Predicting function from sequence in a large multifunctional toxin family
Malhotra, A.; Creer, S.; Harris, J.B.; Stöcklin, R.; Favereau, P.; Thorpe, R.S.

Toxicon

DOI: 10.1016/j.toxicon.2013.06.019

Published: 03/07/2013

Publisher's PDF, also known as Version of record

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Predicting function from sequence in a large multifunctional toxin family

Anita Malhotraa,**, Simon Creera, John B. Harrisb, Reto Stöcklinc, Philippe Favreauc, Roger S. Thorpea

aSchool of Biological Sciences, College of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
bMedical Toxicology Centre, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
cAtheris Laboratories, Case Postale 314, CH-1233 Bernex-Geneva, Switzerland

\textbf{Article info}

\textbf{Article history:}
Received 4 April 2013
Received in revised form 21 June 2013
Accepted 26 June 2013
Available online 4 July 2013

\textbf{Keywords:}
Snake venom phospholipase A\textsubscript{2}
Crotalinae
Discriminant function analysis
Sequence profiles
Functional prediction

\textbf{Abstract}

Venoms contain active substances with highly specific physiological effects and are increasingly being used as sources of novel diagnostic, research and treatment tools for human disease. Experimental characterisation of individual toxin activities is a severe rate-limiting step in the discovery process, and \textit{in-silico} tools which allow function to be predicted from sequence information are essential. Toxins are typically members of large multifunctional families of structurally similar proteins that can have different biological activities, and minor sequence divergence can have significant consequences. Thus, existing predictive tools tend to have low accuracy. We investigated a classification model based on physico-chemical attributes that can easily be calculated from amino-acid sequences, using over 250 (mostly novel) viperid phospholipase A\textsubscript{2} toxins. We also clustered proteins by sequence profiles, and carried out \textit{in-vitro} tests for four major activities on a selection of isolated novel toxins, or crude venoms known to contain them. The majority of detected activities were consistent with predictions, in contrast to poor performance of a number of tested existing predictive methods. Our results provide a framework for comparison of active sites among different functional sub-groups of toxins that will allow a more targeted approach for identification of potential drug leads in the future.

© 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY license.

\section{Introduction}

Animal toxins often form functionally diverse families, being based on a relatively limited number of basic scaffolds yet achieving a diverse range of physiological effects through interaction with a multitude of molecular targets. They offer a virtually unlimited pool of bioactive compounds with therapeutic and pharmacological potential, a fact which is attracting increasing interest in academic, industrial and medical arenas (King, 2011). Pre-screening of newly identified compounds with \textit{in-silico} techniques to identify functional hypotheses for subsequent experimental testing is highly desirable but limited by current levels of accuracy of many existing bioinformatics methods (Clark and Radivojac, 2010; Koonin, 2000). Even computationally quite complex methods may have prediction accuracies of less than 50\% when applied to functionally diverse protein families (Engelhardt et al., 2011). An excellent example is provided by toxins based
on the phospholipase A2 (PLA2) enzyme scaffold, a major component of reptile venoms, which hydrolyse phospholipids to release lysophospholipids and fatty acids (Kini, 1997). They also have toxic activities (including pre- and, more rarely, post-synaptic neurotoxicity, myotoxicity, cardiotoxicity, anticoagulant and haemolytic activity) that are independent of the catalytic activity of the enzyme and many PLA2 toxins are in fact phospholipase homologues, in which mutational changes to the active site have abolished the phospholipase activity. Toxicity can occur through highly specific direct binding to membrane-bound, intracellular receptors or coagulation factors present in mammalian blood, or through interactions dependant on the three-dimensional structure of the folded protein, either in monomeric or dimeric form (Chioato and Ward, 2003). Group II PLA2s (most similar to non-toxic PLA2s in mammalian synovial fluid and testes [Doley et al., 2009]) are especially significant in viperid snakes, where they may make up to 70% of the protein content of crude venom. They are frequently present as multiple isoforms in the venom of single species (Calvete et al., 2011), and even a single individual (Danse et al., 1997; Ogawa et al., 1992), and have been shown to be the most variable of all major protein families in the venom, both intra- and inter-specifically (Sanz et al., 2006).

The proliferation of functional activity appears to be dependent on the mutation of highly specific surface residues, which are hypothesised to change the specific target of the protein and thus confer a new activity (Doley et al., 2009). Predictions have been made about the position of pharmacological sites following functional studies on isoenzymes (Kini, 2006; Kini and Iwanaga, 1986a,b), while chemical modification, site-directed mutagenic mapping, use of monoclonal and polyclonal antibodies and analysis of inhibitor interactions have identified particular residues or segments of the PLA2 molecules that are involved in different activities (Doley et al., 2009). A more recent and promising line of research uses biomimetic synthetic peptides to narrow down potential pharmacological sites (Lomonte et al., 2010). However, these studies often disagree and have generally failed to allow prediction of activity in other isoforms of unknown activity. In recent years, the discovery rate of new toxins has increased exponentially, as venom gland transcriptomic (EST) studies have resulted in the description of hundreds of new toxins (Boldrini-França et al., 2009; Durban et al., 2011; Junqueira-de-Azevedo and Ho, 2002; Kashima et al., 2004; Wagstaff and Harrison, 2006; Zhang et al., 2006). More recent application of next-generation sequencing technology (Chattrath et al., 2011; Jiang et al., 2011; Rodrigues et al., 2012) to transcriptomics will further accelerate this process, as will the increasing ability to directly access the genome through extended read length and targeted sequencing (Glenn, 2011). However, current methods for studying pharmacological activity are generally labour-intensive and the functional characterisation of these new toxins is unlikely to keep pace (not unique to toxins, as the majority of protein sequences in databases lack functional annotation). Computer-generated annotations have been shown to be highly inaccurate (Schnoes et al., 2009) mainly as a result of over-prediction (i.e., annotation to functions that are more specific than the available evidence supports, sometimes naively based on homology to primary structures). This is likely to be the case for most animal toxins, which often retain the ancestral non-toxic structural scaffold, while evolving diverse potent and highly specific toxic activities. In some cases, the substitution of a single amino acid is enough to change the selectivity for another target (Ohno et al., 1998). In the case of PLA2 toxins, the ancestral phospholipase activity may be readily predicted while failing to predict the main biological activity of the protein in question. Thus, predicting the function of snake venom proteins based on a common scaffold presents a challenge to bioinformaticians interested in the analysis of protein sequence–function relationships in general. Solving this problem will have a number of beneficial outcomes as many of the activities of these proteins are of great utility as research tools and potential drugs (Koh et al., 2006), especially in neurological (Sun et al., 2004), anti-cancer (Bazaa et al., 2010; Lomonte et al., 2010), anti-viral (Fenard et al., 1999; Meenakshisundaram et al., 2009) and anti-inflammatory (Coulthard et al., 2011) research.

In this paper, we report a model-based analysis of the largest dataset of PLA2 Group II toxins to date, comprising 251 protein sequences. Of these, 73 are novel sequences derived from a genome-based survey of PLA2 genes in pitvipers (Viperidae: Crotalinae), including 16 species for which no PLA2 sequences exist in databases. Most of the newly investigated species belong to the Asian Trimeresurus radiation (Malhotra and Thorpe, 2004), which have been relatively understudied by toxicologists (Gowda et al., 2006; Soogarun et al., 2008; Tan and Tan, 1989; Tan et al., 1989; Wang et al., 2005). We used two methods with different conceptual bases. The first was based on ordination of proteins with experimentally characterised functions, using biologically meaningful features derived from their physico-chemical characteristics in a discriminant function analysis (DFA). The second was based on primary sequence structure, measured by sequence profiles. DFA correctly classified between 62 and 86% of toxins with known physiological functions, with a good match between structural similarity and predicted function in the profile-based clustering method. In marked contrast, a number of alternative protein prediction methods failed to correctly identify more than the basic enzymatic function of the PLA2 scaffold. In-vitro tests for four major activities showed that the activity of the majority was consistent with predicted functions. An advantage of the methods applied here is that they do not require specially-written software as all methods are already readily available in the public domain. If required, a bioinformatics pipeline to scale up these analyses to take advantage of high-throughput datasets from large-scale drug discovery programs could easily be constructed.

2. Experimental

2.1. Samples, cloning of PLA2 genes and quality checking

Samples were collected between 1992 and 2002 as part of a systematic study on Asian pitvipers (Malhotra and Thorpe, 2004) and were in the form of blood samples,
ethanol-preserved scale clips, liver, or muscle tissue. We amplified PLA$_2$ genes directly from genomic extracts using conserved primers located in the untranslated regions of the PLA$_2$ genes, cloned individual PCR products, and sequenced multiple positive clones using the primers and procedures described previously (Dawson et al., 2010). Similar sequences from individual samples were grouped for detection of PCR errors and construction of consensus sequences, based on a statistically robust method of determining the probability of obtaining PCR artefacts (Dawson et al., 2010). However, we modified the acceptance criterion such that the minimum number of differences separating two sequences that had confirmed translation products in the venom (detected by proteomic analysis) was used set the acceptance threshold, if this was less than the threshold value determined by the cumulative binomial distribution. We applied a number of methods for the detection of recombinant sequences in an alignment: RDP, Geneconv, Chimaera, 3SEQ (all implemented in RDP3 [Martin et al., 2005]). Those showing clear evidence of recombination within sequences derived from single individuals were removed as likely PCR artefacts. Remaining sequences were aligned by eye into exons and introns using known splice sites in a reference PLA$_2$ sequence from Protoporphyrops flavoviridis (D13383). The putative protein-coding sequence was assembled and translated using EXPASY tools (web.expasy.org). The UniProt database and literature sources were searched for additional non-redundant crotaline PLA$_2$ protein sequences and resulting database aligned using MUSCLE (Edgar, 2004), implemented within Jalview (Waterhouse et al., 2009).

2.2. Proteomics: analysis of expressed PLA$_2$ toxins

Venom samples were obtained from a single milking of individual snakes, dried, and stored at -4°C. Our goal was a) to characterise the expression profile of PLA$_2$ toxins in the crude venom, and b) to isolate several PLA$_2$s for activity testing (which was limited by the amount of crude venom available). Crude venom samples from 132 specimens of 29 species of Crotalinae were analysed by MALDI–TOF (matrix-assisted laser-desorption ionisation–time-of-flight) MS as described previously (Creer et al., 2003). Some later analyses were carried out using an UltraflexTM TOF/TOF (Bruker Daltonics, Germany) with only minor modifications of the protocol. Calibrants used in the MALDI–TOF analyses were bovine insulin, ubiquitin I, cytochrome C, and myoglobin. Most samples were analysed at least twice, with some samples being analysed in each different set of analyses, which were carried out over a number of years. To check the reproducibility of the venom profile within individuals, we also analysed venom samples from captive individuals that had been collected monthly over the course of one year. A limited number of samples were also analysed using LC–ES (liquid chromatography–electrospray ionisation tandem) MS, to check the accuracy and reproducibility of results, as described previously (Creer et al., 2003). The mass range between 13 and 14.5 kDa was analysed using Data Explorer Version 3.5.0.0 (PerSeptive Biosystems). 'Major' peaks were defined as those with greater than 30% maximum intensity for MALDI–TOF analysis, while for LC–MS they corresponded to compounds exhibiting a UV absorption (214 nm) superior to 15% of the relative maximum intensity for LC–MS. In case of co-eluting proteins, the MS spectrum was taken into account and only the major representatives are considered as 'major' forms. 'Secondary' peaks were those with less than 30% maximum intensity for MALDI–TOF analysis, or those which correspond to compounds exhibiting a UV absorption (214 nm) inferior to 15% of the relative maximum intensity for LC–MS. Observed masses were subsequently grouped together if their masses were within the limits of the accuracy of the method used to determine them (i.e., within 10Da for two masses determined using MALDI–TOF, 2Da for those determined by LC–ES–MS, or 6Da for a mass determined by MALDI–TOF compared to one determined by LC–ES–MS). This procedure is conservative in that some PLA$_2$s with masses within the limits given above may result from different underlying sequences, but it minimises the chances of false discovery. TagIdent (EXPASY) was used to search UniprotKB/Swissprot for matches with individual sequenced isoforms.

Isoform content is particularly diverse and variable in the Chinese bamboo viper Viridodivpera stejnegeri on the island of Taiwan (Creer et al., 2003). The distribution of high molecular weight versus low molecular weight isoforms is not random and appears to be correlated with diet. On the basis of the MALDI–TOF profiles, we chose one specimen (T61) from Green island, Taiwan (5.4 mg of dry crude venom), and two specimens (T221 and T224) with a similar venom profile from Fujian province, China (4.7 mg combined weight of dried venom), in which high and low molecular weight PLA$_2$s respectively formed the major components of the venom. The purification of the PLA$_2$s was carried out using Reverse-phase HPLC on 1 mg of crude venom. All the fractions were manually collected and a MALDI–TOF–MS analysis was performed in order to confirm the final mass of each fraction. Finally, the quantity and purity of each manually collected fraction was assessed by size exclusion chromatography.

2.3. Biological activities of venoms

Haemorrhagic activity was assessed by exposing blood vessels serving unhatched chick embryos to filter paper discs (2 mm diameter) loaded with fixed concentrations of venom samples in 0.9% w/v NaCl (44), using Bothrops jararaca venom as a positive control and 0.9% w/v NaCl alone as a negative control (Sells et al., 1998). Haemorrhagic activity was measured as the time taken for a haemorrhagic corona to appear around the disc, and the area of the corona after continuous contact with the disc for 2hr. Myotoxic and neurotoxic activity were assessed by incubating mouse soleus muscles at room temperature in oxygenated Liley's fluid for three hours in the presence of samples of venom or venom fractions at a fixed concentration of 10 µg ml$^{-1}$. At the end of the period of incubation, muscles were lightly fixed, cryoprotected, frozen in liquid N2 and sectioned at 6 µm (TS) and 10 µm (LS). For the assessment of myotoxicity, sections were stained with H & E and evidence of frank necrosis, hyper-contraction, and oedematosus separation of necrotic muscle fibres (Harris
et al., 1975) was sought. For the assessment of neurotoxicity sections were labelled with a primary antibody for synaptophysin (a protein specific to synaptic vesicles) and a primary antibody for neurofilament (a protein specific to axons) and then to a secondary antibody conjugated to a fluorescent tag. Each section was counter-labelled with alpha-bungarotoxin conjugated to a fluorescent tag to identify the ACh receptors at the neuromuscular junction. Neurotoxicity was assessed by the absence of labelling for synaptophysin at the neuromuscular junction, or by abnormal labelling of neurofilament (Dixon and Harris, 1999; Prasarnpun et al., 2005). At least two muscles were used for each compound.

2.4. Discriminant analysis of protein physico-chemical properties

We used SMS (http://www.bioinformatics.org/sms2/protein_gravy.html) and ProtParam (EXPASY) to calculate a number of sequence-based features including pI (isoelectric point), MW (theoretical average molecular weight, without any correction made for disulphide bridges), net charge, GRAVY (GRand AVerage of hYdropathy [Kyte and Doolittle, 1982]), aliphatic index (a measure of the thermostability of globular proteins), instability index and amino acid composition (%). The 20 amino-acid composition values were converted into compositional similarity scores using principal component analysis, retaining the maximum number of functions for which the chi-square lambda was significant at $P < 0.05$. We analysed these physico-chemical variables of the pitviper venom PLA$_2$s by DFA in SPSS v.14, using functional activities as groups and individual PLA$_2$s as cases. Data on functional activity were primarily gathered from UniProt. However, it has previously been noted that many database protein entries are not annotated with function (Tan et al., 2003), there are no actively maintained databases specifically for snake venom toxins, and the only current database on animal toxins has limited functionality (Jungo et al., 2012). Therefore, we also carried out searches of the primary literature using GoPubMed (www.gopubmed.org). Reported functional activities of PLA$_2$s are very varied; 15 are listed by Kini (1997) while Doley et al. (2009), mention at least 12 distinct activities. For simplicity, we reduced the number of activities to the six most commonly reported, i.e., neurotoxic, myotoxic, antiplatelet, anticoagulant, oedematous, and hypotensive. Variables were entered together and posterior probabilities of group membership (including for the ungrouped proteins, which did not take part in the discrimination, but whose position relative to the calculated axes was also calculated) were saved.

2.5. Profile-based methods

A sequence profile represents the information contained in a multiple sequence alignment as a table of position-specific symbol comparison values and gap penalties. The profile-based neighbour-joining (PNJ) method is a means of obtaining more resolution in a large tree by successively collapsing clusters supported above a certain user-determined value into a summary profile. It is claimed to be as accurate as Bayesian methods, but much more computationally efficient (Müller et al., 2004). We used ProDistS v0.9.8 (Wolf et al., 2008), with general time-reversible distances based on the VTML model, which models protein evolution as a Markov process (Müller and Vingron, 2000). Profiles were built for clusters with either sequence identity above 97% or bootstrap values (from 500 bootstraps of the initial NJ tree) of greater than 70% in an iterative process (Merget and Wolf, 2010). The resulting PNJ tree was rooted and annotated in Dendroscope 3 (Huson and Scornavacca, 2012). It is important to note that the resulting tree reflects the degree of structural similarity among amino-acid sequences, and will not necessarily reflect evolutionary relationships among the sequences (i.e., it is not a gene tree) since the non-coding parts of the gene may be quite divergent.

2.6. Comparison with other prediction methods

A multitude of computational tools are available for the prediction of molecular function based on de novo protein sequences (Punta and Ofrafan, 2008). The more powerful programs combine several approaches. One of these, Protfun (available at http://www.cbs.dtu.dk/services/ProtFun-2.2/), integrates 14 different sequence-based prediction methods, using attributes such as number of negative and positive residues and predicted transmembrane helices, into final predictions of the cellular role, enzyme class (if any), and selected Gene Ontology (GO) categories of the submitted sequence (Juhl-Jensen et al., 2003). As there is a limit of 50 sequences on the server, we assembled a file containing 49 sequences of proteins, in which experimentally determined functions matched the predictions of the DFA (PP > 0.8), plus four additional protein sequences with no experimentally determined function, but which the DFA predicted to have a hypotensive or oedematous function with PP > 0.9. We also used another multiple-approach protein function prediction engine, EFICAz2.5 available at http://cslsb.biology.gatech.edu/skonlick/webservice/EFICAz2/index.html. This combines predictions from six different methods developed and optimised to achieve high prediction accuracy (Narendra and Skonlick, 2012). However, the server takes only one sequence at a time, which limits its utility for large-scale protein discovery projects. Finally, we tested a method employing a similar approach to ours in that it uses features derived from primary sequence such as such as normalised Van der Waals volume, polarity, charge and surface tension. However, rather than employing these measures directly, they are converted into three descriptors which reflect the global composition of each of these properties, and these descriptors are then combined into a feature vector, achieving accuracy in the range 69.1–99.6% (Cai et al., 2003). For the enzyme class to which the PLA$_2$s belong (EC3.1), a sensitivity of 71.1% and specificity of 90.6% is claimed. The server is available at http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi.

To our knowledge, only a handful of other studies have attempted to develop bioinformatic tools specifically for prediction of the biological properties of snake venom PLA$_2$s proteins. Two of these focused on neurotoxins only (Saha
and Raghava, 2007; Siew et al., 2004), one on distinguishing between myotoxins and neurotoxins (Pazzini et al., 2005), and another (Chioato and Ward, 2003) was applied to myotoxins, neurotoxins and antiocoagulants. Although these were mostly accompanied by publicly-available programs, only one of these is currently accessible. Consequently, we could only test the predictive power of NTXpred (Saha and Raghava, 2007) available at www.imtech.res.in/raghava/ntxpred/. According to the authors, this server allows users to predict neurotoxins from non-toxins with 97.72% accuracy, allows the classification of neurotoxic proteins by their organismal source with 92.10% overall accuracy, and by function (e.g., ion channel blockers, acetylcholine receptor blockers etc.) with 95.11% overall accuracy. Furthermore, it claims that users can sub-classify ion-channel inhibitors by type with 75% overall accuracy. The interface is simple and limited to the input of one sequence at a time. Consequently, we selected two to three toxins of each functional type to test, from the file described above.

3. Results

3.1. Description of novel PLA2 proteins

Full-length sequences of PLA2 genes ranging in length between 1832 and 2001 bp were obtained from 24 individuals of 20 nominal species. The minimum difference required for acceptance of variants as non-PCR artefacts was set at 4 bp. After several putative artefactual recombinants were eliminated from the dataset, it consisted of 94 gene sequences. Putative proteins inferred from the coding regions bore hallmarks of expressed genes, including the presence of a TATA-like box and several putative regulatory elements (Gubensek and Kordis, 1997) immediately preceding it at the 5’ end, and the polyA tail at the 3’ end. Several genes detected encoded previously described toxins from protein or cDNA studies. For example, B464_LT6 (UniProtKB: tbc) from Protobothrops (previously Zhaoerma) mangshensis encodes a protein with 99% similarity to zhaermaotoxin (Mebs et al., 2006). The largest proportion of the same venom sample, or from venom samples taken at different times from the same individual, although the relative intensity of different peaks and presence of absence of minor peaks were not consistent in some cases. Out of the 73 proteins inferred from the genomic sequences obtained in this study, 62 (c. 85%) had a putative match in the expressed venom (Table S1). However, several isoforms with different amino-acid sequences have inferred masses that are within 2 Da of each other, which are difficult to discriminate using proteomic methods (Table S1), even the more accurate LC–ES–MS. Only 23 (32%) inferred PLA2 proteins were matched to masses in the venom profile of the same individual from which the genome sequence had been obtained, suggesting that selective expression may account for a large proportion of among-individual differences in venom composition.

3.2. Proteomic study of PLA2 expression

Oxidation products (clearly distinguishable as double peaks differing by 16 Da) were frequently present. Among the 10 samples that had been fractionated, isolated isoforms were found to be up to 20% oxidised. These often formed minor peaks in the LC–ES–MS and were generally absent in the MALDI–TOF spectra. From the 132 venoms examined, at least 83 masses representing putative unique PLA2 isoforms were identified between 13,193 and 14,916 Da. Between two (Popeia sabahi, A202, Ovophis makazayazaya, A87) and 10 (Vindivipera gumprechti, B475) isoforms were found in the 24 samples with both LC–ES and MALDI–TOF–MS data. Between 25 and 100% (mean 70.45%) of isoforms in individual venoms were detected using both methods. Most of the masses which did not occur in both types of spectra were present as minor peaks in LC–ES–MS. About 70% of isoforms detected were scored as a major or minor peak consistently in both analyses. There was no significant difference between repeat spectra of the same venom sample, or from venom samples taken at different times from the same individual, although the relative intensity of different peaks and presence of absence of minor peaks were not consistent in some cases. Out of the 73 proteins inferred from the genomic sequences obtained in this study, 62 (c. 85%) had a putative match in the expressed venom (Table S1). However, several isoforms with different amino-acid sequences have inferred masses that are within 2 Da of each other, which are difficult to discriminate using proteomic methods (Table S1), even the more accurate LC–ES–MS. Only 23 (32%) inferred PLA2 proteins were matched to masses in the venom profile of the same individual from which the genome sequence had been obtained, suggesting that selective expression may account for a large proportion of among-individual differences in venom composition.
variation in venom profiles. However, it also indicates incomplete sampling of the PLA2 gene content of the genomes investigated.

3.3. Biological activities

The application of saline-loaded discs of filter paper caused no haemorrhage and no obvious disturbance to the chick embryos. Discs loaded with B. jararaca venom exhibited concentration-dependant haemorrhage, with a threshold concentration of 1.0 μg in 2.0 μl. The area of haemorrhagic corona increased with venom concentration and was maximal at a concentration of 3 μg in 2.0 μl, while the time taken for the corona to form fell. From these data, a ranking of haemorrhagic potential was calculated (Table 1). Of the venom samples tested, B135, T221, T61, T61 (fraction 20) had no detectable haemorrhagic activity. Two samples (B475 and B22) were highly active, as active as the standard haemorrhagic venom (B. jararaca). Venom samples from B208, B33, B67 and B5 were moderately active (compared to B. jararaca), while those from B8, B469 and A229 were of low haemorrhagic activity. Myotoxic activity was rare and usually mild. Only T224, T221 and T61 (fraction 20) were clearly myotoxic although B526 and T208 were mildly myotoxic. Oedema was common, but non-specific (Table 1). Clear evidence of neurotoxicity was seen only with T61 (fraction 20) (Table 1, Fig. S1).

3.4. Prediction of function: discriminant analysis

The total dataset contained 253 non-redundant protein sequences (Fig. 1). The alignment is available in the Dryad data depository (doi:10.5061/dryad.16pg7). The first four factors describing amino acid composition were retained. These principal components, referred to as PC1-4(comp) hereafter, summarised 16.7, 14.0, 10.1, and 9.5% of variation respectively. Ninety-five proteins had known functions that could be assigned to one of six major functions. However, anticoagulant and antiplatelet functions were subsequently combined into a “haemotoxic” category after preliminary analyses showed that no physico-chemical property or PC(comp) could distinguish between these groups (Tamhane’s post-hoc test). Final sample sizes were: Myotoxic: 30; Haemotoxic: 19; Neurotoxic: 26; Hypotensive: 7; Oedematous: 15. Neurotoxic PLA2s frequently also show myotoxicity (Montecucco et al., 2008), but were classed as neurotoxic rather than myotoxic for the purpose of this analysis. Robust tests (Brown-Forsythe) for the equality of means showed all variables apart from PC2(comp) showed significant differences among groups. The four resulting discriminant functions (Table 2) contained 69.1, 13.5, 11.1, and 6.3% of variation respectively. Another 158 proteins which had no known function were plotted on the resulting axes (Fig. 2) and colour-coded by their posterior probabilities of belonging to one of the functional groups (Table S2). All groups, except for haemotoxic and hypotensive proteins, were successfully discriminated on two axes (Fig. 2A). DF1 largely reflects the difference in pI, with haemotoxic/hypotensive proteins being acidic, myotoxic, neurotoxic and most oedematous proteins being basic. However, notably some oedematous proteins can be distinguished from myotoxic ones by being more neutrally charged at pH7. DF2 (Table 2, Fig. 2A) largely distinguishes a smaller group of oedematous proteins on the basis of PC3(comp), with oedematous toxins having lower amounts of phenylalanine, arginine and tyrosine, and higher amounts of methionine and valine. DF3 (not shown)

Table 1

<table>
<thead>
<tr>
<th>Venom ID</th>
<th>Species</th>
<th>Time to corona</th>
<th>Rank Size of corona (mm²)</th>
<th>Rank Size of corona (haemorrhagic activity)</th>
<th>Oedema</th>
<th>Myotoxicity</th>
<th>AchR physin</th>
<th>% innervated</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ve control</td>
<td>Bothrops jararaca</td>
<td>26.5</td>
<td>5</td>
<td>17</td>
<td>2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>–ve control</td>
<td>-</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>Slight</td>
<td>X</td>
<td>43</td>
</tr>
<tr>
<td>Notexin</td>
<td>Notechis scutatus</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>√</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>β Bungarotoxin</td>
<td>Bungarus spp.</td>
<td>66</td>
<td>10</td>
<td>5.5</td>
<td>9</td>
<td>n/a</td>
<td>n/a</td>
<td>62</td>
</tr>
<tr>
<td>A229</td>
<td>Cryptelytrops albolabris</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>X</td>
<td>X</td>
<td>28</td>
</tr>
<tr>
<td>T208</td>
<td>Vridovipera stejnegeri</td>
<td>24</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>√</td>
<td>√</td>
<td>28</td>
</tr>
<tr>
<td>B475</td>
<td>V. gumprechti</td>
<td>20</td>
<td>2</td>
<td>19</td>
<td>1</td>
<td>√</td>
<td>X</td>
<td>72</td>
</tr>
<tr>
<td>B8</td>
<td>C. insularis</td>
<td>44</td>
<td>9</td>
<td>16</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td>52</td>
</tr>
<tr>
<td>B22</td>
<td>C. albolabris</td>
<td>17</td>
<td>1</td>
<td>8.6</td>
<td>6</td>
<td>2</td>
<td>X</td>
<td>15</td>
</tr>
<tr>
<td>B526</td>
<td>“Oophis” okinavensis</td>
<td>50</td>
<td>11</td>
<td>3.2</td>
<td>11</td>
<td>X</td>
<td>Slight</td>
<td>20</td>
</tr>
<tr>
<td>B5</td>
<td>C. albolabris</td>
<td>30</td>
<td>7</td>
<td>11</td>
<td>4</td>
<td>X</td>
<td>X</td>
<td>33</td>
</tr>
<tr>
<td>B33</td>
<td>Paris hageni</td>
<td>27</td>
<td>6</td>
<td>8.8</td>
<td>5</td>
<td>4</td>
<td>X</td>
<td>42</td>
</tr>
<tr>
<td>B67</td>
<td>C. cardamomensis</td>
<td>21</td>
<td>3</td>
<td>7.7</td>
<td>8</td>
<td>4</td>
<td>X</td>
<td>–</td>
</tr>
<tr>
<td>B469</td>
<td>Popeia sabahi</td>
<td>43</td>
<td>8</td>
<td>5.3</td>
<td>10</td>
<td>9</td>
<td>X</td>
<td>42</td>
</tr>
<tr>
<td>B135</td>
<td>Tropidolaemus wagleri</td>
<td>Not haemorrhagic</td>
<td>12</td>
<td>12</td>
<td>–</td>
<td>X</td>
<td>X</td>
<td>75</td>
</tr>
<tr>
<td>T221 (crude)</td>
<td>V. stejnegeri</td>
<td>Not haemorrhagic</td>
<td>12</td>
<td>12</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>54</td>
</tr>
<tr>
<td>T221 (Q6H3D7)</td>
<td>V. stejnegeri</td>
<td>Not haemorrhagic</td>
<td>12</td>
<td>12</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>22</td>
</tr>
<tr>
<td>T61 (crude)</td>
<td>Not haemorrhagic</td>
<td>12</td>
<td>12</td>
<td>X</td>
<td>X</td>
<td>13</td>
<td>13</td>
<td>100</td>
</tr>
<tr>
<td>T61/16 (Q6H3D4)</td>
<td>Not haemorrhagic</td>
<td>12</td>
<td>12</td>
<td>X</td>
<td>X</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>T61/20 (D31778)</td>
<td>Not haemorrhagic</td>
<td>12</td>
<td>12</td>
<td>√</td>
<td>√</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
is influenced by a contrast between net charge and pl, and further distinguishes myotoxins proteins from oedematous proteins and neurotoxins, with myotoxins displaying a lower net charge for a given pl than the other types. Finally, hypotensive PLA2s are distinguished from haemotoxins on the fourth axis (Fig. 2B), by a lower pl, a higher proportion of leucine and lycine and a lower amount of alanine, cysteine, glutamic acod and glutamine, being less thermostable and more hydrophilic. Of original grouped toxins, 72.6% were correctly classified while cross-validation correctly classified 60% of toxins. Of the 27 known myotoxic proteins, 21 (78%) were correctly predicted. The prediction accuracy of known hypotensive proteins is 86% (6 out of 7), while neurotoxic and oedematous proteins were both correctly predicted in 62% of cases. Haemotoxic proteins were correctly predicted in 74% of cases.

3.5. Profile-based clustering

The profile neighbour-joining tree (Fig. 3) shows good correspondence between cluster membership and known and/or predicted functions, although much of the deeper structure of the tree is not supported by bootstrap analysis. For example, only one known myotoxin lies outside a cluster containing proteins with similar functions. A fundamental split between proteins with a mainly haemotoxic (and hypotensive) function and proteins having oedematous, myotoxic or neurotoxic activity is evident. Apart from the distinct clustering of viperine sequences (clusters A and B) there is no particularly strong signal of taxonomy in the tree (e.g., cluster D, which largely groups toxins from rattlesnakes, also contains toxins from the Old World genera *Oophis* and *Gloydus*). Interestingly, hypotensive PLA2s seem to be structurally similar in vipers.
occurring in only cluster A, despite disparate specific origins. However, in the crotalines, they appear independently among different clusters, and are always very similar to a haemotoxic protein. Similarly, oedematous activity and myotoxicity are also closely related, with whole clusters being identified containing proteins known/predicted to have one of these activities (e.g., clusters C and E, Fig. 3). The independent evolution of myotoxins is indicated by their occurrence in each of the two clusters of vipers PLAs (A and B) and in several distinct clusters of crotaline toxins (C, D, E and predicted, but not confirmed, in some other clusters as well). Although not well illustrated in the figure, which shows only one function for each toxin, many neurotoxins from pitvipers can also display myotoxicity. This is true of many of the known neurotoxins in cluster C and D, which may explain many of the discrepancies observed between known and predicted function in these clusters. A large number of the inferred haemotoxins examined, however, are not strongly structurally related and fall into a number of small clusters whose relationships are unclear. Within these are located the small clusters of PLAs with known hypotensive activity and, perhaps more surprisingly, two known neurotoxic PLAs. These are not predicted as neurotoxins by DFA, and may have acquired neurotoxicity recently and independently.

3.6. Comparison with other prediction methods

Results from Protfun 2.2 did not correspond with expected classifications. Out of the 49 sequences submitted, almost half (20) were predicted to be non-enzymes. Of these, 70% are indeed likely to be PLAs homologues due to substitutions present at the critical 49th residue. Overall the accuracy of predicting enzyme activity was 85.7%, but none were correctly classed as Hydrolases (EC 3.-.-.-); instead, six were predicted to be isomerases, and no predictions were provided for the remainder. EFICAz2.5, on the other hand, correctly classified all the sequences tested as phospholipase A2 enzymes (EC 3.1.1.4) with high confidence, but each protein sequence took nearly two hours to
be processed. SVMProt also returned a prediction of EC 3.1.- (Hydrolases – Acting on Ester Bonds) with 95.9% accuracy. For a further two proteins, the classification with the highest probability was “all lipid-binding proteins”. However, as pointed out earlier, information on enzyme activity is of limited utility when dealing with multifunctional proteins such as the svPLA2s. NTXpred tools varied in their prediction of source, function and specificity (Table S4) but all PLA2s tested were predicted to be neurotoxins. In order to investigate the prediction accuracy further, the amino acid sequence was randomly mutated and the prediction tools run after each mutation. At least two out of the 14 Cys residues that form the crucial backbone of the protein had to be mutated before the amino-acid + length tool predicted a non-toxin, at least four Cys residues had to be mutated before the dipeptide-based tools failed to predict a neurotoxin, and all Cys could be mutated and still obtain a neurotoxin prediction from the “amino-acid sequence only” tool. If these cysteine residues were untouched, the entire remaining amino-acid sequence could be randomly changed without changing the prediction.

4. Discussion

The prediction of function from protein sequence in the toxic PLA2s is especially challenging, yielding few insights despite decades of work in this field. To some extent, this lack of progress can be attributed to incomplete analysis and lack of standardisation in the toxinological literature. For example, while reported activities of phospholipases are very varied (Doley et al., 2009), few have been extensively studied and individual toxins are rarely tested for all possible activities. Thus, it cannot be ascertained whether the toxin also shows activities additional to the experimentally demonstrated ones, which may account for some apparent misclassifications in predictive methods such as
those investigated here. Additionally, assay methods vary considerably and some are far more sensitive than others. For example, measuring the resting membrane potential in the mouse phrenic nerve-diaphragm preparation was found to be around 100-fold more sensitive than the commonly-used creatine kinase release assay for studying myotoxicity (Aragão et al., 2009). In addition, the same pharmacological effect can be induced through different pathways (Miyabara et al., 2006; Moreira et al., 2008; Zhou et al., 2008).

Although several attempts have been made to provide a predictive framework for PLA₂ toxins, none of these have gained widespread use and published databases and servers eventually become unavailable and/or outdated. As we have illustrated, a number of more general methods (not designed specifically for toxins) lack predictive power, while specific tests to identify toxins (Saha and Raghava, 2007) fail to distinguish between different toxic functions. Among the methods not currently accessible, some reported success in prediction of myotoxic, presynaptic neurotoxic and anticoagulant functions was achieved by examining subsets of highly similar toxins (found by sequence similarity searches of databases) (Chioato and Ward, 2003). However, the assumption that sequences with high similarity share a similar function has been shown to be flawed in this study, where we find that similar functions may have evolved independently in structurally different sequences, while some novel functions have arisen among clusters of highly similar sequence, making it difficult to identify functional relationships among sequences grouped by similarity alone. This is illustrated by clusters C and D in Figs. 3 and 4, both containing largely myotoxic/oedematous PLA₂s as well as a number of neurotoxic PLA₂s. However, this underlying similarity in physiological effect is clearly achieved through different biochemical pathways, as PLA₂s in cluster D are all highly catalytically active, and the neurotoxicity is achieved through dimerisation with a non-toxic chaperone protein. Members of cluster C, on the other hand, all have mutations that have abolished or considerably reduced the catalytic activity, and when neurotoxic, can express this activity in the monomeric form. The presence of both these activities in both these structurally distinct clusters may be one reason that considerable overlap was found in the surface residues implicated in myotoxicity and neurotoxicity (Chioato and Ward, 2003). The paucity of existing data on some particular functions (e.g., hypotensive PLA₂s, where we were only able to find experimental evidence for this activity for seven isoforms among all viperids) also challenges the ability of any method to classify them.

A particularly encouraging feature of the current analysis is the good agreement between cluster membership in the
PNJ trees, based on sequence profiles, and the functional predictions from the DFA based on physico-chemical properties, which have different underlying bases. We also found good internal consistency between our predictions and in vitro tests of activity. For example, venom from specimen T208 (V. stejnegeri from Taiwan) is known from the proteomic analysis to contain major PLA2s that match the MW of sequenced isoforms A241_9 and B344_LT2. The third major isoform present matches the MW of Q6H3D4, which was tested as part of this study and showed no distinct activity. This matches the prediction from the DFA which could not clearly assign it to any functional cluster. The crude venom showed haemorrhagic, oedematous and myotoxic activity. A241_9 is predicted with a PP of 0.99 to be a haemotoxin while B344_LT2 is predicted (PP = 0.66) to be a myotoxin, thus the demonstrated activity of the whole venom is entirely consistent with the predictions of the functional activity of its main constituent PLA2s. Similarly, the activity of the crude venom from B469, B475, B526, B5, B33 and B67 is entirely consistent with the predicted activity of at least some of the major PLA2 toxins that they contain. The activity of the venom from B8 (Cryptelytrops insularis) is partly consistent, in that it is known to contain isoforms that have predicted activities that are not shown by the whole venom. However, in this case, the only major toxin (matching B5_set2 in MW) is predicted to be haemotoxin (PP = 0.94), which matches the activity of the crude venom, while the isoform matching A229_LT5 (with predicted myotoxic activity) is only a minor constituent of the venom (data from the LC–ES–MS). A more inexplicable inconsistency between predicted and demonstrated functions is found in the case of the crude venom of A229 (Cryptelytrops albolarbis), which showed only slight haemorrhagic activity and no other activity. From the LC–ES–MS profile, we know that this venom contains seven major isoforms of PLA2, six of which have been identified in this study (these are A229_LT5, A229_LT11, A241_28, B464_LT11, B480_UP, and B769_gpB), and another which remains unidentified. Of these, A229_LT11, A241_28 and B769_gpB have predicted haemotoxins (PP > 0.9), but B464_LT11 has predicted neurotoxic activity (PP = 0.82) and A229_LT5 has predicted myotoxic activity (PP = 0.6). There may be synergistic effects among this complex cocktail of similar toxins that masks some of these activities in the crude venom. This may also be the reason for a dramatic inconsistency between the results of the functional assays on whole venom and the isolated toxins in the case of D31778, which was isolated from the venom of T221 (V. stejnegeri). The isolated toxin shows very high neurotoxic activity which exceeded that of the positive control used, yet the whole venom shows no such activity. In this case, the neurotoxicity of D31778 also fails to be predicted by the DFA (which in fact predicts it to be a haemotoxin with very high probability), and in the PNJ tree, is clustered among other isoforms similarly predicted to be haemotoxins. It is therefore extremely interesting that another isoform from V. stejnegeri (P81478) has been independently demonstrated to be neurotoxic (Fukagawa et al., 1993), yet also fails to be predicted as such by the current methods. This suggests that the other use of the approach outlined here may be to highlight discrepancies between expected and actual functions which, by departing from the norm, may yield unique information about the gain and loss of major functions in these versatile proteins.

In conclusion, our study highlights the importance of considering biological meaningful features of proteins for detailed understanding of their biological activities. With the number of venomous animals running into many tens of thousands, the search for bioactive compounds as leads in the pharmaceutical industry in these venoms will need to be organised for maximum efficiency. A method of providing an initial hypothesis of function of a novel product that is capable of highlighting the independent acquisition of similar functions by toxins of different sequence, that may act through different pathways, could be a valuable tool in choosing such lead compounds for further investigation.

Acknowledgements

We thank Wendy Grail, Carlotta Ercolani (Bangor), and Tracey Davey (Newcastle), for their assistance in the laboratory, and Karen Dawson for making available the unpublished PLA2 gene sequences from Ovophis species from her PhD thesis.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.toxicon.2013.06.019.

Conflict of interest statement

The authors declare that there are no conflicts of interest. This work was supported by the Natural Environment Research Council of the United Kingdom (grant number NER/A/S/2001/01217 to AM, RST and JBH). The sponsor had no role in the study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

References

