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Abstract
Soils in hyper-arid climates, such as the Chilean Atacama Desert, show indications of 
past and present forms of life despite extreme water limitations. We hypothesize that 
fog plays a key role in sustaining life. In particular, we assume that fog water is incor-
porated into soil nutrient cycles, with the inland limit of fog penetration corresponding 
to the threshold for biological cycling of soil phosphorus (P). We collected topsoil sam-
ples (0–10 cm) from each of 54 subsites, including sites in direct adjacency (<10 cm) 
and in 1 m distance to plants, along an aridity gradient across the Coastal Cordillera. 
Satellite-based fog detection revealed that Pacific fog penetrates up to 10 km inland, 
while inland sites at 10–23 km from the coast rely solely on sporadic rainfall for water 
supply. To assess biological P cycling we performed sequential P fractionation and de-
termined oxygen isotope of HCl-extractable inorganic P

(

δ
18
OHCl−Pi

)

. Total P (Pt) con-
centration exponentially increased from 336 mg kg−1 to a maximum of 1021 mg kg−1 
in inland areas ≥10 km. With increasing distance from the coast, soil δ18OHCl−Pi

 values 
declined exponentially from 16.6‰ to a constant 9.9‰ for locations ≥10 km inland. 
Biological cycling of HCl-Pi near the coast reached a maximum of 76%–100%, which 
could only be explained by the fact that fog water predominately drives biological P 
cycling. In inland regions, with minimal rainfall (<5 mm) as single water source, only 
24 ± 14% of HCl-Pi was biologically cycled. We conclude that biological P cycling in 
the hyper-arid Atacama Desert is not exclusively but mainly mediated by fog, which 
thus controls apatite dissolution rates and related occurrence and spread of microbial 
life in this extreme environment.
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1  |  INTRODUC TION

Increasing aridity or even absence of rainfall can be a severe out-
come in many regions due to climate change. Currently, global 
desertification is predicted to rise from 48% to 65% of total land sur-
face in 2035 (González-Pinilla et al., 2021; Lickley & Solomon, 2018; 
Liu et  al.,  2020). The increasing aridity threats the viability of mi-
croorganisms, plants and animals and thus their biodiversity (Li 
et al., 2021; Zhang et al., 2023). However, some organisms are able 
to survive even in extremely dry environments, like the hyper-arid 
Atacama Desert, with almost zero rainfall in its inner core zone 
(Eshel et  al.,  2021; Schulze-Makuch et  al.,  2018). Yet, also these 
forms of life depend on the availability of water. Notably, in such ex-
tremely hyper-arid environments essential water can be supplied to 
the plant–soil system via non-rainfall components like fog (Fuentes, 
Gómez, et al., 2022; Wang et al., 2022; Zheng et al., 2018). Indeed, 
fog is known to support ecosystem productivity and functioning in 
specific coastal environments and montane forests, and its dedi-
cated collection can serve to supply irrigation water in cropping sys-
tems (Dawson & Goldsmith, 2018; Fessehaye et al., 2014). It seems 
therefore reasonable to assume that, especially in hyper-arid ecosys-
tems, fog water may replace rainwater to sustain life.

The Atacama Desert is restricted by the Pacific Ocean in 
the west and the Andes Cordillera in the east, resulting in three 
main geologic units, which are the Coastal Cordillera, the Central 
Depression and the Andes (Evenstar et al., 2017; Voigt et al., 2020; 
Wang et al., 2014). The special physiographic characteristics coupled 
with complex ocean–atmosphere processes have generated the ex-
treme hyper-aridity in the Atacama Desert dating back to at least the 
Miocene (Dunai et al., 2005; Hartley et al., 2005; Sáez et al., 2012). 
In the south-central Coastal Cordillera, a narrow mountain range ex-
ceeding elevations of 3000 m a.s.l., fog plays a dominant role for the 
humidity (Cereceda et al., 2002, 2008a; Jordan et al., 2015; Moat 
et al., 2021; Walk et al., 2020). Advective fog results from marine 
stratocumulus clouds, which is transported by winds to the coast 
during the night and, there, affects altitudes between 400 and 
1200 m a.s.l. with a descending trend of moisture along increasing 
distance inland (Cáceres et al., 2007; Cereceda et al., 2002; Garreaud 
et al., 2008; Moat et al., 2021; Schween et al., 2020). For inland re-
gions above 1200 m a.s.l., which are currently lying above the upper 
fog boundary and therefore cannot be penetrated by fog at pres-
ent, sporadic rainfall events, which mostly occur during austral win-
ter and are often related to El Niño, are nowadays regarded as the 
main freshwater source (Azúa-Bustos et al., 2011; Houston, 2006; 
Ortega et al., 2019; Schulz et al., 2012; Walk et al., 2020). Overall, 
the Atacama Desert provides a unique habitat to study the adapta-
tion of its ecosystem processes by fog because clear gradients in fog 
occurrence from the coast into the inland/hinterlands are present.

Along the gradient from the coast towards inland, there is a 
decreased accumulation of soil soluble salts (Arens et  al.,  2021; 
Ewing et  al.,  2006; Voigt et  al.,  2020; Wang et  al.,  2014). Under 
higher humidity, as present at the coast or further south within the 
Coastal Cordillera, pedogenic processes such as rubification, silicate 

weathering and clay formation were identified (Bernhard et al., 2018; 
Walk et al., 2023). As has been shown in previous work, this gradient 
is well represented along a longitudinal transect in the Paposo valley, 
showing increased accumulation of soil soluble salts and soil organic 
matter towards the coast (Arens et al., 2021; Mörchen et al., 2019; 
Voigt et al., 2020). Knief et al. (2020) showed that concentrations of 
plant-derived and microbiological markers followed this trend, thus 
giving rise to the assumption that presence of life also leaves a fin-
gerprint on the cycling of nutrients, such as phosphorus (P).

Phosphorus is a crucial and limiting nutrient that plays a vital 
role in supporting life. Its cycling has a significant impact on key 
ecosystem services, including primary production and waterbody 
quality (Helfenstein et al., 2018). Changes in soil P concentrations 
and bioavailability are mainly driven by geogenic parent minerals 
(i.e., apatite) and their weathering, with timescales that may extend 
over millennia (Walker & Syers, 1976; Walton et al., 2023). During 
the early stages of pedogenesis, P is initially released from apatite to 
the soil solution and is directly available to plants, which is mirrored 
by Resin-extractable P. Phosphorus can be subsequently adsorbed 
by Fe/Al (hydro)oxides or it is taken up and immobilized by microbes 
and plants. When re-released to the soil solution after cell death 
and lysis, biologically cycled P can form secondary calcium miner-
als through re-precipitation. Finally, occluded P forms (Residual-P) 
can accumulate (Chen et al., 2015; Izquierdo et al., 2013; Walker & 
Syers, 1976). Similar bio-geochemical P cycling processes are likely 
to occur along aridity gradients and might affect forms of life in the 
Atacama Desert (Brucker & Spohn, 2019; Feng et al., 2016; Wilson 
et al., 2022).

To elucidate P cycling in terrestrial environments, Hedley P frac-
tions are commonly used to identify different P pools based on their 
different extractability (Hedley et al., 1982). The P extracted by HCl, 
for instance, largely comprises apatite (Ca-P; Hedley et  al.,  1982; 
Roberts et al., 2015). Yet, as soil solution P may also be re-precipi-
tated with Ca, biological P cycling overprints pedogenic precipitation 
processes (Helfenstein et al., 2018; Reed et al., 2015). Consequently, 
the use of phosphate oxygen isotope values (δ18OP) has been rec-
ommended to evaluate biological processes because the P-O bond 
can only be broken down through enzymatic processes under the 
natural soil environments (Gross & Angert, 2015; Shen et al., 2020; 
Tamburini et  al.,  2012). Abiotic processes induce little if any oxy-
gen isotope fractionations in phosphate (Jaisi & Blake, 2010). Abiotic 
oxygen isotope exchange is also lacking in hostile environments 
like the Atacama Desert characterized by extreme solar UV irra-
diation and aridity (Shen et  al.,  2020). Yet, when examining δ18OP 
in HCl-extractable soil phosphates (δ18OHCl-P), deviations from the 
pedogenic apatite value have been found, which then indicate the 
occurrence of biological processes before precipitation as second-
ary apatite (Amelung et al., 2015; Helfenstein et al., 2018; Tamburini 
et al., 2012).

As the concentrations of isotopically altered phosphates in the 
Atacama Desert exceed concentrations typically found in microbes, 
Wang, Moradi, et al. (2021) hypothesized that alterations in δ18OHCl-P 
values were able not only trace recent but critical past life activities 
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    |  3 of 19SUN et al.

in this hyper-arid desert. However, Wang, Moradi, et al. (2021) could 
not directly assign this biological cycling of soil P to specific water 
sources, because their study area primarily receives during the aus-
tral summer convective rainfall originating from the Amazon Basin 
(Garreaud et  al.,  2008; Mörchen et  al.,  2019). The authors could 
not comprehensively explain the presence of large-scale patterns 
of biological nutrient cycling across the desert, which likely follow 
the non-linear gradients in aridity (Bernhard et al., 2018; Brucker & 
Spohn, 2019; Knief et al., 2020). Yet, for phosphate, an abrupt change 
in apatite content has been found to occur at a specific threshold of 
mean annual precipitation (Brucker & Spohn, 2019), making it rea-
sonable to assume that other water sources like fog contributed to 
such abrupt changes in soil apatite concentration. But how such po-
tential thresholds related to the biological soil P cycling are affected 
by the presence of fog still warrants clarification.

On a local scale, water availability in the Atacama Desert is 
heterogeneous, thus promoting patchy plant distribution (Arndt 
et al., 2020). In the hyper-arid core, only occasional rainfall events 
can activate geomorphic processes and induce the “blooming des-
ert”, due to the explosive growth and flowering of ephemeral her-
baceous and some woody desert species (Chávez et  al.,  2019; 
Pfeiffer et al., 2021). Closer to the coast, in turn, additional mois-
ture supply by fog supports the development of fog oases or loma 
vegetation (Figure  1b; Cereceda et  al.,  2008b; Moat et  al.,  2021; 
Mörchen et al., 2021). Plant growth affects the P cycling via increas-
ing apatite dissolution, enhancing organic matter accumulation and 
promoting the biological cycling of soil P (Brucker & Spohn, 2019; 
Chávez et al., 2019; Pfeiffer et al., 2021). Nevertheless, our current 
understanding of the impact of plant growth, particularly in fog 
ecosystems, on P cycling in the hyper-arid Atacama Desert remains 
inadequate.

In order to examine whether and to what degree the availabil-
ity of fog provides ecological thresholds for the biological cycling of 
P and related survival of soil life, we sampled an east–west trend-
ing transect (i.e., the Paposo transect) in the south-central Coastal 
Cordillera, which has distinct fog-dominated and other solely rain-
fed sites. We then assessed both soil Hedley P pools concentration 
and δ18OHCl-P values. Fog is known to enter the arid region up 400–
1200 m altitude (Cereceda et al., 2008a, 2008b; Dunai et al., 2020; 
Garreaud et al., 2008), which in the research area corresponds to a 
distance of <10 km (Figure 1c). Hence, the aridity increases with dis-
tance from the coast along this transect. We hypothesize that (i) fog 
enables biological cycling of soil P and its importance declines with 
increasing coastal distance and aridity. (ii) The range of the coastal 
fog penetration into the desert is a key threshold for biological soil P 
cycling, while (iii) locally the presence of plant growth enhances the 
actual biological soil P cycling. As near coastal sites may be affected 
by additional P input through sea spray primarily attributed to fog 
penetration (Arenas-Díaz et  al.,  2022; Cereceda et  al.,  2002), salt 
ions were assessed to evaluate related atmospheric dust deposition. 
The concentration of Na+ at the soil surface serves as an indicator 
for sea-salt aerosol (SSA) deposition in the Atacama Desert as Na is 
not abundant in the parent material and considered inactive in most 

of biochemical processes relevant for our study (Li et al., 2019; Wang 
et al., 2014).

2  |  MATERIAL S AND METHODS

2.1  |  Study area and soil sampling

Soil samples were collected along a west–east transect in the 
Paposo area (~25° S), ranging in distance to coast and altitude from 
2.3 to 22.9 km and 570 to 2110 m a.s.l. (in total of nine sites), re-
spectively (Figure  1, Table  S1). The Paposo area is located within 
the south-central Coastal Cordillera featuring elevations mostly 
between 500 and 2500 m a.s.l. The north–south extending moun-
tain range presents an uplifted and eroded Mesozoic magmatic 
arc, composed largely of Jurassic and Cretaceous igneous rocks 
(Allmendinger & González,  2010; González et  al.,  2003; Oliveros 
et al., 2018; Scheuber & González, 1999). The bedrock lithology at 
all sample sites along the transect consists almost exclusively of plu-
tonic granitoids (Walk et al., 2023). Based on the aridity index (AI; 
Zomer et al., 2022), the site 2.3 km is located at the arid-hyper-arid 
transition while all sites further inland are classified as hyper-arid 
(Figure  1c, Table  S1). The mean annual air temperature decreases 
from 18.0 to 16.7°C (Table  S1). Along the transect, a decrease of 
plant cover from >40% at 3.5 km to <5% beyond 7.6 km can be ob-
served (Mörchen et al., 2021; Table S1), which is concomitant with 
a decrease in mean annual verdancy of the Loma vegetation, which 
is assumed to be fog-dependent (Moat et al., 2021; Figure 1b). The 
most common plants found in the area are Heliotropium taltalense 
I.M. Johnst., Cristaria integerrima Phil., Nolana sedifolia Kunze ex 
Walp. and Huidobria fruticosa Phil (Mörchen et al., 2021).

Samples were taken in October 2016 and March 2017 (Figure 1; 
Table S1). A total of six soils were sampled from 0 to 10 cm depth 
at each site. Three samples were taken near plants in a distance of 
0–10 cm (“N” samples). Another three samples were taken far from 
the plant in a distance ≥1 m (“F” samples). All soil samples were air-
dried and sieved <2 mm and then transported to Germany. Each 
sample was homogenized prior to laboratory analyses.

2.2  |  Fog occurrence

To acquire long-term fog frequency averages covering our entire 
study region, we apply the fog retrieval method developed for the 
Atacama Desert by Böhm et al. (2021). In summary, it exploits sat-
ellite observations, that is, spectral radiances, from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) installed on the 
Terra and Aqua satellites (level-1B 1-km Calibrated Radiances 
Product: MOD021KM, MYD021KM; MODIS Characterization 
Support Team,  2017a, 2017b). These data products are provided 
at a 1 km horizontal resolution. To map the spectral radiances to a 
ground fog state, a neural network was trained with ground-based 
fog retrievals based on leaf-wetness sensor measurements and other 
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meteorological data from weather stations deployed throughout the 
Atacama Desert (Hoffmeister,  2018; Schween et  al.,  2020). From 
both satellite platforms, which are in polar orbits, only nocturnal 
overpass times are considered. Usually, one overpass of each plat-
form is available almost every night for the Atacama Desert region. 
Specific overpass times range between 22:30 and 00:10 Chile stand-
ard time (CLT; Terra) and 01:10 and 02:45 CLT (Aqua) depending on 
specific orbit characteristics. While the original fog data record only 

covered a 3-year period (Böhm et  al.,  2021), we extended the re-
cord to obtain a robust, 19-year long (2003–2021) and seasonally 
resolved climatology of mean fog frequency for our study region 
(Figure 2). For the soil sample sites, collocated satellite pixels were 
identified through nearest-neighbor matching.

In the study region, advective fog from the Pacific Ocean may 
penetrate far into the zone below 1100 m a.s.l. (Chand et al., 2010; 
Garreaud et  al.,  2008; Moradi et  al.,  2020; Quade et  al.,  2007), 

F I G U R E  1 (a) Satellite imagery overview map of the Atacama Desert in Northern Chile (USGS Landsat-8 false-colour [SWIR-2/
SWIR-1/NIR] composite of scenes from 23 December 2016 to 21 April 2017); highlighted is the dry diagonal (blue dashed line) after 
Houston (2006). (b) Relief, precipitation, and vegetation along the Paposo transect in the southern central Atacama Desert; shown are 
the watershed, the closest CRC 1211 weather stations 31, 32 and 33 (Hoffmeister, 2018), mean annual precipitation (MAP) according to 
Fick and Hijmans (2017), soil study sites (Sun et al, 2023) investigated in this as well as in previous studies (Moradi et al., 2020; Mörchen 
et al., 2019, 2021; Walk et al. 2023), the upper limit of fog occurrence according to Moradi et al. (2020), and the mean annual verdancy of 
Loma vegetation (verdant period over the last 20 years based on the MODIS Normalized Difference Vegetation Index) modified after Moat 
et al. (2021); elevation data and hillshade: SRTM 1″ Global (USGS, 2014). (c) W-E profiles of the high topography and Aridity Index after 
Zomer et al. (2022) assessed along a 6 km wide swath profile (see central profile line in b) by calculating the 95th percentile of elevation and 
mean Aridity Index, respectively; further illustrated are the longitudinal valley profile (see course in b), the location and altitude of the PAP 
study sites (green circles), the upper limit of fog occurrence (Moradi et al., 2020), and the zone of maximum fog occurrence according to 
Garreaud et al. (2008). Map lines delineate study areas and do not necessarily depict accepted national boundaries.
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reaching around 9–10 km inland along the transect (Figure  1c; 
Table  S1). High fog frequencies exceeding 0.1 are observed for 
coastal sites 2.3–7.6 km (five sites between 570 and 1070 m a.s.l.) 
and low values (<0.05) for inland sites 10–22.9 km (4 sites between 
1240 and 2110 m a.s.l.; Figures  2 and 6a, Table  S1). This indicates 
that coastal sites are fed by advective fog while inland sites are 
above the reach of the coastal fog (Cereceda et al., 2008b; Mörchen 
et al., 2019, 2021).

2.3  |  Soil salt ions analysis

The soluble salts were extracted by Milli-Q water at a soil/water ratio 
of 1:10 (Wang et al., 2017). Then the anions (NO3−, Cl−, and SO4

2−) 
concentrations in the extracts were analyzed by ion chromatography 

(Metrohm IC 850), and those of cations (Ca2+, Na+, Mg2+ and K+) 
were determined by Inductively Coupled Plasma Optical spectros-
copy (ICP-OES, iCAP 6500). Sodium Adsorption Ratio (SAR) was 
used as an index for soil salinity and sodicity, which was calculated by 
the following formula (Farhangi-Abriz & Ghassemi-Golezani, 2021):

The SAR exceeded the critical value of 13, classifying the soils 
as sodic (Bischoff et al., 2018). High salinity provokes microbial ac-
tivities of some halophyte species and starts to hamper overall mi-
crobial P cycling. In fact, the indigenous microorganisms are found 
to be challenged by the increasing osmotic stress with higher sod-
icity (Boy et al., 2022; Farhangi-Abriz & Ghassemi-Golezani, 2021; 

(1)
SAR =

Na+
√

1∕2
(

Ca+ +Mg2+
)

.

F I G U R E  2 Fog occurrence frequency for (a) austral summer (JFM) and (b) winter (JAS) based on the fog retrieval developed by 
Böhm et al. (2021). Gray contours denote height above sea level every 400 m according to Shuttle Radar Topography Mission data (Farr 
et al., 2007). Numbered red circles denote the PAP study sites (number 1–9), and the site at 750 m a.s.l. (number 10, 4.3 km from the coast 
with fog occurrence frequency of 0.21) for which an average fog water flux of 3.36 mm−2 day−1 at a measuring height above 2 m was reported 
(Larrain et al., 2002).
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6 of 19  |     SUN et al.

Fuentes, Choque, et  al.,  2022; Shen et  al.,  2021). Furthermore, 
the higher SAR can be attributed to the enrichment of Na+, which 
originates from sea spay, erosion of inland playas and Salars, as 
well as anthropogenic factors like automobile exhaust or mining. 
The Coastal Cordillera serves as a barrier that hinders the input of 
material from the Central Valley into the Paposo transect. Voigt 
et  al.  (2020) argues that strip mining of for example, thenardite 
(Na2SO4) emitted large quantities of dust and may thus be a cause 
for elevated Na+ in the inland. A very high SAR indicates that the 
site should be considered an outlier in the study of biogeochem-
ical processes due to both sodicity and possible anthropogenic 
impacts.

2.4  |  Soil sequential P fraction

Sequential P fractionation was performed according to the Hedley 
sequential fractionation scheme as modified by Tiessen and 
Moir  (1993). In brief, 0.5 g of each air-dried soil sample was se-
quentially extracted with four reagents including (i) 30 mL deion-
ized water with two anion exchange resin stripes; (ii) 30 mL 0.5 M 
NaHCO3 solution at pH 8.5; (iii) 30 mL 0.1 M NaOH; and (iv) 25 mL 
1 M HCl. Finally, aqua regia was used at 130°C to extract residual P 
as chemically most stable P form. After fractionation, the concentra-
tion of inorganic P (Pi) in the extracted solutions was measured by 
the molybdenum blue colorimetric method and measured at 890 nm 
by the Photometer Analytik Jena SPECORD 205. Total P (Pt) was 
measured by ICP-OES (iCAP 6500), and the difference between Pt 
and Pi was used as organic P (Po).

2.5  |  Oxygen isotope composition of 
HCl-extractable Pi

For analysis of the oxygen isotope values of HCl-extractable Pi 
(δ18OHCl−Pi

), we followed the method presented by Tamburini 
et al.  (2010), which produced organic matter-free silver phosphate 
(Ag3PO4) from acid extracts for oxygen analysis. Twenty grams 
air-dried soils were successively extracted by 0.5 M NaHCO3, 
0.1 M NaOH and 1 M HCl at a 1/10 soil/solution ratio (Amelung 
et al., 2015). We discarded the alkaline extracts to remove most of 
the organic P compounds and polyphosphates, so that only the 1 M 
HCl extract was used for further purification process. The phos-
phate was precipitated as ammonium phosphomolybdate and mag-
nesium ammonium phosphate successively. Cation exchange resin 
(Dowex 50X8, 200–400 mesh, Sigma-Aldrich, Darmstadt, Germany) 
was used to extract all cations from the solutions and finally pre-
cipitated as silver phosphate (Ag3PO4). The Ag3PO4 crystals were 
dried in an oven at 50°C for a few days and yellow euhedral Ag3PO4 
crystals formed after 1 or 2 days.

The δ18O value of Ag3PO4 was measured at the Plant Nutrition 
group at ETH Zurich. Each sample was analyzed in duplicates (re-
sulting in a total of n = 108) using a Vario PYRO Cube (Elemental, 

Hanau, Germany) with a C-based reactor coupled in continuous 
flow to an Isoprime 100 isotope ratio mass spectrometer (Isoprime, 
Manchester, UK). The furnace was kept at 1450°C and the pro-
duced reaction gases were concentrated by a purge and trap chro-
matography system. Calibration was performed against an internal 
Ag3PO4 standard (δ

18O = 14.1‰) and two international benzoic 
acid standards (International Atomic Energy Agency; IAEA 601, 
δ18O = 23.1 ± 0.5‰ and IAEA 602, δ18O = 72.2 ± 0.5‰). All values 
were reported in the conventional delta notation relative to Vienna 
Standard Mean Oceanic Water (VSMOW) after calibration.

2.6  |  Estimation of the equilibrium range of δ18OP

The theoretical equilibrium range of δ18OP was calculated based 
on the empirical equation made by Chang and Blake (2015), which 
shows the complete equilibration of oxygen isotopes between phos-
phate with ambient water mediated by pyrophosphatase enzymes:

where T is the ambient soil temperature in (K) and δ18OP and δ18OW 
are δ18O values of phosphate and ambient water in (‰), respectively. 
Long-term T was needed to calculate the equilibrated values because 
of the long turn-over time for the HCl-P fraction (Angert et al., 2012; 
Bauke et al., 2022). Data from three weather stations around ~10 km to 
the south of the study transect (Nr. 31 at 25°06′54.3″ S, 70°27′28.7″ 
W, 160 m a.s.l.; Nr. 32 at 25°06′03.6″ S, 70°24′03.6″ W, 1011 m a.s.l.; 
and Nr. 33 at 25°05′29.7″ S, 70°16′42.9″ W, 1746 m a.s.l.) were used 
to estimate the soil temperature (Figure  1b; Dunai et  al.,  2020; 
Hoffmeister,  2018). Soil temperature was collected from surface 
to −10 cm for nearly 4 years (2018–2022). Though these stations 
records were not prolonged to 20 years or more as in other studies 
(Bauke et al., 2022; Wang, Moradi, et al., 2021), they still provide ro-
bust climatic data for the estimation of equilibrium oxygen isotope 
fractionations in phosphate (Wang, Bauke, et al., 2021). The average 
soil surface temperature (0–10 cm) monitored by the weather stations 
was 21 ± 0.4°C. A 0.4°C fluctuation leads to a mere 0.07‰ shift of the 
calculated range and accounts for less than 0.7% of the biological P 
cycling process. Thus, 21°C was used as the average soil temperature 
along the Paposo transect.

Water sources for near-surface soil life in the Atacama Desert 
potentially originate from occasional rainfall, fog penetration, and 
gypsum hydration water (Cereceda et al., 2008b; Palacio et al., 2014; 
Shen et al., 2020). Rainwater and fog are considered the dominant 
soil water sources along the Paposo transect as no surface crusts 
and gypsic subsurface horizons were detected at lower altitudes 
between 900 and 1200 m a.s.l (Voigt et al., 2020). In order to cal-
culate equilibrium δ18O values of phosphate within potential uncer-
tainties, we have to consider minimum and maximum in δ18O values 
of the rain and fog water, respectively. The δ18O value of rainfall 
(δ18OR) is considered constant below 2500 m along the Paposo tran-
sect (Aravena et al., 1989; Quade et al., 2007), although at higher 

(2)δ
18OP = e

(

14.43

T
−

26.54

1000

)

×
(

δ
18OW + 1000

)

− 1000,

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17068 by B

angor U
niversity M

ain L
ibrary, W

iley O
nline L

ibrary on [21/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  7 of 19SUN et al.

elevations the 18O of rainfall is usually depleted (Aravena et al., 1999; 
Boschetti et al., 2019; Jordan et al., 2019). Based on the limited vari-
ation detected in the δ18O value of rainfall (δ18OR, −5.6 ± 0.7‰) and 
fog (δ18OF, −1.9 ± 0.7‰; Aravena et al., 1989), we used −5.6‰ and 
−1.9‰ as the minimum δ18OR and δ18OF, respectively. To estimate 
maximum δ18O values of water sources, we consider that strong, 
long-term evaporation usually enrich heavy stable isotopes in soil 
water (Cappa et al., 2003; Rothfuss et al., 2015), which may account 
for +6‰ as upper limit of rainfall equilibrium range for soil phos-
phates (Wang, Moradi, et al., 2021). Therefore, +0.4‰ (−5.6‰ plus 
6‰) was taken as upper limit of δ18OR and +4.1‰ (−1.9‰ plus 6‰) 
was the maximum δ18OF after considering evaporation effects. The 
equilibrium range of δ18OP values therefore corresponded to 20.5–
26.6‰ for fog and 16.7–22.8‰ for rainfall, respectively.

2.7  |  Contribution of biological P cycling in 
HCl-extractable Pi

The P fraction that is biologically turned-over in the Paposo region 
of the Atacama was calculated similarly to the equation used in the 
Aroma region of the Atacama before (Gross & Angert, 2015; Wang, 
Moradi, et al., 2021):

where δ18OP(parent materials) is the δ18OP values of the parent material, 
δ18OP(HCl-P) is the δ18OP values of the soil HCl-P pool, and δ

18OP(equilibrium) 
is the isotopic equilibrium value. The parent material, igneous rocks of the 
Matancilla plutonic complex (Álvarez et al., 2016; Escribano et al., 2013), 
can be considered as a result of high temperature formation mechanism 
(Smith et  al.,  2021) and, thus, as sufficiently homogeneous along the 
transect in regards to its δ18OP signature. Igneous rocks typically feature 
relatively low δ18OP signatures. The δ18OP values of apatite in igneous 
rock is reported to be 6–8‰ (Blake et al., 2010). This is an agreement 
with a parent material-rich sample from the site at 13.7 km (1470 m a.s.l.) 
obtained from 55 to 65 cm depth (6.08‰; Moradi, 2023). We therefore 
set the value δ18OP values of apatite as 6‰ for our study sites.

2.8  |  Statistical evaluation

Analyses of variance (ANOVA) and Post Hoc tests were performed 
using spss v22.0 (IBM, USA) to assess the effects of distance from 
the coast and plant distribution on the concentration of salt ions, 
SAR, soil Hedley P concentrations and δ18OP values in the surface 
soil (0–10 cm). The significance of differences was determined by 
the Tukey test. Pearson correlations were used to detect the rela-
tionships between δ18O of HCl-extractable Pi (δ

18OHCl−Pi
) with HCl-

Pi and the fog occurrence frequency. As best fit for the non-linear 
change in Hedley P concentrations (Pt and Pi), the contribution of 

HCl-P to the Pi and Po pools, and δ18OHCl−Pi
, we used a mono-expo-

nential regression model:

where Y(d) is the parameter of issue at distance from the coast d (km), A 
is a rate constant, Ye is the parameter at absolute equilibrium, and k is a 
rate constant. Change rates were determined using the first derivative 
of (4) as:

Ye in our calculation was defined as unit-distance increase 
(Y′(d)) <0.1% of absolute value of the respective parameter. Figures 
were constructed using the OriginPro v9.1 software (OriginLab, 
USA).

3  |  RESULTS

3.1  |  Salt ions analysis

The soils collected far from the plants were generally saline with SAR 
values averaging 17.6 mmol L−1, which was larger than the upper limit 
for soil salinity (13 mmol L−1; Figure 3a). Correspondingly, even when 
plants were present at the sites, soils allocated 13.4 km and more 
away from the coast could be classified as saline (Figure 3a). We con-
sider the site 17.3 km from the coast (1690 m a.s.l.) as an outlier based 
on its excessive SAR value (33.2 mmol L−1), which was twice the salin-
ity threshold value (26 mmol L−1). It was therefore excluded from sub-
sequent ANOVA analysis of the salt content and other parameters 
(e.g., Hedley P concentrations and phosphate 18O; Figure 3a).

Salt ion (Na+, K+, Mg2+, Cl−, and NO3
−) contents were signifi-

cantly influenced by the distance to coast and the presence of 
plants, while no variations of Ca2+ and SO4

2− were detected among 
sites (Tables S2 and S4). The concentration of Na+ in soils far away 
from the plants tended to decrease with the distance away from the 
coast. The site near the ocean, 2.3 km away from coast, showed sig-
nificantly higher Na+ concentration compared to the sites 5.1 km and 
site 13.4 km (Figure 3b, Table S2).

3.2  |  P pools extracted by sequential P 
fractionation

The Pt extracted by Hedley accumulated significantly with increas-
ing distance to the coast, ranging from 324 ± 35 mg kg−1 in 2.3 km 
distance to the coast to 752 ± 130 mg kg−1 at a distance of 22.9 km 
(Figure 4, Table S3). Pi concentrations increased along this direction, 
while soil Po concentrations fluctuated with increasing distance to 
the coast (Figure 4). The maximum Po concentration was detected 
13.4 km away from the coast, with 370 ± 69 mg Po kg−1 soil, while 
the lowest Po concentration was 46 ± 31 mg kg

−1 measured at the 
site 22.9 km away from coast. The HCl-P was the dominant P pool. 
It comprised 79 ± 15% of the overall Hedley-P at sites from 3.5 to 

(3)

P
(contribution by biological cycling) =

δ
18OP (HCl−P) − δ

18OP (parent materials)

δ
18OP (equilibrium)

− δ
18OP (parent materials)

× 100,

(4)Y(d) = A × e
−kd

+ Ye,

(5)Y
�
(d) = A × k × e

−kd

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17068 by B

angor U
niversity M

ain L
ibrary, W

iley O
nline L

ibrary on [21/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 19  |     SUN et al.

22.9 km away from the coast (Figure 4, Table S3). Only in the proxim-
ity to the coast (2.3 km), residual P extracted by aqua regia was the 
predominant P pool (41 ± 6.5% of all P forms found), while the HCl-P 
accounted only for 34.5 ± 7%.

Noteworthy, both HCl-Pi and -Po increased significantly with in-
creasing distance to coast, while the more easily extractable P and 
NaOH-extractable pools showed a declining trend (Figure  5). The 
accumulation of Pi and the increasing contribution of HCl-P pools 
could be described with mono-exponential rises to a constant max-
imum (Figures  4 and 5). The calculation showed that for the four 
P parameters (the Pt concentrations, the Pi concentrations, and the 
contribution of HCl-P to the Pi and Po pools), a relatively steady-state 
equilibria (with Pt concentration of 1021 mg kg

−1, Pi concentration of 
779 mg kg−1, 99% of Pi and 94% of Pi) would have been attained at 
distances exceeding 10 km from the coast (Table 2).

The presence of plant affected the concentrations of resin-P, 
NaOH-Po and residual-P significantly (p < .05), but there were no sig-
nificant effects on any other P fraction (p > .05; Table S5). In general, 
plant growth enhanced soil resin-P concentrations at the expense 
of lower NaOH-Po and residual-P, with effects on HCl-P not being 
detected (Table S3).

3.3  |  Oxygen isotope composition of 
HCl-extractable Pi (𝛅

18
OHCl−Pi

)

The oxygen isotope values of HCl-extractable Pi

(

δ
18OHCl−Pi

)

 val-
ues varied from 7.9 to 17.8‰ (Table S3). Only the δ18OHCl−Pi

 value 
of the samples taken far away from plants at site 2.3 km was in the 
range of the calculated equilibrium of rainfall but below that esti-
mated for fog, which however provided the main water source at 
this point (Figure 6b). At all other sites, the δ18OHCl−Pi

 values were 
below the equilibrium range estimated for the minimum and maxi-
mum isotope values both for fog or rainfall. Moreover, a decline in 
δ
18OHCl−Pi

 values was observed with the increasing distance from 
the coast (Figure 6b). It also followed a mono-exponential fitting 
curve until a relatively steady state value of 9.9‰ was reached for 
site distances beyond 10 km from the coast (Table 2, Figure 6b). 
However, the fitted δ18OHCl−Pi

 values changed rapidly within the 
near coastal section of the transect (2.3–10 km) from approxi-
mately 16.6–9.9‰ (Table 2, Figure 6b). The related contribution of 
biological P cycling to total P therefore followed a similar pattern. 
The highest proportions of biologically cycled P were found near 
the cost, reaching a maximum of 76% with fog as sole water source 

F I G U R E  3 The ratio of SAR (a) and the concentration of Na+(b) in surface soil samples along the distance to coast in Paposo. The solid line 
in (a) is the threshold for soil salinity (13; Farhangi-Abriz & Ghassemi-Golezani, 2021). The dot line in (a) represents the twofold of the salinity 
threshold (26). The data from three subsites at given fog abundance were pooled, and the error bars represent the standard deviation of the 
mean (n = 3).
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    |  9 of 19SUN et al.

used for the calculation but exceeding 100% if rainwater was the 
only water source (Table 1). At least the maximum values can thus 
only be explained when accepting fog as additional water source, 
which is also likely, given high fog frequency near the coast with 
potential large water yields in fog collectors (Figure 6a; Figure S1). 
Lower contributions of microbial cycled P were calculated for the 
section 10–22.9 km of the transect, comprising 21%–33% of total 

P (outlier site 17.3 km away from coast excluded; Table  1). We 
failed to detect an influence of the plants on soil surface δ18OP 
values (p < .05; Table S5).

A linear relationship was found between δ18OHCl−Pi
 and HCl-Pi 

concentrations (p < .001; Figure 7a). In addition, our analysis showed 
that δ18OHCl−Pi

 values were significantly correlated with fog occur-
rence frequency (p < .001; Figure 7b).

F I G U R E  4 Concentration of different 
P pools extracted by sequential Hedley 
P fractionation method (mg kg−1) plotted 
against the distance to the coast at 
Paposo. N and F represent the samples 
taken near the plant (0–10 cm) and far 
from the plant (>1 m), respectively. 
Data from three subsites at given fog 
abundance were pooled, and the error 
bars indicate the standard deviation of the 
mean (n = 3). The content in (a) represents 
the inorganic P pool (Pi) extracted 
following the Hedley fractionation and 
the black solid line in (a) is the mono-
exponential regression line between 
Hedley inorganic P content and the 
distance to the coast without the site 
17.3 km. The asterisks indicate level of 
significance: *p < .05, **p < .01, ***p < .001. 
The content in (b) is the organic P pool + 
Residual P pool.

F I G U R E  5 (a) The proportion of 
different P species for Hedley-extractable 
inorganic phosphorus and (b) the 
proportion of different P species for 
Hedley extracted organic phosphorus (Po) 
plotted against the distance to the coast 
at Paposo. Data from three subsites at 
given fog abundance were pooled, and the 
error bars represent the SD of the mean 
(n = 3). N and F represent the samples 
taken near the plant (0–10 cm) and far 
from the plant (>1 m), respectively. The 
black solid line represents in (a) the mono-
exponential regression line between HCl-
extracted Pi/Hedley Pi and the distance to 
the coast and in (b) the mono-exponential 
regression line between HCl-extracted 
Po/Hedley Po and the distance to coast; 
for both cases neglecting the site 17.3 km. 
The asterisks indicate level of significance: 
*p < .05, **p < .01, ***p < .001.
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10 of 19  |     SUN et al.

4  |  DISCUSSION

4.1  |  The biogeochemical P transformation with 
distance to coast

The Na+ contents showed no significant site variations from 3.5 to 
22.9 km distance to coast (Tables S2 and S4), indicating that a clear 
consistent gradient in sea spray deposition was absent along the 
transect. Only the near the coast Na+ portions exceeded that of 
two inland sites (5.1 and 13.4 km), which may point to some elevated 
sea spray influence (Figure 3b). However, considering that aerosol 
concentrations of total P is 2 ng m−2 a−1 from the Pacific Ocean (Vet 

et al., 2014), and assuming that this concentration remains typical 
for the Atacama Desert region as well, a 1.85-fold difference in sea 
spray deposition would add 2 mg P m−2 over 1 million years at site 
2.3 km and 1.08 mg P m−2 per million years at inland sites. This dif-
ference is insufficient to explain differences in P contents across the 
sites (Figure 4) or to affect plant productivity. Hence, we discount 
sea spray deposition as main driver for differences in soil P pools, but 
rather attribute the latter to the differential biogeochemical trans-
formations of parent material.

The HCl-extractable P pool, which is interpreted as Ca-P 
(Brucker & Spohn, 2019; Roberts et al., 2015), was the dominant 
P pool at all sites except for the one nearby the coast (2.3 km 

F I G U R E  6 (a) The fog occurrence 
frequency and mean annual precipitation 
(mm) at the studied sites along the Paposo 
transect. The black line is the mono-
exponential regression line between fog 
occurrence frequency with distance to 
the coast. (b) δ18O of HCl-extractable 
Pi (δ

18
OHCl−Pi

) values at the surface soils 
(0–10 cm) along the distance to coast in 
Paposo. The orange area with vertical 
lines shows the equilibrium range of 
δ
18
OHCl−Pi

 calculated based on the δ18O of 
rainfall (δ18OR). The turquoise area with 
slant lines represents the equilibrium 
range of δ18OHCl−Pi

 calculated by the δ18O 
of fog (δ18OF), which only applies to the 
sites affected by coastal fog (<1200 m 
a.s.l). The black line is the mono-
exponential regression line between 
δ
18
OHCl−Pi

 and the distance to the coast 
without the site 17.3 km. Data from three 
subsites at given fog abundance were 
pooled, and the error bars represent 
the SD of the mean (n = 3). The asterisk 
indicates level of significance: *p < .05, 
**p < .01, ***p < .001.
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    |  11 of 19SUN et al.

distance; Figure 4, Table S3). Likely, this reflects the impact of soil 
moisture on apatite dissolution, since the proportion of Ca-P in-
creased gradually along the transect up to 87.4 ± 3.9% at the site 
22.9 km (Figure 4, Table S3). Concordantly, Shen et al.  (2020) re-
ported that Ca-P was less at arid sites, with 55% of the Pt value 
compared to 75% at hyper-arid sites. The concomitant increase 
in other P pools such as labile P (Resin-extractable P + NaHCO3-
extractable P) and Fe/Al bound-P (NaOH-extractable-P) with de-
creasing portions of Ca-P (Figures  4 and 5, Table  S3) therewith 
reflects that apatite dissolution releases available P. These results 

agree with observations from chronosequences (Selmants & 
Hart, 2010; Turner & Condron, 2013; Walker & Syers, 1976) and 
climosequence models in dry ecosystems (Bernhard et al., 2018; 
Brucker & Spohn, 2019; Feng et al., 2016), which pointed out that 
P in primary minerals depletes over time until new steady-state 
conditions are reached at improved water availability, equated 
with retrogression (Gallardo et  al.,  2020). It should be noted, 
though, that here we faced two different main water sources, 
with fog additionally contributing to soil moisture and weather-
ing of P bearing minerals closer to the coast. Beside variations in 

Distance to coast (km)

Biologically cycled P 
equilibrated with fog (%)

Biologically cycled P 
equilibrated with rainfall (%)

Min Mean Max Min Mean Max

2.3 54 ± 6a 65 ± 14 76 ± 8 66 ± 7 83 ± 22 104 ± 11

3.5 35 ± 7 42 ± 11 50 ± 9 43 ± 8 55 ± 16 67 ± 13

5.1 28 ± 7 34 ± 10 40 ± 10 34 ± 8 44 ± 15 54 ± 13

6.3 27 ± 3 33 ± 7 39 ± 5 33 ± 4 43 ± 11 53 ± 7

7.6 32 ± 4 38 ± 8 45 ± 6 39 ± 4 50 ± 13 61 ± 7

10 — — 14 ± 3 17 ± 6 21 ± 5

13.4 — — 21 ± 13 27 ± 18 33 ± 21

17.3 — — 47 ± 10 62 ± 19 75 ± 16

22.9 — — 21 ± 4 27 ± 8 33 ± 7

aThe value was given as mean ± SD.

TA B L E  1 The percentage of biologically 
cycled P in HCl-Pi pool.

F I G U R E  7 (a) Correlation analysis between δ18O of HCl-extractable Pi (δ
18
OHCl−Pi

 ) with HCl-Pi without the site 17.3 km. (b) Correlation 
analysis between δ18O of HCl-extractable Pi (δ18OHCl−Pi

) with fog occurrence frequency without the site 17.3 km.
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palaeoprecipitation, also the altitudinal and thus spatial distribu-
tion of fog is considered to have varied throughout the past in 
the coastal Atacama, closely coupled to changes in sea surface 
temperature as well as sea level (Walk et al., 2022).

With increased biological P consumption, earlier climose-
quence studies suggested that the contents of organic P (Po) 
gradually increased with improvements in water supply (Brucker 
& Spohn, 2019; Feng et al., 2016; Margalef et al., 2021). Also, addi-
tional residues of plants and microorganisms have been detected 
along the transect with increasing humidity (Knief et  al.,  2020; 
Margalef et  al.,  2021; Mörchen et  al.,  2019). Inconsistently, our 
results, show that Po fluctuated across the soil climosequence 
with the largest Po pool being detected in the hyper-arid inland 
(13.4 km away from coast, 1470 m a.s.l.; Figure  4b, Tables  S1, S3 
and S5), which coincides with an alluvial fan formed by past ex-
treme rainfalls events in this otherwise hyper-arid climate (Moradi 
et  al., 2020). Likely, microbes and plants utilized some of the 
available P from the soil by re-mineralizing it from organic forms 
(Bünemann,  2015; Hinsinger,  2001; Weihrauch & Opp,  2018). 
Therefore, the accumulation of Po is dependent both on bio-
logical productivity and mineralization processes (Helfenstein 
et al., 2018; Weihrauch & Opp, 2018), with less clear trends in the 
specific extreme desert studied here. Likely, these fluctuations in 
organic P also reflect a certain spatial patchiness of rainfall and life 
in this hyper-arid region (Alcayaga et al., 2022; Knief et al., 2020; 
Merklinger et  al.,  2020). The intracellular cycling of P by inor-
ganic pyrophosphatase is the most likely reaction to P turnover 
in the Atacama Desert, and the phosphate released from micro-
bial cells can precipitate as secondary Ca-P minerals (Helfenstein 
et  al.,  2018; Shen et  al.,  2020). As a result, also the quantified 
contribution of Ca-bound Po to total Po increases with increasing 
aridity (Figure 5b). Consequently, the Ca-P pool derived from both 
parental material and biologically recycled P.

Here, we differentiated between geochemical and biological 
P sources by assessing the stable oxygen isotope values of HCl-
extractable Pi (δ

18OHCl−Pi
; Gross & Angert, 2015; Stout et al., 2014; 

Wang, Moradi, et al., 2021). At 2.3 km near the coast in the absence 
of plants, this isotopic value clearly differed from that of the parental 
material and with 17.8 ± 0.9‰, it even falls into the range of phos-
phate isotope signatures equilibrated solely with rainwater (16.7–
22.8‰). By using rainfall water values, we obtain that the maximum 
percentage of biologically cycled P is over 100% (Table 1). This im-
plies that there is another source of available water for soil biomass 
to recycle P across the sampling depth, which we attribute to the 
utilization of fog (Figure 6b).

The δ18OHCl−Pi
 values of other sites deviated from the δ18OHCl−Pi

 
equilibrium ranges calculated based on either the fog or the rainfall 
δ18O isotopic composition (Table 1, Figure 6b). Consequently, and 
unlike the near-coastal topsoil (see above) or in other ecosystems 
(Bauke et al., 2018; Gross et al., 2015; Hacker et al., 2019), inland 
moisture is insufficient to activate biological activity to a degree 
that soil P in the HCl-P was completely biologically cycled. The re-
sult supports the conclusion that the signature of δ18OHCl−Pi
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past biological P cycling across centennial to millennial scales 
rather than being determined by short-term rainfall events in the 
hyper-arid region of the desert (Shen et al., 2020; Wang, Moradi, 
et  al.,  2021). The value of δ18OHCl−Pi

 correlated significantly and 
negatively with the concentration of Pi in the HCl-Hedley extracts 
(Ca-P; Figure 7a), following the non-linear increase of the portions 
of HCl-Pi with increasing distance to the coast. The concentrations 
of HCl-Pi reflected the apatite dissolution process. When less P 
becomes available through the weathering of primary minerals, 
there is also less P that can be taken up, biologically cycled, and 
finally re-precipitated by soil microorganisms (Blake et al., 2005; 
Jaisi et  al., 2011; Tamburini et  al., 2012). We thus conclude that 
limitations in the biological cycling of P in the Atacama Desert re-
flect limitations by physiochemical weathering, both being con-
trolled by the limited amount of water supply (Frkova et al., 2022; 
Prietzel et  al.,  2018). However, in addition to these past studies 
cited, this study now shows that this water limitation was mainly 
caused by advective fog blocked from entering the inner part of 
the Atacama Desert.

4.2  |  Non-linear changes of P dynamics with 
distance to coast

Many soil processes do not respond linearly to extrinsic variations of 
environmental factors (Bateman et al., 2019; Berdugo et al., 2020; 
Vitousek & Chadwick,  2013). We also observed non-linear rather 
than linear changes for all Hedley Pt and Pi concentrations, the por-
tions of HCl-P in Pi pool and Po pool, and for soil δ18OHCl−Pi

 values 
with increasing distance to the coast (Figures 4–6). Our data thus 
support earlier findings of the depletion of apatite P with increas-
ing precipitation in the Atacama Desert (Brucker & Spohn,  2019). 
This lack of linearity likely reflects non-linear dependencies in water 
availability along the spatial gradients (Böhm et  al.,  2020, 2021; 
Knief et  al.,  2020). Furthermore, key water sources might have 
changed along the gradient, that is, from fog-dominated to solely fed 
by rare rainfall events.

In our study, fog occurrence frequency, as an index for the 
fog water availability, decreased non-linear along the transect 
(Figure 6a, Table S6). Various factors, such as topography, vegeta-
tion, wind patterns, and local climatic conditions, can influence the 
distribution and intensity of fog, resulting in a non-linear relation-
ship between distance from the coast and fog occurrence frequency 
(Böhm et al., 2021; Cereceda et al., 2008b; Garcia et al., 2021). Using 
a standard fog collector (SFC), which is made of a fixed vertically 
erected mesh panel (Schemenauer & Cereceda, 1994), the fog water 
yield collected above 2 m at a Paposo site 750 m a.s.l. (ca. 4.3 km 
from the coast) averages to 3.36 mm day−1 (Larrain et  al.,  2002; 
Figure S1). This corresponds to a potential availability of fog water of 
3.36 mm day−1 × 365 days of 1226 mm a−1. Not all of this reaches the 
ground. Lehnert et al. (2018) found that a range of 8%–24% of the 
fog water collected by a cylindrical fog collector could be effectively 
utilized to nourish a biological soil crust in the Atacama Desert. The 

annual deposition of fog water to the ground within the Paposo 
transect 4.3 km distance to coast can roughly be estimated to range 
between 98 and 294 mm. The potential water availability from fog 
thus exceeds that from MAP by more than one order of magnitude 
in coastal sites (Figure  6a, Table  S1). Furthermore, the availability 
of fog water is consistent, with daily occurrences during the winter 
season, while precipitation may be absent for several consecutive 
years, only appear for one to three episodes of some minutes with 
rain in a particularly wet year, and also not infiltrating all into ground 
due to strong evaporation from crusted soil. Overall, the potential 
fog water availability thus shapes the change of aridity in the study 
area, making it reasonable that fog water explains the majority of P 
cycling near the coast.

The portions of HCl-P and its δ18OHCl−Pi
 value change most 

strongly at a transition to reaching a plateau, that is, in the fog-af-
fected areas 2–10 km away from the coast but hardly beyond 
(Figures 4–6). The point where soil properties and processes change 
from nonlinear manner to constancy or small range of changes with 
increased environmental forcing is named “pedogenic thresholds”, 
which coincided here with the spatial limit of fog penetration into 
the desert (Bateman et al., 2019; Vitousek et al., 2016; Vitousek & 
Chadwick, 2013). Our data partly disagree with conclusions of Shen 
et al. (2020) who stated that sporadic gypsum hydration water were 
likely the key moisture sources for soil life in the Atacama Desert. 
Their assumption was based on full δ18O isotope equilibrium of soil 
phosphates with ambient water. Our data, however, point to clear 
impacts from fog, particularly nearby the coast. Though MAP is 
almost constant from site 5.1 km to inland 22.9 km (Figure 6a), the 
values of δ18OHCl−Pi

 are significantly higher in the fog-nourished 
zone (5.1–10 km) compared to the inland area (≥10 km; Figure  6b, 
Table S3). Only 24 ± 14% of HCl-Pi in inland regions (≥ 10 km) can be 
explained by equilibration processes derived from isotope exchange 
with rainfall water only (Table 1). The significant correlation between 
δ
18OHCl−Pi

 with fog occurrence frequency further supports the im-
pact of fog on soil P nutrient cycling (Figure 7b). Therefore, we rank 
fog rather than crystalline water or hydration water as the most im-
portant, though not necessarily exclusive, source of water for micro-
organisms in western, near-coastal Atacama Desert.

The theoretical value of pedogenic thresholds is usually calcu-
lated based on a breakpoint model (Bateman et al., 2019; Vitousek 
et  al.,  2016; Vitousek & Chadwick,  2013). We calculated it as the 
point where the unit-distance increase was less than 0.1 of abso-
lute value of the respective parameter. It means that the parameters 
were relatively constant beyond the calculated distances (Table 2, 
Equation 5). It occurred 11.7 km away from the coast (by δ18OHCl−Pi

 ), 
thus exceeding the upper limit of fog around 7.6 km. Hence, also 
other factors can be interpreted to additionally affect the availabil-
ity of Pi in the HCl-P pool, such as release from organic P forms, 
immobilization of Pi by other minerals like oxides, anthropogenic 
depositions and high salinity as discussed previously for the outliner 
at 17.3 km distance to coast, or the patchy distribution of occasional 
rain (Table 2, Figures 3 and 4); yet, given the close fit, fog still re-
mains the dominating factor.
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4.3  |  Local-scale disturbance on P cycling by 
plant growth

Brucker and Spohn  (2019) forwarded that plant cover was the 
driving factor for “pedogenic thresholds”, because plants can en-
hance apatite dissolution by uptake of phosphate, as well as by 
increasing the solubility of P with releasing siderophores and 
other chelators or acids (Hinsinger,  2001). Similar to HCl-P and 
δ
18OHCl−Pi

 isotopic composition, also plant cover changed non-line-
arly to a minimum with increasing distance to the coast (Figure S2). 
However, mean δ18OHCl−Pi

 values and HCl-P pool did not change 
significantly (Table S3). Instead, samples collected near the plant 
showed lower concentration of Resin-P but enhanced portions of 
P in the Fe/Al-Po and residual P pool (Table S3). Hence, plants af-
fected P dynamics, but apparently not through apatite weather-
ing. Two reasons may account for this. On the one hand, there is 
an increased water use by plants: when plants utilize P they also 
consume water, which is then not available for apatite dissolution. 
Likely, the potential acceleration of P release from minerals by 
specific exudation was compensated by a deceleration of P release 
under dryer conditions. On the other hand, the patchy distribution 
of rainfall and blooming vegetation might not be representative 
for the rhizosphere-affected soil at the time of sampling, when 
plants grew at other places with different rainfall patterns dec-
ades and centuries ago. The latter argument supports the poten-
tial explanation for the lack of a relationship between plant growth 
and SAR (Figure 3, Tables S2 and S4). The idea reinforces Wang, 
Moradi, et al. (2021) who state that the biological P cycling hardly 
reflects a seasonal impact on soil chemistry but an integral of dec-
ades to millennia. It is in accordance with the findings of Mörchen 
et al.  (2021), who identified plant-biomarkers in Atacama soils at 
places without visible plant growth during sampling. Additionally, 
there can be site-specific individual variations of halophytic plant 
growth and its respective strategies to cope with osmotic stress 
(Brucker & Spohn,  2019; Mörchen et  al.,  2021), together with 
some site-specific preferences of plant growth to moisture niches 
which feature lower accumulation of salts.

5  |  CONCLUSIONS

Our data support our first hypothesis that fog predominantly 
sustains biological soil P cycling in the Atacama Desert. Beyond 
the 10 km range from the coastline, additional water supply from 
fog becomes scarce, and rare occasional rainfall events enable 
the release of apatite-bound phosphate and modify its oxygen 
isotope composition. However, observed changes in inland areas 
were significantly smaller compared to those detected in coastal 
regions. The second hypothesis was also confirmed: the range of 
the coastal fog penetration into the desert was a key threshold for 
biological soil P cycling and thus likely also for climate-controlled 
expansion of soil life in the Atacama Desert. However, the third 
hypothesis has to be rejected: the current presence of plants on 

biological P cycling was not found to affect the soil phosphate iso-
tope signatures sufficiently to allow detection by stable-isotope 
oxygen tracing in the HCl-P pool, either because the current dis-
tribution of plants is not representative of that in the past or be-
cause the additional consumption of soil water interfered with the 
biological cycling of P.
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