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Abstract 30 

Climate change is contributing to rapid changes in lake ice cover across the Northern 31 

Hemisphere, thereby impacting local communities and ecosystems. Using lake ice cover time-32 

series spanning over 87 years for 43 lakes across the Northern Hemisphere, we found that the 33 

interannual variability in ice duration, measured as standard deviation, significantly increased in 34 

only half of our studied lakes. We observed that the interannual variability in ice duration peaked 35 

when lakes were, on average, covered by ice for about one month while both longer and shorter 36 

long-term mean ice cover duration resulted in lower interannual variability in ice duration. These 37 

results demonstrate that the ice cover duration can become so short that the interannual 38 

variability rapidly declines. The interannual variability in ice duration showed a strong 39 

dependency on global temperature anomalies and teleconnections, such as the North Atlantic 40 

Oscillation (NAO) and El Niño-Southern Oscillation. We conclude that many lakes across the 41 

Northern Hemisphere will experience a decline in interannual ice cover variability and shift to 42 

open water during the winter under a continued global warming trend which will affect lake 43 

biological, cultural, and economic processes.  44 

 45 

Statement of Significance 46 

Lake ice is an important resource for the communities where it has historically been present 47 

supporting cultural activities, native biodiversity, and local economies. With climate change, ice 48 

cover during the winter seasons is decreasing in lakes across the Northern Hemisphere with more 49 

lakes experiencing ice-free winters or several freeze-melt cycles through the winter season, in 50 

contrast to complete ice cover in past winters. However, our understanding of the patterns in 51 

year-to-year changes in the length of ice cover needs improvement so that communities, citizens, 52 

and managers can better plan for the next winter and help mitigate the impacts of climate change. 53 

We explored patterns of ice variability in 43 lakes over 87 years. Year-to-year differences in ice 54 

duration grow larger with the loss of ice from lakes due to climate change. When lakes decline to 55 

one month in ice cover each winter, year-to-year differences decrease as lakes approach 56 

permanent loss of ice. Ultimately, lakes in the northern hemisphere will both lose ice over time 57 

and also have substantial year-to-year differences as lakes advance to ice-free winters in the 58 

future with the potential to affect physical, chemical, and biological structure and function in 59 

freshwater ecosystems. 60 
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 62 

Introduction 63 

The variability of weather conditions is expected to increase under ongoing climate 64 

change with more extreme events occurring, including, for example heat waves, droughts, and 65 

intensive precipitation events (e.g., Diffenbaugh et al. 2013; Pendergrass et al. 2017; Cook et al. 66 

2018). Extreme events have deleterious effects on ecosystem goods and services such as storm 67 

surges (e.g., Karim & Mimura 2008) or decreasing food security (e.g., Thornton et al. 2014). 68 

Similarly, phenological observations in lakes such as the timing and duration of lake ice cover 69 

have been predicted to increase in variability under climate change (e.g., Weyhenmeyer et al. 70 

2011). However, phenological changes cannot continue interminably as a new stable state might 71 

be reached, i.e., lakes might turn from being ice-covered to becoming ice-free (Sharma et al. 72 

2019). Increasing variability may provide an early warning signal for reaching a new stable state 73 

(Scheffer et al. 2009). Thus, documenting changes in the variability of ice cover is critical for 74 

understanding how lakes are responding to climate change (Rühland et al. 2023), as ice on lakes 75 

plays an important role in numerous physical and ecological lake processes in winter and 76 

throughout the rest of each year (Hampton et al. 2017; Hébert et al. 2021; Jansen et al. 2021).  77 

Changes in lake ice phenology (timing of ice-on and ice-off) have shortened lake ice 78 

duration over the last century because of climatic variation (Magnuson et al. 2000; Newton & 79 

Mullan 2021). Despite the consistent decrease in ice duration in lakes around the world, year-to-80 

year variability in the length of ice cover remains high (Duguay et al. 2006; Wang et al. 2012) 81 

with linear trends explaining < 30% of the overall variation (e.g., Wynne 2000; Benson et al. 82 

2012). The extreme ice seasons could be driven by late freezes, early melts, multiple freeze-melt 83 

events, or even no ice cover at all (Bernhardt et al. 2012; Higgins et al. 2021; Sharma et al. 84 

2021b). These extremes, including ice-free seasons, are predicted to increase dramatically in the 85 

future for individual lakes (Robertson et al. 1992; Magee & Wu 2017) and regions of lakes in the 86 

Northern Hemisphere (Sharma et al. 2021a; Wang et al. 2022). However, it is not yet clear which 87 

lakes are most sensitive to high interannual variability with the recent rapid increase in ice loss 88 

and which factors are driving interannual variability in lake ice (Brown & Duguay 2010). 89 

Global anthropogenic climate change and teleconnections, large-scale climate linkages, 90 

can affect local and regional weather patterns, especially, air temperature which is integrally 91 
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related to lake ice (Filazzola et al. 2020; Ghanbari et al. 2009; Imrit & Sharma 2021). With 92 

synergistic interactions between climate change and teleconnections, extremes and interannual 93 

variability of air temperature are predicted to increase (IPCC 2021); thus, it is likely that the 94 

duration of ice cover will also become increasingly variable with periodicity related to 95 

teleconnections (Wang et al. 2012). In past research, the interannual variability of ice has been 96 

identified as predominantly increasing with shorter ice cover when examined at the annual, 97 

decadal, and 20-year time scales (Kratz et al. 2000; Weyhenmeyer et al. 2011; Benson et al. 98 

2012; ). One exception is that when broken into two 50-year periods, ice duration variability 99 

decreased in many lakes, especially across Europe (Benson et al. 2012). Ice duration has a finite 100 

limit with the complete loss of ice, indicative of a non-linear relationship that supports previous 101 

inconsistent results. Therefore, it is critical to understand the relationship between ice duration 102 

and variability when trying to understand and predict the response of lake ice to global drivers of 103 

regional weather like climate change and teleconnections. 104 

Here, we explored patterns and drivers of lake ice variability in 43 Northern Hemisphere 105 

lakes over the last 87 years, using a recently compiled database on lake ice phenology (Sharma et 106 

al. 2022). We define interannual variability in ice as the calculated standard deviation or variance 107 

of ice phenology duration over a series of years in a single lake. We asked three main questions: 108 

1) what patterns emerge when examining the trends in ice variability over the past 87 years?; 2) 109 

is there a consistent relationship between aspects of ice phenology (ice-on, ice-off, and duration) 110 

and the variability observed in ice phenology across different lakes?; and 3) to what extent can 111 

climate anomalies and teleconnections, recognized as global drivers of regional weather, explain 112 

the fluctuations in ice duration amidst the observed decreasing ice trends? We hypothesized that 113 

the interannual variability of ice phenology no longer significantly increases if ice duration 114 

becomes too short, following a non-linear relationship The hypothesis implies that lake in lakes 115 

in colder geographic regions would experience increasing interannual variability while lakes in 116 

warmer geographical regions will experience a decrease in interannual variability. We also 117 

hypothesized that warmer global temperatures in the Northern Hemisphere winter and 118 

teleconnection indices, such as North Atlantic Oscillation (NAO) and El Niño-Southern 119 

Oscillation (ENSO), will significantly be related to the year-to-year variability in ice duration but 120 

with distinct geographical differences (Livingstone 2000; Ghanbari et al. 2009; Bai et al. 2012; 121 

Imrit & Sharma 2021). 122 
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 123 

Materials and Methods 124 

Ice duration and lake characteristics  125 

Using a database of 78 lakes with ice phenology records extending over 100 years 126 

(Sharma et al. 2022), we selected 43 lakes based on records that included ice duration with more 127 

than 65% of years with ice data, even if one or more winters were noted as ice-free (Table S1). 128 

These lakes were found between 42.50° N and 65.60° N latitude spanning nine different 129 

countries (Fig. S1). We chose to examine records between 1931 and 2018 to encapsulate 130 

contemporary ice patterns in the Northern Hemisphere with a sufficiently long time series for as 131 

many lakes as possible (Table S1). Missing values for ice duration were uncommon in recent 132 

decades, although a few of the lakes were missing ice duration in the years typically surrounding 133 

world or local events (e.g., wars) that prevented data collection (Table S1; Sharma et al. 2022).  134 

The ice phenology records included the duration of ice cover (in days), the geospatial 135 

coordinates of the survey point (latitude and longitude), the lake name, and the winter year of ice 136 

cover, i.e., a lake that froze in January 2000 would be assigned the winter year of 1999 as winter 137 

encompasses two calendar years (i.e., 1999-2000). The database we used for ice phenology 138 

records also included information on lake morphometry, such as surface area, maximum lake 139 

depth, and elevation (Sharma et al. 2022).  140 

 141 

Weather and climate data 142 

We obtained the maximum winter air temperatures for December, January, and February 143 

from the Climatic Research Unit (CRU) of East Anglia (Harris et al. 2020), which were 144 

downscaled to 0.5° x 0.5° grid cells. We acknowledge that the available climate data has 145 

limitations in terms of resolution, which may result in lakes that are close together having the 146 

same temperature value. However, we selected the Climate Research Unit (CRU) dataset as 147 

having the finest spatial resolution while also providing annual climate patterns. Monthly 148 

temperature values were extracted for each year at every lake where data on ice duration was 149 

available including years with no ice present. We obtained global climate and teleconnection 150 

indices monthly for October through May, spanning the time frame of ice cover from the lakes in 151 

this dataset. Global annual temperature anomalies (GTA) were obtained from the National 152 

Oceanic and Atmospheric Administration averaged over land and ocean (NCEI 2020). We also 153 
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considered two teleconnection indices as potential drivers of local winter weather conditions. We 154 

downloaded both North Atlantic Oscillation (NAO) and El Niño-Southern Oscillation (ENSO) 155 

monthly indices from the National Weather Service Climate Prediction Center (National 156 

Weather Service 2020).  157 

 158 

Calculating variability in ice duration 159 

We chose ice duration for these analyses because we could appropriately quantify ice 160 

duration when a lake did not freeze (ice duration = 0 days), which is not possible with ice-on or 161 

ice-off dates when a lake did not freeze. First, for visualization, we calculated a 10-year moving 162 

average and Bollinger Bands, one rolling 10-year standard deviation above and below the 163 

moving average, that can indicate the volatility of a time series (Bollinger 1992). We used 164 

standard deviations to quantify variability patterns in ice duration. We applied 10-year rolling 165 

standard deviations to account for variations included in major climate oscillations and 166 

teleconnection patterns that happen periodically (Sharma & Magnuson 2014; Imrit & Sharma 167 

2021). All analyses and visualizations were completed using R version 4.1.2 (R Core Team 168 

2022) for this section and the rest of the manuscript. 169 

 While simple moving averages and rolling standard deviations can help understand 170 

trends, the overlapping nature of the rolling windows results in high autocorrelation. 171 

Additionally, choosing a single window for calculating variability can result in different 172 

conclusions (e.g., Benson et al. 2012). As an alternative, we identified all sequential windows 173 

between 4 and 30 years in length (26 versions of sequential windows) starting with 2018 and 174 

moving backward to 1931. For example, a 16-year sequential window would encapsulate non-175 

overlapping sets of 16 years (e.g., 2018 to 2003; 2002 to 1986) while a 4-year sequential window 176 

would encapsulate non-overlapping sets of 4 years (e.g., 2018 to 2015; 2014 to 2011). For each 177 

sequential window, we required a minimum of 75% of years having duration data; for those 178 

windows, we calculated the mean (hereafter, duration mean), standard deviation (hereafter, 179 

duration sd), and coefficient of variation (duration sd*100/duration mean). We also calculated 180 

the year for each sequential window as the median of the start years in that window. 181 

 182 

Trends in duration mean and duration sd 183 
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 To determine whether a change in duration mean and sd occurred over the time series, 184 

we calculated linear models based on the duration mean or sd for each sequential window size. 185 

For example, with 10-year windows, there would be up to 9 duration means and duration sd 186 

incorporated into the linear model. We used Theil-Sen median regressions (Komsta 2019) with 187 

the duration mean or duration sd as the response variable and median year as the predictor. We 188 

used a median-based regression because these methods are relatively robust to outliers, repeated 189 

measures, and changes in the distributions as the sd would become right-skewed with an 190 

increased number of years with no ice-cover (Siegel 1982). We calculated a slope for duration 191 

mean and sd for all sequential window sizes.  192 

To determine which drivers related to trends in duration sd, we chose trends calculated 193 

with 17-year sequential windows because 17-year windows were the most represented when 194 

evaluating median trends in duration sd. We modeled trends in duration sd using generalized 195 

additive models (GAMs; Hastie & Tibshirani 1990; Wood 2017). We built candidate models 196 

based on ice characteristics, winter air temperature, geomorphometry, and geography established 197 

for each lake. For ice characteristics, we calculated the percent of ice-free years and the mean 198 

duration length in days for each lake. For winter air temperature, we used the annual average 199 

daily maximum temperature from December, January, and February (DJF) for each lake. Over 200 

all the years, we calculated the median DJF annual daily maximum temperature. We averaged 201 

across the three winter months to use the mean winter temperature for all analyses. We chose to 202 

summarize winter temperatures here to encapsulate the time period when most of these 203 

geographically and morphologically diverse lakes are frozen in a year. For geomorphometry, we 204 

used the surface area and maximum depth; both geomorphometry variables were log-205 

transformed because of the several orders of magnitude spread (e.g., Lake Suwa is 7.6 m deep 206 

while Lake Baikal is 1642 m deep). For geography, we used latitude, longitude, and elevation. 207 

We fit increasingly complex GAMs using the ‘mgcv’ package (version 1.8-40; Wood 2017) and 208 

ultimately selected the models that had statistically lower AIC and maximized deviance 209 

explained using the compareML function in the ‘itsadug’ package (van Rij et al. 2022). We 210 

extracted all significant smooths for the selected GAM using the confint function in the 211 

‘schoenberg’ package (Simpson 2018), visualized the smooths using the ‘ggplot2 package 212 

(Wickham 2016), and arranged the plots with ‘patchwork’ package (Pedersen 2022).  213 

 214 
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Relationship between ice phenology mean and sd  215 

We examined the difference in variability between the two different ice phenology 216 

metrics (ice-on and ice-off) that are used to calculate ice duration. For each lake, we applied a 217 

Theil-Sen median regressions (Komsta 2019) for both ice-on and ice-off and calculated the 218 

residuals for each year. We used those residuals to calculate two overall variances (ice-on and 219 

ice-off) and compared those two variances using an F-test.  220 

To determine the relationship between ice phenology and variability, we calculated the 221 

day of the year for ice-on and ice-off for each lake. We ignored years when the lakes did not 222 

freeze for the winter since there are no ice-on or ice-off dates recorded for that year. We used 223 

ice-on and ice-off means and sds calculated for every lake for all sequential windows (n = 4 to 30 224 

years). To examine the shape of the relationship between mean and sd for each ice phenology 225 

variable, we fit GAM models (model: sd ~ mean with k = 7 knots possible) using the ‘mgcv’ 226 

package (version 1.8-40; Wood 2017) for each of the sequential window sizes (n = 4 to 30 227 

years). We assessed the effective degrees of freedom (edf) which reflects the degree of non-228 

linearity of a curve: edf = 1 indicates linear relationship, edf up to 2 indicates weak non-linear 229 

relationship, and edf > 2 indicates highly non-linear relationship. We also assessed the mean ice-230 

on or ice-off date when the GAM curve was at a maximum. 231 

We hypothesized that the relationship between duration and interannual variability of ice 232 

phenology would follow a non-linear Shepherd equation (Eq. 1, Fig. 1a, Shepherd 1982). To 233 

determine the relationship between ice duration and variability that matches our proposed 234 

hypothesis (Fig. 1a), we used duration means and duration sd calculated for every lake for all 235 

sequential windows (n = 4 to 30 years). For each sequential window size, we fit a Shepherd 236 

function (Eq. 1) between variables for duration mean (meanwindow) and duration sd (SDwindow) 237 

which is the generalized form of Michaelis-Menten function with 3 different parameters (A, B, 238 

C) that permits the function to be domed or unbounded with a non-zero asymptote (Eq. 1, Iles 239 

1994). The Shepherd function appeared to be a good fit from the ice phenology GAM results 240 

given that we could now include ice free years (duration = 0 days). We estimated the three 241 

parameters using non-linear least-squares estimates. We calculated the peak of the curve using 242 

the root of the first derivative of the Shepherd function and the inflection point using the root of 243 

the second derivative (Iles 1994). To match with the hypothetical groups proposed in Fig. 1a, we 244 

used a k-means clustering algorithm to identify clusters across all the individual sequential 245 



9 

window sizes. We ran the algorithm for 1 cluster up to 9 clusters and examined the declining 246 

pattern of ‘within sums of squares’ with an increasing number of clusters to look for an elbow 247 

indicating that additional clusters have little added explanatory value (Tibshirani et al. 2001). 248 

Using the five identified clusters, we labeled each sequential window based on group (Fig. 1a).  249 

 250 
Figure 1: (a) Conceptual figure showing the hypothesized relationship following the Shepherd 251 

equation between ice duration and variability (measured as interannual duration standard 252 

deviation: sd) with four groups identified with the vertical dotted line indicating the peak of the 253 

relationship. (b) For each of those groups, we present corresponding conceptual models of 254 

temporal trends in ice duration and variability over the last ~90 years as rolling averages (black 255 

line) and rolling standard deviations (gray ribbon).  256 

 257 

𝑆𝐷!"#$%! =
&∗()*#!"#$%!
+,()*#!"#$%!&

                                             (Eq. 1) 258 

We hypothesized that lakes would cluster into groups along the non-linear relationship 259 

(Fig. 1). In lakes with no ice, interannual variability is 0; those lakes are consistently frozen (Fig. 260 

1a, 1b: region i). Lakes in the warmest region with the shortest ice cover would experience 261 

decreasing variability (Fig. 1a, 1b: region ii). In slightly cooler regions, lakes would shift to high 262 

and stable variability (Fig. 1a, 1b: region iii). Lakes in colder regions would experience 263 

intermediate and increasing interannual variability (Fig. 1a, 1b: region iv). To identify which 264 

lake characteristics predicted each lake group located on the Shepherd function (Fig. 1), we 265 

selected the window size (16-years) that was the best fit, based on AIC and R2, out of each of the 266 

Shepherd model fits. We selected the most recent 16-year sequence (2002-2018) and identified 267 

the cluster assigned by cluster analysis for each lake. We used groups assigned for the five 268 
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clusters as identified above (i,ii; iii; iv.1; iv.2; iv.3) and also used three groups (i,ii; iii; iv) to 269 

match Fig. 1a as categorical response variables. We used a regression tree with morphometric 270 

variables (max depth, surface area) and geography (latitude, longitude, elevation) to explain the 271 

assigned group. A parsimonious regression tree was selected by pruning the tree to the level 272 

where the complexity parameter minimized the cross-validation error. We calculated the percent 273 

variation explained by the regression tree (R2) as: R2 = 1- relative error (Sharma et al., 2012). 274 

Regression trees were completed using the ‘rpart’ and ‘rpart.plot’ packages (Milborrow 2019; 275 

Therneau & Atkinson 2019). 276 

 277 

Global explanation of ice duration residuals 278 

We examined the effects of global climate and teleconnection factors on year-to-year 279 

variability, measured as residuals from a Thiel-Sen slope line fit to all data (1931 to 2018) as 280 

above. Given the spatial distribution of our lakes, mostly in North America and Europe, and the 281 

timing of ice phenology, spanning October to May, we collapsed all three variables (GTA, 282 

ENSO, and NAO) to bimonthly averages for October/November (ON), December/January (DJ), 283 

February/March (FM), and April/May (AM) resulting in 12 unique predictor variables. We used 284 

these 12 variables scaled to bimonthly means to capture seasonal differences between variability 285 

in the timing of ice on our study lakes while also avoiding over-parameterizing models with too 286 

many explanatory variables. We removed 4 lakes with < 5 years of non-zero ice cover as 287 

residuals were all close or equal to 0. For the remaining 39 lakes, we modeled the annual 288 

residuals of ice duration using GAMs with the same 12 explanatory climatic variables and fixed 289 

the number of basis functions for each smoothed term to 4 for each parameter. For each lake, we 290 

estimated GAMs using automatic parameter selection by penalizing each smooth using the 291 

‘select = TRUE’ option in the ‘mgcv’ package (version 1.8-40; Wood 2017). We extracted all 292 

significant smooths for the selected GAM as above. 293 

 294 

Results 295 

Trends in duration mean and duration sd 296 

The duration of lake ice varied considerably among years and between lakes (Fig. 2; Fig. 297 

S2). The average duration of ice cover for the entire dataset was 112 days, ranging from a 298 

minimum of 0 to a maximum of 236 days (Table S2). Some lakes that were almost entirely ice-299 
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free for the duration of their time series had little to no interannual variation, such as Aergerisee 300 

(Fig. 2a). Lakes with a high frequency of ice-free years tended to have fluctuating standard 301 

deviations with many years close to 0, such as Greifensee (Fig. 2b). Other lakes had ice durations 302 

lasting around two months (e.g., Balaton, Fig. 2c) or longer ice durations lasting over 100 days 303 

(e.g., Otsego, Fig. 2d), both with less frequent ice-free years over the entire record.  304 

  305 

 306 
Figure 2: Annual ice duration (black points) and variability patterns in ice duration for 4 307 

selected study lakes. The rolling 10-year mean is presented as a grey line and variability is drawn 308 

as light grey ribbons representing the rolling mean +/- rolling standard deviation in ice duration 309 

over a 10-year window. Lakes are sorted by the group from Fig. 1 that they might occupy 310 

including (a) group i: Aergerisee, (b) group ii: Greifensee, (c) group iii: Balaton, and (d) group 311 

iv: Otsego.  312 
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 313 

Most lakes (79%) displayed decreasing duration means but trends in duration sd were 314 

less consistent looking across sequential windows of 4 to 40 years (Fig. 3). Duration sd 315 

significantly increased for 49%, decreased for 7%, and had no significant trend for 44% of lakes 316 

(Fig. 3). Trends in standard deviation of 17-year sequential windows were best explained by ice 317 

characteristics, winter air temperature, and lake depth in a GAM that explained 85.5% of overall 318 

deviance (Fig. 4; Table S3). Lakes with no ice-free years had increasing trends in duration sd, 319 

but lakes with an increasing number of ice-free years were more likely to have decreasing trends 320 

in duration sd until the lake was ice-free all the time (Fig. 4a). Lakes with the coldest winter 321 

daily maximum air temperatures were more likely to have decreasing duration sd while 322 

approaching 0°C air temperatures indicated increasing trends in duration sd (Fig. 4b). When 323 

approaching 5°C, lakes were likely to have to change in duration sd (Fig. 4b). Deeper lakes had 324 

increasing trends in standard deviation (Fig. 4c). Finally, the trends in duration were most likely 325 

to switch from increasing to decreasing at an average of ~100 days of ice cover (Fig. 4d). The 326 

trends in duration CV predominantly matched those of duration sd (data not shown) and 327 

therefore, we proceeded with using duration sd for the rest of the analyses. 328 

 329 

 330 
Figure 3: A comparison between the mean ice duration rate of change (duration slope) and the 331 

standard deviation of ice duration rate of change (duration sd slope) for each lake. The vertical 332 
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and horizontal error bars represent a 1.5x interquartile range for all slopes calculated from 333 

sequential windows of 4 to 40 years. The color of the point represents whether 95% of the 334 

duration sd slopes are above, equal to, or below 0; the shape of the points represents whether 335 

95% of the mean duration slopes are below or equal to 0.  336 

 337 
Figure 4: Trends in standard deviation of ice duration explained by (a) percentage of ice-free 338 

years, (b) median of the December, January, and February maximum daily air temperature (DJF 339 

daily max.), (c) maximum depth (Max. depth), and (d) mean ice duration over the 1931-2018 340 

time-span for each lake. While other parameters were included in the model, the four significant 341 

parameters are presented. Curves (black line) represent smoothed relationships holding the other 342 

variables constant as identified by a General Additive Model; bands represent 95% credible 343 

intervals. 344 

 345 

Relationship between ice phenology mean and sd 346 

Ice-on dates tended to have higher variability than ice-off dates. Ice-on variance was 347 

almost twice ice-off variance (F2978,2936 = 1.82, p < 0.001; Fig. 5a). Later mean ice-on dates had 348 

higher ice-on sds across all sequential windows with variability increasing by ~40% across the 349 

range of mean ice-on dates (Fig. 5b). Ice-on sds increased linearly with increasing ice-on mean 350 

(edf = 1) but some sequential windows had increasing quadratic or higher polynomial (edf ≥ 2) 351 

fits with maxima on 17 Jan. The GAM model explained 13% of the variance at most. Earlier 352 

mean ice-off dates had higher sds across all sequential windows with variability increasing by 353 

300% across the range of mean ice-off dates (Fig. 5c). The GAM model explained up to 77% of 354 

the variance; most of the fits were highly non-linear (edf > 2). Maximum variance was on 16 Feb 355 
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across all sequential windows and 23 Feb at the models with the downward tilt in early February 356 

(edf > 4.5) which were able to capture the Shepherd function shaped curve proposed for ice 357 

duration (Fig. 1a). 358 

 359 

 360 

 361 
Figure 5: (a) Relative variability between ice-on and ice-off dates with each point representing 362 

the residual to the temporal trends (Theil-Sen slope analysis) for each lake. The violin plot shows 363 

the distribution of the points and the lines on the violin plots represent the quartiles for each 364 

distribution with a wider spread between lines indicating more variability. Fitted GAM models 365 

between mean and standard deviation (sd) for (b) ice-on and (c) ice-off dates for each sequential 366 

window sizes from 4 to 30 years. 367 

 368 

We found a non-linear relationship between duration standard deviation and average ice 369 

duration that was similar across all sequential windows (Fig. 6), and which supported our 370 

hypothesis (Fig. 1a). The median peak of all the models was at 26.0 days of ice duration while 371 

the median inflection point was 47.8 days (Fig. 6); this also represents the transition between 372 

increasing variability and decreasing variability (Fig. 1a). The inflection point of this relationship 373 

was at ~1.5 months, at that boundary, there is a shift from accelerating (> 1.5 months ice 374 

duration) to decelerating (< 1.5 months ice duration) duration sd. The model with the best fit, as 375 

identified by deviance explained and AIC, was for 16-year sequential windows (A = 474, B = 376 

175, C = 1.7, R2 = 0.75, Fig. 6b). Using all the data across all sequential windows and all lakes, 377 

k-means clusters were calculated for 1 to 9 clusters. Within sums of squares minimized at 5 378 
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clusters; therefore, we used 5-clusters to categorize each group of the duration mean vs. duration 379 

sd (Fig. 6b; Fig. S3). One cluster was identified at the lower end of ice duration; we labeled that 380 

as group i,ii to match with groups i and ii from the conceptual model (Fig. 1). Group iii matched 381 

the conceptual model, while group iv from the conceptual model was identified by the k-mean 382 

clustering as three distinct clusters, we labeled those as groups iv.1, iv.2, and iv.3 according to 383 

increasing ice duration (Fig. 6b) and also lumped all of those iv categories together to match our 384 

hypotheses (Fig. 1a). 385 

 386 

 387 
Figure 6: (a) Shepherd model fits for 16-year sequential windows (black line) and 5th to 95th 388 

credible interval for all model fits (n = 4 to 30-year sequential windows). The blue rectangle 389 

represents the 5th to 95th percentiles of the peak of the curve across all models. (b) Shepherd 390 

model fit for the 16-year sequential windows from all lakes displayed as points. There are 18 391 

overlapping points at 0 days ice duration and 0 days ice duration sd. Colors and labels indicate 392 

groups as identified by k-means clustering analysis.  393 

 394 

Geography and depth of each lake explained different categories for the most recent 16-395 

year window (2012 - 2018) for each lake. For five groups, a tree with both elevation and latitude 396 

explained 66% of the apparent variance. For three groups, a tree with both maximum depth and 397 

latitude explained 85% of the apparent variance. Lakes at higher latitudes (> 55°N) were 398 

exclusively group iv (Fig. 7). Lakes at higher elevation (> 394 m) and latitude were group iv.3 399 

with the longest ice duration and intermediate duration sd (Fig. 7a). Lakes at lower latitudes but 400 

higher elevations tended to be group i,ii (Fig. 7a). Lakes at a lower latitude, between 40°N and 401 
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55°N and deeper maximum depth were group i, ii, and iii while shallower maximum depth (< 29 402 

m) were in group iv (Fig. 7b). 403 

 404 

 405 
Figure 7: Regression tree results for the most recent 16-year window (2012-2018) for each lake 406 

(a) using 5 groups identified by k-means cluster analysis and using (b) 3 groups, collapsing all 407 

groups from iv.1 to iv.3 down to iv. The lines indicate split points from optimal regression trees 408 

for the explanatory variables including latitude, elevation, and maximum depth (Max. depth) for 409 

each lake.  410 

 411 

Global explanation of ice duration residuals  412 

Across the 39 lakes, ice duration residuals were significantly related to a range of climate 413 

and teleconnection variables. Selected GAMs explained between 8% and 59% of the deviance in 414 

ice duration residuals (Fig. 8). Between 0 and 6 explanatory bimonthly variables (median = 2) 415 

were significant for each lake (p < 0.05, Fig. 8). Of all the climate and teleconnection variables, 416 

NAO for October/November (n = 17) and the global temperature anomaly for April/May (n = 417 

16) were the most common significant explanatory variables. In general, higher global 418 

temperatures in any bimonthly period resulted in shorter-than-expected ice durations (Fig. 8). 419 

Similarly, increasing NAO indices in October/November resulted in shorter-than-expected ice 420 

durations (Fig. 8).  421 

 422 
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 423 

 424 
Figure 8: Relationships of ice duration residual and bimonthly average global temperature 425 

anomaly (GTA), North Atlantic Oscillation (NAO), and El Niño-Southern Oscillation (ENSO) 426 
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for October/November (ON), December/January (DJ), February/March (FM), and April/May 427 

(AM) as determined by a General Additive Model (GAM). Any significant parameters were 428 

identified by a filled tile, the smooths for each relationship are plotted as a black line to see the 429 

direction and shape of the trend. The right panel indicates the percentage of deviance explained 430 

(Dev. Expl.) for each lake’s GAM fit. 431 

 432 

Discussion 433 

 Not all lakes experienced increasing interannual variability in lake ice duration, despite 434 

most experiencing unprecedented rates of recent ice loss supporting our initial hypothesis. 435 

Therefore, as lakes continue to warm and ice duration decreases (Sharma et al. 2021b), we can 436 

anticipate an increase in variability until ice seasons last ~1 month (Fig. 6). After which, there 437 

are increasingly high numbers of ice-free years with decreasing variability and, eventually, lakes 438 

may cross a tipping point to either have a sequence of ice-free years or become permanently ice-439 

free as forecasted by Sharma et al. (2021a) but will remain to be seen in the coming decades if 440 

greenhouse gas emissions are not mitigated. This suggests that year-to-year variability in ice 441 

duration will be larger when there is a short duration of ice cover. Geography, air temperatures, 442 

and lake depth were found to drive the trends of ice variability, in addition to the frequency of 443 

ice-free years (Fig. 4, 7), suggesting that there may be some lakes that are naturally more 444 

variable or sensitive to changes in climate than others. Finally, in many lakes, year-to-year 445 

variability responded to both large-scale indices of climate change and teleconnections such as 446 

NAO and ENSO.  447 

 448 

Trends in duration mean and duration sd 449 

Most lakes have been experiencing a rapid decline in ice duration (Fig. 3), consistent with 450 

other lakes and rivers in the northern hemisphere (e.g., Magnuson et al. 2000; Newton & Mullan 451 

2021; Sharma et al. 2021b). Several lakes in this study did not have decreasing ice durations 452 

because they have already transitioned to predominantly ice-free lakes (e.g., Fig. 2a). On 453 

average, lakes were losing 21.7 days of ice per century using the sequential window technique in 454 

this study which was similar to rates calculated using linear regression for these lakes in a prior 455 

study (Sharma et al. 2021b). The duration sd gained an average of 4 days per century with many 456 

lakes increasing in variability. This reflects the potentially increasing variability of both 457 
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components of ice duration, ice-in and ice-out which is driven by regional weather conditions 458 

and the rate of change of those weather conditions at either end of the winter season (Kratz et al. 459 

2000; Arp et al. 2013). Notably, some lakes had decreasing variability, counter to previous 460 

studies indicating only increasing or no change in variability (Weyhenmeyer et al. 2011; Benson 461 

et al. 2012; Kainz et al. 2017); this phenomenon may be a potential indicator of an ice-free 462 

future.  463 

Ice conditions, air temperature, and depth had the largest effects on trends in duration 464 

variability. Lakes experiencing ice-free winters for more than half of the time experienced 465 

rapidly decreasing variability in ice duration, most rapid rates of ice loss, and are vulnerable to 466 

permanent ice loss if greenhouse gas concentrations are not mitigated (Sharma et al. 2021a; b). 467 

Air temperature is closely linked with ice duration (Palecki & Barry 1986; Robertson et al. 1992; 468 

Duguay et al. 2006) and we confirm that this extends to trends in ice variability (Fig. 4). Lakes 469 

found in the southern regions of the “slush zone” in the United States and Eurasia where daily 470 

winter air temperatures reach a maximum of around or just below 0°C have increasing variability 471 

(Fig. 4b) and are most sensitive to the increased frequency of extreme ice-free years (Filazzola et 472 

al. 2020). The deepest lakes which are also vulnerable to short ice duration, intermittent ice 473 

cover, and some of the fastest rates of ice cover loss (Sharma et al. 2019, 2021b), are increasing 474 

in ice duration variability. Larger and deeper lakes require consistently colder air temperatures 475 

because larger volumes of water must be cooled in the late fall and early winter (Brown & 476 

Duguay 2010; Arp et al. 2013; Magee & Wu 2017). Large lakes with long fetches are also more 477 

sensitive to wind action breaking the skim of ice at the beginning and end of the ice season 478 

(Leppäranta 2010; Brown & Duguay 2010; Magee & Wu 2017). For example, Grand Traverse 479 

Bay in Lake Michigan and Bayfield in Lake Superior had the highest variability in ice duration. 480 

 481 

Relationship between ice phenology mean and sd 482 

Ice phenology exhibited more variability at the beginning of the season than the end (Fig. 483 

5a), consistent with other lakes (Kratz et al. 2000; Zdorovennov et al. 2013). Ice-on dates are 484 

controlled by local factors like freezing air temperatures, precipitation, and low wind that will 485 

set-up ice formation (Duguay et al. 2006; Mishra et al. 2011; Hou et al. 2022). Ice-off dates still 486 

are dependent on crossing the 0°C threshold at the end of the ice-season but also reflect the entire 487 

winter season with precipitation on ice, ice thickness, and snow cover and drive the timing of ice 488 
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melt (Jensen et al. 2007; Preston et al. 2016). Despite both ice phenology metrics increasing in 489 

variability as the ice season shortens, ice-off dates exhibit more non-linear patterns. Ice-on dates 490 

could continue to increase in variability while ice-off dates exhibit a non-linear curve that we 491 

originally hypothesized that ice duration followed and likely drives more of the ice duration 492 

pattern. Ice duration is a better metric for understanding patterns in lake ice variability because 493 

ice duration captures ice phenology from both the start and end of the season, while also 494 

allowing for incorporation of ice-free years. 495 

Earlier studies had suggested that variability increases with shortened ice duration (i.e., 496 

Weyhenmeyer et al. 2011; Sharma et al. 2016), yet we observed a non-linear relationship 497 

between variability and ice duration both across and within lakes over time (Fig. 6). The 498 

previously undocumented non-linear relationship between variability and ice duration may now 499 

be apparent because of accelerated rates of ice loss and warmer winter temperatures contributing 500 

to a higher occurrence of ice-free years in lakes around the Northern Hemisphere in recent 501 

decades (Sharma et al. 2019; Newton & Mullan 2021), a phenomenon which was not as 502 

widespread in earlier studies (Weyhenmeyer et al. 2011; Benson et al. 2012). Our new analysis 503 

with ice duration (Fig. 6) is more reflective of the current state of northern hemisphere lakes as 504 

they move from consistent ice cover to intermittent or no ice winters.  505 

The critical transition points from increasing to decreasing variability at ~1 month may 506 

portend ecological regime shifts, as variability changes can be an early warning indicator of an 507 

impending regime shift (Scheffer et al. 2001). Once lakes cross that boundary and begin to have 508 

decreasing variability, the shift to ice-free winters may be an inevitable outcome. Within the past 509 

90 years, some of our study lakes have already transitioned to a new ecological state and 510 

represent the endpoints of the mathematical relationship where they are now permanently ice-511 

free and therefore have no interannual variability (Fig. 6). 512 

Our initial hypothesis was that there would be 4 different groups within this mathematical 513 

relationship (Fig. 1a). These groups could either represent the characteristic of a lake as a whole 514 

or represent intervals of time for a particular lake which might not be fixed in time as ice 515 

duration declines. Because of the sharp decline in the shape of the curve, lakes in groups i and ii 516 

were lumped together by the clustering analysis (Fig. 6b) but represent high variability 517 

decreasing to completely ice-free. Geography and depth were the best predictors of the groups 518 

identified for the most recent 16-year window (2012 - 2018) which is consistent with other 519 
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studies (Arp et al. 2013). Lakes found at higher latitudes were consistently higher in ice duration 520 

and had moderate but increasing duration sd. The cutoff for latitudes between 50 and 62°N is 521 

consistent with the 61°N boundary below which lakes are highly susceptible to ice loss 522 

(Weyhenmeyer et al. 2011). At the lower latitudes, the deeper lakes at higher elevations were the 523 

most likely to be in group i,ii in lakes with these lakes most sensitive to experiencing ice-free 524 

years and intermittent ice cover (Sharma et al. 2019). Although lower elevation sites tend to be 525 

less climatically variable (Palazzi et al. 2019), we observed higher variability at low elevations, 526 

likely driven by warmer air temperatures and less winter snowpack, causing shorter ice seasons 527 

(Palecki & Barry 1986; Brown & Duguay 2010; Arp et al. 2013). 528 

  529 

Global explanation of ice duration residuals 530 

 Overarching trends in lake ice decline are ultimately linked to climate change (Magnuson 531 

et al. 2000; Sharma et al. 2019). For example, higher global temperature anomalies, especially in 532 

April/May, result in shorter ice seasons (Fig. 8) likely affecting spring melt for many northern 533 

hemisphere lakes. However, global temperature and weather patterns vary from year to year with 534 

the effects of climate change on regional and local drivers of limnological processes like lake ice 535 

being modulated by teleconnections (Wilkinson et al. 2020). The resulting synergistic or 536 

antagonistic between climate change and teleconnections could result in extremes in ice duration; 537 

for example, variance in ice phenology has been attributed to NAO or ENSO teleconnections 538 

(Sharma & Magnuson 2014; Bai et al. 2018; Schmidt et al. 2019). In this study, many northern 539 

European lakes had their ice duration affected by October/November NAO where NAO effects 540 

are strongest in the early winter (Hurrell et al. 2002). With climate change driving greater 541 

variability and extremes in some of these oscillations (e.g., ENSO, Wang et al. 2019), lakes may 542 

also experience abrupt shifts in their phenology between years in response to phase switches of 543 

teleconnection patterns or especially strong teleconnection years (Wang et al. 2012; Bai et al. 544 

2012). Teleconnections and the global temperature might be better predictors of long-term and 545 

ecosystem-wide processes such as lake ice duration because they integrate direct drivers, such as 546 

meteorology, over space and time (Hallett et al. 2004).  547 

There was a wide range in the deviances of ice duration residuals explained by the global 548 

temperature anomaly and the two teleconnection indices that we examined. Depending on the 549 

timing of ice-on and ice-off, some lakes may be less responsive to metrics averaged bimonthly. 550 
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Location may play a large role as well; for example, NAO strongly affects the Atlantic basins of 551 

both North America and Europe (Hurrell et al. 2002), but lakes inland from the Atlantic Ocean 552 

might not be as responsive. Similarly, different geographic regions might respond to the 553 

teleconnections differently, positive NAO indices link to warm conditions in northeastern North 554 

America and Northern Europe but cooler conditions in southern Europe (Hallett et al. 2004). 555 

Northern European lakes in this study had a negative relationship between ice duration and NAO 556 

indices for late fall and early winter months (Fig. 8). 557 

 558 

Conclusions 559 

The effects of climate change on ecological, societal, and physical processes have 560 

frequently been identified as non-linear processes (e.g., Grünig et al. 2020). Our results confirm 561 

non-linear responses for ice cover dynamics, with shifting interannual ice phenology variability 562 

patterns if lake ice cover lasts for less than a month. The observed shifting patterns in lake ice 563 

variability will have consequences for both humans and ecosystems making planning for 564 

recreational opportunities, such as skating races and ice fishing tournaments, even more difficult 565 

(Magnuson & Lathrop 2014; Knoll et al. 2019). Ultimately, these recreational events will be 566 

permanently lost when lakes no longer freeze in warmer winters. The loss of ice cover for lakes 567 

can promote summer warming of lakes and harmful cyanobacterial blooms thereby reducing 568 

freshwater ecosystem goods and services such as recreational activities and access to potable 569 

water (Weyhenmeyer et al. 2008; Hampton et al. 2017). Future studies on the cryosphere should 570 

include an analysis of interannual variability to serve as early-warning indicators and identify 571 

which systems may be approaching an ice-free state with deleterious effects on freshwater 572 

ecosystem goods and services year-round.  573 
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