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Abstract 

If X is a topological space then there is an equivalence between the category, 1r1 (X)- Set , 
of actions of the fundamental group of X on sets, and the category of covering spaces on 
X. Moreover the latter is also equivalent to the category of locally constant sheaves on 
X. 

Grothendieck has conjectured that this should be the 'n = l ' case of a result which is 
true for all n, and it is the 'n = 2' case we look at in this thesis. 

The desired generalisation should replace actions of the group 1r1(X) (which is an 
algebraic model for the 1-type of X) by actions of a crossed module (i.e., by an algebraic 
model for the 2-type) on groupoids; 'locally constant sheaves of sets' by ' locally constant 
stacks of groupoids'; and 'covering space' by a locally trivial object whose fibres are 
groupoids. 

This last object we handle using the machinery of simplicial fibre bundles (twisted 
Cartesian products) and formal maps, building a simplicial object, Z(>-), where the fibre 
is now a (nerve of) a groupoid. To interpret Z(.-\) as a stack, we show that just as sheaves 
on X are equivalent to etale spaces, we can define a notion of 2-etale space corresponding 
to stacks and show that from Z ( ,\) we can construct a locally constant stack on X. 



1 Introduction 

1.1 Introduction and Motivation 

If X is a topological space, then covering spaces on X correspond to actions of the 
fundamental group, 1r1(X), on sets (this is sometimes called the 'Galois-Poincare cor­
respondence') . Since 'fundamental group' can be generalised to a higher dimensional 
algebraic object , Grothendieck conjectured in his famous Pursuing Stacks [25] that this 
correspondence generalises to higher dimensions in the following (approximate) way. 

First we note that the fundamental group, 1r1(X), classifies (i.e., is an algebraic version 
of) the 1-type of the space X, and 'action' means a functor into Set , the category of 
0-types (sets) . On the other side of the original correspondence, 'covering spaces' (i.e., 
locally trivial bundles E - X whose fibre is a set) are equivalent to locally trivial 
sheaves of sets i.e., a '1-stack of 0-types'. 

Grothendieck's conjecture is that we can generalise the above to get a correspondence 
between 'locally trivial' n-stacks of ( n - l )-types and actions of an algebraic model for the 
n-type of X on structures that model (n - 1)-types. Of course this has all been lacking 
in details: part of the problem (the hardest part?) is defining all these things correctly. 
For that we need higher dimensional category theory- for example 'correspondence' will 
presumably be some form of n-equivalence of (some form of) n-categories. In this thesis 
we look only at the case n = 2: we know from [37] that the 2-type for a space can be 
modelled by a crossed module (up to weak equivalence), and what Grothendieck called a 
'2-stack in 1-types' is usually just called a 'stack of Groupoids' ( or just simply a stack in 
an algebraic geometry context) . Thus we should be looking at actions of crossed modules 
on groupoids (i.e., functors from the crossed module, considered as a 2-group , to the 
category Grpoids). 

Note that this is linked to the idea of categorification ([2, 1]) namely the replacing of 
sets by groupoids and groupoids by 2-groupoids. 

There is a standard construction which, given a group G ( or more precisely, given a set 
of generators and relations for G) gives us a space X with II1(X) = G. Simply take a 
bouquet of circles, one for each generator, and add in a disk for each relation, attaching 
it according to its generators. Thus we can start with the group rather than needing to 
first have a topological space. Similarly, any crossed module is the fundamental crossed 
module of some space X, so instead of starting with X and trying to classify actions of 
its fundamental crossed module we can instead take the (notationally less complicated) 

approach of starting with a crossed module M = ( C ~ P) (since we can always 

construct an appropriate X if we need to). 
However, a given X only determines Jvl up-to weak equivalence. If X is given 
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as a G\i\T-complex, then the crossed module we are interested in is given by M = 

( 1r2 (X, x (l)) ~ 1r1 (X(1))) , but now if X' is a second decomposition of X as a CW­

complex, then the corresponding M' is weakly equivalent to M rather than isomorphic. 
(In the original Galois-Poincare case the relevant groups are isomorphic: 1r1 (X) ~ 1r1 (X'), 
so we have replaced isomorphism with equivalence here) . Thus we need to regard M as 
only being defined up-to weak equivalence. (See section 5.2.) 

Finally we note that general topological spaces are difficult to use, or at least it is 
easier to use a more algebraic model, namely simplicial sets. (Quillen's theory of model 
categories shows that the homotopy theory one gets from simplicial sets is equivalent to 
t hat coming from nice topological spaces [44, 16, 29] so there should not be a problem to 
make the move from topology to the simplicial world here.) 

Describing the Galois Poincare correspondence in a simplicial setting is not new, but 
it does not appear to have been written down in one place in a modern, categorical 
form. So we first give an exposition of the classical correspondence, then look at some 
generalisations, getting some of the way to an answer. 

For the analogue to 'actions of the group 1r1(X)' we consider actions of our crossed 
module M on a groupoid Y , which we model as simplicial maps Ner X(M)v -
aut(Ner Y). Here Ner X(M)v is the 'vertical nerve' of M (see section 5.1.2) and aut(Ner Y) 
is the simplicial set of automorphisms of the nerve of Y (see section 2.2.2). In chapter 7 
and section 8.3.5 we just consider the case where Y = Ner X(M)v and the actions comes 
from that of M on itself by multiplication, but for more general actions we could perform 
similar constructions without difficulty. For the generalisation of 'covering space' we 
fix a cover U of X: our ' higher dimensional covering space' should be isomorphic to a 
t rivial bundle over the sets Ui in U (i.e., over Ui it should be a product of Ui with the 
nerve of the groupoid Y), and these isomorphisms should be compatible over double 
intersections Uij. To get such an object, we use the theory of simplicial fibre bundles 
(TCPs, chapter 4) : we apply the W construction to our simplicial group Ner X(M) v, to 
get a simplicial set W(M) with a universal fibre bundle W(M) (which actually depends 
on the action of M on Y). We can interpret these as simplicial etale spaces on X 
by taking Cartesian products X x W(M) and putt ing the discrete topology on W (M) 
(and similarly for W(M)). The cover U also gives a simplicial etale space through the 
well-known Cech nerve construction (section 6.2), and so from a simplicial formal map 
>.: C(U) - Ner X(M)v we can induce, by pullback, an object Z(>.) over C(U). In 
section 7.3.1 we see that this is a reasonable simplicial analogue to a covering space in 
the case where M = l - P, and in section 7.3.2 we find it has the properties we 
would expect for the desired 'higher dimensional covering space' where the fibre is the 
Y on which NI is acting. To interpret this as a stack, we generalise, in section 8.2, the 
relationship between sheaves on X and etale spaces to a 2-equivalence between stacks 
and what we call 2-bundles on X, and in section 8.3 we use this to reinterpret Z(>.) as a 
locally constant stack on X. 

This is not quite a complete 'n = 2' version of the Galois-Poincare correspondence since 
we do not give a complete description of the 2-category structure on the Z(>.) objects. 
(However, the description of morphisms of simplicial fibre bundles in Theorem 4.1.5.54 
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is a partial result in this direction.) We also note that since simplicial sets form a 
simplicially enriched category, we have a simplicial set of maps between fibre bundles 
and so conjecture that the most general statement for even the n = 2 case will need a 
simplicial enrichment on the 2-category of stacks. 

7 



2 Simplicial Sets 

Much of this chapter is standard material which we shall need later. Mostly things 
are included because there is no one reference that includes them using modern (i.e., 
categorical) notation. We should note that we are writing composition in the 'opposite' 
way to normal, so when f, g are some objects that may be composed then f # g means we 
have composed them in the order 'f then g'; if f and g are 2-cells ( or higher dimensional 
objects) then f #i g means to join f and g along a common i-cell, again with f 'first', so 
f # g can also be written f #o g. 

2.1 Simplicial Sets 

2.1.1 The topologists' 6. 

We write t::. for 'the topologists' t::. ', meaning the skeletal category of non-empty totally 
ordered finite sets and non-decreasing maps, i.e. , objects are the non-empty finite totally 
ordered sets [n] = { 0 < 1 < · · · < n} (one for each n ;;;,: 0), and morphisms are order­
preserving functions. 

From [35] (but noting that our t::. is his t::. +) we have the following description of 
morphisms in t::.. Let <\: [n - 1] >-----►- [n] be the injective map which 'omits i from 
its image', and let ai: [n + 1] ____. [n] be the surjective map which 'doubles i in its 
image', e.g., for n = 1, a1: [2] - [1] sends Oto O and both 1 and 2 to 1. Every map 
t: [m] - [n] can be uniquely reduced to 'normal form' 

(2.1.1.1) 

with m - h + k = n, n ;;;,: i1 > · · · > ik ;;;,: 0, and O ::::; J1 < · · · < jh ~ m - 1 using the 
following identities 

6i # 6j = 6j # (5i+l 

ai # aj = aj+1 # ai 

aj-1 # c5i i < j 
id i = j 
id i = j + 1 

aj # 6i- l i > j + 1 
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(2.1.1.3) 

(2.1.1.4) 



This gives the following picture of the (first few) generating morphisms of .6.: 

(2.1.1.5) 

The category, SSet, of simplicial sets is the presheaf category [.6.0 P, Set]; we refer 
to morphisms of simplicial sets as simplicial maps-they are of course just natural 
transformations. 

More generally for any category C, we have a category simp(C) of functors from .6.0 P 

to C. Apart from C = Set we will also be interested in simplicial groups (simp(Grp) ), 
and (special kinds of) simplicial groupoids. 

2.1.2 Faces and Degeneracies 

From (2.1.1.1) we see that X E SSet is determined by the images under X of the 
following data from .6.. 

• Objects [n] E .6.. We write X n := X([n]) and call these sets the n-simplices of X. 

• The injective maps Ji: [n - 1] - [n]. We write X(Ji) = df• (or just di if context 
allows) and call di a face map for X. 

• The surjective maps CTi: [n + 1] - [n]. We write X(cri) = sf• (or just si) and 
call Si a degeneracy map for X. 

In view of the notation for the set of n-simplices, it is common to use a notation such as 
X . (instead of just X) for a simplicial set. Of course we cannot just choose arbitrary 
functions for di and Si: the basic simplicial morphisms Ji and ai satisfy certain equations 
(as generated by the basic identities shown in (2.1.1.2)), and the functor X must preserve 
these equations; the relations satisfied by di and Si are called the simplicial identities 
and are as follows [11, 40, 14, 35] 

dj # di = di+1 # dj 

Sj # Si = Si # Sj+l 

di# Sj-1 

id 

id 

i<j 

i=j 

i=j+ l 

di-1 # Sj i > j + 1 
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2.1.3 The standard n-simplex .6.[n] 

The representable functor ~ [n] = Hom(-, [n]): ~ op - Set is called the standard 
n-simplex. We can look at these in more detail since they are important. The 0-simplex 
~[0] has (~ [0])m = ~(m, 0) = {*},a I-element set for all m. This is clearly the terminal 
object in SSet (this is also true for categorical reasons: [0] is terminal in ~ , and the 
Yoneda embedding preserves limits). 

An element a E ~ [n]m = ~(m, n) can be identified with the (m + 1)-element list 
a(0)a(l) .. . a(m) , where the symbols a(i) are increasing and each 0 ~ a(i) ~ n. If we 
let m = 0 we have that the 0-simplices of ~[n] are just then singletons, 0, 1, ... , n . 

The list di(a) has the ith element removed and si(a) has the element in position i 
doubled (where we start counting at zero), so s 1(012) = 0112. Hence every simplex 
in ~[n] can be obtained by applying some combination of the face and degeneracy 
operators to the n-simplex idn = 0123 ... n; this list corresponds to the identity map 
(idn : [n] - [n]) in ~[n]n = ~(n, n) . 

We saw in section 2 .1. 2 that di and Si must satisfy the simplicial identities: if we think 
of di as "delete the ith element of a list", and Si as "double the ith element of a list" then 
we can work out all the identit ies that di and Si must satisfy, for example dido = dodo 
because both sides delete the first two entries in the list. 

Geometrically, the identities for the di say how, given an n-simplex t, we can fit its 
faces (i.e., all the di(t)) together. A 0-simplex has no faces, it is just a vertex, and a 
I-simplex ab (0 ~ a ~ b ~ n) has two vertices a and b which we call vertex number 0 
and 1 respectively, numbering by the position in the list ab. The faces are d0 (ab) = b 
and d1(ab) = a. Thus di(ab) is the vertex that does not contain the ith vertex, i.e., di is 
the face opposite vertex i. Thus we draw our I -simplex as 

ab b a- (2.1.3.1) 

with the arrow pointing from vertex 0 to vertex 1. Similarly the 2-simplex abc has faces 
do(abc) = be, d1(abc) = ac, and d2(abc) = ab. These faces fit together to give a triangle, 
because, for example dod2(abc) = b = d1do(abc), so we think of our 2-simplex as the 
"filled-in triangle" 

.,/b~bc 
/ abc ~ 

a--------c ac 

(2.1 .3.2) 

We can continue, drawing a 3-simplex as a tetrahedron, and a 4-simplex as the analogous 
object in 4 dimensions. 

So far we have been drawing individual m-simplices from some (~[n])m, but the same 
pictures illustrate the whole simplicial set ~[n] itself. For example, ~ [2] has a 2-simplex 
012 which looks like (2.1.3.2), but every m-simplex in ~[2] is obtained from this one 
by applications of di or Si : we can think of (2.1.3.2) as illustrating the non-degenerate 
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elements of .6.[2]. (A simplex is degenerate if it is equal to si(t) for some i and t) . Similarly, 
.6.[1] can be adequately represented by the picture (2.1.3.1). 

2.1.4 Geometric Interpretation 

The Yoneda lemma for SSet says that 

SSet(.6.[n], X . ) ~ X n (2.1.4.1) 

so we may think of X n as 'n-simplices in X'. So for example a 2-simplex x E X 2 can 
be drawn exactly like (2.1.3 .2), but a, b, care elements of Xo, and we replace the edges 
ab, be, ac with elements of X1. 

Vertices and generalised vertices 

Elements of X o are called vertices of X. Starting wit h a vertex bo E Xo we can apply 
degeneracy operators to get higher dimensional degenerate simplices which 'look like bo '. 
Because [O] is terminal in .6., once we get above dimension 1 it does not matter which of 
the Si we apply- we always get the same result, namely a simplex with all faces 'at bo. 
For example s5(bo) can be pictured as 

bo 

/ ~ (2.14.2) 

bo -------bo 

where each edge is degenerate. vVe call these iterated degenerate copies of bo generalised 
vertices, thus the above is a generalised vertex of dimension 2. 

2.1.5 Representing Maps 

Definition 

The Yoneda lemma says that that for every x E Xn we have a unique simplicial map 
x: .6.[n] - X . with x(idn) = x . (idn E .6.[n]n is the identity map idn : [n] - [n] in 
.6.. ) 

Explicitly, naturality of x says that for any a: [m] - [n] in .6.[n]m the following 
diagram commutes 

.6.[n]n ~Xn 

er#-! l X(o-) (2 .1.5.1) 

.6.[n]m-;- X m 

Chasing the element idn E .6.[n]n shows that x(a) = X(a)(x) where X(a): X n - Xm 
is the map induced by a (regarding X as a contravariant functor); we call this x the 
representing map for x . 
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Calculus of representing maps 

The following properties of representing maps are more or less immediate from the 
defining property ( 2 .1. 5 .1). 

Proposition 2.1.5.2. Let CJ : [m] - [n] be an n-simplex of (.6.[n])m. 

1. Let b E Bn be an n-simplex of the simplicial set B. Then: 

b(CJ) = B(CT)(b) 

b(<5i) = dib 

b(CTi) = Sib 

b([m1] ~ [m] L [n]) = b(CT")(CJ') 

(2.1.5.3) 

(2.1.5.4) 

(2. 1.5.5) 

(2.1.5.6) 

f(b) = b # f for f: B - C a simplicial map (2. 1.5.7) 

2. Let G by a simplicial group(oid) and g, h, E Gn (composable). Write en for the 
identity of the group Gn, and the multiplication (composition) as #) then 

en(CT) = em 

g # h(CT) = g(CT) # h(CT) 

2.1.6 Nerves of Categories 

(2.1.5.8) 

(2.1.5.9) 

As a final example of a simplicial set we introduce the nerve of a category. Let C be a 
category and consider the poset [n] as a category. A functor [n] - C is then an n-tuple 
of composable maps 

A Ji A h A fn A o- 1- 2-· ··- n (2.1.6.1) 

in C (when n = 0 this just means an object Ao) . NerC is the simplicial set whose 
n-simplices are these n-tuples: 

(NerC)n = Cat([n], C). (2.1.6.2) 

The face maps, di, takes an n-tuple to an (n - 1)-tuple by composing Ji with fi+I, and 
the degeneracy Si inserts idAi after k 

This gives us a functor Ner : Cat - SSet which is in fact full and faithful. 

2.2 Cartesian Closedness of SSet 

2.2.1 The internal horn 

D efinition of §_(X, Y) 

As with every presheaf category, SSet is Cartesian closed, 

SSet(X x Y, Z) ~ SSet(X, §_(Y, Z)). 

12 
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The 'internal horn' is given by 

§_(X, Y) = Y~ #(Xx -) # SSet(-, Y), (2.2.1.2) 

where Y = .6.[-] is the Yoneda embedding .6.-----+ SSet. To see this, put X = .6.[n] 
in (2.2.1.1), and deduce that the internal horn (if it exists) must have, as n-simplices, the 
set SSet(X x .6. [n], Y). To finish the proof, show that (2.2.1.2) does always satisfy (2.2.1.1) 
(in fact there is nothing special about .6. here, and the same proof may be used to show 
t hat any presheaf category is Cartesian closed). 

Faces and degeneracies in §_(X, Y) 

We can also find the face and degeneracy maps from (2.2.1.2): for f: X x .6.[n]-----+ Y 
an n-simplex in §_(X, Y), 

(dd) =Xx .6.[n - l] id x(-#~[<5;]) Xx .6.[n] _.!___... Y 

T T 8· 
(dd)(x, [m]-----+ [n - l]) = f(x, [m]-----+ [n - l ]---.:+ [n]), 

(2.2.1.3) 

(2.2.1.4) 

and analogously for the degeneracy maps sif. Note that f itself is simplicial, so we have 

di(f(x, <7)) = f(dix, di(<7)) = f(dix, [m - l] ~ [m] ---5!...+ [n - l]; in particular we note 
that (dd)(x, T) # di(f(x, T)). (Indeed both sides cannot both be defined at once, since 
dd(x, T) E Ym, but di(f(x, T)) would be in Ym-1). 

As an example of the face maps we offer this lemma which is useful for proving propo­
sition 4.1.2.8 

Lemma 2.2.1.5. For (fx.6.[n]) E §_(A, Bx.6.[n])n, i.e., f x .6.[n]: Ax.6.[n]-----+ Bx.6.[n] 
we have di(!)= f x .6.[8i] = (f x .6.[n - l]) #(Bx .6.[8i]). 

Proof. The map di(!) is the diagonal of the commutative square 

Jx~[n-1] 

Bx .6.[n - l] --- B x .6.[n] 
Bx~[8;] 

Similarly, we have lemma 2.2.1.12 for the degeneracies. 
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(2.2.1.6) 

□ 



Representing maps in .Q.(A, B) 

If t E S(A, B)n then the representing map is t: 6.[n] - .Q.(A, B), which must map 
a: [m] - [n] to t(a) E .Q.(A, B)m- Using (2. 1.5.3) we get 

t(a)(Yk, T: [k] - [ml)= t(Ym, [k] ~ [m] ~ [n]) (2.2.1.7) 

This is exactly the formula for transposing the map t: Ax 6.[n] - B across the 
Cartesian closed adjunction. 

If b E Bn is any n-simplex, we can regard the map b as an n-simplex of .Q.(6.[0], B) , 
and in this simplicial set we get 

(dib)(a) = dib(a) (in .Q.(6.[0], B)n-1) 

= b([m] ~ [n - 1] ~ [n]) 

(sib)(a) = Sib(a) (in .Q.(6.[0], B)n+1) 

= b([m] ~ [n + 1] ~ [n]). 

Alternate description of .Q.(X, Y) 

(2.2.1.8) 

(2.2.1.9) 

If C is a category and A EC an object, write SSet/ 6.[n] for the slice category of objects 
over A. 

The universal property of products tells us that we have mutually inverse bijections 

([

Xx 6.[n] l [ Yx6.[n] l) 
.Q.(X, Y)n ~ SSet/ 6.[n] tpr , ipr 

6. [n] 6. [n] 

f >--------- (f, pr~[n]) 

g # pr ~[n] ~----------< g 

pictorially, 
Xx 6.[n] 

f 
[, 

Y X 6. [n] 

Y
/4 prLl~ 
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6.[n] 

(2.2.1.10) 

(2.2.1.11) 



Lemma 2.2.1.12. If a: A - B is regarded as a 0-simplex of Q.(A, B), then 

so(a) E Q.(A, B)i is equal to the composite A x .6. [l] ~A~ B and corresponds to 
ax .6.[l]: Ax .6. [l ] - B x .6.[l] under (2.2.1.10). □ 

2.2.2 The internal automorphism group 

The description of (2.2.1.10) makes it clear that we have a simplicial map 

#: Q.(X, Y) x Q.(Y, Z) - Q.(X, Z) (2 .2.2.1) 

(just compose maps in the slice category). In terms of the original definition (2.2.1.2), 

(s # t) (x, a) := t(s(x, a), a). (2.2.2.2) 

Another way of saying this is that for (a: A x .6. [n] - B) E Q.( A, B)n and (b : B x 
.6.[n] - C) E Q.(B, C)n, t he composite a# b E Q.(A, C)n is 

a# b = (A x .6.[n] ~ B x .6.[n] ~ C) (2.2.2.3) 

where a corresponds to a under the isomorphism (2.2.1.10). 
Taking X = Y = Z, we see that Q.(Y, Y) is an internal monoid in SSet. Pass now to the 

slice category description of Q.(Y, Y), and we have a subobject consisting of the invertible 
simplicial maps. This gives us a simplicial group (see section 2.5) aut(Y) ~ Q.(Y, Y), with 

aut(Y)n = {a: Y x .6.[n] ~ Y x .6.[n] : a is an invertible simplicial map over .6.[n] } 

(2.2.2.4) 
In terms of the original definition, an n-simplex t : Y x .6. [n] - Y is in aut(Y) iff for 
every m and every a E .6.[n]m the map y ~ t(y, a) is a bijection Ym - Ym i.e., iff 
t(-, a) is a bijection for all a. 

2.2.3 The simplicial action of aut(Y) on Y 

In any Cartesian closed category with terminal object, 1, the internal horn of maps 
from 1 to the object A is isomorphic to A. For SSet this is just the Yoneda lemma, as 
elements of Q.(.6.[0], Y)n are maps t: .6.[0] x .6.[n] - Y where the domain of such a map 
is isomorphic to .6.[n] (because .6.[0] is terminal), so we get a map .6.[n] - Y which is 
the representing map for t( *, idn) E Yn. 

Taking X = .6.[0] and Z = Y the map (2.2.2.1) says that Q.(Y, Y) acts on Y (and 
moreover this is a simplicial action). Explicitly t E aut(Y)n acts on Yn via 

(2.2.3.1) 

(This is a right action: (yt)s = yt#s because we wrote composition on the right as '#'. If 
we had written composition the other way, as 'o', we would get a left action here.) 
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To see the explicit form of the action, from y E Yn find the representing map for y and 
consider it as y: .6..[0] x .6.. [n] S:'! .6.. [n] - Y, an element of .§.(.6..[0], Y)n- Then 

(2.2.3.2) 

which (using the definition of# from (2.2.2.2), and the Yoneda correspondence from 
section 2.1.5) corresponds to the n-simplex 

(2.2.3.3) 

(where* is the unique element of .6..[0]n) Setting T = idm in (2.2.1.7) gives us 

t(cr) _ t( ) Ym - Ym,a. (2.2.3.4) 

Note that this is true more generally: if we have t E ~(A, B)n and a E An, we can 
write at for t(a, idn), and (2.2. 1.7) tells us that t(a, a) = aa(cr), whilst (2.2.2.2) gives us 

(2.2.3.5) 

When we specialise to ~(Y, Y) acting on Y, we get the right-action property (a8 )l = a(s#t). 

As an example, take n = 0. A 0-simplex of aut(Y) is just an automorphism of the 
simplicial set Y, and t he action on Yo is yt = t(y). 

To further understand the action of aut(Y) on Y we offer the following observation. 
Although (2.2.3.4) tells us we can recover t from the actions of all the maps t(a), it is 
not true that if yt = y for ally E Yn we must have t = id: even for n = 0, we have that 
t(yo) = Yo for all Yo E Yo, so the zeroth level oft is trivial, but t need not fix higher levels. 
For example, let G be any group with ta non-identity automorphism. Using section 2.1.6, 
there is only one vertex in Y = Ner G, so t must induce something in aut(Y)o acting 
trivially on the vertices. 

We do, however, always have that bt = ct iff b = c (just act on both sides by t-1) . 

2.3 simp(C) as an S-Cat 

We can generalise the previous section to more general simplicial objects; this section 
follows [33] closely. 

2.3.1 The Grothendieck construction for a simplicial set 

If we regard a set as a discrete category (i. e., only identity morphisms), then a simplicial set, 
X , can be regarded as a functor into Cat. Further, if we regard X as a covariant functor 
X: .6..0 P - Cat then we can apply the Grothendieck construction (see section 3.1) to 

.6,,0P J X 

get tcrot(X) with Grot(X)(n,x) = n . 

.6.. op 
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For example, when X = b.[n] , we have 

(b./[n])OP 

Grot(b.[n]) ~ tu (2.3.1.1) 

b.OP 

the forgetful functor. 

2.3.2 Definition of SIMP(C) 

For any C we let SIMP(C)(X, Y)n be the set of natural transformations from Grot(b.[n])# 
X to Grot(b.[n]) # Y. 

Explicitly, a E SIMP(C)(X, Y)n is specified by a family of maps a(a): m---+ n, one 
for each a: m ---+ n in b. and the naturality condition says that for T: q---+ m in b. 
(i.e., for each T: a---+ T # a in (b./[n])0P), the square 

a(a) 
Xm-Y;n 

X(,) I j Y(,) 

X -~Y 
q a(r#a) q 

(2.3.2. 1) 

commutes in C. Thus we get a S-Cat, denoted SIMP(C) with the objects of simp(C) 
but using SIMP(C) as the simplicial set of morphisms. 

2.3.3 C = Set 

Note that a is a function a: b.(n, m)---+ C(Xm, Ym) and when C = Set we can use the 
Cartesian Closed property to get a family o:(m): Xmxb.[n]m---+ Ym; the square (2.3.2.1) 
corresponds exactly to the condition that a be a natural transformation Xx b.[n]---+ Y, 
i.e., we recover the 'traditional' definition of the internal horn in SSet. 

2.3.4 Copowered categories C and tensoring in simp(C) 

More generally, suppose C is copowered. By definition (see e.g. , [35]) this means that for 
A EC and FE Set we have an object A ® FE C and a natural isomorphism 

C(A ® F, B) ~ Set(F, C(A, B)). (2.3.4.1) 

Immediately we observe that this gives an adjunction A ® - -j C(A, - ), but also A ® F 
is a coproduct, U tEF A, so we only need C to have small coproducts. If C = Set then ® 
is just Cartesian product and we are back in the Cartesian closed situation. 

Just as in the case where C = Set , we can now transpose the map o:(m) to get a map 
o:(m): Xm ® b.(n, m)---+ Y;n in C. The naturality condition (2.3.2.1) can be written as 
the equality of these two composites 

a(m) ( C(Xm,Yr) 
b.(n, m) ---+ C Xm, Ym) - C(Xm, Yq) (2.3.4.2) 
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and 

(2.3.4.3) 

The transpose of this equality across the adj unction (2.3.4.1) gives us the commuting 
square 

a(m) 
X m 0 b.[n]m - Ym 

XT® ~[n]T l l YT (2.3.4.4) 

Xq 0 b.[n]q ~ Yq 
a(q) 

hence, for copowered C we have SIMP(C)(X, Y)n ~ simp(C)(X 0 b.[n], Y) where we 
have extended the 0 notation to cope with A E simp(C) and F E SSet by defining 
(A 0 F)n = An 0 Fn. This is a direct generalisation of section 2.3.3. 

2.3.5 simp(C) is a tensored S-Cat 

In this section we will see that (for copowered C) simp(C) is a tensored S-Cat. By 
definition (see e .g., [10]) this means that we have a natural isomorphism 

SIMP(C)(A 0 K , B) ~ S(K, SIMP(C)(A, B)) (2.3.5.1) 

Proof. We can reduce to the 'non-enriched version' 

simp(C)(A 0 K , B) ~ SSet (K, SIMP(C)(A, B)) (2.3.5.2) 

as replacing K by K x b.[n] in (2.3.5.2) gives us (2.3.5.1) (this depends on section 2.3.4 
and the isomorphism (A 0 K) 0 L ~ A 0 (K x L) which is easily proved using the 
definition of 0 ). 

To prove (2.3.5.2) we first note that if K = b.[n] then both sides are just the set 
SIMP(C)(A, B)n- K is a presheaf on the category b. so can be expressed as a colimit of 
representables: K ~ JM b.[M]. Because colimits are computed pointwise and A 0 - is a 
left adjoint, we have 

J
M 

A ® K~ A ® b.[M], (2.3.5.3) 
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and then we are left with an easy exercise using the end/coend calculus: 

J
M 

simp(C)(A @ I<, B) ~ simp(C)( A @ Li [M], B) 

~ JM simp(C)(A @ Li[M], B) 

~ { SIMP(C)(A, B)M 
jM 

~ { SSet(Li[M], SIMP(C)(A, B)) 
jM 

J
M 

~ SSet( Li[M], SIMP(C)(A, B)) 

~ SSet(I<, SIMP(C)(A, B)). 

2.4 Homotopy of Simplicial Sets 

(2.3.5.4) 

D 

We have already looked at the category of simplicial sets, but there is a 2-category 
structure obtained by adding homotopies of simplicial maps. We follow [33] as well as 
the standard references [11] and [40]. 

2.4.1 Definition 

f 
Let A ======:: B be simplicial maps, then a simplicial homotopy h: f ~ g is a 

g 

1-simplex f ~gin ~(A, B) , i.e., a simplicial map h: Ax Li[l] -B with d1(h) = f 
and do(h) = g. 

2.4.2 Interpreting the definition 

The following is adapted from [33]. 
We have 

di(h)(a, er) = h(a, [m] ~ [1] ~ [0]) 

= h(a, [m] ~ [l]). 

(2.4.2.1) 

(2.4.2.2) 

Using the notation of section 2.1.3, <51 is the list with every entry zero and c>0 is the list 
with everything equal to 1, so we sometimes write h(a, 0) = g(a) and h(a, 1) = f(a) (for 

this reason some authors write h : g ~ f). 
Note that this determines h on vertices of A x Li [1]. Let ( a, er) E ( A x Li [1 ])n , we have 

a diagram 

L'.i[n] x L'.i[l] ~] Ax L'.i[l] ~ B (2.4.2.3) 
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and h(a, a) = h(a x id)(idn, a). The non-degenerate simplices in (6. [n] x 6.[l])n+1 are 
rf = (si(idn), ti) where ti has image (0, 0, . .. , 0, 1, 1, ... , 1) (the last 0 occurs in position 
i so that ti is degenerate, but is not equal to Si ( u) for any u, because Si (idn) =/= sk ( u) for 
k =J. i we see that rf is non-degenerate). If (the list corresponding to) a involves only one 
of the symbols O and 1 then h(a, a) is either f(a) or g(a), otherwise a= diri for some i, 
and hence h(a, a)= h(a x id)(dm). 

Write hi : An---+ Bn+l for the map (of sets) sending a to h(a x id)(idn, rf), then the 
hi determine h. Of course not every set of maps hi determine a homotopy, for example 
in (6.[l] x 6.[1])2 we have d1rJ = d1r{ 

(0, 0) - (1, 0) 

!X! (2.4.2.4) 

(0, 1) - (1, 1) 

so that we must have d1ho(a) = d1h1(a). The complete list of conditions for a family 

{ hi : An ---+ Bn+ 1 : 0 ~ i ~ n } to determine a homotopy h: f ~ g is as follows ( where 
we omit the a's using the obvious conventions) [40] 

doho = f, 
hj-ldi 

dJhJ-1 

dj+Ihj+l 

hjdi- 1 

Visualising a simplicial homotopy 

0~i<j~n 

l~i=j~n 

l~i=j+l~n 

l ~j+ l <i~n+l 

(2.4.2.5) 

(2.4.2.6) 

(2.4.2.7) 

For n = 0, each vertex a E Ao is assigned a I-simplex f(a) ~ g(a) in B. Explicitly, 

h0 (a) = h(a x id)(ro) 

= h(a x id)((00), (01)) 

= h(soa, id) 

= (soa)h 

(2.4.2.8) 

where in the last line we are extending the notation of section 2.2.3 for the map 
#: Ax ~(A, B)---+ B. We will further abbreviate (s0a)h to just ah. 
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For a E A1 the conditions on ho (a) and h1 (a) give us two 2-simplices as shown here 

where the common 1-face is easily checked to be ah, giving us the square 

gao---➔ ga1 
ga 

(2.4.2.9) 

(2.4.2.10) 

In dimension 2 the hi give us three tetrahedra which fit into a triangular prism with 
fa and ga as the two end triangular faces. If we 'flatten' the 2-simplex fa and draw it 
as fa0 ---+ fa1---+ fa2 (this of course makes perfect sense if A and B are nerves of 
categories) then the prism becomes 

(2.4.2.11) 

and in general we just add more 'squares with diagonals' on the right, and, in flattened 
ah 

notation, hi(a) = (fao---+ · · ·---+ fai ~ gai---+ · · · ---+ gan), 

Contracting homotopies 

For example, if g is the identity map and f maps everything to a (iterated degeneracy of 
a) vertex,* then all we need is to give each a E An an 'extra degeneracy' B-1(a) , which 
looks like (* ---+ ao---+ ···---+an), and is called a contracting homotopy. 
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2.5 Simplicial Groups and Groupoids 

We now introduce the machinery needed to understand bundles. The main reference 
for these results is [40], with [11] providing an overview. The only difference is we have 
attempted to adopt more explicitly categorical notation. 

2.5.1 Definitions 

A simplicial group is a simplicial object in Grp, thus it is a simplicial set G in which all 
the Gn are groups, and with all di and Si group homomorphisms. 

An example is the simplicial automorphism group discussed in section 2.2.2. 

2.5.2 Simplicial actions 

Recall from section 2.2 that SSet is Cartesian closed. Thus we have a bijection between 
the sets of simplicial maps ( of simplicial sets) of the form 

*:YxG-Y 

{3: G---+ aut(Y) 

(2.5.2.1) 

(2.5.2 .2) 

( the Cartesian property gives us {3 going into the internal horn, but, as we will see shortly, 
it has image inside the automorphism group). Explicitly, given the action as above, define 
{3 in dimension n by 

{J(gn) = (Y X .6.[n] ~ Y X G ~ Y) 

fJ(gn)(Ym, [m] ~ [n]) = Ym * 9n(O') 

(2.5.2.3) 

(here Ym is an m-simplex of Y). It is easy to see that {3 is a group homomorphism iff * 
satisfies the axioms for a right action, so in particular {J(gn) really is in aut(Y). (Note 
however, that for {3 to be a homomorphism in a single dimension n requires more than just 
the corresponding action axioms in that dimension: for {3 to be a group homomorphism 
in dimension n we must have that Ym * (9n ( O') # hn ( O')) = (Ym * 9n ( O')) * hn ( O') for all 
m and all O': Thus we need that the 9n E Gn act on all the Ym via "§(0').) Conversely, 
from {3 we get an action with Yn * 9n := {J(gn)(Yn, idn). This is y~(gn) using the notation 
of section 2.2.3, and indeed that section can be recovered by taking C = aut(Y) and 
{3 = id. Diagrammatically, this says that given an action * of G on Y , the corresponding 
{3 is the unique map making the diagram 

y X G * y 

Yx~l /,( (2.5.2.4) 

Y x aut(Y) 

commute, where# is the action of aut(Y) on Y from section 2.2.3; thus we might regard 
aut(Y) with the action # as the 'universal action of a group on Y'. 
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2.5.3 The regular Representation 

Let G be a simplicial group, and write G x G - Gas composit ion, so the result of 
multiplying g and h is written as g # h. This gives us a (right) action of G on itself, and 
applying section 2.5.2 gives us a map of simplicial groups, pc : G - aut(G), called the 
(right) regular representation for G. 

Explicitly, Pc(g)(h, a)= hg(a). 

Examples of the regular representation 

Some examples. We will see what pc(g) does to (x,a) where x E Gm and a E .6.[n]m are 
m-simplices and g E Gn is an n-simplex. 

• Let n = 0 and g E Go a 0-simplex. Then a: [m] - [OJ can only be alJ1', and hence 
pc(g)(x, a)= x # g(a) = x # slJ1'(g) so pc(g) is 'multiplication by t he generalised 
vertex corresponding to g '. 

• Let n = 1 and g E G1 a 1-simplex. Then pc(g): G x b. [1] - G is (by definition; 
see section 2.4.1) a homotopy from pc(d1g) to pc(dog) . 

Referring to the pictures in section 2.4.2 we can draw our homotopy (in dimension 
1) as 

ago aogo------+ a1go 

~(,,o)(sog) 

aog ~ a1g 

(soa)(s1g) ~ 

aog1 - ----a1g1 
ag1 

(2.5.3.1) 

• For a general g E Gn, let a= idn and h E Gn also. Then Pc(g)(h, idn) = h # g. 
Note that the left hand side is also hPc(g), the action from section 2.2.3. 

• Completely generally, pc(g)(h, a)= h # g(a) by (2.5 .2.3) . 

2.5.4 From Groups to Groupoids 

Classically, generalising groups to groupoids is 'a good thing' [6], and the simplicial case 
is no exception. However since a simplicial group is both an internal group in SSet and 
a 1-object category enriched over SSet , there are two "obvious" generalisations available, 
both useful. 
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'Simplicially Enriched-Groupoids' versus 'Simplicial Groupoids' 

A simplicially enriched groupoid is a groupoid enriched in SSet. So we have a set1 of 
objects A, B, .. . ; for each pair of objects, A and B we have a simplicial set Hom(A, B). 
playing the role of 'Hom set'; and composition is a family of simplicial morphisms 
#: Hom(A, B) x Hom(B, C) - Hom(A, C) which satisfy obvious associativity and 
identity axioms (see [34] for enrichment in general). The category of these is denoted 
S-Gpds. 

A simplicial groupoid is a simplicial object in Grpoids, i.e., for each n we have a 
groupoid of n-simplices, with face and degeneracy functors satisfying t he simplicial 
identities. 

We picture a simplicial groupoid H. as 

(2.5.4. l) 

and notice that (2.5.4.1) gives us two simplicial sets2
, M. and O. which we call the 

"simplicial set of morphisms" and "simplicial set of objects" respectively. If all the 
groupoids Hi := (Mi ---➔ Oi) have the same objects ("have the same base"), and 
if the face and degeneracy functors are the identity on objects, then O. is constant: a 
constant simplicial object of objects. 

Proposition 2.5.4.2. The category of simplicially enriched groupoids is equivalent to 
the category of simplicial groupoids with a constant simplicial object of objects. 

Proof. The relationship between a simplicially enriched groupoid X and a simplicial 
groupoid M . ---➔ O. with O. constant is given by the equations 

Mn(A, B) = X(A, B)n 

On= ObX 

(2.5.4.3) 

(2.5.4.4) 

(and similarly for composition and identities) where if we are given either one of the sides 
we may use it to define the other. D 

2.5.5 The g ---j W adjunction 

From S-Gpds to SSet: The W construction 

There is a functor W: S-Gpds - SSet which looks a lot like a nerve. It was 
discovered independently by Joyal- Tierney and Dwyer- Kan. Let H E S-Gpds. If H was 
an ordinary groupoid we would call two maps h 1 and h2 composable if h2 starts where 

1 Let us assume all categories are "small" for simplicity 
2 Again we need a smallness assumption here. 
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h1 finishes: dom(h2) = cod(h1), an equation between objects. In the SSet-enriched case, 
where H has a simplicial set of morphisms, the equation dom(h2) = cod(h1) still makes 
sense even t hough we may only actually compose the two maps when their dimensions 
agree. 

Recalling that the n-simplices of the nerve of a category are the composable n-tuples 
of morphisms in that category, we define (W H)n as the set of 'composable' n-tuples of 
the form 

A h1 A h,, A o- 1-···- n (2.5.5.1) 

where each hi is an (n - i)-simplex in H(Ai-1 , Ai), and 'composable' means only that 
cod hi= domhi+1 (in the notation of section 2.5.4, hi E Mn-i(Ai-1,Ai) is a map in the 
groupoid Hi)- For n = 0, (2.5.5.1) is to be interpreted as the set of objects of H (and 
hence of each groupoid Hi)-

The face and degeneracy maps are in general more complicated than those of the nerve: 
do 

for the lowest dimensions, (W H)i ======::: (W H)o are the domain and codomain 
d1 

functions from H (and the degeneracy, so, is the 'identities' map), which is the same as 
the usual nerve, but in higher dimensions we have 

(2.5.5.2) 

and 

(2.5.5.3) 

See [17] for a detailed proof that this does give a simplicial set. 
On morphisms W acts in the obvious way: (W f)(h1, ... , hn) = (f (h1), ... , f(hn)). 

From SSet back to S -Gpds: The Q construction 

The left adjoint to W is the loop groupoid functor Q: SSet - S -Gpds, again it was 
first studied by both Joyal- Tierney and Dwyer- Kan. If X E SSet a simplicial set, then 
QX is the simplicially enriched groupoid with: 

• Objects {x: x E Xo} 

• n-arrows the free groupoid on Xn+l modulo so(Xn), i.e., arrows are words in y, 
with y E Xn+l , but so(x) ~ (), the empty word, for each x E Xn. (Since we are 
just killing some generators, the set of n-arrows is still a free groupoid) 

• The source map is dom y := d1d2 ... dn+lY, and the target map is cod y .­
dod2 ... dn+lY· (If Yo, Y1, · · · , Yn are the vertices of y then y: Yo -y1) 
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• The simplicial structure on the arrows is given by 

day= (d1y) # (doy)-1 

diy = di+lY 

SiY = Si+lY 

i>O 
i~O 

(2.5.5.4) 

(2.5.5.5) 

(2.5.5.6) 

On morphisms f: X - Y, 9 f is defined on the generators in the obvious way: 
(Qf)(y) := J(y). 

The adjunction 9 --! W 

Proposition 2.5.5. 7. We have an adjunction 

Q 

~ 
SSet .1 S -Gpds 
~ 

w 

Proof. The unit is given (in dimension n) by 

'T/x: X -----► WQX 

x 1-------► (x, d0x, d5x, ... , ~-1x) 

and the counit is defined on generators by 

cH: QWH-----► H 

(91, • • • , 9n) ..__ __ _.,._ 91 

(2.5.5.8) 

(2.5.5.9) 

(2.5.5 .10) 

vVe shall omit the rest of the proof, which is just verifying that the triangle identities 
hold. □ 
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3 Homotopy Colimits and the Grothendieck 
construction 

This chapter is to introduce the notion of homotopy colimits [4, 4 7] which will be needed 
later. The theorem that homotopy colimits are related to the Grothendieck construction 
is proved (in more generality than we give here) in [47] and there is a different proof in 
[9]; our proof here is slightly different, using elements from each. 

3.1 The Grothendieck construction 

From any strict functor1 F: C - Cat there is standard construction called the 
Grothendieck construction, Cf (F), which is a generalisation of the semidirect product of 
groups. 

3.1.1 Functors as actions 

If b: B - C is a map in C then F(b): FB - FC is a functor. So if f is a map in 
the category F B , we get a map F(b) (f) in the category FC. Denote this map by fb, 
then the condition that F(b) be a functor is just the familiar rules 

(f#g)b=fb#i 
(3.1.1.1) 

In this notation, the coherence maps are isomorphisms (if F is strict then these are also 
equalities) x(ab) - (xal and xid - x. 

As an example of this 'action notation' , suppose G is a group, then to regard Gas a 

category, 9, we take a single object* and one map* ~ * for each g E G. We want the 
composition in 9 to reflect the multiplication in G, but we could equally well define the 

composite * ~ * ~ * to be * ~ * or * ~ *· Of course the resulting categories 
are both dual and isomorphic, but to be consistent we shall always choose the first way. 
This means t hat a right action of G on a set X is a precisely a functor 9 - Set 
sending * to X ; a (right) action of G on a group H is precisely a functor Q - G rp 
sending* to 1-{ (where 7--f. is obtained from the group Hin the same way we got 9 from G) ; 
and the rules (3.1.1.1) are the usual definition of a (right) action. Since Grp ~ Cat, 
from every G-action we get a (strict) functor from 9 to Cat. (In later sections we will 
use the same symbol, G for the group and the category.) 

1When Fis merely op-lax, with F(a # b) ~(Fa)# (Fb) and F(idA) ~ idFA just natural maps, a 
s light modification lets the following construction still works . 
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3.1.2 The Grothendieck construction for F a (strict) functor 

Given a functor F: C - Cat, we can construct a functor Grot(F): CJ F-C. 
The category CJ F is constructed as follows: for objects take all pairs (a, x) where 

A E C and x E FA; for morphisms take a map (a, J) : (A, x) - (B, y) for every 
a: A-Bin C and f: Fa(x)-y in FB. The composition 

(A, x) ~ (B, y) ~ (C, z) (3.1.2.1) 

is given by the pair 

Fb(f) g 
Fab(x) = Fb(Fa(x)) - Fb(y) - z 

(3.1.2.2) 

(where we have used that F was a strict functor for the first equality). Using our 
notation (3.1.1.1), the above just says that 

(a,J) # (b,g) = (a# b,l#g), (3.1.2.3) 

which is the usual group law in a semidirect product. So when C = Q (the category 
corresponding to a group G), and F represents an action of G on a group H , then CJ F 
corresponds to the group Gt>< H. 

3.2 Bisimplicial Sets 

3.2.1 Definition 

A bisimplicial set, X, is a simplicial object in SSet, i.e., a functor X: ~op - SSet, 
which looks like 

(3.2. l. 1) 

with each Xi a simplicial set, and each di and Si a simplicial map. Now X may be 
considered as a functor X: ~op x ~ op - Set sending ([p], [q]) to (Xp)q· In other words 
we are writing the simplicial sets Xp vertically, and redrawing (3.2.1.1) as a 2-dimensional 
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(infinite in both directions) square array, 

(3.2.1.2) 

Here, the d? are horizontal face maps-these are X(oi) = di in the notation of (3.2.1.1), 
which is X(oi, id) in the bifunctor notation above (to get the component of the simplicial 
map di at level n, replace the id by idn). The vertical maps dY, are the face maps inside 
the Xn, which are X(idn, c5i) in the bifunctor notation. Of course we also have horizontal 
and vertical degeneracy maps, denoted s? and sf, which we omit from diagrams for 
purely typographical reasons. 

We can extend the 'horizontal- vertical' notation to any map a: [p] -----* [p'] in 6 , 
writing X(a? := X(id, a) and X(a)h := X (a, id). If (J: [q]-----* [q'] is another map in 
6, then we have the following square 

(3.2.1.3) 

The resulting category of bisimplicial sets is denoted B iSSet. 

3.2.2 Example: The Double Nerve 

Let V be a double category, then its nerve, Ner1), is the bisimplicial set with Ner'Dp,q 
the grids of p x q squares from V ( thus we may also call it the double nerve). If q = 0 we 
have p horizontal arrows, if p = 0 we have q vertical arrows, and if p = q = 0 we have 
the points of V. 

The face maps are induced by composition of squares, exactly analogous to the usual 
nerve of categories. 
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3.2.3 Some functors involving Bisimplicial sets 

The Diagonal 

The diagonal functor, L:l: L:l0 P - L:l0 P x L:l0 P induces a functor 

diag = L:l #o - : BiSSet - SSet, (3.2.3.1) 

with (diagX)n = X nn (referring to picture (3.2.1.2), the diagonal is on the main-diagonal, 
going from bottom-right upwards and leftwards). We have di(x) = dfdf(x) = dfdf(x ) 
and similarly for the degeneracies. 

The 'Total Dec' 

Ordinal sum+: L:l0 P x L:l0 P - L:l0 P is defined by [n] + [m] = [n+m+ l]. For morphisms 
f: n ----+- n' and g: m - m' we have 

(f+g)(i)= { f~i) . ~=0, . . . ,n 
n +l+g(i-n-1) i=n+ l , . .. ,n +m+l. 

(3.2.3.2) 

This induces a functor Dec = + # ( - ) : SSet - BiSSet called total dee, which has 
(Dec X)p,q = Xp+q+I . The picture is 

do do 

(3.2.3.3) 

(for example, from c5i : [p- l ] - [p] and idq: [q] - [q] we get Oi + idn is the map 
oi: [(p + q + 1) - l ] - [p + q + l ], from which df of DecX is di : X p+q+I - X p+q, 
and similarly, df = dp+i+I) -

3.2.4 The "iJ construction 

The functor Dec has a right adjoint, "v: BiSSet - SSet. From the desired adj unction 
isomorphism it is possible to construct "v directly, and this is done in [17], where 
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the following definition is derived (and the adjunction proved in detail): Let X be a 
bisimplicial set, then 'v(X) is the simplicial set with 

(V X)p = { (xo, ... 'Xp): Xi E x i,p-i, and da(xi) = df+1 (xH1) for O ~ i < p}. 
(3.2.4.1) 

We can picture x = (x0 , . .. , xp) E V(X)p as lying on the pth 'codiagonal': (in the 
diagram below, vertical arrows are d0, and horizontal arrows are df+1, so where two 
arrows meet is where the 'd0(xi) = d~+1(xH1) ' equality takes place). 

(3.2.4.2) 

The degeneracies are given by 

dox = (da(x1), ... , da(xp)) (3.2.4.3) 

dix = (dY(xo), df_1 (xi), ... , dY(xi-1), d~1 (xH1), df (xH2), . .. , d~1 (xp)) (3.2.4.4) 

Si(x) = (sY(xo), sf_1(X1), ... , sa(xi), sf(xi), sf(XH1), s~\Xi+2), .. . , S~
1 (xp)) (3.2.4.5) 

(note that the formula for do is actually the same as the formula for the other faces). 
These are similar to the classical W construction defined in section 2.5.5, and indeed 
V(Ner Q) is the same as WQ. 

3.2.5 Example of 'v 

To further understand (3.2.4.1), let us consider the example of V Ner 'D, where D is 
a double category, and Ner'D is its double nerve as defined in section 3.2.2. Let us 
examine the 3-simplices, x = (xo,x1,x2,x3) E (VNer D)J , which are as follows: start 
with xo E Ner Do,3: it is 3 composable vertical maps from 'D (i.e., a 3-simplex of the 
nerve of the vertical structure of D). We must have d0(xo) = dt(x1) , which determines 
one half of the objects in x1; using d0(x1) = d~(x2) then tells us something about x2 , 
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and we can proceed from top-right to bottom-left as indicated in (3.2.5.1). 

a 
t 
b 

XQ = t E Xo,3 
C 

t 
d 

t 
b-b' b 
t t t 

X1 = c-.c' -t t 
C 

t 
d--+ d' d 

(3.2.5.1) 
thus x is the 'staircase' 

(3.2.5.2) 

d-d1-d11-d111 

The staircase above has 3 steps, (starting at a, we can take 0, 1, 2 or 3 steps down the 
staircase to get to d"' at the bottom; another way to think of this is that we can move 
from xo to Xi where i goes from Oto 3). The face and degeneracies then act on the steps 
of this staircase picture: do removes the zeroth step, (and with it the first column); d1 

removes the first step, (so the new staircase will have steps from a to c" to d111
, thus we 
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must remove b', and compose squares and arrows so that we get a two-step staircase, 

a 

d1(x) = (3.2.5.3) 
C c" 

l ! 
d d" -d'" 

i.e ., something with a single square in the bottom-left corner); d2 removes the second 
step, which takes out c", giving 

a 

! 
b - b' 

(3.2.5.4) 

d- d' ----d'" 

and finally d3 removes the bottom row completely. Similarly, the face map Si doubles 
the ith step in the appropriate way. 

T he map ¢: diag- V 

There is a natural map from the diagonal to the V construction, given (at level p) by 
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In general, remembering that elements of V X lie on the anti-diagonals (see (3.2.4 .2)) , ¢ 
can be pictured as follows (for p = 3 for brevity) 

(3.2 .5.6) 

Example of ¢ 
Returning to the example of section 3.2.5, the map¢: diagNer'D- VNerV takes 
square grids to their 'sub-diagonal', so for p = 3 we have 

-- -
! ! ! ! ! - -- -! ! ! ! ! ! (3.2.5.7) 

--- --
! ! ! ! ! ! ! ----- -

¢ is a weak equivalence 
T heorem 3.2.5.8. ¢ is always a weak equivalence 

Proof. See [9] for a proof. □ 

Combining this with proposition 3.3.2.10 gives us 

Corollary 3.2.5.9. For any F: Il ----- SSet, we have a weak equivalence 

hocolim F ~ V II* F (3.2.5.10) 
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3.3 Homotopy Colimits 

3.3.1 Definition 

Slice Categories 

Let IT be a category, and I E IT an object. We get a functor - /IT: IT0 P ---+ Cat sending I 
to the slice category I / IT. On maps we send u: I ---+ J to the functor u/IT: J /IT---+ I /IT 
where 

u/IT: J/IT I /IT 

l 1" l l i"#o l 
(3.3.1.1) 

v : l 1° l ~ l t l V [1-o]~[J~] 
(i.e., u/II acts as the 'identity' on maps) 

The bifunctor for homotopy colimit and homotopy limit 

We get a functor Ner -/ll---+ SSet sending I to Ner I /IT, where 

(Ner I /IT)n = { 1°/ I_. -~- ··.:.·· . ··· . . } , 
Io - Ii - · ··~In 

Ji h fn 

(3.3.1.2) 

the set of strings of n composable maps under I - the dotted arrows may be inferred 
from the arrows Jo, h, ... , Jn, so we may omit them, giving the description 

(Ner I /IT)n = { (folfi, .. . , Jn): dom Jo= I, (Jo, ... , Jn) E (Ner IT)n+I}. (3.3.1.3) 

Then , from our given F: IT---+ SSet, we can form Ner - /IT x F which is a bifunctor 
IT0 P x lI ---+ SSet, and t his will have a coend, f Ner I /IT x FI which is the homotopy 
colimit of F. 

3.3.2 Constructing the homotopy colimit 

Coend construction 

The standard construction of a coend J1 J(I , I) for a functor J: IT---+ C is 

j 1 

J(I, I) = CoEqualiser ( u : 1_!:!__JJ(J,I) ===:=::: J-J/ U,I)) , 
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where the maps a and f} are defined to make the following squares commute. 

f(J, I) 
/(id,u) 

f(J,J) 

iu l l i; (3.3.2.2a) 

U u f(J, I)~ U 1 f(I , I) 

J(J, I) 
f(it,id) 

f(I,I) 

iu l l i~ (3 .3.2.2b) 

UufI 
(3 

U1 f I 

First we need to understand the maps from (3.3.2.2): here the 'f' now becomes 
Ner-/Il x F. First consider the domain of a and f}, U NerJ/Il x FI. We will 

u:I-J 
frequently represent a coproduct U aEA B(a) as the set { a, B(a) }, then the domain of a 
and f} has, as n-simplices, the set 

{(u,(folfi, ... ,fn),x): x E (FI)n} (3.3.2.3) 

where (folfi, ... , fn) is the notation we used in (3.3.1.3) for an n-simplex in the nerve of 
the slice category. 

Then from (3.3.2.2) we see that a sends t he triple (u, Uolfi, ... , fn), x) to 
(J,(folfi, ... ,fn),xu) (which is in U1 NerI/Ilx FI and, as usual, xu is Fu(x) E (FJ)n)­
Similarly, f} takes that same triple to (I, (u # fo lh , . . . , j~), x), and hence the construc­
tion (3.3.2.1) says that 

(h 1
. F) ~ {(I, (folfi, ... ,fn),xE(FI)n)} ( ) 

OCO 1m n = ----~--------------- 3.3.2.4 
(I, (I~ J ~ Iolfi, • • •, fn), x) ~ (J, Uolh, • • •, fn), xu) 

If we write elements of the above as x ® Uolfi, .. . , fn), then the relations say that 

so we have a 'tensor product'. 

Simplicial replacement 

Working from (3.3.2.4), the relations say that 

(I , Uolfi, ... , fn), XE Fin)= (I , (I~ Io~ Iolh, ... , fn), XE Fin) 

~ (Io, (id10 lfi, ... , fn), x10 E (Fio)n) 
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Now (id lfi, ... , fn) gives us the string (Ji, ... , fn) E Ner JI, and we get a simplicial 
isomorphism 

hocolim F ~ { (Io, (Ji, ... , fn), y): Io E Il, (!1, ... , fn) E Ner Il, dom Ji = Io, y E (F Io)n} 

ll (Fio)n 

(3.3.2.7) 

Define the simplicial replacement, U* F for F to be the bisimplicial set with 

(Fio)q (3.3.2.8) 

This is a bisimplicial set as follows: the definition above says that (p, q)-simplices are 

of the form (x, a) with x E F(Ao)p and a= (Ao~···~ Aq) E (NerC)q- The 

horizontal simplicial structure is that of F(Ao), meaning 

d? (x, a) = (dix, a) 

s?(x, a) = (six, a) 

while the vertical structure comes from NerC: 

dY(x, a) = { (x, dia) i ~ 1 
(xa 1 , doa) i = 0 

sY(x, a) = (x, sia) 

(3.3.2.9a) 

(3.3.2.9b) 

(3.3.2.9c) 

(3.3.2.9d) 

the 'twist' in db is because when we apply do to a, we remove Ao, leaving a string of 
arrows starting from A1 . Thus for the result to be a simplex of il* F, we need to move 
the x from F(Ao) to F(A1). 

Then we have shown 

Proposition 3 .3.2 .10. For any F: JI- SSet, its homotopy colimit is 

hocolim F ~ diag ll* F 

3.3.3 An Example of a homotopy colimit 

Consider the category 
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whose limit is a pushout. For a functor F: IT - SSet the homotopy colimit is a 
homotopy pushout, which we will construct using the coend construction of section 3.3.2. 

A functor F: IT- SSet is a 'corner' 

(3.3.3.2) 

The first step is to understand Ner I /IT x FI for I E IT. 

• When I - 1, 1/1 has just one object, [!id ]• and just one (identity) morphism, 

1/IT S:! [0], therefore Ner 1/IT S:! .6.[0], the terminal object of SSet, and Ner 1/IT x Fl S:! 

Fl =B 

• When I= 2, a similar argument gives Ner 2/IT x F2 S:! C 

• I= 0 is the initial object of IT, so 0/IT S:! IT, which we can see explicitly, as 0/IT looks 
like this 

So Ner 0/IT S:! NerIT, so we must understand NerIT. 

n 
0 

1 

2 

(Ner IT)n 
Ob IT= { 0, 1, 2} 
0-1, o-2 plus degenerate arrows 
(identities) 
composable pairs, (e.g., 0 - 1 - 1), all 
of which are degenerate 

(3.3.3.3) 

so in higher dimensions everything is degenerate, and we see that Ner IT is generated 
by 0 - 1 and 0 - 2 in dimension 2.2 Moreover , since the non-degenerate 

2 Generates means that every element (in every dimension) may be obtained from these two by repeatedly 
applying face and degeneracy maps- See [17]. 
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1-simplices have equal d1 faces we see that Nerll is a pushout in SSet, 

(3.3.3.4) 

(~[oi] is the image of the basic face map defining the ith face; alternatively it is the 
representing map for vertex i in b.[l]: b.[l](ido) = i, and by the Yoneda embedding 
this defines the whole map. The unnamed maps pick out the non-degenerate 
simplices of Ner Il), 

The above shows that Nerll is two copies of b.[1] glued at the ends-a subdivided 
interval 

(3.3.3.5) 

and hence A x Ner Il is a subdivided cylinder with cross-section A 

(3 .3.3.6) 

To finish the construction of the homotopy pushout, we now glue B and C to the above 
cylinder by the relations (3.3.2.4). For example, (using the same notation as (3.3.2.4), 
when u = 0-1, we have that the Ji must be identities id1, and we get the relation 

(0, (0 ~ 1 ~ 11 id, ... , id), a E An)~ (1, (id I id, ... , id) , f(a)) (3.3.3.7) 

the left hand side is the copy of A at the right-hand end of the cylinder (3.3.3.6), and 
right hand side is just f(a) E B, so we are saying t hat B is glued to the end of the 
cylinder via f. Taking u = 0 - 2 tells us to glue C to the other end of the cylinder, 
and the only other possibilities are u = id, but these give us nothing new as they just 

say things like (0, (0 ~ 0 ~ OI id, ... , id) , a E An) ~ (0, (id I id, ... , id), aid = a) i.e., 
they identify already equal elements. 
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Thus the homotopy pushout is a double mapping cylinder, which we picture as follows. 

B 

A attached 
to B via f 

.. ., ... . ... -,,-

\ 

AxNeril 

..... c 

A attached 
to C via g 

3.3.4 Thomason's theorem on homotopy colimits in Cat 

(3.3.3.8) 

We now turn to Thomason's theorem, which tells us how to compute homotopy colimits 
of functors into Cat : if F: C ---+ Cat is a functor from a small index category C, then 
we can compose F with the nerve functor to get Ner F: C ---+ SSet, which will have a 
homotopy colimit, hocolim Ner F: Thomason's theorem says that this simplicial set is 
Ner(C J F), the nerve of the category Cf F from section 3.1. 

The double category ]l}(F) 

Let F: C---+ Cat be a functor, and write xa for Fa(x) E FE whenever x E FA and 
a: A ---+ B. Define the Thomason double category of F, ]I}( F), by taking squares of the 
form 

(A,!) 

(a,J) (3.3.4.1) 

(B, xa) (B,r) (B, ya) 

So: squares are (a, f) with a: A---+ B in C and f: x---+ ya map in FA; horizontal 
arrows are (A, f) with A E C and f: x---+ y in FA. vertical arrows are (a, x) with 
a: A---+ B in C and x an object of FA. Thus a square is actually determined by its 
domain arrows ( top and left sides) . 

Proof of Thomason's theorem 

Lemm a 3.3 .4.2. 
Ner(]l}(F)) ~ II* (Ner F) 
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Proof. A typical element of Ner [))(F)p,q is exactly determined by its top and left-hand 
edge:; the top is an element of (NerCp) and the edge is in (Ner F Ao)q, 

(Ao,h) (Ao,Jq) 

y y 
.............. .. ,> ................... .......... > .. · · ·· ···"" '"'""' ....... ... > 

(o,,x;••• "<-') j 
(Aq, x~o- .. aq-1aq) ............... ............ > Y .... ,> ... ................. .......... > 

Lemma 3.3.4.5 . For any functor F: C - Cat, 

V Ner [))(F)C J F 

V 

(3.3.4.4) 

D 

(3.3.4.6) 

Proof. '\'Ve saw how to calculate V of a nerve of a double category in section 3.2.5, so 
taking 'D = N er[))( F) we have that elements of (V N er[))( F) )3 are of the form 

(A,x) 

! (a,x) 

(B, xa) (B,f) (B, y) 

! (b,xa) ! (b,y) 

(C,xab) ~ (C,yb) ~ (D,z) 

! (c,x"'b) ! (c,yb) l (c,z) 

(D, xabc) ~ (D, ybc) ~ (D, zc) ~ (D, w) 

which corresponds to (and is determined by) 

(A,x) ~ (B,y) ~ (C,z) ~ (D,w) 

giving us a simplicial isomorphism as required. 
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To finish the proof we note that we have a weak equivalence built as follows: 

hocolim Ner F ~ diag II* (Ner F) 

~ diag Ner Il))(F) 

~ \1 N er 11))( F) 

~ NerC J F. 

This completes the proof of Thomason's theorem. 
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4 Bundles and Twisted Cartesian Products 

We recall the notion of twisted Cartesian products and recall how they are classified by 
homotopy classes of maps into the classifying space of a simplicial group: in the next 
chapter we generalise this result, replacing 'group' with 'crossed module' and look at a 
generalisation of 'classifying space' and what that might classify. 

4.1 Fibrations and Fibre Bundles 

We follow both [40, 11] in this section. We wish to consider ' locally trivial' structures 
over some base simplicial set, and the notion of fibre bundle, and its representation as a 
'twisted Cartesian product' provide the structure we need. 

4.1.1 Bundles 

A bundle over a topological space B is an element of the slice category Top/ B .1 We 
often require extra structure on such an object (i.e ., choose a suitable subcategory), 
but in a general C it is not clear a priori which subcategory to choose, so introduce the 
following general concept. (This viewpoint is taken from [3].) 

In any category C, the category of bundles over B is the slice category C / B. The total 

space of a bundle [ } ] is just the object E. The trivial bundles wit.h fibre Y EC a,e 

those (isomorphic to) the projections from a product with Y, Y x B - B, and a locally 
trivial bundle is a p for which there is some pullback diagram 

:.r~~r, 
A-B 

f 

(4.1.1.1) 

Here we say f trivialises the bundle p, and instead of a single map f, it can also be 
useful to require a family of trivialisations ( often this is equivalent since we can define 
A to be the coproduct of these and get a single trivialisation). For our purposes in 
simplicial categories we just want our trivialisations to be representing maps: f = b to 
be a representing map, for some b from B. If B was a topological space, we would look 

1 Note that the slice categories in this chapter are dual to those used in section 3.3.1. 
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at inclusions of open sets covering B (so we could have one map for each open set in the 
cover, or form the coproduct of all such). 

4.1.2 Kan Fibrations 

We will be using some of the well-known theory of Kan fibrations from [11] and other 
places. 

Definition 4.1.2.1. A bundle [ } ] in SSet is a Kan fibration if every commuting 

square 

Ak[n] ~ E 

inclusion! Ip ( 4.1.2.2) 

ti. [ n] --:=-+- B 
w 

induces a map ti. [n]---+ E making the resulting triangles commute. 

Interpreting definition 4.1.2.1 we see that pis a Kan fibration iff the following occurs: 
whenever we have a horn, h, in E whose image under p has a filler w in B, then we can 
lift w to a filler for the original horn in E . 

A simplicial set E is called Kan if the unique map to the terminal ti.[O] is a Kan 
fibration . 

Here is an application of the diagram-based definition. 

Proposition 4.1.2.3. The property "being a Kan fibration" is pullback-stable 

Proof. Let p be a Kan fibration and f a simplicial map. We must show that the pullback 
bundle f*(p) is a Kan fibration, so consider a square of the form (4.1.2.2), and adjoin 
the pullback square defining f*(p) 

( 4.1.2.4) 

Because pis a fibration, the combined square has a diagonal filling map 0 : ti. [n]---+ E. 
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We have 0 # p = w # f and, since Eis a pullback, we get a map r: 6.[n] - E1 

(4.1.2.5) 

We just need to show that r is a filler for the left-hand square of (4.1.2.4). The 
bottom triangle of (4.1.2.5) is the same as the bottom triangle of (4.1.2.4), so we 
just need to show that (inclusion) # T = h. To see this we use the fact that i and 
f*(p) are joint ly monic: we have (inclusion) # T # i = (inclusion) # 0 = h # l and 
(inclusion)# r # f*(p) =(inclusion)# w = h # f*(p). □ 

Proposit ion 4 .1.2.6. <>'.(A, - ) presen,e, Kan fibration,, i.e., if [ } ] is a Kan fibration 

[

~(A,E) l 
then so is i§.(A,p) . 

~(A,B) 

Proof. There is a direct proof in [11], but we can (almost) see this directly as follows. 
Given a square of the form (4.1.2.2) (with p replaced by ~(A,p)), transpose it across the 
adjunction A x - --l ~(A,-) and observe that the outside of the diagram 

Ax Ak[n] 
Axh 

Ax ~(A,E) 

Ax inclusion l l Ax§.(A,p) (4.1.2.7) 

Ax 6. [n] 
Axw 

Ax ~(A,B) 

commutes. Then, since p is a fibration, we can (for example by constructing the map 
at each dimension by induction, see also [22]) fill the rectangle by 0: A x 6.[n] - E, 
whose transpose fills the original square for ~(A, p). D 

In the next proposition we use the more explicit ' horn lifting' property. 
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Proposition 4.1.2.8. Let [ } ] be a Kan fibration and let A===:==~ B be homotopic 

via F: f ----=+ g. Then the bundles induced by pulling-back over A are homotopy 
equivalent: f* (p) ~ g* (p). 

Proof. This proof is taken from [40], but changed to use a more modern, categorical, 
notation. First we construct the pullback f*(p) by writing f = di(F) as the composite 
(A x Ll[81]) # F, 

(4.1.2.9) 

where we have identified A and Ax 6[0]. Similarly, for g = do(F), we get 

Lg 
E9 ----~ E* - ---~ E ,·i,t j~ 1, (4.1.2.10) 

A Axl>[oo] Ax 6[1] F B 

Now qf := S,_(EJ, -)(p*): S,_(EJ, E*) - S,_(EJ, Ax 6[1]) is a Kan fibration by proposi­
tions 4.1.2.3 and 4.1.2.6, and similarly we have q9 := S,_(E9 , -)(p*). Recall that these maps 
are simply "compose with p*", for example q1(i f) is the diagonal of the right-hand pullback 
square in (4.1.2.9) . By lemma 2.2.1.5 we have q1(i1) = f*(p) x 6[81] = d1(f*(p) x 6[1]). 
But now we have a horn (-, i1) in S,_(EJ, E*)o whose image, (- , q1(i1 )), under qf has 
a filler f*(p) x 6[1] E S(EJ, Ax 6[1])1; therefore, since qf is a Kan fibration, we can 
lift the filler f*(p) x 6[1] to some !-simplex YJ E S,_(EJ, E*)i with d1(YJ) = i1 (and 
qJ(YJ) = f*(p) X 6[1]). 

We now claim that the other end, do(YJ) E S,_(E1, Ax 6[l])o, induces a map, a between 
our induced bundles . To see this, calculate 

do(YJ) # p* = qJ(do(YJ )) 

= do(qJ(YJ)) 

= do(f*(p) X 6[1]) 

= f*(p) #(Ax 6[80]) 
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( definition of qf) 

( qf is a simplicial map) 

( defining property of y J) 
(by lemma 2.2.1.5) 

(4.1.2 .11) 

(4.1.2.12) 

(4.1.2.13) 

(4.1.2.14) 



and then a is the factorisation through the right-hand pullback square in ( 4.1.2.10) 

(4.1.2.15) 

(the lower triangle says that a is a map f*(p) - g*(p) of bundles. lg is monic as it 
is the pullback of the monic A x .6.[oo], so the upper triangle commuting says that a is 
do(YJ) 'corestricted to its image') . 

A similar argument produces first Yg E §_(Eg , E*)i with do(Yg) = lg and then qg(Yg) = 
g*(p) x .6.[l], and finally /3 making 

(4.1.2.16) 

commute. 
We now have maps between t he two bundles over A, and we must show that the 

composites a # /3 and f3 # a are homotopic to identities. To this end, regard a as a 0-
simplex of §_(EJ, Eg)- Then, using the composition defined on the internal hom (2.2.2.2) , 

axA[l] 
we have an element~:= so(a) # Yg E §_(Et, E*)i. We can write~ as Et x .6.[l] -

Eg x il[l] ....!!..!..+ E* using (2.2.2.3) and the construction of Yg· We also have 

and 

do(O = doso(a) # do(Yg) 

= a# lg 

= do(YJ) 

d1(~) = d1so(a) # d1(Yg) 

=a#/3#lf, 
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(4.1.2.17) 

(4.1.2.18) 



which gives us a horn, h say, in §_(EJ, E*)2. 

h= 

Now qJ(YJ) = f*(p) x ~[1] by the definition of YJ, and 

q1(0=~#p* 
= (a X ~[l]) # y9 # p* 

= (a X ~[1]) # (g*(p) X ~[1]) 

= (a# g*(p)) X ~[1] 

= j*(p) X ~ [1] 

( definition of ~) 

( definition of y9 ) 

( definition of a) 

(4.1.2.19) 

(4.1.2.20) 

(4.1.2.21) 

(4.1.2.22) 

(4.1.2.23) 

(4.1.2.24) 

which means that the image of the horn h under qf is filled by so (f* (p) x ~ [1]) in 
§_(Et , Ax ~[1])2. Since qf is Kan we can lift to get a filler, z E §_(EJ, E*h, for h. Let 
w := d2(z) E §_(Et, E*)1. 

(4.1.2.25) 

sod1(r(p)x il[l]) f*(p)xil[l ] 
so(f'(p)x.:l[l ]) 

This w is almost the required homotopy a# /3 '.::::'. id, but it has the wrong codomain, so 
we calculate 

w #op* = q1(w) 

= sod1(f*(p) x ~[1]) 
= so(f*(p) #(Ax ~[61]) 

= prE
1 

#f*(p) #(AX ~[Ji]) 

( definition of qf) 

( definition of w) 
(by lemma 2.2.1.5 with n = 1) 

(by lemma 2.2.1.12) 
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(4.1.2.26) 

(4.1.2.27) 

(4.1.2.28) 

(4.1.2.29) 



which tells us that w factors through the pullback to give us w': Et x 6[1]---+- Et 

(4.1.2.30) 

This says that w' is part of a strong homotopy (i.e., has the identity on the base) on the 
bundle f*(p), and further di(w') # lt = (Et x 6[fli]) # w' # it = (Et x 6[8i]) # w = di(w) 
hence do(w')#it = af3it giving do(w') = a#/3 because it is monic. Similarly d1(w') = id 
sow' is the required homotopy from the identity to a/3. 

A similar construction gives a homotopy between f3a and the identity and we are 
done. D 

4.1.3 Fibres 

The fibre, Y, of a bundle [ k] over a point* is the inverse image Y - p-1(*). In a 

general category C (with finite limits), interpret a point, *, of B as a map, r * 7 , from the 
terminal object to B, and the inverse image as the pullback 

(4.1.3.1) 

From the above diagram we can also see that the sequence Y ---+- E---+- B is 'exact' in 
the sense that the composite collapses all of Y to a point, and the 'kernel' of p (i.e., the 
inverse image over *) is the 'image' of Y---+- E. This 'exact sequences' framework can 
be made rigorous, for example, if C is an Abelian category. 

Let [ k ] be any bundle ( in S Set) , and let bo E Bo any vertex. Then the fibre over 
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bo is given by the pullback r~~r, 
(4.1.3.2) 

.6.[0] ~ B 
bo 

and "Y = p-1(b0 )", means that Yo= p-1(bo), Y1 = p- 1(sobo), Y2 = p-1(sosobo), etc. 
If we pull back (4.1.3.2) against the unique map .6.[n]---+ .6.[0], we get 

y X tn] r-r~~rp 
(4.1.3 .3) 

.6. [n] --.6.[0] - B 

where the bottom map is the representing map for the generalised vertex, s0(bo) , of 
dimension n corresponding to bo. So knowing the fibre above bo determines the fibre 
above the generalised vertices corresponding to bo. But of course we cannot say anything 
about other n-simplices of B, nor can we even say that all vertices have the same fibre. 
This brings us to the notion of fibre bundle. 

4.1.4 Fibre Bundles 

A fibre bundle of fibre Y over a simplicial set B is a bundle [ f] such that for any 

n-simplex, b E B n, the pullback against the representing map is a trivial bundle. 

(4.1.4.1) 

Lemma 4.1.4.2. The trivial bundle over B with fibre Y is a fibre bundle 

Proof. Trivial bundles are stable under pullback. Explicitly, we have a commuting 
diagram 

( 4.1.4.3) 

where the top composes to give the projection from the product Y x .6.[n] to Y. Hence 
the outer rectangle is a pullback, and hence the left square is also a pullback, showing 
that Y x B is a fibre bundle. □ 
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4.1.5 Twisted Cartesian Products (TCPs) 

Motivation 

We shall use the discussion of atlases in [40] to motivate the idea of a TCP. The definition 
can also be found in [11]. 

Atlases of a fibre bundle 

Let [ f ] be a fib,e bundle as above. Looking morn closely atthe definition in section 4.1. 4 

we see that for b E Bn we have an isomorphism a(b) from Y x 6[n] to the standard 
pullback E xa 6 [n]. 

(4.1.5.1) 

6 [n]- b- B 

Let a(b) := a(b) # 1r1 . Since a(b)(y, O') = (a(b)(y, a'), <7), a(b) determines a and we call 
either of the two families { a(b): b E B} or { a(b) : b E B} an atlas for p . We usually 
regard a(b) as an element of ~(Y, E xa 6 [n])n and a(b) E ~(Y, E)n, Let G be a subgroup 
of aut(Y), then any family of elements g(b) E G defines a new atlas { g(b) # a(b): b E B} 
(or { g(b) # a(b): b EB}). We call two atlases G-equivalent if they differ by such a family 
of g(b) 's. 

Atlas Normalisation 
We do not necessarily have a(sib) = Sia(b) in ~(Y,E), but we can define a new atlas 
{ a' ( b) : b E B } by 

a'(b) = { a(b) b non-degenerate 
Si ( a' (b)) b = sic is degenerate 

(4.1.5.2) 

(by induction this is well-defined. We would get the same formula if we used the 
maps { a(b): b EB} instead of { a(b): b EB}). We call the new atlas { a'(b): b EB} 
normalised. 

Transition elements 
Let { a(b): b EB} be an atlas. We do not necessarily have a(dib) = dia(b), but 

( 
YxLl.[ai] c. ) 

di(a(b)) = Y x '6.[n - 1] >-----Y x 6 [n] a(b) E Xs 6 [n] ( 4.1.5.3) 
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is an isomorphism onto its image. We get a 0 making 

d;a(b) 1r1 
Y x .6.[n- 1]----E xs .6. [n] - E 

. ..,,. ~ 

B 
p 

(4.1.5.4) 

.6.[n - 1] 

commute. We have 0(e, CJ) = (e, CJ# bi), and the images of the maps di(a(b)) and 
a(dib) # 0 are the same, both being the elements of t he form (e, CJ# 8i) - Thus there is a 
(unique) isomorphism ti(b): Y x .6.[n - 1]---+ Y x .6.[n - 1] with 

(4.1.5.5) 

We call the ti(b) the transition elements of the atlas. If the transition elements all lie in 
G then we say { a(b): b EB} is a G-atlas (we omit the G when possible). An atlas is 
regular if its transition elements are all identities for i > 0. 

Lemma 4 .1.5.6. Every (normalised) G-atlas is G-equivalent to a (normalised) regular 
G-atlas. 

Proof. Let { a(b): b EB} be a (normalised) regular atlas with t ransition elements ti(b) 
as above. We define a new G-atlas { a'(b): b E B} which is (normalised and) regular 
and G-equivalent to { a(b): b EB } by induction. On dimension Owe let a'(b) = a(n), 
so assume we have defined { a' (b): b EB} on dimensions at most n - 1, and let b E En 
(non-degenerate, as the normalisation process takes care of the degenerate elements). 
Find elements 9i(b) E Gn-1 with 

a'(dib) = 9i(b) # a(di(b)) 

= 9i(b) # ti(b)- 1 # di(a(b)) 

=hi# di(a(b)) 

(4.1.5.7) 

(4.1.5.8) 

(4.1.5.9) 

where hi := gi(b) # ti(b)-1 . Since { a'(b): b EB} is regular we have, for 0 < i ::=:; j, 

dihJ # didja(b) = di(a'(djb)) 

= a'(didjb) = a'(dj-ldib) 

= dJ- 1a'(dib) 

= dj- l hi # dj-ldia(b) 

= dj-lhi # didJa(b) 
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(4.1.5.10) 

(4.1.5.11) 

( 4.1.5.12) 

(4.1.5.13) 

(4.1.5.14) 



which implies dihj = dj-lhi. Now use the Kan property of G to get h E Gn with dih = hi 
for i > 0, and define a'(b) := h # a(b) . We have 

di(a'(b)) = dih # dia(b) 

= hi# dia(b) 

= a'(dib) 

for i > 0 and so a' is still (normalised and) regular and G-equivalent to a. 

Fibre Bundles are TCPs 

(4.1.5.15) 

(4.1.5.16) 

(4.1.5.17) 

□ 

Let { a(b) : b E B} be a normalised regular G-atlas and let t(b) = to(b) which means that 
d0a(b) = t(b) # a(d0b). Note that the uniqueness condition in (4.1.5.5) implies that t 
satisfies some properties which are listed in (4.1.5.30); these are verified by applying a di 
or Si to the equation d0a(b) = t(b) # a(dob), and noting that t(b) is the unique solution 
to that equation. Deviating from the standard references, we write rp(b, a) for t he unique 
element of G for which 

a· a(b) = rp(b, a )# a(a · b). (4.1.5.18) 

Here b E Bn and a E 6 [n], so the defining property of t(b) says that rp(b, 80) = t(b). The 
calculation 

(r #a) · a(b) = T · (a · a(b)) 

= T · (rp(b, a)a(a · b)) 

= (T · rp(b,a) ) # (T · a(a · b)) 

= (T · rp(b,a)) # (rp(a · b,T)a(T ·a · b)) 

shows that 
rp(b, (T #a))= T · rp(b, a)# <p(a · b, T). 

(4.1.5.19) 

(4.1.5.20) 

(4.1.5.21) 

(4.1.5.22) 

(4.1.5.23) 

We also note that if a can be written (for example using the normal form (2.1.1.1)) as a 
product of aj (j ;=: 0) and 8i (i > 0) only (i.e., no 80), then rp(b, a) = id. Thus taking T 

to be 8i and a i in ( 4 .1. 5. 23) gives us the following rules 

rp(b, do(a)) = do(rp(b, a))# t(a · b) 

rp(b, di(a)) = di(rp(b, a) ) 

rp(b, si(a)) = si(rp(b, a)) 

i>O 
i ;:: o. 

(4.l.5.24a) 

(4.l.5.24b) 

( 4. l.5.24c) 

We now note that our atlas almost gives a simplicial map a: B - ~(Y, E), except 
that a does not commute with do (and <p is measuring the degree to which a is not 
simplicial; the normalisation process just says that we can move all t he failure to t he 
do-face). Nevertheless, we can 'transpose a across the Cartesian-closed adjunction' to get 
( :Y xB-E: 

( = (y x B ~ Y x ~ (Y,E) ~ E) (4.1.5.25) 

53 



which sends (y, b) to ya(b). ~ inherits all the 'simplicialness' of a, i.e., it commutes with 
all Sj and all di with i ;?: 0, and 

da(~(y, b)) = (daylo(a(b)) 

= ( day /(b)#a(dob) 

= ~((doy)t(b), dab) 

(4.1.5.26) 

( 4.1.5.27) 

( 4.1.5.28) 

So we can make ~ simplicial by defining a new simplicial set, which we call Y x t B, which 
is the same as Y x B but we redefine the 0-face to be da(Y, b) := ((dayl(b), dab). Of 
course to be a simplicial set we need to check the simplicial identities, but these follow 
from the aforementioned properties oft (i.e., (4.1.5.5)). 

Proposition 4 .1.5.29. The map~ is an isomorphism Y Xt BS:! E. 

Proof. Using t he notation of the diagram (4.1.5.1), we have o:(y,b) = (a(y,b),b), the 
inverse is given by o:(e, a) = (v(e, a), a) where v = o:(b)- 1 # pry is a simplicial map 
v(b): E(b) --+ Y. 

When e EE, we get (e, idn) E E(p(e)), so it makes sense to write ev(pe) for v(b)(e, idn), 
and it is easy to check that the map sending e to this element ev(pe) is an inverse for 

~- □ 

We can conside, Y x, Bas a bundle [ y }•Bl whe,e p1(y, b) - band then the above 

shows that Pt S:! p as bundles. 

Definition 

Abstracting from the previous section, let G be a simplicial group acting principally on 
the simplicial set Y. A twisted Cartesian product (TCP) with base B, fibre Y, group G 

[ 

y Xt Bl 
and twisting function t is the bundle rt where 

• As a set, (Y x t B)n = (Y x B)n = Yn x En 

• The twisting function t: Bn+l --+ Gn ( one t for each n) satisfies 

t(d1b) = da(t(b)) # t(dab) 

t(dib) = di-1t(b) 

t(sib) = Si-1t(b) 

t(sab) = id 
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(4.l.5.30b) 

(4.l.5.30c) 

( 4. l.5.30d) 



• T he faces and degeneracies are given by 

do(b,y) = ( dob, (doy)t(b)) 

di(b, y) = (dib, diy) 

si(b, y) = (sib, SiY) 

• T he map to B (making the TCP a bundle) is projection, Pt(Y, b) = b. 

( 4. l.5 .31a) 

( 4.1.5.31 b) 

(4.l.5.31c) 

If Y is t he underlying simplicial set of G and the action is the regular representation 
(section 2.5.3) then call Y Xt B a principal TCP (PTCP ). 

Lemma 4.1.5.32. The class of TCP s (with fibre Y) is stable under pullback, with 
f* (Pt) ~ P J#t, 

(4.1.5.33) 

Proof. Using the standard description of pullbacks in SSet , we have that the set of 
n-simplices in the pullback is { ((y, b), a): (y, b) E Y Xt B, a E A, f(a) = b} and the 
faces are just like a product except for the zero face, which is given by do((y,b),a) = 
(((doy)t(b), dob), a)= (((doy)t(J(b)), f(doa)), doa). Thus we have a simplicial isomorphism 
from 'the standard pullback' to Y x f#t A sending ((y, b), a) to (y, a). □ 

We saw above that every fibre bundle gives rise to a TCP, we will show in proposi­
tion 4.1.5.36 that every possible TCP (i.e., every choice oft satisfying (4 .1.5.30)) gives 
a fibre bundle. Since we are starting only with t, we do not, a priori, have the map cp 
from (4.1.5.18), however we can define cp as follows. If b E Bn and a E b.[n]m then write 
a in normal form using (2.1.1.1); if this form does not involve 60 then set cp(b, a) = id, 
otherwise we have a= a'# 60 # 6' where a' is a product of ai (i ~ 0) and 6' is a product 
of 6j (j > 0), and we define 

cp(b, a'# 60 # 6') =a'· t(o'b) (4.1.5.34) 

Lemma 4.1.5.35. Lett be a twisting function and cp defined as in (4.1.5.34), then cp 
satisfies the properties of (4.1.5.24) . 

Proof. This is an easy exercise using the simplicial identities. D 

Proposition 4.1.5.36. Any TCP, Y Xt B (as defined in section 4- 1.5) is a fibre bundle 

Proof. Let b E Bn; using lemma 4.1.5.32 we just need to find an isomorphism b.[n] xb#t 
Y ~ b.[n] x Y. This can be done by the following map 

ry: y x b.[n]----b.[n] xb#t y 

(y,a) (y'P(b,a),a) 
(4. 1.5.37) 
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where ip(b,a) is defined from t as in (4.1.5.34). To show T/ is simplicial is exactly the 
properties (4.1.5.24); because <p(b, a) E G, T/ is a bijection in each dimension, with inverse 
sending (y,a) to (y'P(b,a)-

1
,a). □ 

Corollary 4. 1.5.38. The TCP Y Xt B has a normalised atlas given by 

(4.1.5.39) 

i.e., we have a pullback diagram 

at(b} 
Y x b.[n] ----Y Xt B 

j~ lP• ( 4.1.5.40) 

b.[n] ii B 

Proof. at(b) is just T/ from the proposition composed with the top map in the pullback 
square (4.1.5.33) from (4.1.5.37) □ 

We note in particular that putting a= idn in (4.1.5.39) tells us that yat(b) = (y, b). 

Twisting functions as simplicial maps 

Lemma 4.1.5.41. Twisting functions t: Bn+l -Gn correspond naturally to maps of 
S - Gpds, t': QB - G, and hence to simplicial maps B - WG 

Proof. By definition of QB (section 2.5.5) t': QB--+ Gin level n is exactly specified 
by its action on the generators, i.e., by a function t: Bn+l--+ Gn with t'(sox) = id: 
t(b) = t'(b). 

The condition that t' should commute with the simplicial structure on the arrows of 
QB is exactly the rules (4.1.5.30) applied tot. For example, t'(dg8 b) = d~(t'(b)) says 
exactly that dot(b) = t(d1b) # (t(dob))-1 because do(t'(b)) = do(t(b)) and 

t'(dob) = t' (dob# (d1br
1
) 

= t'(dob) # (t'(d1b)r
1 

= t(dob) # (t(d1b))- 1 

The final statement follows by transposing across the Q -1 W adjunction. 

( 4.1.5.42) 

□ 

Note that a given twisting function alone does not determine the TCP, as different 
actions of G on Y will give different values for do- it is both the twisting function and 
the action that are required. 
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Classification of TCPs by homotopy classes 

In this section we will see how TCPs with base B and fixed fibre are classified by 
homotopy classes of maps B---+ WG. By fixed fibre we mean that we choose a group 
G, fibre Y and a fixed action of G on Y- what we really classify is twisting functions 
from B into G, and then to get a TCP you just need to choose an appropriate action. 

Furthermore all TCPs arise as pullbacks against a 'universal TCP '. The obvious 
candidate for a universal twisting function is given by the counit of g -l W: we have 
c:c: QWG---+ G which gives us a twisting function which we will still call c:c. The 
corresponding TCP, Y Xc:a WG, is denoted by W(G)y. If t he fibre Y is the underlying 
simplicial set of G itself, and the action is multiplication on the right (i.e., the regular 
representation from section 2.5.3), then we denote the TCP by W(G). 

We have the following corollary to lemma 4.1.5.32. 

Corollary 4.1.5.43. Any TCP Pt (with fibre Y) arises as a pullback against the TCP 
with twisting function c:c ( and the same fibre as Pt): 

(4.1.5.44) 

where P: B ---+ W G is the transpose of the simplicial map t' : QB - G corresponding 
to the twisting function t. 

Proof. t' = Q(P) # c:c, so the result follows from lemma 4.1.5.32. □ 

In [11 , 40] the following approach is now used: First show that TCPs are Kan fibrations 
and then use proposition 4.1.2.8 to show that homotopic maps induce the same TCP. 
To complete the classification, they then show that two maps inducing the same TCP 
over A are homotopic. 

However we can take a slightly different path to this result. Suppose we have a map 

(4.1.5.45) 

If b E Bn we have a pullback diagram 

( 4.1.5.46) 

6-[n] --ii-- B 
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where the dotted line is an element of ~(Y, Y)n using the description in section 2.2.1; it 
is convenient to write this map z(b)(y, a)= (z(b)(y, a), a) where now z(b)(y, a) E Yn. 

We now calculate 

0(y, b) = 0(a5 (b)(y, idn)) 

= at(b)(z(b)(y, idn), idn) 

= (z(b)(y, idn), b) 

= (yz(b), b) 

(4.1.5.47) 

( 4.1.5.48) 

( 4.1.5.49) 

(4.1.5.50) 

It is easy to check that the following equations will ensure that 0 be simplicial 

z( Sib) = Siz(b) 

z(dib) = diz(b) 

s(b) # z(dob) = (doz(b)) # t(b) 

i~0 
i>0 

(4.1.5.51) 

(4.1.5.52) 

(4.1.5.53) 

Conversely, if 0 is simplicial, we would get, for each of the equations a statement that 
each side acts on all yin the same way, (so for example ys;z(b) = yz(sib) for ally), and it 
should in fact be possible to prove that the equations hold without the y(- ) part from 
this. In any case, we will always be constructing our 0 from a z which definitely satisfies 
the above equations. 

We will say that 0 is a morphism of TCP s of group G if those equations hold and 
z(b) E Gn, As an example we note that the equations (4.1.5.24) say exactly that the 
map rJ from the proof of proposition 4.1.5.36 is a morphism of TCPs. 

The requirement that z(b) E Gn implies that 0 must be an isomorphism, for it has an 
inverse given e-1(y, b) := (yz(b) - 1

, b). 
We saw earlier that TCPs are classified by maps B - WG, i.e., by elements of 

~(B, WG)o. In our standard references [11, 40] it is shown that isomorphism classes of 
TCPs are classified by the homotopy classes in ~(B, WG)o based on the fact that a TCP 
is a Kan fibration and using proposition 4.1.2.8; in fact we can follow a more modern 
spirit of categorification (in the sense of, for example [1, 2]) and instead of classifying the 
homotopy classes we will instead look at the actual homotopies themselves. 

We first note that elements of (W H)o are the objects of the simplicially enriched 
groupoid H, so in dimension 0, s maps every object to* E (WG)o where* is the single 
object we have when we consider the simplicial group Gas a simplicially enriched groupoid. 
In higher dimensions, s(b) is the list (s(b), s(dob), s(d5b), ... , s(d0-1(b))) (which is an 
element of (WG)n-

Theorem 4.1.5.54. Morphisms 0: Y X 5 B - Y Xt B of T CPs induce homotopies 
z: s----=-+ t between the elements of ~(B , WG)o corresponding to the TCP s we started 
with. 

Proof. Referring to section 2.4.2, we will just draw the lowest parts of the homotopy- it 
is clear how the construction can be continued for the higher levels, but we will not give 
all the details here. 
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In dimension O we assign to each b E Bo the 1-simplex s(b) ~ t (b). 

In dimension 1, we must assign to bo ~ b1 a pair of 2-simplices which fit together to 
form the square (which lives in WG) 

(4.1.5.55) 

here the common face bz will be determined when we define hi(b). Now t(b) E W(G)i is 
just the element t(b) E Go, and ho(b) E W(G)2 consists some a 1 E G1 and a2 E Go. As 
we will find in later sections, it is helpful to take a categorical view and draw a1 as a 
2-cell, so that ho(b) is drawn as the following diagram in G. 

z(bo) 

<I>--t(b_) _* (4.1.5.56) 

a 

The formula for do and d2 in W(G) tell us everything apart from do(a1)) . The d1 part 
tells us only that do(a) # t(b) = bz, but once we choose a E G1 we will have specified 
ho(b) completely. Similarly, specifying h1(b), which is drawn as 

(4.1.5.57) 

is equivalent to giving /31 E G1 with 

(4.1.5.58) 

Comparing this requirement to the last equation (4.1.5.53) suggests we take a 1 = z(b) 
and /31 = so ( s ( b)) . This specifies the homotopy in dimension 1, and clearly the process 
can be continued for dimensions 2 and above: the hi (as described in section 2.4.2) are 
built from z(b) and various degeneracies. D 

Corollary 4.1.5 .59. If we fix an action ofG on Y , then isomorphism classes of TCPs, 
Y x t B , are classified by homotopy classes of maps B - W ( G). 
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Proof. We saw in the theorem that we can construct a homotopy from an isomorphism, 
for the converse we can either do a similar construction in reverse, building z (and hence 
0) from the homotopy, or note that in the proof of proposition 4.1.2.8 we constructed, 
from a homotopy, maps, a and /3, between the induced bundles E1 and E9 , and these 
will automatically be isomorphisms of TCPs. □ 

In fact one should be able to do the construction in further dimensions, i.e., if given a 
'triangle' of maps of TCPs, 

y XtB 

;/~ (4.1.5.60) 

a homotopy X: 01 ----=-+- 03021 will, given some conditions on X (i.e., the analogues 
of the conditions on z) correspond to an element of §_(B, W(G))2. Indeed we should 
expect that higher n-homotopies of TCPs should be the same, in some sense, as ele­
ments of §_(B, W(G))n for all n. However even drawing the pictures as in the proof 
of Theorem 4.1.5.54 becomes rather involved. 

Returning to the case of a single map 0: Y x s B - Y x t B, we can instead interpret 
s and t as maps QB - G, and we can interpret our homotopies in a similar manner: 
s and t are morphisms of S-Gpds, so we expect our 0 to be some kind of natural 
transformation between them; a brief sketch of this idea follows. 

First the objects: both maps s and t can only map the object of QB corresponding 
to b E Bo to the single object* E G. We have a z(b) E Go between these objects as we 
might expect for a natural transformation. 

On the morphisms it gets more complicated. Dimension zero of QB is generated by 

the b0 ~ b1 from B1, and this is mapped to s(b) and t(b) in Go. Our map 0 provides a 
I-simplex, z(b), of the form 

(4.1.5.61) 

or equivalently we can look at Z(b) := z(b) # so(t(b)), which may be pictured as a 2-cell 
filling the square 

zbo 

* 

~ j~ (4.1.5.62) 

*-------zb1 * 
The other morphisms are products of the generators, and can deal with them by combining 
those by multiplying the basic squares of the form (4.1.5.62). For example, if we have 
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a second I-simplex b1 ~ b2 in B1 (which corresponds a 0-morphism b' which we can 
compose with the one corresponding to b) we can form Z(bb') as 

(4. 1.5.63) 

which fills the square 

* 
zbo 

* 

s(bb') /4..,) l•(bb') . (4.1.5.64) 

* zb2 * 

In the next dimension (when bis in B2, corresponding to a generator for Q(B)1) we get 
a z(b), 

s(bo1)z(b1)t(bo1)-1 

zboi / ~ s(bol2)z(b12)t(b01\) 

/ z(b) ~ (4.1.5.65) 

zbo - ----+ s(bo2)z(b2)t(b0-l) zbo2 

which, if we multiply it by so(t(b)), can be interpreted as a 3-cell filling in a prism in 
which the three square sides are essentially Z(dib) (i = 0, 1, 2). In this way our homotopy 
corresponds to a sort of 'infinitely lax natural transformation' between the functors s 
and t. 

Relationship with homotopy colimits 

Let G be an ordinary (not simplicial) group acting on the simplicial set Y. This means 
that, considering G as a category with one object, *, we have a functor p: G---+ SSet 
sending* to Y. Write I<(G, 0) for the simplicial group with I<(G, O)n = G for all n (and 
all face and degeneracy maps are the identity). 

Theorem 4.1.5.66. For G an ordinary group acting on the simplicial set Y via a functor 
p, the universal TCP W(G)y is isomorphic to the homotopy colimit of p. 

Proof. Because all the faces and degeneracy maps are constant, W(I<( G, 0)) ~ Ner G 
and the universal twisting just picks out the first go from (go, 91, ... , 9n) E Ner G. 

Then level n of W(I<(G, 0))y consists of elements of the form (y, (go, 91, ... , 9n)), with 
y E Yn, and 

do(Y, (go, 91, • • •, 9n)) = ( (doy)90 , do(go, 91, ... , 9n)) (4.1.5.67) 

is exactly the formula from the simplicial replacement formulation of the homotopy 
colimit (see (3.3.2.11)). □ 
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In the light of this theorem, we can regard a TCP as a kind of generalisation of a 
homotopy colimit: the simplicial set Y Xt B is a sort of 'formal homotopy colimit' where 
we have replaced the nerve of the category G with the simplicial set B and have replaced 
c with t in some sense. 

We will generalise this result in section 7.4. 
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5 The Classifying space of a crossed 
module 

We now apply the 'classifying space' machinery of the previous section to crossed modules. 

5.1 2-groups, crossed modules 

Let M = ( C ~ P) be a crossed module. 

One of the difficulties is that we may view NJ as a crossed module, cat1-group, 
simplicially-enriched group(oid) or as a special kind of 2- or double category. All of these 
views will be useful, so let us set out some notation for the various (equivalent) views of 
M. 

Above we said C ~ P was a crossed module. We must clarify whether we are using 
right or left actions here; for action now, we will use right actions, thus the group P acts 
on the group C on the right and 8 is a group homomorphism which satisfies the following 
rules: 

a(cP) = p-18cp in P, 

c0
CJ = c11cc1 in C. 

5.1.1 • Algebraic' views of M 

cat1-groups 

(CMl) 

(CM2) 

It is well-known ([37], and see also the exposition [21]), that the category of crossed 
modules is equivalent to the category of cat1-groups, the latter being (equivalent to) 
internal categories in Grp (the category of groups). Here is the cat1-group corresponding 
to our crossed module M: 

P e< C 

11 (5.1.1.1) 

p 

i.e., P is the group of objects, P e< C the group of arrows. The source and target maps are 
such that we have (p, c): p - pac, with composition given by (p, c) # (p', c') = (p, cc'). 
Note that this is automatically an internal groupoid in Grp, simply because all internal 
categories in Grp are in fact internal groupoids. 

Let us write X(M)v for the cat1-group arising from M; all such cat1-groups arise (up-to 
isomorphism) from some M . 
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Internal Categories, Internal Group(oids) 

An internal category in groups is also an internal group in categories, and since Grp is a 
subcategory of Grpoids, we can replace 'group' by 'groupoid with one object' giving the 
'horizontal' picture 

(5.1.1.2) 

i.e., the category of objects is the terminal category and the category of arrows is the 
category described in the previous section. The composit ion is given by multiplication in 
P ~ C: (p, c) # (p', c') = (pp', cP' c'). 

Although we do not need it for our present purposes, for completeness we should 
write X(M)h for this internal group in Grpoids; all such objects arise (again up-to 
isomorphism) from some M. 

Double categories, Double groupoids 

A category object in C a t is a double category, and the previous two sections can be 
explained as showing the vertical and horizontal structures of a double category; the 
squares look like 

id 

p 

*-----* 

(p,c) 

p8c 

id ( 5.1.1.3) 

with vertical and horizontal composition of squares exactly as in the previous two sections. 
Because both vertical and horizontal structures are groupoids, we actually have a 

double groupoid, and since there is just one object, *, we have a double group. 
Let us call this double group X(M)d; all double groups with trivial vertical structure 

arise in this way. 

2-groups 

Because the category of vertical maps is trivial, we actually have a 2-groupoid; and even 
a 2-group: a single 0-cell and all higher cells invertible. 

Here is a typical 2-cell in our 2-group. 

(5.1. 1.4) 
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We will use the '#i' notation (which seems to be due to Crans) for composition, so we 
write horizontal composit ion as (p, c) #o (p', c') = (pp' , cP' c'), and vertical composition is 
as (p, c) #1 (p', c') = (p, cc'). 

Let us write X(M) for the 2-group arising from M. All 2-groups arise (up-to isomor­
phism) as X(M) for some M. 

5.1.2 'Simplicial ' views of M 

From any category object (in a category with pullbacks) we may produce a simplicial 
object by taking the (internal) nerve: the n-simplices are the strings of n composable 
arrows in the internal category (in general these are constructed using pullbacks, but we 
only need this for categories in which we have actual elements so will omit the details 
here); because the nerve functor is full and faithful this loses no information and offers a 
"simplicial view" of M. From our crossed module we thus have several simplicial views 
available, one for each of the more "algebraic" views above. Let us quickly list these. 

Vertical nerve 

Taking the nerve (internal to Grp) of X(M)v gives a simplicial group, Ner X(M)v which 
looks like 

(5.1.2.1) 

Horizontal nerve 

Taking the nerve (internal to Grpoids) of X(M)h gives a simplicial groupoid Ner X(M)h, 
which looks like this: 

(5.1.2.2) 

The 'double nerve' 

The double category, X(M)d has a double nerve as in section 3.2.2 which we denote 
NerX(M)d. 

Getting a simplicial set 

Because X(M)v is a simplicial group, it can be considered as a simplicially-enriched 
groupoid (with one object), and we can apply W to get a simplicial set. 

Alternatively we can apply the Artin- Mazur codiagonal to the double nerve of X(M)d 
(the other obvious approach is to apply the diagonal, but this gives the same simplicial 
set up-to weak equivalence [9]). 
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The above constructions give the same simplicial set and a final way to arrive at this set 
is that M is a 2-category, i.e., a category enriched over Cat. Replace each horn-category 
with its nerve, and we have a SSet-enriched category (in fact a SSet-enriched group). 
The obvious nerve construction of a SSet-enriched category is a bisimplicial set, and 
taking the codiagonal gives exactly the description above. 

In summary, this simplicial set, which we will call Ner M, is 

Ner M = W(M) = WX(M)v ~ V Ner X(M)d (5.1.2.3) 

There are further generalisations to get nerves of bicategories, for example [14], but we 
do not need these here. 

5.1.3 Explicit description of the nerve 

Using section 5.1.2, we can give an explicit description of the nerve of a crossed module. 
It is probably just as easy to give the case of a general 2-category, so let us do that. 

In general, (Ner C)n involves 'generalised whiskering'. Here are the first few levels, 
drawn both as diagrams in C and as simplices. Unnamed arrows are identities and 0, 1, ... 
are arbitrary objects of C (so all are equal to* in the crossed module case) . 
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0., 
~ 

n 
0 

1 

2 

3 

0 

0 

staircase 

Ao 
0 

! 
o-1 ao 

! ao 
0-1 

! =~ ! bo 
0-1-2 

! ao 
0---+1 

! =~ ! bo 
0-1-2 

! °'l ! /3o ! 
a2 bi co 

0 - 1 - 2-3 

2-category picture simplex picture 

Ao Ao 

0 ~ 1 0~1 

1 
ao 

~ bo 2 O ao 1 

~ 

ao/ ~bo 
/ (ao,bo) ~ 

a 1 0------~2 
a1#obo 

1 

a 2 

ao bo 

~~2 co 3 0-1-1~ 

~ bi 

ao 
b1co 

o~\/3 
The faces of the above 3-simplex (which we may denote by (ao,a1,,60,co)) are: do = (,Bo,co), d1 = (a1 #0,60,co) , d2 = 
(ao #1 a1, bo #o co) and d3 = (ao, bo). 



5.2 Weak Equivalences and the Vertical Nerve of a crossed 
module 

5.2 .1 Homotopy groups of a crossed module 

Let M = ( C ~ P) be our crossed module. The homotopy groups of M are defined to 
be the homotopy groups of the Moore complex of M. This means that M has just two 
non-zero groups 1r1(M) = coker8 = Pfima and 1r2(M) = ker8. 

5.2.2 W eak Equivalences of Crossed Modules 

Let M1 and M2 be crossed modules with Mi= Ci~ Pi. A map c.p : M1 - M2 is (as 
usual) a weak equivalence if it induces isomorphisms on the homotopy groups, i.e., on the 
kernel and cokernel: 

ker81 
<p 

ker82 

j 

ee! 

j 
<p 

C1 C2 

a,! !& (5.2.2.1) 

<p 
P1 P2 

J,a.+J,a, 
Write 1r1 and 1r2 for the common homotopy groups. We can subsume the isomorphisms 
(given by c.p) into maps into Ci (or out of Pi), and rewrite the above diagram as 

(5.2.2.2) 
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5.2.3 Example of a weak equivalence 

Let M1 = N ~ P be the crossed module corresponding to the inclusion of a normal 
subgroup N <1 P, and let M2 = 1 - G a 1-type with G = P/N the quotient group. 

Then t he quotient map, q : P-G, induces a weak equivalence M1 ~ M2. 

5.2.4 Weak equivalences induce homotopy equivalences on the vertical 
nerve 

Proposition 5.2.4.1. Let r.p be a weak equivalence r.p : M1 ~ M2 . Then r.p induces a 
homotopy equivalence on the vertical nerves. 

Proof. Case 1: r.p comes from a quotient map 
It is instructive to first consider the case where r.p comes from a quotient map, q, as 
in section 5.2.3. 

We have to prove that the simplicial set Nerv[X(M1)v] is homotopy equivalent to 
Nerv[X(M2)v] = K(G, 0). We produce a contraction by specifying an extra degeneracy 
S-I 

do 
· .. p ~ N ~ N~ P ~ N___!!___.G 

~~ 
(5.2.4.2) 

Note that, since q is a quotient map, q(a) = q(b) <==> a= bn for some n E N. 
Let s be a splitting in Set for q ( of course no splitting exists in the category of groups 

unless N = 1), i.e., s: U G - UP is a map of the underlying sets such that q( s(g)) = 1 
for all g E G. This means that s(g) is any choice of element from the coset g, i.e., s is a 
transversal. 

We can now form a map 

U(GxN)---~UP 

(g, n) s(g)n 
(5.2.4.3) 

this map is a bijection. (For any p E P we have q(p) = qsq(p) , hence p = sq(p)n 
for some n; the inverse sends p to ( sqp, n).) We use this bijection to define our extra 
degeneracy s_1. Namely, given (p, n) write p = s(g)n (where g = q(p) E G) and set 
s_1(p, n ) = (sg,(n, n )). 

Note that the equation p = s(g)n says that we have a 2-cell 

p 

<I> (5.2.4.4) 

p 
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in M1 (equivalently: a 1-simplex in the its nerve) and L1 just prepends this 2-cell to the 
n-simplex (p, n). 

The General Case 
We now turn to a general weak equivalence <p: M1 ~ M2 (using the notation of sec­
tion 5.2.2; in particular see (5 .2.2.2)). 

As before, pick a section s1 for the quotient map q1. This gives us a section s2 for q2 
with s2(g) = <ps1(g). 

We require maps f: Ner X(M1)v---+ Ner X(M2)v, g: Ner X(M2)v---+ Ner X(M1)v 

and homotopies H : id~ f g and L: gf ~ id. We set f = Ner <p and define g and 
H together. 

In dimension Owe need g to map P2 to Pi, so define g(p2) = s1(q2(P2)). H must assign 
to P2 a 1-simplex P2 ~ f gp2 in X(M2)v, We have q2(f gp2) = q2<ps1q2p2 = q2s2q2p2 = 
q2(p2) so there is H(p2) E C2 with f gp2 = p2{hH(p2), i.e., we have a 1-simplex/2-cell 

(5.2.4.5) 

as needed for H. 
Note that the defining property f gp2 = p2{hH(p2) does not uniquely determine H(p2); 

in fact it determines it uniquely only modulo ker 82 = 7!'2 
Now consider a 2-cell 

(5.2.4.6) 

We have g(p282c2) = s1q2(p282c2) = s1q2(P2) = g(p2); hence f g(p2) = f g(p282c2), which 
means that 82c282H(p282c2) = 82H(p2), or equivalently, H(p2) - 1c2H(p282c2) E ker 82 = 
7!'2. So we may define a map ( of sets) 

g: P2 t>< C2 ------+- 7!'2 

(p2, c2) 1-----H(p2)-1c2H(p282c2) 
(5.2.4.7) 

using the map 7!'2 >-------+- C1 we can consider g to map into C1, (i.e., <pg(pz, c2) = 
H(p2)- 1c2H(p282c2) E C2 (here we are using that cp gives an isomorphism on 7!'2), 
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and this defines g in dimension 1, i.e., 

P2 

9<1> 
For our homotopy, H , we need 2-simplices ho and h1 with 

(p2 ,c2) 
P2 ---P2fhc2 

~ h1 I (p2,H(p2) ho ~ (p282c2 ,H(p2fhc2) 

f 9P21-( f g(p2chc2) 
g P2,c2 

(5.2.4.8) 

(5 .2.4.9) 

since the vertical nerve is determined by dimensions O and 1 only, the above diagram 
determines ho and h1 provided the common d1-face is well-defined, i.e., we must have 
c2H(p2Ehc2) = H(p2)f g(p2, c2) which is true by construction of g. Again using the 
coskeletal property of the vertical nerve this is all we need to construct the map g and 

homotopy H: id ---=+- f g. 

A similar construction gives us g' and L: id--=+- gf. By lemma 5.2.4.10 this shows 
that the two vertical nerves are homotopy equivalent. □ 

h f g 
Lemma 5.2.4.10. Suppose we have A - B - A----+- B composable maps and 

homotopies h # f ---=+- idA and f # g ---=+- idB. Then f is a homotopy equivalence 

B---=+-A. 

Proof. g # f c:= (h # f) # g # f = h # (f # g) # f c:= h # f c:= idA. □ 
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6 Sheaves and Covering spaces 

In this chapter we recall some well-known tools from topology (sheaves, covering spaces 
and the nerve of a cover) that will be needed in the next chapters. T he main reference 
is [36]. 

6.1 Sheaves, Etale spaces, and Covering Spaces 

To make a connection with locally trivial bundles in topology, and to start moving 
towards stacks, we recall the proof that locally constant sheaves on a space are equivalent 
to covering spaces. The proof comes from [36] and [3] but the result is rather older. We 
will attempt to generalise some of this section in section 8.2. 

6.1.1 Preliminaries 

For a functor F: C -- Set we can form the Grothendieck construction (section 3.1) 
which comes with a projection functor Grot(F): CJ F-- C back to C. 

Given any T: C --£with[. cocomplete, write [C0 P, Set ] for the category of presheaves 
on C, and Y for the Yoneda embedding. We have a diagram 

with L -, R and Y # L ~ T. Explicitly, 

L(F) = colim (C J F G~) C ~ [. ) 
R(B) = E. (T( - ), B) 
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(6.1.1.2) 

(6.1.1.3) 



Proof. 

J
(A,x)ECf F 

E(LF, B) = £( TA, B) 

~ j E(TA,B) 
(A,x) 

~ j R(B)(A) 
(A,x) 

~ j [C0
P, Set] (Y(A), R(B)) 

(A,x) 

J
(A,x) 

~[C0 P,Set]( Y(A),R(B)) 

~ [C0 P, Set] (F, R(B)) 

(6.1.1.4) 

where the last line uses density1: J (A,x) Y(A) ~ F. L(Y(A)) ~ TA now follows from 
putting F = Y(A) in the adjunction isomorphism (6.1.1.4). □ 

6.1.2 Germs and sections 

Take £ = Top/ X and T the following functor 

T: O(X)--- Top/X 

u u~x 

From (6.1.1.2} we get L(F) - [ 
8t

a1l;F) ] (the stalk ol F} with 

Stalk(F) = { [p,(U,x)]: pEGrot(F)(U,x)=U,(U,x)EO(X)f (F)} /[p,(U,x)]~[q,(V,y)] 

and where the equivalence relation defining the colimit is generated by 

[p, (U, x)] ~ [q, (V, y)] if (Grot(F) # T) ((V, y) - (U, x)) (q) = p. 

(6.1.2.1) 

( 6.1.2.2) 

(6.1.2.3) 

Now a map (V, y) - (U, x) exists iff V ~ U and xiv = y (here xiv is the image of 
x E FU under the 'restriction' map FU - FV, which is itself the image under F of 
the inclusion V - U in O(X)), and when such a map exists (6.1.2.3) just says q = p. 
So we see that t he equivalence relation is just '[p, (U, x)] ~ [q, (V, y)] iff p = q and there 
is WE O(X) with W ~ U, V and xlw = Ylw'. The equivalence class of a triple (p, U, x) 

1 Density actually follows from this adjunction result: taking T = Y, we see R = id, whence F = id also. 
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under this equivalence relation is called the germ of x at p and is written germP ( x); thus 
Stalk(F) is just the set of germs for F. The map 1r is just projection: 1r(germp(x)) = p. 

Frnm (6.1.1 .3) we get that R (which we will write as I') takes a space [ 1"] to the 

presheaf r(o:) with 

I'(o)(U) - HomTop/X ( [ 1] , [ 1"] ) (6.1.2.4) 

= { sections of o: over U } , 

where a section of a over U is a map s: U - A with s # a = idu. 

6.1.3 The Sh(X)-Etale/ X equivalence 

The above gives us an adj unction between the presheaf category on C and spaces over X. 
Restricting attention to those presheaves for which the unit of L -l r is an isomorphism 
gives us the fu ll subcategory Sh(X) of sheaves on X; restricting attention to those 
spaces over X where the counit of L -l r is an isomorphism gives us the full subcategory 
Etale/ X of etale spaces over X. It then follows that that the adjunction of section 6.1.2 
restricts to an equivalence Sh(X) '.::::'. Etale/ X: the sheaves are exactly the presheaves at 
which the unit is invertible and the etale spaces are exactly the spaces over X where the 
counit is. 

Finally, the sheafification functor from presheaves to sheaves is obtained as Stalk #r, 
and we have Stalk #r -l inclusion. 

6.1.4 Locally constant sheaves and covering spaces 

From now on we assume our space X is locally connected. We recall two classical local 
definitions. 

D efinition 6.1.4.1. Call a sheaf FE Sh(X) locally constant if each p E X has a basis 
of neighbourhoods, Np, such that whenever U, V E Np with V ~ U, the restriction 
FU ---+ FV is isomorphism. 

We get a full subcategory Sh(X)1c ~ Sh(X) of locally constant sheaves on X. 

Definition 6.1.4.2. CaJl a space [ !-] E Etale/X over X a covering space (o, some­

times just a cover on X) if every x E X has a neighbourhood U ( called fundamental) 
with 1r- 1 

( U) ~ U x F for some discrete space F ( called the fibre). 
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We get a full subcategory Cov(X) ~ Etale/ X of covers of X. 

Theorem 6.1.4.3. The equivalence of section 6.1.3 restricts to an equivalence between 
locally constant sheaves and covering spaces on X: Sh(X)1c '.:= Cov(X). 

Proof. Let [I,] be etale coccesponding to FE Sh(X). We must show that" is a cove, 

iff F is locally constant. 
( =>): If 1r is a cover, let U be a fundamental neighbourhood for x E X. Since X was 

locally connected we can take U to be connected and it will still be open. Let Np be 
the connected open sets in U (this is a basis since if p E W E O(X) then W contains a 
connected component of W n U which is in Np) - Then for VE Np, sections, s, of 1r over 
V are of the form s(e) = (e, s(f)) wheres: V - Fis continuous from the connected 
V to the discrete F - all such s are constant, so s(e) = (e, f) for some fixed f E F, and 
I' (1r)(V) ~ F for all VE Np. 

({:=): Let F be locally constant with U E Np. Then 

1r-1 (U) = { germp(x): p EU, x E FV for some V 3 p open in X.} (6.1.4.4) 

Given U and Vas in (6.1.4.4), find WE Np with W ~ UnV. Write 0w for the restriction 
0w:FU-FW. 

Claim: 0j;i}(xlw) E FU does not depend on the choice of WE Np· 

Proof of claim: If W' is another choice, we find W ~ W n W' with W E Np. We have 
the following commuting diagram (in Set, with the 'upwards pointing arrows iso) 

FV 

/~ 
FW FW' 

~i-
(6.1.4.5) 

FU 

since x E FV, we get 0j;i}(x lw) = 0w~(xJw,) as required. A similar argument shows 
that for V E Np, 0w1 

( x I w) does not depend on the choice of x E germp ( x). Finally, if 
germp(x) = germQ(Y) then applying 1r gives us p = q, so we have shown t hat the map 
1r-

1(u)-FU x U which sends germp(x) to (0w1 (xlw),p) is well defined. Ifwe give 
FU the discrete topology then the map is continuous. It is a homeomorphism with 
inverse (y, Q) t--t germQ(Y) thus we have shown that U is a fundamental neighbourhood, 
and 1r has fibre FU. □ 
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6.1.5 Constant Sheaves 

We can embed Set into the category of presheaves via the constant functor, (-), which 
is defined on objects A E Set by 

A: O(X)0P----+-Set 

U 1------+- A 

U ~ V >----------+- id A 

(6.1.5.1) 

Now A is not generally a sheaf because a sheaf must take a singleton value at the 
empty set.2 So to define the notion of 'constant sheaf with value A' we must apply the 
sheafification functor to A. By the remark at the end of section 6.1.3 we see that the 
sheafification is defined as follows. First we apply the stalk functor, Stalk, to A and then 
the sections functor r to the result . The resulting functor is const: Set - Sh(X). 

Lemma 6.1.5.2. 

Ix x Al 
Stalk(A) ~ tr (6.1.5.3) 

Proof. The total space is 

{ (x,U,a): xEX,UEO(X),aEA(U)= A }/~ (6 .1.5.4) 

where the equivalence relation is (x, U, a) ~ (y, V, b) iff x = y and the restrictions of a 
and b to some common open set W agree. But since the restriction maps are the identity, 
we have (x, U, a) ~ (x, X, a) for all open sets U (and all x E X and a E A), thus do 
not need to keep U in the notation, and the total space is just X x A where A gets the 
discrete topology. □ 

Lemma 6.1.5.5. 
const(A) = r Stalk(A) ~ Set(IIa(-), A), 

the set of locally constant functions from U to A. 

(6.1.5.6) 

Proof. r(Stalk(A)) = { s: u-x x A: prx(s(u)) = u all u EU}, so the elements, s 
are of the form s( u) = ( u, s' ( u)) where s' = s # pr A is a continuous map into the discrete 
space A. By definition Ila is the left adjoint to the "discrete space" functor Set - Top, 
so s' corresponds to a map IIa(U) - A of sets, i.e., is locally constant. □ 

Lemma 6.1.5. 7 . Ila --j const --j r(-, X). 

2The empty set is open and is covered by the empty cover. A product over t his cover is a product over 
the empty set, which is the terminal object, so the sheaf condition for F with respect to the empty 
cover of 0 says that F(0) is the equaliser of the parallel pair 1 ====~ 1 , which is 1 as required. 
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Proof. 

Sh(X )(const(A),F) ~ Sh(X)(fStalk A,F) 

For the other side, 

~ [O(X)0
P, Set ] (A, F) 

~ Set(A, lim FU) 
UEO(X)0 P 

~ S et (A, F X) 

~ Set (A, r (F, X)). 

(6.1.5.8) 

using Stalk # f -I inclusions (6.1.5.9) 

using (-) --l lim (6 .1.5.10) 

since X is initial in O(X)0
P (6.1.5.11) 

(6. 1.5.12) 

Sh(X)(F, const(A)) ~ Etale/ X ( [kl [ X F]) (6.15.13) 

~ Etale(E, A) (same argument as in (6.1.5.6)) 
(6.1.5 .14) 

~ Set(IIo(E), A) (6.1.5.15) 

so we define IIo(F) = Ilo(E) and we are done. □ 

6.2 Covers and the Cech nerve 

6.2.1 Open covers as simplicial sheaves 

Let { ui: i E J} be an ( open) cover of X. Taking co products gives us a space, u = u iEI ui) 
and a map p: U -x which is an etale space over X . Now the terminal etale space is 
idx, and (because Et ale/ X is a slice category), p also serves as the unique map 

(6.2.1.1) 

Using section 6.1 we can replace p with a map U - 1 of sheaves where 1 is the terminal 
sheaf (whose value on every open set is a singleton- this is the sheaf-theoretic version of 
our space X) 

6.2.2 The Cech nerve of a cover 

Taking the kernel pair of our map U - 1 gives us a groupoid 

u XU======:: u (6.2.2.1) 
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internal to Sh(X) (in fact it us an equivalence relation on U). The Cech nerve of our 
cover is defined as the internal nerve of (6.2.2.1) 

C(U) = ( · . u X u X u --u X u -- u ) . (6.2.2.2) 

Note that to get the simplicial etale space, C(U), corresponding to C(U), we just replace 
the products by 'pullback over X '. 

Explicit Description 

The standard description of the coproduct U = U iEI Ui is U ~ { (x, i) : x E Ui} with 
the map p: U - X then given by p(x, i) = x. We note also that there is a functor 
I - Etale/ X where the indexing set I is regarded as a discrete category: we send 
i E I to the inclusion Ui c...___ X. The colimit U with the map p down to X is the colimit 
of this functor , but because I is discrete, this is also the homotopy colimit as well. 

C(U) is defined by (multiple) pullback of p against itself. We have (C(U) )o = U xxU ~ 
{ (x, i,j) : x E Uij }, and in general (C(U))n ~ { (x, io, ... , in): x E Ui0 , ... ,in} with the 
obvious map down to X. The face maps act on the i 0 's in the obvious way, for example 
d1(x,i,j,k) = (x,i,k). 
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7 Simplicial Formal Maps 

7.1 Formal maps 

We are interested in simplicial formal maps which are just maps of simplicial sheaves 
C(U)-+ const Ner M with U coming from a cover, Ma crossed module as above and 
const: Sh(X) ---+ SimpSh(X) is the 'constant simplicial sheaf' functor. They have 
been introduced in [43, 42]. 

To get an explicit description it is easiest to work in the category of etale spaces over 
X, where the constant sheaves become trivial bundles. This is because a constant sheaf 
does not have F(U) = A for all U (e.g., F(0) = 1). In fact F(U) would be the set of 
locally constant functions U ---+ A. 

Let >.: C(U)---+ W(M) be a map of simplicial Etale spaces, where the codomain is 
a constant bundle, i.e., it is really Xx W(M) with the projection map to X. 

We can use the TCP formula to define W(M) = M X 0 W(M), again a trivial bundle. 
By analogy with lemma 4.1.5.32 we want to study the pullback bundle Z(>.) defined by 

Z(>.)- W(M) 

I~ I (7.1.0.1) 

C(U) 1" W(M) 

and from this we get something like a locally constant stack on X. 

7.2 g ~ W for simplicial sheaves 

We wish to extend Q -l W to an adj unction between simp(Etale/ X) and S -Gpds. 
Because the definitions are 'constructive' in the sense of topos theory, it would be possible 
to define the adjunction if we replace the etale category with the category of simplicial 
sheaves. However we can do it in the etale category as follows. 

There is an obvious way to turn W(G) into a simplicial etale space: we just use 
the tensor of section 2.3.5 and tensor with the terminal object, i.e., the new functor 

XX W(G) l 
W: S-Gpds ---+ simp(Etale/ X) sends G to fr , where we give the sim-

plicial set W( G) the discrete topology. Categorically we are composing the classical 
W: S -Gpds-+ SSet with 1 @ - : SSet --- simp(Etale/ X). We have an adjunction 
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x. l IIo --l 10-, which lets us define(} of fr E simp(Etale/X) to be Q(IIo(X.)). Because 

we are composing adjoint functors, the new (} and W are still adjoint. 

no 9 

~ ~ 
simp(Etale/ X)..L SSet ..L S -Gpds (7.2.0.2) 
~ ~ 

l©(-) W 

Moreover t he counit is given by the same formula as that from the original (} --l W 
adj unction. 

7.3 Explicit Description of Z(,\) 

7 .3.1 Example: M = 1-P 

First we consider the case where the crossed module M is just 1 - P. 

Description of WM for M = 1 - P 

It is easy to see that Ner M = W(M) = Ner P. 

Description of a formal maps, >., for M = 1 - P 

With our M = (1 - P) our map>.: C(U) - Xx Ner P is part icularly simple, being 
determined by its effect in dimension 1: for every i, j E I we get Aij = >.(x, i, j) E P 
and in dimension 2 we get the requirement that AijAjk = Aik (and this automatically 
implies Aii = 1 as required for compatibility with the degeneracies). In higher dimensions 
we get, for example, >.(x,i,j,k) = (>.ij, Ajk) E P 2 , and in general >.(x,io, ... ,in) = 
( Aioi1 l • • • > Ain- l i,J · 

Description of W(M) for M = 1 - P 

W(M) is the TCP M x ,, Ner P , where c: is the counit of(} --l W (section 7.2), so we have 
t:(p1, · · · ,Pn) = Pl· 

Thus W(M)o = P and W (M)n = { (p, p) : P,Pi E P }, where pis 'vector notation' for 
(Pi, .. . , Pn) E (N er P)n = p n. The face maps are given by 

(7.3.1.1) 

where the di in the second factor comes from the nerve. 
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For example, a 1-simplex (p,po) E W(M)i has do(P,Po) = (ppo) and d1(P,Po) = (p), 
which gives the picture 

(P,Po) 
P-PPo 

and similarly, the picture for a typical 2-simplex is 

PPo 

(P,Po) 
(P,(po,P~,) 

P ---------+ PP0P1 
(p,pop1) 

(7.3.1.2) 

(7 .3.1.3) 

W(M) has the 'full equivalence relation' property that there is always exactly one 
1-simplex, (a, a-1b) from a to b. 

[

X X W(M) l 
As etale spaces we have trivial bundles with the right-hand map, J: , of 

Xx W(M) 

the pullback (7.1.0.1) being just ?T(x,p, p) = (x, p). 

Description of Z(>.) for M = 1 ----+ P 

We now have enough information to describe the pullback Z(>.). We will use the vector 
notation p E (Ner P)n as above, and also i = (io, ... , in) for a (n + 1)-tuple of indices 
from our open cover. \Ne have 

(Z(>.))n ~ { (x, i), (y,p,p): x E Ui,Y E X ,p E P,p E Ner Pn,Ai = p, x = y} (7.3.1.4) 

~{(x,p, i):xEUi,PEP} (7.3.1.5) 

where in the second line we have removed all redundant information. 
The face maps look as follows ( using the description in (7 .3.1.6)). 

di(x,p,i) = (di(x,i),di(x,p,>.i)) 

{ 
( (x, di(i) ), (x, p, di(,\))) 

- ((x, do(i)), (x,p>.ioii, do(>-i))) 

where we have used ( Aio,ii, ... , Ain-i ,i,J = Ai in the i = 0 case. 

i> O 
i=O 

P assing to the description of Z(>.) in the second line of (7.3.1.4) we get, 

We draw the low dimensional simplices in the following table 
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n 
0 

1 

2 

3 

Element of (Z(.\))n 
(x, i) 

(x,p,i,j) 

(x,p,i,j,k) 

(x,p,i,j,k,f) 

simplex picture 
(x, i) 

( 
.) (x,p,i,j) ( ") 

x,p,i - X,PAij,J 

(x,p.\ij, j) 

(x,p,i,j) / ~ (x,p>.i;,j,k) 
/ (x,p,i,j,k) ~ 

(x,p, i) - ---- (x,p.\ik, k) (x ,p,i,k) 

(x,p.\ij,J) 

(x,p>.ii ,j,f) 
(x ,p,i,j) 

We can interpret Z(.\) as saying that over Ui we have a copy of P, thus over x we have 
(x, p, i), one 0-simplex for each p E P. If x E Uij then we have a gluing which identifies 
(x,p,i) with (x,p,JAij), i.e., we are using.\ to identify over double intersections. Because 
Aij Ajk = Aik this is all we need to do, and we get a model for a covering space whose 
fibre is the underlying set of P. 

Actions of P 

If Pacts on a set Y, consider the action as a map K(P, 0) - aut(K(Y, 0)), this gives 
us a different universal TCP, W(M)y, and replacing W(M) above by W(M)y gives a 
cover with fibre Y . 

7.3.2 Description on Z(.\) in the general case 

Now we can describe Z(.\) when M = (C ~ P) is a general crossed module. 

Description of W(M) for general M 

We use the following notation for elements of W(M). (Here the 2-cells of the form (p, c) 
are denoted merely by c, since p can be inferred from the domain.) 
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n 
0 
1 

2 

3 

po2 

2-category picture 

* 
Po 

*-* 
Po 

<J>--P_l_➔ * 
Po1=po8(co1) 
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simplex picture 

* 
Po 

* - * 
* 7-,,p~ 

* ----------➔ * 
POIPI =pop18(c~}) 

* 

Po 

--- --~* 

/ 



The faces of the 3-simplex are 

Pl 

do= <J::>--P_2 _ * 

[

XX W(M) l 
and the etale space we need is t he trivial bundle 11r . 

Description of >. for general M 

The map>. has the form >.(x, i) = (x, Ai) where Ai E W (M) . 

Dimension 0 
>. maps all 0-simplices (x, i) E C(U) to a 0-cell, which means we must have 

Dimension 1 
Aij E W ( M) 1 has the form 

with Aij E P. 
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(7.3.2. 1) 

(7.3.2.2) 

(7.3.2.3) 

(7.3.2.4) 

(7.3.2.5) 

(7.3.2.6) 



Dimension 2 
Using our description of W(M)2, we have 

(7.3.2.7) 

*--------* 

where the d1 face gives us the equation 

(7.3.2.8) 

in P. 

Dimension 3 
The equations do(>-.ijke) = Ajke and d3(Aijke) = Aijk tell us that that Aijkf is the diagram 

Now we use d1 (>-.ijke) = Aikf which gives 

where c>-.jke is an abbreviation for the 2-cell 

(>-.ij8(Lijk), co2) #o (>-.jk, Ljke) = (>-.ik, c~t L jke) 

and we used (7.3.2.8) for its domain. Thus we must have 

AjkL - L Co2 jkf - ikf· 
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(7.3.2.10) 

(7.3.2.11) 

(7.3.2.12) 

(7.3.2.13) 



where AijkC stands for the 2-cell 

(7.3.2.14) 

This gives us 
LiJkco2 = LiJe• (7.3.2.15) 

Eliminating c02 from (7.3.2.15) and (7.3.2.12) we get the equation (in C) 

L ),.jkL L),.jkL 
iJe Jke = iJk ike• (7.3.2.16) 

One way oflooking at the condition (7.3.2.16) is that it says that the tetrahedron Aijke 
is commutative, i.e., the composition of the even faces is equal to the composition of the 
odd faces: (d2d2 #o do) #1 d2 = (d3 #o dodo) #1 d1 . With this point of view we regard 
Aijke as being the ( necessarily identity) three-cell 

(7.3.2.17) 

where we have omitted the A symbols for brevity. The equation (7.3.2.16) actually 
corresponds to the picture (7.3.2.17) without the final Akl, but as we are working in 
2-groupoids the two forms are equivalent. 

Dimensions 4 and above 
The action of>. in higher dimensions is determined by that in dimensions 0- 3. (From do 
and dn we get all but the 2-cell Cnn, and any other 'interior' face allows us to determine 
Cnn· It remains to show that the result ing 2-cell does not depend on the choice of interior 
face, which is possible using (7.3.2.16).) 

Description of W(M) for general M 

Now we describe W(A1) = (NerX(M)v)n xc W(M). As a set, the n-simplices are given 
by 

W(M) = { (t, s): t E (Ner X(M)v)n, s E (W(M))n} (7.3.2.18) 
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For s we use the notation as in section 7.3.2, and 

t= 

p 

~ 
~ ~ 
*~* 

\;I 

E (Ner X(M)v )n (7.3.2.19) 

which we abbreviate tot= (p, e1, ... , en)- Here we can see the twist in the do face, as for 
i > 0, di(P, e) = (p, die) but do(P, e) = (p8e1, do(e)); thus we might think of the nerve as 
being 

Ner X(M)v = K(P, 0) xa Ner C 

The face maps are what we expect from a TCP , namely 

some pictures will be useful. 

(W(M))o 
(W(M))o = { (P, *): p E P} 

(W(M))i 
A 1-simplex has the form 

p 

~ Po 
*~*,*-* 

p8e1 
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(7.3.2.20) 

(7.3.2.21) 

(7.3.2.22) 

(7.3.2.23) 



with 

do 

p 

~ Po * €J * *-* ~ , 
p8e1 

so, as a simplex, we have 

(W(M))2 
Going to level 2, we have elements 

where the do face is 

do( (p, ( e1, e2) ), (po, co1, P1)) 

= ( (po( e1), e2) # o (Po, Co1), Pl) 
= ((po(ei)po, ~°Co1),p1) 

Pl .~ 
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(7.3.2 .24) 

(7.3.2.25) 

(7.3.2.26) 

(7.3.2.27) 

(7.3.2.28) 

(7.3.2.29) 

(7.3.2.30) 



and the other faces are 

* (7.3.2.32) 

p 

T Po * e1 * * ~ * ~· (7.3.2.33) 

p8(ei) 

Figure 7.1 shows how these fit together to give a 2-simplex. 
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<.O 
0 

Figure 7.1 2-simplex in W(M) 

( 

p ) ~ Po 
*~*' *--* 

p8(e1) / 

(p, *) 

(ppo8(ef0
), *) 

p 

fie\ Po 

~ Pl * 
\~*, 
p8(e1 e2) 

* -U,c01*---;.. 
'--------"" 
po8co1 

ppo8(eio) 

* ~ ) --...__ ve2 c~ * * PI - '--* 
ppo8([e1 e2]Poco1) 

.\fe,e, * * 01 , * 

( 

* ~ ) (PP0P10 ([e1e2JP0P1d1) ) 

~ ' ---~* 
p8(e

1
e
2

) pop18(c~1) 



The pictures show that W(M) ~ Dec W(M) , where the isomorphism just joins the 
two parts along the middle* to get a 'staircase' in W(M) , but of one higher dimension. 

7 .3.3 Description of 1r and Pe in the general case 

Xx W(M) 

As an etale space we have t 1r with 1r(x, t, s) = x, and the right-hand map 

X 

of (7.1.0.1) is just 

Pe: X X W(M) ----X X W(M) 

(x, t, s) (x, t) 
(7.3.3.1) 

7.3.4 Description of Z(>.) in the general case 

We now describe Z(>.) for our general crossed module M. We start with the standard 
description of pullbacks in SEtale(X) 

(Z().))n ~ { (x, i), (y, t, s): Pe(Y, t, s) = >.(x, i)} 

~ { (x, i , t, s): s = Ai} 

~ { (x, i, t): XE ui = Uio n ... n uin, t E (Ner X(M)v)n } 

= { (x, i , (p, e)): x E Ui = Uio n · · · n Uin, (p, e) E (Ner X(M)v)n}. 

the faces are 

di (x, i, (p, e)) = ( df (U) (x, i), d{ x W(M\x, (p, e), >.i)) 

{
(x,di(i),(P,di(e))) i > 0 
(x, clo(i), (p8(e1), do(e)) #o Ai) i = 0 

From this we can describe the lower dimensions explicitly. 

Dimension 0 
In dimension O we have 

Dimension 1 
In dimension 1 we have 

(Z(>-))i = 

(Z(>.))o = { (x,i,p): x E Ui,P E P} 

p 

x,i,j,*CB* ,xEU;;,p EP 

p8(e) 
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(7.3.4.2) 

(7.3.4.3) 

(7.3 .4.4) 

(7.3.4.5) 

(7.3.4.6) 

(7.3.4.7) 

(7.3.4.8) 



with 

do(x,i,j, (p,e1)) = (x,j,p8(e1)>.ij) = (x,j,pAijO(e~ii)) 

d1(x,i,j,(p,e1)) = (x,i,p) 

giving us the picture 

Dimension 2 
In dimension 2 we have 

(Z(>.))2 = 

(7.3.4.9) 

(7.3.4.10) 

(7.3.4. 11) 

(7.3.4.12) 

by now it is clear how to find the faces, so we will just draw the simplex in figure 7.2. 

7.4 W(M) as homotopy colimit 

7 .4.1 Simplicially enriched homotopy colimit 

Nerve of a S-Cat 
The nerve of a SSet-enriched category, C, is the bisimplicial set, NerC, with 

(7.4.1.1) 

A relevant example is when C is obtained from a 2-category: by replacing the horn­
categories with their nerves we get an S -Cat whose nerve is exactly the double nerve of 
the associated double category. 

We can pass from BiSSet to SSet using either diag or V. We might write V Ner C as 
W(C) to agree with the case where C is in S-Gpds. The argument (3.2.5.1) can be used 
to describe (V Ner C)n as the set of diagrams of the form 

(V NerC)p = {Ao~ Ai---+ ... ~ Ap: dimai = p - i} (7.4.1.2) 
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Figure 7.2 2-simplex in Z(>.) 
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Simplicially enriched homotopy colimit 
The homotopy colimit of a simplicially enriched functor F: C---+ SSet is defined via 
simplicially enriched coends in [10] . As might be expected the simplicial replacement 
generalises as well, and we have 

(hocolim F)n ~ 11 (FAo)n (7.4.1.3) 
a1 an 

(Ao---+ ... ---+A,,)E(diag Ner Cn) 

~ { (x, (Ao~ ... ~ An)): x E (FAo)n, dimai = n - i} (7.4.1.4) 

Another version of hocolim: hocolim 'v 

If we replace diag with 'v in (7.4.1.3) we get a new simplicial set hocolim 'v. Because 'v 
is weakly equivalent to diag, hocolim 'v is a good replacement for hocolim. 

7 .4.2 SSet-functors 

If C is an S-Cat, then a simplicially enriched functor F: C ---+ SSet is specified by a 
map Ob(C)---+ SSet from the objects of C to SSet and either 

1. simplicial maps 
C(A,B)----§_(FA,FB) 

f Ff 
(7.4.2.1) 

with the usual functor conditions, or 

2. simplicial maps 
FA x C(A,B) - - ---+-FB 

(x,f) x®f 
(7.4.2.2) 

with the usual "action" conditions (x 0 J) 0 g = x 0 (f # g) and x ® id = x. 

( the two are equivalent by the Cartesian closed adj unction). 

7 .4.3 The regular representation for a crossed module 

Consider a simplicially enriched category, M , with one object *· There is a SSet­
functor PM: M---+ SSet with PM(*)= M(*,*) and whose action is the composition 
#: M(*, *) x M(*, *)---+ M(*, *) from M. This is just like the regular representation 
from section 2.5.3. 

Theorem 7.4.3.1. Let M be our crossed module C ~ P and M the corresponding 
S-Gpds. Then W(M) ~ hocolim'v PM· 

Proof. This is basically just the argument used in Theorem 4.1.5.66. D 
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8 Stacks 

We now introduce stacks and attempt to reinterpret the formal maps of the last chapter 
in terms of stacks. 

8.1 Stacks and Descent 

8.1.1 Definitions 

Definition 8.1.1.1. Let F: C0 P - Cat be a functor, and 

x. = (8.1.1.2) 

an augmented simplicial object in C (thus F(X. ) is an augmented cosimplicial category). 
Then the category Des(X. , F) of descent data on x. with coefficients in Fis the following 
category: 

1. Objects are pairs (x, f) with x E F Xo and f: Fd1 (x) ~ Fdo(x) an isomorphism 
satisfying the cocycle condition, which says that the following triangle commutes: 

(8.1.1.3) 

2. Morphisms m: (x, f) - (y,g) are maps m: x -yin FXo making the square 

Fd1(m) 
Fd1(y) 

lg (8.1.1.4) 

Fdo(m) 
Fdo(y) 
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commute in FX1. 

We call an object (x, f) E Des(X. , F) a descent datum on x. If we ignore the cocycle 
condition then we have a pair (x, f) which we call a gluing of x. A descent datum (x, f) 

is called normalised if Fso(f): x ---=-,➔• x is the identity idx, and trivial if f itself was an 
identity (thus 'trivial' implies 'normalised') . 

Definition 8.1.1.5. From any X . and functor Fas above we get a functor 

des: F X ------+ Des(X. , F) 

A 1----~ (Fp(A), idF(dop)(A)) 

a: A-Bf-------+Fp(a) 

(8.1.1.6) 

sending A to the trivial descent data on Fp(A). (The map Fp(a) is a map of descent 
data since the simplicial identities give F(dop) = F(d1p), and hence 

(8.1.1.7) 

commutes as required). 

D efinition 8.1.1.8. The map p: Xo - X is a map of I -descent if the above functor 
des is full and faithful, and a map of effective descent if des is an equivalence. 

A descent datum (x, f) is called effective if it in the essential image of des, i.e., if there 
""' is some A E F X and an isomorphism m : Fp( A) ~ x making 

Fd1(Fp(A )) 
Fd1(m) 

Fd1(x) 

id l l f 
Fd1(Fp(A)) 

Fdo(m) 
Fd1(x) 

commute. 

Note that applying Fso to the square (8.1.1.9) gives 

Fp(A) ~ x 

id I l F,o(f) 

Fp(A)~x 
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which means that effective descent data are automatically normalised. It is equally 
easy to see that the class of normalised descent data is closed under isomorphisms in 
Des(X. , F), and hence when des is essentially surjective, all descent data are normalised. 

Definition 8.1.1.11. Suppose C has a Grothendieck topology (i.e., we have a collection 
of covering families). Each covering family induces a simplicial object; in fact we could 
define Grothendieck topologies by asking for a collection of covering augmented simplicial 
objects (+ some axioms) augmented simplicial objects X • . If (for each covering X. ) des 
is full and faithful, we say that the functor F: C0 P - Cat is a prestack. If the des 
functors are equivalences then we say that F is a stack. 

8.1.2 Stacks categorify sheaves, Stacks and equalisers 

For any F: C0
P - Cat, and for any A, BE F X, interpreting (8.1.1.4), we have 

Homoes(X. ,F)(des(A), des(B)) = { m: Fp(A) - Fp(A): Fd1(m) = Fdo(m)} 
(8.1.2.1) 

hence Homoes(X. ,F) ( des(A), des(B)) is the equaliser of the diagram 

Fd1 
Hompx0 (F p(A), Fp(B)) ===t: Hompx1 (F(dop)(A), F(dop)(B)), 

Fdo 

thus the prestack condition is equivalent to the requirement that 

(8.1.2.2) 

Fp Fd1 
Hompx(A, B)---+ Hompx0 (Fp(A), Fp(B)) ===t: Hompx1 (F(dop)(A), F(dop)(B)) 

Fdo 

(8.1.2.3) 
also be an equaliser, which is exactly the condit ion that the functor 

Hompx(A, B): (C/ X)0
P ------+ Set 

[ } ] 1----Hompy(Fy(A), Fy(B)) 

(8.1.2.4) 

a [ } ] ~ [ 1' ] ~ Fa 

satisfy the sheaf condition for the cover induced by X . (i.e., regard t he augmented 
simplicial object as a simplicial object in C / X, augmented over t he terminal object idx). 
So we have proved 

Lemma 8.1.2.5. F: C0 P - Cat is a prestack for a topology iff all the functors 
Hompx(A, B) are sheaves for that topology. □ 

97 



Lemma 8.1.2.6. Suppose that the functor F: C0P---+ Cat factors through Set (i.e., 
F X is always discrete). Then F: C0P---+ Cat is a (pre-)stack iff F: C0P---+ Set is a 
(separated pre-)sheaf. 

Proof. Des(X. , F) >-+ F Xo is discrete with objects 

{x E FXo: Fdo(x) = Fd1(x)} , 

i.e., for any presheaf F , Des(X. , F) is the equaliser of the diagram 

For any F: C0
P - Set we have a commuting diagram 

F do 
Des(X. , F) >-+ FXo ~ FX1 

des[ A F d1 

FX 

so Fp is the unique factorisation through the equaliser Des(X. , F). 

(8.1.2.7) 

(8.1.2.8) 

(8.1.2.9) 

Then F: C0
P - Cat is a prestack iff des is a full and faithful functor between 

discrete categories, i.e., iff des is a monic map of sets F X >-+ Des(X. , F), which is 
exactly the condition that F: C0 P - Set be a separated presheaf. 

Similarly, Fis a stack iff des is an equivalence of discrete categories, i.e., iff des is an 
isomorphism in Set. But this last condition says exactly that F X is also the equaliser of 
(8.1.2.8), which is exactly the sheaf condition for F (see [36]). D 

8.1.3 Comparison of definitions of Stacks 

The paper [20] defines a stack in a slightly different way. There, a stack is a groupoid 
fibration over C satisfying some additional properties. In this section we will show that 
( under some mild assumption) the notion of a stack in [20] is equivalent to a special case 
of the definition just given, namely to the case where the covering simplicial objects x . 
came from a Grothendieck topology and the functor F factors through Grpoids. This 
result is well-known, but perhaps not written down in one place. 

Covers 

In [20], a 'cover' means a Grothendieck topology, i.e., a collection of covering families 
(Si ---+ S)iEI· In [13], a 'cover' is an (augmented) simplicial object: the link is that from 
a covering family (Si - S) , we can form the following (augmented) simplicial object 

T. = (8.1.3.1) 
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Where To= u i Si, T1 = U i,j Sij, T2 = U i,j,k sijk etc., in which e.g., Sij is the pullback 
of Si ---+ S against Sj - S. 

Having identified the notion of covers, we will now show that F is a st ack in sense 
of [13] iff rr was a stack in the sense of [20]. 

Let [ } ] be a stack ave, C in the sense of [20]. Assume that C ha.s cop,oducts (we 

also need C to have pullbacks to make the definition in [20] work). 
Form a functor F: C0 P - Cat (this is the standard "inverse" to the Grothendieck 

construction): 

F(S) =rr-1 (S) 

F(J: S -T) = restriction to S. 
(8. 1.3.2) 

(8.1.3.3) 

On morphisms Facts as 'restriction' (an object x EX over Tis sent to Ff(x) = x is, 
t he codomain of 'the' (Cartesian) lift off to a map ending at x). It is a fibration in the 
sense of [46]. For notational convenience, we will assume that t he fibration is split, so 
that F is a genuine functor, rather than a pseudo-functor. Since 1r is a stack, every F S 
is a groupoid, so F factors t hrough Grpoids, the category of groupoids. Conversely any 
F: C0

P - Grpoids gives us a category 1r over C via the Grothendieck construction. 

The Descent Category 

In [13] the descent category Des(S. , F) for F has objects (x, f) where x E FSo means that 
X is a lift of So, The map Si - u i Si gives us objects Xi := F(Si - u i Si)(x) = xlsi 
over each Si. 

Now the face map d1 : S1 - So is defined by the following commutative diagram (in 
which unnamed arrows are canonical arrows corresponding to the coproduct) 

U-.sij di 
u isi i,J 

/ / (8.1.3.4) 

Sij Si 

And lifting t his diagram to X gives us xilS;i = F(Sij - Si)(xi) over Sij: 

(8.1.3.5) 

Similarly we get Xjlsii over Sij, and hence from a glueing, f, of x, we can form isomor­
phisms 

(8.1.3.6) 

99 



Once we have our fiJ 's, we can further restrict, forming 

(8.1.3. 7) 

(i.e., we have a diagram 

(8.1.3.8) 

lifting the diagram defining d2) . 
The cocycle condition (8.1.1.3) gives us the requirement that 

(8.1.3.9) 

So from a descent datum (in the sense of [13]) on x, we get a descent datum in the 
sense of [20] ([20] defines a descent datum as a collection of objects Ei over Si, with 
vertical isomorphisms fiJ satisfying (8.1.3.9)). In fact this description is exactly what we 
find in [41], except that the extra condition '!ii= id' is required. This corresponds to 
the 'normalisation' condition of definition 8.1.1.1. 

Maps of descent datum are not discussed in [20], but it is clear what they should be, 
(and indeed we can read this off from definit ion 8.1.1.8, or from the description in [41], 
since although that paper defines a stack as a (lax) functor to Cat, the topologies used 
are Grothendieck topologies, and the descent category used is exactly the Des(S, n) we are 
defining here): A map m: (xi, fiJ) - (Yi, 9iJ) of descent data (for n) is a collection of 
vertical maps mi(= F(Si - 11 Si)(m), so each mi is automatically an isomorphism), 
making the diagram 

(8.1.3.10) 

where milsij = F(Sij -si)(mi) = F(Sij - U Sij)(Fd1(m)). 
From [20], we get a category Des(S, n) of descent data for n on S, and the above 
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argument gives us the following functor 

:F: Des(S. ,F) ----Des(S,1T) 

(x, J) (x lsi, f ls;J (8.1.3.11) 

m I-----~ mis; 

Fis full and faithful, because any collection of maps mi: (xis;, Jls;J - (Yls;, gls;J 
give us a unique map m = U imi : (x,f)-(y,g) with mis;= mi, 

To show that F is essentially surjective, we need the following result 

Proposition 8 .1.3.12. Let 7T: X---+ C be a groupoid fibration (in the sense of /46}), 
and suppose that C and X have coproducts. Then 7T preserves coproducts. 

Proof. Let Ei E X be objects over objects Si EC. Form the coproducts 

(8.1.3.13) 

in C 

Applying 7T to the coproduct diagram defining C, we get a unique /3 making 

(8.1.3.14) 

commute. Lift /3 to some map, m, ending at C; since hi is cartesian we get a unique 
lifting ni of O:i making 

(8.1.3.15) 

X 

commute in C. But C is a coproduct, so the maps ni induce a unique g: C - x with 
ni =hi# g for all i . We now have 

(8.1.3.16) 

and the hi are jointly epi, so we have idc = gm, and thus idn(C) = 1T(g)1T(m). 
In C, (8.1.3.14) and the definit ion of g give us 

(8.1.3.17) 

and since the o:i are jointly epi, we get that 7r(m)7r(g) = idu si, i.e., 7r(g) is the required 

isomorphism 7r(U Ei) ~ U 7r(Ei)- D 
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Corollary 8.1.3.18. :F is essentially surjective. 

Proof. Given (xi, fij) E Des(S, F), let x be U Xi · By proposition 8.1.3.12, we have (up 
to isomorphism) x /s; = Xi, and 1r(x) = U Xi, i.e., x E FSo. To define f we take 

(8.1.3.19) 
i,j i,j i,j 

and observe that 

1r (II xi/S;j) ~ II 1r(xi/S;j ) 

~ II Sij (8.1.3.20) 

~ 1r(Fd1(x)) 

Since 1T is a groupoid fibration it reflects isomorphisms and hence we have U xi/S;j ~ 
Fd1(x) . Similarly we get U Xj/S;j ~ Fdo(x), and thus U fij induces a unique isomorphism 

C>! 

f : Fd1(x) ~ Fdo(x) in FS1. Because the fij satisfied (8 .1.3.9), this f satisfies 
the Duskin cocycle condit ion (8.1.1.3). So we have found (x, f) E Des(S. , F) with 
:F((x, f)) ~ (xi, fij) as required. □ 

Putting the above results together we conclude: 

Proposition 8.1.3.21. For any groupoid fibration 1r corresponding to F: C0P - Cat , 

for every covering family S • . 

The functor des 

Des(S. , F) ~ Des(S, 1r) (8. 1.3.22) 

□ 

Again we do not have an explicit description of des in [20], but it is clear what the 
definit ion should be, and that definition should agree with definition 8.1.1.5 (and [41]). 
Thus, instantiating definition 8.1.1.5, the functor des: FS- Des(S,1r) should map 
an object A over S to the decent datum corresponding to (Fp(A), id) E Des(S. , F), i.e., 
des(A) = (Ai, id) E Des(S, 1r) where Ai := A /s; over Si (this works because we have a 
diagram 

(8.1.3.23) 
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C, 

where the top triangle lifts the bottom), and the map Ailsii ~ Aj lsii is the identity 
on Alsii' On maps m: A-B, we get the family m is; (which corresponds to Fp(m) 
in the Duskin picture) . 

Prestacks and sheaves of isomorphisms 

Proposit ion 8.1.3.24 . Let F and n be as in proposition 8.1.3.21. Then Fis a prestack 
(in the sense of (13)) if and only if n satisfies the condition 'isomorphisms form a sheaf' 
from {20). 

Proof. The condition that F be a prestack is that whenever A and Bare lifts of S, and we 
"" have isomorphisms mi: Ai~ Bi, then there is a unique m: A-B with mis;= mi. 

This is the condition 'isomorphisms form a sheaf' we find in [20]. D 

Effective Descent data 

Proposition 8 .1.3.25. Let F and 7r be as in proposition 8.1.3.21, and let (Ei,Oij) E 

Des(S, n) correspond to (x, f) E Des(S. , F) under the equivalence (8.1.3.22) . Then (x, J) 
is effective (in the sense of (13)) if and only if (Ei, Oij) is effective in the sense of /20). 

Proof. T his is immediate from the description of des: F S - Des(S, n) above. D 

The Notions of Stack agree 

Putting the previous sections together we get the following theorem. 

Theorem 8.1.3.26. Let F and n be as in proposition 8.1.3.21. Then F is a stack (in 
the sense of (13)) if and only if n is a stack (in the sense of (20)). □ 

8.2 2-Bundles and 2-Etale spaces 

We have already discussed in chapter 6 the adjunction between the category of presheaves 
on X and the category Top/ X of bundles over X, and the result ing equivalence between 
sheaves and etale spaces on X. 

We now describe a similar equivalence between fibred categories on X and what we 
will call 2-bundles on X which gives a way of moving between stacks on X and 2-etale 
spaces on X . 

Throughout we work with a fixed topological space X, which is locally connected. A 
bundle on X will just mean a space over X, i.e., an object of the category Top/ X. Recall 

that t he bundle [ 1'] is etale over X if, for every e E E, we can find neighbourhoods 

""' B ~ E fore and U ~ X for n(e) such that n ls: B ~ U is a homeomorphism. The 
inverse for nlu can be considered as a section, s: U - E, of E over U. 
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8.2 .1 2-Bundles over X 

2-truncated simplicial bundles 

We wish to consider groupoids E in Top/ X; we regard E as a 2-truncated simplicial space 

over X. So we have [ l] • a 'bundle of vertices' and [ J l • a 'bundle of morphisms 

(or 1-simplices) over X'. We require that the two face maps (i.e., codomain and domain), 
do, d1: E1 - Eo the degeneracy map, so: Eo - E1 and composition (which is a face 
map d1 from level 2 of the simplicial structure induced by E) be continuous, commute 

with 7l', and satisfy the simplicial identities. In particular, if xo ~ x1 E E1 then 
7r(x) = 7r(xo) = 7r(x1). We write E' for the subspace of non-identity morphisms; the 
identity maps are given by the subspace soEo. Since doso = id we have E1 = E' 11 soEo. 
This is a coproduct of sets, but often we will have topologies chosen so that this is a 
co product of spaces as well. 

Definition of 2-Bundles 

A 2-bundle on X is a groupoid, E, in Top/ X in which all open sets U ~ E0 are closed 
under isomorphism, i.e., if u E U u 2=: v then v must also be in U. 

Example: 2-discrete spaces and trivial 2-bundles 

As an example we generalise the notion of a discrete space to our 2-dimensional context. 
A topological groupoid, G, is 2-discrete if G' is discrete and a subset is open in G0 iff it 
is closed under isomorphism. (Thus G1 = G' 11 Go as a topological space.) 

Thus Go is not discrete, but if we identified isomorphic points then the result becomes 
discrete. If we think of the open sets as providing a way to measure the distance between 
two points, then in a discrete space all points can be distinguished, but in a 2-discrete 
space isomorphic points become indistinguishable. 

A trivial 2-bundle is a 2-bundle of the form [ G }~ ] where G is 2-diserete. This 

means that as sets we have an object (f, x) for each f E Go and x EX (and similarly for 
morphisms), and the open sets are products of opens from G and X. 

Note that the fibre over x E X is the groupoid G, but with a not-entirely discrete 
topology: if we made both Go and G1 discrete then we would "just" have two bundles 
over X, corresponding to a sheaf of groupoids. Since we want a stack of groupoids, we 
need the non-discrete topology. 
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The 2-category TwoBundles/ X 

We get a 2-category TwoB undies/ X of 2-bundles over X, where the picture is 

(8.2.1.1) 

X 

Explicitly, a 1-cell f: 1r
1 ---+ 1r

2 is a functor f: E---+ F which is continuous (i.e., the 
maps on objects and morphisms are both continuous) and satisfies 1r2(J(x)) = 1r1 (x) (for 
all objects and maps x). 

For the 2-cell, a, we want a continuous natural transformation. Let I be the 'unit 
groupoid' with the 2-discrete topology: Io = { 0, 1} with the codiscrete topology and 
I' has two non-identity maps, i: 0---+ 1 and i - 1 : 1---+ 0, with the discrete topology. 
Then we can form a topological groupoid E x I in the obvious way, and we have two 
maps io, i1: E---+ Ex I with io(e) = (e, 0) and i1(e) = (e, 1). These are continuous: 
ic;1 (U x W) is empty unless 0 E W in which case it is U. We can now define a: f ===? g 
to be a continuous functor a: E x I - E which is 'over X' in the sense that 

Exl~F 

l l rr2 
(8.2.1.2) 

E-X 
rrl 

commutes, and agrees with f and gin the sense that f = (io # a) and g = (i1 # a). 
In particular if x E E, we get a map ax := a(sox, i) in F from a(x, 0) = fx to 

a(x, 1) = gx, and given m: x - yin E applying a to the equation (sox , i) # (m, sol) = 
(m, i) = (m, so0) # (soy, i) gives the usual naturality square 

(8.2.1.3) 

If such an a exists then the 'closed under isomorphism' property tells us that if 
U ~ Eo is an open set of objects, then J-1(U) = g- 1(U) (because if f(x) EU then the 

c., 

isomorphism O'.x: f(x)--=-+ g(x) forces g(x) EU and conversely) 
Also the requirement (8.2.1.2) is automatically commutative because f and g are maps 

over X. 
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2-Etale spaces 

A 2-etale space on X is a 2-bundle, [ 1'] • on X with the following properties. First, 

[ k] is homotopy-etale over X. This means (by definition) that given e E Eo we can 

find neighbourhoods B ~ Ea for e and U ~ X for n( e) and a map s : U ----+ B such 
that s # nls = idu and nls # s '.:::'. ids where the homotopy, H, is a strong homotopy, 
meaning that 

(8.2.1.4) 

B ~ U 

commutes. On the morphisms we require the following etale-like condition: For all maps 
cp: x -yin E1 let p = n(cp) = n(x) = n(y) EX. We have (using the homotopy-etale 
condition) sections Sx, Sy: U----+ Eo with sx(P) = x and sy(P) = y. Then there must 
exist an open set W and a map s : W----+ E1 with s(p) = cp, and then the condition is 
that the sub-bundle E{" (x, y) := ims = { sq: q E W} must be etale over X. 

The paper [8] appears to provide a similar construction, and there they end up with 
an actual stack. 

8.2.2 The fibred groupoid of a 2-bundle 

Given a 2-bundle, [ 1'] • on X we define a fibred groupoid r[n] on X (i.e., a functor 

r[n]: O(X)0
P ----+ Grpoids as follows. On an open set U we have a groupoid r[1r](U) 

whose objects are the sections of [ J] over U, and whose maps are sections of £ 1 

Note that on maps we are doing the 'classical' construction of a presheaf of sections from 
a bundle. 

Explicitly, an object is a continuous map a: U----+ Eo with n(a(x)) = x for all x EU; 
a morphism a ----+ bis a: U----+ E1 over p with a# d1 = a and a# do= b, i.e., for 

each u E U we have a 1-simplex (i.e. , a morphism) a(u) ~ b(u) in E. Composition 
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of morphisms happens pointwise (this is why we required 2-bundles to have E be a 
groupoid, rather than a general simplicial set). Restriction functors f [n](U) ---+ r[n](V) 
just pre-compose with the inclusion V ~ U. (Thus we always get that r[n] is a strict 
functor O(X}°P---+ Grpoids.) 

Descent data 

A descent datum for a cover, ( U ex: a E A) of U, is given by maps ({)ex : U ex ---+ Eo 

and isomorphisms ({)ex(J(u) : ({)ex(u) ~ ({)ex(u) (which are 'continuous in u' meaning that 
u 1-+ ({)a(J(u) is a continuous map from U to E1) plus the condition that whenever u lies 
in a triple intersection U c,(37 , ({)exf3 ( u) # ({)(37 ( u) = ({)ex7 ( u). 

The descent datum is effective if we have a collation of the ({)ex ( u), consisting of a 
continuous map <p : U - Eo and isomorphisms ( again forming a function continuous 

C>I 

in u) 'l/Ja(u) : <p(u)--=-,.. ({)ex(u) which satisfy 'l/Jex(u) # ({)ex(J(u) = 'lfJ(J(u) on Uex/3· 

Gluing conditions in r(n) 

We would like f(n) to be a stack, so let us examine how true this is. 
Let (Uex: a E A) be an open cover of U, and let there be a descent datum for this 

cover given by maps ({)ex: Uex ---+ Eo and ({)ex,(3: Uex/3---+ E1. 
Choose a section s : U ---+ U ex Uex for the map ilex Uex ---+ U coming from the 

coproduct (on the underlying sets: s need not be continuous), i.e., we have s(u) = (su, u) 
where su E A is an index for which u E Usu· This is used to define <p with 

C laim: <p is continuous 

<p: U ------+ Eo 

Uf--- --+-(()su(u) 
(8.2.2.1) 

Proof of claim. If V ~ Eo is open then <p- 1(V) = { w: ({)sw(w) EV}. For w E <p- 1(V) 
we have that Bw = <p:;-J(V) ~ Usw, is an open neighbourhood of w, so we just need 
to show that Bw ~ <p- 1 (V). But if x E Bw then ({)sw(x) E V and the isomorphism 
({)sw,sx(x): ({)sw(x)---+ ({)sx(x) = <p(x) shows <p(x) EV, i.e., Bw ~ <p-1(V). □ 

Now <plu,. still sends u E Uex to ({)su(u), but we have u E Us(u),ex and an isomorphism 
0, 

({)s(u) ,ex( u): ({)s(u)U--=-,.. ({)exU· 
But now we have a problem as the above is almost the '!/Jex we need (the condition on 

'l/Jex being compatible with ({)exf3 over double intersections Uex,(3 is exactly the condition on 
({)su,ex,(3 over triple intersections Usu,ex,(3) but '!/Jex need not be a continuous map Uex---+ E 1. 

We conjecture that t here is a way to repair this, perhaps by a better choice of s, for at 
least some 'nice' contexts. In other words, we define a nice 2-bundle to be one for which 
f(n) is an actual stack, and call the resulting category nTwoBundles. 

This would give us a map r : nTwoBundles/X---+ [O(X)0 P, Grpoids] whose image 
was inside Stacks(X). Even if the 2-bundle is not 'nice', f(F) acts on morphisms just 
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like the functor from (6.1.2.4), so we do have image inside the (2-)category of prestacks, 
and there is a 'stackification' map from PreStacks(X) to Stacks(X) (which is left 
adjoint to the obvious forgetful functor) 

8.2.3 The 2-stalk of a fibred category 

The above generalised sections of a bundle, and the stalk of a presheaf can be generalised 
as follows. 

We define a functor Stalk: [O(X)0 P, Grpoids] - nTwoBundles called a 2-stalk. 
Let F: O(X)0

P - Grpoids , then Stalk(F) is a generalisation of the usual stalk 
construction. 

For objects, Stalk(F)o consists of ( equivalence classes of) elements (p, U, x) where x is 
an object of FU and p EU E O(X) with the equivalence relation (p, U, x) ~ (p, V, xiv) 
whenever V ~ U. 

For the maps, we essentially apply the usual stalk construction to the arrows of F, i.e., 
Stalk(F)((p, U, x), (p, V, y)) is obtained from 

{ (p, W, cp): cp: xlw -Ylw,P EWE O(U n V)} (8.2.3.1) 

where we have the usual equivalence relation (p, W, cp) ~ (p, W, cp) iff cplo = cp'lo where 
p E n E O(W n W'). This defines all the maps, including the identities, in the same way, 
however the to define the topology we treat the identities differently. The equivalence 
relation on the objects ensures that domain and codomain are well-defined. 

We a re not yet done because we have not defined a topology on Stalk(F), for which it 
is easiest to introduce the map rJ in the next section. 

8.2.4 rJ: F - r Stalk(F) 

Ignoring the topology on Stalk(F)o for the moment, we have a map rJp(U) : FU -
r Stalk(F)(U), where on an open set u we define rJp(U)(x) = Cu)., with 

(vr: U---Stalk(F) 

P (p, U, x) 
(8.2.4. l) 

If x is an arrow, this is the usual unit for the Stalk -l r adjunction and we choose basic 
open sets in Stalk(F)' to be images ( V r (U) = { (q, W): q E u} (we only do this for 
the non-identity arrows as the basic opens at an identity sax are just so V where V is a 
basic open at the object x). 

If x is an object, then we choose our basic opens in Stalk(F)o to be 'essential images', 

ess img ( ; r = { ( q, V, y) : ( q, V, y) ~ ( ; r (p) for some p E U } 

= { ( q, V, y) : ( q, V, y) ~ ( q, U, x), q E U } 
(8.2.4.2) 

( the second line follows because we can only have an isomorphism if p = q) . 
If x is a morphism, then ( v ) • is continuous-this is the result for the stalk of a sheaf 

plus the lemma below. 
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Lemma 8.2.4.3. For x E Ob FU, (v-r : U - Stalk(F)o is continuous 

Proof. We must show that ((vr)- 1(essimg((f r)) =Bis open in X. 

If p E B then p E U and there is an isomorphism (p, W, rp) : (p, U, x) ~ (p, V, y) . We 
will show that W ~ B which shows B is open. 

If q E W then we have isomorphisms 

(tr (q) = (q , V, y) = (q, w, Ylw) (~) (q, w, xlw) = (q, u, x) = (; r (q) (8.2.4.4) 

therefore q E B. □ 

Lemma 8.2.4.5. 1r: Stalk(F)o - X is continuous. 

Proof. If u is open in X, and (p, u, x) E 1r-1(U) then essimg Cur~ 7l'- 1(U). □ 

Lemma 8.2.4.6. Stalk(F) is a 2-etale space over X. 

Proof. Open sets in Stalk(F)o are closed under isomorphism by definition. The maps s0 , 

do , d1 are continuous. (so we have a 2-bundle over X). 
Stalk(F)o is homotopy-etale: if (p, U, x) E Stalk(F)o then we have an open neigh­

bourhood B = ess img( ( v) •) of (p, U, x) and an open neighbourhood U for p for which 
71'1B and ( v r form a homotopy equivalence with ( v r # 71' = id. (The homotopy 
H: Bx [0, 1] - B can be given by H(b, 0) = (q, U, x) and H(b, t) = b if t > 0. This is 
continuous because all functions with codomain a codiscrete space are continuous) 

The condition on Stalk(F)i: Given a non-identity map (p, W, rp): (p, U, x) -
(p, V, y) we can restrict x and y to W, so without loss of generality we can assume 
U = V = W , then let sx = (~r, sy = (wr and s= (wr- Then Ef(x,y) = 
im s = { (q, W, rp): q E W} is etale by the argument showing the stalk of a sheaf is 
etale. Similarly if so(p, U, x) is an identity map then sx = ( yj) • and s = Sx # s0 gives 
Ef (x, x) = { so(q, U, x): q EU} is again clearly etale. 

□ 

We get a (2-)functor Stalk: [O(X)0 P, Grpoids] - TwoBundles/ X whose image 
is inside TwoEtale / X. 

8.2.5 The counit, c : Stalk f('rr) - 1r 

If 71' is a 2-bundle over X, we have a map (over X) 

c7r : Stalkf(7l') - - -~ 71' 

(p, U, X) 1---- ~ x(p) 
(8.2.5.1) 

on level 1 this is the usual counit of Stalk ---J r, and hence continuous for the same reasons. 
On level O it is continuous because we required that open sets in Eo be closed under 
isomorphisms: If B ~ Eo is open, then c 1 (B) = { (p, U, x: U - Eo): x(p) EB}. 
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If (p, U, x) E c 1(B) then let V = x-1(B), which is open in X and we claim that 

ess img ( x{; r ~ e-1 ( B) . To prove this we must show that if ( q, W, Y) E ess img ( x{; r, 
"' then y( q) E B. To do this, just observe that the isomorphism ( q, W, y) ~ ( q, V, x Iv) 

gives us y(q) ~ x(q) . Since q E V we have x(q) E B, and since B is closed under 
isomorphism, y(q) E B also. 

8.2.6 The adjunction Stalk -j r 
In section 8.2.4 we defined a map ('TJF )(U) for each open set U. These form a natural 
transformation 'T/F: F---+ r Stalk(F), which is natural in F, i.e., they fit together to 
form 'T): id===> r Stalk. Similarly the map €1r from section 8.2.5 is natural in 1r, i.e., we 
have a natural transformation e: Stalk r ===> id. These are the unit and counit of an 
adj unction 

Stalk 

~ 
[O(X)0 P, Grpoids] .l n'I'woBundles/ X (8.2.6.1) 
~ 

r 

as can be easily verified by checking the triangle equalities. 
We have seen that the adj unction restricts to one between Stacks(X) and TwoEtale/ X. 

We now show that this new, restricted, adjunction is actually a 2-equivalence, i.e., that 'T/ 
and e are equivalences when restricted to stacks and 2-etale spaces. 

Proposition 8.2.6.2. If F is a stack on X then 'T/F is an equivalence. 

Proof. We must show that each rJF(U) is an equivalence of categories, i.e., full, faithful 
and essentially surjective. On arrows, rJF(U) is full and faithful because the arrows of F 
form a sheaf. 

Let a Er Stalk(F)(U). We need Z E FU with a~ (fr. 
a has the form a(p) = (p, Vp, xp) where Xp E F(Vp)- a is continuous, so we have open 

sets 

Kp := a-1 (ess img (~) •) 

= {q EU: a(q) ~ (q, Vp,Xp)} 

with p E Kp ~ U. Let Lp = Vp n Kp, then we have 
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Let Zp = XplL,, E F(Lp) with I.pp ; (i;r - o:IL,,· We get l.ppq making the following 
diagram commute: 

(8.2.6.5) 

Using the diagram (8.2.6.5) it is easy to show that l.ppq#IPqr = I.ppr over triple intersections: 
we simply put the diagram for IPpq above the diagram for IPqr, and notice that the outside 
of the resulting rectangle is the diagram for 'Ppr· 

Also note that because f/F is full and faithful, IPpq = ( ~) • for a unique map 'l/Jpq in 

F(Lpq), Since UpLp = U and Fis a stack, t he descent datum (Zp, 'l/Jpq) thus glues to give 
Z E FU with ZI£,, ~ Zp, 

We now have 

o:(p) = o:IL,, (p) 

therefore o: ~ rtF(U)(Z) as required. 

~ (1:). (p) 

~ ( zi:,, ) . (p) 

~ (i) • IL,,(P) 

= ( i). (p) 

(8.2.6.6) 

□ 

Proposit ion 8 .2.6 .7. If [ !-] is 2-€tale over X then c, is a homotopy equivalence 

C : Stalk r ( 7l') ====? 7l'. 

Proof. Given e E E we have a homotopy inverse s: U ---+ B for some U and B, and 
mapping e to (7r(e), U, s) gives a homotopy inverse to c. □ 

Corollary 8.2.6.8. Stacks(X) is 2-equivalent to TwoEtale/ X 
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8.2. 7 Trivial and Locally trivial stacks 

Since we know what a t rivial 2-bundle is, we should be able to see what a trivial stack is: 
it should be the stackification of the constant fibred category which maps all U to some 
fixed groupoid G. 

We should be able to define locally constant 2-bundles, and thus locally constant 
stacks. 

8.3 Z(.\) as a stack 

We turn Z(>.) into a locally trivial stack using the 2-equivalence in section 8.2 and the 
fact that Stacks(-) is a 2-stack on Top. This is a generalisation of a process from [5]: 

essentially all we are doing is replacing the crossed module G ~ Aut(G) used there 
with M. 

8 .3.1 Over Ui 

[ 

Ui x Ner X (M)v l 
On the open set Ui we place the object Zi = Ji . where now on 

Ner X(M)v we use the 2-discrete topology from section 8.2.1, i.e. , we have a constant 
stack on Ui, where the fibre is the (2-dimensional part of the) simplicial set Ner X(M)v, 

8 .3.2 Ove r Uij 

We can restrict Zi to a subset of Ui by pullback; the result is another constant stack: 

V X NerX(M)v I ui X NerX(M)v 

Zi lv ! l zi (8.3.2.1) 

v - -----~ui 

We have a map Zij: Ziluii--+- Zj luii induced by the action of Mon itself by multipli­
cation and the formal map >.: Zij = - #o Aij . 
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Explicitly this looks like 

etc. 

8.3.3 Over uijk 

p 

Z;; x,i, *(I3* 
p8e 

(8.3.2.2) 

Restricting to a triple intersection, Uijk, t he maps Zi luiik # Zjluiik and Zkluiik become 
homotopic, the homotopy begin given by multiplication by the two-cell Aijk (referring 
to section 7.3.2 we are here writing Aijk for the composition of the diagram (7.3.2.7) , i.e., 

). k ) Aijk = Lijk #o Aik = (Aij Ajk, Li}k) . 
We can use section 2.4.2 to visualise the homotopy Zijk as follows. 
On a 0-simplex (x, i, p) E Ziluiik is assigned the 1-simplex 

(8.3.3.1) 

in Zkluiik. (The codomain of the 2-cell is pAijAjkO ( LJt) which is PAik by (7.3.2.8)) 
To save space in the diagrams we could abbreviate the above to 

The picture is 
p 

* ---- * 
>.;i 

* ---- * ------* p 
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Looking at the next dimension, a I-simplex, (x,i, (p,e1)) , 

(x,i,p)--------➔ (x,i,p8e1 ) (8.3.3.4) 

is assigned a square 

(8.3.3.5) 

The common d1-face of ho and h1 is given by composing the two-cells in t he other 
two faces (and by the interchange law in the 2-category M the two composites are 
equal) , i.e., d1ho = d1hl = (p, e1) #o Aijk (this is (x, i, (p, e1))ziik in the 'action' notation 
of section 2.4.2). Explicitly we have 

(8.3.3.6) 

p 

k ~ AijAjk 
x, A'* ---➔ * ---* (8.3.3.7) 

~ 
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8.3.4 On uijk€ 

Over quadruple intersections Uijke the equation (7.3.2.16) induces an equation between 
the Zijk : 

Zk 

/~ 
zi ---ZJ ------+ Ze 

-l),Z;jt 

8.3.5 Getting a stack 

z. 
/J~ 

zi ------+ zk - -- Ze 
-l),Zikt 

(8.3.4.1) 

Hence the z. form a 2-descent-datum so we can glue to get a stack, Z, on X. Z is locally 
trivial in the sense that over the open cover U it trivialises. 

More generally we can replace the regular action of M on itself by any action of M on 
a groupoid, and we conjecture that similar construction should work if U is a hypercover 
as in [5]. 
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g --, W for simplicial etale spaces, 

79- 80 
Ilo--, 1 0 -, 79 
Ilo --, const, 76 
Ilo --, discrete, 76 
Stalk #I'--, inclusion, 74 
Stalk--, r , 74, 108-110 
Const--, I' , 76 
stackification, 108 

a(b), see fibre bundle, atlas 
analogy, 10, 29, 79 
augmented simplicial object, 95, 97 
aut(Y), 6, 15- 16, 22, 51 

bifunctor, 29, 35 
bisimplicial set, 28- 29, 37, 66, 92 

diagonal, see diagonal 
BiSSet , see bisimplicial set 
bundle, 43 

2-bundle, see 2-bundle 
constant, 50 
fibre, see fibre bundle 
locally trivial, 5, 72 
trivial, 6, 43, 50, 76, 79, 81, 84 

bundle gerbe, 106 

Cartesian closed, 12- 15, 17, 94 
cat1-group, 63 



categorification, 5, 6, 58, 97 
Cech nerve 

explicit description, 78 
classifying space, 43, 63 
closed under isomorphism, 104, 105, 109, 

110 
cocycle, 95, 96, 100, 102 
codiagonal, 'v, 30-34, 41, 42, 65, 92, 94 
codiscrete topology, 105 
coend, 19, 35 

simplicially enriched, 94 
coequaliser, 35 
coherence, 27 
cokernel, 68 
colimit, 18, 73, 78 
collation, 107 
constant sheaf, see sheaf, constant 
constant simplicial group, see K(G, 0) 
constant simplicial object, 24 
continuous functor, 105 
copower, 17, 18 
coproduct, 17, 35, 36, 43, 44, 78, 99, 101, 

104, 107 
corestriction, 4 7 
cover, 6, 44, 72, 76-79, 107, 115 

Grothendieck topology, 97, 98, 107 
covering space, 4- 6, 72, 74- 75, 82 
crossed module, 4- 6, 43, 63, 65, 66, 68, 

69, 79, 80, 82, 91, 94, 112 
as 2-group, 64 
as double group, 64 
as simplicially enriched groupoid, 94 
double nerve, 65 
homotopy groups of, 68 
horizontal, 64 
horizontal nerve, 65 
vertical, 63 
vertical nerve, 65, 69 
weak equivalence, see weak equiva-

lence 
CW-complex, 6 

IIJ)(F), see Thomason double category 
Dec, see total Dec 
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degeneracy maps, 13 
definition, 9 
in Q(X, Y) , 13, 14 

degenerate simplex, 11, see simplex, de-
generate 

6, 8 
1\, 9 
density, 18, 73 
des, 96-98 
descent 

map of I-descent, 96 
map of effective descent, 96 

descent category 
for groupoid fibration, 99 

descent category, Des(X. , F), 95- 98 
descent data, 95- 98, 100, 111 

effective, 96- 97 
for r, 107 
for groupoid fibration, 100 
normalised, 96 
trivial, 96 

diagonal, 30, 37, 42, 65, 92, 94 
discrete 

category, 16, 78, 98 
topology, 6, 74- 76, 79, 104 

double category, 29, 63- 65, 92 
double category, Thomason, see Thoma-

son double category 
double group, 64 
double groupoid, 64 
double intersection, 6, 82, 107 
double mapping cylinder, 40 
double nerve, see nerve, of double cate-

gory 
Dwyer, 24, 25 

equaliser, 97, 98 
equivalence 

between sheaves and etale spaces, 4 
between sheaves and covering spaces, 

6 
of 2-categories, 6 
of n-categories, 5 
of categories, 4 



of stacks and 2-bundles, 6 
etale space, 4, 6, 74-77, 79, 81, 91, 103, 

109 
equivalence with sheaves, 75 

extra degeneracy, 21, 69 

face maps, 10 
definition, 9 
horizontal, 29 
in S(X, Y), 13 
in a simplicial set, 9 
vertical, 29 

fibration, see groupoid fibration or Kan 
fibration 

fibre, 4- 6,43, 49- 50, 57, 74, 75, 82,104, 
112 

fibre bundle, 4, 6, 7, 43, 50- 56 
atlas, 51- 54 
is a TCP, 53- 54 
universal, see W(G) 

filler, 44, 46 
finite sets, 8 
forgetful functor, 1 7 
formal map, 4, 6, 79- 86, 112 

explicit description, 79 
explicit description for 1 - P, 80 

explicit description for C ~ P, 84-
86 

free groupoid, 25 
fundamental crossed module, 5 
fundamental group, 4, 5 

g, see loop groupoid 
Galois-Poincare correspondence, 5, 6 
generalised vertex, see vertex, generalised 

vertex 
generalised whiskering, 66 
generater 

for simplicial set, 38 
generator 

for a group, 5 
for simplicially enriched groupoid, 26, 

56 
germ, 74 
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glue, 39, 115 
gluing, 82, 96 
grid, 29, 34 
Grothendieck, 4, 5 
Grothendieck construction, 16, 28, 40-42, 

72, 99 
inverse, 99 

Grothendieck topology, 97, 98 
groupoid fibration, 99, 101, 102 
Grp, 22, 27, 63, 64 

homotopy 
theory of simplicial sets, 6 

homotopy class, 43, 57, 58 
homotopy colimit, 34- 37, 40, 42, 61, 78 

hocolim 'v, 94 
as coequaliser, 36 
as tensor product, 36 
in Cat, 40 
normal form, 36 
simplicially enriched, 94 

homotopy pushout, 37- 40 
homotopy-etale, 106, 109 
horn, 44-46 
hyper cover, 115 

idn: [n] - [n], 10, 11 
infinitely lax natural transformation, 61 
internal category, 63- 65 
internal group, 23, 64 
internal groupoid, 63 
internal horn, 13, 15, 17, 22 
internal monoid, 15 
isomorphisms form a sheaf, 103 

Joyal, 24, 25 

K(G, 0), 61, 82 
Kan, 24, 25 
Kan fibration, 44-49, 57, 58 
kernel, 49, 68 
kernel pair, 77 

lift, 44, 46, 48, 99, 101 
locally connected, 7 4 



locally constant sheaf, see sheaf, locally 
constant 

locally constant stack, see stack, locally 
constant 

locally trivial bundle, see bundle, locally 
trivial 

loop groupoid, 25-26, 60 
for simplicial etale spaces, 79- 80 

model category, 6 
Moore complex, 68 

n-simplex 
~[n], 10, 50 

normal form, 8, 53, 55 
~[O], 10, 15, 44 
~ [1], 11, 19 
~[2], 10 
as a list, 10, 19 
in a simplicial set, 9, 11 

n-type, 4, 5 
nerve 

Cech nerve of cover, 6, 72, 77- 79 
of 2-category, 66 
of category, 12, 25, 35, 40, 41, 62 
of crossed module, 6, 65- 68, 79, 87, 

112 
of crossed module, explicit descrip­

tion, 66- 68 
of crossed module, explicit descrip­

tion for M = 1 -- P, 80 
of double category, 29, 31- 33, 41, 42, 

92 
of functor into Cat, 40- 42 
of group, 16, 61, 80 
of groupoid, 4, 6 
of internal category, 65 
of simplicial group, 31 
of simplicially enriched category, 92 

non-decreasing map, 8 

open, 75- 77, 104- 110, 112, 115 
order-preserving, 8 
Ordinal sum, 30 
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IIo(X), 76 
1r1(M), 68 
1r1 (X), see fundamental group 
1r2(M), 68 
prestack, 97 
principal action, 54 
products, 14, 78, 104 
projection, 43 
pseudo-functor, 99 
pullback, 6, 43, 44, 46, 50, 51, 55, 57, 78, 

79, 81, 99, 112 
pushout, 38, 39 

quadruple intersection, 115 
Quillen, 6 

regular atlas, 52 
regular representation, 57, 115 

explicit description, 23 
for a crossed module, 94 
for simplicial group, 23 

representing map, 11- 12, 43, 50 
for simplicial group, 23 
for simplicial group(oid)s, 12 
in ~(A, B), 14 

restriction, 73, 74, 76, 99, 107 

~(X, Y), 12- 15, 94 
preserves fibrations, 45 

semidirect product, 27, 28, 63-65, 69 
sheaf, 4, 6, 72, 74- 77, 97, 98, 103, 104, 

108- 110 
constant, 4, 76, 79 
is a discrete stack, 98 
locally constant, 4, 72, 7 4-75 

equivalence with etale spaces, 75 
locally trivial, 5 
sections, 7 4, 76 
stalk, 73-76 

sheafification, 7 4, 76 
sheaves, see sheaf 
<Yi , 9 
SIMP(C), 16- 19 
simplicial etale space, 6, 78, 79 
simplicial categories, 43 



simplicial enrichment 
for simp(C) , 16- 19 
for SSet, 12- 15 

simplicial formal map, see formal map 
simplicial group, 15, 22- 23, 43, 54, 58, 

61, 65 
constant, see K(G, 0) 

simplicial groupoid, 23- 24, 65 
simplicial homotopy, see simplicial set, 

homotopy 
simplicial identities, 9, 10 
simplicial map, 9 
simplicial object, 97 
simplicial replacement, 34, 37, 40, 61 

simplicially enriched, 94 
simplicial set, 9- 10 

2-category structure, 19 
automorphism, 15 
Cartesian closed property, 53, see 

simplicial enrichment, for SSet 
geometric interpretation, 10- 11 
homotopy, 19-21, 23, 46 

contracting, 21, 69 
definition, 19 
explicit description, 19- 21 

simplicial sheaf, 79 
simplicially enriched 

category, 7 
functor, 94 
groupoid, 24, 58, 63, 65 
homotopy colimit, see homotopy col-

imit, simplicially enriched 
skeletal, 8 
slice category, 15, 35, 36, 43, 77, 97, 105 
split fibration, 99 
squares, 29, 33 
stack, 4- 6, 97- 104, 106, 107, ll0, lll 

2-equivalence with 2-etale spaces, 111 
n-stack, 5 
arrows form a sheaf, 97 
as categorified sheaf, 98 
as groupoid fibration, 98 
constant, ll2 
definition, 97 
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locally constant, 4, 79, 112, 115 
trivial, ll2 

stackification, 108, 112 
staircase, 32, 41, 67, 91 
stalk, 76, 108 
strong homotopy, 49, 106 
subdivided cylinder, 39 
subdivided interval, 39 

Tr, 20 
TCP, 4, 6, 43, 51- 62, 79, 80, 82, 87 

as homotopy class, see twisting func-
tion, as homotopy class 

as homotopy colimit, 61, 62 
atlas, 56 
definition, 54 
is a fibre bundle, 55- 56 
morphism of, 5 7- 61 
motivation, 51 
PTCP, 55 
universal, see W ( G) 

tensor, 36, 79 
tetrahedron, 10, 86 
Thomason double category, 40- 42 
Thomason's theorem, 40-42 

proof, 40 
Tierney, 24, 25 
topological space, 4- 6, 43, 103 
topos, 79 
total Dec, 30, 91 
total space, 43, 76 
totally ordered, 8 
triangular prism, 21 
triple intersection, 107, ll3 
triple intersections, 111 
trivial bundle, see bundle, trivial 
trivialisation, 43 
truncated simplicial space, 104 
twist, 37, 87 
twisted Cartesian product, see TCP 
twisting function, 54-62 

as homotopy class, 57-60 
as simplicial map, 56 
definition, 54 



homotopies of, 60- 61 

unit groupoid, I, 105 

vector notation, 37, 81 
vertex, 10, 21 

bundle of, 104 
generalised vertex, 11, 23, 50 
of a simplex, 10, 11 

vertical isomorphism, 100 

W(G) , 57, 61 
as homotopy colimit, 61 

W(G)y, 57 
as homotopy colimit, 61 

W(M), 6, 79, 94 
explicit description for 1 - P , 80-

81 
explicit description for C ~ P, 86-

9 l 
W(M)y, 82 
w, 6, 31, 65 

for S-Gpds, 24- 25 
for crossed modules, 6, 66, 79- 81 
for crossed modules, explicit descrip­

tion, 82-84 
for simplicial etale spaces, 79-80 
for simplicially enriched categories, 

92 
weak equivalence, 5, 6, 34, 42, 65, 68- 71 

Yoneda, 10, 11, 13, 15, 16, 39, 72 

Z(>.) 
as a stack, 4, 6, 112-115 
as simplicial etale space, 4, 6, 79 
explicit description for 1-P, 81-

82 
explicit description for C ~ P, 91-

92 
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