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RESEARCH ARTICLE

Multiple imputation of�multiple 
multi‑item scales when�a full imputation model 
is infeasible
Catrin O. Plumpton1*, Tim Morris2,3, Dyfrig A. Hughes1 and Ian R. White4

Abstract 
Background:  Missing data in a large scale survey presents major challenges. We focus on performing multiple impu-
tation by chained equations when data contain multiple incomplete multi-item scales. Recent authors have proposed 
imputing such data at the level of the individual item, but this can lead to infeasibly large imputation models.
Methods:  We use data gathered from a large multinational survey, where analysis uses separate logistic regression 
models in each of nine country-speci�c data sets. In these data, applying multiple imputation by chained equa-
tions to the individual scale items is computationally infeasible. We propose an adaptation of multiple imputation 
by chained equations which imputes the individual scale items but reduces the number of variables in the imputa-
tion models by replacing most scale items with scale summary scores. We evaluate the feasibility of the proposed 
approach and compare it with a complete case analysis. We perform a simulation study to compare the proposed 
method with alternative approaches: we do this in a simpli�ed setting to allow comparison with the full imputation 
model.
Results:  For the case study, the proposed approach reduces the size of the prediction models from 134 predictors 
to a maximum of 72 and makes multiple imputation by chained equations computationally feasible. Distributions of 
imputed data are seen to be consistent with observed data. Results from the regression analysis with multiple imputa-
tion are similar to, but more precise than, results for complete case analysis; for the same regression models a 39 % 
reduction in the standard error is observed. The simulation shows that our proposed method can perform compara-
bly against the alternatives.
Conclusions:  By substantially reducing imputation model sizes, our adaptation makes multiple imputation feasible 
for large scale survey data with multiple multi-item scales. For the data considered, analysis of the multiply imputed 
data shows greater power and e�ciency than complete case analysis. The adaptation of multiple imputation makes 
better use of available data and can yield substantively di�erent results from simpler techniques.
Keywords:  Missing data, Multiple imputation, Multi-item scale, Survey data

' 2016 Plumpton et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Missing data is ubiquitous in research, and survey data 
is particularly prone to incomplete responses. One prob-
lem arising from missing data is a loss of precision and 

statistical power. However, poor handling of the missing 
data during analysis can lead to biased results.

When handling missing data, assumptions must be 
made about the mechanism of missingness; no analysis 
with missing data is free of such assumptions. Data may 
be missing completely at random (MCAR), where the 
probability of missing data is not dependent on either 
the observed or unobserved data. When data is miss-
ing at random (MAR), the probability of the data being 
missing does not depend upon the unobserved data, but 
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missingness may be related to the observed data. Alter-
natively, data may be missing not at random (MNAR), 
whereby missingness is dependent upon the values of the 
unobserved data, conditional on the observed data [1�3].

Roth, in 1994, stated that despite its importance, 
conspicuously little research on missing data analysis 
appeared within the social sciences literature [4]. It is 
acknowledged that a gap still exists between techniques 
recommended by methodological literature and those 
employed in practice; traditional ad-hoc techniques such 
as deletion and single imputation techniques are still 
applied routinely [3, 5, 6].

Complete case (CC) analysis is commonly used, and 
is e�cient and valid under MAR, provided missing data 
occurs only in the outcome. Once missing data occurs 
in covariates, or in parts of a composite outcome, com-
plete case analyses are ine�cient. Also, when the MCAR 
assumption does not hold, the data is no longer repre-
sentative of the target population, compromising external 
generalisability [7].

Modern missing data methodologies include max-
imum-likelihood estimation (MLE) methods such as 
expectation�maximisation (EM) and multiple imputa-
tion (MI), both recommended for data which is MAR 
[3]. MI has been shown to be robust under departures 
from normality, in cases of low sample size, and when 
the proportion of missing data is high [2]. With complete 
outcome variables, MI is typically less computationally 
expensive than MLE, and MLE tends to be problem-spe-
ci�c with a di�erent model being required for each analy-
sis [8].

Whilst many theoretical works suggest MI to be an 
appropriate method, it has only recently been widely 
applied in practice [9]. Reviews on handling missing data 
across di�erent �elds indicate that it is relatively rare that 
missing data, and how it is handled, are reported explic-
itly: in cost-e�ectiveness analysis 22�% of studies did not 
explicitly report missing data [10]; in education the cor-
responding �gure is 31�% [11]; in cohort studies 16�% of 
studies did not report how much data was missing whilst 
14�% of studies did not report how missingness was han-
dled [12]; in epidemiology 46�% of studies were unclear 
about the type of missing data [13]; and in applied educa-
tion and psychology 66�% of studies where the presence 
of missing data could be inferred did not mention miss-
ing data explicitly [6]. A review of randomised controlled 
trials identi�ed 77 articles from the latter half of 2013, of 
which 73 reported missing data. Of these articles, 45� % 
performed complete case analysis, 27�% performed sim-
ple imputation (linear interpolation, worst case imputa-
tion or last observation carried forward) and only 8� % 
used multiple imputation [14]. Whilst MI and MLE are 
gaining popularity, ad-hoc techniques still appear in the 

applied literature, with complete case analysis remaining 
as the most popular approach.

Large scale survey data presents a number of chal-
lenges to imputation: a high number of variables; 
complexity of the data set; categorical (non-Normal) 
variables; categories with low observed frequency (spar-
sity in responses); questions which are conditional upon 
previous responses; and multiple multi-item scales, 
which are summed (either directly or weighted) during 
analysis. Such challenges reduce the use of sophisticated 
imputation techniques. As missing data in a single item 
of a multi-item scale leads to a missing total, the rate of 
missing data in scale totals can be very high. Imputing 
at the level of scale total whilst ignoring individual items 
may therefore introduce unnecessary bias. �e widely-
used EQ�5D-3L is one such scale, consisting of 5 items. 
A recent study considered imputing at item level rather 
than imputing scale totals [15]. When the pattern of 
missingness tended towards all items being missing for a 
respondent, little di�erence was seen between methods. 
When the pattern of missingness tended towards indi-
vidual items being missing, for sample sizes of n� >� 100, 
imputing at item level was shown to be more accurate.

Another study proposed methods for handling multi-
item scales at the item score level [16], and further 
emphasised how mean imputation or single imputation 
leads to bias and underestimation of standard errors. �e 
study concludes that missing data should be handled by 
applying multiple imputation to the individual items. 
However, the size and complexity of large survey data can 
cause complete MI prediction models to fail to converge 
when the model is speci�ed at item level, rendering the 
ideal method computationally infeasible.

�e present study aims to develop an imputation 
method which addresses the challenges presented by 
large scale survey data, reducing the size of the predic-
tion model whilst allowing for item level imputation. A 
simulation study presents a comparison of our proposed 
method with alternative imputation approaches, and the 
proposed method is illustrated further using data from a 
large multinational survey as a case study.

Methods
Multiple imputation by�chained equations
Multiple imputation for a single incomplete variable 
works by constructing an imputation model relating 
the incomplete variable to other variables and drawing 
from the posterior predictive distribution of the missing 
data conditional on the observed data [1]. �e approach 
allows for uncertainty in the missing data values by intro-
ducing variability in the imputed items.

To handle multiple incomplete variables we use multi-
ple imputation by chained equations (MICE) which allows 
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di�erent variable types (continuous, nominal, ordered 
categorical) to be handled within the same data set [1].

In MICE, variables are initially ordered by level of miss-
ingness. Missing values are initially replaced for each 
variable, for example by drawing at random from the 
observed values of that variable. Imputation is then con-
ducted on each variable sequentially using the observed 
and currently imputed values of all other variables in the 
imputation model. In order to stabilise, this imputation 
step (known as a cycle) is repeated (typically 10 times) to 
produce one imputed data set. �e process is repeated 
until the desired number of imputed data sets is reached 
[1, 17].

Imputation using subscale totals
Often, survey data contains responses to multiple multi-
item scales. Imputing every item individually may lead to 
an unwieldy imputation model, which in extreme cases 
may fail to converge. In order to reduce the size of the 
imputation models yet retain item level imputation (and 
not discard data), we propose to impute responses to 
individual scale items, using the scale totals within pre-
diction equations. In addition, when imputing responses 
to an item which forms part of a multiple multi-item 
scale, responses to other items from the scale should also 
be included.

As a simple example, suppose we have primary out-
come measure p, n demographic variables (d1 … dn), 
a multi-item scale S made up of 7 items (s1 … s7), and a 
multi-item scale T made up of 17 items (t1 … t17).

�e forms of the imputation models are:

• � d1 is imputed using the observed and current 
imputed values of p, d2 … dn, s and t, where s and t 
are the summed scale scores of S and T.

• � s1 is imputed using the observed and current imputed 
values of p, d1 … dn, s2 … s7 and t.

• � s2 is imputed using the observed and current imputed 
values of p, d1 … dn, s1, s3 … s7, and t.

• � t1 is imputed using the observed and current imputed 
values of p, d1 … dn, s and t2 … t17.

• � t2 is imputed using the observed and current imputed 
values of p, d1 … dn, s, t1 and t3 … t17.

with similar imputation models for d2 … dn, s2 … s7 and 
t3 … t17. �e proposed approach condenses information 
from other scales to reduce the number of predictors in 
each equation. Subscale totals are recalculated after each 
cycle of imputation.

Categorical variables
Survey data typically contains categorical variables, 
which may be either nominal or ordered. Ordered 

categorical variables, often in the form of Likert scales, 
can be imputed using ordinal logistic regression, whilst 
nominal categorical variables may be imputed using 
multinomial logistic regression. Sparsity may cause non-
convergence errors during multinomial logistic regres-
sion, a recognised problem [1, 18]. On occasion, this 
may require response categories to be collapsed prior to 
imputation.

Conditional imputation
Survey design may contain some conditional questions. 
For example a question on experience of a speci�c drug 
will only be relevant to someone who has taken it. Within 
the statistical package, Stata, multiple imputation has 
options for conditional imputation within the -ice- rou-
tine [19]. Responses to the second part of the question 
are only imputed, given a certain answer to the �rst part 
of the question.

Analysing multiply imputed data
During analysis, each of the M imputed data sets are ana-
lysed individually. Imputation-speci�c coe�cients are 
then pooled using Rubin�s rules, to produce a single result 
[20]. Rubin�s rules allow the incorporation of both within 
imputation variance (accounting for uncertainty if the 
data were complete), and between imputation variance 
(accounting for uncertainty about the missing data) [1].

Case study
Our data comes from an online survey, designed to 
investigate associations between putative predictors of 
adherence to antihypertensive medication, and patients� 
self-reported adherence. Detailed methods of the sur-
vey and the main �ndings are published elsewhere [21]. 
Brie�y, cross-sectional survey data from 2595 respond-
ents from nine European countries (Poland, Wales, 
England, Hungary, Austria, Germany, Greece, the Neth-
erlands and Belgium) was collected using the online tool 
SurveyMonkey®. �e target population was adult hyper-
tensive patients who have been prescribed antihyperten-
sive medication.

�e survey comprised 13 validated measures from 
health psychology and behavioural economics, alongside 
demographic questions, resulting in a total of 135 ques-
tions. Within the health psychology sections, responses 
to several questions were summed to form subscale 
totals, as per validated approaches to analysing these 
measures. �ere are a total of 14 such subscales within 
the survey. Due to the length of the survey, a level of 
missing data was to be expected, with respondents drop-
ping out part way through or skipping one or more ques-
tion. We ensured no missingness in the primary outcome 
measure, the Morisky measure of adherence [22], by 



Page 4 of 15Plumpton et al. BMC Res Notes  (2016) 9:45 

enabling �forced answer� settings within SurveyMonkey. 
Figure� 1 presents the percentage of complete responses 
by question, and in the order the questions were asked. 
A dip is seen at the open ended time preference meas-
ure, which may be perceived as cognitively challenging 
[23]. �e sensitivity of information requested on income 
explains the �nal dip in the plot. Missing data was 
assumed to be MAR. We consider the impact of possible 
departures from MAR in the discussion.

We chose to impute each country-speci�c data set sep-
arately, as associations between variables were expected 
to di�er between countries.

A complete MI prediction equation results in 134 pre-
dictors for each incomplete variable. Some categorical 
variables had categories with low observed frequency 
which presented additional challenges. �ese were han-
dled by collapsing response categories. Taking education 
as an example, in Greece, 52.3�% received primary educa-
tion as a highest educational attainment, 29.0�% second-
ary education and 18.7�% higher education. For England 
the corresponding �gures were 0.3, 33.7 and 65.3� % 
respectively. We collapsed the lower two categories, 
conducting the �nal analysis on �up to secondary educa-
tion� and �higher education�. Collapsing of categories was 
applied to all data sets, and was maintained for analysis.

Within the income section of the survey, questions had 
an �opt out� response if respondents were unwilling to 
provide the information. Additional �le�1: Table S1 sum-
marises these responses across the nine countries. Ques-
tions in this section took an ordered categorical format, 
which we were keen to preserve (rather than impute as 
nominal variables). �is was achieved by generating two 
separate variables for each income item. An initial binary 
variable re�ected whether the respondent was willing to 
provide a response. An ordinal variable then re�ected the 
response, conditional on the respondent being willing to 
provide the information.

�e number of imputations, M, was chosen based 
upon analysis of the Polish data set, which was received 
3�months prior to data from other countries. For this data 
set 26�% of response values were missing, so the number 
of imputations was set at M���25, closely re�ecting the 
suggestion of one imputation per percent missing data 
[1]. For subsequent country-level data sets the amount of 
missing data was in fact lower, 5�22�%, but M���25 was 
maintained for consistency.

Initially a full imputation model was attempted for this 
data, but failed to converge for all imputations. Apply-
ing our proposed approach, model size depended on the 
number of items within each subscale (range, 56�72). 
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Fig. 1  Responses rate by question and country. Questions not-applicable due di�erences in healthcare systems appear as breaks in the plot. MARS 
Medication Adherence Rating Scale, LOTR Life Orientation Test Revised, BMQ Beliefs about Medicines Questionnaire, TPB Theory of Planned Behav-
iour, EUROPEP European Task Force on Patient Evaluations of General Practice, BRIGHT Building Research Initiative Group Illness Management and 
Adherence in Transplantation, BIPQ Brief Illness Perception Questionnaire Reprinted from Value in Health, 18(2), Morrison VL, Holmes EAF, Parveen S, 
Plumpton CO, Clyne W, De Geest S, Dobbels F, Vrijens B, Kardas P, Hughes DA, Predictors of Self-Reported Adherence to Antihypertensive Medicines: 
A Multinational, Cross-Sectional Survey, 206�216, Copyright (2015), with permission from Elsevier [21]
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Each prediction equation included the demographic vari-
ables and the primary outcome measure. MI was con-
ducted using the -ice- routine in Stata 10 [19, 24, 25]. 
Categorical variables were handled using -mlogit- and 
-ologit- [25]. Subscale totals were calculated following 
each cycle of the imputation using the passive option of 
the -ice- routine. �e �nal imputation methods and mod-
els used to impute di�erent parts of the survey are sum-
marised in Table�1, with an extract of Stata code provided 
in Additional �le�2: Appendix S1.

Data analysis
Primary analysis was to be conducted by country, and 
the survey was powered as such. �e primary analy-
sis was a logistic regression with Morisky score as out-
come, aiming to identify predictors of non-adherence 
to medication. �ere were deemed to be too many pre-
dictors to enter into the model, N���42 (Table�1), there-
fore an initial variable selection step was employed. For 
the regression results presented here, we have used the 
same pragmatic variable selection as in the main analysis 
[21]: continuous variables were selected using univari-
ate tests, pooled using Rubin�s rules; categorical variables 
were selected using Chi squared tests and ANOVA on 
complete case data; and variables relating to numbers of 
medicines were selected using t-tests controlling for age 
on complete case data. Variables showing univariate sig-
ni�cance with the outcome measure were entered into 
the regression model.

We also compared variable selection using complete 
case data with variable selection procedure using Rubin�s 
rules in the pooled MI data, using unadjusted or age-
adjusted analyses as described above [20, 26].

Simulation
We devised a simulation study to impartially assess the 
performance of the new method against some alterna-
tives in a realistic setting�based on the case study.

We invoked a simpler set up than the case study, to allow 
comparison of the proposed strategy with a full imputa-
tion model, which is not possible on the full data set. �e 
variables included were Morisky score (fully observed), age 
in years (fully observed), attitude (partially observed, the 
sum of seven items, scored as integers from 1 to 5) and 
practitioner satisfaction (partially observed, the sum of 17 
items, also integers from 1 to 5). We estimated four quan-
tities: the means of attitude and practitioner satisfaction, 
and their coe�cients in a logistic regression of Morisky 
score on age, attitude and practitioner satisfaction.

Simulation procedure
�e simulation procedure was as follows for 1000 
replications:

• � 323 observations of the 26 variables (Morisky score, 
age, 7 items of attitude, 17 items of practitioner sat-
isfaction) were simulated from a multivariate normal 
distribution based on the observed vectors of means 
and standard deviations and the observed correlation 
matrix.

• � Morisky score was rounded to the nearest of 0 or 1. 
Items making up attitude and practitioner satisfac-
tion were rounded to take values of 1�5.

• � Missing values were introduced for items of the atti-
tude and practitioner satisfaction scales. �e prob-
ability of missing data depended on Morisky score 
and age, based on the real dataset (MAR). Each 
observation was assigned to one of three categories: 
all items observed, some items observed, or no items 
observed. �ree scenarios are simulated:

–– Base case: 35�% had all items missing for a scale; 
8�% had one or two items missing.

–  – More incomplete observations with partial data: 
18�% had all items missing for a scale; 25�% had 
one or two items missing.

–– Fewer observations with complete data: 55�% had 
all items missing for a scale; 15�% had just one or 
two missing.

For each simulated dataset six methods were con-
sidered for dealing with the missing data, presented 
in Table� 2. Ten imputations were used for all MI-based 
approaches.

Outcomes
For each parameter of interest we summarise percent 
bias (compared to analysis of complete data), coverage, 
and e�ciency (through the empirical standard error, 
expressed by comparison to method 1) over the 1000 
replications for that scenario. Estimates are accompanied 
by Monte-Carlo 95�% con�dence intervals.

Results
Case study
To compare the performance and �t of the MI models, 
we plot complete case data versus imputed data, overall 
and by imputation. Figures�2 and 3 illustrate such com-
parisons for the individual item and scale total which dis-
played the highest proportion of missing data. �ese are 
one of the time preference variables (36�% missing data), 
and the support scale (70�% of scale totals missing, 43�% 
individual items missing), both from the Polish data set. 
On inspection, in both cases, the imputed data is similar 
but not identical to the complete case data.

For those variables which were entered into the regres-
sion model in �ve or more countries, the regression 
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results are illustrated as odds ratios with 95� % con�-
dence intervals in Fig.� 4. Di�erences in the signi�cance 
of results are observed between data analysed using MI 
and CC for age, barriers and personal control in Aus-
tria, barriers and self-e�cacy in England, barriers and 
employment in Poland and age in Wales. �e majority 
of di�erences (except barriers in Austria and Poland) are 
attributable to narrower con�dence intervals in the MI 
analysis, thus illustrating the higher power and e�ciency 
which the MI approach o�ers. Whilst di�erences in the 
standard errors alter the signi�cance of the results, there 
are no substantial di�erences in the point estimates of the 
�-coe�cients.

Table� 3 presents the proportional reduction in stand-
ard error for MI compared to CC analysis, summarised 
for all variables entered in the country level regression 
analyses. From the table, it can be seen that on average, 
standard error is reduced by 39�% when an MI approach 
is adopted over CC analysis. Standard errors are smaller 
for MI than CC analysis for all variables other than ill-
ness coherence in Belgium (where there was no change 
in standard error between MI and CC). To ensure that 

reduction in standard error was not biased by variable 
selection method, reduction was also compared for vari-
ables selected using CC and MI approaches. For vari-
ables selected using the CC method, mean standard error 
reduction was 45�% (95�% CI: 12, 78�%; range 15�99.9�%). 
For variables selected using the MI method, mean stand-
ard error reduction was 34� % (95� % CI: 11, 58� %; range 
2�57�%).

For the univariate variable selection, disparity between 
which variables were selected using either the MI or CC 
approach is summarised in Table� 4. Chi squared tests 
indicate that the disparity was signi�cant, (�2� �� 250, 
p� <� 0.001), with agreement (sum of the main diagonal) 
achieved for only 92.5� % of variables. Lower agreement 
is observed in the variables with more missing data: 
at�<20�% missing data agreement was 94�%, compared to 
88�% when missing data was�>�20%.

Simulation
Figures� 5, 6 and 7 show the results of the simulation 
for the three scenarios. In the base case Fig.� 5, signi�-
cant downward bias is seen for the mean of practitioner 
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Fig. 2  Social-support scale for Poland, 70 % totals and 43 % individual items missing
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satisfaction, for methods 1, 2 and 5, with methods 5 and 
6 showing signi�cant bias on the slope. In terms of cov-
erage, there are no signi�cant di�erences between meth-
ods. Empirical standard error also shows little variability 
between methods, except that it is lower for method 5 on 
slope for practitioner satisfaction. �is re�ects the down-
ward bias.

Increasing the number of incomplete observations 
with partial data, as in scenario 2 (Fig.� 6) or increasing 
the number of incomplete observations (Fig.�7) indicate 
a similar story. Methods 1 and 2 show an increase in bias 
compared to the base case, with method 4 showing sig-
ni�cant downward bias and reduced coverage for TPB 
slope in both scenarios. In both scenarios the empiri-
cal standard error appears lower than for the base case, 
re�ecting downward bias.

Overall, method 6 is seen to be the best, broadly exhib-
iting the least bias and the most e�ciency, and we regard 
it as a benchmark. �is method is not always feasible 
however, for example in the case study described above. 
Method 1 often displays a large amount of bias, and like 
method 3, is ine�cient and wasteful of observed data. 

Method 2 indicates bias in all bar the base case, and may 
arti�cially reduce variability due to being e�ectively sin-
gle imputation.

It appears therefore from the simulations and assump-
tions that in terms of bias, coverage and empirical stand-
ard error that method 4 or 5 would be best in cases where 
method 6 is not feasible. At this point it is unclear which 
of the two methods is most appropriate, method 4, sim-
ilar to method 2 is akin to a single imputation, and for 
method 5 whilst the assumptions seem more appropriate, 
the simulation evidence suggests it can introduce bias 
when these are violated.

Discussion
Our proposed method for handling multiple multi-item 
scales allows imputation of individual items by using 
scale totals within the imputation models, such that 
given primary outcome p, scale T and demographics d1 
� dn, item s1 from scale S, is imputed using p, d1 � dn, 
s2 � sn and summary score t. �e use of summed scale 
scores within the predictor equations reduces both the 
number of predictors in each equation and the sparsity 
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Fig. 3  Individual item, time preference variable 2, for Poland, 36 % missing
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in the data set. �is approach facilitates the e�cient use 
of MI in large survey data sets with multiple multi-item 
scales. Using MICE allows preservation of the structure 
of the data, in terms of point estimates and variance or 
variables, and covariance. Should the approach presented 
here still result in overly complex prediction equations, a 

further simpli�cation would be to replace s2 � sn in the 
prediction equation by their sum or average.

For subscales of the health psychology measures, rather 
than to impute every individual item, one simpli�ca-
tion of our method would be to impute only the totals 
of the subscales. For our data this would reduce the size 
of the model from 134 to 56 predictors per variable. A 
disadvantage of this approach, however, is that it would 
restrict analysis to summed scales, leaving no scope for 
exploring individual items.

Forming scale totals prior to imputation, and then 
imputing missing totals is a further simpli�cation, 
but comes with an additional disadvantage: for those 
respondents who have completed some, but not all, of 
the items in a subscale, those responses are discarded, 
or imputed by an ad-hoc method such as using the mean 
of observed items. Taking as an example the 17-item 
practitioner satisfaction scale in the Austrian data set, 
262 respondents (from 323) completed all items. �e 
response rate to individual items ranged from 278 to 292 
responses, and the above approach would discard a total 
of 437 responses, collected from 31 respondents, from 
this scale.

Our simulation study compares these alternatives with 
a benchmark �complete� MI analysis, and complete case 
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Fig. 4  Forest plots illustrating odds ratios from the logistic regression

Table 3  Summary of� proportional decrease in� standard 
error, between� complete case and� multiple imputation 
analyses

Mean (%) Min (%) Max (%) Median 
(%)

Standard 
deviation 
(%)

Overall 39 0 100 38 19
Austria 38 22 55 38 8
Belgium 5 0 13 4 5
England 58 33 100 45 27
Germany 21 12 26 22 5
Greece 50 43 58 50 4
Hungary 23 14 27 23 4
Nether-

lands
29 24 36 29 4

Poland 41 14 59 42 12
Wales 36 28 47 37 6
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alternatives. Results from the simulation indicate that 
simpli�cation by averaging incomplete scales and our 
proposed method perform comparably, with the simpli-
�cation reducing model complexity, compromised with 
a slight loss of e�ciency. Complete case methods were 
seen to perform poorly, with an increase in bias, par-
ticularly when the amount of missingness was increased. 
�is result is consistent with a previous study on multi-
item imputation, where mean imputation and single 

imputation were shown to have larger bias and worse 
coverage than item level multiple imputation, and com-
plete case analysis was shown to overestimate standard 
error and reduce power [16].

Certain limitations are acknowledged. Typically, analy-
sis with MI relies on an assumption of data being MAR. 
�is assumption cannot be proven, but for large well-
conducted surveys, the assumption of MAR is often con-
sidered a reasonable starting point for statistical analysis. 

Table 4  Disparity in�variable selection between�CC and�MI, over�42 variables in�9 countries

�2  ��250, p�<�0.001

Complete case method

Included n (%) Excluded n (%) Total

Multiple imputation Included n (%) 86 (23) 3 (1) 89
Excluded n (%) 25 (7) 259 (69) 284
Total 111 262 373

Fig. 5  Simulation results for the three scenarios. Brackets indicate con�dence intervals. Base case: 35 % had all items missing for a scale; 8 % had 
one or two items missing
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