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Abstract—Recently several machine learning methods have 

been proposed to estimate the SNR, based on launch data and 
other system factors. These data-driven methods typically require 
a large number of datasets for training and generally are not 
interpretable. In this paper, we propose an alternative approach 
that requires less data and is interpretable, specifically a hybrid 
algorithm combining a physical model with Gaussian process 
regression. We develop a measurement-informed physical model, 
systematically reducing the number of independent parameters 
based on the underpinning physics and improve the overall 
performance of the physical model marginally. The model is 
validated using measurements performed on a 15-channel 
wavelength-division multiplexed system propagating over 1,000 
km of standard single-mode fiber. The proposed hybrid model is 
not only interpretable but also obtains better agreement with 
measurements than a Gaussian process regression model and a 
simple neural network model for a given number of training 
datapoints.1 
 
Index Terms—Gaussian noise model, long-haul transmission, 
wavelength division multiplexing, signal-to-noise ratio 
estimation, hybrid model, physical model, machine learning.  

 

           I. INTRODUCTION 

HE available signal-to-noise ratio (SNR) is core to the 
performance of optical fiber communication systems, be 
this as a metric for network routing [1] or the digital 

signal processing (DSP) and forward error correction (FEC) 
within a modem [2].  

In this paper, we tackle the task of accurate measurement-
informed SNR estimation at the receiver for a wavelength 
division multiplexed (WDM) system. The SNR estimation can 
be done analytically using the Gaussian noise (GN) model, 
which is a relatively simple and sufficiently reliable tool for 
performance estimation [3-4]. As with any analytical model, the 
accuracy is only as good as the input model parameters, so for 
the GN model to give accurate predictions, the system 
parameters need to be measured. Alternatively, SNR can be 
estimated through a data-driven machine learning (ML) 
approach [5-8]. For example, in [5], the training for SNR 
estimation was performed on the channel launch powers, the 
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amplifier gains and their noise figures, and the launch power at 
each fiber span. Hybrid models are also being used in the field 
of optical communication [9, 10, 11], as they combine the 
advantages of the physical model in terms of interpretability 
and that of the data-driven model in terms of adaptability. 

Unlike an ML approach, which provides little insight into the 
system, an analytical approach allows a better understanding of 
the sources of the noise present, and their impact on the SNR. 
In turn, this helps localize faulty components, allowing for a 
fast rerouting of the corresponding signal. Hence, it is important 
for optical performance monitoring (OPM) which is the 
continuous monitoring of the signal and the characterization of 
its parameters [12,13]. 

The work in this paper is an extension of our previous work 
[14] which compares the use of ML versus the use of the 
physical model to estimate the SNR of a long-haul optical 
communication system. This paper considers the different ways 
of implementing the physical model and diving into the details 
of such implementation. We also investigate integrating it in a 
hybrid model with machine learning techniques.  

The paper is organized as follows. In section 2, the most 
relevant noise sources in long-haul optical communications are 
identified and discussed. Section 3 covers multiple methods of 
implementing the physical model. Section 4 focuses on 
detailing the experimental model that we used. Section 5 is 
dedicated to comparing the results from using the physics-based 
methods, data-driven methods which are based on machine 
learning and the hybrid method.  

II. NOISE SOURCES IN WDM SYSTEMS 

For the analysis included in this paper, we will partition the 
noise into three parts, such that the total noise-to-signal ratio 
(NSR) for the 𝑖௧௛ channel is given by 

 
𝑁𝑆𝑅௜ = 𝑁𝑆𝑅ெ,௜ + 𝑁𝑆𝑅௅,௜ + 𝑁𝑆𝑅ே௅,௜              (1) 

 
where 𝑁𝑆𝑅ெ,௜ is the modem noise, 𝑁𝑆𝑅௅,௜  is the linear noise 
and 𝑁𝑆𝑅ே௅,௜ is the nonlinear interference noise. 

In a WDM system where 𝑁௖௛ channels are multiplexed, the 
modem noise-to-signal ratio term, 𝑁𝑆𝑅ெ,௜ is independent of the 
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signal launch power. In contrast, linear noise related term is 
given as,  𝑁𝑆𝑅௅,௜ = 𝑃஺ௌா,௜/𝑃௜ , where 𝑃஺ௌா,௜ is the total noise 
power from the amplified spontaneous emission (ASE within 
the channel) of the optical amplifiers and  𝑃௜  is the launch power 
of  𝑖௧௛ channel. The nonlinear noise contribution is given by 
𝑁𝑆𝑅ே௅,௜ = 𝑃ே௅ூ,௜/𝑃௜  where the nonlinear  interference on the 

𝑖௧௛ channel is given by 𝑃ே௅ூ,௜ = 𝑃௜ ∑ 𝜂௜௝𝑃௝
ଶே೎೓

௝ୀଵ  where 𝜂௜௜ is the 

self-phase modulation (SPM) factor, and 𝜂௜௝ for 𝑗 ≠ 𝑖 is the 
cross-phase modulation (XPM) factor capturing the effect of 
the 𝑗௧௛ channel launch power 𝑃௝ on signal 𝑖 [15]. The effects of 
four-wave mixing are ignored given that the conditions for 
phase-matching are not met. We can then rewrite Eq. (1) in 
terms of corresponding NSRs as: 

 

𝑁𝑆𝑅௜ = 𝑁𝑆𝑅୑,௜ +
௉ಲೄಶ,೔

௉೔
+ ∑ 𝜂௜௝𝑃௝

ଶே೎೓
௝ୀଵ                (2) 

 
We note that, given this equation, at higher launch powers it 

is the nonlinear noise that dominates.  
We will refer as characterizing parameters the ones that, 

given the launch powers of the channels, allow us to calculate 
the corresponding NSRs. In this case, they are 𝑵𝑺𝑹𝐌 which is 
the modem noise to signal vector, 𝑷𝑨𝑺𝑬 the ASE noise power 
vector, and the 𝜼 matrix. We define 𝑁௣ as the number of 
characterizing parameters involved in an equation. 

From the GN model [3], the XPM efficiency parameter is 
dependent on the walk-off parameter between two channels, 
which is a function of their frequency separation Δ𝑓 = ห𝑓௜ − 𝑓௝ห, 
with closed-form solutions for the XPM and SPM efficiency 
factors over one span given by equations (3) and (4) 
respectively; these equations were transcribed to maintain 
notational consistency: 

𝜂௜௝ =
ଷଶ

ଶ଻

ఊమ

ସగఈఉమ஻మ ln ቈ
୼௙ା

ಳ

మ

୼௙ି
ಳ

మ

቉   𝑓𝑜𝑟 𝑖 ≠ 𝑗                (3) 

 
 

𝜂௜௝ =
ଷଶ

ଶ଻

ఊమ

ସగఈఉమ஻మ ln ቚ
గమఉమ

ఈ
𝐵ଶቚ   𝑓𝑜𝑟 𝑖 = 𝑗              (4) 

 
where 𝛼 is the attenuation coefficient, 𝛾 is the nonlinear 
coefficient, 𝐿௦ is the span length, 𝛽ଶ  is the chromatic dispersion 
coefficient which within the GN model is assumed to be 
constant over all channels, and 𝐵 is the symbol rate. 

It has been shown [3, 16, 17] that this nonlinear efficiency 
factor 𝜂௜௝ decreases as the channel separation increases and is 
approximately inversely proportional to the channel frequency 
separation.  

The total XPM-induced phase shift on a channel is computed 
by summing terms from all other channels. Accordingly, and 
assuming that the XPM-induced phase shift is only dependent 
on channel separation, the 𝜼 matrix comprising these factors 
can be a symmetric Toeplitz matrix. 

 
 

III. METHODS FOR 𝜼 MATRIX CHARACTERIZATION 

Each of the following methods represents a different 
implementation of Eq. (2) based on different restrictions 
enforced on the 𝜼 matrix and the other characterizing 
parameters. We define a datapoint as a set of 𝑁௖௛ values where 
each value respectively corresponds to a channel, during one 
instance of the experiment. Each instance of the experiment is 
characterized by a datapoint of per-channel launch power 
values, which generates a datapoint of channel 𝑁𝑆𝑅s; in our 
case, one datapoint of 15 per-channel launch powers, generates 
one datapoint of 15 NSR values. 

For a certain number of characterizing parameters, we can 
compute the theoretical minimum number of datapoints to use 
to compute them using 𝑁ௗ = ⌈𝑁௣/𝑁௖௛ ⌉  where ⌈.⌉  represents 
the ceiling function. However, we note that in order to maintain 
the stability of the algorithm and ensure positive NSR values, 
additional datapoints can be added. The number of variables for 
each method and the minimum number of datapoints required 
for each method are shown in Table 1. 

A. Method 1 

In this method, we assume that all characterizing parameters 
are unknown and that they are channel-dependent. We do not 
enforce any specific requirements on 𝜼. 

B. Method 2 

This method relies on the GN model which assumes that 
channel separation is the only determining factor for the 𝜼 
matrix values. That is, in addition to being symmetric, 𝜼 has the 
same value along each of its diagonals. In mathematical terms, 
we are assuming 𝜼 to be a symmetric Toeplitz matrix. 

C. Method 3 

This method is similar to method 2, however, additionally and 
to further decrease the number of variables involved, we 
assume that the modem noise and the linear noise are channel 
independent. 

 

TABLE 1. NUMBER OF CHARACTERIZING PARAMETERS AND MINIMUM 

NUMBER OF DATAPOINTS FOR EACH METHOD 

𝑚 𝑁௣,௠ 𝑁ௗ,௠ 

1 𝑁௖௛
ଶ + 2𝑁௖௛ 𝑁௖௛ + 2 

2 3𝑁௖௛ 3 

3 𝑁௖௛ + 2 ⌈1 + 2/Nୡ୦⌉ 

This table lists the values of 𝑁௣,௠ and 𝑁ௗ,௠ representing the number 
of parameters and the minimum number of datapoints, respectively, for 
each method 𝑚. 
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D) Least squares solution:  

To illustrate the technique used to calculate the coefficients, we 
start with Eq. (2) 

𝑁𝑆𝑅௜ = 𝑁𝑆𝑅୑,௜ +
𝑃஺ௌா,௜

𝑃௜

+ ෍ 𝜂௜௝𝑃௝
ଶ

ே೎೓

௝ୀଵ

 

Without loss of generality, we begin by expressing a two-
channel case in matrix form given by 
 

൤
𝑁𝑆𝑅ଵ

𝑁𝑆𝑅ଶ
൨ = ൤

1 0
0 1

𝑃ଵ
ିଵ 0

0 𝑃ଶ
ିଵ

𝑃ଵ
ଶ 𝑃ଶ

ଶ

0 0

0 0
𝑃ଵ

ଶ 𝑃ଶ
ଶ൨

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑁𝑆𝑅ெ,ଵ

𝑁𝑆𝑅ெ,ଶ

𝑃஺ௌா,ଵ

𝑃஺ௌா,ଶ

𝜂ଵଵ
𝜂ଵଶ
𝜂ଶଵ

𝜂ଶଶ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
There are 8 unknowns in the vector hence we need a 

minimum of 4 separate datapoints that we denote 𝐴, 𝐵, 𝐶, 𝐷 of 
measuring the NSR on the two channels and hence  
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑁𝑆𝑅ଵ஺

𝑁𝑆𝑅ଶ஺

𝑁𝑆𝑅ଵ஻

𝑁𝑆𝑅ଶ஻

𝑁𝑆𝑅ଵ஼

𝑁𝑆𝑅ଶ஼

𝑁𝑆𝑅ଵ஽

𝑁𝑆𝑅ଶ஽⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 0
0 1

𝑃ଵ஺
ିଵ 0

0 𝑃ଶ஺
ିଵ

1 0
0 1

𝑃ଵ஻
ିଵ 0

0 𝑃ଶ஺
ିଵ

𝑃ଵ஺
ଶ 𝑃ଶ஺

ଶ

0 0

0 0
𝑃ଵ஺

ଶ 𝑃ଶ஺
ଶ

𝑃ଵ஻
ଶ 𝑃ଶ஻

ଶ

0 0

0 0
𝑃ଵ஻

ଶ 𝑃ଶ஻
ଶ

1 0
0 1

𝑃ଵ஼
ିଵ 0

0 𝑃ଶ஼
ିଵ

1 0
0 1

𝑃ଵ஽
ିଵ 0

0 𝑃ଶ஽
ିଵ

𝑃ଵ஼
ଶ 𝑃ଶ஼

ଶ

0 0

0 0
𝑃ଵ஼

ଶ 𝑃ଶ஼
ଶ

𝑃ଵ஽
ଶ 𝑃ଶ஽

ଶ

0 0

0 0
𝑃ଵ஽

ଶ 𝑃ଶ஽
ଶ

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑁𝑆𝑅ெ,ଵ

𝑁𝑆𝑅ெ,ଶ

𝑃஺ௌா,ଵ

𝑃஺ௌா,ଶ
𝜂ଵଵ
𝜂ଵଶ
𝜂ଶଵ

𝜂ଶଶ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
By defining suitable vectors and matrices this can be written as  

𝑵𝑺𝑹 = 𝑨𝒙 

which in general has a solution  

𝒙 = 𝑨ା𝑵𝑺𝑹 

where 𝑨ା = (𝑨𝑻𝑨)ି𝟏𝑨𝑻 denotes the pseudo-inverse of 𝑨 
where 𝑨𝑻 denotes the transpose of 𝑨 (which for this square 
matrix just becomes 𝑨ି𝟏). This method can hence be extended 
to an arbitrary number of channels with a suitably defined 
vector of 𝑵𝑺𝑹 and corresponding matrix 𝑨 to give the vector 
of model parameters 𝒙. 

IV. EXPERIMENTAL SETUP 

The purpose of these experiments is to evaluate the 
characterizing parameters of Eq. (2) by measuring multiple 
datapoints of launch powers of each channel and corresponding 
NSR values. Conversely, once the parameters are found, we can 
compute the expected NSR at the receiver end given a set of per 
channel launch powers. 

The experimental setup is similar to that in [14] and is shown 
in Fig. 1. The transmitter comprises 16 integrated tunable laser 
assemblies (iTLAs) bulk modulated by a modified Ciena 
WaveLogic 3 line card. The modulated output is then passed 
through a transmitter wavelength selective switch (Tx-WSS), 
allowing the selection of certain channels and dropping the rest. 
This is then followed by a booster amplifier. The multiplexed 
channels are then sent through 𝑛 different spans, each span 
consisting of 100 km standard fiber followed by a fixed gain 
inline-EDFA. We recall that the gain is not uniform over the 
channels. 

All of the connections are made using a Polatis 32 × 32 fiber 
switch, which also allows the control of the equal total launch 
power at the beginning of each span, that is it permits an exact 
compensation of the total power loss during propagation with 
its attenuation control function. At the receiver end, a Rx-WSS 
allows channel selection for demodulation with a Ciena 
WaveLogic 3 line card receiver. 

Given the measurements are performed after 10 spans and 
temporal decorrelation of the channels occurs within the first 
span due to chromatic dispersion no additional decorrelation is 
included. We measure the BER at the receiver from which we 
can calculate the SNR (and hence the NSR). For a 16-QAM 
modulated signal that is Gray coded the relevant equation is 
given by [17]: 

𝐵𝐸𝑅 ≈
ଷ

଼
erfc ቆට

ௌேோ

ଵ଴
ቇ                           (5) 

 
where erfc(⋅) is the complementary error function. The inverse 
complementary error function erfcିଵ(⋅) allows the SNR to be 
calculated from BER using 𝑆𝑁𝑅 ≅ 10 × {erfcିଵ(8 × BER/
3)}ଶ. 

 
We start our experiment by selecting a number of channels 

to multiplex, and the number of fiber spans. In this paper, we 
work with 15 WDM channels with central frequency 193.4 

Fig. 1. Experimental setup used to evaluate the theoretical fitting model, where iTLA refers to integrated Tunable Lasers Assemblies, Tx-WSS and Rx-WSS 
refer to the transmitter’s and the receiver’s wavelength selective switch respectively, while WL3 refers to the Ciena WaveLogic 3 linecard. The number of 
spans is given by 𝑛. 
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THz and 50 GHz channel spacing, and each channel is 
modulated at 34.5 GBd. We drop one of the 16 C-band channels 
available to conform with the convention of having a central 
channel. Next, we regulate the channels’ baseline launch 
powers to ensure similar optical SNR (OSNR) at the transmitter 
end. The latter is measured using a Finisar WaveAnalyzer 
(model WA 1500S). We set the received optical power at -4 
dBm, as per the equipment’s requirements.  

We then proceed to select a power range for all the channels. 
We do so by studying the performance of the central channel 
over [−4 dBm, 4 dBm] Tx total launch power value range as 
per the equipment limitations. We measure the optimum launch 
power around 0 dBm. The test power range is then chosen to 
take into account the rate at which the BER is affected by the 
launch power. We recall that at lower launch powers linear 
noise dominates, whereas nonlinear noise dominates in the 
higher power regime. We denote this test power range as 𝑃௥௔௡௚௘  
which will denote the range of test powers that allows us to 
study Eq. (2). 

Each instance of the experiment is based on a datapoint of 
launch powers of each channel and results in an NSR datapoint. 
Each experiment includes a pre-determined number 
of instances, and each of these instances results in a measured 
NSR datapoint for a launch power datapoint. These instances 
are then divided into training datapoints which allow finding 
the value of the characterizing parameters, and test datapoints 
allowing for the evaluation of each of the methods described 
previously. 

The most dominant term in the measurement uncertainties is 
set by the launch power with an uncertainty of ±0.05 dB. 

V. RESULTS AND DISCUSSION 

To compare the performance of the methods, we first consider 
a certain number of training datapoints and compute the 
parameters of Eq. (2) based on each method. We then consider 
the test datapoints and use these characterizing parameters to 
calculate 𝑆𝑁𝑅෣

ௗ஻, the model-based SNR value, for each method. 
These are compared with the experimentally measured SNR 
value 𝑆𝑁𝑅ௗ஻ using the root mean squared error (RMSE).  

We consider overall RMSE which is computed as follows 
[18]: 
 

𝑅𝑀𝑆𝐸ௗ஻,௢௩௘௥௔௟௟ = ቄ
ଵ

ே೎೓×ே೟೐ೞ೟
∑ ∑ ฮ𝑆𝑁𝑅ௗ஻(𝑐, 𝑡) −

ே೟೐ೞ೟
௧ୀଵ

ே೎೓
௖ୀଵ

    𝑆𝑁𝑅෣
ௗ஻(𝑐, 𝑡)ฮ

ଶ
ቅ

ଵ/ଶ 

               (6) 

 
where 𝑁௧௘௦௧ is the number of test datapoints. On the other hand, 
the per channel RMSE is computed for a certain channel which 
is computed as: 

 

𝑅𝑀𝑆𝐸ௗ஻,௖ = ቄ
ଵ

ே೟೐ೞ೟
∑ ฮ𝑆𝑁𝑅ௗ஻(𝑐, 𝑡) −

ே೟೐ೞ೟
௧ୀଵ

                                       𝑆𝑁𝑅෣
ௗ஻(𝑐, 𝑡)ฮ

ଶ
ቅ

భ

మ
                                      (7) 

 
 

A minimum of 𝑁ௗ,௠ power and NSR datapoints are enough 
to compute the characterizing parameters of each method 𝑚. 
However, to prevent negative NSR values in the testing phase, 
we increased the number of training datapoints. We denote this 
new number of datapoints as 𝑁ௗ,௠

ᇱ ; in our case, we used a 
maximum of 6 additional datapoints. 

This section is divided as follows: we first consider the 
overall performance of these methods, then their per-channel 
performance. We then study the accuracy of fit of the XPM 
parameters compared to the theoretical model. We also consider 
the comparison of the physics-based model with the data-driven 
approach. The last sub-section is dedicated to investigating the 
hybrid model approach.  

 

A. Physics-Based Method 

1) Overall Methods Evaluation: We ran the first experiment 
with 15 channels over 10 spans, (a total of 1,000 km). We 
gather 700 datapoints, and we randomly select 500 datapoints 
to extract the characterizing parameters, and the rest of the 
datapoints are used for testing.  The RMSE is calculated from 
the test datapoints, based on the number of datapoints used for 
training.  

As shown in Fig. 2, the curve corresponding to method 2 
shows the fastest convergence to an RMSE value of around 0.03 
dB. Method 3 is the worst performing in terms of root mean 
square of 0.06 dB, while method 1 shows a slight relative 
improvement of 0.05 dB. 

The lower performance of method 1 highlights the problems 
of having a model with 255 free parameters, compared to the 
simpler method 2 with 45. In contrast the poorer performance 
of method 3 highlights that could be due to the 
oversimplification of the system by imposing channel 
independence on the modem and linear noises. We note that the 
plots in Fig. 2 have different starting points as the minimum 
number of free parameters differs between methods. 

The distribution of the estimation error for each method is 
shown in Fig.3. Method 3 shows the highest variance, as it fails 
to capture the channel dependence of the linear and modem 
terms in Eq. (2). On the other hand Method 1 is more prone to 
noise integrating the model given the high number of 
parameters involved. Additionally, Fig. 3 shows that method 2 
provides the lowest absolute maximum error at 0.14 dB, while 
methods 1 and 3 result in a maximum absolute error of 0.20 dB, 
and 0.21 dB respectively. 

 
2) SPM and XPM nonlinear terms: As expected from the 

GN model, for all three methods the SPM and XPM factors 
follow a distribution inversely proportional to the distance 
between the channels, with  

 
𝑦 =

௔

௫ା௕
+ 𝑐                                    (8) 
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where 𝑦 stands for the XPM values and 𝑥 stands for the 
distance between channels.2 

 

 
Fig. 2. Overall RMSE of the 200 test datapoints, based on the number of data 
points used to compute the characterizing parameter values for each method.  

  
 

(a) Method m = 1 (b) Method 𝑚 = 2 

 
(c) Method m = 3 

Fig. 3. The distribution of the estimation error over all channels and for each 
method. The estimation error is defined as the difference between the 
experimentally measured SNR and the SNR prediction based on each method’s 
model, respectively. The means of the distributions are at −2 × 10ିଷ, 
−1 × 10ିଷ, and −2 × 10ିସ dB, respectively. The second method shows the 
lowest standard deviation at 0.03 dB. In comparison, methods 1 and 3 result in 
a higher standard deviation of around 0.05 dB and 0.06 dB, respectively. 

Fig. 4 shows the distribution of these factors providing 
confidence in the three methods. We notice close 𝜂௜௝ values for 
the three methods, despite the substantial difference in the 
reported RMSE values shown in Fig. 2. In choosing the number 
of parameters, the goal is to find a balance between allowing 
for enough parameters to accommodate channel dependency 

 
2 This form comes from noticing that the logarithmic term in Eq. (3) and Eq. 

(4) can be re-written as ln ቀ1 +
ଵ

௱௙/஻ିଵ/ଶ
ቁ and then approximated as a Taylor 

series. 

and restricting the number of parameters to prevent noise from 
playing a role in their estimation. Method 3 does not 
accommodate enough of all the channels, as it assumes the same 
𝑃஺ௌா  and 𝑁𝑆𝑅ெ for all of them. In contrast, method 1 allows a 
leniency in the 𝜂௜௝ values, and while these when average over 
the diagonals +𝑘 and −𝑘 result in values similar to those in 
Method 2, this does not guarantee similar RMSE performances. 
Method 2 manages to capture the channel dependence, all while 
restricting the number of variables just enough to prevent the 
noise from playing a role in the estimations. 

 

Fig. 4. Distribution of the XPM parameters based on the distance between 
channels, and the fitting of the XPM parameter values from method 2. The 
values on the parameters for the fit based on Eq. (8) are: 𝑎 = 9.73 × 10ିସ𝐻𝑧, 
𝑏 = 0.40𝐻𝑧, 𝑐 = 2.00 × 10ିହ. Their respective 95% confidence intervals are: 
[7.94 × 10ିସ, 11.23 × 10ିସ]𝐻𝑧, [0.33, 0.46]𝐻𝑧, [−1.48 × 10ିହ, 5.47 ×
10ିହ]. 

 
3) Per-channel evaluation: The RMSE performance of all 

the 15 channels is shown in Fig.5. The best performing channels 
are the non-central inner channels, especially channels 4, 5, 6, 
and channels 10, 11, 12 using method 2. The minimum 
maximum SNR error is for channel 10 at 0.06 dB when using 
method 2. For all the channels, method 2 is the best-performing 
one. 

4) Modem SNR estimation: We next consider investigating 
the estimation of the modem SNR. As mentioned previously, 
the modem SNR is independent of the propagation in the fiber, 
or of the number of spans this propagation involves. The per-
channel distribution of the estimation of the modem SNR for 
100 training datapoints is shown in Fig. 6. We notice that this 
distribution is approximately flat. The maximum difference in 
estimation between channels is for method 2, with around 0.50 
dB difference between channels 7 and 1. Channel 1 is the most 
sensitive to the method used with around 0.30 dB difference in 
modem SNR values. Channel 4 is the most resilient for change 
in methods when estimating this value. Method 3 shows an 
average of 15.41dB, with a standard deviation of 0.02 dB. 
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Fig. 5. The performance of each channel based on RMSE error. 

B. Data-Driven Approaches 

For the data-driven approaches, we use the neural network 
(NN) and Gaussian process regression (GPR). For NN, we use 
a feed-forward network with two hidden layers, each including 
128 nodes to capture the dimensionality of the system for a fair 
comparison with the physical model. The input layer consists 
of 15 nodes, each corresponding to a channel launch power 
value, and the 15 output nodes represent the resulting channel 
NSR values. We use the Exponential Linear Unit as our 
activation function and run the experiment for training 
datapoints ranging between 𝑁௣,௠ and 500 as our input. We use 
a mini-batch size of 100 and a constant learning rate of 10ିଷ. 
Final hyperparameter values were chosen based on systematic 
experimentation and optimization and selected based on the 
best performance. 

Gaussian processes are a probabilistic machine learning 
approach, which produces an output with a clear probabilistic 
interpretation [19] and hence confidence margins. In addition, 
their use of a kernel-based approach allows modeling of the 
relationship between the data and also permits working in a 
feature space. We run the GPR for the same range of training 
datapoints and use the squared exponential as our kernel 
function. 

Fig. 7 shows that the performance of the NN is not as good 
as that of the physical model (method 2). The average RMSE 
value for the NN is 0.04 dB compared to method 2 which 
plateaus at 0.03 dB. The GPR’s performance is marginally 
better with a higher number of training datapoints; it requires at 
least 250 training datapoints before we start observing this 
improvement. For 500 training datapoints, the GPR’s RMSE 
reaches an RMSE level lower than that of the other two 
methods. Whilst this improvement at a relatively large number 
of datapoints is not very significant, however, it does highlight 
the fact that the GPR is capturing dependencies that are not 
accounted for in the physical model which eventually plateaus. 

 
(a) Method m = 1 

 
(b) Method m = 2 

 

Fig. 6: Per-channel modem noise distribution for (a) method 1 and (b) method 
2. These values were estimated by dividing our 700 datapoints into groups of 
100, each of which was used to estimate a value for model noise leading to 7 
estimations per channel.   

We also would like to note that in [14] the NN was trained 
for 7 channels and that the physical model used was slightly 
different than method 1 used here with the modem SNR being 
experimentally measured and channel independent. This could 
explain why in [14], the NN performs better than the other 
proposed methods. In the case of the experiments run in this 
paper, there might be a potential to find a different NN that 
captures the interactions between the 15 channels and 
outperforms the one proposed in this paper. We highlight the 
fact that NN setups are generally found by systematic 
experimentation.  
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C. Hybrid Method 

In this sub-section, we investigate the use of machine 
learning to decrease the residual error from the physics-based 

 
Fig. 7. Comparison between the physical model and machine learning for 
estimating the SNR. 

 
method. This allows for the advantages of the machine learning  
approach in terms of accuracy to be used, all while maintaining 
the physical understanding of the physical model which also 
provides the advantage of training speed.  

In our algorithm, we use GPR rather than NN for two main 
reasons. According to Fig. 7, GPR performs better than NN. In 
addition, GPR does not require an estimation of the dimensions 
of the system which is key in working with NN. For the data-
driven approach, the estimation of the dimensionality was 
straightforward given the knowledge of the number of 
characterizing parameters. However, this is not simple when 
targeting residual errors. In addition, in the hybrid approach, we 
consider method 2 since it shows a better overall performance. 

Starting with 700 datapoints, we randomly select 100 
datapoints to extract the physical model based on method 2, we 
then randomly select another 400 datapoints to be used as 
training for the GPR, and the rest (200 datapoints) are used for 
testing. We start by training the physical model and then use the 
extracted characterizing parameters to compute the NSR 
residual error for the GPR training datapoints. The GPR model, 
with a squared exponential kernel function, is hence trained to 
predict residual errors based on launch power. The final 
predicted NSR from the hybrid model becomes: 

 
𝑁𝑆𝑅௛௬௕௥௜ௗ,௜ = 𝑁𝑆𝑅௣௛௬௦௜௖௔௟,௜ + (𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑟𝑟𝑜𝑟)ீ௉ோ,௜   (9) 

 
Therefore, given a datapoint of launch powers, the hybrid 

NSR prediction is performed as shown in Fig. 8. 
Compared to using GPR on its own, the hybrid method 

provides a better estimation with an overall RMSE error of 0.02 
dB with the lowest RMSE error per channel being for channel 
11 at 0.02 dB as shown in Fig. 9. In this figure, we also show 
the results from training the physical model on a maximum of  

 

 

Fig. 8. Diagram representing the hybrid model. The dashed lines represent the 
optional GPR residual training.  

 

 

Fig. 9. Comparison of the performance of the hybrid method with the data-
driven approach. The hybrid model is based on 𝑚 = 2 and is trained based on 
a physical model from 10 datapoints (red) and 100 datapoints (green). 

 

10 datapoints while the rest of the 490 datapoints dedicated to 
training are used in the GPR. 

This improvement in performance in the hybrid model could 
be due to the GPR capturing other impairments that were 
assumed negligible in the formulation of the physical model. In 
our case, a simple kernel function is used for both the data-
driven GPR and the hybrid model. It could be the case that the 
kernel function in the latter has the potential to target 
impairments that are not captured in the physical model. This is 
unlike using GPR on its own, where this simple kernel function 
has to capture the main impairments, that are the most 
dominating trend in the data. We believe that both of the 
performances can be further improved by constructing a more 
sophisticated kernel function. We also believe that hybrid 
models, in general, have the potential to tackle other 
impairments, especially in the case of tight filtering penalty, and 
polarization-dependent loss as ML will help to bridge the gap 
between the values estimates from the physical model and the 
experimentally measured ones. 

VI. CONCLUSION 

We have experimentally demonstrated SNR estimation 
techniques for WDM systems using physics-based, data-driven 
and hybrid methods. We conducted a 15-channel WDM 
transmission experiment over 1,000 km. We have shown that 
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the method in which the physical model is implemented affects 
its performance. In particular, we have shown that limiting the 
XPM efficiency matrix to a symmetric Toeplitz matrix 
decreases the number of characterizing parameters and hence 
the minimum number of datapoints needed. In our case, this 
decrease is from 17 datapoints to 3 datapoints. The RMSE for 
this implementation is at 0.03 dB compared to an RMSE of 0.05 
dB when no restrictions on the XPM efficiency matrix are 
involved. We note that the number of datapoints can be further 
decreased by employing the nonlinear parameter fit and 
estimating its unknowns, though this construction of the 
equations requires a nonlinear solver. With a GPR-based 
machine learning method, we can achieve a slightly better 
performance, however, it requires a larger number of training 
datapoints (250 datapoints to reach the same performance). 
Finally, we implemented the hybrid model combining the 
physical model based on the symmetric Toeplitz matrix and the 
GPR, which for training over 500 datapoints performs better 
than the physical model or the GPR used on their own, with an 
RMSE of 0.02 dB.  
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