of this 1s still
unclear.

Although the magnetic field is present globally, it is cur-
rently unknown whether birds use or rely on it universally.
There are possibilities (and some evidence) for alternative cues
from which birds might perceive information about location:
for example, photoperiod (Kishkinev, Chernetsov &
Mouritsen, 2010), celestial rotation (Pakhomov, Anashina &
Chernetsov, 2017), olfactory cues [Holland et al, 2009;
reviewed in Kishkinev (2015) and Gagliardo (2013)], infra-
sound (Patrick et al., 2021) and landmarks (Holland, 2003)
(Fig. 3B). These cues may be used exclusively or in combina-
tion, with magnetic cues for example [see extensive review in

Holland (2014) and Mouritsen (2018)].

(3) Magnetic cues during stopover

During stopover, birds take on fuel, rest and recover
(Linscott & Senner, 2021; Schmaljohann et al., 2022).
Depending on their requirements at the stopover site, song-
birds may resume migration shortly (a few hours) or several
weeks after arrival (Packmor e al, 2020; Schaub &
Jenni, 20014). Since birds spend more time and energy dur-
ing stopovers than during migratory flights (Wikelski
et al., 2003; Schmaljohann, Fox & Bairlein, 2012; Green
et al., 2002; Alerstam & Lindstrom, 1990), variation in total
stopover duration will affect total speed of migration
(Schmaljohann & Both, 2017; Schmaljohann, 2018; Nilsson,
Klaassen & Alerstam, 2013). Studying stopover and the
parameters that affect departure and landing decisions is cru-
cial for understanding a species’ migration ecology. In this
section, we review when, where and how birds might use
magnetic cues for migratory decisions in the wild.

(@) Fuelling

The innate migration programme controls seasonal changes
in the energy stores of migrants (Bairlein & Gwinner, 1994;

(Figure legend continued from previous page.)

Fig. 3. Schematic conceptual framework demonstrating the role of magnetic cues in the migration ecology of songbirds during the
long-distance phase (Mouritsen, 2018). Factors involving cues from the Earth’s magnetic field are highlighted in grey. (A) Possible
factors involved in perception of directional information. (B) Possible factors involved in perception of geographical location. See
main text for further explanation. (C) Conceptual framework of the behaviour of a migrant following a stop-and-go strategy. The
upper green box represents the behaviour during the stopover and decisions on the ground at the first stopover location (z). The
lower blue box represents behaviour and decisions during the migratory flight. When the migrant reaches the next location (z + 1),

the scheme will repeat.
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Totzke & Bairlein, 1998). At stopover, the amount of energy
accumulated is affected by biotic factors, such as food avail-
ability (Bayly, 2007), competition (Moore & Yong, 1991)
and predation risk (Schmaljohann & Dierschke, 2005;
Fransson & Weber, 1997), as well as abiotic factors, such as
weather and climate (Schaub & Jenni, 2001b; Bairlein,
1993). Virtual displacement experiments showed a tight
interaction between the amount of accumulated energy and
virtual position on a geomagnetic map [Fransson
et al., 2001; but see Bulte et al. (2017) for a counter-example;
Table S1]. Those experiments were conducted with naive
juvenile birds with no prior experience of the natural changes
in geomagnetic map cues along their migratory route. This
suggests that the innate migration programme for fuelling
not only contains a temporal (circannual) component, but
also a flexible/adaptable spatial component, triggered by
geomagnetic map cues. Notably, the temporal component
might override the effect of geomagnetic map cues on fuel-
ling both early (Kullberg et al., 2007) and late in the season
(Kullberg et al., 2003). Moreover, the altered geomagnetic
map cues do not have to be coherent with cues from travel-
ling time, as experiments with abrupt virtual magnetic dis-
placement and stepwise virtual displacements along the
route triggered the same fuelling response (Henshaw
et al., 2008), suggesting the presence of innate (heritable) geo-
magnetic signposts for stopovers, probably similar to inherited
magnetic signposts for a migratory shift (Jugknick), i.e. an
abrupt change of migration direction on the route
(McLaren, Schmaljohann & Blasius, 2023).

Studies on free-flying birds show that birds undergo exten-
sive fuelling in front of major ecological barriers like the
Atlantic Ocean or the Sahara Desert (Dierschke,
Mendel & Schmaljohann, 2005; Delingat, Bairlein &
Hedenstrom, 2008; Bayly, Gémez & Hobson, 2013;
Bairlein, 1991; Odum, 1963). Thus, the natural fuelling
patterns might be, at least in part, induced by geomagnetic
map cues.

() Physiological recovery

The physiological processes involved in recovery during stop-
over are poorly understood (Eikenaar et al., 2023, 2020c;
Eikenaar, Hessler & Hegemann, 2020q; Schmaljohann
et al., 2022), and even less is known about the roles of geo-
magnetic map cues in recovery. Speculatively, they might
be important for stimulating recovery periods in preparation
for ecological barrier crossings or exceptionally long migra-
tory flights. The only study investigating links between phys-
1ological parameters and magnetic cues described a reduced
adrenocortical hormone response after experiencing a vir-
tual magnetic displacement towards an ecological barrier
(Henshaw et al., 2009). A reduced adrenocortical hormone
response 1s proposed to be a physiological adaptation to
migration for preventing detrimental effects of high cortico-
sterone hormone levels. Wild migrants, by contrast, did not
show this effect during stopover at an ecological barrier
(Schwabl, Bairlein & Gwinner, 1991) (Table S1). The few
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studies available and the variability in their results make it
difficult to draw conclusions regarding the biological impor-
tance of magnetic cues for recovery.

(¢) Departure decisions

The decision to depart from a stopover site consists of three
interlinked components, which we term the ‘departure trian-
gle’ (Fig. 3C): (1) the daily bimodal decision to depart or not to
depart from the stopover site, 1.e. day-to-day departure deci-
sion (reviewed in Jenni & Schaub, 2003); (i) the departure
time within the night (reviewed in Miiller et al., 2016); and
(uz) the departure direction from the stopover site.

(1) Day-to-day departure decision. 'The general motivation to
migrate is genetically encoded in the innate migration pro-
gramme (Berthold, 1973) and then modified by intrinsic
and extrinsic factors (Miiller ¢f al., 2016). Bulte et al. (2017)
demonstrated that a virtual geomagnetic map displacement
along the migration route decreased the amount of migra-
tory restlessness expressed as birds virtually approached their
migratory goal. Thus, geomagnetic map cues might be an
extrinsic factor modifying the departure probability from
stopover. By contrast, Henshaw ¢ a/. (2010) did not observe
this pattern. As their virtual magnetic displacement was mar-
ginal compared to the total migration distance of their focal
species, the lesser whitethroat (Sylwia curruca), we speculate
that this displacement was too short to observe any relevant
effect (Table S1). It therefore seems possible that geomag-
netic map cues are used to calculate the remaining distance
to the migratory destination and thereby influence migratory
motivation, 1.e. day-to-day departure decisions.

() Departure timing within the might. After the decision to
resume migration, the next decision is when to depart within
the night (Fig. 3C). Miiller et al. (2016) predict that species/
populations with longer remaining migration distances will
depart earlier within the night and/or show less variation in
timing than birds with shorter remaining distances, for which
there is supporting evidence (Schmaljohann e al., 2013q).
Using a similar argument to that above for location determi-
nation using geomagnetic map cues (Section III.3.¢.2), we pre-
dict that geomagnetic map cues might, at least to some
extent, affect departure timing within the night. To investi-
gate experimentally whether such a causal relationship exists,
one would need to disentangle the effect of geomagnetic map
cues from seasonal, night length and body condition effects,
among others (reviewed in Miiller ¢ al., 2016). It currently
remains unclear whether and how magnetic cues influence
songbird migrant decisions of when to resume migration at
night.

() Departure direction. Songbirds can use the magnetic
compass, among other systems, to detect directional informa-
tion (see Section III.1). The departure direction decision in
many songbird migrants will involve an interplay between
the innate migration direction (Helbig, 1991; Wynn
et al., 2023) and the current intrinsic and extrinsic conditions,
such as fuel load (Sandberg & Moore, 1996; Sandberg
et al., 2002; Sandberg, 2003, 1994), hormone levels
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(Schneider ¢t al., 1994; Lohmus e al, 2003), weather
(Schmaljohann & Naef-Daenzer, 2011; Muller et al., 2018),
and time of year (Chernetsov et al., 2008a) (Fig. 3C). In addi-
tion, experienced migrants seem to integrate their actual
location within the decision-making process to determine
their departure direction from stopover. Studies with physi-
cal or virtual magnetic displacement demonstrate that birds
are able to correct their migratory direction to reach their
intended destination, 1.e. perform true navigation (Thorup
et al., 2007, 2011; Kishkinev et al., 2015, 2020; Chernetsov
et al., 2008b; but see Kishkinev et al., 2016; Table S1). There-
fore, it is generally accepted that the directional departure
decisions of migration-experienced songbirds include geo-
magnetic map cues and involve map-based true navigation
(Mouritsen, 2018; Berthold, 1996).

Juveniles on their first migration mainly fail to compensate
for such displacements (Thorup et al., 2007; Mouritsen &
Larsen, 1998; Perdeck, 1958) (Table S1), probably because
they have not yet generated a corresponding geomagnetic
map and thus rely on clock-and-compass orientation during
inaugural migration (Mouritsen, 19984; Mouritsen &
Mouritsen, 2000). Intriguingly, there is evidence that some
free-flying juvenile birds [including common cuckoos (Cuculus
canorus), whose migration ecology is similar to that of songbirds]
were able to correct for displacements (Thorup e al., 2011,
2020; Thorup & Rabel, 2007). Potential explanations for this
phenomenon are that juveniles might have learned parts of
the geomagnetic map beforehand by exploring their home
range (Zist et al., 2023) or during transportation to the dis-
placement location (Akesson et al., 2005). Alternatively, they
could follow a time-compensated sun-compass, which is par-
tially self-correcting for displacements (McLaren ¢t al., 2022),
or possess inherited magnetic map information, comparable
to fish and sea turtles (Lohmann ez al., 2022).

The hypothesis that migration-experienced but not juvenile
birds possess and use a geomagnetic map is further supported
by magnetic pulse experiments. Currently, it is assumed that
migratory songbirds navigate by sensing geomagnetic map
cues using a magnetic-particle-based receptor. Exposing birds
to a strong but brief magnetic pulse should remagnetise the
magnetic particles and this would alter how the birds perceive
local geomagnetic map cues, which in turn should alter the ori-
entation direction in caged birds or departure direction in free-
flying birds (Holland & Helm, 2013; see Table S1 for further
references, e.g.Wiltschko et al., 1994). However, not all studies
show this (Karwinkel et al., 20224,5). The observation that the
orientation/departure direction of only migration-experienced
but not juvenile songbirds was affected by a magnetic pulse
(Holland & Helm, 2013; Munro et al, 1997b; Munro,
Munro & Phillips, 19974), supports the hypothesis that only
in experienced birds, but not in juveniles, are geomagnetic
map cues involved in the decision-making process.

(4) Magnetic cues during migratory flight

Investigating the role of magnetic cues during migration also
requires understanding decision-making processes during the
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migratory endurance flight (Fig. 3C). Two crucial stages
include (7) updating and maintaining the flight direction,
including possible directional adjustments and () deciding
when to interrupt the flight, i.e. the landing decision.

(@) Updating and maintaining flight direction

After they have departed in a specific direction, bird migrants
generally maintain this direction during the endurance flight
(e.g. Karwinkel e al., 2022a; Fortin et al., 1999; Bruderer &
Liechti, 1998; Bruderer, 1994), but not all birds necessarily
fly in the same direction throughout the night (Sjoberg &
Nilsson, 2015). Magnetic cues could play two major roles
for updating and maintaining the flight direction. First, the
magnetic compass could be used for direction determination
in flight, as described in Section III.1. Second, geomagnetic
map cues could be used to make decisions about changing
their flight direction.

Radar studies provide supportive evidence that magnetic
cues are perceived and used during the migratory flight, as birds
orient towards the seasonally appropriate direction under full
overcast conditions (Able, 1982¢; Griftin, 1973), although land-
marks cannot be excluded as additional or alternative orienta-
tion cues. Further support that migrants regularly assess
magnetic cues during flight and update their flight behaviour
accordingly is provided by reports that birds change their flight
altitude when passing a magnetic anomaly (Alerstam, 1987).

Free-flying birds change their flight direction when facing
barriers depending on, among other factors, time within the
night or fuel load (Nilsson & Sjoberg, 2016; Akesson
et al., 1996; Fortin et al., 1999; Bruderer & Liechti, 1998;
Zehnder et al., 2002; Komenda-Zehnder, Liechti &
Bruderer, 2002; Schmaljohann & Naef-Daenzer, 2011).
Similar patterns were found in caged birds (Sandberg, 2003;
Sandberg et al., 2002). Whether geomagnetic map cues play a
role in recognising these barriers and thus contribute to changes
in flight directions is still unknown. However, as geomagnetic
map cues are involved in the determination of migratory bear-
ings (e.g. Kishkinev e al., 2021, 2015), it seems plausible that
they might also affect changes in flight direction in free flight.
However, very little is known about how songbirds update
and maintain flight direction during migration.

(b) Landing decision

For landing decisions within a migratory endurance flight, it
1s likely that similar extrinsic and intrinsic factors play a role
as for the departure decision (Miiller e al., 2016) (Fig. 3).
However, since we are only just beginning to study and
understand when, where and how birds decide to land
(e.g. Ruppel e al., 2023), our current knowledge on the bio-
logical importance of magnetic cues on these decisions is very
limited. We speculate that geomagnetic signposts may con-
tribute to identifying crucial stopover landscapes before
crossing ecological barriers, although evidence for this
hypothesis is not yet available.
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IV. UNSOLVED QUESTIONS

Regarding the biological significance of magnetic cues for the
decision-making process in songbirds, several significant
knowledge gaps remain.

(1) How can juvenile migratory songbirds react to (fuelling,
restlessness) and correct for (direction) virtual/physical geo-
magnetic map displacements, although they have never
experienced those conditions before?

(2) How are the different compass systems (sun, polarisation
pattern, stars, magnetic) calibrated and what is the hierarchy
between the different compass systems (T'able S1)?

(3) When, where, how and how often do birds use geomag-
netic map cues during stopover and flight for their migratory
decisions?

(4) How do birds use their compasses, including the mag-
netic compass, during active migratory flight?

(5) Do magnetic cues play a role in the birds’ decisions to
interrupt migratory endurance flights, ie. in landing
decisions?

V. CONCLUSIONS

(1) Magnetic cues can significantly influence the decision-
making processes of songbirds during migration. The innate
migratory programme provides the basis for migratory deci-
sions, which are modulated by an interplay of intrinsic and
extrinsic factors, in which magnetic cues play a role.

(2) Magnetic cues are just one of many environmental cues,
e.g. weather, stopover habitat, landmarks or celestial
cues, that are available to birds. We should not overestimate
the importance of magnetic cues in the wild, as songbirds
may use other cues for their migratory decisions.

(3) Likewise, we know that in birds, redundancy may exist
and several different systems may function flexibly for the
same task (e.g. sun, stars, magnetic compass direction). This
might explain some of the variation in results obtained fol-
lowing magnetic manipulations in orientation cage experi-
ments versus free-flight tracking studies in the wild, where
multiple cues are available (Table S1).

(4) Cage experiment studies are useful for demonstrating the
sensory capabilities of birds, as the environment can be
meticulously controlled. However, we should not infer that
the sensory capability of a bird in a cage equals the bird’s
behaviour in the wild in an ecological context. In general,
there is little evidence of magnetic disruption leading to def-
icits in orientation and navigation performance in field
studies.

(5) There is high variability and inconsistency in the results
of orientation and navigation studies in general, especially
when using different species or at different locations. This
low level of repeatability, reproducibility and replicability
might largely be attributed to high natural variability in the
use of magnetic cues among birds with different migratory
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strategies (e.g. short-distance migrants versus long-distance
migrants), species, populations, locations, individuals, and
even within an individual (e.g. due to experience, health sta-
tus, etc.), or to subtle differences in experimental design or
experimenters. This variability and the contradictory results
found in many studies make it difficult to draw general con-
clusions regarding how wild songbirds use magnetic cues
for their migratory decisions.

(6) We hope that this review encourages researchers to
improve the design of future orientation and navigation
experiments on all bird taxa by carefully considering the
migration ecology of the focal species. Furthermore, we hope
that we have illustrated how the appropriate interpretation of
orientation and navigation studies can only be made in the
context of the species-specific migration ecology.
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