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Summary 

To produce movement sequences is to interact meaningfully with the world around us. 

Large amounts of the human behavioural repertoire, such as typing on a keyboard, 

executing a dance routine, or playing a piece of music require the sequential execution of 

movements. Moreover, to execute sequences is to plan them. Without planning, execution 

is far more prone to failure. This thesis Investigates the cognitive and neural mechanisms 

which underly the planning and execution of movement sequences. 

In Chapter 1, relevant research is described and summarised that elucidates how 

sequences are prepared, controlled, and implemented under a motor hierarchical 

framework. Evidence from neuroimaging and electrophysiology is integrated to provide an 

overarching account of how the brain plans movements and transitions into effective 

execution. However, how high- and low-level hierarchical sequence features map onto the 

planning and execution of movement sequences is unclear. 

To investigate such mapping, Chapter 2 assesses the presence of high-level order and 

timing, and low-level integration, in motor cortical regions throughout sequence planning 

and execution using multivariate analysis of functional magnetic resonance imaging (fMRI). 

A shift from the control of order and timing during planning, to integration with online 

timing control during execution was identified. 

With a hierarchical shift identified in the cortex, Chapter 3 investigates the presence of 

sequence features in subcortical regions which have been shown to play important roles in 

the generation of movement. The left hippocampus is shown to plan the order of 

movements in advance. Additionally, the basal ganglia, thalamus, and bilateral hippocampus 

show distinct activity patterns between planning and execution, supporting findings from 

electrophysiology which show that planning and execution occupy orthogonal subspaces. 

Chapter 4 explores the role of inhibition of unused effectors in the resolution of 

competitive planning processes. Behavioural markers of competitive queueing were found 

in the hand to be used in the upcoming sequence; however, the contralateral hand 

displayed a mirrored gradient of inhibition which is thought to reflect interhemispheric 

transcallosal inhibition processes used to reduce the likelihood of incorrect movements. 
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The summary Chapter 5 formulates a systems-level framework for the planning and 

execution of skilled movement sequences, integrating findings from both the literature and 

the previous empirical chapters. The hippocampus and parietal cortex are thought to plan 

the order of upcoming movements in extrinsic and intrinsic space respectively, after which a 

signal to move ascends through the thalamus and causes reorganisation of cortical and 

subcortical neural patterns, with the former shifting to low-level sequential integration with 

elements of online timing. The implications and future directions of such a model are 

discussed with respect to both research and clinical significance. 
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Chapter 1 - General Introduction 

1.1 Neural control of movement sequences 

Being able to produce several movements in quick succession is an ability that underpins 

many facets of the human experience. Whether it is playing a musical instrument, typing on 

a keyboard, or tying one’s shoelaces, movement sequences are ubiquitous in daily life, and 

their accurate execution is a pre-requisite for success across many activities. Poor sequence 

performance might result in an unpleasant piece of music, typos throughout a professional 

piece of writing, or tripping on one’s own shoelace. The neural control of movement 

sequences appears to not be simple or centralised, but rather involves several distinct 

mechanisms and anatomical regions across the human brain. Breakdowns are commonly 

observed across several distinct neurological disorders, each of which can serve to inform us 

of the mechanisms and anatomical brain regions required for successful movement 

sequence learning and execution. This, in turn, allows us to create better ways to treat and 

rehabilitate those individuals affected. Firstly, Developmental Coordination Disorder 

(commonly known as Dyspraxia) is characterised by deficits across several motor domains 

compared to same-age controls (Wilson et al., 2013), where impaired sequence execution 

(Biotteau et al., 2016) could be related to malfunctions in movement planning and the 

development of a forward model (Opitz et al., 2020). Task-specific Dystonia, however, 

results in a focal impairment to one form of skilled execution, such as a talented musician 

suddenly becoming unable to play a particular musical instrument, and is thought to be 

caused by extensive overtraining resulting in a loss of flexibility during action selection 

(Sadnicka et al., 2018). Moreover, Parkinson’s disease results in impaired movement and 

cognition (Sveinbjornsdottir, 2016; Wilkinson et al., 2009) due to a loss of dopaminergic 

neurons in the substantia nigra which cause a resultant dysfunction of the basal ganglia 

(Rubin et al., 2012). The functional role of the basal ganglia has been debated between 

action selection (Frank, 2011; Gurney et al., 2001) and the specification and storage of 

movement kinematics (Dhawale et al., 2021; Harpaz et al., 2022), yet optogenetics shows 

that they are necessary to the execution of movement sequences nonetheless (Mizes et al., 

2023a). Alzheimer’s disease, closely associated with degeneration of the hippocampus 

(Dubois et al., 2016; Förstl & Kurz, 1999), results in reduced motor learning capacity (van 
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Halteren-van Tilborg et al., 2007). Furthermore, the cerebellum is closely associated with 

the definition of movement kinematics, best represented by eye blink conditioning 

(Christian & Thompson, 2003) and cerebellar ataxia (Diener & Dichgans, 1992). 

In this chapter, I will summarise relevant cognitive and neuroscience research which 

further cements movement sequence production as a distributed system across several 

anatomical regions and mechanisms. Findings will further be interpreted and integrated 

under a hierarchical systems model, which will provide a rationale for the empirical research 

carried out as part of this thesis. 

1.1.1 Motor hierarchy 

Motor sequences have been described as hierarchical and found to be encoded in 

multiple representational layers (Grafton & Hamilton, 2007; Lashley, 1951; Rosenbaum et 

al., 1983; Yokoi & Diedrichsen, 2019a). According to the framework described by 

Diedrichsen & Kornysheva (2015), these consist of selection, intermediate, and execution 

layers. Motor primitives, or synergies, make up the execution layer as the lowest level in the 

hierarchy and control spatiotemporal patterns of muscle activity ranging from small 

movements such as individual finger contractions, to whole arm extension, flexion, grasping, 

and licking (Flash & Hochner, 2005; Graziano, Taylor, Moore, et al., 2002; Graziano, 2016; 

Overduin et al., 2012). Primitives can be involuntary evoked by stimulating the spinal cord 

(Zimmermann et al., 2011) or the primary motor cortex (Gentner et al., 2010; Graziano, 

Taylor, & Moore, 2002; Overduin et al., 2012), suggesting that these movements are stored 

in the motor system within stable populations of neuronal networks which directly project 

onto the peripheral nervous system (Diedrichsen & Kornysheva, 2015a). During early 

movement sequence learning, primitives belonging to the target sequence must be selected 

and executed serially (Verwey, 2023a; Verwey & Abrahamse, 2012). Selection is a time-

consuming process and can be made longer when there are multiple choices (Hick, 1952), 

how similar choices are to one another (Rosenbaum et al., 1988), and when there are 

translations required between the cue and the target action (e.g., ‘A’ having to be translated 

to a forward reach; Goodman & Kelso, 1980; Haith & Bestmann, 2020). Given that 

movements within sequences typically need to be executed in rapid succession, such as 

playing piano keys in time with a fast melody, repeatedly performing the time-consuming 

selection process prior to each individual movement element might be inconvenient at best 



Chapter 1 -   3 

and completely disrupt performance at worst. Thus, the motor system must find a way to 

avoid the costly process of repeated action selection. One possibility is that sequences 

themselves may become stored as entirely new primitives; that is, as a sequence becomes 

learned and practiced, primitives become inseparably bound together and form a new 

representation to be stored in neuronal populations belonging to the motor network 

(Lashley, 1951). Such a theory would explain how sequences can be executed in a rapid 

fashion with very short movement times (Abrahamse et al., 2013) as each movement would 

be directly functionally inseparable from the prior and following movements. While 

stimulating the motor cortex of musicians using transcranial magnetic stimulation (TMS) can 

elicit complex movements such as those from a musical instrument repertoire in musically 

trained humans (Gentner et al., 2010), or naturalistic behaviours from everyday life in 

monkeys (Overduin et al., 2012) that can even consist of multi-step movements such as 

grasping food and putting it to their mouths (Graziano, Taylor, & Moore, 2002), there is no 

evidence for stimulation eliciting entire movement sequences. This suggests that commonly 

used, naturalistic, complex movements can be stored as primitives, yet this is unlikely to be 

true for whole sequences. Moreover, by its nature a mechanism that stores whole 

sequences inflexibly would result in an individual being unable to continue executing a 

sequence should they be interrupted, instead having to start the sequence over which 

would be detrimental in many circumstances such as playing a long piece of music 

(Rosenbaum et al., 1983). This view also does not account for transposition errors, a 

common error seen during sequence execution where the order of two elements in a 

sequence is unintentionally switched (Lashley, 1951). 

Providing further evidence against the storage of sequences as a single primitive, clear 

patterns emerge during sequence production where extended pauses surround periods of 

rapid movement execution, called ‘chunks’, which represent the second layer of the motor 

hierarchy (Diedrichsen & Kornysheva, 2015a; Sakai et al., 2003; Verwey & Eikelboom, 2003). 

These chunks are characterised by series of movements that are closely bound in temporal 

proximity, typically arise idiosyncratically (Sakai et al., 2003), and can be identified trial-by-

trial using Bayesian modelling (Acuna et al., 2014). Much like the well-documented chunking 

system in working memory (Thalmann et al., 2019), storing short strings of movements as a 

chunk allows for greater computational efficiency compared to the serial storage, retrieval, 
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and execution of sequential movements (Ramkumar et al., 2016). Serial organisation of 

movements within chunks has been thought to employ state-dependent movement control, 

where the next movement to be executed is determined by the state of the system 

following execution of a prior movement (Diedrichsen et al., 2007; Kornysheva, 2016). As 

such, chunks allow for the execution of fast and accurate sequential movements and learnt 

chunks can often be applied to new sequences which contain a similar string of movements, 

facilitating learning (Diedrichsen & Kornysheva, 2015a). After extensive learning, sequence 

representations then call upon a number of these chunks to successfully execute a 

movement sequence with speed and accuracy. 

Motor sequence learning therefore begins with manual selection of motor primitives in a 

slow and intensive process. As learning progresses, an ‘intermediate’ layer consisting of 

well-learnt chunks develops, allowing the nervous system to selectively activate strings of 

several movements which facilitates rapid production and allows for transferability when 

learning new sequences. However, this mechanism is not immune to breakdowns. Task-

specific Dystonia is a disorder that causes highly skilled individuals to become unable to 

perform actions that they once could do with ease, such as a pianist being no longer able to 

play the piano (Albanese et al., 2013). Initial evidence from electrophysiology in monkeys 

suggests that overtraining rapid and repetitive grasping movements causes a breakdown of 

the somatotopic organisation in S1, causing overlap of the receptive fields belonging to 

relevant effectors such as the dorsal and palmer region of the hand, resulting in symptoms 

that are similar to task-specific dystonia (Byl et al., 1996). More recently, this model has 

been criticised as it can only account for the broad effects related to general dystonia rather 

than the task selectiveness observed in task specific dystonia, and the increased receptive 

fields were not observed in a cohort of human participants using functional Magnetic 

Resonance Imaging (fMRI; Sadnicka et al., 2023). Instead, a framework was proposed by 

Sadnicka, Kornysheva, and colleagues based on maladaptation of the motor hierarchy 

(Sadnicka et al., 2018). They suggested that in healthy skilled motor learning the 

intermediate layer allows for flexibility in applying learnt sequences to different contexts 

such as changing around certain notes in a piece of music, adjusting the rhythm of the piece 

(see 1.1.3 Movement timing), or changing the tool used to execute the sequence, such as an 

illustrator using a tablet and stylus instead of their usual easel and paintbrush. When a 
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highly skilled individual begins to overtrain a sequential movement in a repetitive way or 

strenuous way, such as preparing a musical piece for a concert by performing it repeatedly, 

Sadnicka, Kornysheva and colleagues propose that this intermediate architecture is lost to 

make the movement faster and more automatic. This however results in a lack of flexibility 

to changing task demands and that is prone to breakdowns when exposed to other risk 

factors. For example, when the individual must play the same piece on a new piano which 

may require a greater level of force to execute key presses, yet the individual is undergoing 

high levels of psychological stress, has some pain in the muscles of the arm, and has to 

execute a repetitive task requiring considerable force, the system is too rigid and the 

performance can no longer be executed, resulting in task-specific dystonia. This framework, 

however, also suggests task-specific dystonia can be prevented by avoiding the loss of 

intermediate architecture to maintain flexibility in the system. The authors suggest 

measures such as using a variety of different pianos, playing at different pitches or tempos, 

and avoiding highly repetitive training when learning. 

Research has sought to further investigate the neural signatures of hierarchical layering. 

Yokoi and Diedrichsen (2019) presented a landmark study in which they identified the 

presence of each layer belonging to the motor hierarchy by training participants to execute 

movement sequences; by manipulating the constituent chunks to elicit predictable 

representational structures depending on the hierarchical level that a respective target 

region represents. For example, in a region that is responsible for intermediate chunking, 

sequences with matching chunks would be more similar than sequences with distinct 

chunks. This is also the case for whole sequences and the constituent finger movements, 

representing selection and execution layers respectively. Crucially, Yokoi and Diedrichsen 

imposed the chunking structure of sequences throughout learning, meaning that they could 

match sequences overall yet impose different chunking structures. After generating 

predicted representational structures for each layer of the hierarchy they fit these 

representational models back to the data using Pattern Component Modelling (PCM), a 

Bayesian method that predicts the likelihood of the data if the proposed model was true 

(Diedrichsen et al., 2018). Upon fitting the models, along with all possible model 

combinations, the primary motor cortex (M1) was found to primarily represent the first 

finger of the sequence. Premotor and parietal regions, however, encoded both sequences 
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and chunks with some degree of overlap in their anatomical location. This carefully 

controlled study provided evidence for the separation of hierarchical movement elements 

throughout the cortex in humans, with a key dichotomy established between the function of 

primary motor cortex and secondary motor cortices, with the former processing single 

finger movements and the latter chunks or whole sequences.  

The first initial evidence for a primary-secondary motor cortex divide was shown as early 

as the mid-90s by Tanji and Shima (1994). They recorded activity from individual neurons in 

monkeys that were trained to execute sequences of push, pull, and turn movements, where 

neurons in the SMA showed an increase in spiking rate preceding certain movements, only 

when they were followed by another specific movement. For example, some neurons would 

fire before the execution of a turn movement, but only when the succeeding movement was 

pull. However, the same neuron did not fire when the first movement was still turn, but the 

second was instead push. Moreover, neurons in the primary motor cortex (M1) did not 

show such sensitivity to preceding movements and would increase their firing rate 

unselectively, thus suggesting that different roles of cortical regions as to how movements 

were tracked throughout sequences. More recently, findings by Churchland and colleagues 

(Russo et al., 2020) have shown strong support for this phenomenon using multi-unit 

recordings in monkeys that were trained to perform a cycling motion with their hand. This 

cycling motion served to move them through virtual space where they were instructed to 

stop at a target point on the path ahead of them. While performing this task, dimensionality 

reduction of neural population recordings showed that the SMA tracked the number of 

rotations that were executed by shifting the occupied subspace along the first principal 

component for each rotation of the cycle, tracking the movement’s progression. M1, 

however, maintained a consistent overlapping trajectory throughout the movement, 

showing a lack of sensitivity to the progression of cycling rotations but rather tuning to the 

execution of each individual rotation. Additional research from human behavioural and 

neuroimaging methods provides further evidence for this divide, with the pre-SMA 

controlling the initiation of movement chunks within sequences (Kennerley et al., 2004), and 

primary motor cortex showing mostly control of individual finger movements (Berlot et al., 

2020; Yokoi et al., 2018). Moreover, sequences appear to be held in extrinsic reference 

frames in dorsal premotor cortex in contrast to intrinsic frames in primary motor cortex, 
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suggesting that movement sequence elements are more abstract in secondary motor cortex 

compared to primary where each element is closely tied to the used effector (Wiestler et al., 

2014). 

Aside from regions that are directly involved in motor control, distinct hierarchical tuning 

during movement can be observed in other regions both cortical and subcortical. 

Rostrolateral prefrontal cortex, for example, shows ramping activation across the span of 

movement sequences that resets upon sequence completion, and perturbation of this 

region using TMS results in more mistakes towards the end of sequence execution, 

consistent with the region playing a role in tracking sequence progress (Desrochers et al., 

2015). Furthermore, the basal ganglia have traditionally been associated with action 

selection through the inhibition and disinhibition of competing unwanted and target 

movement plans respectively, which would associate them with high-level selection 

processes (Benjamin et al., 2010; Frank, 2011; Gurney et al., 2001; Mink, 1996; Redgrave et 

al., 1999). Alternatively, Ölveczky and colleagues put forth contemporary findings suggesting 

that the dorsolateral striatum in rats (equivalent to the human putamen) may actually play a 

role in the storing of movement kinematics for over-trained sequences, thus controlling 

hierarchically low-level elements such as motor primitives (Dhawale et al., 2021; Harpaz et 

al., 2022). Mizes et al (Mizes et al., 2023a) from this group show that optogenetic 

perturbation of the dorsolateral striatum in rats who learnt to produce movement 

sequences lead to a deterioration in the performance of automatic sequences (over-trained 

sequences which required no cues to execute) but not in the performance of sequences that 

relied on working memory of following sensory cues. Based on this, the basal ganglia may be 

a potential candidate for the storage of entire movement sequence kinematics in the brain. 

However, the automatic sequences used in this task were executed through long bouts of 

repetition, a process which is unnaturalistic and lacks the known benefits of contextual 

interference during training, including better retention and skill transfer (Magill & Hall, 

1990). A recent study by Ölveczky and colleagues suggested that executing previously 

automatic sequences in a context that requires flexibility, i.e. also producing other 

sequences in the same block and utilising the same primitives, in this case lever presses, 

across sequences, necessitates input from motor cortical regions, suggesting that not only 
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does the amount of practice impact the brain regions required to produce a sequence, but 

also the surrounding context within which the execution occurs  (Mizes et al., 2023b). 

1.1.2 Sequential movement order 

The motor hierarchy serves as a systems-level framework to understand the organisation 

and function of the motor system. However, the exact mechanism that allows for the 

definition and implementation of movement order in the intermediate level remains 

unclear. The order of execution is vital to the success of movement sequences, for example 

when tying shoelaces, one must first go over under then make a bow to ensure success, so 

the motor system requires a consistent, reliable, and flexible way to do so. Initial theories 

proposed by Ebbinghaus in 1885, predominantly from the area of memory and learning, 

suggested that sequential elements may be recalled or executed serially based a cueing 

function provided by the end point of the prior element (Ebbinghaus, 2013). In the motor 

domain, this process, which would later be named the Reflex Chaining Theory (Clower, 

1998), relied on the resultant sensory state of the system following a movement’s 

production to prime the initiation of the following movement. Reflex Chaining Theory 

became prominent not only in the motor and memory domains, but also among 

behaviourists (Washburn, 1916; Watson, 1920) up until Lashley’s seminal critique ‘The 

problem of serial order in behavior’ (Lashley, 1951). Lashley argued against the serial 

account due to its lack of flexibility, namely: transposition errors, where two items in a 

sequence are unintentionally switched, cannot be accounted for under the model; there 

would need to be a near infinite amount of chains to allow for the vast repertoire of skilled 

movements that humans produce in daily life; and in rapid sequences, there is unlikely to be 

enough time for sensory feedback to arrive from the periphery to drive the next movement. 

Given this criticism, Lashley proposed an opposing parallel theory that action plans are vital 

for sequential execution and each element must be simultaneously pre-activated. This 

theory of parallel pre-planning would later be developed into the Competitive Queueing 

(CQ) hypothesis (Houghton, 1990; Houghton & Hartley, 1995). 

There are three layers to modern CQ theories: the parallel planning layer, competitive 

choice layer, and output layer (Bullock, 2004; Bullock & Rhodes, 2002). Nodes representing 

each element of a sequence are present in the parallel planning layer which develops 

throughout learning, with each node being activated to a varied extent depending on the 
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respective element’s position in the sequence, e.g., the first element will receive the 

greatest activation and the final element the least. The competitive choice layer receives 

these activation inputs and subsequently selects the element with the greatest activation. In 

turn, there is lateral inhibition between competing elements within the competitive choice 

layer, allowing only one movement to pass through to the output layer and be subsequently 

executed by the downstream motor system. These dynamics result in a winner-takes-all 

model and after an element has won it proceeds to self-inhibit, allowing the node with the 

next greatest activation in the parallel planning layer to become the next winner. This 

process is repeated iteratively until the sequence is completed in its entirety, allowing for a 

parallel planning mechanism that facilitates serial execution. 

CQ models make clear predictions of neural activation gradients, where neuronal 

populations should encode upcoming items of a sequence with weighted strengths 

depending on their ordinal position in the sequence - a CQ gradient. Transposition errors 

also have a clear basis under this theory, where noise in the system may cause the 

weighting of a subsequent sequence element to become greater than those that were 

supposed to precede it, resulting in competitive inhibition and unintended execution. 

Neural evidence for competitive queueing was first shown in primates by Averbeck et al 

(2002), who trained Rhesus Macaque monkeys to draw 2D shapes using a joystick while 

recording from 16 independent single cells in the prefrontal cortex contralateral to the 

moving effector. The shapes were separated into segments depending on the number of 

edges, for example a square consisted of four edges and a triangle of three, which were 

considered individual movement elements due to the required substantial changes in 

trajectory, including stops between movements. The authors then trained a linear 

discriminant analysis (LDA) decoder to discriminate between each segment during the 

production period based on single unit activity from 16 microelectrodes, which was 

subsequently used to categorise the probability of patterns belonging to each segment 

during the period preceding movement. They found that prior to movement onset, the first 

segment showed the highest pattern probability followed by subsequent elements, 

weighted by their ordinal position in the sequence. Additionally, neural patterns from trials 

with transposition errors showed greater classification accuracy on subsequent movements, 

suggesting that later elements may have unintentionally won the selection process leading 
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to unintended premature execution. Following on from this initial work by Averbeck & 

colleagues, contemporary research was able to identify a similar CQ gradient in the neural 

dynamics of human participants using magnetoencephalography (MEG) during a delayed 

sequence production (DSP) task (Kornysheva et al., 2019a). The researchers also used an 

LDA classifier to measure the pattern probability of each sequence element prior to 

movement based on MEG signal amplitude across the whole brain. The LDA was trained on 

10ms windows prior to each movement during sequence execution, then tested on 10ms 

windows throughout the planning phase prior to movement. Much like Averbeck et al 

(2002), Kornysheva et al (2019) found a CQ gradient where the probability of upcoming 

movement elements was weighted depending on their ordinal position in the sequence. In 

addition, this effect was shown to be finger-independent, as classification was accurate both 

within- and across-sequences. The strength of the CQ gradient, i.e. how well-separated the 

sequence elements were prior to execution, was also found to be predictive of performance 

as it showed a negative correlation with error rate and temporal accuracy during execution, 

and median splits revealed that above-average performing participants had greater CQ 

gradients compared to below-average performing participants. Signals most closely related 

to this CQ gradient were localised using a searchlight analysis to parahippocampal regions 

and cerebellar lobules 5 and 8, suggesting these areas play a key role in the pre-ordering of 

sequential movement elements. 

The hippocampus has historically been associated with memory formation (Knierim, 

2015), memory consolidation (Peigneux et al., 2004), spatial navigation (Moser et al., 2015), 

and crucially the definition of non-motor sequence order (Davachi & DuBrow, 2015). 

Moreover, hippocampal and parahippocampal areas are recruited during several examples 

of movement sequence learning tasks (Schendan et al., 2003) with their activity levels 

correlating with the accuracy of movement execution (Steele & Penhune, 2010). Dolfen et al 

(2023), in preparation, used representational similarity analysis (RSA) of fMRI data in 

humans to investigate how the hippocampus represents sequential movements, finding that 

the unlike other motor cortical and subcortical regions the hippocampus binds movements 

to their ordinal position in a learned sequence but not when the same movements are 

arranged in a random order. Additional research from the same group has reinforced this, 

showing the involvement of the hippocampus in arranging movements in sequences (Albouy 
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et al., 2015; B. R. King et al., 2022). Further, lobules 5 and 8 of the cerebellum show finger-

specific sensory and motor representations (Buckner, 2013; Wiestler et al., 2011), and are 

recruited during movement sequence tasks (M. King et al., 2019). Given their established 

functions, the hippocampus may define an abstract template for a movement sequence 

which is then assigned to effectors by circuits in the cerebellum (Kornysheva et al., 2019a) 

although these anatomical localisations of function require further investigation to clarify. 

In addition to their neural predictions, CQ models also make clear predictions regarding 

the availability of behaviours. The pre-activation of the first movement in a sequence would 

not only suggest that its neural availability is highest but also its behavioural availability, as 

no other competing movements must be inhibited before the first movement can be 

executed. For the second movement, however, the system must inhibit the first movement 

prior to its execution and so on for further elements in a target sequence. To assess this 

hypothesis, Mantziara et al (2021) trained participants to produce movement sequences in a 

DSP task, where sequences were executed from memory based on an abstract cue that was 

shown for a short period prior to execution, similar to the MEG study … Kornysheva et al. 

2019. On some trials, instead of prompting execution from memory, the Go cue would 

instead prompt a singular element of the sequence and the subsequent reaction time and 

error rate would be recorded under its respective position in the sequence that was initially 

cued. CQ models predict that earlier elements of the sequence would have lower reaction 

times and error rates as they would be more prepared and require less inhibition of prior 

movement elements. A behavioural CQ gradient was found between elements one through 

three within both reaction time and error differences, with the strength of this CQ gradient 

relating closely to the quality of execution much like findings from neural data had shown 

previously (Averbeck et al., 2002; Kornysheva et al., 2019a). 

There are several variables in addition to the size of the CQ gradient that impact the 

quality of movement sequence execution, such as experience playing a musical instrument 

(Sobierajewicz et al., 2018). Trained musicians also show changes in neural anatomy (Gaser 

& Schlaug, 2003) and function, with a reduced motor cortical potential compared to 

untrained controls (Bianco et al., 2018; Wright et al., 2012a). What isn’t clear, however, is 

whether musicians’ improved performance on movement sequencing tasks is linked to a 

greater CQ gradient relative to non-musicians. This may also be the case with other forms of 
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expertise which require extensive motor capabilities such as dance (Teixeira-Machado et al., 

2019), sports (Maudrich et al., 2021), and video gaming (Kowal et al., 2018). 

Another finding from the study by Mantziara et al (2021) was that the timing structure of 

the upcoming sequence, i.e. the length of inter-press intervals, did not impact the measured 

CQ gradient. The researchers had initially hypothesised that if the CQ gradient represented 

timing structure, the difference in availability between two consecutive movements might 

modulate the length of the temporal interval between them, such that two movements with 

a large difference in availability would be produced with a large temporal interval due to the 

amount of respective suppression and activation required to transition from one element to 

the next. While this was not the case, other research has attempted to identify whether 

timing structures are an emergent or independent property, and how they are implemented 

in the motor system. 

1.1.3 Movement timing 

The existence of a dedicated system for the production of serial order has been widely 

accepted since Lashley’s (1951) criticism of the reflex chaining account, but the order of 

movements is not the only aspect of a sequence’s construction that is crucial for successful 

execution - rhythmic structure, or timing, can be just as important. Playing a piece of music 

on the piano or producing a tennis serve both require strict timing of constituent 

movements, else a sloppy tune or a mishit tennis ball result. However, whether the control 

of timing is an emergent property that comes as a by-product of the specification of serial 

order, or an independent process entirely, has been debated (Kornysheva, 2016). Early 

results from force adaptation experiments found that participants adapted well to a 

forcefield that depended on factors such as movement velocity, but not timing (Conditt & 

Mussa-Ivaldi, 1999; Karniel & Mussa-Ivaldi, 2003) although these results were later criticised 

for lacing external movement initiation cues (Kornysheva, 2016). Medina et al (2005) later 

provided evidence from smooth eye pursuit, suggesting that perturbations based on timing 

were indeed accounted for and could be flexibly combined with those involved in the 

processing of space. Furthermore, initial evidence from the serial reaction time task (SRTT) 

suggested that timing was inseparable from the ordinal movement structure it was paired 

to, as knowing the timing structure of a new sequence did not facilitate learning, when prior 

knowledge of the order did (O’Reilly et al., 2008; Shin & Ivry, 2002, 2003). However, Ullén 
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and Bengtsson (2003) claimed that the temporal structures of sequences in this experiment 

were modulated by participants’ reaction times due to each stimulus onset interval being 

relative to the time of the last press, resulting in inconsistent timing structures. To 

investigate the flexibility of timing control further, Ullén & Bengtsson trained participants to 

produce three types of sequences: ordinal, which required different finger presses at an 

isochronous rhythm; temporal, which required a single repeating press with a defined 

timing structure; or combined, which required different finger presses with a defined timing 

structure. They found strong transfer effects, with the learning of a new combined sequence 

being facilitated if it had the same timing structure as a temporal sequence that participants 

were trained on.  

Additional evidence for the independent control of timing comes from an alternate SRTT, 

where participants were trained to produced sequences with a specific order and timing 

structure, then exposed to repeated trials of sequences which either had the same order, 

timing, or both, compared to the trained sequence (Kornysheva et al., 2013). Evidence of 

facilitated performance was immediate for sequences with the same order or both, 

however sequences with only the same timing took three exposures to show performance 

benefits relative to unfamiliar control sequences. This suggests that the advantage of timing 

transfer only becomes applicable after the new order structure is known, and that timing is 

a flexible modular mechanism that can be transferred to aid in the learning of a new 

sequence. In an attempt to investigate the neural basis behind this independent 

mechanism, Kornysheva and Diedrichsen (2014) replicated the SRTT format of this study 

while also recording neural signals during movement sequence execution using fMRI. To 

localise the control of timing in the cortex, they trained an LDA to distinguish between 

timing structures when paired with certain orders, which they then tested to distinguish 

between the same timings when paired with different orders. Cortical regions in which the 

LDA shows above chance decoding accuracy are likely to possess neural patterns associated 

with independent and flexible timing control. A surface-based searchlight revealed such 

flexible timing control in the Supplementary Motor Area (SMA), and dorsal and ventral 

Premotor Cortex (PMd and PMv, respectively). Additionally, independent order control was 

identified using a complimentary analysis where an LDA was trained to distinguish between 

orders paired with different timings, revealing control in parietal, PMd, and SMA regions. 
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Finally, a third classifier was trained and tested to distinguish between all sequences once 

the mean activity patterns for individual timings and orders had been subtracted, akin to 

residual patterns following removal of transferrable timing and order control, which 

signified representations of non-transferrable spatio-temporal idiosyncrasies of each 

sequence. This integrated accuracy was found solely within contralateral primary motor 

cortex (M1). In sum, these findings demonstrate that order and timing are independently 

controlled by secondary motor regions and combined in M1, a key output region with direct 

projections onto the spinal cord. 

The order and integration of movements investigated by Kornysheva & Diedrichsen 

(2014) have clear mappings onto the Motor Hierarchy (See 1.1.1 Motor hierarchy), 

constituting the selection or intermediate and execution layers respectively (Diedrichsen & 

Kornysheva, 2015a). However, it is less clear how an independent system for timing control 

might be implemented. One theory states that movement timing exists within the 

intermediate layer, that can be selected similarly to different orders and adjusts the 

temporal distance between serial movements in a multiplicative fashion (Kornysheva, 2016; 

Kornysheva & Diedrichsen, 2014). This theory suggests multiplicative rather than additive 

because knowledge of the sequential order is required for known timing to grant any 

benefit to performance (Kornysheva et al., 2013; Kornysheva & Diedrichsen, 2014). 

Moreover, the localisation of timing to premotor regions (SMA, PMd, PMv) aligns well with 

intermediate hierarchical layers that have been found in secondary motor regions (Yokoi & 

Diedrichsen, 2019a). In addition to those regions included above, other research has 

historically implicated the cerebellum and the striatum in the control and implementation of 

movement timing (Buhusi & Meck, 2005; Lewis & Miall, 2003) and, more recently, the 

hippocampus in encoding the timing of events into memory (Eichenbaum, 2014). However, 

given that these regions vary significantly in their anatomical structures, and several distinct 

yet viable mechanisms have been proposed that allow neural networks to process time 

(Paton & Buonomano, 2018), it is likely that they each function using different and perhaps 

complimentary neural mechanisms that depend on the behavioural context. 

Neurophysiological studies have investigated the nature of temporal processing in the 

medial frontal cortex (MFC) in primates (equivalent to the SMA in humans). Wang et al 

(2018) trained Rhesus monkeys to produce specified timing intervals in a cue-set-go task, 
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where a visual context cue at the onset of each trial indicated the length of the upcoming 

target interval. Population recordings from MFC show temporal scaling when projected onto 

a low-dimensional space that depends on the length of the temporal interval being 

produced; activity became faster when producing a shorter interval, and slower when 

producing a longer interval. This effect was also observed in downstream caudate neurons 

but originated in MFC. Moreover, similar scaling mechanisms have been observed in parietal 

(Jazayeri & Shadlen, 2015; Schneider & Ghose, 2012) and premotor cortices (Zhou et al., 

2020), with subcortical structures such as the striatum (Kunimatsu et al., 2018), 

hippocampus (Eichenbaum, 2014; Itskov et al., 2011), and cerebellum (Narain et al., 2018; 

Tanaka et al., 2021) showing activity which spikes at specific time points or interval 

durations. Additional distinctions can be made between cortical and subcortical processing 

of time as tasks involving explicit time processing typically result in greater recruitment in 

the SMA (Mondok & Wiener, 2023) compared to implicit time processing such as eye blink 

conditioning, which has historically been associated with the cerebellum (R. Ivry, 1997; 

Johansson et al., 2016; Mauk & Buonomano, 2004). Such a distributed network, including 

the motor cortico-basal ganglia-thalamo-cortical loop, is thought to protect against injury, 

disease, or degeneration from aging which might leave a system that relies on a singular 

timing hub vulnerable (Merchant, Harrington, et al., 2013). 

As highlighted above, the order and timing are predominantly studied during execution. 

However, a growing body of research has begun to investigate the period preceding 

movement: motor planning. 

1.2 Motor planning: evidence from behaviour, electrophysiology, and brain imaging 

Motor planning, or motor preparation, is a term that has been used throughout the 

literature to refer generally to the period preceding movement that can range from as short 

as 150ms up to 700ms prior to movement onset (Haith & Bestmann, 2020). However, 

several processes are likely to be occurring during this period that may or may not be 

directly related to the execution of movement itself such as decision making, action 

selection, and specifying movement kinematics (Wong et al., 2015). For example, in tasks 

where there is some degree of translation required prior to movement, such as ‘F’ indicating 

a forward motion and ‘B’ indicating a backward motion, reaction times are significantly 

longer than when the target movement is spatially cued (Goodman & Kelso, 1980; 
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Rosenbaum, 1980). By the account of Haith and colleagues, movement preparation consists 

solely of processes that occur in just 50ms prior to movement initiation and some 

circumstances do not require planning whatsoever for movement initiation to occur (Haith 

et al., 2016). Moreover, the same group proposed a line of thinking which categorises motor 

planning processes into two key categories: ‘What’ to execute and ‘How’ to execute it 

(Wong et al., 2015). ‘What’ processes involve processes such as observation of the 

environment, object selection, and task application, which are used to determine motor 

goals, whereas ‘How’ processes specify how to achieve said motor goals through kinematics, 

action selection, and movement specification. Under an absolute account, all processes 

which determine ‘What’ to execute are not strictly motor but instead relate more to 

cognitive processing. Alternatively, these concepts may map onto the motor hierarchy 

(Diedrichsen & Kornysheva, 2015; see 1.1.1 Motor hierarchy). ‘What’ to execute would 

constitute the selection and intermediate layers of the motor hierarchy, i.e. higher level, 

whereas ‘how’ to execute a movement would constitute the execution layer and motor 

primitives. When studying motor planning and how planning transitions into movement, it is 

crucial to study whether and how populations of neurons plan upcoming movements at the 

fundamental level. 

The neural investigation of motor planning of sequences was pioneered by researchers 

such as Tanji (Tanji & Evarts, 1976; Tanji & Shima, 1994) who studied single unit activity of 

neurons prior to movement onset. More recently, multivariate approaches and 

dimensionality reduction of electrophysiological recordings in non-human animals have 

allowed researchers a unique insight into the informational content of motor regions during 

the planning period preceding movement (Zimnik & Churchland, 2021a). This is also true for 

human neuroimaging methods, where researchers have employed approaches such as 

linear multivoxel decoding (Cox & Savoy, 2003; Haynes & Rees, 2006; Norman et al., 2006), 

representational similarity analyses (Kriegeskorte, 2008) and representational model fitting 

(Diedrichsen et al., 2011; Diedrichsen & Kriegeskorte, 2017), to analyse the informational 

content of non-invasive neural recordings such as fMRI and MEG. These multivariate 

analyses prove to be informative especially in the context of motor learning, where the 

responses of neuronal populations are not always related to a simple increase of activity as 

learning progresses (Berlot et al., 2020). 
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1.2.1 Planning as a distinct neural state to execution 

Following the success of characterising the responses of neurons in the visual cortex 

(Hubel & Wiesel, 1962), researchers in the movement domain attempted to assess whether 

responses from neurons in the motor cortex correlated with task parameters. This was 

somewhat successful (Georgopoulos et al., 1982, 2007), yet responses were overall 

heterogenous and difficult to categorise, especially during the planning period prior to 

movement. Planning dynamics were revealed to be tuned to a variety of information about 

the upcoming movement such as velocity (Churchland et al., 2006), direction (Messier & 

Kalaska, 2000; Riehle & Requin, 1989), and movement order (Tanji & Shima, 1994). With 

such variance in tuning across the motor system, researchers hypothesised that preparation 

is a dynamical system which sets the initial state of the neuronal population, which initiation 

causes the motor system to cascade though a low-dimensional manifold producing 

movement (Shenoy et al., 2013; Vyas et al., 2020). In other terms, planning aligns certain 

conditions such that the target movement can occur naturally, much like a paper boat being 

sent down a stream. The amount of force that sends the boat forwards, the direction in 

which it is released, and the strength of the stream’s current all contribute to the trajectory 

and the end state at which the boat arrives. The dynamical system does not state that 

perfect conditions are required for execution to begin, however, as evidence shows that the 

system can still execute movements even in absence of an extended delay period for 

planning (Ames et al., 2014). Further investigations show that planning states can be 

entered in remarkably little time, in some cases within around 40ms for single movements 

(Lara et al., 2018), and can even occur during ongoing movement (Zimnik & Churchland, 

2021a). 

However, the same neurons whose preparatory dynamics are informative of the 

upcoming movement often drive movement dynamics during execution (Green & Kalaska, 

2011; Remington et al., 2018; Riehle & Requin, 1989; Wong et al., 2015), thus leaving 

unclear what mechanism allows the motor system to set an appropriate planning state 

without causing unintentional movement. One theory proposes that the neural activity 

patterns underpinning movement planning are identical to those during execution, albeit 

below the threshold required to initiate movement (Cisek & Kalaska, 2005; Duque & Ivry, 

2009a). Activity is kept below the threshold required to initiate movement by inhibitory 
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corticospinal circuits, which allows for movements to be planned without readout to 

downstream neurons and resultantly muscles, causing unintentional movements before the 

intended point of initiation. Further, the role of inhibition in movement planning has been 

investigated using Transcranial Magnetic Stimulation (TMS) during reaction time tasks in 

order to elicit motor-evoked potentials (MEP) which are indicative of the level of active 

suppression in the system (Duque et al., 2017). When the target movement was a press with 

the left index finger, broad suppression was found across both hands including right index 

and little fingers which increased throughout the preparatory period, with the highest 

increase observed in the target effector (Duque et al., 2014; Klein et al., 2016). Inhibition 

was not observed in the leg suggesting that inhibition during movement preparation may be 

focal depending on the effector required. However, these results also suggest that there is 

an element of interhemispheric inhibition that occurs when a movement is prepared, i.e. 

the left hand shows greater inhibition relative to control regions (leg) when the right hand is 

prepared. Circuits in M1 are characterised by cross-callosal interhemispheric inhibition 

(Perez & Cohen, 2009). Inhibition in contralateral M1 can also be induced by stimulation of 

secondary motor regions (Fiori et al., 2017), suggesting that there is substantial 

interhemispheric inhibition occurring across cortical motor regions which may act to avoid 

unintentional movements. What is not clear, however, is the resolution of this effect; is the 

suppression of individual fingers modulated depending on the target movement? Although 

interhemispheric inhibition of individual fingers is not clear, execution-related 

representations of individual finger sequence elements has been found in the motor regions 

of the hemisphere ipsilateral to movement, suggesting that there is a mechanism to 

communicate information regarding individual finger elements across hemispheres 

(Diedrichsen et al., 2013). 

Despite the evidence for a suppression system that prevents unintended movements 

during planning, findings showed that planning activity is not a below-threshold version of 

execution (Churchland et al., 2010). The null-space hypothesis, proposed by Kaufman et al 

(2014), suggests that movements are planned by activity shifts across populations of 

neurons in such a way that the overall output across the population remains constant. For 

example, in a theoretical population with just two excitatory neurons, a movement would 

be prepared by an increase in the firing rate of one neuron and a decrease in the firing rate 
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of another. While the activity pattern across the population has changed, a downstream 

region which receives input from both neurons would not be able to discern a noticeable 

change in its overall input and would hence not adjust its firing rate in response. This 

dimension along which population activity can change while maintaining the overall output 

is labelled the ‘output-null’ dimension. After a shift along this output-null dimension, activity 

then can shift orthogonally into an ‘output-potent’ dimension, resulting in an increase or 

decrease in population output and hence impacting on downstream receptive neurons. This 

allows the system to plan movements in advance by shifting the dimension of overall 

activity without requiring a gating system such as is seen in the oculomotor system (Evinger 

et al., 1982). Not only does a null-space gating mechanism offer an explanation for how the 

cortex can prepare movements without eliciting responses in the spinal cord, but the 

authors also found that this mechanism works to prevent unintentional communication 

between dorsal premotor and primary motor cortex during movement planning (Kaufman 

et al., 2014). This mechanism likely prevents contamination of movement-related processing 

across several motor-related regions and could potentially be a more generalised 

mechanism that applies to more regions and more behaviours than movement alone. This, 

however, remains to be seen. 

When further investigating the null space phenomenon, Kaufman et al (2016) noticed 

that a significant portion of the multi-unit signal in M1 and PMd of monkeys during a 

delayed-reaching task reflected movement onset, as opposed to information about the 

movement, e.g. direction, found previously (Messier & Kalaska, 2000). This condition 

invariant signal was identified because, unlike tuned components, the dimensionality 

reduced signal did not seem to vary depending on the condition of the stimulus but would 

rather ramp its activity to the point of initiation. Further research expanded on these 

findings by using dimensionality reduction to identify three modes of neural activity in the 

mouse anterior lateral motor cortex (ALM; equivalent to premotor cortex in humans) that 

showed independent shifts during movement planning: the Delay mode, the Go mode, and 

the Response mode (Inagaki et al., 2018; Li et al., 2016). Neural activity during planning 

begins with the Delay mode which encodes details about the upcoming movement, 

specifically in the case of the research the direction of licks made by mice towards one of 

two targets. Activity in this mode separates until the go cue is observed, at which point it 
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becomes abolished as activity in the Go mode rapidly spikes, indiscriminate to the target 

condition and movement, and subsequently falls off in a short burst. Activity in the 

Response mode then increases, sensitive to movement direction and drives subsequent 

movement. These findings suggest that not only do movement planning and execution exist 

in orthogonal multi-dimensional space, but that the cue to move does too. One key question 

arises: what mechanism acts as the starting gun, causing the reorganisation of cortical 

activity shortly before movement initiation? Inagaki, Svoboda, and colleagues (Inagaki et al., 

2022) used optogenetics in tandem with dimensionality reduction of neurophysiological 

recordings in an attempt to identify the mechanism that causes the reorganisation of 

cortical dynamics from output-null to output-potent. They found that a signal to initiate 

originates in subcortical structures; the pedunculo-pontine nucleus (PPN), located in the 

pons of the midbrain, showed short latency phasic changes in spike rate that were selective 

to the go cue. These phasic spikes then follow a circuit from midbrain structures, through 

the thalamus, to the cortex, causing the observed spike in Go mode activity that shifts 

surrounding activity from the Delay mode into the Response mode. These findings suggest 

that populations of neurons in the cortex switch their representations from planning to 

execution, driven by a signal that arises from subcortical structures. Dynamical systems and 

null states provide a solid framework for how single movements are planned and executed 

in the motor system (Inagaki et al., 2022; Kaufman et al., 2014; Shenoy et al., 2013). What 

isn’t clear from these models, however, is how sequences of several movements are 

prepared. 

1.2.2 Online planning during movement 

Given that sequences of finger presses can be executed very quickly after extended 

practice (Abrahamse et al., 2013) and evidence suggests the presence of a movement 

sequence hierarchy (Diedrichsen & Kornysheva, 2015a) including joint representations for 

movement chunks (Lashley, 1951; Sakai et al., 2003), one might assume that the system 

would plan several movements at once prior to initiation. However, recent evidence 

suggests that only a single movement is prepared initially, with planning for the second 

movement occurring whilst the first is in flight in dorsal premotor and primary motor 

cortices (Zimnik & Churchland, 2021a). 
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Churchland and colleagues (Zimnik & Churchland, 2021a) studied online planning during 

execution by training macaques to make reaching movements from a centre point while 

they recorded multi-unit neural activity from PMd and M1. The monkeys had to make one 

of three reaches during each trial: a single reach to a target; a double delayed reach, where 

two reaches were made with a long pause between; or a compound reach, where two 

reaches were made with a short pause between. Churchland & colleagues then separated 

neural activity into preparatory and execution-related signals by projecting activity onto 

orthogonal dimensions (Elsayed et al., 2016), much akin to the output-null and output-

potent dimensions (Kaufman et al., 2014). They hypothesised that if both movements 

during compound reaches were prepared together, or fused into a new sequence 

representation, then the neural population should not need to re-enter the preparatory 

dimension after execution of the first movement. However, they found that neural activity 

did re-enter the preparatory dimension, and that this happened while the first movement 

was still ongoing. In fact, the neural traces for the compound reach looked almost identical 

to those during the double delayed reach, albeit temporally compressed due to the quicker 

execution. These findings suggest that in the dorsal premotor and primary motor cortex, 

sequential movements are not pre-planned or fused, but rather these regions are able to 

plan subsequent movements one-by-one while the prior movement is still being executed. 

These findings agree with previous findings in M1 which suggest it is responsible for the 

generation of singular movements rather than sequences (Berlot et al., 2020; Yokoi et al., 

2018; Yokoi & Diedrichsen, 2019a), but opposes PMd findings where representations have 

been found relating to sequential order and chunking (Kornysheva & Diedrichsen, 2014; 

Yokoi & Diedrichsen, 2019a). One important aspect of the research from Churchland and 

colleagues is that planning-on-the-fly was found between reaching movements where the 

transition angles were acute, prompting a significant dwell period on the central target. 

Fusion, a phenomenon where two reaching movements become seemingly fused according 

to velocity and jerk (Flash & Hogan, 1985; Todorov & Jordan, 1998), has been observed 

during reaching tasks where the transition angle between targets is obtuse, prompting 

shorter dwell time (Sporn et al., 2022). Further research is needed to establish whether 

behavioural fusion, reduced dwell time, or lower levels of jerk would abolish planning-on-

the-fly in neural recordings. 
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In human behavioural and imaging research, findings suggest that up to three serial 

movements may be planned in advance by the motor system and any later movements are 

likely to be planned during the execution of current movements. Ariani et al (2021) had 

participants execute sequences of finger movements where the size of the viewing window 

of upcoming presses was controlled, allowing participants to see a varying number of the 

upcoming sequence elements; either the whole sequence or only one upcoming element in 

extreme cases. They found that a larger viewing window afforded faster execution up to 

three presses, with performance not improving when further elements were revealed, 

suggesting that up to three movement elements were planned prior to execution with the 

rest having to be planned online during movement. Further, as participants received more 

practice, their performance improved for viewing windows of up to six elements. Ariani et al 

labelled this phenomenon the planning horizon, stating that performance improvements 

over time are likely due to an increase in its capacity (Ariani & Diedrichsen, 2019). In a 

follow-up preprint released after the publication of Chapter 2, Ariani et al (2023) sought to 

identify whether pre- and online-planning occurred within distinct anatomical regions. 

Based on prior research into the representations of motor hierarchical structures, one 

would expect pre-planning to occur within secondary motor regions and online-planning 

within M1 (Kornysheva & Diedrichsen, 2014; Russo et al., 2020; Yokoi & Diedrichsen, 

2019a). This was indeed the case; fMRI results showed greater activation during planning in 

PMd and SPL when upcoming sequences consisted of multiple fingers relative to single 

fingers. In contrast, activity patterns in M1 and primary somatosensory cortex (S1) primarily 

represented the first element of the upcoming sequence during planning and a temporal 

summation of patterns belonging to constituent movement elements during execution. 

Moreover, correlation PCM models showed strong evidence that activity patterns in PMd 

and SPL were not uncorrelated during planning and execution. These findings contest the 

null space and dynamical systems hypotheses (Kaufman et al., 2014; Shenoy et al., 2013) by 

stating that representations are maintained across movement phases albeit on the level 

detectable by fMRI; using a technique with a greater spatial precision would reveal which 

mechanism applies in neural populations as opposed to blood oxygenation level dependent 

(BOLD) responses of humans during a sequence learning task. 
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1.3 Objectives and summary 

The neural mechanisms of movement sequence execution are well-established in terms 

of motor hierarchical mapping, yet how these same mechanisms operate during the 

planning period preceding movement is unclear. In the current thesis, I aimed to help close 

this knowledge gap. Specifically, I investigated how different elements of the hierarchy are 

implemented neurally across the peri-movement phase. Additionally, based on previous 

research showing a change in neural population dynamics from planning to execution 

(Inagaki et al., 2018; Kaufman et al., 2014) that is driven by a signal from subcortical regions 

(Inagaki et al., 2022), I investigated whether the neural patterns found during movement 

sequence planning in subcortical regions were identical to those during execution. 

Moreover, given the importance of suppression in movement planning (Duque et al., 2017) 

and finger-specific representations found in M1 ipsilateral to movement (Diedrichsen et al., 

2013), I identified whether the relative inhibition observed during planning in the active 

effector (Kornysheva et al., 2019a; Mantziara et al., 2021) caused a similar gradient of 

suppression in the effector contralateral to movement, or whether there was global 

inhibition of unused effectors.  

Chapter 2 used multivariate pattern decoding analysis of fMRI data in the neocortex to 

investigate the neural representations of order, timing, and their integration during 

planning and execution across cortical motor areas contralateral to the performed motor 

sequence. Additionally, behavioural transfer of known sequence order and timing were 

assessed relative to new sequences. 

Chapter 3 further explored the fMRI dataset collected for chapter 2 to investigate order, 

timing, and integration across subcortical regions using multivariate pattern analysis within 

constrained regions of interest. Further, it used dimensionality reduction by principal 

component analysis to investigate the multivariate distance between representations in 

planning and execution relative to carefully controlled simulations. 

Chapter 4 used behavioural responses to investigate the CQ gradient in a range of 

participants. Here, I assessed the presence of a mirrored CQ gradient in the hand 

contralateral to that which was initially cued, identifying a gradient inhibition of fingers 

controlled by the hemisphere ipsilateral to movement on the active and passive hand during 
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sequence planning. As a follow-up, I examined the influence of performance and expertise 

such as musical experience on the strength of the CQ effect. 

Chapter 5 discusses and synthesises the findings of the previous chapters with respect to 

the current literature, notes clinical significance, and identifies future avenues for research. 
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Chapter 2 - Cortical Integration of Independent Motor Sequence Order and 

Timing Across Planning and Execution 

This chapter is published as: 

Yewbrey, R., Mantziara, M., & Kornysheva, K. (2023). Cortical patterns shift from sequence 

feature separation during planning to integration during motor execution. Journal of 

Neuroscience, 43(10), 1742-1756. 

Author contributions: R.Y., M.M., and K.K. designed research; R.Y., M.M., and K.K. 

performed research; R.Y. and K.K. analysed data; R.Y. and K.K. wrote the first draft of the 

paper; R.Y., M.M., and K.K. edited the paper. 
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2.1 Abstract 

Performing sequences of movements from memory and adapting them to changing task 

demands is a hallmark of skilled human behaviour, from handwriting to playing a musical 

instrument. Prior studies showed a fine-grained tuning of cortical primary motor, premotor, 

and parietal regions to motor sequences – from the low-level specification of individual 

movements to high-level sequence features like sequence order and timing. However, it is 

not known how tuning in these regions unfolds dynamically across planning and execution. 

To address this, we trained 24 healthy right-handed human participants (14 females, 10 

males) to produce four five-element finger press sequences with a particular finger order 

and timing structure in a delayed sequence production paradigm entirely from memory. 

Local cortical fMRI patterns during preparation and production phases were extracted from 

separate ‘No-Go’ and ‘Go’ trials, respectively, to tease out activity related to these peri-

movement phases. During sequence planning, premotor and parietal areas increased tuning 

to movement order or timing, irrespective of their combinations. In contrast, patterns 

reflecting the unique integration of sequence features emerged in these regions during 

execution only, alongside timing-specific tuning in the ventral premotor, supplementary 

motor, and superior parietal areas. This was in line with the participants’ behavioural 

transfer of trained timing, but not of order to new sequence feature combinations. Our 

findings suggest a general informational state shift from high-level feature separation to 

low-level feature integration within cortical regions for movement execution. Recompiling 

sequence features trial-by-trial during planning may enable flexible last-minute adjustment 

before movement initiation. 

2.2 Significance Statement 

Musicians and athletes can modify the timing and order of movements in a sequence 

trial-by-trial, allowing for a vast repertoire of flexible behaviours. How does the brain put 

together these high-level sequence features into an integrated whole? We found that, trial-

by-trial, the control of sequence features undergoes a state shift from separation during 

planning to integration during execution across a network of motor-related cortical areas. 

These findings have implications for understanding the hierarchical control of skilled 

movement sequences, as well as how information in brain areas unfolds across planning and 

execution.  
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2.3 Introduction  

Skilled sequences of movements performed from memory are regarded as a hallmark of 

human dexterity (Diedrichsen & Kornysheva, 2015a; Hikosaka et al., 2002a; Rosenbaum et 

al., 2007). They are essential building blocks of everyday skilled behaviours, from typing, to 

tying shoelaces, or playing a musical instrument (Figure 2.1a). In addition to the order of 

movements in a sequence, the temporal accuracy of the movements can be crucial to the 

success of the task, e.g., when tapping a Morse code. Previous behavioural (Gobel et al., 

2011; Kornysheva et al., 2013; Ullén & Bengtsson, 2003), computational (Calderon et al., 

2022; Zeid & Bullock, 2019), neurophysiological (Lafuente et al., 2022; Merchant, Pérez, et 

al., 2013; Zimnik & Churchland, 2021a) and neuroimaging findings (Bengtsson et al., 2004; 

Kornysheva et al., 2019a; Kornysheva & Diedrichsen, 2014) established that movement 

order is controlled independently of timing, and vice versa, whenever motor sequences 

incorporated temporally discrete sub-goals. This includes sequences that are extensively 

trained and performed from memory without external guidance, characteristic of motor 

sequence execution in the real world. The integration of movement timing and order has 

been studied in the context of execution (Kennerley et al., 2004; Kornysheva et al., 2013; 

Kornysheva & Diedrichsen, 2014; O’Reilly et al., 2008; Shin & Ivry, 2002), but we currently 

do not know whether the binding of order and timing takes place prior to the initiation of 

the first movement, and which motor-related cortical areas underly this process. 

Neural and haemodynamic activity patterns in contralateral primary motor (M1) and 

sensorimotor (S1), premotor, and parietal cortices show informational tuning to trained 

motor sequences (Berlot et al., 2020; Kornysheva & Diedrichsen, 2014; Matsuzaka et al., 

2007; Picard et al., 2013; Tanji & Shima, 1994; Wiestler et al., 2014; Wiestler & Diedrichsen, 

2013; Wymbs et al., 2012; Wymbs & Grafton, 2015; Yokoi et al., 2018; Yokoi & Diedrichsen, 

2019a). Specifically, activity patterns outside the primary motor cortex – premotor, 

supplementary motor and parietal areas – contain high-level information, e.g., about 

sequence chunks, positional rank in the sequence (Russo et al., 2020; Tanji & Shima, 1994; 

Yokoi & Diedrichsen, 2019a) and spatial, rather than body-centred coordinates (Wiestler et 

al., 2014). Further, activity patterns in these regions can generalise across different pairings 

of movement order and timing (Kornysheva & Diedrichsen, 2014) (Figure 2.1b). In contrast, 

activity patterns in contralateral M1/S1 are associated with the planning and execution of 
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single movements in a sequence (Ariani et al., 2022; Berlot et al., 2020; Yokoi et al., 2018; 

Zimnik & Churchland, 2021a), body-centred coordinates (Wiestler et al., 2014) and 

information about unique sequence order and timing integration, suggesting lower-level 

representations driven by motor implementation (Kornysheva & Diedrichsen, 2014) (Figure 

2.1b). 

Despite the progress made, it remains uncertain when and where motor-related cortical 

areas integrate the order and the timing of movements trial-by-trial. One possibility is that 

premotor and parietal regions show a fixed mapping to high-level independent, and M1/S1 

to lower-level integrated sequence features, respectively (Kornysheva & Diedrichsen, 2014). 

These may be activated simultaneously or sequentially depending on the peri-movement 

phase, but their informational content could remain stable (Figure 2.1c, “Fixed mapping”). 

Alternatively, the tuning to high and low-level features may change dynamically with phase 

with the same regions parsing sequence order and timing during planning but integrating 

these sequence features during execution (“Dynamic mapping”). 

We trained participants to produce five-element finger press sequences comprised of 

two finger orders and two temporal interval orders (timings) from memory in a delayed 

production paradigm. To disentangle planning from execution using fMRI, activity was 

extracted from ‘No-Go’ and ‘Go’ trials, respectively. We utilised multivariate pattern analysis 

to decode fMRI patterns related to the planned and executed sequence order and timing. 

Our results provide strong evidence for the integration of sequence order and timing during 

sequence execution only, but not during planning. Further, they support the idea that 

contralateral cortical regions are not fixed in their informational content but update their 

tuning dynamically.  
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Figure 2.1. Theoretical framework and hypotheses. (a) Skilled sequence production, e.g., when playing a 

melody on a piano, is characterised by producing movements with a specific order and timing and combining 

them flexibly trial-by-trial. (b) Previous findings localised independent patterns of order and timing to 

premotor, supplementary motor, and parietal regions, while their integration was found in the primary motor 

cortex (M1) (Kornysheva & Diedrichsen, 2014). (c) How does this mapping evolve across planning and 

execution? “Fixed mapping” hypotheses state that premotor and parietal regions outside of M1 control order 

and timing as independent motor sequence features, and M1 itself controls the non-linear integration of the 

two during planning and/or production. In contrast, the “Dynamic mapping” hypothesis proposes that there is 

a state shift within regions from independent feature control during planning to integration during execution 

(OSF preregistration: https://doi.org/10.17605/OSF.IO/G64HV). 

 

2.4 Materials and Methods 

2.4.1 Participants 

24 neurologically healthy participants - 14 females and 10 males (M = 21.00 years, SD = 

1.64) - met all behavioural and imaging requirements after completing the three-day 

experiment. 23 Participants were right-handed with a mean Edinburgh Handedness 

Inventory (EHI; https://www.brainmapping.org/shared/Edinburgh.php; adapted from 

(Oldfield, 1971)) score of 75.22 (SD = 20.97, Range: 25-100), one was left-handed with an 

EHI score of -70. Although our preregistration (osf.io/g64hv) stated we would exclude left-

handed individuals, we included this participant as their data was not qualitatively different 

to the rest of the sample. Data were collected from an additional 17 participants but were 

https://doi.org/10.17605/OSF.IO/G64HV
https://www.brainmapping.org/shared/Edinburgh.php
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excluded. One participant was excluded due to unforeseen technical difficulties with the 

apparatus and one participant was excluded due to a corrupted functional scan. 15 further 

participants did not reach target performance after two days of training. Target 

performance consisted of an error rate below 20% (M = 6.54%, SD = 6.03, for the group) and 

distinct sequence timing structures that transferred across sequence finger orders (see 

Results section). Participants were recruited either through social media and given 

monetary reward at a standard rate, or through a participation panel at Bangor University 

and awarded module credits for their participation. Participants with professional musical 

qualifications were excluded from recruitment. All participants provided informed consent, 

including consent to data analysis and publication, through an online questionnaire hosted 

by Qualtrics (Qualtrics, Provo, UT). This experiment and its procedures were approved by 

the Bangor University School of Psychology Ethics Committee (Ethics approval number 

2019-16478). 

2.4.2 Apparatus 

Force data from fingers of both the right and left hands were recorded at a sample rate 

of 1000hz using two custom-built force transducer keyboards (10 channels). Each key had a 

groove within which the respective fingertip was positioned. A force transducer (Honeywell 

FS Series, with a range of up to 15 N) was located under each groove and recorded the 

respective finger force without crosstalk between channels. Force data acquisition occurred 

in each trial from 500ms before sequence cue onset to the end of the production period in 

production trials, and the end of the false production period in No-Go trials. The keys could 

be adjusted in position by sliding them up and down individually along the keyboard plane 

to achieve the most comfortable position for the hand and wrist when seated during 

training or in supine position in the MRI scanner, respectively. Once adjusted the position of 

the keys was fixed. Traces from the right hand were baseline-corrected by the first 500ms of 

acquisition (500ms before the sequence cue) and smoothed to a Gaussian window of 

100ms, trial-by-trial. Button presses were defined as the point at which forces above 

baseline exceeded a fixed threshold (2.5 N for the first 8 participants and 1 N for the 

subsequent 16 out of 24 participants). Press timings were identified by the timestamp 

provided by National Instruments Data Acquisition Software (National Instruments, Austin, 

TX) associated with the data point at which the respective threshold was exceeded.  
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During behavioural training sessions, participants were seated at a wooden table 

approximately 75cm away from a 19-inch LCD LG Flatron L1953HR, at a resolution of 1280 x 

1024, at a refresh rate of 60Hz. Their hands were occluded by a horizontally positioned 

panel on posts around the force boxes. During fMRI sessions, stimuli were presented on an 

MR Safe BOLDScreen 24", at a resolution of 1920x1200 and a refresh rate of 60Hz. 

Participants laid supine on the scanner bed and the two force transducers were positioned 

on a plastic support board resting on their bent upper legs to enable comfortable and stable 

positioning of the hands.  

2.4.3 Behavioural task 

Participants were trained to produce four five-finger sequences with defined inter-press-

intervals (IPI) from memory in a delayed sequence production paradigm. ‘Go’ trials began 

with a fractal image (Sequence cue) presented for 400 milliseconds (ms) which was 

associated with a sequence. The mapping between fractal image and each sequence was 

defined randomly for each participant. Following the Sequence cue, a fixation cross was 

shown to allow participants to prepare the upcoming sequence; display length of this 

fixation cross was jittered at durations of 600ms, 1100ms, 1600ms, and 2100ms, 

pseudorandomised across trials within blocks. A black hand with a green background (Go 

cue) then appeared for 4000ms to cue sequence production. Succeeding the Go cue, 

another fixation cross was presented in a jittered fashion at durations of 500ms, 1000ms, 

1500ms, and 2000ms. Feedback (see feedback section for more details) was then presented 

to participants for 1000ms, followed by a jittered inter-trial-interval (ITI) duration of 

1000ms, 1500ms, 2000ms, and 2500ms. Visually guided (Instructed) ‘Go’ trials during 

training were presented in the same fashion albeit featuring a Go cue with a grey 

background, and a red dot on the tip of each finger on the hand image would move from 

finger to finger in the target production order and in-pace with the target timing structure. 

‘No-Go’ had the same structure to ‘Go’ trials, but no Go cue was shown succeeding the 

preparatory fixation cross. Instead of the Go cue the fixation cross continued to show for an 

additional 1000ms. As in ‘Go’ trials, this phase of the trial was followed by a fixation cross, 

feedback and ITI. 
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Figure 2.2. Experimental and trial designs. a, Participants produced finger presses on a ten-finger force 

transducer keyboard. The hands were visually occluded from the participants’ view by a panel during training 

and when lying in a supine position during the fMRI session. Target fingers on the right hand are indicated by 

different colours that also correspond to the legend in later panels. Fingers on the left (inactive) hand are 

marked as black. b, Trial type proportions on each experimental day progressed from 100% instructed 

(Training 1) to 50/50% mixed (Training 2) to 100% from memory (Training 3) trials during the last stage of 
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training and during fMRI. See Table 1 for a detailed overview of trial numbers during each session. Black hands 

with a grey background and a red finger cue indicate visually instructed trials. Black hands with a green 

background represent trials with sequence production from memory. c, ‘Go’ trials from memory consisted of a 

Sequence cue, followed by a fixation cross and a Go cue instructing a production period. The occurrence of the 

Go cue was the onset of the respective hand stimulus. The trial ended with a feedback screen which indicated 

finger and temporal accuracy relative to a target sequence. Instructed trials, shown as an insert at the top of 

the image, followed the same trial structure as from memory trials, but displayed visual finger cues to aid 

production. d, ‘No-Go’ trials consisted of a Sequence cue, followed by a fixation cross without a Go cue, and 

feedback screen. e, A raster plot shows all button press timings in correct trials produced from memory across 

the entire fMRI session in one representative participant. Horizontal lines separate the different sequences 

that followed a two finger order by two timing design (see Methods for details). Vertical dotted lines indicate 

target press timings. Each coloured dot represents a different effector, see corresponding legend. f, Example 

force traces from 10 channels corresponding to the fingers on the right (coloured) and left hands (black) in one 

representative ‘Go’ trial during fMRI. The horizontal dashed line represents the finger press threshold, and 

coloured vertical lines represent the time point at which a press was detected from the respective finger. g, 

Example force traces, as in f, from one representative ‘No-Go’ trial. 

Four target sequences consisted of permutations of two finger orders (Order 1 and 2) 

and two IPI orders (Timing 1 and 2) matched in finger occurrence and sequence duration. 

Sequence orders were generated randomly for each participant. All trained sequences 

began with the same finger press to avoid differences in the first press driving the decoding 

of sequence identity during preparation (Yokoi et al., 2018). Ascending and descending 

press triplets and any identical sequences were excluded. Timing structures were the same 

across participants, to allow for comparison of timing performance across participants. The 

two trained timing structures consisted of four target IPI sequences as follows: 1200ms-

810ms-350ms-650ms (Timing 1), and 350ms-1200ms-650ms-810ms (Timing 2). To assess if 

participants maintained the target timing structure despite individual tendencies to 

lengthen or compress overall sequence length, we calculated timing error for each 

participant relative to their average total production length. This was calculated offline by 

normalising target and produced IPIs as a percentage of the participant’s average total 

sequence length during the session across sequences, then calculating the cumulative 

percent deviation from target for each IPI, averaged across trials. 

Feedback was given to participants trial-by-trial on a points-based scale ranging from 0 to 

10. Points were based on initiation reaction time (RT) and temporal deviation from target 

timing calculated as a percentage of the target interval length. For initiation reaction time, 

up to five points were awarded for a fast initiation RT as follows: five points for presses 

within 200ms of the Go cue, four points for presses within 200-360ms, three points for 

presses within 360-480ms, two points for presses within 480-560ms, one point for presses 



Chapter 2 -   34 

within 560-600ms, and zero points for presses beyond 600ms. For IPI performance, up to 

five points were awarded based on deviation from target IPI structure in percent of 

respective interval to account for the scaling of temporal error with IPI length (Rakitin et al., 

1998). Five points were awarded for average deviations of IPIs from target for each trial 

which was lower than 10 percent, four points for 10-20 percent, three points for 20-30 

percent, two points for 30-40 percent, one point for 40-50 percent, and zero points for 

above 50 percent. If the executed press order was incorrect, participants were awarded 0 

points for the trial. If the executed press order was correct, they were awarded their earned 

timing points. To discourage premature key presses in the preparation period of ‘Go’ trials 

and ‘No Go’ trials, 0 points were awarded if participants exceeded a force threshold during 

preparation above the baseline period. In No-Go trials, five points were awarded if no press 

was made as instructed. A monetary reward of £10 was offered to the two participants who 

accumulated the most points across the course of the experiment, to incentivise good 

performance.  

Participants were presented with a feedback screen after each trial showing the number 

of points achieved in the current trial, as well as feedback on whether they pressed the 

correct finger at the correct time. Total points accumulated across the whole experiment 

were shown at the end of each block. A horizontal line was placed in the centre of the 

screen, with four symbols displayed equidistantly along the line which represented each of 

the five finger presses. An ‘X’ indicated a correct finger press, and a ‘-‘ indicated an incorrect 

finger press for each sequence position. The vertical position of these symbols above (“too 

late”) or below (“too early”) the line was proportional to the participant’s timing of the 

respective press relative to target IPI (in %). Using these cues, participants could adjust their 

performance online to ensure maximum accuracy of sequence production and prevent a 

drift in performance from memory following training. During the first two days of training, 

auditory feedback in the form of successive rising tones corresponding to the number of 

points (0-10) were played alongside the visual feedback. Auditory feedback was absent 

during the fMRI session, to prevent any auditory processing driving decoding accuracy.  

2.4.4 Procedure  

Training duration was fixed across participants and occurred across the first two days of 

the experiment over three distinct training stages (see Figure 2.2b for a visual 
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representation of the training stages, Table 1 for trial numbers during each session). In the 

first training stage, 80% of all trials were instructed ‘Go’ trials (black hand on grey 

background, Figure 2.2c), and the remaining 20% were ‘No-Go’ trials. During the second 

training stage, 40% of trials were instructed ‘Go’ trials, 40% were from-memory ‘Go’ trials 

(black hand on green background, Figure 2.2c), and 20% were ‘No-Go’ trials (Figure 2.2d). In 

the third and final stage of training, 80% of trials were from-memory ‘Go’ trials, and 20% 

were ‘No-Go’ trials. Each stage of training consisted of 240 trials for a total of 720 trials 

across all three training sections. The third and final day consisted of a short refresher stage 

of 40 trials, made up of the same proportion of trials as the second stage of training, during 

which T1 images were collected. Following this refresher stage there was a fMRI stage 

consisting of 288 trials (48 trials in each block) featuring 50% from-memory ‘Go’ trials and 

50% ‘No-Go’ trials. 

In addition, before and after the last training stage, participants completed a 

synchronisation task during which they were asked to synchronize their respective presses 

to a visual finger cue, as in the first stages of training consisting of four blocks of 32 trials 

which included trained sequences, sequences with new timings but the same orders (order 

transfer), sequences with the same timings but new orders (timing transfer), and new 

sequences. Trial structure was identical to instructed ‘Go’ trials. There were four sequences 

belonging to each condition and each sequence was shown for eight consecutive exposures 

(Figure 2.3c) to assess short-term learning gains. We expected that participants would show 

more accurate synchronization to visual sequences when they encountered trained 

sequences as well as sequences with a trained finger order or trained timing compared to 

untrained control sequences following the completion of training. 
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Table 2.1 

Distribution of trial types across experimental phases 

Note. The first half of Training 2 occurred on Day 1, the second half on Day 2. 

2.4.5 MRI acquisition  

Images were obtained on a Philips Ingenia Elition X 3T MRI scanner using a 32-channel 

head coil. T1 anatomical scans were acquired using a magnetisation-prepared rapid gradient 

echo sequence (MPRAGE) scan at a 0.937 x 0.937 x 1 resolution, with a field of view of 240 x 

240 x 175 (A-P, R-L, F-H), encoded in the anterior-posterior dimension.  

T2*-weighted Functional images were collected across six runs of 230 volumes each with 

a TR of 2 seconds, a TE of 35ms and a flip angle of 90°. The voxel size was 2mm isotropic, at 

a slice thickness of 2mm, with 60 slices. These were obtained in an interleaved odd-even 

echo-planar imaging (EPI) acquisition at a multi-band factor of two. Four images were 

discarded at the beginning of each run to allow the stabilisation of the magnetic field. The 

central prefrontal cortex, the anterior temporal lobe and ventral parts of the cerebellum 

were not covered in each participant. Jitters were employed within each trial during 

preparation periods, post-production fixation crosses, and inter-trial intervals, to vary which 

part of the trial is sampled by each TR and therefore give us a more accurate estimate of the 

hemodynamic response function (HRF) (Serences, 2004).  

2.4.6 Pre-processing and first-level analysis 

 Day 1     Day 2    Day 3  

 
Example Pre-

training 
test 

Training 
1 

Training 
2 

 Training 
2 

Training 
3 

Post-
training 
test 

 Refresher Test 
(fMRI) 

Instructed 
trials 

4 (33%) 32 (100%) 16 (80%) 8 (40%) 
 

8 (40%) 0 32 (100%) 
 

8 (40%) 0 

Memory trials 4 (33%) 0 0 8 (40%) 
 

8 (40%) 16 (80%) 0 
 

8 (40%) 24 (50%) 

No-Go trials 4 (33%) 0 4 (20%) 4 (20%) 
 

4 (20%) 4 (20%) 0 
 

4 (20%) 24 (50%) 

Total trials per 
block 

12 32 20 20 
 

20 20 32 
 

20 48 

Number of 
blocks 

1 4 12 6 
 

6 12 4 
 

2 6 
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All fMRI pre-processing was completed using SPM12 (Revision 7219) on MATLAB (The 

MathWorks, Inc., Natick, MA). Slice timing correction was applied using the first slice as a 

reference to interpolate all other slices to, ensuring analysis occurred on slices which 

represent the same time point. Realignment and unwarping were carried out using a 

weighted least-squares method correcting for head movements using a 6-parameter motion 

algorithm. A mean EPI was produced using SPM’s ‘Imcalc’ function, wherein data acquired 

across all six runs was combined into a mean EPI image to be co-registered to the 

anatomical image. Mean EPIs were co-registered to anatomical images using SPM’s ‘coreg’ 

function and their alignment was checked and adjusted by hand to improve the alignment, if 

necessary. All EPI runs were then co-registered to the mean EPI image.  

For the general linear model (GLM), regressors were defined for each sequence 

separately for both preparation and production. Preparation- and production-related BOLD 

responses were independently modelled from ‘No-Go’ and ‘Go’ trials, respectively, to tease 

out activity from these brief trial phases despite the haemodynamic response lag 

(Logothetis, 2003). The preparation regressor consisted of boxcar function starting at the 

moment of the Sequence cue in ‘No-Go’ trials and lasting for the duration of the maximum 

possible preparation phase (2500 ms). The production regressor consisted of a boxcar 

function starting at the onset of the first press with a fixed duration of 0 (constant impulse), 

to capture activity related to sequence initiation and extract sequence production related 

activity from the first finger press that was matched across sequences within each 

participant. We aimed at capturing BOLD responses related to neuronal populations that 

become differentially active for different sequences (Tanji & Shima, 1994), for which a single 

estimate of sequence production has been used to successfully identify sequence 

representations in a number of previous fMRI studies (Berlot et al., 2020; Kornysheva & 

Diedrichsen, 2014; Nambu et al., 2015; Wiestler & Diedrichsen, 2013; Yokoi et al., 2018). We 

used a separate pilot dataset (N=9) recorded prior to the pre-registration of the study to 

determine the optimal GLM regressor model for the execution period. To be certain that the 

constant impulse model provided the best model for sequence production, we assessed 

contrast values extracted from a spherical region of interest (ROI) centred on M1a (MNI 

coordinates: [-38 -31 48]) with a radius of 6mm obtained from a separate pilot dataset (N=9) 

for a model containing variable epoch versus constant impulse regressor for sequence 
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execution. A repeated measures t-test found that the constant impulse GLM produced 

significantly higher contrast values (M = 10.89, SD = 3.07) than the variable epoch GLM (M = 

3.64, SD = 1.27; t(8) = 10.24, p  < .001, d = 3.41). This may be due to the way that the BOLD 

response scales non-linearly with movement initiation rather than movement duration or 

speed (Khushu et al., 2001). 

Additionally, we included regressors of no interest: 1) Error trials (incorrect or premature 

presses during ‘Go’ trials and presses during No-Go trials) which were modelled from 

sequence cue onset to the end of the ITI, 2) the preparation period in ‘Go’ trials (1000-2500 

ms from Sequence cue) and 3) the temporal derivate of each regressor. The boxcar model 

was then convolved with the standard HRF. To remove the influence of movement-related 

artifacts, we used a weighted least-squares approach (Diedrichsen & Shadmehr, 2005).  

2.4.7 Surface reconstruction  

Cortical surface reconstruction was conducted on each participant’s T1 anatomical image 

using Freesurfer’s recon-all function (Dale et al., 1999). Surface structures were then co-

registered to the symmetrical Freesurfer average atlas (Fischl et al., 1999) using surface 

Caret (Van Essen et al., 2001). Searchlights for multivariate pattern analysis were then 

defined on each individual surface using the node maps provided by the surface 

reconstruction and displayed in atlas space.  

2.4.8 Cross-sectional and region of interest analysis 

Two cross-sections were defined upon the cortical surface: 1) anterior to posterior, 

running from PMd to OPJ and 2) ventral to dorsal, running from PMv to SMA. These cross-

sections were taken from a previous study (Kornysheva & Diedrichsen, 2014). Data points 

along these axes were extracted to provide a continuous measure along the cortical surface, 

which was then subjected to a non-parametric permutation analysis to identify clusters 

which were significantly above baseline (Maris & Oostenveld, 2007). This was conducted as 

a one-tailed test, with 10,000 permutations, for which Cohen’s d effect size was calculated 

by averaging across the values in each significant cluster (M. Meyer et al., 2021).  

ROI analysis was conducted using the Caret toolbox (Van Essen et al., 2001) on ROIs 

which were defined based on Caret masks used by several previous studies (Kornysheva & 

Diedrichsen, 2014; Wiestler et al., 2014; Wiestler & Diedrichsen, 2013; Yokoi et al., 2018), 
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consisting of PMv, PMd, M1, S1, SMA/pre-SMA, SPCa, and SPCp. Note that the 

preregistration (osf.io/g64hv) referred to the SPCa ROI as “SPC” and S1 and SPCp were 

added after the pre-registration. This was to enable comparison to more recent results, 

including those published after the pre-registration, showing S1 (Ariani et al., 2022; Gale et 

al., 2021) and SPCp involvement in movement planning (Culham & Valyear, 2006; Fitzpatrick 

et al., 2019; Lindner et al., 2010), as well as to probe the functional differentiation between 

SPCa and SPCp with respect to sequence representations demonstrated by Yokoi et al. 

(2018). Z-values for each classifier were averaged within regions to give an overall value for 

each decoder. These values were calculated from unsmoothed individual data. One-sample 

t-tests against chance level (zero) then identified significantly above-chance decoding values 

within these ROIs Bonferroni-corrected for six comparisons. To test the hypotheses in Figure 

2.1 (Dynamic vs fixed mapping across planning and execution) we performed a repeated 

measures ANOVA on decoding values with factors trial phase, region, and classifier. 

2.4.9 Multi-variate pattern analysis of fMRI  

Multivariate pattern analysis (MVPA) was conducted using a custom-written MATLAB 

code to detect sequence-specific representations (Kornysheva et al., 2019a; Kornysheva & 

Diedrichsen, 2014). We used a searchlight of 160 voxels and a maximum searchlight radius 

of six millimetres. Each searchlight was run on each individual’s cortical surface-

reconstructed anatomy, projected onto the Freesurfer average atlas (Fischl et al., 1999). The 

classification accuracy for each searchlight (cf. classification procedures below) was assigned 

to the centre of each searchlight. A classification accuracy map was generated by moving 

the searchlight across the cortical surface (Oosterhof et al., 2011). Mean patterns and 

common voxel-by-voxel co-variance matrices were extracted for each class from training 

data set (five of the six imaging runs), and then a gaussian linear discriminant classifier was 

used to distinguish between the same classes in a test data set (the remaining imaging run). 

The factorised classification of finger order, timing, and integrated order and timing 

followed the previous approach (Kornysheva & Diedrichsen, 2014) and performed on betas 

estimated from the sequence preparation and production periods independently. For the 

decoding of sequence timing, the classifier was trained to distinguish between two 

sequences with differing timing but matching order across five runs and was then tested on 

two sequences with the same two timings paired with a different order in the remaining 
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run. This classification was then cross-validated across runs and across training/test 

sequences, for a total of 12 cross-validation folds. For the decoding of sequence order, the 

classifier was trained to distinguish between two sequences of differing orders paired with 

the same timing and tested on two sequences with the same two orders when paired with a 

different timing and underwent the same cross-validation procedure. This method of 

training and testing the linear discriminant classifier allowed for identification of sequence 

feature representations that were transferrable across conditions they are paired with and 

therefore independent. The integrated classifier was trained to distinguish between all four 

sequences on five runs and then tested on the remaining run. Here, the mean activity for 

each timing (collapsed across two orders) and finger order (collapsed across two timings) 

condition within each run was subtracted from the overall activity for each run, separately 

(Kornysheva & Diedrichsen, 2014). This allowed for the measurement of residual activity 

patterns that were not explained by a linear combination of timing and order. For better 

comparability across classifiers, the classification accuracies were transformed to z-scores, 

assuming a binomial distribution of the number of correct guesses. We then tested these z-

scores against zero (chance level) on cortical cross-sections of interest and in pre-defined 

ROIs across participants for statistical analysis. In addition to the main analysis, we provided 

an40asely40toryy analysis across the whole cortex by carrying out a random-effects analysis 

with an uncorrected threshold of t(23) > 3.48, p<0.001 and a cluster-wise p-value for the 

cluster of that size on the z-transformed decoding values for order, timing, and integration. 

This was Bonferroni corrected for two hemispheres and the results, including a full table of 

significant clusters, are available in Table 3. 

2.4.10 Experimental Design and Statistical Analysis  

All data collection and analyses were conducted using a repeated measures design. For 

the behavioural data, we assessed changes in finger force production from baseline during 

the preparation period in both ‘Go’ and ‘No-Go’ trials using two-tailed paired samples t-

tests. We also assessed the length of inter-press intervals and timing error during sequence 

production using a repeated measures ANOVA with factors timing, order, and interval 

position. These ANOVAs were conducted both across the group and within each participant 

to determine effects within individuals. To evaluate accuracy in the synchronisation task, we 

compared absolute deviation from target interval in the trained, order transfer, and timing 
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transfer conditions to the new sequence condition using three one-sided paired sample t-

tests, in line with previous work (Kornysheva et al., 2013, 2019a; Kornysheva & Diedrichsen, 

2014). 

To investigate fMRI activity increases in motor related areas during preparation and 

production, we tested for increases above a baseline along our two cross-sections using a 

one-tailed non-parametric permutation test with a p-value threshold of .05 and 10,000 

permutations (Maris & Oostenveld, 2007). This method was also used to assess Z-

transformed decoding accuracy above chance in each of our three classifiers. Further, we 

ran one-sample t-tests against chance for each classifier within each ROI and trial phase 

(preparation and production), Bonferroni-corrected for six comparisons (3 classifiers x 2 trial 

phases). We also ran a repeated measures ANOVA with factors phase, classifier, and region 

to assess interaction effects, and ran post-hoc pairwise comparisons to investigate a 

significant interaction between phase and classifier. In addition, we investigated percent 

signal change and decoding accuracy across cortical hemispheres using whole-brain cluster-

based analyses, Bonferroni corrected for two hemispheres (Table 2, Table 3). The 

significance value was set to p = 0.05 with exact p-values >= 0.001 and effect sizes for each 

test reported throughout. All statistical tests were performed with MATLAB (MathWorks) 

and IBM SPSS Statistics 25.0. 

 

2.5 Results 

2.5.1 Discrete sequence production from memory 

Participants were trained to produce four finger-press sequences from memory with the 

right hand on a force transducer keyboard (Figure 2.2a). Training consisted of a three-staged 

transition across two days from trials which visually guided sequence production, towards 

trials which required sequence production entirely from memory (Figure 2.2b). During 

functional MRI scans taking place on the third day, participants were required to produce 

movement sequences from memory only (see Table 1 for trial distribution). Sequences were 

cued 1000-2500ms before the Go cue by a Sequence cue (abstract fractal image) to prompt 

the planning of the respective sequence without movement (Figure 2.2c). To isolate fMRI 

responses to movement planning without contamination from execution patterns, in 
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addition to ‘Go’ trials, ‘No-Go’ trials were implemented which consisted only of the 

Sequence cue but did not contain a Go cue (Figure 2.2d). ‘No-Go’ trials made up 20% of 

trials during training, and 50% of trials during the fMRI session (see Materials and Methods). 

Sequence planning during the preparation period in ‘Go’ and ‘No-Go’ trials was facilitated 

through trial-by-trial reward for fast initiation after the Go cue. Fast initiation and accurate 

sequence performance in ‘Go’ trials could result in up to double the points of ‘No-Go’ trials, 

in line with a previous study (Mantziara et al., 2021). Thus, to achieve fast and accurate 

performance and maximise the points, it was beneficial to plan the movement in advance of 

the Go cue. The target sequences were unique combinations of two finger orders consis’ing 

of five presses matched in finger press occurrence and two target relative inter-press-

interval (IPI) orders involving four IPIs matched in target duration (Figure 2.2e). The finger 

orders were generated pseudo-randomly for each participant, but each sequence started 

with the same finger press within each participant to avoid first-finger identity driving the 

sequence decoding during the preparatory period (Yokoi et al., 2018). Timing 1 and Timing 2 

were the same across participants. 

The keyboard recorded isometric force trajectories from fingers of both the active right 

and the passive left hand concurrently during preparation and production (Figure 2.2f, 

Figure 2.2g). Points were awarded trial-by-trial only if participants did not exceed a force 

threshold above the baseline period during preparation and ‘No-Go’ trials. In ‘Go’ trials 

points were calculated based on initiation time after the Go cue, finger press accuracy, and 

timing accuracy. ‘No-Go’ trials were rewarded when no responses were made above 

threshold (see Methods). To ensure that participants were not pre-pressing the keys below 

the force threshold, we checked offline if exerted force of the right hand increased 

significantly above the42aselyne level. In ‘No-Go’ trials we checked for force increase from 

the Sequence cue onset to the last possible moment a Go cue could appear if it were a ‘Go’ 

trial, to represent the preparatory period. Participants did not increase force during ‘No-Go’ 

trials, and instead showed a small but force reduction (M = 0.154N, SD = 0.09) relative to 

baseline (M = 0.162 N, SD = 0.09; t(23) = 3.39, p = .003, d = 0.69). A similar small decrease, 

rather than an increase, was found in the preparation phase of ‘Go’ trials (M = 0.163 N, SD = 

0.09) relative to baseline (M = 0.164 N, SD = 0.09; t(23) = 2.44, p = .023, d = 0.50), suggesting 

that this force decrease associated with planning was not specific to ‘No Go’ trials. 
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Importantly the data shows that participants did not engage in any subthreshold pre-

pressing or rehearsal of the sequence during sequence preparation.   

All participants that were included in the study following training produced two distinct 

timing structures across finger orders when performing the sequences from memory during 

the fMRI session as instructed, resulting in the expected interaction between sequence 

timing and interval position at the group level (F(1.78,40.77) = 73.76, p <.001, ηp2 = .762, 

Greenhouse-Geisser corrected, repeated measures ANOVA; Figure 2.3a). Since trained 

finger orders were different across participants (see Methods), we also assessed the main 

effects of order and timing and their interaction at the individual level. Here 18 out of the 24 

participants showed a significant order by interval position interaction, and 10 showed a 

significant three-way interaction between timing, order, and interval position. The presence 

of these idiosyncratic press timing patterns at the individual level suggests the integration of 

sequence order and timing features. Crucially, sequence timing error showed no difference 

between timing structures suggesting that there were no systematic differences in difficulty 

for Timing 1 and Timing 2 at the group level (F(1,23) = 0.07, p = .792, ηp2 = .003; Figure 

2.3b). At the individual level, 10 participants showed a significant main effect of order, 15 

showed a significant main effect of timing, and four showed a significant interaction 

between order and timing, again suggesting an integration of the two sequence features. 
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Figure 2.3. Sequence timing and feature transfer. A, IPI structure of the four trained sequences during the 

fMRI session (day 3). An interaction between sequence timing and interval position shows distinct IPI 

sequences between Timing 1 and Timing 2 across finger order sequences Order 1 and 2. **p < .01; repeated 

measures ANOVA. B, Timing error (normalized to the target interval durations, see Materials and Methods) 

during the fMRI session did not differ between sequences. c, Behavioural transfer results from the 

synchronization task obtained from instructed Go cue trials following the last training stage on day 2. Absolute 

deviation from target timing is shown across sequence repetitions for trained sequences (green), sequences 

with trained finger orders, but unfamiliar timing (blue), sequences with trained timing, but unfamiliar order 

(red), and new sequences with both unfamiliar finger order and timing (black). D, Absolute deviation from 

target timing, as in a, extracted from the fourth to the last sequence repetition as in previous work (e.g., 

Kornysheva et al., 2019). Significance of t tests to identify performance benefits compared with new 

sequences is shown by coloured asterisks and horizontal lines. The trained order condition showed an increase 

in synchronization error (p =0.002, two-tailed t test), suggesting interference rather than benefits related to 

sequence feature transfer. **p < 0.01; *p < 0.05; one-sided t test. The boxplots indicate the median as a white 
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line with the box size delineating the 25th to 75th percentiles, respectively. Lower and upper whiskers 

correspond the minimum and maximum values, respectively. Outliers are drawn as points. 

Learning new sequences is facilitated if the order or the timing of the sequence has been 

previously trained (Kornysheva et al., 2013, 2019a; Kornysheva & Diedrichsen, 2014; O’Reilly 

et al., 2008; Shin & Ivry, 2002; Ullén & Bengtsson, 2003). Behavioural transfer to new 

sequences can be taken as evidence for independent control of sequence order and timing, 

respectively. Accordingly, we set out to measure behavioural transfer following training. 

Participants completed a post-training test on Day 2 involving a synchronisation task which 

assessed how well participants could synchronise to a visually guided sequence. The trials in 

each condition were presented in a blocked manner with eight repetitions to assess short-

term learning gains related to trained finger order and timing (Figure 2.3c) analogous to 

previous studies (Kornysheva et al., 2013, 2019a; Kornysheva & Diedrichsen, 2014). Since 

the transfer of trained sequence timing to a new finger order only takes place after three 

exposures, synchronisation performance was only assessed from the fourth sequence 

exposure onwards consistent with previously reported analyses (Kornysheva et al., 2013, 

2019a; Kornysheva & Diedrichsen, 2014). We compared each condition (trained, order 

transfer, timing transfer) to new sequences (M = 196.15ms, SD = 34.00) in a one-tailed 

paired sample t-test. As expected, trained sequences (M = 160.43ms, SD = 33.09) showed a 

performance advantage (t(23) = 6.34, p > .001, d = 1.29), and so did sequences with trained 

timing and a new order (M = 182.10, SD = 39.72; t(23) = 2.09, p = .024, d = 0.43), replicating 

previous findings (Kornysheva et al., 2013, 2019a; Kornysheva & Diedrichsen, 2014) (Figure 

2.3d). In contrast to earlier reports, order transfer sequences (M = 223.87, SD = 48.30) 

showed a worse performance relative to a new sequence (t(23) = 3.52, p = .002, d = 0.72, 

two-tailed test). Whilst knowledge of both features of a sequence combined, or just its 

timing, facilitated task performance, knowledge of sequence order hindered future learning 

of novel sequence acquisition when paired with a new timing structure. This implies that the 

participants in our study acquired a stronger independent representation of timing than of 

finger order which was closely integrated with a particular timing structure during 

production. 

2.5.2 Activity increases during preparation and production 
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Relative increases or decreases in the blood-oxygen level-dependent activity (BOLD) can 

be dissociated from the presence of informational content in an area, especially as 

efficiency increases and effort decreases with motor training (Berlot et al., 2020; Wiestler & 

Diedrichsen, 2013). Movement planning sometimes involves a decrease or no change 

relative to baseline in motor-related cortical areas whilst information about the upcoming 

action is still present in these regions (Ariani et al., 2022; Gale et al., 2021). However, 

planning can also involve increases in BOLD activity in premotor to parietal areas (Ariani et 

al., 2015; Gallivan et al., 2011; Nambu et al., 2015). To characterise the physiological 

response in a task that required rapid planning and production of finger sequences from 

long-term memory, the percent signal change during preparation and production relative to 

rest were calculated. Preparatory activity was solely sampled from No-Go trials for % signal 

change and multivariate pattern analyses to separate the BOLD activity related to sequence 

planning from production in a fast event-related design (see Methods). We then calculated 

the percent signal change across the cortex (Figure 2.4a) and extracted values along two 

cross-sections of the cortical surface on the contralateral (left) side to the motor effector 

(Kornysheva & Diedrichsen, 2014) (Figure 2.4b). These cross-sections extended from 

anterior to posterior and ventral to dorsal, across premotor to parietal and premotor to 

supplementary motor regions respectively, because our hypotheses (osf.io/g64hv) on the 

imaging results during sequence preparation and production were put forward for 

contralateral premotor, primary motor, and parietal regions, which we expected to be 

tuned to sequence information based on previous studies (Berlot et al., 2020; Kornysheva & 

Diedrichsen, 2014; Matsuzaka et al., 2007; Picard et al., 2013; Tanji & Shima, 1994; Wiestler 

et al., 2014; Wiestler & Diedrichsen, 2013; Wymbs et al., 2012; Yokoi et al., 2018). Whole-

brain results are presented in the Supplementary Materials. We carried out one-tailed non-

parametric permutation tests along these cross-sections to identify significant clusters 

where activity increased above baseline (Maris & Oostenveld, 2007). During preparation, a 

very small, but significant, activity increase was found within ventral premotor cortex (PMv) 

(p = .002), and a marginally significant increase within dorsal premotor cortex (PMd) (p = 

.050; Figure 2.4b), suggesting large variability across participants. During production, activity 

increases were found across the majority of contralateral motor-related regions, with one 

large cluster across PMd, M1, sensorimotor cortex (S1), anterior superior parietal cortex 

(SPCa), and posterior superior parietal cortex (SPCp) (p < .001), and another cluster which 
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spanned the cross-section from PMv to PMd (p < .001). The cross-section overlapping with 

anterior supplementary motor area (SMA) did not show a significant activity increase from 

rest during production. However, note that the section of the SMA directly posterior to the 

cross-section did show a significant activity increase (Table 2 for whole-brain contrast 

cluster analysis).  

Figure 2.4. Percent signal change during preparation and production. A, Inflated surface maps are shown in 

top panels and flat maps in bottom panels, displaying mean % signal change during preparation (left panels) 
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and production relative to rest (right panels), respectively. For significant surface-based clusters across the 

cortex, see Table 2. B, Mean % signal change relative to rest for both preparation (blue lines) and production 

(orange lines), plotted on cross-sections running from rostral premotor cortex, through the hand area, to the 

occipito-parietal junction (top) and on a profile running from the ventral, through the PMd, to the SMA (BA6; 

bottom). Clusters with increases above baseline are denoted by the coloured horizontal lines and asterisks, 

calculated using one-tailed nonparametric permutation tests. Cing, Cingulate; CS, central sulcus; IPS, 

intraparietal sulcus; m, medial wall; OPJ, occipito-parietal junction; PoCS, postcentral sulcus; PreCS, precentral 

sulcus; SFS, superior frontal sulcus. **p > 0.01; *p > 0.05; one-sided t test. Shaded areas around the lines in b 

and c represent standard error of the sample mean. 

Overall, no or small BOLD increases were observed across regions on the contralateral 

premotor-to-parietal axis during the short period of sequence planning. These results are in 

line with recent findings involving the motor planning of well-trained actions, e.g., common 

object manipulations like grasping and lifting, or tapping with the same finger (Ariani et al. 

2022, Gale et al. 2021). 

Table 2.2 

Surface-based clusters with significant % signal change above rest 

      MNI 

Contrast Versus Rest Area (Brodmann Area) Extent  p (cluster) Peak t X Y Z 

Preparation Contralateral        
 Extrastriate Vis Cortex (BA18) 4886.16  <.001 7.21 -12 -60 -5 
  Pre-SMA (BA32) 2249.6  <.001 6.99 -11 14 50 
  Primary Auditory Cortex (BA41) 940.58  <.001 7.84 -44 -29 11 
  Posterior Cingulate (BA23) 733.45  <.001 6.86 -11 -38 31 
  Anterior Insula (BA48) 706.11  <.001 6.55 -37 -12 3 
  Occipitotemporal Area (BA37) 698.86  <.001 6.39 -38 -62 2 
  Anterior Insula (BA48) 523.72  <.001 6.67 -46 18 11 
  M1 (BA4) 483.3  <.001 6.86 -46 -10 44 
  Inferior Parietal (BA39) 480.37  <.001 5.48 -50 -59 26 
  Extrastriate Vis Cortex (BA18) 477.2  <.001 6.19 -20 -90 6 
  S1 (BA2) 429.79  <.001 5.06 -18 -39 59 
  Orbitofrontal (BA47) 373.43  <.001 6.82 -23 29 2 
  Superior Parietal (BA7) 293.49  <.001 5.52 -21 -49 51 
  Posterior Cingulate (BA23) 274.22  <.001 6.71 -13 -55 26 
  Pre-SMA (BA32) 231.75  <.001 5.46 -9 46 6 
  Middle Temporal (BA21) 179.26  <.001 6.06 -46 -37 -3 
  Middle Temporal (BA21) 125.41  <.001 6.18 -54 -26 -7 
  Inferior Parietal (BA39) 122.42  <.001 5.42 -50 -71 16 
  Anterior Insula (BA48) 115.35  <.001 4.46 -28 31 29 
  Extrastriate Vis Cortex (BA19) 98.81  <.001 5.38 -19 -53 3 
  Wernicke’s Area (BA22) 92.06  <.001 4.82 -53 -19 3 
  Occipitotemporal Area (BA37) 86.6  <.001 4.75 -43 -41 -19 
  Anterior Prefrontal (BA10) 54.95  0.007 4.49 -6 56 13 
  Wernicke’s Area (BA22) 53.73  0.008 4.5 -57 -37 3 
  Anterior Insula (BA48) 53.07  0.009 4.35 -54 -1 11 
  Posterior Cingulate (BA23) 51.92  0.01 6.21 -4 -26 38 
  Anterior Insula (BA48) 51.89  0.01 5.99 -55 3 14 
  Primary Auditory Cortex (BA42) 48.98  0.014 4.71 -57 -37 16 
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  Superior Parietal (BA5) 39.88  0.043 5 -12 -44 45 
  Ipsilateral            

  Extrastriate Vis Cortex (BA18) 2605.25  <.001 7.71 14 -73 -8 
  Extrastriate Vis Cortex (BA19) 1523.99  <.001 7.2 21 -83 16 
  S1 (BA3) 1498.75  <.001 7.89 37 -26 37 
  Superior Parietal (BA5) 1142.07  <.001 7.88 17 -53 47 
  Occipitotemporal Area (BA37) 883.28  <.001 7.65 46 -63 -1 
  Ventral Temporal (BA20) 671.28  <.001 6.27 49 -37 14 
  Superior Parietal (BA40) 336.82  <.001 5.56 34 -52 49 
  Anterior Cingulate (BA24) 282.58  <.001 5.86 6 31 12 
  Extrastriate Vis Cortex (BA18) 274.65  <.001 4.87 23 -87 3 
  Anterior Insula (BA48) 268.99  <.001 6.19 41 -24 20 
  Superior Parietal (BA40) 245.49  <.001 5.49 31 36 35 
  Anterior Insula (BA48) 159.52  <.001 6.36 55 -8 13 
  Pre-SMA (BA32) 145.62  <.001 5.05 10 54 22 
  Middle Temporal (BA21) 122.81  <.001 4.83 53 -50 3 
  Pre-SMA (BA32) 106.49  <.001 5.86 5 44 7 
  Anterior Cingulate (BA24) 93.31  <.001 4.94 9 11 30 
  Subgenual Area (BA25) 56.97  0.003 5.21 4 22 6 
  Posterior Cingulate (BA23) 56.86  0.003 5.13 4 -12 34 
  S1 (BA3) 48.96  0.008 5.22 54 -17 37 
  Middle Temporal (BA21) 48.93  0.008 4.64 49 -34 -4 
  Posterior Cingulate (BA23) 44.43  0.015 5.35 4 -30 32 
  Pre-SMA (BA32) 43.95  0.016 4.43 6 48 27 
  Dorsolateral Prefrontal (BA9) 40.09  0.026 4.57 12 34 46 
  Ectosplenial Area (BA26) 36.16  0.045 4.43 6 -45 25 

Production Contralateral        
 Superior Parietal (BA40) 9012.24  <.001 13.05 -34 -34 38 
  Extrastriate Vis Cortex (BA18) 1166.68  <.001 7.05 -30 -86 -12 
  SMA (BA6) 741.62  <.001 9.5 -3 -16 59 
  M1 (BA4) 717.53  <.001 8.91 -53 -1 30 
  Extrastriate Vis Cortex (BA18) 701.31  <.001 6.37 -18 -71 -2 
  Extrastriate Vis Cortex (BA18) 561.59  <.001 7.03 -20 -86 -21 
  Anterior Insula (BA48) 400.9  <.001 6.84 -33 2 7 
  Extrastriate Vis Cortex (BA18) 174.37  <.001 5.88 -15 -92 -12 
  Posterior Cingulate (BA23) 103.37  <.001 5.43 -5 -5 38 
  Anterior Insula (BA48) 86.36  <.001 7.69 -26 13 16 
  Primary Auditory Cortex (BA41) 79.07  <.001 5.6 -48 -44 25 
  Broca’s Area (BA45) 77.51  <.001 5.8 -45 30 32 
  Extrastriate Vis Cortex (BA18) 45.13  0.001 4.98 -37 -69 -16 
 Ipsilateral        
  Anterior Insula (BA48) 2828.07  <.001 9.24 51 -42 34 
  Extrastriate Vis Cortex (BA19) 2365.33  <.001 7.46 46 -73 -21 
  Extrastriate Vis Cortex (BA18) 1295.15  <.001 6.91 9 -81 32 
  M1 (BA4) 974.65  <.001 7.87 55 -4 35 
  V1 (BA17) 542.45  <.001 5.52 9 -71 5 
  SMA (Medial BA6) 513.52  <.001 8.01 4 -14 61 
  PMd (Dorsal BA6) 285.07  <.001 7.48 29 -7 48 
  Extrastriate Vis Cortex (BA18) 266.94  <.001 6.91 21 -89 -13 
  M1 (BA4) 239.01  <.001 8.4 33 -21 56 
  Posterior Cingulate (BA23) 159.35  <.001 6.4 8 -24 24 
  Anterior Cingulate (BA24) 70.39  <.001 5.71 9 11 31 
  Pars Opercularis (BA44) 62.97  <.001 5.49 48 19 33 
  Pars Triangularis (BA45) 42.9  0.008 5.16 43 34 32 
  Pars Triangularis (BA45) 39.1  0.014 4.87 38 40 18 
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Note.  Results of surface-based random effects analysis (N = 24) with an uncorrected threshold of t(23) > 3.48, 

p > 0.001. p (cluster) is the cluster-wise p value for the cluster of that size. The p value is corrected over the 

cortical surface using the area of the cluster (Worsley et al., 1996) and Bonferroni-corrected for two 

hemispheres. The cluster coordinates reflect the location of the cluster peak in MNI space. 

Table  2.3 

Surface-based clusters with significant above-chance classification accuracy for the decoding 

of sequences and their constituent features (order and timing) 

Note. Table of significant surface-based clusters across the cortex (as in Table 2) for the order, timing, and 

integrated classifiers. 

2.5.3 Multi-variate pattern analysis (MVPA) 

We used MVPA to identify cortical areas that showed systematic changes in BOLD activity 

patterns between sequences with different finger orders, temporal structures, and unique 

     MNI 

Classifier Area (Brodmann Atlas) Extent p (cluster) Peak t X Y Z 

Integrated Preparation               

Integrated Production Contralateral       
 Superior Parietal (BA7) 606.08 <.001 7.27 -17 -63 56 

  Superior Parietal (BA5) 183.08 <.001 6.6 -14 -47 46 
  Extrastriate Vis Cortex (BA19) 62.85 0.008 4.67 -47 -66 -19 
  S1 (BA2) 46.26 0.05 4.34 -28 -44 58 
 Ipsilateral       
  Inferior Parietal (BA39) 69.53 0.004 5.81 51 -54 29 
  Superior Parietal (BA7) 63.4 0.008 5.01 16 -65 49 

Order Preparation Contralateral       
 Extrastriate Vis Cortex (BA18) 61.68 0.012 4.33 -23 -73 -18 

  Extrastriate Vis Cortex (BA18) 56.03 0.022 5.04 -23 -82 -13 
 Ipsilateral       
  Extrastriate Vis Cortex (BA18) 199.36 <.001 5.56 9 -80 30 
  Extrastriate Vis Cortex (BA19) 80.09 0.004 4.9 21 -62 -5 

Order Production Contralateral       
 Extrastriate Vis Cortex (BA18) 118.04 <.001 6.51 -24 -94 -10 

Timing Preparation Ipsilateral       

 Extrastriate Vis Cortex (BA18) 58.41 0.026 4.69 19 -81 -22 

Timing Production Contralateral       
 SMA (BA6) 130.73 <.001 5.13 -3 3 53 

  Broca’s Area (BA44) 128.93 <.001 4.94 -49 9 13 
  S1 (BA3) 114.82 <.001 5.78 -50 -14 39 
  Superior Parietal (BA40) 76.95 0.01 5.57 -40 -45 36 
  Extrastriate Vis Cortex (BA19) 59.21 0.044 4.36 -35 -81 16 
  Inferior Parietal (BA39) 57.46 0.05 4.25 -35 -57 28 
 Ipsilateral       
  M1 (BA4) 199.04 <.001 6.08 52 -11 40 
  PMv (Ventral BA6) 164.2 <.001 6.26 55 7 23 
  Inferior Parietal (BA39) 155.11 <.001 5.76 39 -48 27 
  Pars Opercularis (BA44) 151.26 <.001 5.42 41 22 35 
  Inferior Parietal (BA39) 93.54 0.002 5.14 35 -60 28 
  Pars Triangularis (BA45) 59.82 0.034 4.21 43 27 17 
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combinations of the latter. Using a whole brain searchlight of 160 voxels (Oosterhof et al., 

2011), we trained a linear discriminant analysis (LDA) classifier to distinguish between 

sequences in a one-run-out cross-validation method – an approach that has been validated 

with pattern simulations in a previous study (Kornysheva & Diedrichsen, 2014). Specifically, 

we looked for regional activity patterns that either transferred across or were unique for 

specific combinations of order and timing. The order classifier was used to decode between 

sequences with different finger orders, regardless of their pairing with a timing feature, 

whereas the timing classifier was trained to decode between sequences with different 

finger timings regardless of their pairing with a specific finger order. These two classifiers 

allowed the identification of regions which contained above chance decoding of sequence 

order and timing independently of the other sequence feature, respectively (Figure 2.5a). 

The integrated classifier decoded residual patterns after subtracting averaged sequence 

order and timing related patterns for each run separately, in order to detect regions which 

hold information on sequence identity that is not driven by a simple summation of order 

and timing information (see Methods). 

To reveal the continuous profile of feature decoding along contralateral motor regions on 

the cortical surface, we employed the same permutation test approach (Maris & 

Oostenveld, 2007) as in the % signal change analysis for each of the three classifiers, for 

preparation and production, separately (Figure 2.5b). During preparation, a significant 

cluster was found for finger order within SPCp (p = .040, d = 0.60), and a marginally 

significant cluster for timing decoding was identified within PMv (p = .054, d = 0.62). During 

production, above chance decoding was shown for the integrated classifier within PMd in 

two clusters (p = .002, d = 0.81; p = .044, d = 0.63; on anterior to posterior and ventral to 

dorsal cross-sections, respectively) and S1, which extended into M1 and SPCa (p = .007, d = 

0.79). Above chance decoding of timing was found within SPCa (p = 0.016, d = 0.70), PMv (p 

< .001, d = 0.79), and SMA (p = .045, d = 0.53). 

Next, we examined how well sequence features could be decoded from ROIs during 

preparation and production. These regions covered premotor to superior parietal areas: 

PMd, PMv, M1, S1, SMA/pre-SMA, SPCa, and SPCp. First, to identify above chance decoding 

of sequence information in these areas, one-sample t-tests were performed on the z-values 

extracted from each of the pre-defined ROIs during both preparation and production for 
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timing, order, and integrated classifiers (Figure 2.5c). These t-tests were Bonferroni 

corrected six times, to account for phase (2) by classifier (3) within each pre-defined ROI. 

During preparation, the above chance was found in SPCp for sequence order decoding (t(23) 

= 2.74, p = .036, d = 0.56), with marginally significant, but equal sized above chance accuracy 

in SPCp for sequence timing (t(23) = 2.51, p = .060, d = 0.51, Bonferroni-corrected). During 

production, classification increased above chance for sequence timing in SMA/pre-SMA 

(t(23) = 2.71, p = .036, d = 0.56, Bonferroni-corrected), PMv (t(23) = 3.00, p = .018, d = 0.61, 

Bonferroni-corrected), and SPCa (t(23) = 2.67, p = .042, d = 0.55, Bonferroni-corrected). 

Further, classification increased above chance for order-timing integration in S1 (t(23) = 

3.69, p = .003, d = 0.75, Bonferroni-corrected), PMd (t(23) = 3.06, p = .018, d = 0.63, 

Bonferroni-corrected), SPCa (t(23) = 4.36, p <.001, d = 0.89, Bonferroni-corrected), and SPCp 

(t(23) = 3.20, p = .012, d = 0.65, Bonferroni-corrected).  
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Figure 2.5. Multivariate pattern classification results. A, Inflated surface (top panels) and flat maps (bottom 
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panels), showing mean decoding z-accuracy values above chance for finger order (blue), timing (red), and 

integrated sequence patterns (green) (Kornysheva & Diedrichsen, 2014). For the corresponding significant 

surface-based clusters across the cortex, see Table 3. B, Mean decoding z-accuracy values for each classifier 

along the cross-sections explained in Figure 2.4b. Coloured asterisks indicate the respective above-chance 

clusters for each classifier during preparation and production. C, Searchlight z-accuracy values were extracted 

using predetermined ROIs (Wiestler and Diedrichsen, 2013; Kornysheva and Diedrichsen, 2014; Yokoi et al., 

2018) shown in the left panel. Coloured asterisks indicate decoding above chance. (*) p=0.060; **p > 0.01; *p > 

0.05; one-sided t test above chance (Bonferroni-corrected for six comparisons within each ROI). 

ROI analyses were only performed in the hemisphere contralateral to the movement in 

line with our hypotheses. For explorative purposes, we also carried out searchlight analyses 

across the whole cortex including the ipsilateral surface, which were cluster- and 

Bonferroni-corrected for two hemispheres (Table 3). On the ipsilateral side, significant 

clusters during preparation were only found for order in the extrastriate visual cortex (p < 

.001, p = .004). During production, significant clusters were found for timing in M1 (p < 

.001), PMv (p < .001), inferior parietal (p > .001), and three clusters in lateral prefrontal (p > 

.001, p = .002, & p = .034) regions, with significant clusters for integration in inferior (p = 

.004) and superior parietal regions (p = .008). These findings suggest a general shift towards 

integration across phase across the cortex, with several regions also representing timing 

during production. 

Finally, we set out to test our main hypotheses (Figure 2.1, osf.io/g64hv) regarding an 

interaction between peri-movement phase (preparation, production), classifier (timing, 

order, integrated) and region (PMd, PMv, M1, S1, SMA/pre-SMA, SPCa, SPCp). A repeated-

measures ANOVA revealed a main effect of phase (F(1,23) = 9.49, p = .005, ηp2 = .292), 

substantiating a general increase of decoding accuracy across regions and classifiers during 

production. The main effect of region was not significant (F(3.84,88.42) = 0.45, p = .763, ηp2 

= .019, Greenhouse-Geisser corrected), suggesting that all the contralateral cortical ROIs 

had a comparable contribution to sequence decoding across trial phases. Importantly, we 

found a phase by classifier interaction (F(2,46) = 10.34, p = .044, ηp2 = .127), which was 

driven by an overall increase in the integrated classifier accuracy from preparation (M = -

0.10, SE = 0.13) to production (M = 0.49, SE = 0.11) (p = .003, 95% CI [.217, .971], Bonferroni 

corrected). Finally, we found no interaction of phase by region (F(3.20,73.50) = 0.79, p = 

.512, ηp2 = .033, Greenhouse-Geisser corrected), or phase by classifier by region 

(F(5.40,124.18) = 1.63, p = .151, ηp2 = .066, Greenhouse-Geisser corrected). In sum, this 

supports the hypothesis that tuning of these regions to high and low-level features of 
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sequences changes dynamically depending on trial phase, rather than region, with a state 

shift towards sequence feature integration after movement initiation across multiple 

regions.  

 

2.6 Discussion 

Activity along the cortical premotor to parietal axis has been associated with motor 

sequence control, from its hierarchical organisation (Gerloff et al., 1997; Kennerley et al., 

2004; Russo et al., 2020; Sakai et al., 2003; Wiestler et al., 2014; Yokoi & Diedrichsen, 2019a; 

Zimnik & Churchland, 2021a) to sequence order and timing (Crowe et al., 2014; Kornysheva 

& Diedrichsen, 2014; Merchant, Pérez, et al., 2013; Ramnani & Passingham, 2001; Shima & 

Tanji, 1998a; Wiestler et al., 2014). Yet how sequence-related computations in these regions 

unfold across planning and execution remains uncertain. Do these cortical areas retain a 

fixed tuning to sequence features and their integration throughout planning and execution? 

Or do they switch their content dynamically from before to after movement initiation? 

Here, we examined how motor cortical areas integrate informational content on the order 

of finger movement sequences and their timing across the planning and execution phases. 

Sequence decoding from activity patterns revealed that high-level features of sequence 

organisation remain separate during movement planning and are integrated into unique 

patterns upon movement initiation in premotor and parietal areas.  

2.6.1 Cortical patterns switch their tuning from planning to execution 

Our results demonstrate a generalised dependency of cortical representations on peri-

movement phase, with a global shift across regions towards order and timing integration at 

the transition from sequence planning to execution. This indicates that most cortical motor-

related areas do not rigidly map onto higher- versus lower-level representations of 

sequential organisation, as assumed by earlier studies that focussed on sequence execution 

alone (Diedrichsen et al., 2013; Kornysheva & Diedrichsen, 2014; Yokoi & Diedrichsen, 

2019a). Instead, pattern activity tuning in these regions changes dynamically upon motor 

initiation (Figure 6). Such a state switch in motor-related patterns echoes previous findings 

for the primary motor and dorsal premotor cortices in the context of single movements. 

These show that preparatory neural population activity occupies a different state space 
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(“output-null”) from production to prevent readout from downstream areas during planning 

(Kaufman et al., 2014; O’Shea & Shenoy, 2016; Zimnik & Churchland, 2021a). Here, cortical 

motor planning patterns are not simply subthreshold versions of execution activity patterns 

controlled by inhibitory gating within the cortex or downstream (Cisek & Kalaska, 2005; 

Duque & Ivry, 2009b), but a qualitatively different neural activity pattern. Our results 

support the notion of a largely distinct functional tuning during motor planning across 

regions on the premotor to parietal axis in the context of sequential movements. 

Figure 2.6. Schematic representation of sequence feature control during planning and integration across 

regions on the premotor-to-parietal axis contralateral to the movement. a, Inflated cortical surface showing a 

schematic summary of the fMRI pattern decoding results. b, These findings suggest that there is a shift within 

regions from planning to execution driven by the emergence of patterns related to the integration of sequence 

order and timing (Dynamic mapping: State shift). This is accompanied by pattern stabilisation and increase 

within medial and lateral premotor and parietal areas related to timing (Fixed mapping: Higher-level 

stabilisation). Notably evidence for the control of movement order independently of its lower-level integration 

with timing is restricted to the planning phase only. Semi-transparent clusters of timing-related pattern 

decoding above chance reflect Bonferroni corrected p-values between 0.05 and 0.06 during planning. 

2.6.2 Lack of sequence feature integration prior to motor initiation 

As participants trained to perform the four finger sequences over two days and entirely 

from memory, one may expect that this level of practice would result in their retrieval as 

one integrated spatio-temporal synergy (Gentner et al., 2010). However, we found that 

information about motor sequence order and timing of the upcoming sequence was parsed 
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trial-by-trial and integrated after motor initiation only. One possibility is that the two-by-two 

task design may encourage participants to hold onto higher level representations of 

movement order and timing. However, in previous tasks where only one combination of 

order and timing was trained, transfer of known order and timing to new combinations was 

still found, showing that the separation is not dependent on the task structure, but arises 

automatically (Kornysheva et al., 2013; Ullén & Bengtsson, 2003).  

Although previous work has shown that planning-related activity in motor areas is 

predictive of movement features such as speed, force, and trajectory of the upcoming 

movement (Pearce & Moran, 2012; Wong et al., 2016; Yang et al., 2015), these may be 

regarded as part of planning a holistic motor synergy (D’Avella et al., 2003; Overduin et al., 

2015; Shenoy et al., 2013). In contrast, for discrete sequence learning there is now ample 

evidence that higher-level sequence features such as movement order and timing are 

encoded independently (Bengtsson et al., 2004; Kornysheva & Diedrichsen, 2014; Ullén & 

Bengtsson, 2003; Zeid & Bullock, 2019) and remain so separate during planning (Kornysheva 

et al., 2019a; Mantziara et al., 2021), despite training across multiple days and entirely 

memory-guided production. Specifically, sequence planning is dominated by higher-level 

control of motor sequences without precise implementation parameters, e.g. movement 

order without speed or timing information (Mantziara et al., 2021), and ordinal position 

without effector information (Kornysheva et al., 2019a).  Further, the neural generation of 

sequence elements with a discrete timing goal (instructed delay or rapid succession) shows 

no fusion in M1, despite long-term training and fusion at the muscular level (Zimnik & 

Churchland, 2021a). Yet, when and how integrated control is engaged during planning of 

more continuous overlapping movement sequences is uncertain. Rather than engaging a 

dedicated timing system as is observed with discrete movements here and in previous work 

(Bengtsson et al., 2004; Kornysheva & Diedrichsen, 2014; Medina et al., 2005; Ullén & 

Bengtsson, 2003), continuously overlapping movements have been shown to employ a 

state-dependent control system which integrates sensorimotor states of effectors 

(Diedrichsen et al., 2007; R. B. Ivry & Schlerf, 2008; R. B. Ivry & Spencer, 2004; Kornysheva, 

2016) . Thus, we predict that integrated control for continuous sequences would occur 

throughout planning and execution, unlike for discrete motor sequences. 
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What triggers sequence feature integration trial-by-trial? We propose that contralateral 

motor-related cortical regions activate movement order and timing plans separately until a 

sensory stimulus like the Go cue triggers the binding of the corresponding neural patterns. 

This binding may occur through subcortical, e.g. thalamic input triggering an appropriate 

state for motor execution of specific combination of features (Inagaki et al., 2022; Wang et 

al., 2018). Delaying the binding of sequence features to the production phase and 

maintaining higher-level separation may allow the system to retain maximum flexibility trial-

by-trial, should task demands change. 

2.6.3 Independent patterns for sequence timing but not finger order are reinstated during 

execution  

We found a stark asymmetry between sequence order and timing during the sequence 

production phase. In contrast to the independent patterns for finger order, the activity 

patterns tuned to sequence timing increased (PMv) or emerged (SMA/pre-SMA, SPCa) 

during production. Thus, cortical patterns for sequence timing accompanied the emergence 

of sequence-specific integrated patterns, unlike patterns related to sequence order which 

were restricted to the planning phase. This asymmetry was also observed at the behavioural 

level in the transfer task. Here, trained timing could be quickly recombined with a new order 

in line with previous work (Kornysheva et al., 2013, 2019a; Kornysheva & Diedrichsen, 2014; 

Ullén & Bengtsson, 2003). In contrast, producing the same finger order with a new timing 

was associated with poorer performance, unlike a previous study involving a delayed 

sequence production from memory (Kornysheva et al., 2019a). This interference effect 

suggests that participants were unable to separate the trained order from their timing 

during execution, which directly parallels the prominence of integrated and the lack of 

independent finger order tuning during motor production. 

2.6.4 M1 lacks information about sequences despite a large activity increase during 

execution 

Our results show a lack of sequence feature separation or integration in contralateral M1 

during preparation and only limited evidence for integration above chance during 

production extending out from the greater peak in S1. This occurs despite a large activity 

increase in M1 during production. While this contrasts with several older neuroimaging 
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studies (Kornysheva & Diedrichsen, 2014; Nambu et al., 2015; Wiestler & Diedrichsen, 2013; 

Wymbs & Grafton, 2015), recent findings show that information held within M1 is not 

related to sequence control. Activity patterns in M1 do not change with sequence learning 

(Berlot et al., 2020, 2021a) and reflect the processing of individual movements, particularly, 

the first press of a sequence (Yokoi et al., 2018; Yokoi & Diedrichsen, 2019a). Further, there 

has been no experimental evidence that sequential movements are neurally fused in M1 

into holistic sequence representations: Constituent movements remain individuated in M1 

regardless of sequential context (Russo et al., 2020; Zimnik & Churchland, 2021a). Thus, 

matching the first finger press across trained sequences in each participant may explain why 

we see no prominent sequence feature decoding from M1 in contrast to a previous study on 

sequence timing and order (Kornysheva & Diedrichsen, 2014).  

2.6.5 Extending the motor planning framework to sequential actions 

The framework for single movement motor planning proposes that the motor system 

enters a preparatory state that is distinct from movement execution (Churchland et al., 

2010; Kaufman et al., 2014; Shenoy et al., 2013). Recent findings also suggest a distinction 

between the selection of motor goals and motor implementation planning, which formulate 

‘what’ movements to execute and ‘how’ to execute them, respectively (Haith & Bestmann, 

2020; Wong et al., 2015), converging with the idea of hierarchical motor sequence control 

(Diedrichsen & Kornysheva, 2015a; Yokoi & Diedrichsen, 2019a). Here, we propose that 

sequence order and timing features are specified during planning as ‘what’ elements 

representing higher-level control, and integrated during execution as ‘how’ elements, 

representing lower-level implementation. Crucially, our results suggest that individual 

regions can undergo a state shift from ‘what’ to ‘how’ control depending on the peri-

movement phase. Future electrophysiological research should address whether the same 

neuronal populations are involved in both types of control within areas, and determine the 

neural origin and exact time point that triggers the informational state shift. 
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Chapter 3 - Hippocampus Retrieves the Order of Skilled Typing Sequences 

During Movement Planning 

This chapter is in preparation as: 

Yewbrey, R., & Kornysheva, K. (2024). Hippocampus retrieves the order of skilled typing 

sequences during movement planning. [In Prep] 

Author contributions: R.Y. and K.K. designed research; R.Y. and K.K. performed research; 

R.Y. and K.K. analysed data; R.Y. and K.K. wrote the first draft of the paper; R.Y. and K.K. 

edited the paper; R.Y. and K.K. wrote the paper. 
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3.1 Abstract 

It is widely accepted that plasticity in the subcortical motor basal ganglia-thalamo-cerebellar 

network plays a significant role in the learning and control of long-term memory for new 

procedural skills, such as the formation of the learnt population trajectories in the striatum 

and the adaptive sensorimotor mapping in the cerebellum. However, recent findings 

reported the involvement of a wider cortical and subcortical brain network in the 

consolidation and control of skilled actions, including an area traditionally associated with 

declarative memory – the hippocampus. Here, we probe how different levels of the motor 

hierarchy – high-level features during planning and their integration during sequence 

execution are activated in subcortical areas with and without direct mapping to motor 

output centres. An fMRI dataset (N=24) collected after participants learnt to produce four 

typing sequences entirely from memory over several days was examined for the overall 

BOLD signal change and informational content in subcortical regions-of-interest during 

planning and execution. Although there was a widespread activity increase in striatal, 

thalamic, and cerebellar motor regions in the perimovement phase, the associated activity 

did not contain information on the motor sequence identity or its constituent features. In 

contrast, hippocampal activity increased during planning and was predictive of the order of 

the upcoming sequence of movements. Our findings show that the hippocampus is involved 

in movement sequence planning, specifically the retrieval of serial order from memory in a 

task that involves retrieving different sequences of movements trial-to-trial, similar to 

skilled human actions such as typing or handwriting. These findings question traditional 

classifications of motor memory and carry potential implications for the rehabilitation of 

individuals with relevant neurodegenerative disorders. 
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3.2 Introduction 

Motor skill acquisition involves cortico-striato-cerebellar circuits linked via interlocking 

loops in the thalamus (Bostan & Strick, 2018). As motor skills are learnt, the dominant 

assumption is that there is a transition from associative to motor reference frames (Dayan & 

Cohen, 2011; Hikosaka et al., 2002b; Verwey, 2023b), accompanied by a shift in skill 

encoding to cortical and subcortical areas with direct or indirect projections to brainstem 

and spinal control centres, particularly the putamen and Lobules V and VI of the cerebellum 

(Thompson & Kim, 1996). This is thought to underlie the formation of a motor “repertoire” 

and the procedural control of fine-grained kinematics and sensorimotor maps (Diedrichsen 

& Kornysheva, 2015b). 

However, neurophysiology and neuroimaging of skilled sequence learning and control in 

humans and animal models demonstrated that activity in motor cortical regions is not tuned 

to whole sequences of movements, but to individual movement elements of a skilled 

sequence (Shima & Tanji, 2000; Yokoi & Diedrichsen, 2019b; Zimnik & Churchland, 2021b). 

Moreover, the network of areas involved in the later stages of learning continues to extend 

beyond core motor cortical and subcortical hubs. This applied to skills after prolonged 

training over weeks or months (Averbeck et al., 2003; Berlot et al., 2020, 2021b; Mushiake 

et al., 2006; Shima & Tanji, 1998b) or sequence production from memory without external 

guidance (Yewbrey et al., 2023). The associated patterns of activity have been linked to 

higher-order control of skilled motor sequences such as their serial order and timing 

(Kornysheva & Diedrichsen, 2014), as well as the transfer of movement components of a 

sequence to new sequences to enable flexibility, characteristic of skilled motor control in 

humans. Furthermore, there is growing evidence that the hippocampus, traditionally 

associated with declarative memory formation, and for a long-time neglected in motor 

control of skilled actions, contributes to the consolidation of procedural sequential skills 

(Albouy et al., 2008, 2008, 2013; Buch et al., 2021; Lungu et al., 2014). 

Whilst the cortical control of sequential skills has been characterised in detail functionally 

over the last three decades, the complementary contribution of striatal, cerebellar, and 

hippocampal areas to skilled motor sequence control remains debated. In particular, it is 

unclear whether these are functionally in higher-level organisation versus lower-level 

implementation of skilled movement sequences during the peri-movement phase, i.e. 
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during planning or execution. Outcomes are directly relevant to the development of 

interventions to rehabilitate skilled motor control in individuals suffering from neurological 

and neurodegenerative disorders (Parkinson’s Disease, Cerebellar Ataxia and Alzheimer’s 

Disease) affecting the respective brain regions disproportionately. 

The functional role of the basal ganglia (BG) during motor learning has historically been 

attributed to action selection, by activating target movement plans and inhibiting competing 

movements (Frank, 2011; Gurney et al., 2001; Mink, 1996; Redgrave et al., 1999). During 

sequential movement learning in particular, the dorsolateral striatum (equivalent to the 

putamen in humans) of the BG has been shown to concatenate movement chunks (Friend & 

Kravitz, 2014; Graybiel, 1998; Wymbs et al., 2012) and is sensitive to the temporal and 

ordinal structure of sequences (Bednark et al., 2015). Moreover, multi-unit recordings in the 

dorsomedial striatum (analogous to the caudate nucleus in humans) show ramping activity 

which scales across the temporal length of inter-movement intervals (Emmons et al., 2017; 

Wang et al., 2018), showing a sensitivity to the temporal structure of sequential 

movements. These findings suggest that BG are responsible for the specification of high-

level movement sequences features. 

In contrast, more recent findings suggest that the ventrolateral striatum in BG is a low 

level controller of learnt sequences of movements, reflecting movement kinematics of an 

overtrained skill (Dhawale et al., 2021; Harpaz et al., 2022). Recent supporting evidence in 

rodents has shown that low-level kinematics, but not high-level sequential structure (i.e. 

movement order), are disrupted when the dorsolateral striatum is perturbed using 

optogenetics (Mizes et al., 2023a), with intact movement kinematics can be generated by 

the BG being preserved in the case of cortical lesions (Kawai et al., 2015). While a 

considerable amount of evidence in this debate comes from non-human animals, there is 

human neuroimaging evidence for distinguishable movement sequence activity patterns in 

the BG using multivariate distance measures (Berlot et al., 2020). However, whether these 

patterns are related to high-level action selection, or low-level kinematics, requires further 

investigation. 

The thalamus is often thought to solely relay sensory input, particularly vision (Adams et 

al., 2002; Sherman, 2007). Recently, however, the function of the motor thalamus (ventral 

lateral nucleus) has been broadened from a sensory relay (Bosch-Bouju et al., 2013) to a 
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region that actively modulates cortical activity, encourages interregional coupling, and 

focuses cortical activity (Shine et al., 2023), with modulatory action also extending to the 

BG, and CB (Shine, 2021). This action is present during movement planning and works 

alongside the cortex to maintain preparatory activity (Guo et al., 2017). Moreover, during 

the execution period, the motor thalamus relays a signal from the pons to the cortex to 

initiate movement, causing the neural dynamics of the motor cortex to reorganise (Inagaki 

et al., 2022). However, whether these preparatory and execution-related roles of the 

thalamus consist of high- or low-level movement sequence information is unclear. 

The cerebellum (CB) has long been associated with sensorimotor prediction and 

adaptation for online motor control, evidenced best by cerebellar ataxia (Diener & Dichgans, 

1992; Miall et al., 2007) and eye blink conditioning (Christian & Thompson, 2003). However, 

more recent findings have suggested that the CB is also involved in movement planning, 

driving the cortex through different states of preparatory activity (Chabrol et al., 2019; Li & 

Mrsic-Flogel, 2020). Indeed, when the CB of mice is perturbed during planning, they made 

fewer correct directional licks (Gao et al., 2018). However, this seemed to impact 

subsequent movement direction whilst kinematics remained stable. Despite the CB’s 

established history of kinematic definition during execution, it is not clear whether planning 

in the CB represents higher-level movement features or movement kinematics. 

Whilst the basal ganglia and cerebellum have been the main subcortical focus of research 

in skill acquisition and sensorimotor learning, the hippocampus has long been overlooked, in 

line with the landmark studies of procedural memory in amnesic patients with medial 

temporal lobe damage (Brooks & Baddeley, 1976; Cohen & Squire, 1980). However, there is 

increasing evidence that the original taxonomy is not straightforward for skill acquisition 

and control in the real-world with both procedural and declarative memory playing a part in 

sensorimotor adaptation and skill learning. In particular there is increasing evidence that the 

hippocampus is involved in sequence learning and consolidation during movement 

sequence learning (Albouy et al., 2008, 2013; Buch et al., 2021; Doyon et al., 2009; Lungu et 

al., 2014). Recent findings suggest that the hippocampus defines movement order, by 

developing effector-independent representations of movement sequences during learning 

(Albouy et al., 2015). Evidence from magnetoencephalography (MEG) also suggests the 

medial temporal lobe plans an abstract template for the parallel preordering of actions 
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during sequence planning (Buch et al., 2021; Kornysheva et al., 2019b) and replaying 

sequences during short rest periods interspersed with practise. However, the exact 

localisation of this neural activity to the medial temporal lobe using MEG is debatable, and 

higher spatial resolution of fMRI is required to substantiate these findings. 

Here, we set out to tease apart the roles of subcortical areas associated with motor skill 

learning and control – basal ganglia, thalamus, cerebellum, and hippocampus – in 

movement sequence planning and execution from memory. Using multivariate pattern 

analysis of fMRI data we investigated the activity patterns related to higher-level sequence 

feature selection and lower level sequence-specific implementation in the peri-movement 

phase during which participants produced movement sequences with a particular order and 

timing structures from memory (Yewbrey et al., 2023). We found that that the hippocampus 

plays a role in 65orting movement sequences, particularly in recalling the high-level 

sequential order from memory. In contrast, increases in activity in during the production 

phase were not associated with sequence-specific information, suggesting that these were 

instead involved in low-level control of constituent movement elements used across 

sequences. 

 

3.3 Results 

3.3.1 Activity increases from preparation to production in the contralateral putamen, 

caudate, thalamus, and ipsilateral cerebellum, but not the hippocampus 

We trained 24 participants to produce four five-finger sequences from memory using 

their right hand. Behavioural training progressed from production under visual instruction to 

production from memory across two days. On the final third day, participants produced the 

sequences entirely from memory in an MRI scanner whilst activity across the whole brain 

was recorded. To isolate neural patterns relating to movement production from those 

relating to movement preparation, we used two independent trial types: Go trials (Figure 

3.1a), to sample production activity, and No-Go trials (Figure 3.1b), to sample preparatory 

activity. Go trials began by cueing the upcoming sequence with an abstract fractal image, 

followed by a fixation cross, then a black hand with a green background (Go cue) indicated 

that the sequence should be executed (Figure 3.1c). A further fixation cross, then 
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performance feedback, followed. No-Go trials were almost identical, however did not 

display a Go cue. Rather, a fixation cross remained on the screen for an extended period. 

Feedback followed, and participants were rewarded for not producing any presses (see 

Methods and materials). More details regarding the experimental design and behavioural 

findings are available in a previous paper which examined the role of cortical motor areas 

(Yewbrey et al., 2023). 

Figure 3.1. Trial types and target sequences. a, participants were trained to produce sequences from memory 

via visual instruction in ‘Go’ trials. The target sequence for each trial was indicated by an abstract fractal cue 

which succeeded a short preparation period. A black hand with a grey (instructed; a red cue indicated which 

finger to press with a set temporal structure) or green (from memory; participants had to produce the 

sequence without the visual cue) appeared to indicate the go cue. A short fixation period followed, after which 

feedback was provided based on the accuracy and timing of the sequence. B, on 50% of trials, the go cue 

would be replaced by an extended fixation cross. Participants were subsequently rewarded for not making a 

press during these ‘No-Go’ trials. C, all trials for one participant are plotted with the colour indicating which 

button was pressed according to the image above the plot. Target sequences consisted of permutations of two 

timings and two orders, constituting S1 through S4. Participants performed the sequences using the right hand 

on a 10-finger force transducer. 
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Firstly, we examined whether the subcortical regions of interest with connections to the 

active effector (right hand) were active during the preparation and production of movement 

sequences. We extracted percent signal change relative to rest from the left thalamus, left 

caudate, left putamen, and right CB lobules 4 and 5. In addition we extracted activity from 

the bilateral hippocampus in line with its role in skill learning and memory (Albouy et al., 

2015; Doyon et al., 2009; Kornysheva et al., 2019b). We defined all regions using each 

participant’s individual anatomy (see Methods and materials). The extracted percent signal 

change values from across all voxels belonging to each region were then averaged for each 

participant during preparation and production and we identified significant increases or 

decreases in activity compared to a baseline of zero (Figure 3.2a, b). All tests were 

Bonferroni corrected twice to account for phase (2) in each pre-defined ROI. During 

preparation, we observed significantly above baseline activity in the caudate (t(23) = 3.28, p 

= .006, d = 0.67), putamen (t(23) = 2.67, p = .028, d = 0.55), and hippocampus on both the 

left (t(23) = 6.28, p < .001, d = 1.28) and right (t(23) = 4.63, p < .001, d = 0.94) sides. No 

significant difference relative to baseline was found in the thalamus nor in lobules 4 and 5 of 

the CB during preparation (p > .114, d < 0.41). During production, significantly above 

baseline activity was observed in all subcortical area with connections to the active effector 

– contralateral thalamus (t(23) = 7.54, p < .001, d = 1.54), caudate (t(23) = 2.66, p = .028, d = 

0.54), putamen (t(23) = 4.21, p < .001, d = 0.86), CB lobule 4 (t(23) = 5.61, p < .001, d = 1.15), 

and CB lobule 5 (t(23) = 12.22, p < .001, d = 2.49). The hippocampus, however, showed 

significantly below baseline activity during production in the left (t(23) = 2.45, p = .044, d = 

0.50) and right (t(23) = 3.19, p = .008, d = 0.65) hemispheres. In sum, only basal ganglia and 

hippocampus were active during sequence preparation from memory. During production 

only subcortical and cerebellar areas with direct relevance to the active effector increased 

their activity, whereas hippocampal activity decreased. 
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Figure 3.2.  Percent signal change in subcortical regions during preparation and production. A, volumetric 

slices of each subcortical region displaying percent signal change for preparation and production, far left and 

right respectively. Centre shows the level of percent signal change when averaged across each subcortical 

region. ** p < 0.01; * p < 0.05; two-sided t test against 0. Error bars represent standard error of the sample 

mean. B, as above, for cerebellum. Black outline indicates significant clusters. Tha, thalamus; Cau, caudate 

nucleus; Put, putamen; Hip, hippocampus. 

We then localised the peak activations within each subcortical area by identifying 

significant clusters of activation using a random effects analysis (Figure 3.2a, b). All results 

were corrected using SPM’s small-volume correction and Bonferroni corrected twice to 

account for phase (2). During preparation, we found significant clusters of activation in the 

caudate’s ventral anterior head (t(23) = 6.02, pFWE = .008, extent = 101, MNI coordinates: 

x=-16, y=22, z=-5), anterior body (t(23) = 5.56, pFWE = .020, extent = 83, x -16 y 22 z 7), and 

dorsal anterior tail (t(23) = 5.55, pFWE = .008, extent =106, MNI coordinates: x=-12, y=-6, 
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z=17), posterior putamen (t(23) = 5.71, pFWE < .001, extent = 228, MNI coordinates: x=-32, 

y=-14, z=9), anterior left hippocampus (t(23) = 7.97, pFWE < .001, extent = 766, MNI 

coordinates: x=-26, y=-22, z=-15), anterior right hippocampus(t(23) = 6.33, pFWE < .001, 

extent = 471, MNI coordinates: x=38, y=-20, z=-17), and CB right lobule five extending into 

right lobule four (t(23) = 5.09, pFWE = .002, extent = 205, MNI coordinates: x=17, y=-45, 

z=17). During production, we found significant clusters of activation widespread in the 

thalamus which centred middle posterior (t(23) = 14.29, pFWE < .001, extent = 851, MNI 

coordinates: x=-16, y=-24, z=5), the anterior tail of the caudate (t(23) = 5.24, pFWE < .001, 

extent = 208, MNI coordinates: x=-10, y=0, z=9), posterior putamen (t(23) = 7.06, pFWE < 

.001, extent = 783, MNI coordinates: x=-28, y=-18, z=3), and CB lobules 4 and 5 (the peak of 

which is in lobule 6, outside of our pre-defined ROIs; t(23) = 8.46, pFWE < .001, extent = 

20079, MNI coordinates: x=7, y=-69, z=-16). In sum, while thalamus, BG, and cerebellum 

show general increases in activity throughout both movement phases relative to rest, 

hippocampus instead shows an increase during preparation and a decrease during 

production. 

3.3.2 Sequence order, but not timing and integration, is present in subcortical regions – 

linear discriminant analysis 

Whilst activity increases and decreases can show where there are changes in the use of 

neural resources, it does not inform us what informational content is represented in the 

underlying activity patterns. To identify the presence of sequence order and timing control, 

which may be considered higher-level sequence features and aspects of action selection, 

the four sequences that participants were trained to produce were permutations of two 

different order (finger press order) structures and two different timing (inter-press-interval 

arrangement, or rhythm) structures. We trained and tested an LDA classifier to distinguish 

between the neural patterns elicited by each order, regardless of the timing condition it was 

paired with, to identify independent representations of movement order (Kornysheva & 

Diedrichsen, 2014; Yewbrey et al., 2023). This constituted the accuracy values for the order 

decoder. A complimentary decoder was vice versa trained and tested to distinguish 

between the neural patterns of different timings when paired with different orders, 

providing the accuracy values for the timing decoder. A final decoder was trained and tested 

to distinguish between the residual patterns unique to each order-timing combination, 
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indicative of each sequence’s idiosyncratic movement kinematics and provided values for 

the integrated decoder. All decoders were cross validated across six imaging runs and, for 

order and timing, across conditions, then converted into z scores (see Methods and 

materials). 

Figure 3.3. Linear discriminant analysis results. A, volumetric slices of each subcortical region displaying 

classification accuracy for each classifier during preparation and production, far left and right respectively. 

Centre shows classification accuracy when averaged across each subcortical region. * p < 0.05; one-sided t test 

against chance (Bonferroni-corrected for six comparisons within each ROI). Error bars represent standard error 

of the sample mean. B, as above, for cerebellum. Black outline indicates significant cluster. Tha, thalamus; Cau, 

caudate nucleus; Put, putamen; Lob 4, lobule four; Lob 5, lobule five. 

We first tested whether ROI showed above chance decoding accuracy (Figure 3.3a, b). To 

do so, we obtained accuracy values for each of our three classifiers during preparation and 

production when considering all voxels within each ROI. We then assessed accuracy values 

in each region using one-tailed one-sample t-tests against a chance level of zero. All tests 
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were Bonferroni corrected six times to account for classifier (3) and phase (2) in each pre-

defined ROI. During preparation, we found significantly above chance decoding of order in 

the left hippocampus (t(23) = 3.00, p = .018, d = 0.61). During production, we found no 

evidence of significantly above-chance decoding accuracy in the ROIs (p > .264, d < 0.36). 

These results suggest that the left hippocampus is involved in the planning of the ordinal 

structure of movement sequences. 

Whilst considering all present voxels contained within a region is informative as to the 

general inclination of a region’s processing, it does not inform us as to which subregions 

may be driving decoding accuracy the most. This is especially true when it comes to 

subcortical regions such as the thalamus, which shows differing functional and anatomical 

connectivity throughout its various subregions and nuclei (Kumar et al., 2017). Therefore, 

we performed volumetric searchlight analyses using 160 voxel searchlights for each 

decoder, constrained to each subcortical ROI (Figure 3.3a, b). The accuracy value for each 

given searchlight was assigned to the centre voxel. We then identified significant clusters 

using a random effects analysis on the produced accuracy maps and applied SPM’s small-

volume correction in a similar manner to the contrast activity cluster analysis. We 

Bonferroni corrected significance values for each cluster six times, to account for classifier 

(3) and phase (2). During preparation, we found a significant cluster for the order decoder in 

the anterior body of the left hippocampus (t(23) = 5.74, pFWE < .001, extent = 379, MNI 

coordinates: x=-32, y=-22, z=-11). No significant clusters were found to survive corrections 

during production, although prior to corrections a significant integrated cluster was found in 

the superior thalamus during production (t(23) = 4.68, pFWE = .041, extent = 51, MNI 

coordinates: x=-18, y=-26, z=15). These findings reinforce that the hippocampus, particularly 

the anterior body, is involved in the planning of sequential movement order. Sequence 

timing and its non-linear integration with sequence order, however, do not seem to be 

represented in motor-related subcortical regions. 

3.3.3 Sequence representations differ across preparation and production 

Given that our target subcortical regions show different activity levels alongside changes 

in informational content across preparation and production, we wanted to investigate 

whether there was a substantial change in the neural patterns themselves prior to and 

during movement. One possibility if that the patterns present during preparation undergo 
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linear scaling to exceed a set threshold and initiate movement, where unintended initiation 

is thought to be prevented by suppression in 72orticespinal circuits (Duque & Ivry, 2009a). 

Alternatively, these patterns may belong to entirely independent distributions, meaning 

that they are altogether distinct. The presence of similar neural patterns has been 

evidenced in single finger movements using fMRI (Ariani et al., 2022), whereas distinct 

neural patterns have been shown in multi-unit recordings of neural populations (Kaufman et 

al., 2014). Accordingly, we assessed the within-sequence, across-phase Euclidean distance 

between conditions in our fMRI data across principal components using multi-dimensional 

scaling of the representational dissimilarity matrix. Since we saw substantial activity changes 

across all regions except for the caudate from preparation to production, the first principal 

component is set to represent the different levels of activity as it captures the dimension 

with the greatest variance across the conditions. Therefore, we quantified the Euclidean 

distance between each sequence’s position during preparation and production in a 2D space 

with the axes comprising of principal components two and three. 
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Figure 3.4.  Simulated and empirical cross-phase Euclidean distances using multi-dimensional scaling. a, multi-

dimensional scaling plots of simulated fMRI data along principal components 1, 2, and 3, showing four 

simulated sequence conditions across two phases. Red lines connect simulated sequences with different 

timings but the same order, whereas blue lines indicate sequences with different orders but the same timing. 

Dotted grey lines are drawn between the same sequence during preparation and production. Preparation and 
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production were either generated using the same distribution (left panel; no switch) or different distributions 

(right panel; switch). b, multi-dimensional scaling plots of empirical data from target ROIs showing all four 

sequences during preparation and production. c, averaged Euclidean distance between preparation and 

production within sequences once PC1 is excluded, calculated relative to those same distances from the 

simulated no switch data with matched signal to noise ratios. This represents differences for all sequences 

between preparation and production which cannot be explained by differences in overall activity. Orange 

horizontal lines represent the same distances in the simulations when a switch is induced. * p < 0.05; ** p < 

0.001; one-sided t test against simulated no distance with matched noise, 0 (Bonferroni-corrected for seven 

comparisons). Tha, thalamus; Cau, caudate nucleus; Put, putamen; Lob 4, lobule four; Lob 5, lobule five. 

If one were to assume that activity patterns during production are simply upscaled 

versions of those during preparation, the hypothetical distance between patterns after 

removal of the first principal component should be zero. However, given a level non-zero 

level of noise in our data, these distances are unlikely to equal zero which would bias our 

results away from indicating a maintained distribution. To control for this, we simulated 

fMRI data sets with the same conditions as our empirical data and generated preparation 

and production from either the same distribution (no switch) or different distributions 

(switch), whilst matching their signal to noise ratios to our regions of interest (Figure 3.4a). 

Additionally, we scaled this cross-phase distance by the average of distances within 

preparation and production (Figure 3.4b). We then performed one-tailed, one-sample t-

tests against zero to identify significantly elevated Euclidean distance in each of our 

subcortical regions, Bonferroni corrected seven times for region (Figure 3.4c). We found 

significant elevation in the thalamus (t(23) = 6.06, p < .001, d = 1.24), caudate (t(23) = 3.20, p 

= .014, d = 0.65), putamen (t(23) = 3.12, p = .017, d = 0.64), hippocampus in the left (t(23) = 

3.05, p = .020, d = 0.62) and right (t(23) = 3.93, p = .002, d = 0.80) hemispheres. No 

significant differences were found in CB lobule 4 (t(23) = 0.37, p = 1.00, d = 0.08) and CB 

lobule 5 (t(23) = 2.05, p = .182, d = 0.42). These results suggest that all subcortical regions 

apart from CB show significantly higher cross-phase distances than a matched simulation 

which does not predict a change in distributions across phase, providing evidence for 

distinct neural patterns for movement sequences prior to and during movement. 

 

3.4 Discussion 

Learning and control of skilled motor sequences (“muscle memories”) has been 

associated with subcortical motor-related brain areas – basal ganglia, the cerebellum, and, 
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more recently, the hippocampus (Buch et al., 2021; Harpaz et al., 2022; Khilkevich et al., 

2018). However, there are unresolved debates on the contribution of these areas to high-

level action selection and lower-level movement implementation, respectively (Christian & 

Thompson, 2003; Frank, 2011; Gao et al., 2018; Mizes et al., 2023a). Here, we examined 

brain activity patterns within effector-related striatal, thalamic, and cerebellar, as well as 

bilateral hippocampal regions while participants were preparing and executing well-trained 

motor sequences from memory in the fMRI scanner. Specifically, we probed whether these 

regions showed activity in line with sequence-sensitive tuning to high-level sequence 

features – finger order and timing, as opposed to their lower-level integration for sequence 

execution (Figure 3.5). Further, we assessed whether the neural patterns during planning in 

those subcortical areas were simply a subthreshold version of those during execution (Cisek 

& Kalaska, 2005; Duque & Ivry, 2009a), or qualitatively distinct neural states (Kaufman et al., 

2014) implying a state shift in neural activity related to phase. Although both hippocampal 

and effector-related striatal regions showed increased activity during sequence planning, 

only the hippocampal patterns showed higher-level sequence order tuning during planning. 

In contrast striatal, thalamic, and cerebellar regions increased activity during production yet 

lacked sequence-specific patterns across any of the phases, suggesting their role may be 

related to low-level kinematic control of individual movement elements, rather than a 

particular sequence of movements. All regions, apart from the cerebellum, showed 

fundamental shifts in the activity patterns from planning to execution, suggesting that 

initiating movements involves a general shift in the neural control of sequential movements. 

3.4.1 The hippocampus pre-orders upcoming movements 

The hippocampus has traditionally been associated with episodic recall in the non-motor 

domain and is key to the preservation of event order (Davachi & DuBrow, 2015). However, 

new evidence suggests its involvement in the consolidation of motor skills, e.g. via 

hippocampo-neocortical replay patterns supporting rapid wakeful consolidation during 

short rest periods interspersed with sequence learning  (Buch et al., 2021). Our fMRI pattern 

analysis revealed that the hippocampus retrieves high-level information on the upcoming 

sequence during movement planning – the finger order of the sequence regardless of its 

timing.  
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One possibility is that the hippocampus engages in serial order replay during preparation, 

which is temporally compressed approximately 20-fold relative to the acquired skill and is 

associated with skill consolidation (Buch et al., 2021). Alternatively, it may be setting up the 

order through parallel competitive preparation of the upcoming sequence elements – 

competitive queueing (Kornysheva et al., 2019b). This framework suggests that upcoming 

movements are planned in parallel prior to serial execution during production using a 

parallel playing layer (Averbeck et al., 2002; Houghton & Hartley, 1995). Whilst only invasive 

recording in patients and concurrent EEG-fMRI studies would be able to arbitrate between 

these two scenarios, they demonstrate that the hippocampus is involved in the control of 

highly trained sequences of movements, specifically in retrieving sequence order from long-

term memory. 

Previous findings suggest that the superior parietal lobule (SPL) also plays a role in the 

definition of movement order during planning (Yewbrey et al., 2023) and represents 

effector non-specific movement intentions (Henderson et al., 2022; Shushruth et al., 2022). 

The SPL and hippocampus share extensive connections through the ‘where’ pathway in the 

dual stream model of memory (Huang et al., 2021) and interact closely during navigation 

tasks to convert world-centered coordinates into body-centered coordinates (Rolls, 2020; 

Whitlock et al., 2008). As such, interaction between hippocampus and SPL may serve to map 

the abstract order generated by the hippocampus (Kornysheva et al., 2019b) onto intrinsic 

reference frames (Wiestler & Diedrichsen, 2013) prior to execution (Figure 3.5). 
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Figure 3.5. Schematic representation of sequence feature control during planning and execution. Higher level 

sequence features, order (blue) and timing (red), are defined by cortex and hippocampus during planning. 

During execution, the activity patterns in hippocampus, basal ganglia, and thalamus shift while the cortex 

integrates order and timing into low-level sequence specific trajectories (green), while maintaining higher-level 

independent movement timing. The green gradient fill in thalamus, basal ganglia, and cerebellum indicates 

regions that implement individual sequential elements. Tha, thalamus; BG, basal ganglia; CB, cerebellum; HC, 

hippocampus. 

3.4.2 Effector-relevant striatal, thalamic, and cerebellar activity lacks sequence-specific 

tuning 

While the hippocampus showed clear evidence for a high-level selection of upcoming 

serial order, we found no evidence for effector-relevant contralateral striatal, thalamic, and 

ipsilateral cerebellar activity containing sequence-specific information of any sort. These 

findings speak against both the hypothesized role of the striatum in action selection and its 

integration of sequence features for kinematic control of the whole sequence as one motor 

program. This appears to contrast results from rodent models (Mizes et al., 2023a) where 

optogenetic lesions lead to kinematic deficits in sequence production. However, this 

mapping breaks down in rodents when highly trained sequences share elements with other 
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sequences the animal has been exposed to, e.g. lever presses appearing in a different order 

(Mizes et al., 2023b). This is analogous to many motor skills in humans, such as typing, 

handwriting and music production where elements are reused in different permutations, 

including highly trained ones. Importantly this also applied to the factorial design of our 

study. Thus, kinematic control in the striatum is likely associated with singular movements, 

rather than whole sequences, which our experiment would be unable to detect due to all 

sequences containing the same constituent movements. 

Surprisingly, we did not observe any engagement in ipsilateral effector-relevant 

cerebellar regions during motor sequence planning. This includes both the absence of 

overall activity increase and the lack of above-chance accuracy in decoding sequences, 

despite recent animal studies suggesting their role in motor planning. This suggests that 

cerebellar motor regions contribute to the online control of individual movement elements 

during movement production, rather than the planning and execution of a whole sequence. 

The latter preserves the possibility of cerebellar involvement in planning, including the 

planning of individual actions “on the fly” once the production of a sequence has started 

(Ariani et al., 2021; Ariani & Diedrichsen, 2019). Sequence tuning could be found in 

cerebellar regions known to be interconnected with prefrontal areas (Crus I). Notably, this 

tuning occurred again exclusively during motor execution, emphasizing its role in online 

control rather than pre-execution planning.  

Despite participants’ ability to fluently produce the target movement sequences from 

memory after two days of training, the movement kinematics for the upcoming sequence 

are not pre-planned. Rather, the order and timing of sequences is recombined trial-by-trial 

likely through communication with the cortex, which has shown a mechanism whereby the 

order and timing are planned and subsequently integrated during execution (Yewbrey et al., 

2023). This maintenance of separation up until the go cue likely affords the individual the 

ability to adjust movement plans should task demands suddenly change. 

3.4.3 Multidimensional scaling reveals a widespread shift in sequence pattern activity across 

planning and execution 

Motor planning in the cortex has been proposed to be a scaled down version of 

execution, held at bay by suppression in corticospinal circuits (Cisek & Kalaska, 2005; Duque 
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& Ivry, 2009a). More recently, however, planning activity has been proposed to exist in an 

output-null dimension to execution, where increases and decreases in output from neurons 

projecting to the same source cause no net change in activity, but prepare the system to 

shift into the output-potent dimension (Kaufman et al., 2014, 2016), including for sequences 

of movements (Yewbrey et al., 2023). Our current results suggest that this shift also takes 

place in multiple subcortical areas: striatum, thalamus, and hippocampus. Here, sequence-

related activity patterns across planning and execution were significantly distinct across the 

perimovement phases. This could not be explained by a simple upscaling through changes in 

activity and matched by our no-change simulations of the same dimensions that considered 

empirical noise levels in those areas. This could be driven by either separate populations 

becoming active at different times around movement execution or changes of the patterns 

of the same neuronal pool, which can only be resolved with invasive recordings in these 

areas. 

3.4.4 Implications for clinical disorders 

Here we show that the hippocampus, but not the basal ganglia-cerebellar-thalamic loop 

is contributing to the planning of skilled movement sequences produced from memory. 

Thus, breakdowns in movement sequence execution in Parkinson’s Disease (Wilkinson et al., 

2009) and Cerebellar Ataxia (Doyon et al., 1997) cannot be explained by deficits in the 

planning or execution of entire sequences. Instead we hypothesize that they might be a 

result of the reduced capacity to implement the online control of individual movement 

elements (Dhawale et al., 2021; Mizes et al., 2023a). In contrast, our results predict that 

Alzheimer’s Disease which is associated with a degeneration of the hippocampal formation 

and the medial temporal lobe (Dubois et al., 2016), affects everyday movement sequence 

production such as handwriting and ideomotor action organization (Förstl & Kurz, 1999) 

because of the inability to retrieve the correct order of the upcoming movement elements. 

We hypothesize that this applies particularly to contexts where movement sequences need 

to be retrieved flexibly from long-term memory, such as often the case in everyday skilled 

action use which utilises the same elements from the motor repertoire across different 

ordinal sequences, e.g., typing, handwriting and tool use. In summary, our results question 

traditional classifications of motor skill memory and control, along with their associated 
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subcortical substrates. Research on skilled movement planning in these clinical populations 

is needed to inform appropriate rehabilitation interventions and support. 

 

3.5 Methods and materials 

3.5.1 Participants 

24 neurologically healthy participants (14 females and 10 males; mean age = 21.00 years, 

SD = 1.64 years) met all behavioural and imaging requirements after completing the three-

day experiment. 23 participants were right-handed with a mean Edinburgh Handedness 

Inventory (https://www.brainmapping.org/shared/Edinburgh.php; adapted from Oldfield, 

1971) score of 75.22 (SD = 20.97, range: 25-100), one was left-handed with an Edinburgh 

Handedness Inventory score of -70. Although we stated that we would exclude left-handed 

individuals in our preregistration (www.osf.io/g64hv), we included this participant’s data in 

our analyses as they were not qualitatively different from the rest of the sample. Data from 

an additional 17 participants were excluded for the following reasons: one due to 

unforeseen technical difficulties with the apparatus, one because of a corrupted functional 

scan, and 15 further participants did not reach target performance after two days of 

training. Target performance consisted of an error rate < 20% (mean = 6.54%, SD = 6.03%, 

for the group) and distinct sequence timing structures that transferred across sequence 

finger orders; the full details regarding the exclusion criteria have been described elsewhere 

(Yewbrey et al., 2023). Participants were recruited either through social media and given 

monetary reward at a standard rate, or through a participation panel at Bangor University 

and awarded module credits for their participation. Individuals with professional musical 

qualifications were excluded from recruitment. All participants provided informed consent, 

including consent to data analysis and publication, through an online questionnaire hosted 

by Qualtrics. The Bangor University School of Psychology Ethics Committee approved this 

experiment and its procedures (ethics approval number 2019-16478). 

3.5.2 Apparatus 

Two custom-built force transducer keyboards captured presses from all 10 fingers on the 

right and left hands of participants as they produced movement sequences. Each key had a 

small groove where participants placed their finger and could be adjusted for comfort 

https://www.brainmapping.org/shared/Edinburgh.php
file:///C:/Users/kornyshk/Downloads/www.osf.io/g64hv
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according to the size of the participant’s hand. Below each key, a force transducer sampled 

force at 1000 Hz (Honeywell FS Series, with a range of up to 15N). The keys were not 

depressible. Force acquisition occurred in each trial from 500ms before sequence cue onset 

to the end of the production period in production trials, and the end of the false production 

period in No-Go trials. Traces from the right hand were baseline-corrected trial-by-trial using 

the first 500ms of acquisition (500ms before the sequence cue) and smoothed to a Gaussian 

window of 100ms. Button presses were defined as the point at which forces exceeded a 

fixed threshold relative to baseline (2.5N for the first 8 participants and 1N for the 

subsequent 16 of 24 participants). During behavioural training sessions, participants were 

seated at a wooden table ~75 cm away from a 19-inch LCD LG Flatron L1953HR, at a 

resolution of 1280 x 1024 and a refresh rate of 60Hz. Their hands were occluded during 

behavioural sessions by a horizontal panel on posts positioned above the force boxes. 

During fMRI sessions, stimuli were presented on an MR Safe BOLDScreen 24-inch monitor, 

at a resolution of 1920 x 1200 and a refresh rate of 60Hz. Participants laid supine on the 

scanner bed, and the two force transducers were positioned on a support board resting on 

their bent upper legs to enable comfortable and stable positioning of the hands. 

3.5.3 Behavioural task 

Participants were trained to produce four five-finger sequences with defined inter-press 

intervals (IPIs) from memory in a delayed sequence production paradigm. Go trials began 

with an abstract fractal image (Sequence cue), which was associated with a sequence. 

Following the Sequence cue, a fixation cross was shown to allow participants to prepare the 

upcoming sequence. A black hand with a green background (Go cue) then appeared to cue 

sequence production from memory. Succeeding the Go cue, another fixation cross was 

presented. Feedback was then displayed to participants based on their performance during 

the preceding production period, finally followed by an inter-trial interval where a fixation 

cross was displayed. During training, participants learned the sequences through repeated 

exposure to visually guided (Instructed) Go trials. These Instructed Go trials were 

functionally identical to From Memory Go trials, but featured a Go cue with a grey 

background and a red dot on the tip of each finger on the hand image, which moved from 

finger to finger in the target production order and in-pace with the target timing structure. 

No-Go trials had the same structure as Go trials, but the go cue did not appear following the 
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preparatory fixation cross. Instead, the fixation cross continued to show for an extended 

period. This was succeeded by a further fixation cross, feedback, and ITI, as in Go trials. 

The four five-finger target sequences consisted of permutations of two finger orders 

(Order 1 and 2) and two IPI orders (Timing 1 and 2) matched in finger occurrence and 

sequence duration. Sequence orders were generated randomly for each participant, making 

sure to avoid ascending and descending press triplets and any identical sequences. 

Furthermore, each participant’s trained sequences began with the same finger press to 

avoid differences in the first press driving the decoding of sequence identity during 

preparation (Yokoi et al., 2018). Timing structures were the same across participants, which 

consisted of four target IPI sequences as follows: 1200ms – 810ms – 350ms – 650ms (Timing 

1), and 350ms – 1200ms – 650ms – 810ms (Timing 2). 

The trial-by-trial feedback used a points-based scale, ranging from 0 to 10. Points were 

awarded based on initiation reaction time and temporal deviation from target timing. 0 

points were awarded if the executed press order was incorrect. If the executed press order 

was correct, participants were awarded their earned timing points. In No-Go trials, 5 points 

were awarded if no press was made as instructed. Participants were presented with a 

feedback screen after each trial showing the number of points achieved in the current trial, 

as well as visual feedback on whether they pressed the correct finger at the correct time. A 

horizontal line was drawn across the centre of the screen, with four symbols displayed 

equidistantly along the line representing each of the five finger presses. Correct presses 

were indicated by an “X” symbol and incorrect presses were represented by a “–” symbol, 

for each respective sequence position. The vertical position of these symbols above (“too 

late”) or below (“too early”) the horizontal line was proportional to the participant’s timing 

of the respective press relative to target IPI. Using these cues, participants were able to 

adjust their performance online to ensure maximum accuracy of sequence production. 

During the first two days of training, auditory feedback in the form of successive rising tones 

corresponding to the number of points (0 – 10) was played alongside the visual feedback. 

Auditory feedback was absent during the fMRI session, to prevent any auditory processing 

driving decoding accuracy. All aspects of the behavioural task for this experiment are 

described in greater detail in a previous study (Yewbrey et al., 2023). 

3.5.4 Procedure 
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Training duration was consistent across participants and occurred across the first two 

days of the experiment over three distinct training stages. In the first training stage, 80% of 

all trials were instructed Go trials, and the remaining 20% were No-Go trials. During the 

second training stage, 40% of trials were instructed Go trials, 40% were from-memory Go 

trials, and 20% were No-Go trials. In the third and final stage of training, 80% of trials were 

from-memory Go trials, and 20% were No-Go trials. The third day took place inside of the 

MRI scanner and consisted of a short refresher stage, made up of the same proportion of 

trials as the second stage of training, during which T1 images were collected. Next, there 

was an fMRI stage consisting of six imaging runs, featuring 50% from-memory Go trials and 

50% No-Go trials. In addition, before and after the last training stage, participants 

completed a synchronization task which has been described elsewhere (Yewbrey et al., 

2023). 

3.5.5 MRI acquisition 

Data were acquired using a 32-channel head coil in a Philips Ingenia Elition X 3T MRI 

scanner. T1 anatomical scans at a 0.937 x 0.937 x 1 resolution were acquired using MPRAGE, 

encoded in the anterior-posterior dimension with an FOV of 240 x 240 x 175 (A-P, R-L, F-H). 

For the functional data, T2*-weighted scans were collected across six runs of 230 volumes at 

a 2 mm isotropic resolution, with 60 slices at a thickness of 2 mm. The functional images 

were acquired at a TR of 2s, a TE of 35 ms, and a flip angle of 90°. These were obtained at a 

multiband factor of 2, in an interleaved odd-even EPI acquisition. To allow the stabilization 

of the magnetic field, four images were discarded at the beginning of each run. The whole 

brain of most participants was covered, except for the central prefrontal cortex, the anterior 

temporal lobe, and ventral parts of the cerebellum. Jitters were used within each trial 

during preparation periods, post-production fixation crosses, and I, to give us a more 

accurate estimate of the Hemodynamic Response Function (HRF) by varying which part of 

the trial is sampled by each TR (Serences, 2004). 

3.5.6 Pre-processing and first-level analysis 

All fMRI pre-processing steps were completed using SPM12 (revision 7219) in MATLAB 

(The MathWorks). We applied slice timing correction using the first slice as a reference to 

interpolate all other slices to, ensuring analysis occurred on slices which represent the same 
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time point. Realignment and unwarping were conducted using a weighted least-squares 

method correcting for head movements using a 6-parameter motion algorithm. A mean EPI 

was produced using SPM’s Imcalc function, wherein data acquired across all six runs were 

combined into a mean EPI image to be co-registered to the anatomical image. Mean EPIs 

were co-registered to anatomical images using SPM’s coreg function, and their alignment 

was checked and adjusted by hand to improve the alignment, if necessary. All EPI runs were 

then co-registered to the mean EPI image. For the GLM, regressors were defined for each 

sequence separately for both preparation and production, resulting in eight regressors of 

interest per run. Preparation- and production-related BOLD responses were independently 

modelled from No-Go and Go trials, respectively, to tease out activity from these brief trial 

phases despite the haemodynamic response lag (Logothetis, 2003). The preparation 

regressor consisted of boxcar function starting at the onset of the Sequence cue in No-Go 

trials and lasting for the duration of the maximum possible preparation phase (2500ms). The 

production regressor consisted of a boxcar function starting at the onset of the first press 

with a fixed duration of 0 (constant impulse), to capture activity related to sequence 

initiation and extract sequence production-related activity from the first finger press that 

was matched across sequences within each participant. We aimed at capturing BOLD 

responses related to neuronal populations that become differentially active for different 

sequences (Tanji & Shima, 1994), for which a single estimate of sequence production has 

been used to successfully identify sequence representations in several previous fMRI studies 

(Berlot et al., 2020; Kornysheva & Diedrichsen, 2014; Nambu et al., 2015; Wiestler & 

Diedrichsen, 2013; Yokoi et al., 2018). Additionally, we included several regressors of no 

interest: (1) error trials (incorrect or premature presses during Go trials and presses during 

No-Go trials), which were modelled from sequence cue onset to the end of the ITI; (2) the 

preparation period in Go trials (1000-2500 ms from Sequence cue); and (3) the temporal 

derivate of each regressor. The boxcar model was then convolved with the standard HRF. To 

remove the influence of movement-related artifacts, we used a weighted least-squares 

approach (Diedrichsen & Shadmehr, 2005). This resulted in us obtaining beta weight images 

for each of the eight conditions per scanning run, for all six runs. We further calculated the 

percent signal change during preparation and production relative to rest and compared 

each to a baseline of zero using two-tailed one-sample t-tests (Figure 3.2a). These tests 

were Bonferroni-corrected two times, to account for phase (2) within each pre-defined ROI. 
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Additionally, we identified significant clusters of activity constrained to each ROI using a 

random effects analysis with an uncorrected threshold of t(23) > 3.48, p < 0.001 and a 

cluster-wise p value for the cluster of that size (Worsley et al., 1996). 

3.5.7 Subcortical and cerebellar regions of interest 

We used Freesurfer’s automatic segmentation (Dale et al., 1999) to segment subcortical 

regions of interest consisting of the thalamus, caudate nucleus, putamen, and hippocampus, 

from each participant’s T1 anatomical image. We then resliced each region’s mask into the 

same resolution as the functional images (2x2mm isotropic) and further masked them using 

functional activity. Only beta weights from voxels within these subcortical functional masks 

were extracted, constraining analyses to voxels belonging to subcortical regions of interest. 

Further, to assess the spatial organisation of multivariate patterns, we defined 160-voxel 

volumetric searchlights with a maximum radius of 6 mm in native space within each 

subcortical region of interest. LDA accuracy and RSA dissimilarity values (see Linear 

discriminant analysis and Representational similarity analysis sections) obtained were 

assigned to the centre voxel of the active searchlight. 

For the CB, we used the SUIT cerebellar toolbox (Diedrichsen, 2006) to segment the 

whole structure based on individual anatomical T1 images. We then resliced the lobular 

probabilistic cerebellar atlas (Diedrichsen et al., 2009) into each participant’s native space to 

acquire masks for CB lobules 4 and 5. We then resliced these masks into functional 

resolution and further masked them using functional activity. Beta weights were extracted 

from these regions using these masks to constrain analyses to voxels of interest. 

Additionally, we defined a 160-voxel volumetric searchlight across the whole cerebellum 

using each participant’s individual anatomy. LDA accuracy and RSA dissimilarity values were 

assigned to the centre voxel of the active searchlight in a similar manner to the subcortical 

analysis. Classification accuracy and distance maps were subsequently resliced into SUIT 

space to display group results on a cerebellar surface flatmap (Diedrichsen & Zotow, 2015). 

3.5.8 Linear discriminant analysis 

LDA was used to detect sequence-specific representations (Kornysheva et al., 2019b; 

Kornysheva & Diedrichsen, 2014; Yewbrey et al., 2023), programmed in a custom-written 

MATLAB (The MathWorks) code. We extracted mean patterns and common voxel-by-voxel 
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covariance matrices for each class from the training dataset (five of the six imaging runs), 

and then a gaussian linear discriminant classifier was used to distinguish between the same 

classes in the test dataset (the remaining imaging run). The factorized classification of finger 

order, timing, and integrated order and timing followed the previous approach (Kornysheva 

& Diedrichsen, 2014; Yewbrey et al., 2023) and was performed on betas estimated from the 

sequence preparation and production periods independently. For the decoding of sequence 

order, the classifier was trained to distinguish between two sequences with different orders 

but matching timing across five runs and was then tested on two sequences with the same 

orders paired with a different timing in the remaining run. This classification was then cross-

validated across runs and across training/test sequences, for a total of 12 cross-validation 

folds. For the decoding of sequence timing, the classifier was trained to distinguish between 

two sequences with differing timings paired with the same order and tested on two 

sequences with the same two timings paired with a different order and underwent the same 

cross-validation procedure. This method of training and testing the linear discriminant 

classifier allowed for identification of sequence feature representations that were 

transferrable across conditions they are paired with and therefore independent. The 

integrated classifier was trained to distinguish between sequences on five runs and then 

tested on the remaining run. Here, the mean activity for each timing (collapsed across two 

orders) and finger order (collapsed across two timings) condition within each run was 

subtracted from the overall activity for each run, separately (Kornysheva & Diedrichsen, 

2014; Yewbrey et al., 2023). This allowed for the measurement of residual activity patterns 

that were not explained by a linear combination of timing and order, rather spatiotemporal 

idiosyncrasies that would result in the generation of unique kinematics for the respective 

sequence that were not transferrable to others. However, due to a unique feature 

possessed by the 2x2 design, the subtraction of each condition’s mean activity patterns 

from the data resulted in the patterns of opposing sequence pairs (e.g., order 1, timing 1 

and order 2, timing 2) becoming identical. For this reason, we trained our classifier to 

distinguish between the sequence pairs that remained distinct, resulting in a 50% chance 

accuracy. 

We normalised classification accuracy by transforming to z scores, assuming a binomial 

distribution of the number of correct guesses (Kornysheva & Diedrichsen, 2014). We then 
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tested these z scores against zero (chance level) in subcortical and cerebellar ROIs across 

participants for statistical analysis. Z-score transformed classification accuracy maps were 

subjected to a random effects analysis, similar to the RSA distance maps, with an 

uncorrected threshold of t(23) > 3.48, p < .001 and a cluster-wise p value for a cluster of that 

size (Worsley et al., 1996). Analyses that considered all voxels within respective regions of 

interest were also subjected to one-tailed one-sample t tests relative to zero, Bonferroni-

corrected 6 times to account for phase (2) X classifier (3), to identify decoding accuracy 

above chance level. We also ran repeated measures ANOVAs on regional distance measures 

with factors of phase, classifier, and region to assess interaction effects and ran post-hoc 

pairwise comparisons to investigate significant interaction effects. 

3.5.9 Multi-dimensional scaling 

We firstly multivariately pre-whitened beta weights prior to multi-dimensional scaling to 

increase the reliability of our distance measurements, using a regularised estimate of the 

overall noise-covariance matrix (Walther et al., 2016). We then identified the first three 

principal components in our pre-whitened beta weights using classical multi-dimensional 

scaling of the variance-covariance matrix. This method plots all eight conditions in 3D space 

according to the first three eigenvectors (principal components) associated with the largest 

eigenvalues. Given that activity levels varied significantly within regions across preparation 

and production (see Results), we measured the Euclidean distance between preparation and 

production within each sequence upon exclusion of the first principal component, since the 

largest eigenvalues are likely associated with differences in activity levels across phase. 

Hence, we calculated the Euclidean distance between points plotted in the 2D space 

represented by principal components one and two. However, given a non-zero level of noise 

in the data, the Euclidean distance between two points will be biased away from zero. We 

therefore simulated fMRI activity patterns with a matched number of voxels and signal to 

noise ration relative to the mean across participants of each ROI collected in the empirical 

data. We then calculated the cross-phase within-sequence Euclidean distances to provide 

baselines for the one-sample t-tests carried out in each region (Bonferroni corrected seven 

times for region). Additionally, these distances were scaled and normalised according to the 

average of the average distances between conditions during preparation and production 

respectively. 



Chapter 4 -   88 

Chapter 4 - The Fingers on the Contralateral Hand Show a Mirrored 

Suppression Gradient During Unimanual Movement Sequence Planning 

This chapter is in preparation as: 

Yewbrey, R., Wright, H., Sadnicka, A., & Kornysheva, K. (2024). The Fingers on the 

Contralateral Hand Show a Mirrored Suppression Gradient During Unimanual Movement 

Sequence Planning [In Preparation]. 

R.Y., H.W., A.S., and K.K. conceived the experiment; R.Y., A.S., and K.K. formulated the 

hypotheses; R.Y. collected the data; R.Y., H.W., and K.K. designed the analysis; R.Y. and K.K. 

performed the analyses; R.Y. and K.K. wrote the original version of the manuscript; All 

authors contributed to editing of the manuscript. 
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4.1 Abstract 

Movement elements in a sequence are planned in parallel via competitive queueing (CQ). 

The pre-activation of each element is weighted by its ordinal position in the upcoming 

sequence, with the degree of separation associated with the quality of sequence execution. 

Effectors that are not included in the upcoming sequence show reduced availability relative 

to target effectors. This effect is also shown in motor-evoked potentials during single 

movement delayed response tasks and is thought to reduce the likelihood of executing 

unintended competing movements. However, it is unclear how competition from Unused 

effectors is resolved when planning multiple movements in parallel. For example, during 

unimanual finger sequence production, the pre-activation of fingers in the used hand from 

the traditional CQ gradient may cause finger-specific inhibition in the contralateral unused 

hand, resulting in a mirrored gradient of availability. Alternatively, the CQ gradient may 

cause matching pre-activation in the unused hand but be held back from execution by global 

suppression, or show no differentiation at all. Here, we trained participants to produce two 

finger sequences: one with the right hand, and one with the left, and used probe trials to 

evaluate the availability of fingers on the Used and Unused hand when participants 

prepared an upcoming sequence. Alongside a traditional CQ gradient, we identified a 

mirrored gradient in the unused hand where the finger homologous to the one in the first 

serial position showed the lowest availability, followed by fingers homologous to later 

positions. A stronger CQ gradient in the unused hand was associated with faster movement 

times, suggesting that it might be beneficial to behaviour. Additionally, the impact of 

expertise playing video games, but not music or sports, predicted a stronger CQ gradient in 

the used hand during sequence planning. These results point to interhemispheric inhibition 

of individual fingers which helps to resolve competitive processes during rapid movement 

planning. 
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4.2 Introduction 

The fluent production of several movements in succession underpins many abilities that 

are uniquely human. From playing a musical instrument to executing a dance routine, all 

require skilled production of movement sequences. The planning of upcoming movement 

sequences is thought to be crucial to execution (Haith & Bestmann, 2020; Lashley, 1951; 

Wong et al., 2015) with competitive queueing (CQ) models suggesting that each movement 

element is planned in parallel, weighted by its ordinal position in the sequence (Houghton, 

1990). Multivariate analysis has identified such weighting in the probability of neural 

patterns, revealing the presence of a CQ gradient during sequence planning in both 

primates and humans (Averbeck et al., 2002; Kornysheva et al., 2019b). The size of this CQ 

gradient was shown to be a reliable indicator of subsequent behavioural performance, with 

a steeper gradient predicting greater execution accuracy. Moreover, the CQ gradient has 

been identified behaviourally by probing the availability of the upcoming sequence’s 

constituent movements at the point of initiation (Mantziara et al., 2021). This study also 

found that the responses in an unused effector, such as the thumb when target sequences 

consist of the four fingers, shows reduced availability compared to effectors that are used in 

the sequence. However, it is unclear whether all non-target effectors show an 

indiscriminate reduction in availability, or whether some are impacted more than others 

(Duque et al., 2017). 

Evidence from transcranial magnetic stimulation (TMS) shows that when the target 

effector of an upcoming movement becomes known, unused effectors become suppressed 

along the corticospinal circuit (Duque et al., 2005; Leocani et al., 2000; Sohn et al., 2003). 

Interhemispheric inhibition of ipsilateral M1 during unimanual hand movements has been 

well documented (Chettouf et al., 2020), where activation of contralateral M1 results in 

interhemispheric inhibition through transcallosal connections (Ferbert et al., 1992; Jones et 

al., 1979; B.-U. Meyer et al., 1995). Further, research investigating fMRI activity patterns in 

the ipsilateral primary motor cortex (M1) during unimanual finger movements show global 

suppression, underneath which finger-specific activity patterns are almost identical to those 

in the contralateral M1 (Diedrichsen et al., 2013). However, competing evidence suggests 

that suppression during movement planning is modulated by the unselected effe’tor's 

relevance to the task, with more closely associated effectors being suppressed to a greater 
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extent, specifically in the context of upper and lower limb movements (Labruna et al., 2014). 

Such inhibition is thought to reduce competition between movements during action 

selection implying local, modulated suppression of unused effectors (Bestmann & Duque, 

2016). If focal inhibition is used to resolve competitive processes in the planning of single 

movements, it may play a similar role in the resolution of the CQ gradient when planning 

movement sequences. Given that the CQ gradient shows parallel planning of individual 

fingers, modulated by their ordinal position in the upcoming sequence (Kornysheva et al., 

2019b; Mantziara et al., 2021), it is possible that the pre-activation gradient also causes 

suppression in the ipsilateral hemisphere and, by extension, the unused hand contralateral 

to the upcoming movement. Furthermore, the strength of the CQ gradient predicts the 

quality of subsequent performance; it may also be possible that the gradient in the unused 

effector predicts performance in a similar manner. 

However, there are several other predictors of movement sequence performance in 

addition to the quality of motor plans, such as experience playing musical instruments 

(Sobierajewicz et al., 2018). Musicians can produce successive complex notes with great 

temporal precision, professional dancers and sporting athletes can execute strings of whole-

body movements with little effort, and experienced video gamers often perform great feats 

of fine motor control. Whilst experience in these forms of expertise has been closely linked 

to general cognitive (Benz et al., 2016; Choi et al., 2020; Teixeira-Machado et al., 2019) and 

motor (Landry & Champoux, 2017) benefits, the exact mechanisms that facilitate 

performance in sequential motor learning tasks, including an overall decrease in production 

time (Sobierajewicz et al., 2018) and greater timing accuracy when sequences have a fixed 

temporal structure (Kincaid et al., 2002), are less well-studied. Performance benefits during 

movement sequence learning tasks have been associated with improvements in motor 

planning (Ariani & Diedrichsen, 2019), so could expertise lead to greater performance by 

increasing the efficiency of the CQ process? While this has not been measured directly, 

research has identified a reduced movement-related cortical potential (MRCP), an increase 

in amplitude of neural recordings shortly prior to movement initiation (Hallett, 1994), in 

trained musicians relative to untrained controls (Wright et al., 2012a). This effect was also 

found when participants underwent extended practice with a musical instrument and 

suggests that expertise results in more efficient planning processes during motor learning 
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tasks (Wright et al., 2012b). Moreover, musicians show greater interhemispheric inhibition 

(Ridding et al., 2000) and a larger corpus callosum (Schlaug et al., 1995) compared to non-

musicians, suggesting competition-related interhemispheric inhibition may be greater in 

those with musical expertise. 

Given the unclear role of interhemispheric inhibition of unused effectors in the planning 

of movement sequences, we trained participants to produce movement sequences on the 

right and left hands from memory and probed the availability of fingers both used and 

unused hands during planning. Moreover, with established neural and behavioural 

differences between individuals with expertise and untrained controls, we investigated the 

relationship between the amount of music, sports, dance, and video games expertise each 

participant had with their behavioural signatures of planning in both used and unused 

effectors. We identified a CQ gradient in the used hand and a mirrored gradient of 

suppression in the unused hand, with the strength of latter unpredictive of performance. 

Moreover, we found that expertise was unpredictive of planning signatures, but the number 

of years participants spent playing musical instruments predicted the speed of sequence 

execution. 

 

4.3 Results 

We trained 58 participants to produce two four-finger sequences from memory as fast 

and accurately as possible in a delayed sequence production paradigm. The task required 

both hands; one sequence was produced using the right hand, the other using the left. Two 

days of training transitioned participants from producing sequences under visual guidance 

to entirely from memory across three distinct stages (Figure 4.1a). During a final third day, 

after a short refresher block, a test phase required the sequences to be produced entirely 

from memory. Sequence production trials began with an abstract visual Sequence Cue 

displayed 1s prior to the onset of the Go Cue where the participants had to produce the 

target sequence as fast and accurately as possible (Figure 4.1b). After production, 

participants received feedback based on the speed and accuracy of their performance. 

Participants learned to associate both Sequence Cues with their respective sequence 

through repeated exposure to visually guided trials during training. To ensure performance 
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reached a similar level of skill to previous research (Yewbrey et al., 2023), we defined a 

skilled group of participants with an error rate less than 20% during the test phase. These 47 

skilled participants produced the target sequences with initial reaction time (RT) M = 410.40 

ms (SD = 66.00), movement time (MT) M = 642.50 ms (SD = 227.37), and error rate M = 10.5 

% (SD = 5.08). Additionally, to include a greater level of variance to investigate the correlates 

of skilled performance, we defined a second group of participants who actively engaged in 

the task despite showing higher error rates than those in the skilled group (see Materials 

and methods). The 58 participants in this broader group, which also included those in the 

skilled group, produced the target sequences with RT M = 416.67 ms (SD = 79.28), MT M = 

651.04 ms (SD = 220.11), and error rate M = 14.00 % (SD = 9.28). Moreover, since our two 

target sequences were performed on opposite hands, we wanted to ensure that 

performance was equal across both with regards to RT, MT, and error rate. In the skilled 

group, two-tailed, paired samples t-tests revealed no significant difference between 

sequence one (right hand) and two (left hand) for RT (sequence one, M = 416.00, SD = 

72.76; sequence two, M = 406.16, SD = 64.86; t(46) = 1.50, p = .140, d = 0.22), MT (sequence 

one, M = 638.12, SD = 233.40; sequence two, M = 638.23, SD = 229.12; t(46) = 0.01, p = .994, 

d = 0.00), and error rate (sequence one, M = 11.10, SD = 6.80; sequence two, M = 9.89, SD = 

6.48; t(46) = 0.96, p = .340, d = 0.14). We observed similar results in the broader group, with 

no significant difference between sequence one and two for RT (sequence one, M = 429.17, 

SD = 118.49; sequence two, M = 416.00, SD = 85.20; t(46) = 1.10, p = .272, d = 0.15), MT 

(sequence one, M = 645.87, SD = 221.32; sequence two, M = 654.10, SD = 234.28; t(46) = 

0.56, p = .575, d = 0.07), and error rate (sequence one, M = 14.20, SD = 11.00; sequence 

two, M = 13.71, SD = 11.52; t(46) = 0.29, p = .771, d = 0.04), suggesting that both sequences 

were produced similarly, even when considering a broader range of performance during the 

task. 
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Figure 4.1. Design and experimental conditions. a, Trial numbers across the three days of the task, showing the 

progression of production trials from entirely visually-guided trials (Stage A) to half visually-guided half 

memory-guided (Stage B) to entirely from memory (Stage C, test). Probe trials were present throughout all 

Stages of the experiment. The test phase, highlighted by the grey outline, is the focus for analysis. b, 

Production trials consisted of an abstract sequence cue, followed by a fixation cross and a Go Cue which 

signalled the onset of the production period. The target sequence was produced entirely using the right hand 

or entirely using the left. Succeeding production, feedback was shown with points awarded depending on 

speed and accuracy of execution. c, Probe trials were almost identical to production trials, but a single press 

was visually instructed instead of a Go Cue. When the instructed press was a part of the target sequence (Used 

hand), its position was assigned depending on its position in the sequence. When the instructed press was on 

the hand contralateral to the target hand (Unused hand), its position was assigned depending on the position 

of the homologous contralateral finger in the sequence. Seq Cue, Sequence Cue. 

4.3.1 Competitive queuing of upcoming finger presses on the prepared hand is reversed on 

the unprepared hand  
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To test for the availability of each movement in the sequence shortly prior to execution 

(Mantziara et al., 2021), half of the trials during the test phase were Probe trials (Figure 

4.1c). These Probe trials were identical to regular production trials during the preparation 

phase but instead of a Go Cue prompting the entire sequence, a Probe Cue prompted the 

visually-guided production of a single press and its reaction time and error rate indicated its 

availability at the time of initiation (Mantziara et al., 2021). Additionally, we introduced 

probe trials that would cue a sequence on one hand but prompt a press on the contralateral 

hand that is not used to produce the target sequence. The position of these Unused probe 

trials was labelled according to the position of the homologous contralateral finger in the 

target sequence (Figure 4.1c). For example, when a sequence on the right hand is cued and 

the index finger is in the first position, an Unused probe which prompts the index finger of 

the left hand would be assigned to position number 5. Measuring the strength of the CQ 

gradient in Unused probes allowed us to investigate whether greater availability in the 

target effector results in an increased inhibition in the homologous effector on the 

contralateral side. In addition, to remove RT-related variance across participants, all probes 

were calculated as a percentage relative to the median RT of the first position for each 

participant, resulting in position one being set to a baseline of zero percent (Mantziara et 

al., 2021). 

We first sought to assess the presence of a CQ gradient in both used and unused 

effectors in the skilled group of participants, to analyse a comparative skill level to previous 

research (Yewbrey et al., 2023). To test for a modulation of finger press availability for fast 

and accurate production by position on the prepared and unprepared hand, we ran a 2 X 4 

repeated measures ANOVA with factors Used/Unused and probe position (1, 2, 3, 4) on RT 

relative to the first Used probe position (Figure 4.2a). We found a significant main effect of 

Used/Unused (F(1,46) = 106.50, p < .001, ηp2 = 0.70), where Unused probes showed 

significantly slower relative RT (M = 11.41%, SE = 1.44) compared to Used probes (M = 

25.27%, SE = 2.39), and a main effect of probe position (F(2.34,107.72) = 6.34, p = .001, ηp2 = 

0.12, Greenhouse-Geisser corrected), with pairwise comparisons (Bonferroni corrected 4 

times for position) identifying significant increases from position 1 to positions 2 (p = .010, 

95% CI [0.94, 9.62]) and 3 (p = .008, 95% CI [1.09, 9.95]) respectively. We also found a 

significant interaction effect (F(2.49,114.74) = 39.33, p < .001, ηp2 = 0.46, Greenhouse-
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Geisser corrected), which pairwise comparisons (Bonferroni corrected 8 times for 

Used/Unused X position) found to be driven by significant increases within all positions from 

Used to Unused (position 1, p < .001, 95% CI [24.27, 33.93]; position 2, p < .001, 95% CI 

[6.50, 15.41]; position 3, p < .001, 95% CI [5.10, 11.93]; position 4 p < .001, 95% CI [4.17, 

9.52]), significant increases within Used probes from position 1 to positions 2 (p < .001, 95% 

CI [8.70, 20.00]), 3 (p < .001, 95% CI [10.76,  20.87]), and 4 (p < .001, 95% CI [9.37, 21.61]), 

and a significant decrease within Unused probes from position 1 to position 4 (p = .002, 95% 

CI [2.00, 11.56]). These results indicate a gradient is present within Used probes, albeit only 

between position one and others. Also, Unused probes show overall slower reaction times 

compared to Used probes, in addition to a mirrored gradient where availability decreases 

between positions 1 and 4.  

To ensure that these RT effects were not driven by changes in the speed accuracy trade-

off, we performed a similar analysis with error rate (Figure 4.2b). After converting the 

number of errors into a percentage relative to the first position in each participant, with the 

first position set to 0%, we performed another 2 X 4 repeated measures ANOVA with factors 

Used/Unused and probe position to assess relative errors. We found a significant main 

effect of Used/Unused (F(1,46) = 8.91, p = .005, ηp2 = 0.16), where Unused probes showed 

greater relative error (M = 8.52, SE = 1.46) compared to Used probes (M = 13.68, SE = 2.12). 

While there was no main effect of probe position (F(3,138) = 1.45, p = .230, ηp2 = 0.03), 

there was a significant Used/Unused X probe position interaction (F(3,138) = 12.47, p < .001, 

ηp2 = 0.21). Pairwise comparisons (Bonferroni corrected 8 times for Used/Unused X 

position) revealed significant elevations from Used to Unused probes in positions 1 (p < 

.001, 95% CI [11.31, 24.92]) and 2 (p = .049, 95% CI [0.02, 12.30]), significant increases 

within Used probes from position 1 to positions 2 (p < .001, 95% CI [3.96, 15.51]), 3 (p < 

.001, 95% CI [6.44, 17.80]), and 4 (p < .001, 95% CI [5.54, 18.92]), and no significant 

differences within Unused probes. However, in Unused probes, a decrease from position 1 

to position 3 was close to significance after Bonferroni corrections (p = .089, 95% CI [-0.86, 

20.02]). These results suggest the presence of an error gradient like that of RT in Used 

probes, and a similar albeit weaker and near-significant gradient in Unused probes. 

Therefore, the effects that we observed with relative RT are similarly represented in error 

rates, and do not appear to be the result of a change in the speed-accuracy trade off. The 
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presence of an interaction effect with similar directionality in both RT and error rate results 

suggests that the inhibition of the unused hand is focal, rather than a global effect. 

Figure 4.2. CQ gradients for relative RT and relative error. a, Left panel, RT of each Probe target position, 

calculated relative to the RT of the first Probe target position. Right panel, relative RT, as in the left panel, 

median split according to three performance measures in Go trials: RT, MT, and error rate. b, As in a, for press 

errors of each position relative to the first. 

Next, we wanted to see whether an increase in the strength of the CQ gradient in the 

used hand showed a relationship with the strength of the gradient in the unused hand. To 

do so, we first calculated the average difference between adjacent Used probe positions 
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(2nd – 1st, 3rd – 2nd, and 4th – 3rd) for both relative RT and relative error rate for each 

participant, where higher values suggest greater competitive queueing. We then performed 

the same calculation for the Unused probe positions, where positive values suggest identical 

competitive queueing in the unused hand and negative values suggest that later items in a 

sequence show greater availability compered to earlier items. We ran a Spearman 

correlation on the resultant values and found a significant positive correlation between the 

Used and Unused relative RT differences (rho = .328, p = .025; Figure 4.3a), and a non-

significant correlation between Used and Unused relative error differences (rho = .110, p = 

.460; Figure 4.3b). These results suggest an increase in CQ gradient on the used hand 

correlates with an increase in a matching gradient on the unused hand, despite a mirrored 

gradient in Unused probes observed across the whole group (Figure 4.2a). Together, these 

findings show a general mirrored CQ gradient in Unused probes across participants that 

becomes less pronounced the greater the CQ gradient is in Used probes. 

We then wanted to test whether the strength of the CQ gradient in the Used hand 

correlated with the overall inhibition in the Unused hand, so we correlated the relative 

difference between Used probes with the average relative measures in the Unused hand for 

both RT (Figure 4.3c) and error rate (Figure 4.3d). Both respective measures correlated 

significantly (rho = .845, p < .001; rho = .460, p = .001), suggesting that greater pre-planning 

of upcoming movements in the used hand results in greater overall suppression of the 

unused hand. 
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Figure 4.3. Correlations between used and unused CQ gradients. a, To measure the strength of the CQ 

gradient, we took the sum of the mean difference between adjacent positions (–nd - 1st, –rd - 2nd, and –th - 3rd) 

based on RTs relative to the first position (Probe trials). Greater differences represent a steeper gradient, 

suggesting greater pre-ordering of upcoming movements during the preparatory period. We then calculated a 

homologous value for the adjacent positions of Unused probes and ran a Spearman correlation between the 

two values. Positive values of relative Unused differences equate a CQ gradient that matches the traditional 

gradient where earlier elements are more available, whereas negative values represent a mirrored gradient 

where each successive element is more available than the last. b, As in a, but for the sum of the mean relative 

error rate difference between adjacent positions. c, Correlation between the sum of the mean relative RT 

differences between Used probe positions, as in a, with the mean relative RT values of the unused probes. d, 

as in c, but for relative error.  *p < .005, Spearman correlation. 

4.3.2 Performance correlates with the strength of the used, but not unused, CQ gradient 

Given that we observe a CQ gradient in participants, we wanted to assess whether the 

strength of the gradient was correlated to subsequence performance. To investigate this, 

we first performed a median split of the skilled group based on three performance factors 

during Go trials: RT, MT, and error rate, resulting two groups of 23 high- and low-performing 

participants for each split: low RT and high RT, low MT and high MT, and low error rate and 

high error rate. Since we had an odd number of participants, the median performing 

participant from each analysis was excluded. We then calculated the average difference 
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between adjacent Used probe positions (–nd - 1st, –rd - 2nd, and –th - 3rd) for both relative RT 

and relative error rate for each participant and compared the values across the high- and 

low-performing groups for each median split using one-tailed independent samples t-tests 

as we hypothesised significantly greater CQ RT and error gradients for the higher-

performing group. For RT gradient, the RT median split showed higher CQ RT gradients in 

the higher-performing group albeit non-significantly (t(44) = 0.83, p = .409, d = 0.25). For the 

other splits, however, the lower-performing groups showed greater CQ RT gradients, with 

MT median split not significant (t(44) = 1.92, p = .061, d = 0.57), but error median split being 

significant (t(44) = 2.21, p = .032, d = 0.65) in two-tailed t-tests. Additionally, we repeated 

these median split tests for the strength of the unused CQ RT gradients using two-tailed t-

tests. We found no significant differences across groups for the RT median split (t(44) = 0.28, 

p = .781, d = 0.08), MT median split (t(44) = 0.76, p = .449, d = 0.23), and error median split 

(t(44) = 1.27, p = .210, d = 0.38). Next, we assessed the CQ error gradients using median 

splits. The RT median split showed non-significant higher CQ error gradients in the higher-

performing group (t(44) = 1.40, p = .085, d = 0.41, one-tailed). However, both MT (t(44) = 

1.56, p = .126, d = 0.46, two-tailed) and error rate (t(44) = 2.00, p = .055, d = 0.58, two-

tailed) showed non-significant lower CQ gradients in the higher-performing groups. For the 

unused CQ error gradients, neither the RT (t(44) = 0.19, p = .853, d = 0.06), MT (t(44) = 1.00, 

p = .323, d = 0.30), nor error (t(44) = 1.50, p = .143, d = 0.44) median splits showed 

significant differences across the groups in two-tailed tests. These results suggest that used 

CQ gradients possess some relationship to performance, whereas unused CQ gradients do 

not. 

To further assess the relationship between CQ and the quality of performance, we ran 

Spearman correlations between the relative gradients and initiation RT, movement time, 

and error rate during Go trials, to assess whether the strength of the CQ gradient showed a 

relationship with performance (Figure 4.4a, b). Based on previous findings, we expected 

both relative RT and relative error rate to negatively correlate with initiation RT (Mantziara 

et al., 2021), so we ran one-tailed correlations to attempt to replicate these findings. 

Relative RT showed a negative but non-significant correlation with initiation RT (rho = -.069, 

p = .322), while relative error and initiation RT showed a near-significant negative 

correlation (r = -.242, p = .050). Although neither of these correlations are statistically 
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significant, they replicate the direction of the relationship found previously. For the rest of 

the correlations, we ran two-tailed Spearman correlations. Next, we correlated relative RT 

and relative error with movement time, to see if those with more pronounced CQ gradients 

executed sequences faster or slower. We found a significant positive correlation with 

relative RT (r = .368, p = .012) and a positive non-significant correlation with relative error (r 

= .111, p = .458), suggesting those with greater CQ RT gradients performed the sequences 

slower overall. Finally, we correlated relative RT and relative error with finger error rate, 

which showed a positive non-significant correlation with relative RT (r = .266, p = .071) and a 

significant positive correlation with relative error (r = .315, p = .031), suggesting that those 

with a greater CQ error gradient produced more errors during Go trials than those with a 

smaller gradient. 

In addition to assessing the relationship between Used probes and performance, we also 

wanted to assess whether Unused probes correlated with performance (Figure 4.4b). 

Significant correlations would suggest that inhibiting the effector contralateral to movement 

is important for skilled performance of movement sequences. When performing two-tailed 

Spearman correlations between relative Unused RT and performance, we found no 

significant correlations with initiation RT (r = .058, p = .700), movement time (r = .141, p = 

.342), nor error rate (r = .062, p = .678). We found the same pattern for relative Unused 

error, where no significant two-tailed Pearson’s correlations were found with initiation RT (r 

= -.003, p = .985), movement time (r = .249, p = .092), nor error rate (r = -.284, p = .053). 

These results suggest relative inhibition of the fingers on the hand contralateral to 

movement is not related to the subsequent performance quality of the sequence. 
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Figure 4.4. CQ gradient correlations with several performance metrics. a, To assess how the strength of pre-

ordering related to the quality of performance, we correlated the steepness of the relative RT and relative 

error CQ gradients with initiation RT, movement time, and finger error in Go trials. b, As in a, but for Unused 

probes (Probe trials which prompted a press from the hand that wasn’t used to execute the target sequence, 

5th-6th, 6th-7th, 7th-8th). *p < .005, (*)p = .005, Spearman correlation; 1T, one-tailed test. 

4.3.3 The CQ gradient is predicted by hours per week playing video games and several 

performance variables, where the suppression gradient is predicted by movement time 

Having identified which elements of performance correlated with the extent of planning, we 

then looked to assess whether expertise predicted the strength of the CQ gradient in the 

Used hand and the suppression gradient in the Unused hand. We asked participants 
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regarding their musical, dance, sports, and video gaming experience: how many years of 

practice they had, and how many hours per week they practiced. These variables were then 

used as predictors, alongside performance variables (initiation RT, movement time, and 

finger error), in four stepwise forward multiple regression models to predict the strength of 

planning gradients: relative Used RT differences, relative Used error differences, and their 

respective Unused counterparts. At each step, variables were chosen based on their 

correlation with the outcome variable and included if their p-value reached a forward 

criterion of p <= .050. For relative Used RT differences, four predictor variables were 

entered into the model: movement time, hours per week spent gaming, error rate, and 

initiation RT (Figure 4.5a). Of all predictors, initiation RT was the only negative predictor. For 

relative Used error differences and relative Unused RT differences, there were no significant 

predictors entered into the model. For relative Unused error differences, movement time 

was the only predictor and was positive (Figure 4.5b). This suggests that slower sequence 

execution, more weekly time spent gaming, higher error rates, and quicker initiation time 

may result in a greater CQ gradient. Moreover, slower sequence execution also may result 

in a greater suppression gradient in the Unused hand. 

Figure 4.5. Surviving predictors of CQ RT and Unused error gradients following stepwise forward multiple 

regression. a, Performance and expertise variables were entered into a stepwise forward multiple regression 

model to assess which variables predicted the relative RT differences shown in the CQ gradient. Four 

predictors survived the forward criterion of p <= .050: movement time, hours per week spent gaming, error 

rate, and initiation RT. b, Analysis as in a but for the relative differences for Unused error, representing an 

error suppression gradient. Movement time was the only predictor that achieved the criteria to be added to 

the model. 

  



Chapter 4 -   104 

4.4 Discussion 

4.4.1 A suppression gradient mirrors the usual CQ gradient in the unused hand 

The existence of a CQ gradient for the planning of skilled movement sequences has been 

established by research using both neural recordings (Kornysheva et al., 2019b) and 

behavioural measures of reaction time and error rate (Mantziara et al., 2021), however how 

this system interacts with unused effectors and how it relates to expertise is unclear. Here, 

we show that alongside the pre-ordering of upcoming movements, the motor system also 

seems to display a gradient of focal inhibition in matching fingers on the contralateral hand. 

While the neural mechanism underlying this focal inhibition is not clear based on our 

current research, the primary motor cortex (M1) has been found to induce cross-callosal 

inhibition in the opposite M1, ipsilateral to movement (Ni et al., 2009) and unimanual 

movements elicit almost identical finger-specific activity patterns in the M1 of the 

hemisphere ipsilateral to movement (Diedrichsen et al., 2013). Given these previous 

findings, it is possible that the weighted pre-activation of movement elements that we 

observe during the  preparatory period may elicit a homologous pre-suppression of 

movement elements in the opposite hemisphere. The current research cannot definitively 

say whether this mechanism is due to active suppression or rather reversed pre-activation 

as there were fewer unused probe trials than used probe trials resulting in a lower 

expectancy rate, which could cause slower overall reaction times. Despite this, the 

interaction gradient effect that is currently observed cannot be explained by a reduced 

expectancy, and previous research where an unused effector, the thumb, had an equal 

likelihood to used effectors showed a similar reduction in availability relative to those used 

effectors (Mantziara et al., 2021). To confirm, future research should include all current 

unused effectors while ensuring that there are an even number of used and unused probes. 

Moreover, the correlation that we observe between the strength of the CQ and suppression 

gradients is positive, suggesting that stronger element pre-ordering actually results in an 

identical, rather than mirrored, suppression gradient on the unused hand on the individual 

level. Findings from fMRI show that those voxel groups in the contralateral motor cortex 

which show the highest activation during movements of each finger also show the greatest 

activation when movements are produced with the homologous ipsilateral finger 

(Diedrichsen et al., 2013), providing support for the results that we observe here. Future 
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studies should investigate can be observed on the individual level, or whether it is a group 

level phenomenon. 

4.4.2 CQ gradient, but not suppression gradient, correlates with behaviour 

Previous findings indicate a correlation between CQ gradient and performance 

(Mantziara et al., 2021). Here we attempted to replicate this finding, however the 

correlations were not as strong as found previously, especially with regards to e.g. reaction 

time. While the tasks differed in that the previous research employed a set timing structure 

to target sequences, the cause of this is unclear. The addition of extra effectors to be 

probed in the form of the unused hand may have caused participants to perform slower 

overall on probe trials, although further research is required to investigate this. The current 

study also reveals that there is no link between the CQ suppression gradient and 

performance. This seems to be logical, as despite the hemisphere ipsilateral to movement 

possessing similar neural patterns to those in the contralateral hemisphere (Diedrichsen et 

al., 2013), the ipsilateral hemisphere does not possess spinal projections to the sequence’s 

target effector.  

4.4.3 Video game expertise and performance metrics predict greater CQ gradient separation 

We investigated whether CQ and suppression gradient processes were impacted in 

individuals who had extensive training in music, dance, sports, and video gaming. Of these 

forms of expertise, the number of hours per week playing video games predicted a greater 

CQ gradient during this task. While motor (Bickmann et al., 2021; Romano Bergstrom et al., 

2012) and cognitive (Choi et al., 2020; Kowal et al., 2018) differences have been between 

reported between gamers and non-gaming control participants (Granic et al., 2014), there 

has been little investigation into whether this form of expertise changes or enhances the 

movement planning processes, despite enhanced movement sequence execution being 

related to the quality of movement plans (Ariani & Diedrichsen, 2019). Our findings suggest 

more hours spent per week playing video games leads to benefits in movement planning 

processes, which in turn is associated with faster sequence initiation. The extent of this 

benefit should be explored in greater detail by using participants who are involved with 

competitive eSports and often play video games full time (Sousa et al., 2020). Moreover, the 

current study investigated expertise using a relatively brief questionnaire, which may have 



Chapter 4 -   106 

caused other forms of expertise which might be less common than video gaming to be 

underrepresented. Future findings should again recruit participants with greater levels of 

expertise, such as from music, dance, and sports clubs. 

Additionally, we found that a greater CQ gradient was predicted by slower movement 

times, greater error rates, and faster initiation. While faster initiation time replicates 

previous research, it is unclear why slower and more erroneous movements predict greater 

CQ processes when previous findings associated greater CQ with higher quality of 

movements (Kornysheva et al., 2019b; Mantziara et al., 2021). Moreover, faster movement 

time predicted a greater suppression gradient in the Unused hand. Evidence suggests that 

competing movements in unused effectors is selectively suppressed to resolve competitive 

processes (Bestmann & Duque, 2016; Labruna et al., 2014), thus our findings seem to 

suggest that the more effective such inhibition of unrelated effectors, the quicker sequential 

movements can be executed. 

 

4.5 Materials and methods 

4.5.1 Participants 

47 University students (39 Female, M = 21.23 years, SD = 5.10) achieved an error rate of < 

20% during production trials in the test phase, a criterion defined to allow comparison with 

established findings (Yewbrey et al., 2023). Additionally, we broadened the inclusion criteria 

so that we could analyse a greater range of performance; 58 participants (47 Female, M = 

21.00 years, SD = 4.70) reached this new criteria of an error rate < 100% and evidence of the 

following: no extended periods of random key presses, no periods of single key repetitions, 

no random responses to probe trials, no periods of inactivity, no extended periods of 

repeating a single sequence, evidence that they were not producing target sequences at 

random without notice of the sequence cue, and limited numbers of general press errors 

including mechanical errors. Data from an additional 40 participants did not achieve these 

broader criteria, so were excluded. All participants were recruited through an online 

participation panel and were awarded module credits after the completion of each day. Of 

the skilled group, 45 participants were right-handed and 2 were left-handed (M = 77.87 

laterality index, SD = 37.38, Adapted from Oldfield (1971), 
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https://www.brainmapping.org/shared/Edinburgh.php). Of the broader group, 55 

participants were right-handed and 3 were left-handed (M = 77.60 laterality index, SD = 

39.14). All participants were between the ages of 18 and 65, possessed normal hearing, had 

normal or corrected-to-normal vision, and had no history of psychiatric or neurological 

disorders. All participants provided informed consent prior to their participation through an 

online questionnaire hosted by Qualtrics (Qualtrics, Provo, UT). This experiment and its 

procedures were approved by the Bangor University School of Psychology Ethics Committee 

(Ethics approval number 2017-16100-A14905). 

4.5.2 Apparatus 

All data for this study were collected online using PsychoPy version 2020.2.10 (Peirce et 

al., 2019), hosted on Pavlovia (https://pavlovia.org/) using the University of Birmingham’s 

site license. The task required participants to use their own hardware including a physical 

keyboard, and were recommended to launch the experiment using the Chrome browser 

(https://www.google.com/intl/en_uk/chrome/) which has been verified to produce sub-

millisecond timing precision (Bridges et al., 2020). Upon sign-up, participants were each 

assigned a unique numeric ID that determined which sequence set they would encounter 

with odd ID numbers assigned sequence set one, and even ID numbers assigned sequence 

set two. 

4.5.3 Experimental design 

Participants were trained to produce two four-element movement sequences from 

memory as fast and accurately as possible in a delayed sequence production paradigm, 

adapted from previous studies (Kornysheva et al., 2019b; Mantziara et al., 2021; Yewbrey et 

al., 2023). Each Go trial began with an abstract image (Sequence Cue) that appeared for 

500ms, which was associated with a sequence. Sequence Cues were greyscale radial stimuli 

and generated by varying their curvature and frequency (Hélie & Cousineau, 1998). A short 

preparatory period followed where a fixation cross was presented for 500ms. Next, two 

black hands (right and left) appeared against a green background to signify that the 

participant should execute the target sequence from memory. These Memory trials would 

end if a participant didn’t make a press within two seconds, and within four seconds if a 

press was made. During training and refresher blocks (see Procedure), a proportion of Go 

https://www.brainmapping.org/shared/Edinburgh.php
https://pavlovia.org/
https://www.google.com/intl/en_uk/chrome/
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trials would be Instructed, where a red dot on the tip of the finger on the target hand 

indicated the target digit and moved to the next target finger after each press. Instructed 

trials ended after four seconds if no presses were made, and after five seconds if the 

participant had made a press. After the production period, feedback would appear for 

1,000ms displaying how many points were earned that trial (See Feedback) with a visual 

schematic depicting each press as either correct (‘X’) or incorrect (indicated by ‘–‘). 

Alternatively, in Probe trials, only one button press would be cued. The cue could indicate a 

press that was or was not a member of the target sequence (left or right hand), and the trial 

would end after one second if no press was made. The overall structure of Probe trials was 

otherwise the same as Go trials. 

In Go trials, participants were awarded up to ten points: five points for initial reaction 

time, and a further five points for total execution time. For reaction time, points were 

awarded at thresholds: 0-500ms, 500-700ms, 700-1,000ms, 1,000-2,000ms, 2,000-3,000ms, 

and >3,000ms, for five, four, three, two, one, and zero points respectively. Furthermore, an 

additional five points were awarded for total execution time at thresholds: 0-2,000ms, 

2,000-3,000ms, 3,000-4,000ms, 4,000-5,000ms, 5,000-6,000, and >6,000 seconds, for five, 

four, three, two, one, and zero points respectively. In Probe trials, up to five points would be 

awarded depending on reaction time at thresholds matching those of the Go trials. 

Additionally, zero points were awarded for all trials in which an incorrect press was made. 

Auditory feedback accompanied the visual schematic with successive rising tones 

corresponding to the number of points being played. 

Two sets of sequences were distributed across participants based on assigned ID number 

(see Apparatus). In the skilled group, 27 participants were assigned sequence set one and 20 

sequence set two, whereas in the broad group 31 were assigned set one and 27 set two. 

Within each set, one sequence was produced by the four fingers (index to little) on the right 

hand and the other on the left hand, and the sequences were manually generated to avoid 

ascending/descending digit triplets whilst also avoiding biasing extrinsic or intrinsic 

reference frames (Wiestler et al., 2014). 

4.5.4 Procedure 
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During the first day of training, participants first completed an example block to get 

familiarised with all three trial types: Instructed, Memory, and Probe. They then proceeded 

to complete 8 blocks of 16 Instructed trials, five Probe trials where the target press was on 

the same hand as the cued sequence, and one probe trial where the target was on the 

opposite hand (unused hand probe). Following a break, they were then informed that the 

next blocks would feature visually guided trials intermixed with trials from memory. These 

four blocks contained 8 Instructed, 8 Memory, five Probe, and one unused hand probe, and 

completion of these blocks marked the end of the first day of training. The second day 

started with four blocks which matched the makeup of those at the end of the first day. For 

the final eight blocks of training, they completed 16 Memory trials, five Probes, and one 

unused Probe. On the third and final day, they completed one refresher block which 

matched the makeup of the final section of day one. During the test phase, they completed 

12 blocks, each consisting of 10 Memory trials, 8 Probe trials, and 2 unused Probe trials. 

Probe and sequence exposure was pseudorandomised within train and test sections. 

 

 



Chapter 5 -   110 

Chapter 5 - Discussion 

This thesis investigated both the mechanisms and the anatomical regions underlying 

movement planning and execution, including how such mechanisms might allow the motor 

system to transition from the former to the latter. The following chapter will begin with an 

overview of the results obtained from Chapters 2, 3, and 4. The findings are then discussed 

with respect to the wider motor learning literature, bridging the gap between the cognitive 

and strictly motoric aspects of the motor hierarchy and planning literature. The functions 

and interactions of individual anatomical regions are speculated to form a systems level 

framework for hierarchical motor function across planning and execution. The implications 

of such a model are then discussed with respect to clinical examples and future research 

avenues. 

5.1 Overview 

Movement sequences are often referred to as hierarchical structures, consisting of high- 

and low-level process including action selection, intermediate, and execution layers 

(Diedrichsen & Kornysheva, 2015a). This structure allows the motor system to flexibly 

recombine known features, such as the order and timing of movements, to facilitate the 

learning of new sequences (Kornysheva et al., 2013; Ullén & Bengtsson, 2003). Moreover, 

recent advancements in neuroimaging and multivariate analysis have allowed for 

anatomical localisation of hierarchical layers, with high-level elements thought to occupy 

secondary motor regions (Kornysheva & Diedrichsen, 2014; Russo et al., 2020; Yokoi & 

Diedrichsen, 2019a) and low-level elements occupying primary motor and somatosensory 

cortices (Ariani et al., 2022; Berlot et al., 2020; Yokoi et al., 2018). Yet, with a rapidly 

growing field of research investigating movement preparation (Haith & Bestmann, 2020), it 

is not clear whether such rigid separation persists across both planning and execution. 

Research from neurophysiology suggests that for single movements, informative activity 

during the planning period occupies a subspace in which the output is null to downstream 

connections (Kaufman et al., 2014), where the cortex receives an indiscriminate signal to 

move from subcortical structures which marks the point of initiation and causes transition 

of maintained activity into an orthogonal potent subspace (Inagaki et al., 2018, 2022; 

Kaufman et al., 2016). These mechanisms are thought to act alongside interhemispheric and 
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corticospinal inhibition (Duque et al., 2017) to allow the motor system to effectively prepare 

upcoming movements whilst avoiding unintentional readout by downstream motor neurons 

and subsequently muscles. These findings in single movements have intriguing implications 

for the planning and execution of movement sequences; are holistic sequences also planned 

by a transition into orthogonal subspace? What role does inhibition play in the planning of 

multiple upcoming movements?  

This thesis identified a high- to low-level hierarchical shift from planning to execution in 

the cortex, represented by a shift from order and timing control to integration alongside 

online timing. Additionally, the hippocampus specified the order of upcoming movements 

prior to initiation. Moreover, it identified shifts in the occupied subspace of basal ganglia, 

thalamus, and hippocampus across movement phases, in addition to a selective finger-

specific gradient of inhibition in the effector contralateral to movement during planning. 

The implications of these findings and how they relate to the current literature are 

discussed in the subsequent sections of this chapter. 

5.2 A Systems-Level Hierarchical Shift from Planning to Execution 

Chapters 2 and 3 used multivariate pattern analysis and principal component analysis to 

investigate the presence of order, timing, and integration (sequence features) during 

planning and execution, in addition to changes in the low dimensional distance between the 

neural patterns of each movement phase for each given sequence. Firstly, of note is the 

minimal presence of sequence features during planning in the cortex; order and marginal 

timing only seemed to be present within superior parietal and ventral premotor cortices. By 

far the strongest effect, however, was the pre-ordering of movements in hippocampus, an 

effect that has been also shown by findings in the context of episodic memory (Davachi & 

DuBrow, 2015). 

 The mechanism observed may be related to CQ, as findings from multivariate analysis of 

MEG signals suggest that the CQ signal originates in parahippocampal regions (Kornysheva 

et al., 2019a). Further, the hippocampus has extensive connections to the cortex, of which 

the connections to the parietal lobe make up the extensive ‘where’ pathway in the dual 

stream model of memory (Huang et al., 2021). The superior parietal cortex has been 

implicated in the planning of movement (Gallivan et al., 2013) and represents movement 
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intentions in absence of exact motoric requirements (Henderson et al., 2022; Shushruth et 

al., 2022), thus may work in tandem with the hippocampus to retrieve and order upcoming 

movements associated with the sequence cue, then maintain motor goals during the delay 

period prior to movement. Moreover, these regions have been found to interact closely 

during navigation tasks, where hippocampal grid cells encode world-centered coordinates 

that the parietal cortex converts into body-based coordinates, allowing for effective 

locomotion and guidance (Rolls, 2020; Whitlock et al., 2008). In a similar manner, it could be 

that sequential movement tasks may require the superior parietal lobule to map the 

abstract order of movements generated by the hippocampus CQ onto intrinsic, body-

centered reference frames (Wiestler et al., 2014). However, future research should use 

electrophysiology, or non-invasive neural recordings with a high temporal resolution such as 

MEG and EEG, to investigate whether such mapping occurs during planning, initiation, or 

execution. 

With a potential CQ source identified through a hippocampal-parietal interaction, 

Chapter 4 identified a traditional CQ gradient using behavioural methods (Mantziara et al., 

2021) but additionally a mirrored gradient of suppression on the hand contralateral to the 

one to be used in the upcoming movement, where fingers become less available the more 

that their contralateral counterpart in intrinsic space is prepared. General interhemispheric 

inhibition has been shown previously during motor tasks with respect to M1 (Perez & 

Cohen, 2009), with functional inhibition being discussed in the introduction of this thesis 

(see 1.2.1 Planning as a distinct neural state to execution; Duque et al., 2017), however 

based on the findings from Chapter 2 and Chapter 3 the observed gradient inhibition is likely 

to originate from hippocampal or parietal regions. There is limited evidence for such a 

phenomenon, although findings from TMS suggest that stimulation of the anterior 

intraparietal sulcus results in inhibition of the contralateral primary motor cortex (Koch et 

al., 2009) so this mechanism is not unlikely, yet further research is required to determine 

whether this effect is entirely functionally mediated. Having identified a potential 

mechanism of inhibition, we can now propose an update to the established CQ model 

(Bullock, 2004; Bullock & Rhodes, 2002) where the nodes contained in the competitive 

choice layer don’t just actively inhibit competing movements on the target hand, but also 

the homologous finger on the contralateral hand. This would provide us with a solid 
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framework to explain the phenomenon that we observed in the results of Chapter 4 and 

allow computational modelling studies a foundation to further investigate the proposed 

mechanism.  

Despite a clear system for the definition and mapping of movement order preceding 

movement, the planning of independent timing was seemingly absent. Contemporary 

research into the planning of movement timing suggests that the representation of a timing 

structure is volatile and cannot be prepared a priori to be stored for later use (Maslovat & 

Klapp, 2022). More specifically, the authors propose that a temporary neural network is 

generated just prior to response initiation, which utilizes neural transmission delays to 

generate different lengths of temporal intervals between elements of movement sequences 

(Klapp & Maslovat, 2020), providing a potential explanation for why we do not observe 

timing during the lengthy period preceding movement in the current task. Only while the 

movement is being executed do we see extensive control of independent timing across 

bilateral motor and prefrontal cortices. Curiously, despite heavy links to timing processes, 

neither cerebellum nor basal ganglia show significant sequential timing control (Kunimatsu 

et al., 2018; Narain et al., 2018; Tanaka et al., 2021). This may be due to the way we kept 

the inter-press intervals consistent yet rearranged across timing conditions; these 

subcortical regions may simply be tuned towards control of individual timing intervals which 

would cause sequences to become identical at the temporal scale of fMRI given the 

relatively sluggish BOLD response (Logothetis, 2003). Coincidentally, this null finding may 

provide more evidence that the timing control that occurs in the cortex is related to the 

entire timing structure across a sequence. 

So, despite timing not being planned a priori, the order of movements in an upcoming 

sequence is planned by complementary processes in hippocampal and parietal regions. 

Upon initiation, evidence from rodent electrophysiology suggests that the transition from 

planning to execution begins with a signal to move which ascends, from the pons through 

the thalamus, into the cortex (Inagaki et al., 2018, 2022). While we did not attempt to 

identify such a signal directly using fMRI, we showed that multivariate distance in the 

thalamus, alongside basal ganglia and hippocampus, between neural patterns for sequential 

planning and execution was significantly greater than carefully controlled simulations with 

no distance. Moreover, we observed a cluster of integration in the thalamus that, although 
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not significant after Bonferroni correction across regions, could indicate that it processed 

information that was unique to each sequence. Our results do not provide direct evidence in 

support of the ascending signal theory, but suggest it remains a strong possibility and 

provide evidence against the aged idea that the thalamus is solely a relay station for sensory 

inputs to the cortex (Shine et al., 2023). What is clear is that neural patterns become 

rearranged, best represented by the state shift from high- to low-level control that occurs 

across motor cortical regions. This state shift also appears to happen trial by trial, indicating 

that processing the order initially during planning to later combine with timing provides 

some kind of benefit to the system or to performance. We hypothesise that such a 

mechanism allows the system to remain flexible, should task demands change shortly prior 

to initiation. Results from neurophysiology in rodents indeed suggest that a task which 

requires flexibility can induce in greater cortical involvement during sequence learning 

tasks, rather than the movement kinematics being stored directly within the basal ganglia 

such as in previous studies of over-learnt repetitive sequence tasks (Harpaz et al., 2022; 

Mizes et al., 2023b). Thus, our event-related design results in a contextual interference 

training regime (Heald et al., 2021; Magill & Hall, 1990), requiring flexibility which might bias 

the motor system into the primarily cortical control we observed during execution (Cross et 

al., 2007; Wymbs & Grafton, 2013). It would be valuable for future research to train 

participants using an overly repetitive training regimen to see if alternative brain regions, 

including subcortical structures, are employed under such conditions. However, it is 

important to note that these findings were drawn from neurophysiological recordings in 

rodents, and there are several major differences in the anatomy of the corticospinal tract 

between primates and rodents (Lemon, 2008). Research tracing synaptic connections in 

non-human primates using retrograde rabies virus revealed unique cortico-motoneuronal 

(CM) cells in M1 with monosynaptic connections to motoneurons which directly innervate 

the finger muscles (Rathelot & Strick, 2009). As such, the lack of these CM cells in rodents 

may cause a greater reliance on storage of movement kinematics in the basal ganglia as 

opposed to the cortex. 

The highlighted results of this thesis clearly indicate that the planning and execution of 

movement sequences is a systems-level process that requires a plethora of brain regions, 

both cortical and subcortical, performing distinct roles at specific stages of movement. The 
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order of movements, belonging to the more cognitive-related ‘What’ category of motor 

planning (Haith & Bestmann, 2020; Wong et al., 2015), is planned a priori by a hippocampal-

parietal network and causes inhibition of competing effectors through the motor system 

ipsilateral to the upcoming movement. Timing, however, another feature belonging to 

‘What’, shows some albeit limited planning a priori while being implemented heavily during 

execution across the cortex. ‘How’, the category related to the definition of movement 

kinematics and thought of as purely motor generation, occurs during execution across the 

premotor to parietal cortex. As such, these results provide evidence for a systems-level 

hierarchical shift from high- to low-level hierarchical sequence features.  

An analogy could be made between the hierarchical shift we observe and the populations 

of neurons that operate within output-null and output-potent dimensions (Kaufman et al., 

2014). In the research carried out in this thesis, particularly in parietal cortex, overlapping 

neuronal populations seem to control for order and timing during planning, which transition 

to integration during execution. This is similar to previously observed findings in 

electrophysiology where neuronal activity is informative of movement parameters such as 

velocity (Churchland et al., 2006), direction (Messier & Kalaska, 2000; Riehle & Requin, 

1989), and movement order (Tanji & Shima, 1994) during the planning period but shifts in 

multidimensional representations during execution to a format that drives downstream 

neurons to produce movement (Inagaki et al., 2018; Kaufman et al., 2016). 

5.3 Future Research Directions and limitations 

Questions remain which require future research using alternate methodology to gain 

further insight and build a clearer understanding of how the system interacts. Firstly, while 

we investigated the neural distance between planning and execution in subcortical regions, 

we did not investigate whether this mechanism was also present in the cortex. Due to the 

observed shift in sequence feature control it would be easy to assume such distances would 

also be present in cortical regions, yet recent findings, posted as a preprint after the 

publication of Chapter 2, suggest that sequence-specific representations in secondary motor 

regions such as dorsal premotor and anterior superior parietal cortex were maintained 

across planning and execution, as opposed to primary motor cortex whose representations 

switched (Ariani et al., 2023). These opposing findings warrant further investigation but 

could be caused by some differences in design choices: this research used a similar Go No-
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Go design to Chapters 2 and 3, sequences were executed as fast as possible with no timing 

structure and consisted of repeated presses of three fingers. Moreover, this research used 

single versus multi-finger sequences to produce evidence of planning during execution 

across several regions, which our experiment was unable to detect as all sequences 

contained the same movement elements. As such, it is currently not clear what role 

planning during execution plays in our task specifically, and in the systems-level hypothesis, 

warranting further research using methods with greater temporal resolution such as MEG to 

attempt to detect the planning of upcoming presses while the prior is being executed. 

Regarding Chapter 4, we show that the availability of fingers on the hand contralateral to 

the cued movement was generally lower than the availability of those on the cued hand, 

alongside the mirrored gradient. While the differentiation between unused fingers is solid, it 

is unclear whether the general effect of non-finger specific reduced availability in the 

unused relative to used hand is due to interhemispheric suppression, or just lowered 

expectancy given these trials were much less common than trials that cued the upcoming 

hand. The latter is unlikely, however, as previous research showed a similar effect where the 

unused effector was suppressed despite an equal number of used and unused effector 

probe trials (Mantziara et al., 2021). There is a need for neural recordings to identify 

whether this is active suppression, and whether or not a competitive suppression gradient 

can be identified based on pattern probabilities using linear decoding (Kornysheva et al., 

2019a). Furthermore, investigating the nature of this inhibition mechanism may lead to 

models which explain how certain disorders, such as Parkinson’s disease, have trouble 

initiating movements (Rubin et al., 2012), as there is reduced suppression of competing 

movements. 

5.4 Implications for Neurological Disorders 

As discussed in Chapter 1 (see 1.1 Neural control of movement sequences), neurological 

disorders that cause motor deficits can cause malfunction in various regions and 

mechanisms across the brain. Parkinson’s disease results in a loss of dopaminergic neurons 

in the substantia nigra, resulting in misfunction of the basal ganglia (Rubin et al., 2012). 

Based on results from this thesis, the BG do not seem to show a tuning to sequence 

features, or their integration, but increase in activity and shift their neural patterns from 

planning to execution. This suggests that their role may be more related to the execution of 
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single movements, which we would not be able to detect using the current paradigm as 

sequences consisted of the same constituent presses in different orders. As such, the basal 

ganglia may be more concerned with lower-level ‘How’ processes, as opposed to higher-

level ‘What’ (Haith & Bestmann, 2020; Wong et al., 2015). Contrastingly, Alzheimer's 

disease, which stereotypically causes significant degeneration of the hippocampus (Dubois 

et al., 2016; Förstl & Kurz, 1999), might result in a breakdown of ‘What’, due to the 

hippocampus primarily processing higher-level order during planning. Such breakdown of 

sequential order in Alzheimer’s patients has been observed in spatial navigation tasks, 

where the order of reaches was impaired but the location of targets remained intact (Kalová 

et al., 2005); this breakdown of order has been proposed to underly key deficits in working 

memory observed in patients (De Belder et al., 2017). Given how crucial the order of 

movements is when executing a sequence, an intriguing avenue for future research would 

be to observe the definition of movement order during movement planning in the parietal 

cortex in Alzheimer’s patients, which would reveal whether the hippocampus is necessary 

for the parietal cortex to be able to define the upcoming order. If not, it would suggest some 

distinct mechanism in parietal cortex allowing long-term storage of movement sequences in 

an abstract form. Moreover, if the degeneration in hippocampus prevents it from planning 

the movement order, the hemisphere ipsilateral to movement may not become selectively 

inhibited, as was observed in Chapter 4, leading to greater levels of cross-callosal 

competition in the competitive choice layer and causing difficulty inhibiting competing 

plans, resulting in greater difficulty initiating movement or producing movement in the 

correct order, leading to transposition errors. 

5.5 Closing Remarks 

The order and timing of movement sequences are crucial elements that must be 

combined efficiently and precisely to produce effective and flexible movements. These 

sequence features also exist at different levels of a conceptual motor hierarchy which allows 

for flexible selection and recombination when task demands vary. This thesis investigated 

the neural basis of sequence features during the planning period and incorporated such 

findings with established literature, showing that order is planned by a hippocampal-parietal 

network, and that this causes inhibition of competing effectors, even in the contralateral 

hemisphere. Upon initiation, representations across the cortex shift from high-level abstract 
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plans into lower-level execution-related control, mirroring similar findings of orthogonal 

subspaces from neuronal population recordings only on a larger scale. This systems-level 

hypothesis of a hierarchical shift allows clear pathways for research to investigate functional 

deficits in Parkinson’s and Alzheimer’s patients, while providing a solid foundation and 

predictions for future basic science to investigate. 
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