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Interspecific interactions are fundamental drivers of animal space use.
Yet while non-consumptive effects of predation risk on prey space use are
well-known, the risk of aggressive interactions on space use of competitors
is largely unknown. We apply the landscape of risk framework to compe-
tition-driven space use for the first time, with the hypothesis that less
aggressive competitors may alter their behaviour to avoid areas of high
competitor density. Specifically, we test how aggressive risk from territorial
algal-farming damselfishes can shape the spatial distribution of herbivore
fish competitors. We found that only the most aggressive damselfish had
fewer competitors in their surrounding area, demonstrating that individual-
level behavioural variation can shape spatial distributions. In contradiction
to the landscape of risk framework, abundances of farming damselfish and
other fishes were positively associated. Our results suggest that reef fishes
do not simply avoid areas of high damselfish abundance, but that spatial
variation in aggressive behaviour, rather than of individuals, created a com-
petitive landscape of risk. We emphasize the importance of individual-level
behaviour in identifying patterns of space use and propose expanding
the landscape of risk framework to non-predatory interactions to explore
cascading behavioural responses to aggressive risk.
1. Introduction
Human-induced environmental change is altering the behaviour and spatial dis-
tribution of animalsworldwide [1]. These behavioural shifts can cascade through
ecosystems to affect species persistence, ecosystem services and resilience under
climate change [1]. The abiotic drivers of behavioural and spatial patterns are
well-known, however, biotic factors also play a role. Non-consumptive effects
of predators on the spatial distribution of prey are well established and encom-
pass the behavioural responses of prey to predation risk [2,3]. Interspecific
competition is also a fundamental driver of spatial distribution in ecological com-
munities [4]. Yet how the perceived risk of encountering aggressive competitors
shapes spatial distribution in less aggressive species is unknown.We can explore
competition-driven space use through the ‘landscape of risk’ framework [5].

The landscape of risk typically represents spatio-temporal patterns of pred-
ation risk [5]. However, similarly, the risk of encountering aggressive
competitors may shape space use in less aggressive species. Competitors may
avoid aggressive interactions by changing their behaviour, such as avoiding
areas of high competitor density, helping them to navigate their environment
at a lower risk of encountering aggressive competitors. Expanding the land-
scape of risk framework to competitive interactions provides a useful tool to
explore these spatial and behavioural cascades.

https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1098/rsbl.2024.0035&domain=pdf&date_stamp=2024-05-29
mailto:c.sheppard@lancaster.ac.uk
https://doi.org/10.6084/m9.figshare.c.7234092
https://doi.org/10.6084/m9.figshare.c.7234092
http://orcid.org/
http://orcid.org/0000-0003-3381-197X
http://orcid.org/0000-0001-7837-1619
http://orcid.org/0000-0001-8885-5828
http://creativecommons.org/licenses/by/4.0/


2

royalsocietypublishing.org/journal/rsbl
Biol.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

20
 J

un
e 

20
24

 

Coral reef fish communities present an excellent system to study competition-driven space use in response to aggressive risk.
Many species demonstrate clear site attachment and aggressive and territorial behaviour [6–8]. One such group of fish that is
thought to influence the spatial distribution of reef inhabitants is the territorial farming damselfish. Aggressive behaviour by farm-
ing damselfish is expected to drive away herbivores and suppress herbivory inside damselfish territories, increasing turf algal
cover as a result [7]. However, evidence of this effect is mixed. Experimental removal of farming damselfish, giving access to
roving herbivores, has found both subsequent reductions in algal biomass [9] and no effect on benthic communities within terri-
tories [10]. Feeding by surgeonfish has even been found to decrease upon removal of farming damselfish [11]. In addition to their
potential effects on herbivory, farming damselfish abundance can influence coral predation rates [12] and juvenile parrotfish
recruitment [13]. The aggressive behaviour of farming damselfish has clear cascading effects on reef fish behaviour. One way
to better understand their impact is to look at how they shape the space use of reef fishes.

Based on the landscape of risk framework, we expect a negative association between the abundance of farming damselfish and
other reef fishes, as fish avoid areas of coral reef with greater aggressive risk. We explore how interspecific competition and aggres-
sive risk by farming damselfish may shape the spatial distribution of the wider reef fish community on coral reefs. Specifically, we
examine the spatial distribution and variation in aggressive behaviour by farming damselfish, which we term the competitive
landscape of risk, alongside the spatial distribution of other reef fishes.
 Lett.20:20240035
2. Material and methods
(a) Field methodology
Data were collected between 13 July and 1 August 2022 at Coral View reef, Utila, Honduras (N 16.08823274, W −86.91094506), across two
belt transects 25 m long × 2 m wide (separated by greater than 10 m; 100 m2 total) at approximately 5 m depth (figure 1). The territories of
all adult damselfish of the species Stegastes diencaeus (n = 26) and S. planifrons (n = 22), hereafter Stegastes spp., within the belt transects
were tagged with identification numbers. Stegastes diencaeus and S. planifrons were the most abundant damselfish species in the area
and exhibited similar aggressive territorial behaviours (per. obs.). Although territories are used for both cultivation of turf and egg
protection, no evidence of eggs or nesting behaviour was observed.
(b) Territory mapping
Wemapped the territories of Stegastes spp. within our belt transects using methods similar to Robles et al. [14]. We attached a GoPro HERO
camera to a stand 1.5 m above the focal territory such that the camera had a field of view of 1.5 m × 2 m, with a visible 30 cm scale. Focal
individuals were recorded for 15 min, discarding the first 5 min as an acclimation period [14]. Territory recordings were taken after behav-
ioural videos to avoid disruption caused by placing a frame over a territory. To estimate territory size, 21 screengrabs taken approximately
every 30 s across a 10 min period were imported into ImageJ [15]. We recorded the position of the focal individual as a point on each screen-
grab and calculated the minimum convex polygon around all points (electronic supplementary material, figure S1). In S. diencaeus, territory
size may correlate with body size when a broad size range is observed (PTMcDougall & DL Kramer 2007, unpublished observations), how-
ever, effects may not be seen over a smaller range [16]. Individuals must be caught to accurately measure Stegastes body size (e.g. [16,17]),
which may disrupt territorial behaviour and was therefore judged unnecessary for this study.
(c) Behavioural observations
To explore the landscape of risk around farming damselfish territories, we recorded the aggressive response of focal Stegastes spp. in terms
of chases of reef fishes that moved through their territory, known as intruders. This measure of aggression is widely used in studies of
territorial farming damselfish [14,18,19]. Each focal individual was recorded once for 30 min using GoPro HERO cameras between
07:00 and 15:00, discarding the first 5 min as an acclimation period from diver/snorkeller presence [20]. Cameras were placed 1–2 m
from the focal individual’s territory such that the focal individual and intruders could be observed. Previous studies recorded mean ter-
ritory sizes of 1.08 and 2.83 m2 for S. planifrons and sister species S. adustus, respectively [21]. Therefore, the order in which focal
individuals were recorded was strategically randomized such that individuals recorded at the same time were at least 3 m from each
other to assure independence. Analysis of behavioural videos was undertaken in BORIS v. 8.6.2 [22]. We recorded chase behaviours
associated with aggressive response, defined as accelerated swimming movements of the focal individual towards intruders. Intruders
that did not elicit an aggressive response were also noted. These were identified as any non-Stegastes fish that entered the focal individual’s
territory, which was visually estimated before analysis (electronic supplementary material, figure S2). Intruders were identified to the
family level.
(d) Reef and fish surveys
Reef fishes were surveyed on SCUBA following a standardized protocol (electronic supplementary material) using a diver-operated
stereo-video system (SVS), allowing for accurate measurement of fish position [23]. Belt transects were surveyed five times, with each
survey spaced at least 3 h apart to reduce the likelihood of repeat samples of roving individuals. Coordinates of two reference points
for each fish along the transect were also recorded. These included strategically placed golf balls and visual landmarks along the reef,
such as distinct corals and rock formations.

We used structure-from-motion underwater photogrammetry to construct orthomosaics of belt transects [24,25], on which to map
Stegastes spp. territories and non-Stegastes reef fish locations (electronic supplementary material). Orthomosaics were imported into
QGIS Desktop v. 3.28.2 [26], on which reference points corresponding to the same reference points in the SVS data were plotted as a multi-
point shapefile layer. X and Y coordinates of reference points were then extracted and used for coordinate transformation (electronic
supplementary material).
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Figure 1. Transect maps (a,b: transect 1, c,d: transect 2). Hashed boxes represent hard substrate, grey areas show individual Stegastes spp. territories, points show
location of non-Stegastes reef fishes. Subplots b and d show underlying orthomosaics. Note belt transects were 2 m wide and 25 m long, however as surveys
followed the reef line, figure axes represent absolute position.
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(e) Statistical analysis
Data manipulation and statistical analyses were conducted in QGIS and R v. 4.2.3 [27]. In QGIS, we plotted the minimum convex polygons
of 45 focal Stegastes spp. alongside 285 reef fishes on our orthomosaics (figure 1a). Buffers of 1 m and 0.5 m were drawn around focal
Stegastes spp. territories (figure 1b) and the number of non-Stegastes fish within the territories and buffer combined were counted.
These buffers were chosen based on mean territory size (S. diencaeus: 0.55 ± 0.25 m2; S. planifrons: 0.29 ± 0.13 m2) and that farming damsel-
fish chases are typically shorter (less than 0.5 m). The number of Stegastes spp. whose territories overlapped with the buffers was counted
to calculate abundance of Stegastes spp. within buffers. Due to the prolific abundance of Stegastes spp. at our study site, it was not possible
to draw buffers containing hard substrate but no Stegastes spp.

We calculated aggression metrics for each focal Stegastes spp. based on the proportion of non-Stegastes intruders that were chased,
placing individual-level aggression on a scale of 0 to 1. Individual aggressive response towards heterospecific intruders differed between
species (S. diencaeus: mean ± s.d. = 0.63 ± 0.28; S. planifrons: 0.41 ± 0.15). However, as our study focused on the effect of individual-level
behaviour across Stegastes spp., and both species exhibited wide within-species variation in aggressive response (S. diencaeus: range =
0.10–1.00; S. planifrons: 0.19–0.76), species was not included in further analysis. Aggression metrics were calculated for all non-Stegastes
intruders, and herbivorous and non-herbivorous non-Stegastes species separately. All fish were categorized as herbivorous or non-
herbivorous according to FishBase [28]. To check for temporal variation in aggressive response, Spearman’s rank tests were conducted
between individual-level aggression and time of recording. No correlation between the two variables was found (r = 0.08, p = 0.60),
therefore time of recording was not included in further analysis.

Using the brms package [29] implemented in STAN [30], we ran Bayesian models with a negative binomial distribution to model
counts of non-Stegastes fish against individual-level aggression and Stegastes spp. abundance. Bayesian models ran for 5000 iterations,
with a warm-up of 1000 iterations over four chains. Weakly informative priors were used and transect ID included as a grouping
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factor to account for spatial dependence. As the territory and buffer area differed between focal Stegastes spp., the area within which fish
were counted was included as an offset. Using offsets as opposed to densities is advantageous as fitted values and confidence intervals are
always positive yet heterogeneity in survey area is accounted for [31]. This also accounted for survey area differences resulting from buf-
fers being truncated when they extended beyond the transect window. As transects were 2 m wide, this was unavoidable, and most
buffers were affected. Counts of herbivores and non-herbivores were modelled separately to explore whether Stegastes spp. affect the
spatial distribution of dietary groups differently. Bayesian models were visually validated for fit and convergence using graphical pos-
terior predictive checks, trace and density plots and Gelman–Rubin convergence diagnostic (R-hat) [32]. To reduce the number of
divergent transitions to below 20 for all models, the adapt delta control parameter was increased to 0.95. All models had R-hat values
of 1.00 and effective sample sizes over 1000 signifying good model convergence. We checked for highly influential data points using
leave-one-out cross validation (LOO). Pareto k values above 0.7 are considered highly influential [33].
3. Results
The number of non-Stegastes fish within 1 m and 0.5 m buffers increased with increasing Stegastes spp. abundance (1 m: β = 0.28,
95% CI = 0.04 to 0.53; 0.5 m: β = 0.47, 95% CI = 0.06 to 0.90; figure 2). When split by dietary group, the number of non-Stegastes non-
herbivorous fish within 1 m and 0.5 m buffers increased with increasing abundance of Stegastes spp. (1 m: β = 0.35, 95% CI = 0.08 to
0.63; 0.5 m: β = 0.55, 95% CI = 0.09 to 1.03; electronic supplementary material, figure S3). The association between the number of
non-Stegastes herbivorous fish within 1 m and 0.5 m buffers and Stegastes spp. abundance was weakly positive (1 m: β = 0.14, 95%
CI =−0.14 to 0.42; 0.5 m: β = 0.22, 95% CI =−0.24 to 0.69; electronic supplementary material, figure S4).

More aggressive Stegastes spp. had fewer non-Stegastes fish within a 1 m and 0.5 m buffer around their territory (1 m: β =−1.41,
95% CI =−2.50 to −0.33; 0.5 m: β =−0.77, 95% CI =−2.07 to 0.57; figure 3). More aggressive Stegastes spp. had fewer non-Stegastes
non-herbivorous fish within a 1 m buffer (1 m: β =−1.55, 95% CI =−2.80 to −0.34; 0.5 m: β =−0.57, 95% CI =−2.03 to 0.87;
electronic supplementary material, figure S5). There was little association between individual-level aggression and number of
non-Stegastes herbivorous fish within a 1 m and 0.5 m buffer (1 m: β =−0.23, 95% CI =−1.14 to 0.73; 0.5 m: β =−0.31, 95%
CI =−1.61 to 1.00; electronic supplementary material, figure S6). Both S. diencaeus and S. planifrons demonstrated wide variation
in individual aggressive response towards heterospecific intruders (range: 0.10–1.00 and 0.19–0.76 respectively). No influential
points were found in any model (Pareto k value > 0.7).
4. Discussion
We applied the landscape of risk framework to demonstrate that between-individual variation in aggressive behaviour by terri-
torial Stegastes spp. may shape the spatial distribution of coral reef fishes. More aggressive Stegastes spp. had fewer fishes near
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their territories than less aggressive individuals, suggesting that fish may avoid areas of reef occupied by more aggressive indi-
viduals. This could be a learned behaviour from previous encounters or recognition of stronger threat signals given by more
aggressive individuals. In contradiction to the landscape of risk framework [34], the abundances of Stegastes spp. and other
fishes were positively correlated. This may result from clustering of reef fishes around live coral and hard substrate (figure 1).
Our results suggest that reef fishes do not simply avoid areas of high Stegastes spp. abundance but may avoid areas defended
by more aggressive individuals.

Between-individual behavioural variation can have profound effects on interspecific interactions and community dynamics
[35–37]. Yet landscapes of risk typically focus on behaviour at the population or species level, relying instead on spatial variation
created by patterns in distribution or density [3]. Stegastes spp. are prolific in the Caribbean [16,21] and occupy large areas of coral
reefs, meaning there is little spatial pattern in their distribution beyond being reliant on the hard substratum (figure 1). However,
both S. diencaeus and S. planifrons demonstrated wide variation between individuals in aggressive response to heterospecific intru-
ders, creating spatial variation in aggressive competitive risk, which we term a competitive landscape of risk. We identified that
between-individual variation in Stegastes spp. aggressive response may play a role in shaping fish distribution across reefs, adding
to the growing pool of evidence of the ecological importance of individual-level behaviour [35]. We demonstrate that incorporating
between-individual behavioural variation may greatly improve our understanding of spatial patterns in response to risk [38].

It is generally assumed that heterospecific aggression is greater with increased resource overlap [39]. It is therefore reasonable
to expect that the response to aggressive risk be influenced by the degree of resource overlap. However, Stegastes spp. aggression
showed little association with the abundance of non-Stegastes herbivores. Instead, there was a weakly positive association between
the abundances of Stegastes spp. and herbivores. Our results support previous findings that aggressive interactions with farming
damselfish may not affect herbivore abundance and subsequent herbivory rates [10,11]. Instead, herbivores may be attracted to
resources within damselfish territories and the surrounding area. The farming behaviours of damselfish modify algal composition
within their territories, increasing epiphyte load and cover of palatable turf algae [40], which may attract herbivores despite the
increased aggressive risk. This unexpected relationship between herbivore and Stegastes spp. abundance further demonstrates
the complexities in the spatial distribution of herbivores.

Contrastingly, more aggressive Stegastes spp. had less non-herbivorous fishes in the area surrounding their territory. This find-
ing suggests that non-herbivorous fishes responded more strongly to aggressive behaviour by farming damselfish than herbivores,
contrary to expectation. This finding is unlikely due to non-herbivores reacting more strongly to aggressive risk, and instead likely
the result of herbivores being attracted to Stegastes spp. territories. However, damselfish abundance has previously been found to



6

royalsocietypublishing.org/journal/rsbl
Biol.Lett.20:20240035

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

20
 J

un
e 

20
24

 

influence the behaviour of non-herbivores, such as reduced coral predation [12]. Therefore, the effects of aggressive risk by farming
damselfish on the spatial distribution of non-herbivorous fishes cannot be overlooked.

Aggressive risk by territorial farming damselfish has the potential to shape fish distribution across vast areas of coral reef.
Farming damselfish is widely considered as key drivers of coral reef benthic composition [7,41–43]. Therefore, changes to spatial
distribution and community composition of reef fish driven by aggressive risk may have cascading consequences to coral reef
health [44]. Just as predation risk drives prey space use and subsequent effects on ecosystem health, aggressive risk between com-
petitors may shape spatial variation in multiple critical functions of coral reefs by altering the spatial distribution of fishes (for a
review of core coral reef functions, see [45]).

Competition-driven habitat selection between pairs of species has been well-studied [46–49] and demonstrates a general trend
of more aggressive species forcing subordinate competitors into less profitable habitats. However, few attempts have been made to
model this interaction spatially (however see [49]). We applied the landscape of risk framework to demonstrate that aggressive
interactions between competitors may shape their spatial distribution. Furthermore, we show that between-individual behavioural
variation may play a role in forming landscapes of risk, and that population means may not be enough to identify these driving
forces. The landscape of risk framework is most applied to interactions between predator and prey (although see [50,51]). How-
ever, competition is also a key ecological driving force. Extending the landscape of risk framework to non-predatory interspecific
interactions provides opportunity to explore how behavioural responses to aggressive risk can cascade throughout communities.

Pairwise interactions represent a small part of a much larger complex network of interactions that shape one another [52],
including competitive interactions and predation. For example, shared predators reduce competitive exclusion between prey
species [52], and aggressive competitors can reduce clientele richness in cleaning interactions [53]. Although the impacts of com-
petitive interactions on predation risk have been documented [47], there has been no attempt to model the spatial variation of
predation and competition risk simultaneously. Incorporating multiple layers into landscapes of risk, representing various trophic
levels, taxonomic groups and interspecific relationships will deepen our understanding of behavioural cascades through these
complex interaction webs.
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