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Abstract 15 

 Density and population estimates aid in conservation and stakeholder communication. 16 

While free and broadly available community science data can effectively inform species 17 

distribution models, they often lack the information necessary to estimate imperfect detection 18 

and area sampled, thus limiting their use in fine-scale density modeling. We used structured 19 

distance-sampling surveys to model detection probability and calculate survey-specific detection 20 

offsets in community science models. We estimated density and population for 16 songbird 21 

species under three frameworks: 1) a fixed framework that assumes perfect detection within a 22 

specified survey radius, 2) an independent framework that calculates offsets from an independent 23 

source, and 3) a calibration framework that calculates offsets from supplemental surveys. Within 24 

the calibration framework, we examined the effects of calibration dataset size and data pooling. 25 

Estimates of density and population size were consistently biased low in the fixed framework. 26 

The independent and calibration frameworks produced reliable estimates for some species, but 27 

biased estimates for others, indicating discrepancies in detection probability between structured 28 

and community science surveys. The calibration framework produced reliable population 29 

estimates with as few as 10 calibration surveys with positive detections. Data pooling 30 

dramatically decreased bias. This study provides conservationists and managers with a cost-31 

effective method of estimating density and population. 32 
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Introduction 33 

Population estimates are exceptionally valuable for conservation practitioners. They 34 

provide tangible and engaging numbers that aid in communicating with stakeholders, including 35 

policy makers and the public 1–3. Further, these estimates allow practitioners to set population-36 

based conservation goals, monitor the effects of management actions, and identify conservation 37 

successes. Conservation organizations would benefit from the development of cost-effective 38 

methods of estimating population size at local and regional scales 4,5.  39 

The growth of opportunistic community science projects (also known as citizen science 40 

and participatory science) such as eBird, Birdtrack, and Ornitho, provide immense opportunities 41 

to develop cost-effective methods of population estimation. Through these community science 42 

projects, the spatial and temporal breadth of available biodiversity data has reached 43 

unprecedented levels 6,7. To increase participation, many community science projects such as 44 

eBird, encourage contributions from observers of all skill levels and allow a large variety of 45 

survey methods to be employed. While eBird does not control when or where surveys are 46 

conducted, it is classified as a semi-structured community science database. Semi-structured 47 

databases are separated from unstructured databases (e.g., iNaturalist) by asking observers to 48 

specify the survey protocol used and additional information during data submission (e.g., time, 49 

date, etc.). In contrast, more structured databases (e.g., North American Breeding Bird Survey) 50 

generally use strict survey methods, predefined survey locations, and trained observers. In terms 51 

of the overall information within either project type, the sheer quantity of semi-structured data 52 

may compensate for the higher per-datum quality of data from structured community science 53 

projects 6. 54 
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Increased participation through the use of less strict protocols, however, is not without 55 

drawbacks. Persistent questions of data quality fuel ongoing research on statistical methods that 56 

make better use of semi-structured community science data. To date, extensive methods have 57 

been developed to improve the performance of community science based species distribution 58 

models 8–10. Conservation planning based on abundance, however, is generally more effective 59 

than based on occurrence alone 11–13. Further, for commonly used population-based conservation 60 

goals 14, relative or observed abundance information is insufficient as density is required for 61 

population estimation. The relative difficulty of modeling density and population size has led to 62 

the frequent use of species occurrence as a proxy for density 15,16. Although occurrence and 63 

density of a species are linked, their relationship is complex and nonlinear, making the direct 64 

substitution of one for the other problematic 11,14. Estimating density and population from 65 

community science data, however, presents a unique set of challenges. While abundance is 66 

increasingly available in large community science databases, densities of organisms that allow 67 

for population estimation are not.  68 

While distribution models built on opportunistic community science data can produce 69 

predictions comparable to those informed by professional surveys, abundance information in 70 

community science data can be considerably biased and options for estimating density are 71 

limited 17,18. Addressing these biases, while estimating density and population from observed 72 

abundance, requires additional information. Distance sampling data, for example, can address 73 

biases through the explicit estimation of individual detection probability. Perhaps more 74 

importantly, estimates of area surveyed are essential to converting observed abundance to 75 

density. Due to the complexity of implementation, however, both are generally absent from 76 

community science databases. The use of structured surveys that include such information, to 77 
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address the biases in community science data, may allow for unbiased estimates of density and 78 

population size. 79 

We evaluated the use of highly structured, professional surveys to address the biases in 80 

observed abundance in community science data while estimating density and population. 81 

Specifically, we used models of detection probability built on structured survey data to estimate 82 

survey and location specific detection offsets that were included in community science based 83 

density models for 16 songbird species. Our primary objective was to assess whether models of 84 

imperfect detection from independently gathered, structured data could be used to adjust 85 

community science surveys to produce comparable detectability-adjusted estimates of density 86 

and population. We approached this objective with three frameworks that emulate realistic 87 

scenarios experienced by researchers and conservationists: 1) a post-hoc implementation of an 88 

assumed fixed survey radius that ignores imperfect detection and requires no structured data, 2) 89 

an independent, pre-existing source of modeled detection probabilities without access to 90 

additional data, and 3) an additional, supplemental, calibration dataset collected specifically to 91 

adjust available community science data. This final Calibration framework simulates the 92 

collection of structured data, specifically intended to adjust existing community science data, 93 

when large, independent, structured datasets are unavailable. Additionally, within the Calibration 94 

framework, we investigated the effects of calibration dataset size and data pooling on the degree 95 

of bias in estimates of density and population. Throughout, density models from the structured 96 

dataset were used as benchmarks to compare community science derived estimates of density 97 

and regional population size. 98 

 99 

Methods 100 
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Study area and species 101 

 We compiled environmental and avian survey data from Benton and Polk counties, 102 

Oregon, USA. These counties are located along the western edge of the Willamette Valley and 103 

the eastern slope of the Oregon Coast Mountains. The Willamette Valley is dominated by a 104 

patchwork of agricultural land whose primary crops include festucoid grasses (turf seed 105 

production) and tree- and vine-borne fruits such as hazelnuts and grapes. Remnant fragments of 106 

native oak woodlands are dispersed throughout lower elevations, with the largest patches within 107 

two National Wildlife Refuges. The coastal mountains are dominated by moist Douglas-Fir 108 

(Pseudotsuga menziesii) forest. An active timber industry diversifies the age structure of the 109 

landscape. Elevation ranges from 150 m to 1248 m. 110 

 We selected 16 species of passerine that regularly breed in the study area. The selected 111 

species represent a wide range of sample size (number of positive occurrences in the dataset) and 112 

sample prevalence (proportion of surveys within the community science data in which the 113 

species occurs; Table 1), factors that can influence species distribution model (SDM) 114 

performance 19. 115 

Survey Datasets & Data Processing 116 

We used two sources of wildlife survey data throughout our analyses: a highly-structured, 117 

professionally-gathered dataset from the Oregon 2020 project 20, and an opportunistically 118 

gathered, semi-structured, community science dataset from eBird.  119 

Structured Dataset. From 2011 to 2013, the Oregon 2020 project conducted 2,912 120 

structured bird surveys throughout the study area (Fig. 1) 20. Trained and experienced observers 121 

recorded every bird detected by sight or sound during structured, 5-minute, stationary counts. 122 
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The counts were conducted every 0.8 km along all accessible roads and every 0.2 km off roads 123 

within targeted natural habitats. Surveys were conducted during the breeding season (April 30-124 

July 9) from just before sunrise until song activity declined, sometimes up to 7 hours after 125 

sunrise. To address issues of imperfect detection, time-of-detection 21 and distance sampling 22 126 

methods were implemented. For time-of-detection, observers tracked and recorded a detection 127 

history for each individual bird through five sequential one-minute intervals. For distance 128 

sampling, observers estimated the distance to each individual bird at its initial point of detection 129 

and confirmed distances with laser rangefinders. We used Oregon 2020’s highly structured avian 130 

surveys in two ways described in depth below. First, these data informed density models using 131 

current best practices to estimate densities and populations that serve as benchmarks, against 132 

which results from the community science data could be compared. Second, these data were used 133 

to model detection probability and calculate offsets to address imperfect detection in the 134 

community science dataset. We refer to the Oregon 2020 data as structured data throughout this 135 

paper.  136 

For each species, we created benchmark datasets from this structured data. These 137 

benchmark datasets were used to inform density models, as described below. Results of 138 

community science based models were compared against these benchmark estimates, which were 139 

intended to represent current best practices in density modeling. To create benchmark datasets, 140 

for each species, we randomly sampled the complete structured dataset without replacement to 141 

match the sample sizes of the community science datasets described below. This simultaneously 142 

created benchmark datasets and independent test data (e.g. the remaining structured data that 143 

were not included in the benchmark dataset) for the calculation of AUC. This process also 144 
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reduced effects of uneven sample sizes on the comparative performance between community 145 

science and benchmark datasets as, generally, models with more data perform better. 146 

Opportunistic semi-structured dataset. We downloaded complete eBird checklists from 147 

the study area, date range, and years matching the Oregon 2020 surveys (version ebd_relNov‐148 

2017). For each species, we created a separate dataset through stringent filtering. We limited our 149 

focus to stationary counts so that environmental data could be directly related to eBird checklist 150 

locations. We selected personal locations, as they correspond more closely to the exact locations 151 

of stationary counts. We restricted counts to seven hours after nautical dawn and durations to 3 152 

to 30 minutes. We removed any remaining eBird checklists that contained presence information 153 

(e.g. “X”) instead of counts, which resulted in slightly variable numbers of checklists among 154 

species (number of surveys ranged from 1,060 to 1,073 across species). Finally, we used 155 

geographic sampling to reduce overrepresentation of birds on territories near popular birding 156 

locations. To do this, we created a 200 by 200 m grid over the entire study area and randomly 157 

selected one checklist from each grid cell, independent of whether the species was detected. 158 

Ideally, there would be sufficient community science surveys within the years in which the 159 

structured surveys were conducted, but due to the small numbers of eBird checklists remaining 160 

after stringent filtering, we expanded our criteria to include eBird data from 2011-2017 (Fig. 1). 161 

While expanding criteria temporally greatly augments the number of community science surveys 162 

available, it assumes a constant distribution, density, and population size, within the timeframe.  163 

Environmental Data 164 

 We compiled data from 25 environmental variables previously used to characterize the 165 

conditions in Benton and Polk counties for avian SDMs (Table S1)19,23. These variables describe 166 

topographic, land cover, and forest structure information acquired from freely available raster 167 
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datasets 24,25. We used focal statistics in ArcMap to calculate percent land cover at five spatial 168 

scales shown to be relevant to birds: 75 m, 165 m, 315 m, 615 m, and 1215 m radii from cell 169 

centers 19,23,26,27. We used focal statistics to calculate the mean values for all topographic and 170 

forest structure variables at the same spatial extents.  171 

Frameworks Implemented 172 

We implemented three frameworks to mimic the circumstances of real-world researchers 173 

and conservationists attempting to model local and regional population sizes from community 174 

science data (Table 2). The results of these three community science based models were then 175 

compared against benchmark estimates.  176 

Fixed framework. This framework represents a scenario in which no independent source 177 

of distance sampling surveys or detection functions are available and the decision is made to 178 

assume a fixed survey radius for all opportunistic community science surveys. The fixed 179 

framework assumes perfect detection (i.e., does not account for imperfect detection) within the 180 

defined survey area. It is important to note that this survey area is not a part of the field methods 181 

employed during surveys, but is defined at the stage of modeling. In contrast to the frameworks 182 

described below, where structured data are used to adjust observed abundance for imperfect 183 

detection in community science surveys, no structured data are used in, or required for, the Fixed 184 

framework. Since this framework uses a constant survey radius across species, resulting 185 

“density” estimates are directly related to observed, or unadjusted abundance. For this 186 

framework, we converted observed abundance from community science counts to densities using 187 

a fixed 200 m survey radius. We chose 200 m because it is a common distance within which 188 

most individuals of our set of species and many North American landbird species would be 189 

detected easily by sound (Table S10).  190 
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Independent framework. This framework represents a scenario in which an independent 191 

source of detection functions are available, but the distance sampling surveys used to inform 192 

those detection functions are not available. In this framework, the decision is made to use 193 

detection functions from another source to calculate offsets that account for imperfect detection 194 

and area surveyed without the option for data pooling. This framework could be particularly 195 

valuable as researchers and practitioners would not need to conduct structured surveys, but could 196 

apply models of detection probability from independent sources to account for imperfect 197 

detection in local semi-structured community science data. The use of this framework is now 198 

possible, and will likely increase  with the growing availability of such models 28. For this 199 

framework, we used the complete structured dataset (2,912 surveys) to model detection 200 

probability and estimate survey-specific detection offsets. We included detection offsets  in 201 

density models built on community science surveys.  202 

Calibration framework. This framework represents a scenario in which no independent 203 

source of distance sampling surveys or detection functions are available and the decision is made 204 

to collect supplemental distance sampling surveys with which to model detection probability. As 205 

large, pre-existing, structured datasets are rare, this scenario is commonly encountered by 206 

conservationists looking to estimate local density and population size with community science 207 

data. In this framework, we used subsets of the benchmark datasets to model detection 208 

probability and estimate survey-specific detection offsets that account for area surveyed. Within 209 

this framework, we examined the effects of two pertinent factors for this scenario: sample size 210 

within the calibration dataset, and pooling of calibration and community science data. We 211 

created calibration datasets with a range of sample sizes to investigate the degree of survey effort 212 

necessary to effectively address bias in community science data. We implemented the calibration 213 
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framework with and without the pooling of calibration and community science datasets, used in 214 

density models. Data pooling of even small calibration datasets may decrease bias of results by 215 

ensuring that some of the data included in density models experienced the exact detection 216 

processes present in modeled detection probabilities. In this way we investigated the influence 217 

sample size and data pooling on the efficacy of calibration datasets. 218 

To create calibration datasets, we randomly sampled benchmark datasets without 219 

replacement, until the desired number of surveys with at least one detection of the species 220 

reached 10, 30, 100, and 250 occurrences (herein referred to as sample size). Sampling was 221 

performed separately within each iteration of the analysis, so calibration datasets were not 222 

identical. We used the number of surveys with at least one detection instead of the number of 223 

surveys overall, as rarer species might not be detected in a random sample of all surveys, making 224 

offset calculation impossible. We used the number of surveys with at least one detection instead 225 

of the number of individuals detected to increase the potential environmental variability 226 

incorporated in the calculation of offsets (i.e., if one site had 10 individuals and no other points 227 

were selected there would be no variation in environmental variables). Due to the low prevalence 228 

of some species, only eight species had sufficient detections for inclusion in the largest (N=250 229 

detections) calibration dataset (Table 1). 230 

Zero-inflated Density Models  231 

 For each species and each framework we ran zero-inflated boosted regression tree (BRT) 232 

density models (Fig.2). Generally, zero-inflated BRTs are a three-step process that includes 233 

fitting an SDM (logistic BRT) to estimate probability of occurrence, converting probability of 234 

occurrence to suitable and unsuitable habitat with a threshold, and fitting a Poisson BRT to 235 

estimate abundance within suitable habitat 11. We modified this method by adding an 236 
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intermediate step, in which offsets for detection probability that are calculated from structured 237 

survey data are included in Poisson BRTs to convert resulting abundance estimates to density 238 

(Fig. 2). 239 

Zero-inflation. For each species, we fit SDMs with logistic regression BRTs 29. We set 240 

tree complexity to 3, bag fraction to 0.75, and optimized the learning rate so that the optimal 241 

number of trees fell between 1000 and 5000. We used a 10-fold cross-validation method to 242 

construct boosted regression trees and used a multi-scale SDM framework in which we included 243 

all environmental variables at all radii 23. To evaluate models we calculated AUC with the 244 

independent test dataset. We then used the sample prevalence of a species within its dataset as 245 

the threshold to transform continuous habitat suitability (or probability of occurrence) to 246 

binomial suitable and unsuitable habitat 23,30. We restricted counts used in Poisson BRTs to those 247 

occurring in suitable habitat. This first step  of the zero-inflated BRT reduces excess zeroes and 248 

the influence of counts in unsuitable habitat prior to modeling abundance 11.  249 

Detection offset calculation. In the Independent and Calibration frameworks, detection 250 

offsets for community science counts were calculated from detection models built on surveys 251 

from the structured dataset, using the QPAD method31. No offsets were included in the Fixed 252 

framework. Before building models of detection probability, we restricted either the full 253 

structured dataset (Independent framework), or the calibration dataset (Calibration framework) to 254 

habitat predicted to be suitable for each species, which allowed for the estimation of detection 255 

probability within suitable habitat. Imperfect detection is comprised of two components: 256 

availability and perceptibility 32. We ran removal 33 and distance sampling 22 model sets for each 257 

species to estimate availability and perceptibility, respectively. For removal models, we reduced 258 

our time-of-detection data, which included detection histories at each interval within the five-259 
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minute count, to removal data by recording the first interval of detection for each individual (i.e. 260 

the removal interval). In removal model sets we included combinations of Julian date, time of 261 

day (minutes since dawn), and quadratic terms and compared models with AICc.  262 

For distance sampling model sets, we first included distance to the nearest river and 263 

distance to the nearest highway (sources of noise) as explanatory variables. We included 264 

quadratic terms, log-transformed values, and combinations of distance to river and distance to 265 

nearest highway in models. We compared these models to the null with AICc and perpetuated 266 

the structure of the top AICc model. We included canopy cover, percent high and medium 267 

density urban land cover, and percent total urban land cover, as well as combinations of canopy 268 

cover and each of the two urban land cover variables in the subsequent model set. We 269 

characterized all land cover covariates in distance models as the mean value within a 75-m radius 270 

from cell centers. For all distance models we used 50 m distance bins for distances up to 200 m 271 

and included a final bin of all observations over 200 m in distance. The unlimited distance 272 

inherent in opportunistic community-science checklists (i.e., observers do not use truncation 273 

distances) necessitates an unlimited distance framework 31. As there is no finite truncation 274 

distance, the area sampled is effectively infinite, and estimation of density over an infinite area is 275 

impossible. We therefore estimated the effective detection radius (EDR), the radius where the 276 

estimated number of individuals missed within the EDR (e.g. not detected) equals the number of 277 

individuals detected outside of the EDR, to estimate the effective area sampled. We used the top 278 

AICc removal and distance sampling models to calculate offsets (i.e. correction factors) at each 279 

survey location 31. Offsets were calculated as the product of the estimated perceptibility, 280 

availability, and effective area sampled. By definition, the perceptibility within the effective area 281 

sampled is set to 1.  282 
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Density model. In the Independent and Calibration frameworks, detection offsets were 283 

included within Poisson BRTs to convert resulting abundances to densities. In the Fixed 284 

framework, no offsets were included as area surveyed was assumed to be constant and detection 285 

probability was assumed to be 1. We set tree complexity to 3, bag fraction to 0.75, and optimized 286 

learning rates so that the optimal number of trees fell between 1000 and 5000. To avoid 287 

overfitting, we included only pseudo-scale optimized environmental variables previously found 288 

to be influential for each species in Poisson BRTs 19,23. To assess the predictive performance of 289 

models, we calculated predictive correlation with the independent test dataset as the correlation 290 

between the predicted count at a site derived from estimated densities and offsets, and the 291 

observed count. Population estimates were derived from estimated densities. Due to stochasticity 292 

involved in the BRT algorithm, and the random sampling of calibration datasets, we ran ten 293 

iterations of the above process for each dataset (e.g. each species x dataset combination). These 294 

ten iterations were used to assess variability in the results. Zero-inflated density models were run 295 

with the dismo, gbm, and QPAD packages in R (version 4.0.3) 31,34–36.  296 

Quantifying Comparative Performance 297 

While we highlight species-specific results below, we were most interested in 298 

overarching patterns in comparative performance of each framework’s density models. We 299 

therefore converted estimates of each endpoint (AUC, area of suitable habitat, mean density, and 300 

population) to a percent of the species-specific benchmark estimate. For each endpoint, 301 

benchmarks were calculated as the species-specific median value of the benchmark’s ten 302 

iterations. We divided estimates from individual iterations within each framework by these 303 

species-specific benchmark values. To reduce the influence of outliers, within our results, we 304 

report medians for all summary statistics. 305 
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 306 

Results 307 

Stringent filtering reduced 12,572 community science checklists to between 1,060 and 308 

1,073 (depending on the species) once all criteria were applied (91% reduction; Fig. S1). In 309 

benchmark datasets, sample prevalence ranged from 0.03 for Bushtit, Marsh Wren, and White-310 

breasted Nuthatch, to 0.49 for American Robin. In community science datasets, prevalence 311 

followed a similar pattern and ranged from 0.01 for Marsh Wren to 0.42 for American Robin 312 

(Table 1). Due to low prevalence in some species, only eight species had sufficient detections to 313 

create the largest calibration dataset (Table 1).  314 

SDMs built on community science data generated similar AUCs to benchmarks (Fig. 3). 315 

The median AUC from community science SDMs within our zero-inflated BRTs was 0.77 across 316 

species, averaging 97% of benchmark values. Median suitable area estimated from community 317 

science data was biased marginally low across frameworks (91% of benchmarks). While 318 

accuracy of estimates was high for most species, estimates of suitable area for Marsh Wren were 319 

a median of ten times higher than benchmarks (Fig. S2). This bias in suitable area for Marsh 320 

Wrens was dramatically reduced to 142% of the benchmark by data pooling within the 30-321 

occurrence calibration dataset. Within zero-inflated BRTs, AUC and estimated suitable area are 322 

calculated before offsets of detection probability are incorporated. Therefore, across frameworks, 323 

in the absence of data pooling, AUC and estimated suitable area remained constant. When data 324 

were pooled in the Calibration framework, precision and accuracy of AUC and estimated 325 

suitable area increased with calibration dataset size, a pattern especially evident in the eight most 326 

common species, which had sufficient detections to create larger calibration datasets (Fig. 3). In 327 

species with lower prevalence, pooling of even small calibration datasets had a large influence 328 
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on AUC. The variance of AUC and estimated suitable area was higher in species with lower 329 

prevalence and lower numbers of detections.  330 

 Density estimated from community science data was relatively unbiased with a median of 331 

95% of the benchmark values. Precision of density estimates increased with increasing size of 332 

the calibration datasets, particularly in sample sizes of 100 and 250 occurrences (Fig. 4). While 333 

unbiased across most frameworks, estimated density was biased extremely low in the Fixed 334 

framework, with a median of 17% of the benchmark values. Also, while density estimates from 335 

the other frameworks were unbiased for most species, for Marsh Wren densities were biased 336 

extremely low, with a median of 11% of the benchmark values (Table S6, Fig. S2). Density 337 

estimates of House Finch and Black-throated Gray Warbler were also biased low, with 52% and 338 

68% of the benchmark estimate, respectively. Sample sizes implemented in the Calibration 339 

frameworks were robust to random variation above N=30 but substantial variability was apparent 340 

at the lowest sample size of N=10 (Table S7). 341 

  Overall, population sizes estimated from community science data were biased low, with 342 

a median of 87% of the benchmark values (Fig. 4). Similar to density, population estimates from 343 

the Fixed framework were biased extremely low, with a median of 21% of the benchmark 344 

estimates. With the exception of rare species, the precision of population estimates across the 345 

Calibration frameworks improved with calibration dataset size, with greater improvements in the 346 

presence of data-pooling. With data pooling, increased calibration dataset size generally 347 

decreased bias (i.e., estimates were closer to benchmarks). In contrast, without data pooling, 348 

greater negative bias was introduced with increased calibration dataset size (Fig. 4). Population 349 

estimates for House Finch and Black-throated Gray Warbler were biased low, and increases in 350 
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calibration dataset size, even in data pooling frameworks, did not always result in improved 351 

estimates (Table S8, Fig. S2).  352 

 353 

Discussion 354 

 We found that even small subsets of structured surveys can be used to address detection 355 

bias in free and broadly available community science bird survey data, allowing for the reliable 356 

estimation of density and population. The ability to reduce detection bias in community science 357 

data, which typically lack the necessary information to account for imperfect detection, while 358 

simultaneously estimating an effective survey area, greatly amplifies their conservation value. 359 

The substantial bias in our Fixed framework, which lacks adjustments for imperfect detection, 360 

emphasizes the risk of estimating populations while taking observed abundance at face value. 361 

While this Fixed framework could be greatly improved by using species-specific values, such as 362 

maximum detection distance, resulting estimates would remain biased low if detection 363 

probability within these distances is ignored 37. While the bias of community science derived 364 

density and population estimates were greatly reduced in both the Calibration and Independent 365 

frameworks, we advise a degree of caution when using such methods as the accuracy of 366 

estimates were species-specific. 367 

 The application of detection functions from the full structured dataset to calculate 368 

detection offsets in community science based density models (e.g., the Independent framework), 369 

resulted in reliable estimates of density and population for most species. As detection functions 370 

with which to calculate these offsets are now available for over 300 landbird species across 371 

North America, the use of this Independent framework will likely grow 28. The species-specific 372 
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bias of density and population estimates in our study, however, indicate that care must be taken 373 

in the use of structured surveys to adjust community science data. Increasing the similarity 374 

between structured and community science datasets through stringent filtering, increases the 375 

performance of SDMs 10, and is likely an essential first step in reducing bias in density and 376 

population estimates.  377 

We increased alignment of important survey characteristics through stringent filtering, 378 

based on count duration, time of day, and locational precision. As our models involve predicting 379 

distributions based on habitat characteristics around count locations, community science data 380 

must be limited to those surveys using stationary protocols with reliable location information. In 381 

eBird, many checklists contributed by birders are traveling counts or stationary counts associated 382 

with Hotspot locations. Use of either for our models adds noise and muddles the relationship 383 

between observed counts and habitat information. Restricting eBird data to stationary counts at 384 

“personal locations” is critical to fine-scale modeling as it reduces much of the locational noise 385 

inherent in checklists using other types of protocol (e.g., traveling or incidental) and location 386 

(e.g., Hotspot). The use of complete checklists is likewise essential as this allows us to infer 387 

absences in checklists without abundances for the species recorded. Geographic sampling or 388 

spatial subsampling reduces geographic bias by removing large numbers of counts from 389 

popularly surveyed areas. While this may be an important step, it can greatly reduce sample 390 

sizes. Here, for example, even with a relatively fine grain of 200 m, geographic sampling 391 

reduced the number of opportunistic checklists in our study by around 50 percent (Fig. S1). 392 

Geographic bias can have relatively minor impacts on distribution modeling, indicating that 393 

geographic sampling may not be strictly necessary 8.  As we did not rerun our models without 394 

geographic sampling, we cannot speak to its impacts on our results. Skipping this step, however, 395 
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might greatly increase sample sizes for rarer species (discussed more below). Although excising 396 

the remaining data from analyses greatly reduces sample sizes (Fig. S1), community science 397 

datasets are often large enough that sufficient data remain to justify such filtering. 398 

Even with stringent filtering, density and population estimates were biased high in our 399 

Independent framework for some species, and low for others. Using models of detection 400 

probability, built on structured data, to adjust community science counts, assumes that the 401 

detection processes in structured and community science surveys do not differ. For the most part, 402 

this seems a reasonable assumption, as important factors such as habitat, extraneous noise, and 403 

time-of-day likely impact observers similarly and can be accounted for in stringent filtering and 404 

survey-specific detection offsets31,38,39. Differences in observer-specific detection probability, 405 

however, are not included in these models. For some species, such as American Robin, Lazuli 406 

Bunting, Common Yellowthroat, and White-crowned Sparrow, this assumption appeared to be 407 

met, as estimates from the Independent and Calibration frameworks matched benchmarks well. 408 

For abundant and conspicuous species such as these, models of detection probability from a 409 

previously existing source or a supplementary calibration dataset can be used to effectively 410 

estimate spatially explicit densities and populations. 411 

For other species, however, including Pacific Wren, Orange-crowned Warbler, Song 412 

Sparrow, Spotted Towhee, Swainson’s Thrush, and Wrentit, population estimates from 413 

Independent and Calibration frameworks were biased low. This bias can likely be attributed to a 414 

violation of the assumption that detection probabilities between structured and community 415 

science surveys do not differ. In these cases, higher detection probability in structured surveys 416 

would lead to lower population estimates. Heterogeneity in the discrepancies of observed 417 

abundance between professional and community science counts tend to be species-and-observer-418 



20 
 

specific 18. Whereas observed abundances in community science counts may be accurate for 419 

some species, they tend to be biased low for others. In the case of the songbirds listed here, the 420 

proportion of detections that are purely auditory could be quite high. These species tend to sing 421 

from cover and visual detection can be difficult. On average, counts from community scientists 422 

may be more accurate with species detected visually, than aurally. Masking of auditory cues, and 423 

the additional effort required to differentiate multiple vocalizing individuals of the same species, 424 

may depress count values from community scientists. While there may be little difference in the 425 

number of detections between novice and experienced observers for conspicuous and easy-to-426 

identify species, observer expertise is strongly correlated with observed counts in stationary 427 

surveys for species that are more difficult to identify40. Data pooling of calibration datasets can 428 

reduce the bias of estimates and is an important step when discrepancies in detection probability 429 

exist. Truly integrated models that allow for the explicit estimation of observer-specific detection 430 

probabilities would further address this assumption41.  431 

Understanding the reasons for discrepancies in detection probability between structured 432 

and community science datasets would greatly increase our confidence in these methods. While 433 

eBird’s checklist calibration index , which uses species accumulation curves to account for 434 

observer differences in species detection, improves SDM performance42,43, no index currently 435 

exists to account for differences in the reliability of species counts. Such an index would differ 436 

from general detection probabilities as it would need to address common observer-specific 437 

behaviors, such as rounding of observed counts, recording numbers from memory well after 438 

surveys have ended, and reductions in effort in the detection of subsequent individuals following 439 

the initial detection of a species. The development of such an index may greatly reduce the bias 440 

of community science based density and population estimates. The choice of when and where to 441 
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begin a survey also introduces bias in opportunistic community science data if the detection of 442 

birds or specific species motivates observers to begin surveys. Databases such as eBird, for 443 

example, likely include few surveys where no individuals are detected and many surveys where 444 

charismatic or vagrant species are detected. Data pooling of calibration datasets may help to 445 

address biases associated with choice of survey initiation. 446 

 Large benchmark datasets may not exist for all species in all locations, and conducting 447 

large numbers of surveys to create one can be prohibitively expensive. We therefore evaluated 448 

the efficacy of collecting smaller supplementary datasets with which to model detection 449 

probability and adjust community science data in our Calibration framework. We found that 450 

supplementary calibration datasets with as few as ten surveys in which the target species was 451 

detected, could produce unbiased community science based estimates of density and population. 452 

Combined with the large bias in the one framework where detection probability was ignored 453 

(e.g., Fixed Framework), these results strongly suggest that any community science based 454 

estimates of density and population should incorporate the explicit estimation of detection 455 

probability, even if very few structured surveys can be conducted. If small calibration datasets 456 

can be used effectively, financial and temporal limitations may pose much less of a barrier. 457 

While bias was low in small calibration datasets, precision of estimates was greatly improved 458 

with increasing calibration dataset size, whether or not calibration data were pooled with 459 

community science data. As bias in this framework increased with calibration dataset size for 460 

some species, researchers should default to data pooling calibration datasets with community 461 

science data. The sample size required to produce precise and unbiased estimates is case-462 

specific, but precision of estimates were greatly improved with 30 or more checklists in which 463 

target species were detected.  464 
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Small Sample Size & Additional Considerations 465 

Small sample sizes in less common species, such as Bushtit, White-breasted Nuthatch, 466 

and Marsh Wren, led to some additional challenges in density modeling. False positives, for 467 

example, have a very strong influence when sample sizes are low. Marsh Wren is a habitat 468 

specialist, only found in marshes, a rare habitat in the study area. Without data pooling, models 469 

predicted extremely large areas of suitable habitat and very low densities throughout. The habitat 470 

suitability without data pooling was unambiguously incorrect. Inaccurate species distribution 471 

models may be due to two primary factors. First, there may be false positives in the community 472 

science data. Given the small sample size in this species, any false positives outside of a marsh 473 

could have large impacts on an algorithm's ability to differentiate between suitable and 474 

unsuitable habitat. Second, there may be true positives in small marshes not accurately identified 475 

by satellite imagery. From a modelling perspective, this would present the same issues as false 476 

positives. Data pooling greatly increased the accuracy of habitat suitability models for this 477 

species, especially when calibration datasets included at least 30 surveys with positive 478 

detections.  479 

While estimates of suitable habitat were improved with data pooling, densities within 480 

areas of suitable habitat were biased low. There may be at least three contributing factors to 481 

biased densities. First, observers may not be visiting marshes when this species is most vocal, 482 

and reported abundances may be lower. Second, as this species is primarily identified by sound, 483 

community scientists may have lower detection probabilities as some observers may not know 484 

how to identify the vocalizations. Third, this species occurs at high densities. At high densities, 485 

singing individuals may mask one another, leading to inaccurate counts in community science 486 

surveys when effort isn't put into accurately deciphering the number vocalizing. One of the 487 
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strengths of community science data is that its large quantity can overwhelm a lower per datum 488 

information of structured data 6. The eBird database continues to grow, and practitioners using 489 

community science data can increase sample size by increasing the geographic or temporal scope 490 

of the surveys incorporated. For example, we used seven years of data for a single population 491 

estimate for each species. Using data from fewer years and larger areas may be more suited to 492 

those interested in assessing changes in population size through time. Had we increased the 493 

geographic breadth of our study, distribution and density estimates for Marsh Wren may have 494 

been much improved. Alternatively, had we chosen to forgo geographic sampling in our study 495 

area, rare and geographically restricted marsh habitats would have been far more highly 496 

represented as these sites tend to be popular with birders and therefore contain far more 497 

opportunistic community science surveys.  498 

On lands without public access, allowing community scientists access can increase data 499 

in desired locations without the costs associated with wildlife monitoring. Actively inviting 500 

community scientists to conduct surveys, year-round or on restricted dates, could further 501 

augment desired data while simultaneously engaging the public. Active participation in local 502 

conservation can improve conservation actions and help address current biodiversity issues 44,45. 503 

When conducting supplemental calibration surveys, encompassing the environmental variability 504 

of the geographic area of interest and the variability in survey level characteristics (e.g. time of 505 

day or day of year), is important to minimize extrapolation. Although geographic overlap is the 506 

clear ideal for a structured dataset, it may not be essential if overlap in environmental space is 507 

sufficient.  508 

Suitable Area & Threshold Selection 509 
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For many species, the estimated area of suitable habitat was biased low compared to 510 

benchmarks. While discrepancies in detection probabilities likely play a role, differences in the 511 

breadth of geographic and environmental sampling may also be a contributing factor. Machine 512 

learning algorithms such as BRTs can include erroneous relationships between environmental 513 

variables and occurrence or abundance when there is insufficient variation to inform models 514 

across environmental space. Greater geographic clustering in community science data can lead to 515 

less variation in environmental variables, which can lead to lower estimated area of suitable 516 

habitat (Fig. 1). In the presence of clustering in community science surveys, collection and 517 

pooling of additional data from structured surveys collected in habitats or locations unsurveyed 518 

by the community science data may address this issue.  519 

It is also important to note that we used species prevalence within opportunistic 520 

community science checklists as thresholds when converting continuous habitat suitability to 521 

binary suitable habitat. We chose prevalence because it is species-specific and easily calculated 522 

from community science data. Many options for thresholding exist, and we did not specifically 523 

examine the sensitivity of our modeling to threshold selection. Area of suitable habitat based on 524 

binary suitability is sensitive to threshold selection and thresholding results from species 525 

distribution models can impact conservation prioritization 46, 47. This may therefore be an 526 

important area of continued research and threshold selection should be considered when using 527 

these methods. Alternative methods of thresholding can easily be incorporated into the modeling 528 

methods used here. As the modeling methods employed here only use data from within suitable 529 

habitat to model density, population estimates in this study are somewhat robust to threshold 530 

selection. For a given species, lower thresholds result in larger areas of predicted suitable habitat. 531 

Generally, these larger areas incorporate a greater number and proportion of low abundance 532 



25 
 

counts, which reduce the model predicted densities. Higher thresholds result in smaller areas of 533 

predicted suitable habitat. Generally, these smaller areas include a greater proportion of high 534 

abundance counts, resulting in higher predicted densities. 535 

Conclusion 536 

Although opportunistic community science data can be used to produce high performing 537 

species distribution models 10,17, moving beyond predicted distributions to densities greatly 538 

benefits conservation and management 48. Density and derived population estimates allow 539 

conservationists to assess the system’s current state, set conservation goals, and evaluate the 540 

success of management actions. Biodiversity monitoring is expensive, currently making up a 541 

significant portion of total conservation costs 49. Many local conservation organizations report 542 

fiscal barriers to the monitoring necessary to assess the success of their conservation actions 4. 543 

Furthermore, Combined with freely available, remotely sensed environmental data, community 544 

science data provide a cost-effective method of monitoring wildlife populations 50. These 545 

methods will be used moving forward 28, so understanding their strengths and limitations is 546 

essential.  547 

In this study, we used independent structured survey data to model detection functions 548 

and calculate offsets for community science surveys. Reliable estimation of density and 549 

population size with community science data would greatly increase their conservation value. 550 

We found that although independent detection functions could be used to produce accurate 551 

estimates for some species, there was relatively high bias in others. The collection of 552 

supplemental calibration survey data with which to model detection probability was similarly 553 

accurate for some species and biased for others. Data pooling of calibration datasets greatly 554 
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decreased bias, and should be implemented in conjunction with stringent filtering and geographic 555 

sampling, where sample sizes are sufficient.   556 
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Figure Legends 698 

Figure 1. Stringently filtered survey locations in the community science (green) and structured 699 

(orange) datasets for American Robin. After stringent filtering and geographic sampling, 1,060 700 

community science surveys remained for this species. The structured survey dataset was sampled 701 

without replacement to match survey number. 702 

 703 

Figure 2. Workflow for analyses including a) the frameworks and datasets, b) the zero-inflated 704 

density modeling method, and c) the calculation of detection probability offsets used within 705 

density models. The fixed framework incorporates no offsets and assumes a constant area 706 

surveyed of 200m and perfect detection. 707 

 708 

Figure 3. Results from the zero-inflated portion of two-step density models for each framework, 709 

including AUC (A, B, and C) and estimated area of suitable habitat (D, E, and F), compared 710 

against a best-practices reference (benchmark). To allow for summarization across species, for 711 

each species, the results of each of the ten iterations within a framework were adjusted to the 712 

percentage of the median species-specific reference value. Results are divided into species that 713 

are common (A and D; 8 species), uncommon (B and E; 4 species), and rare (C and F; 4 species) 714 

within our study area as rarer species had insufficient data for the use of larger calibration 715 

datasets (Table 1). 716 

 717 
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Figure 4. Results from the density portion of two-step density models for each framework, 718 

including mean density (A, B, and C) and estimated population (D, E, and F), compared against 719 

a best-practices reference (benchmark). To allow for summarization across species, for each 720 

species, the results of each of the ten iterations within a framework were adjusted to the 721 

percentage of the median species-specific reference value. Results are divided into species that 722 

are common (A and D; 8 species), uncommon (B and E; 4 species), and rare (C and F; 4 species) 723 

within our study area as rarer species had insufficient data for the use of larger calibration 724 

datasets (Table 1). 725 
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Tables and Figures 726 

Table 1. Descriptive statistics for the 16 study species, including species 4-letter codes, in the structured professional and 727 

opportunistic community science (eBird) datasets. For each species, total number of surveys ranged between 1,060 and 1,073 and was 728 

equal between the two datasets. Species names and sequences follow American Ornithological Society 49. Prev. = Prevalence, Obs. 729 

Occ. = Number of sites observed occupied, and Ind. Det. = Number of individuals detected. Local rarity within the study area was 730 

assigned based on number of occurrences and the largest calibration dataset used within the study: C = Common, U = Uncommon, and 731 

R = Rare.  732 

    

Structured 

Professional 

Dataset 

Opportunistic Community Science 

Dataset 

Species Scientific Name Prev. 
Obs. 

Occ. 

Ind. 

Det. 
Prev. 

Obs. 

Occ. 

Ind. 

Det. 

Largest 

Calibration 

Dataset 

Local 

Rarity 

Bushtit Psaltriparus minimus 0.03 35 59 0.02 19 61 30 R 

Wrentit Chamaea fasciata 0.04 46 56 0.03 35 43 30 R 

White-breasted Nuthatch Sitta carolinensis 0.03 29 32 0.03 27 31 30 R 

House Wren Troglodytes aedon 0.11 119 149 0.16 169 263 100 U 

Pacific Wren Troglodytes pacificus 0.22 238 373 0.15 157 212 250 C 

Marsh Wren Cistothorus palustris 0.03 34 64 0.01 15 34 30 R 

Swainson's Thrush Catharus ustulatus 0.46 497 736 0.39 416 755 250 C 

American Robin Turdus migratorius 0.49 524 754 0.42 440 819 250 C 

House Finch Haemorhous mexicanus 0.12 128 164 0.05 54 100 100 U 

White-crowned Sparrow Zonotrichia leucophrys 0.23 244 389 0.22 232 438 250 C 

Song Sparrow Melospiza melodia 0.47 506 750 0.38 406 582 250 C 

Spotted Towhee Pipilo maculatus 0.33 357 478 0.37 399 581 250 C 
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Orange-crowned Warbler Leiothlypis celata 0.26 281 360 0.28 301 408 250 C 

Common Yellowthroat Geothlypis trichas 0.25 269 412 0.25 269 460 250 C 

Black-throated Gray Warbler Setophaga nigrescens 0.13 144 182 0.12 124 157 100 U 

Lazuli Bunting Passerina amoena 0.09 95 116 0.09 98 133 100 U 

 733 



38 
 

Table 2. Brief descriptions of the three frameworks implemented in this study. Each framework adjusts community science bird 734 

survey data to allow for density estimation. Only the Fixed framework adjusts surveys without the explicit estimation of detection 735 

probability and survey area. The Calibration framework was run with and without data pooling in density models to investigate the 736 

influence of data pooling and sample sizes on density estimates. See methods for more in-depth descriptions of frameworks. 737 

Framework 

Converts 

Abundance to 

Density 

Estimates 

Variable 

Survey Area 

Adjusts for 

Imperfect 

Detection 

Includes 

Data 

Pooling 

Calibration 

Sample 

Size 

Fixed Yes No No No NA 

Independent Yes Yes Yes No NA 

Calibration Yes Yes Yes No 10  
Yes Yes Yes No 30  
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 740 

Figure 1. Stringently filtered survey locations in the community science (green) and structured 741 

(orange) datasets for American Robin. After stringent filtering and geographic sampling, 1,060 742 

community science surveys remained for this species. The structured survey dataset was sampled 743 

without replacement to match survey number. 744 
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 745 

Figure 2. Workflow for analyses including a) the frameworks and datasets, b) the zero-inflated 746 

density modeling method, and c) the calculation of detection probability offsets used within 747 

density models. The fixed framework incorporates no offsets and assumes a constant area 748 

surveyed of 200m and perfect detection.749 
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 750 

Figure 3. Results from the zero-inflated portion of two-step density models for each framework, 751 

including AUC (A, B, and C) and estimated area of suitable habitat (D, E, and F), compared 752 

against a best-practices reference (benchmark). To allow for summarization across species, for 753 

each species, the results of each of the ten iterations within a framework were adjusted to the 754 

percentage of the median species-specific reference value. Results are divided into species that 755 

are common (A and D; 8 species), uncommon (B and E; 4 species), and rare (C and F; 4 species) 756 

within our study area as rarer species had insufficient data for the use of larger calibration 757 

datasets (Table 1).758 
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 759 

Figure 4. Results from the density portion of two-step density models for each framework, 760 

including mean density (A, B, and C) and estimated population (D, E, and F), compared against 761 

a best-practices reference (benchmark). To allow for summarization across species, for each 762 

species, the results of each of the ten iterations within a framework were adjusted to the 763 

percentage of the median species-specific reference value. Results are divided into species that 764 

are common (A and D; 8 species), uncommon (B and E; 4 species), and rare (C and F; 4 species) 765 

within our study area as rarer species had insufficient data for the use of larger calibration 766 

datasets (Table 1). 767 


