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Abstract 

This study sought to understand how machine learning could facilitate the tracking of 

bees and address the lack of automated bee-tracking tools that can count bee 

behaviour and movement from positional information. Harmonic radar tracking 

datasets of bumblebee movement were used to predict flight tasks. Random forest 

(RF), Support Vector Machine (SVM) and neural network (NN) algorithms were 

trained on the dataset and their performance was evaluated. Unsupervised 

clustering (lacking any human labels) was performed to investigate whether a simple 

binary classification of bee tasks (foraging or exploring) could be replaced with a 

multiclassification model with more complex behaviour modelling. Comparisons of 

optical and thermal camera systems were also undertaken and found that thermal 

cameras, which are less affected by sub-optimal lighting, are more suitable for 

automated bee flight characterisation, (inwards, outwards, and hovering) at the 

entrance to the hive. Gaussian mixture models and a Kalman filter were used to 

extract bee flights from recordings from bee hives. The recorded flights were pre-

processed into a dataset to train SVM, RF, and NN algorithms to predict the three 

flight types. Finally, a Doppler radar was used to record bee entry and exit activity 

from a hive. The data was processed using Log Area Ratios, derived from Linear 

Prediction Coefficients, to create a dataset for training machine models. The goal 

was to create a system that could function in real-time using a Raspberry Pi to 

classify the activity at the entrance of a hive. This study demonstrates that machine 

learning could automate a data-intensive field of study and provide meaningful 

insights into the activities of bee species with uses in the apicultural sector, including 

research and conservation. 



5 

Acknowledgements 

I would like to thank my supervisors Dr. Paul Cross and Dr. Cris Palego for their 

insightful feedback throughout the study.  

The project was funded by Knowledge Economy Skills Scholarships (KESS 2) and 

the Welsh Government. I am grateful for their funding and support which allowed me 

to develop my research. 

I extend special gratitude to my colleagues Dr. Nawaf Aldabashi, Sara Bariselli, and 

Dr. Jake Shearwood for the opportunity to work together and co-develop projects. 

Their humour, wit, and intelligence made my experience enjoyable even during long 

dark hours. 

Finally, I would like to thank my whole family for their support. Their belief in me has 

kept my spirits high during this process. I thank especially my daughter Mia and 

fiancée Lucy for their unwavering patience and for being a constant source of 

encouragement and motivation. 



6 

Contents 

Declaration and Consent ............................................................................................ 2 

Statement of Originality .............................................................................................. 3 

Abstract ...................................................................................................................... 4 

Acknowledgements .................................................................................................... 5 

1 Introduction, Motivation and Structure ............................................................... 11 

1.1 Background and Motivation ......................................................................... 11 

1.2 Research Questions .................................................................................... 16 

1.3 Aim, Objectives, and Structure of Thesis .................................................... 16 

1.4 Contributions ............................................................................................... 17 

1.5 Structure of the Thesis ................................................................................ 19 

2 Literature Review with Experimental and Computational Methods ................... 21 

2.1 Introduction ................................................................................................. 21 

2.2 Literature Review ........................................................................................ 24 

2.2.1 Manual Tracking ................................................................................... 24 

2.2.2 Harmonic Radar ................................................................................... 26 

2.2.3 Radio-Frequency Identification ............................................................. 28 

2.2.4 Radio Telemetry ................................................................................... 29 

2.2.5 Battery-less Tag Tracking Technologies............................................... 33 

2.2.6 The Costs of Tagged Technologies ...................................................... 35 

2.2.7 Doppler Radar ...................................................................................... 37 



7 

2.2.8 Internal Hive Predictions ....................................................................... 39 

2.2.9 RF-Based Machine Learning ................................................................ 44 

2.2.10 Visual, Thermal, and Light-Based Techniques ..................................... 47 

2.2.11 Time-series prediction .......................................................................... 57 

2.3 Machine Learning Algorithms ...................................................................... 59 

2.3.1 Neural Networks ................................................................................... 59 

2.3.2 Support Vector Machines ..................................................................... 63 

2.3.3 Random Forests ................................................................................... 66 

2.3.4 Cross Validation Bound Bayesian Hyperparameter Optimisation ......... 70 

2.3.5 Time Series Analysis ............................................................................ 76 

2.3.6 Performance Evaluation and Metrics .................................................... 76 

2.4 Video Processing Techniques ..................................................................... 80 

2.4.1 Gaussian Mixture Models for Background Subtraction ......................... 80 

2.4.2 Kalman Filter for Movement Prediction ................................................. 83 

2.5 Signal Processing Techniques .................................................................... 86 

2.5.1 Linear Predictive Coding ....................................................................... 86 

2.5.2 Mel-Frequency Cepstral Coefficients .................................................... 90 

2.6 Munkres Assignment Algorithm ................................................................... 91 

2.7 Summary and Discussion ........................................................................... 93 

3 Early Prediction of Bumblebee Flight Task* ...................................................... 95 

3.1 Introduction ................................................................................................. 95 



8 

3.2 Data ............................................................................................................ 97 

3.3 Filtering and Preparation Methods ............................................................ 100 

3.4 Initial Experiment ....................................................................................... 103 

3.5 Initial Results and Discussion.................................................................... 107 

3.6 The Dangers of Subsampling, Manual Tuning, and the Question of Loss 116 

3.7 Summary, Limits and Conclusion .............................................................. 119 

4 A Comparison of Machine-Learning Assisted Optical and Thermal Camera 

Systems for Beehive Activity Counting* ................................................................. 122 

4.1 Introduction ............................................................................................... 122 

4.2 Materials and Methods .............................................................................. 124 

4.3 Results and Discussion ............................................................................. 133 

4.4 Feature Importance ................................................................................... 138 

4.5 Wasp Detection ......................................................................................... 140 

4.6 Test Stage ................................................................................................. 141 

4.7 Summary, Limits and Conclusion .............................................................. 143 

5 Challenges in Developing a Real-time Bee Counting Radar using Machine 

Learning* ................................................................................................................ 146 

5.1 Introduction ............................................................................................... 146 

5.2 Preliminary Work ....................................................................................... 147 

5.3 Methods .................................................................................................... 151 

5.4 Results ...................................................................................................... 156 

5.4.1 Preliminary Results ............................................................................. 156 



9 
 

5.4.2 Exploring the Weaker Results ............................................................ 159 

5.4.3 Testing Stage ..................................................................................... 170 

5.5 Discussion ................................................................................................. 171 

5.6 Summary and Conclusion ......................................................................... 173 

6 Summary, Future Work, and Conclusion ........................................................ 175 

6.1 Discussion and Limitations ........................................................................ 175 

6.2 Future Work .............................................................................................. 177 

6.3 Review of Research Questions ................................................................. 179 

6.4 Review of Research Aims and Objectives ................................................ 180 

6.5 Conclusion ................................................................................................ 181 

7 References ...................................................................................................... 182 

Appendices ............................................................................................................ 214 

A - Localization and Tracking Bees Using a Battery-less Transmitter and an 

Autonomous Unmanned Aerial Vehicle* ............................................................. 214 

1. Introduction ......................................................................................... 214 

2. Miniature Self-powered Radio Telemetry Tag .................................... 215 

3. Phased Array and Feeding Network ................................................... 217 

4. Autonomous Tracking ......................................................................... 219 

5. Discussion .......................................................................................... 223 

6. Conclusion .......................................................................................... 224 

B - Integration of 5.8GHz Doppler Radar and Machine Learning for Automated 

Honeybee Hive Surveillance and Logging* ......................................................... 225 



10 
 

1. Introduction ......................................................................................... 225 

2. 5.8 Ghz Doppler Radar ....................................................................... 226 

3. Honeybee RCS Approximation ........................................................... 227 

4. Calibration Procedure ......................................................................... 228 

5. Free Flying Honeybee RCS ................................................................ 229 

6. Doppler Radar Integration with Machine Learning .............................. 230 

7. Discussion .......................................................................................... 232 

8. Conclusion .......................................................................................... 232 

C - A Machine Learning Integrated 5.8-GHz Continuous-Wave Radar for 

Honeybee Monitoring and Behavior Classification* ............................................ 233 

1. Introduction ......................................................................................... 233 

2. 5.8-GHz CW Radar Design ................................................................ 235 

3. Predicted Versus Measured Radar Signatures ................................... 237 

4. RCS and Range Increase Using Silver Coating ................................. 245 

5. Machine Learning ............................................................................... 249 

6. Conclusion .......................................................................................... 258 

 

  



11 
 

1 Introduction, Motivation and Structure 

 

1.1 Background and Motivation 

Bees are major pollinators of crops and wild plants in our ecosystems. The current 

and projected decline in insect populations is the consensus among recent scientific 

studies [1–3].  A study in the UK found that two-thirds of bumblebee species had 

range losses between 1960 and 1980 [4]. In America, it has been shown that half of 

the species modelled with unlimited dispersal patterns are projected to lose ranges 

[5].  

The importance of animal pollination to human crop production is apparent. By crop 

type, over 75% of crops rely on animal pollination whilst by volume 35% of global 

production also rely on animal pollinators [6]. In the wild, 80% non-agricultural plants 

rely on insect pollinators [7]. Wild- and honeybees contribute more than $2900 per 

hectare to the production of insect-pollinated crops [8].  

In addition to their unmistakable contribution to food production and natural 

biodiversity, bees are crucial for long-term sustainable goals. Bees potentially 

contribute to 15 of the 17 United Nations Sustainable Development Goals (SDGs) 

and a minimum of 30 SDG targets [9]. 

Large-scale studies have been undertaken to find broad overlapping trends in these 

instabilities to provide mitigation advice [10]. However, at a local level, it is difficult to 

pinpoint causes. Figure 1.1 shows a collated view of the global decline of varying 

insect species, capturing the threat faced by pollinators. 

Focus on sudden insect biomass and species richness decline is now a trend, often 

citing causes such as climate change, pesticides, habitat loss, and invasive species 

[11, 12]. Studies focused on a particular group of insects are often inconclusive 

about the precise causes, due to the limited nature of current monitoring techniques 

[3]. Precise, detailed information captured by better sensor equipment can provide 
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more data to work with when forming conclusions, particularly to investigate 

overlapping issues for colonies.  

 

 

Figure 1.1 Proportion of threatened and extinct insect species covering a global 40-year period 
as collated from 73 reports [10]. 

 

Pesticides are a major factor in the decline of bees. In 2018, the European Union 

(EU) banned the use of three key neonicotinoids used in agriculture as pesticides 

[13]. These three chemicals were found to have drastic sub-lethal effects at typical 

exposure for bees [14]. Their replacements, acetamiprid and thiacloprid, have been 

found by the EU to bring minimal disadvantages to bees. However, studies have 

found evidence to the contrary for both [15]. Thiacloprid, in particular, is unique in 

that there is evidence that disease-bearing bees are affected differently from healthy 

bees [16]. 

Intensified farming modifies the landscape that both managed honeybees and wild 

bees inhabit. This is a key factor in the decline of populations over the last 50 years 
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[17]. The exact effect of monocultures, brought about by farming, on bees is difficult 

to measure. Studies have shown that wild bee species richness and abundance are 

positively affected by landscape complexity when insecticides are in use [18]. 

However, another study found that honeybees kept at diversified farms had 

increased colony weight and preoverwintering nutritional state, but suffered to the 

same degree as those kept on monoculture farms during late summer. This is a 

result of the stressors of living in low-diversity environments that poorly replicate 

natural ecosystems [19]. 

Increased urbanization creates challenges for bumblebees. When studying bumble 

bee species richness and abundance in allotment gardens, Ahrné et al. found overall 

decrease in abundance closer to the heart of Stockholm than in periurban areas, as 

well as a decrease in the number of species. This may indicate that changes to the 

environment are beyond the abilities of some species to adapt [20]. 

During the past 50 years, the invasive spread of the Varroa destructor mite has 

resulted in the death of millions of honeybee colonies [21]. Varroa mites cause 

minimal damage to their co-evolved ancestral host (Apis cerana) but they are lethal 

for their new host, the western honeybee. The debate as to whether western 

honeybees can adapt quickly enough to the new parasite, even with breeding 

programs, is not settled [22]. The dangers of an invasive species, which shows signs 

of rapid evolution itself, cannot be discounted. 

Human activity modifies the environment and allows invasive species such as the 

Asian Hornet to invade and impair the population stability of native species [23]. The 

instability of insect species richness and biomass has secondary effects expected to 

undermine human industry, particularly food production [6, 24].  

The Asian hornet invasion of Europe has been a centre point of research since the 

initial wave in 2004, located in Southern France [25]. Studies have been able to 

pinpoint their habits and preferred nesting sites. Hornet nests can be classified as 

primary and secondary nests. Primary nests are those that the foundress queen 

hibernates in over winter. From here, she nurtures a few critical workers until a 

stable colony is present to support her. Then, if the primary nest no longer suits the 

need, a secondary nest might be built in a place more suited to a larger colony. 
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76.9% of primary nests in Southern France were found in man-made structures. 

Conversely, 73.5% of secondary nests were found in trees, as discovered by 

Franklin et al. [26]. However, whether these data represent a fundamental pattern is 

undetermined. The authors note that primary nests are more likely to be found in 

urban areas due to alarm caused by layman's observations. In contrast, once a 

primary nest is found, investigations are undertaken to locate any associated 

secondary nests. However, it was a conclusion of this work that only 51.4% of nests 

were found and only 37.4% of nests were found while active. 

The act of hornets hovering outside of bee colonies and predating is known as 

hawking. Asian hornets are three times more successful at hawking European bees 

than Asian bees, in part due to the lack of behavioural adjustments necessary to 

combat predation such as altered foraging and extra guards at the entrance to hives 

[27]. Also of note is the lack of evolved defensive tactics such as heat-balling, 

whereby bees cook an aggressive hornet by balling it up and vibrating until the 

temperature kills the hornet [28]. Similarly, European bees lack the behaviour of 

wing-shimmering, where the hive gathers to pulse their wings and disorient attackers 

[29]. 

The lack of defensive capabilities of endemic bees, as well as the lack of scientific 

ability to track down Asian Hornet nests, are exemplars of why more focused studies 

are needed. Mitigating technologies justifiably must be developed. This creates an 

opening for new technologies and algorithms to pinpoint exact causes with fully 

contextualised results, aimed at protecting species and monitoring risks. 

There are many more drivers for bee population instability. Further context is 

provided by the work of Sanchez-Bayo, as demonstrated in Figure 1.2, showing the 

associated factors. This broad-view outlook is instrumental in spurring further 

research.  However, given the number of potential causes, this data is less useful to 

a small-scale farmer or larger business interested in maximising pollination efficiency 

and preserving hives in place. In this case, precise threats need to be identified and 

addressed in real-time. Similarly, the most severe causes for decline referenced in 

these works are man-made. Agriculture, pesticides, and urbanisation can be limited 
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but may be an inevitable side effect of human population growth. Therefore, the best 

approach may be specialised mitigation tactics to preserve local species. 

 

Figure 1.2 Associated factors of the decline of insect species, gathered in collated literature 
[10]. Clockwise segments match, in order, the list of causes. 

 

If effective methods to monitor and predict insect behaviour are to be developed, the 

means to contextualise complex and technical information must be automated. This 

thesis will begin by providing an overview of some of the technologies that have 

been created to monitor bees and similar insects. The technical complexity of 

understanding the volumes of data that come from sensor equipment will be the 

justification that machine learning can provide ways of rapidly expanding the scope 

of technologies that currently face limits. 

Three experiments have been undertaken that show how machine learning can 

enhance the ability to existing and in-development technologies to better track and 

predict insect movement. Using harmonic radar, the task a bee is undertaking upon 

leaving the hive has for the first time been accurately predicted, without the need for 

the full flight to be recorded. Significant progress has been made towards a real-
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time, radar-based activity counter for the entrance of beehives to monitor detailed 

activities. Finally, the use of a thermal camera has been tested to count accurately 

the departures and arrivals of bees at the entrance of the hive. 

 

1.2 Research Questions 

This project investigates bee tracking technologies by combining them with machine 

learning approaches to determine how viable such combinations are for predicting 

and understanding bee behaviour. 

The specific questions include: 

• Which bee tracking technologies are most useful to use when paired with 

machine learning? 

• Are existing model architectures capable of predicting bee behaviour as 

captured by these technologies? 

• What are the limits of machine learning in this field? 

The motivation is that there is a lack of machine learning usage to count and predict 

bee behaviour. Addressing this gap has the potential to create models and 

technologies that would aid in the research of bee population instability as well as 

bring advantages to industries that rely on bee pollination. 

 

1.3 Aim, Objectives, and Structure of Thesis  

The core aim of this thesis is to understand and report on the contribution that 

machine learning can make toward tracking and understanding flying insect 

behaviour.  
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This is encapsulated by a central set of objectives: 

• Identify key tracking technologies with the greatest potential to integrate with 

machine learning. Two of these technologies were chosen as they were at 

the forefront of research at Bangor University and critically placed to help 

track bees. 

• Design experimental setups to gather bee movement and/or behaviour data 

using these technologies. 

• Generate suitable machine learning models to predict movement and 

behaviour using the acquired data. 

• Evaluate the strengths and weaknesses of the models created (and their 

experimental setups) identifying the sources of any limitations. The focus is 

on the accuracy the models have in predicting bee movement and behaviour, 

rather than targeting specific technologies that may decrease cost, limit 

weight, or improve visualisation. 

• Of the three technologies, provide informed discussion about which might 

benefit most or least from the machine learning integration. 

• Discuss whether the experiments show support for using machine learning to 

aid in the design of future bee counting and modelling systems. 

 

 

 

1.4 Contributions 

This thesis is concerned with the development of systems to predict bee movement 

and behaviour, and as such the main contribution of this thesis is the design, 

measurement, and analyses of three prototypes to classify such behaviour. 

The details of the contributions in this thesis are listed below: 

• Data analysis, software development, and write-up for the development of a 

system to predict the function of a bumblebee’s flight as it leaves the nest. 

This work is discussed in Chapter 3 and was also presented in the paper: 

S.M. Williams, N. Aldabashi, C. Palego, J.L. Woodgate, J.C. Makinson, P. 
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Cross, Early prediction of bumblebee flight task using machine learning, 

Computers and Electronics in Agriculture, Volume 184, 2021, 106065, ISSN 

0168-1699, doi: 10.1016/j.compag.2021.106065 

 

• Experimental design, data analysis, software development, and write-up for a 

comparison of two candidate camera systems to count honeybee activity at 

the entrance of their beehive. This work is presented in Chapter 4 and was 

also discussed in the paper: S.M. Williams, S. Bariselli, C. Palego, R. Holland, 

P. Cross, A comparison of machine-learning assisted optical and thermal 

camera systems for beehive activity counting, Smart Agricultural Technology, 

Volume 2, 2022, 100038, ISSN 2772-3755, doi: 10.1016/j.atech.2022.100038 

 

• Experimental design, data analysis, software development, and write-up for a 

radar-based machine learning system to count activity near a beehive, along 

with detailed discussion on the current limits of creating such a system. This is 

present in Chapter 5 and in the paper: S. M. Williams, N. Aldabashi, P. Cross, 

C. Palego. Challenges in Developing a Real-Time Bee-Counting 

Radar.  Sensors 2023, 23, Volume 11, Article 5250. doi: 10.3390/s2311525 

In addition, some secondary contributions were achieved in other related projects as 

follows: 

• Software development and data analysis for building self-piloting drone 

software to integrate with a novel localization system for battery-less bee 

transmitters, detailed in the paper: J. Shearwood, S Williams, N Aldabashi, P 

Cross, B M Freitas, C Zhang and C Palego., "Localization and Tracking Bees 

Using a Battery-less Transmitter and an Autonomous Unmanned Aerial 

Vehicle," 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los 

Angeles, CA, USA, 2020, pp. 1263-1266, doi: 

10.1109/IMS30576.2020.9223950 

 

• Write-up, data analysis, and machine learning models to predict bee activity 

from radar signatures gathered from earlier prototypes of the radar used in 

Chapter 5, as discussed in two papers: 
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o N. Aldabashi, S. Williams, A. Eltokhy, E. Palmer, P. Cross and C. 

Palego, "Integration of 5.8GHz Doppler Radar and Machine Learning 

for Automated Honeybee Hive Surveillance and Logging," 2021 IEEE 

MTT-S International Microwave Symposium (IMS), Atlanta, GA, USA, 

2021, pp. 625-628, doi: 10.1109/IMS19712.2021.9574826 

o Aldabashi, N., Williams, S.M., Eltokhy, A., Palmer, E., Cross, P. and 

Palego, C. (2023). A Machine Learning Integrated 5.8-GHz 

Continuous-Wave Radar for Honeybee Monitoring and Behavior 

Classification. IEEE Transactions on Microwave Theory and 

Techniques, [online] pp.1–11. doi: 10.1109/TMTT.2023.3248785 

 

• Data collection and analysis for a paper on the biometric uses of the radar 

board featured in the thesis: N. Aldabashi, S. M. Williams, P. Cross and C. 

Palego, "A Printed Circuit Board Continuous Wave Doppler Radar for 

Machine Learning-Enhanced Biometrics," 2021 IEEE MTT-S International 

Microwave and RF Conference (IMARC), KANPUR, India, 2021, pp. 1-4, 

doi:10.1109/IMaRC49196.2021.9714590 

 

 

1.5 Structure of the Thesis 

The subsequent content of the thesis will be ordered as below: 

Chapter 2 (Literature and Methods): Literature Review of the current tracking 

systems for bees and similar insects. In addition, technologies related to tracking 

systems that instead monitor their behaviour. This is followed by an investigation into 

machine learning work undertaken using bee-tracking technologies most similar to 

the work undertaken in the thesis. 

Following the literature review is a discussion of current methods, detailing 

algorithms employed across all experimental chapters. Experimental and 
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Computation methods are employed to record data, extract pertinent features, create 

and train models, and run assessments on the models and results generated. 

Chapter 3 (Experimental): A chapter attempting to answer whether machine 

learning could predict the function of individual bumblebee flights, using positional 

coordinates gathered by harmonic radar, within a short time window of it leaving the 

nest.  

Chapter 4 (Experimental): A comparison to determine whether a thermal camera 

might, using machine learning, perform comparably to a similar visible-spectrum 

system to count honeybee hive activity. Machine learning models were used to label 

flights, including partially recorded, broken, or double-counted flights as either 

outward or hovering flights.  

Chapter 5 (Experimental): A chapter to determine the feasibility of developing a 

machine-learning integrated radar system to count the traffic at the entrance of a 

honeybee hive, using Support Vector Machines (SVMs) trained on Linear Predictive 

Coding (LPC) representations of radar signals.  

Chapter 6: Discussion and limitations, future works, and conclusion. 

Chapter 7: References. 

Chapter 8: Appendix of published works with author contributions during the study 

period. 
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2 Literature Review with Experimental and 
Computational Methods 

 

2.1 Introduction 

This chapter contains both a literature review and a methodology section. The 

purpose of the literature review is to provide context for why the work in this thesis is 

both novel and useful.  

The literature review contains two themes with no clear division. The first theme 

covers technologies that are used to track bees (or similar animals) regardless of 

whether they have been combined with machine learning. The second theme 

concerns systems that have used machine learning to predict, monitor, or count 

small insects and similar animals. 

There is no division between the two themes for the following reasons: 

• Some machine learning works have used general-purpose technologies not 

specific to insects such as video cameras. These technologies are 

commonplace and therefore are not discussed outside of the study in which 

they feature. 

 

• Some machine learning studies use highly specific tracking systems that are 

only applicable (or have only been used) in the research that is being 

referenced. These are not discussed elsewhere as they are self-contained 

within the study. 

 

• Some technologies have yet to be integrated with machine learning. It is 

important to discuss these as they represent gaps within the literature while 

also providing a background on which technologies have had the most 

impact. 

 

A visual aid for understanding this chapter and its themes is given Figure 2.1. 
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When tracking insects there are many potential measures suitable for benchmarking 

success. Examples include weight, price, range, battery, accuracy, and risk to the 

insects. This thesis prioritises accuracy as it is a foundational concern for machine 

learning. However, it is important to be aware of the other concerns when tracking 

insects, particularly when it comes to risk. The literature review contains a section on 

the harm caused by tracking systems which use tags for this purpose.  

There is no one tracking technology which can be integrated with machine learning 

which minimises the risk to insects while maximising the other metrics. The literature 

review aims to cover technologies that may compete with or complement those used 

in this thesis. 

The second part of this chapter covers a methodology section which provides a 

discussion on the algorithms used to conduct the research within this thesis. This 

discussion covers how the algorithms work as well as where and for what purpose 

they have been used within the thesis. More specific implementation details are 

contained in the main chapters that use the methods; however, the methodology 

covers common implementation concerns and practices. 
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Figure 2.1 A thematic diagram of the literature review. RF in this instance refers to Radio 
Frequency technology. 
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2.2 Literature Review 
2.2.1 Manual Tracking 

Rudimentary tracking techniques have existed for a long time. Often, these are more 

efficient than more modern electronic approaches. One such technique, in China, 

involves baiting hornets into feeding on either meat or other insects in a managed 

area. Once distracted, a feather attached to a string is looped around the abdomen. 

The additional weight of the feather hampers the hornet as it returns home and the 

bright colours aid in keeping eyes on the hornet as it flies through the forest. One 

weakness of this approach, found during attempted replication by Western 

researchers, is that the hornet must not notice the feather attached or it will stop as 

soon as possible to remove it. In addition, the hornet is excluded from the hive on 

return based on the abnormality, making it not useful for repeated tracking [30]. 

Arguably the most well-known approach is the trap-and-release method, historically 

known as beelining [31, 32]. In this approach, multiple traps are placed where the 

tracking takes place. Bees, or hornets, are marked upon release and timed until 

return. This gives both direction and distance and, by combining multiple trap results, 

allows for a good estimate of the location to be determined. The process is 

visualised in Figure 2.2. 

 

Figure 2.2 Visual representation of the beelining process: Map of the Arnot Forest showing 
beelining sites (triangles) and the observed bearings for bees as they departed these sites 

(arrows represent the mean of each cluster of bearings). The determined locations of nests are 
shown by circles,  filled circles indicate nests which were located by following beelines back 

to them [32]. 
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Traps vary significantly by the maker. An example is present in Figure 2.3, but all 

have some key requirements in common. The entries to the trap must be wide 

enough for the target to enter but not too large as to allow other insects to enter, with 

the exit being complicated enough that it becomes unfeasible. Additional exits can 

be present to allow smaller insects to leave. The addition of a gauze pad, or the use 

of a sponge, prevents these insects from drowning in the liquid lure. This lure can be 

a mixture of many fluids, such as beer, wine, honey, and blackcurrant syrup [33]. 

Beer and wine are used to repel bees when attempting to capture hornets [30]. 

 

Figure 2.3 Structure of a trap designed to catch exclusively Asian hornets while releasing 
other insects [33]. 

Some negatives of these more manual techniques include limitations such as less 

than 1% of the catch being the Asian Hornet in Spain, severely limiting the capacity 

to track from traps alone [34]. Similarly, some approaches recommend killing early 

queens once they are found during the start of the season. This, in theory, prevents 

the development of primary nests and reduces the chance of secondary nests. 

Nevertheless, it has been found that Asian Hornets do so well in European climates 

that nests reach saturation quickly, leading to an overabundance of queens. These 

queens then fight over nests resulting in many queens dying [30]. As such, adding to 

the death of queens is redundant and removes the possibility of finding the nest 

itself. 
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2.2.2 Harmonic Radar 

Radar has been used to study insects for over 50 years [35]. Both vehicle-mounted 

and handheld systems have been developed [36]. Larger, more powerful systems 

have a much greater range than the ~60m offered by handheld solutions, with the 

trade-off being much more difficult to deploy in remote areas [37]. 

Harmonic radar is successful due to the system broadcasting a signal that impacts a 

tag placed on the bee, producing a harmonic frequency. This frequency is reflected 

out and detected back at the receiver. Specific tag designs vary but ultimately reflect 

a unique signal back allowing for separation from the environment. Examples are 

included in Figure 2.4. Tags can weigh as little as 6-10mg [38]. There has been 

significant concern that the use of tags on arthropods can significantly change their 

behaviours, even when such tags are less than the typical loads of their pollen 

foraging [39]. 

 

Figure 2.4 (a) A traditional antenna tag design in use for tracking bees [35], (b) A microstrip tag 
to reduce the burden on the bee [40], and (c) a harmonic radar tag on an Asian hornet [41]. 

Harmonic radar is particularly potent because it is long-range and has provided an 

understanding of how bees manage spatial memory. Menzel et al. investigated 

whether, like humans, bees can build effective pathing between learned and 

communicated landmarks [42]. Using harmonic radar tracking, they were able to 



27 
 

show that bees visiting a resource that they had learned themselves were then able 

to detour to a new resource that had been communicated to them via a waggle 

dance. This dance is used by bees to encode information about newfound 

resources. By detouring to that resource, they showed spatial awareness of the 

relative positions of two separate landmarks.    

In 2014, Fischer et al. used harmonic radar and demonstrated the homing issues 

caused by neonicotinoids in bees [43]. 1.5 hours after exposure, bees were 

hampered during their return home and less likely to make the correct turn at 

landmarks. In a similar study during the same year, Wolf et al. showed similar 

homing issues in bees affected by the Nosema ceranae pathogen, again using 

harmonic radar [44].  

Harmonic radar was used by Greggers et al. to show that successful swarms of bees 

have streakers that speed ahead of the main swarm to guide it to the location of a 

new nest [45]. A project spanning multiple years, spearheaded by Milanesio et al., 

developed a portable harmonic radar system. The system, shown in Figure 2.5, was 

able to detect Asian hornets up to 125m away, with the revised version capable of 

150m [46, 47]. 

 

Figure 2.5 Harmonic radar for hornet tracking. The transmitting antenna is 180 cm long, while 
the receiving antenna, on top, is 50 cm long [46]. 
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Harmonic radar is not without its downsides. It has been theorised that a small 

antenna with good efficiency and broad bandwidth is unfeasible to achieve [48]. 

Therefore, trade-offs must be made by sacrificing one metric to better the other two.   

The terrain is very important with harmonic radar, causing instances of 'clutter' where 

the target is obscured [49]. These losses must be accounted for, and an attempt 

made to limit their effects. This can be as simple as limiting tracking to flat 

landscapes or increasing the height of the system so that it is above the foliage [46, 

47, 50]. However, even low-to-the-ground foliage can interrupt the transmitted signal 

when the target stops foraging from a food source [38, 51]. 

Adjustments to the design of the harmonic radar itself have been made to increase 

the beam-width, reducing the ultimate range for the sake of wider detection 

capabilities [41]. These systems are effective out to 500m, which is significantly 

shorter than the projected 3km foraging range of these insects [36]. 

 

2.2.3 Radio-Frequency Identification 

Radio-Frequency Identification (RFID) enables the unique identification of a tag 

wearer based on stored data [52]. The system sends out a signal which is received 

by the tag, and the tag then responds with a unique identification code. Tags can be 

powered or rely solely on the incoming signal for power needs. 

The shortcoming of such systems is a limited range. While advancements have 

pushed detection ranges out as far as 64m, in practice the use of such systems for 

insect monitoring required checkpoints where the insects must cross the path of a 

narrow detection beam [53]. Figure 2.6 shows such a system, developed to identify 

bees feeding on a station. Practically, these systems are easily modified to function 

at the entrance of hives [54]. 
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Figure 2.6 Example of a bee disturbed by the RFID tags. Aluminium housing (18.5 cm × 10.5 
cm × 5.5 cm) and peripherals. (1) 4-pin power inlet; (2) micro-USB port; (3) Wi-Fi antenna; (4) 

GNSS antenna, and (5) RFID antennas and ports [55]. 

 

Due to the passive nature and small size of RFID tags (5.4mg [55]) they have led to 

breakthroughs with insects other than bees. Robinson et al. showed the mechanics 

by which ants select new nests by monitoring departures and arrivals at the 

candidate. Stronger candidate nests were less likely to be abandoned and 

something similar to a majority vote is used to determine the final site [56]. Harmonic 

radar has also been useful in the monitoring of the effects of neonicotinoids on 

beetles, as well as the study of other subterranean insects [57, 58]. Heavier tags 

have been used, weighing 81mg, however, these are impractical, especially for flying 

insects [59]. 

 

2.2.4 Radio Telemetry 

Radio telemetry has a long history of use in tracking animals [60]. Early studies were 

limited by the technology at the time, such as using a 1cm spherical antenna 

ingested by Galapagos Tortoises [61]. As technology has moved forward, these tags 

have become smaller and more able.  

Radio telemetry typically uses a battery-powered tag to increase the range of 

detection. This is then received by a handheld or vehicle-mounted receiver to isolate 
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location. Average detection distances are roughly 500m with peak detection at 

1500m when the receiver is elevated above the tracking area [62]. 

Tags weigh as little as 200mg; however, this is still beyond the current flight 

capabilities of some bees and hornets. A demonstration of such a tag is found in 

Figure 2.7. A general rule is to limit tags to 12% of the bee's body weight [63]. 

 

Figure 2.7 (a) Transmitter attachment on a bee kept in a test tube with opened gauze where the 
transmitter is fixed. (b) Nectar collecting individual of bee having a transmitter attached. (c) 

Bee with an attached transmitter, foraging on red clover [63]. 

 

Nevertheless, recent research has shown that even such rules are misinformed or 

inaccurate [39]. Even a much stricter rule of 5% body mass for flying or swimming 

insects has been questioned. Radio telemetry tags constitute some of the heaviest 

tags in the field, a sacrifice for their gains, as shown in Figure 2.8. Tags can be 

expensive and have battery lives limited to days. 
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Figure 2.8 Histogram of the tag-to-body mass ratio for radio frequency identification (RFID), 
harmonic radar, or radio telemetry tags. The red line indicates the 5% threshold used for flying 

or swimming vertebrates [39]. 

 

Despite the drawbacks of radio telemetry, it has found its uses in insect tracking. 

Since it is simpler in principle than harmonic radar, it is cheaper to develop and 

typically doesn't require a large vehicle-mounted receiver [41].  

It has been invaluable in tracking the ranges of various insect species in often 

complex terrain [64, 65]. In addition, it has contributed to the understanding of how 

pollinators make use of their environment space [63]. 

While manual tracking via radio telemetry is successful, it is limited by the manpower 

required. Typically, an approach very similar to that of beelining is used. The signal 

detected by a handheld receiver is matched to a compass bearing [66]. Several 

readings together can triangulate a colony or nest. A demonstration of this is present 

in Figure 2.9. Trained trackers must therefore carry the equipment often through 

difficult terrain and attempt to be consistent with one another in taking 

measurements. 
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Figure 2.9 Manual radio telemetry localisation bearing a resemblance to the beelining process 
[66]. 

 

Automated approaches to tracking have been around for the last six decades [67]. 

Typically, these approaches use a primitive presence and absence system. No exact 

localisation is used in these techniques. Nevertheless, they can provide key 

knowledge. One such approach uses the Time Difference of Arrival (TDOA) to infer 

direction and distance when two receiving antennas are used alongside a pulsing 

broadcaster [68]. 

Based on the signal strength received by the overlapping fields of detection provided 

by each antenna, it is possible to provide an estimate for the target position. In 2011, 

Keys et al. were able to use such a system to monitor the positions of animals on 

Barro Colorado Island with ~50m accuracy if they were in the range of three towers 

[69]. 

In 2005, Stark et al. were able to use an acoustic variant of a telemetry system to 

track 12 squid over 300 km2 for 37 days [70]. The study used "curtains" of receivers 

to segment bays and channels into areas and record when the squid approached 

said curtains. 
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One particularly potent advantage of radio telemetry is the use of unmanned aerial 

vehicles (UAVs) or drones. Given that the receiving antenna is relatively simple and 

small in structure versus harmonic radar, it is possible to mount such onto a drone. 

Early experiments, using a facsimile of a drone, were successful circa 2009 [71]. 

Early drone prototypes took place in 2015, as drone technology matured enough to 

suit the need [72]. These experiments took place using birds as they are much more 

able to carry larger, more powerful tags.  

As technology progressed, smaller and cheaper solutions became available. Gradual 

improvement has been seen across the years [73, 74]. 

A functional prototype is shown in Figure 2.10. This system was designed to track 

human targets with a large degree of success in 2019 [75]. Despite the potential of 

drones, minimal work has been undertaken and achieved to use the technology on 

insect targets, making this a key area for future research. 

 

Figure 2.10 Prototype drone with antenna system [75]. 

 

2.2.5 Battery-less Tag Tracking Technologies 

To compensate for the issues related to battery-based tags, augmented technologies 

have been in development since the 1970s [76]. These early systems typically used 

photo-voltaic cells to recharge batteries as they are depleted to allow for smaller 
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batteries with longer life spans. Since then, they have provided rechargeable 

systems to track birds over great distances and time with GPS [77].  

Piezoelectric power generation converts impact energy from mechanical vibrations of 

life into electrical energy. Using such generation, it becomes possible to create tags 

that either supplement a battery or lack a battery altogether [78, 79]. Developed in 

the last thirty years, it has seen growing use in smaller applications [80]. In 2007, 

Takeuchi et al. were able to use a glass ball in a tube capped at both ends with a 

piezoelectric material to track school children entering and leaving the premises. 

Their walking triggered the glass ball to strike the material, generating energy that 

fuelled an RFID tag [81].   

As the use of such techniques improved, they have been implanted in fish to enable 

tracking in vivo [82]. A strong example of piezoelectric for tracking larger than insect 

animals was done by Snowdon et al. in 2018 [83]. They used the technology to 

reinforce hawk tag batteries and enable periodic transmission in case of battery 

depletion, allowing them to function when the hawk had flown hundreds of miles out 

of retrieval range. This system, as shown in Figure 2.11, was especially useful as 

replacing the tags due to battery depletion over such a range is unfeasible. 

 

Figure 2.11 Piezoelectric energy harvester used to track a hawk over large distances [83]. 

 

Further research developments have created tags suitable for insects. In 2009, 

Chang et al. developed a 1g tag suitable to harvest energy from a moth's flight to 
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generate 1 mW of electrical power at 1 VDC for general-purpose use [84]. Fast 

wingbeat insects offer an opportunity to generate significant power due to the thorax 

vibrations created. Aktakka et al. in 2011 were able to use the 85-100 Hz wingbeats 

of a Green June Beetle (Cotinis nitida) to generate 11.5 and 7.5 µW in device 

volumes of 11.0 and 5.6 mm3, respectively [85]. Placing two generators (one on 

each wing) resulted in more power per insect.  

Most recently, Shearwood et al. were able to build a piezoelectric tag for honeybees 

[86]. This tag was entirely self-powered, with no onboard battery. This proof-of-

concept design represents a shift towards piezoelectric systems designed around 

smaller insects. 

2.2.6 The Costs of Tagged Technologies 

The question of ethics surrounding the invasive tracking of wild animals has a long 

history [87]. As technology moves forward, the loss of public support has become a 

growing concern [88]. The lack of testing for the implications of tagging animals 

predates the use of such tags on insects [89]. Figure 2.12 details only some of the 

potential disturbances that could be associated with tagging insects. 

 

Figure 2.12 A conceptual diagram of the possible effects of tags on arthropods and the bias 
they can create in research results [39]. 
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As early as the eighties, concerns for bats suffering from the weight of tags weighing 

only 5% of their body mass were made clear [90]. After the migration of such 

technologies to birds, researchers were quick to point out the lack of testing for after-

effects [91]. Given how the tracking of birds has become commonplace and 

affordable, there have been growing analyses of the behavioural and ecological 

effects [92, 93]. A documented lower rate of return of tagged versus untagged birds 

has been found, putting a life cost on some of these technologies [94]. The often-

quoted but non-existent 5% rule and lack of progress to encourage miniaturisation in 

birds have done little to further adapt equipment [95]. 

Where significant gains are necessary to aid in tracking, some have turned to 

implant tags to decrease the burden on the animal [96]. However, it is not hard to 

imagine that large-scale implanting of tags would not sit well with public opinion. 

As the tracking of insects via tagging is much more recent, far fewer concerns have 

been voiced. It is also harder to test for detrimental effects. Concerns about weight in 

beetles (no more than 33%) have been raised, as well as concerns about the 

biological effects of glues used to fix tags to the body [97, 98]. 

A counterpoint to these concerns, a tag weight of 8% in the citrus fly was found to 

have no meaningful effect on activity over five days [99]. 

However, for pollen-bearing insects, there has been a documented significant energy 

cost increase when carrying pollen loads. The addition of a tag, regardless of how 

small, would compound such increases [100]. A 3mg tag was documented as 

causing a 27% reduction in take-off ability in honey bees [101]. There were also 

reduced pollination activities in tagged bees versus painted ones [102]. Diseased 

bees are less able to forage, therefore tagging such bees to study the effects of a 

disease might compromise the dataset [103]. Application of tags using low 

temperature or CO2 (primary methods of disabling insects to apply tags) requires 

consideration of the long-term costs on the insects themselves [104]. 
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2.2.7 Doppler Radar 

One of the most appealing, though costly and difficult, approaches to insect tracking 

involves the use of a Doppler radar. Doppler radar functions by sending out high-

frequency signals and analysing the minute differences in the signals reflected by 

objects moving in the environment. As such, no tag at all is required.  

The study of high-frequency signals on bees and other insects is currently limited, 

however, in the available literature, there has only been small evidence of any 

effects of exposing bees to sub-1 GHz frequencies [105]. Most literature exploring 

higher frequencies finds no effect at all on bee behaviour [106]. 

Doppler radar typically works above 5.8 GHz, putting it well beyond the scope of 

what is known to harm bees [107]. The biggest shortcoming of such technology is 

the range and the scope of information available. Since no tag is present, the return 

power will be a fraction of that broadcast which significantly impacts the range. Laws 

in most countries place strict limits on broadcast power without a license. In the UK 

that is 25 mW Effective Isotropic Radiated Power (EIRP) at 5.8 GHz [108].   

Another associated cost is that since there is no signal being broadcast from the 

target itself, there is limited information available. Speed and direction of travel, 

towards or away from the broadcaster, of the target, are available due to the nature 

of Doppler signals. Specific details such as the cardinal direction of travel are not 

easily determined. Figure 2.13 demonstrates the types of signals possible with a 

Doppler radar mounted on the entrance of a hive pointing outwards to monitor bees. 
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Figure 2.13 Signals detected of bees entering and exiting a hive via Doppler radar at 10.5 GHz 
[107]. 

Due to range limitations, almost all Doppler radars from 5.8 GHz up to 24 GHz are 

mounted at the entrance of a hive to catch bees leaving and returning [54, 109, 110]. 

Figure 2.14 shows a typical setup for this. The improvement of such technologies will 

be of great importance to future endeavours to track bees as this technology is far 

less invasive than others while still having the accuracy benefits of other RF 

technologies. 

 

Figure 2.14 24 GHz Doppler radar mounted at the entrance to a beehive [109]. 
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A hybrid technology exists in using a traditional microphone system alongside a 

Doppler radar, termed a Doppler microphone. Doppler radar typically creates data 

that is stored as audio files, therefore combining them with microphones creates two 

parallel audio samples that can be used to gather more detailed information than 

either alone [111]. 

2.2.8 Internal Hive Predictions 

Precision beekeeping (PB), a branch of precision agriculture, is the concept of 

improved apiary management by monitoring individual bee colonies and predicting 

their needs [112–114]. PB systems are optimised to produce the best combination of 

sensors to gather relevant data that is fed into decision support systems. Their 

developments are driven to suit the needs of business interests, expected risks, and 

rewards. Their principal benefit is allowing the lessening of manual inspections 

through remote access to real-time colony health metrics. 

Data collection in PB can be split into three groups [115, 116]: 

• World parameters: weather information, seasonal variations, and video 

observations. 

• Colony parameters: temperature, humidity, internal atmospheric composition, 

sound, video, and hive weight. 

• Individual parameters: number of bees entering and leaving the hive, number 

of bees at the hive entrance. 

Driven by the miniaturisation of sensors, coupled with increased capacities, PB 

systems have become more affordable and widespread. Naturally, this has created 

opportunities to include predictive algorithms to enhance their capabilities [117]. 

In 2016, Kridi et al. used thermal sensors to build thermal response patterns of bee 

colonies in Northeastern Brazil [118]. Their system was able to reduce the data 

transmission load by taking the crude readings and parsing them via k-means 

clustering to check whether conformance with a given pattern was present. This is 

shown in Figure 2.15. So long as the readings fell within an expected pattern, then 

no alert was necessary. When a deviant measurement was detected, a message 
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was sent to the base station. When three or more deviant measurements were 

taken, an alert was broadcast to initiate a response. The conceptual properties of 

this system are presented in Figure 2.16. 

 

Figure 2.15 Conceptual creation of thermal patterns from raw data. These were the source 
patterns that new measurements were compared with to determine deviancy [118]. 

 

The goal of this system was to prevent the colony from overheating, which can lead 

to absconding. Absconding is an adaptive behaviour that Africanized honeybees 

have developed over their European counterparts. It is a response to the seasonal 

changes of semiarid areas, driving bees to move to more coastal areas where milder 

weather may be found [119]. For managed colonies this is not a desirable event, 

necessitating intervention.     
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Figure 2.16 The physical setup of Kridi et al., showing (a) the distance from the observation 
base, (b) the environment surrounding the apiary, and (c and d) the prototype in plastic and 

wooden protection, respectively [118]. 

 

In a mix of disciplines in 2016, Edwards-Murphy et al. used PB technologies to 

gather data that allowed them to use a decision tree algorithm to predict 10 classes 

of hive status, from normal and hibernating hives to damp or too-hot hives [120]. 

These tree algorithms were adaptively designed and managed with an average 

accuracy of 95.38%, with the final structure shown in Figure 2.17. Accuracy, in this 

case, is the proportion of correctly classified hives versus human expert 

classification. They also managed to use decision trees to correlate the coming of 

rain within the next six hours with the CO2 level found inside the hive. The decision 

tree in Figure 2.17 was able to determine if a hive was too small (colony size/weight) 

to effectively determine the oncoming rain. 
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Figure 2.17 Decision tree structure for predicting hive status via Edwards-Murphy et al. [120]. 

 

In 2019, Robles-Guerrero et al. used an acoustic solution to correlate the sounds 

produced by a hive to determine if they were queenless [121]. They created a 

particularly accurate model (approx. 95% accuracy) from just five hives. They used 

the well-documented technique of Mel Frequency Cepstral Coefficients (MFCCs) to 

create model features. This technique turns a raw signal into a series of compact 

features representing the source signal. Feature selection and model generation 

were then performed using Lasso Logistic Regularisation. Further analysis looked at 

observing how the signature sounds changed depending on time and hive condition. 

A special note was made of how their data separability indicated the presence of 

many hive statuses detectable by acoustic signature alone. 

Rafael Braga et al., in 2020, used PB techniques to predict colony health over time 

[122]. They utilised a combination of internal sensors (temperature, colony mass) 

and external sensors (temperature, wind direction, speed, precipitation, and 

daylight.) To create a class system to predict against, they used Healthy Colony 

Checklist (HCC), carried out manually once a week from six hives. 
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This checklist assesses the following: 

• Presence of full brood spectrum. 

• Sufficiency of adult bees. 

• Presence of a young, productive queen. 

• Sufficiency of water, forage, and food. 

• Lack of stressors that affect colony prospects. 

• Suitable space for current and near-term needs. 

This checklist was binarised to form class labels. A k-nearest neighbour, random 

forest, and neural network algorithm were used as classification models. Hives were 

scored out of six according to the HCC and their final model, a random forest, was 

able to predict the hive score with over 90% accuracy.  

This study targeted reducing the need for hive visits by an inspector. Such visits are 

drawn-out events and can be difficult in adverse weather or during the winter. One 

weakness of physical inspection is that each inspector may have minor biases or 

differences in approach. Having data captured by the sensor and assessed via a 

centralised algorithm could lead to the alleviation of these concerns. 

Approaches like this study, which focus on the hive as a whole, make good use of 

machine learning and represent some of the cutting-edge work undertaken in the 

field. However, studies which do not account for the behaviour of individual bees are 

limited in scope. Whilst they can provide exceptional insight into colony-wide issues 

they cannot provide information about anything beyond that scope. 

Studies which go further by monitoring individual bees have potential to provide even 

greater insight: in an ideal world, mapping an entire hives resource acquisition while 

modelling changes in hive health against the availability of plant species, presence of 

pesticides, proximity to human habitation, and weather will likely lead to further 

breakthroughs. 
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2.2.9 RF-Based Machine Learning 

Early uses of machine learning coupled with RF (Radio Frequency) technologies 

took the form of identifying "clutter" from swarming insects, particularly for cleaning 

weather data to provide more accurate forecasts [123]. From this, the exploration of 

removing all clutter from a data set using artificial intelligence has been explored with 

radar. In the case of Islam et al. in 2012, removing ground, sea, and airborne clutter 

from radar readings targeting precipitation [124]. 

In 2008 Cabanes et al. used a Self-Organising Map (SOM) algorithm to infer ant 

behaviours based on them passing through gates in an artificial hive while tagged 

with RFID chips [125]. SOMs are a class of unsupervised machine learning, where 

the result is clusters of similar data points. These are generated independently from 

human observation and can provide new insight into previously undetermined 

behaviours. Figure 2.18 shows the experimental setup used which resulted in four 

behaviours being detected. These behaviours were attributed to ants specialised to 

care for the queen and brood, those that exclusively forage, generalist, and 

maintenance ants. 

 

Figure 2.18 The RFID experimental device of Cabanes et al. [125]. 

 

A relatively simple machine learning technique, a Gaussian model, was used by 

Susanto et al. to perform curve fitting addressing shortcomings of RFID miss-
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readings with clustered behaviours [126]. This allowed for the separation of bee 

behaviours into four clear categories from an RFID system at the entrance to the 

hive. They found the following: 

• Foraging (FG): Bees were classified as foraging when the gap between 

successive detections is longer than six minutes. 

• Short Mission (SM): Bees engaged in short missions were those with 

successive detection intervals between three and six minutes. 

• By The Entry (BTE): Bees classified as being “by the entry” were those with 

successive detections of the same bee by an RFID antenna at a maximum 

time interval between successive readings of less than three minutes. 

• Departed bees (DB): Bees that left the hive and never returned, either 

because they died or because they swarmed (including absconding). 

In 2018, Hu et al. began the groundwork for a series of papers investigating the 

identification of insect species using radar [127]. Their initial paper looked at using a 

Support Vector Machine (SVM) that was trained to recognise species based on 

weight, wing beat, and body length-to-width ratio. They focused on 23 species that 

were commonly detected by radar when migrating, and their characteristics are 

demonstrated in Figure 2.19. Their final accuracy was over 80%, encouraging further 

work. 

 

Figure 2.19 Parameters of 23 insect species that were fed into an SVM algorithm by Hu et al. 
[127]. 
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In 2020, Hu et al. extended this work and attempted to use Radio Cross Section 

(RCS) to predict insect mass [128]. Again, using SVM, they recorded the cross-

section of insects in a microwave anechoic chamber. The resulting data was fed into 

the SVM which was able to predict the mass of the target with 78% accuracy. As 

mass was one of the key variables used in their original work, this represents steps 

forward to predicting insect species from raw radar data. 

In 2018, using RFID tags, Arruda et al. investigated separating individual bee 

species by looking at the mean, standard deviation, and sum of activity measured 

with each passing hour [129]. This data was fed into multiple machine learning 

algorithms; neural network (NN), classification and regression tree (CART), and 

random forest (RF). Two similar species were assessed in this manner, Melipona 

fasciculata and Melipona seminigra, across multiple days. Each hour provided three 

variables, leading to 72 captured data points per day. Variations in activity versus 

time of day were used as the foundation to predict species. The random forest 

proved strongest in this approach, resulting in a final accuracy of 87.41%. 

Despite the clear power of machine learning in this field, implementations using other 

than RFID or meteorological radar are lacking. RFID has already shown how 

effective these techniques can be, with additional examples being the use of RFID to 

forecast bee activity or classify anomalous bee activity [130, 131]. The absence of 

further work using other forms of RF tracking can be attributed to the highly 

specialised and expensive nature of such systems for insects. There is not one 

broad-scope technology designed for many insects over large distances. This is not 

the case with RFID, which can use very small, un-powered chips, designed for a 

much broader range of applications than just insect tracking. Further work to 

demonstrate the efficacy of machine learning with other RF techniques should 

hopefully spur further development of more able, generalist systems. 
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2.2.10 Visual, Thermal, and Light-Based Techniques 

2.2.10.1 Visual Tracking 

Many algorithms have been specifically designed to predict insect behaviours as 

confirmation of ecological understanding. For example, using a model to predict 

whether bees share the foraging experience with recruits [42]. Some are machine-

specific, direct algorithms to track insects via 2D video recordings [132, 133]. There 

have been recent efforts to develop intelligent algorithms capable of automating and 

improving many of these tasks [134, 135]. 

Visual identification of species using machine learning has been done with great 

effect; in the case of Urtaega et al. in 2016, identifying whether an image contained a 

poisonous or non-poisonous scorpion with an accuracy of 82.5% [136].   

K-means clustering combined with Gaussian kernel filters has been used to assess 

crop damage from images taken by a UAV [137]. As shown in Figure 2.20, this 

approach was very effective, with the additional strength that k-means clustering is 

an unsupervised learning algorithm. This means that their implementation should 

work well with a wide range of similar images without needing further work. The 

kernel allows for manual adjustment where necessary to tune the images to the 

models. 

 

Figure 2.20 Farmland assessment of crop damage from images taken by UAV. (a) Raw image 
without health boundaries and (b) Membership map and decision boundaries after applying a 

soft K-means clustering with K = 3 clusters and Gaussian parameter δ = 8 [137]. 



48 
 

Some similar work was done by Alves et al. in 2020. They used semantic 

segmentation to split images of hive combs into component cells. They then 

classified those cells as being; eggs, larvae, pupa, honey, pollen, nectar, and others. 

Using 11 different learning models, they found the optimal solution to automate this 

process. They used well-known, pre-trained neural network algorithms and re-trained 

them to work on the new data set. The final accuracy for cell detection was 98.7% 

and the final classification of the contents was achieved with 94.3% accuracy. 

Finally, they developed this into free software known as DeepBee as demonstrated 

in Figure 2.21. 

 

Figure 2.21 DeepBee© software developed for the interaction of the users with the predictions 
of comb cell contents [138]. 

Detecting dances and their meaning has been a subject of visual tracking. By taking 

videos of hive combs, individual bees can be tracked, and their movements 

interpreted into dances describing the location of resources that the hive may need. 

Veeraraghavan et al., in 2008, used Markov models to detect when bees were 

dancing [139]. Their results were within two video frames of expertly labelled data, 

paving the way to gather key video samples automatically much faster than humans, 

even if the decoding of such messages remains difficult.  
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Similar work was done by Blut et al. in 2017 [140]. They looked at tracking 

interactions other than dancing, namely offering, begging, trophallaxis, and 

antennation. Trophallaxis was indicated by the exchange of nectar between two 

bees. Antennation was present as the initiator in all interactions, where the bees 

maintain contact with their antennae. In all other cases, other behaviours then 

followed except in the case of antennation. In this case, individual bees were tagged 

with a visual barcode chip for unique identification. Their system was 93% accurate 

at detecting interactions. It is worth noting that they struggled to determine between 

individual interaction types as they focused on the time-length of interactions rather 

than other characteristics. Similarly, they used software called Janelia Automatic 

Animal Behavior Annotator (JAABA.) This tool is a machine learning-based animal 

behaviour decoder designed for use with video. It would be interesting to see if a 

more tailor-made algorithm for bees would be more effective than a generalised 

system designed for all kinds of animal detection.   

Additional visual tracking was undertaken by Boenisch et al. in 2018. Their tags are 

shown in Figure 2.22. However, their work was very thorough. By combining multiple 

levels of machine learning, they were able to track 2,000 bees over 10 weeks to 

generate tens of millions of images. In the first stage, an SVM was used to predict 

that two incomplete or semi-obscured images of tags belong to the same bee. This 

allowed the formation of "tracklets." These were incomplete segments of a larger 

track. At the secondary level, a random forest was utilised to join individual tracklets 

into a complete whole. This allowed for the staged algorithm to track bees that 

became obscured, flew away on missions or otherwise made it difficult to maintain 

visual confirmation. Their final system reduced incorrect ID decodings from ~13% to 

2%. In addition, their second stage allowed for 90.4% of tracklets to be correctly 

reformed into complete tracks. 



50 
 

 

Figure 2.22 Visual tags designed by Boenisch et al. (a) 12 coding segments arranged in an arc 
around two semi-circles that encode the orientation of the bee. The tag is glued onto the 

thorax such that the white semi-circle is rotated toward the bee's head. (b) Several tagged 
honeybees on a comb. The round and curved tags were designed to endure heavy-duty 

activities such as cell inspections and foraging trips [141]. 

 

2.2.10.2 Thermal 

It has been known for some time that colony insects both thermoregulate their 

bodies as well as their nests [142, 143]. As such there has been an interest in 

tracking insects back to their nests and locating such nests, using thermographic 

cameras. Such devices were historically expensive and very low resolution. Recent 

developments have increased their viability for such tasks. A reasonably priced 

thermographic camera can be expected to have a working resolution of 320x240 for 

a total of 76,800 pixels [144]. This is in contrast to budget digital cameras that have 

resolutions of 1920x1080 for a total pixel count of 2,073,600. 

Nevertheless, despite their limitations, there is real potential for tracking insects. Two 

recent studies, by Roberts et al. and Lioy et al. both, explored the viability of such 

cameras to find hornet nests, as well as those of wild bees [144, 145]. They both had 

a large degree of success, with a sample of images collected by Lioy et al. present in 

Figure 2.23. 
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Figure 2.23 Application of thermal imaging for detecting V. velutina nests: (A) nest number 
one; (B) nest number two; (C) nest number three; (D) nest number one in the morning at 30 m 

from the operator; (E) nest number one in the evening at 30 m from the operator [145]. 

As both works were viability studies, no work was discovered that integrates any 

form of machine learning. This leaves a gap in research where further work can be 

done. Neural networks are particularly strong at dealing with low-resolution images 

and in cases where there is still ambiguity, super scaling techniques can aid via pre-

processing techniques [146]. 

 

2.2.10.3 3D point cloud and spectral sensing techniques 

Some specialised light-based techniques exist to identify, monitor, and track insects. 

The fluorescence of planthopper and moth species, a pest in China, were explored 

with light detection and ranging (LIDAR) techniques to accurately detect insects up 

to a distance of 50m, including then dusting other insects with fluorescent dies to 

similar effect [147]. 

Hyperspectral imaging has been used to detect insect defoliation with machine 

learning [148, 149]. The red-edge band is useful when monitoring vegetation, as 

chlorophyll becomes almost transparent at wavelengths greater than 700nm. From 

then on, the internal structure causes this infrared light to be reflected. Different 
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states of cellular health respond with different intensities. Figure 2.24 shows such 

data gathered to be used in random forests and support vector machine prediction of 

the state of vegetation. 

 

Figure 2.24 Distribution of mopane woodland in south eastern Botswana and the blue, green, 
and red band combination of a satellite image of the study area, together with Images for 

different defoliation levels [148]. 

 

In addition, there has been growing use of laser systems to detect insects. A trap 

can be manufactured such that when the insect enters or exits, it impedes a laser. 

Fluctuations in the laser cause patterns which can be attributed to different sources. 

Mullen et al. used the shadows caused by such insects to determine the species of 

insect [150]. Silva et al. took the approach of having a narrow laser impacting a 

transistor array as in Figure 2.25 [151, 152]. This allowed them to treat the incoming 

signal as an audio sample. Machine learning techniques involving Mel-Frequency 

Cepstrum Coefficients (MFCCs) and support vector machine allowed for an accuracy 

of >87% when determining from a sample of nine species including bees. 
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Figure 2.25 The logical design of the sensor used by Silva et al. A planar laser light was 
directed at an array of phototransistors. When an insect flew across the laser, a slight 

variation was registered by the phototransistors as a time series [152]. 

 

2.2.10.4 Audio Techniques 

Tracking animals via acoustics is a challenging task. While many studies have been 

successful in water and enclosed spaces, the difficulty of tracking in open spaces 

with background noise has remained [153–155]. Systems have been developed 

capable of localising a sound signature out to between three and six meters [156, 

157]. Machine learning has increased the accuracy of such systems up to around 

90% [158]. Similarly, recent algorithms have allowed for the separation of different 

speakers in an office setting while maintaining the direction of arrival (DOA) accuracy 

[159]. The use of cooperative algorithms to identify near-field sound sources 

regardless of background noise has also been investigated, especially to aid in 

robotic applications [160, 161]. 

Another interesting, though equally challenging, prospect involves using UAVs to 

track insects. Several works have already made headway into a similar application, 

that of locating sound signatures during emergency search and rescue [162–165]. 

The biggest hurdle to overcome is the signal-to-noise ratio (SNR.) UAVs can easily 

be in the range of 60-80dB at one meter, compared with approximately 45dB for a 
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typical bee [166–168]. The very best algorithms can remain accurate at -10dB SNR, 

meaning the quietest drone at 60dB would be able to locate the loudest bees at 

50dB, assuming the microphones were able to be carried at a 1-meter distance from 

the drone. Some exceptions allow for the SNR to be as low as -20dB in exceptional 

circumstances.  

While promising, these small UAVs are typically unable to carry the microphone load 

required for the task of detecting insects. In most cases, circular or hexagonal arrays 

of microphones with as many as sixteen microphones are required, the frame to hold 

which is itself large and weighty necessitating a larger drone. A typical industrial 

drone, such as those provided by DJI, is often in the region of 80dB. 

For example, a 3DR Iris+ drone is as quiet at 60dB with certain setups [168]. 

However, such a drone has a payload capacity of 400g. This is well outside the 

range of equipment necessary. Similarly, such a specific drone does not have a 

Software Development Kit (SDK) or the means to easily create one, to allow for 

automated piloting.  

To continue, a DJI Phantom 4.0 rates as high as 76dB, with a payload capacity of 

900g, potentially enough to carry the required load. Industrial standard drones such 

as the Matrice 210 series do not disclose their measured dB loudness as they are 

typically less concerned with maintaining low noise. 

Another consideration in such a problem is the processing requirements of the 

localisation algorithms. Figure 2.26 shows two algorithms based on the Multiple 

Signal Classification (MUSIC) algorithms, comparing both accuracy vs SNR and 

processing on computer hardware. MUSIC is often used due to its ability to 

distinguish multiple audio signal sources in addition to being malleable to 

improvements that augment its ability to cope with noise. 
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Figure 2.26 (a) Accuracy of two MUSIC derivative algorithms (SEVD and iGSVD) and (b) 
Processing cost of such algorithms [162]. 

 

Of special note to such systems, is that in most cases the data must be broadcast 

back to a ground station for processing. In the case of Hoshiba et al., this required 

transmission rates exceeding 5Mbps, limiting the distance between the drone and 

the ground station to 75 meters. 

Some of the earliest use of machine learning with insect detection involved 

estimating the population of larvae in grain silos [169]. Coggins et al. used a time-

delay neural network to track the vibrations of the larvae moving and eating the 

grain. This pattern has continued through recent decades. In 2014, Wang et al. used 

acoustics to determine the density of Locusta migratoria migratoria, serving the 

purpose of crop protection needs and environmental impact studies [170]. 

One particularly interesting example involves using the spectrogram of an image and 

feeding it into a convolutional neural network built to classify images. Dong et al. had 

some success with this in 2018. Their spectrograms present in Figure 2.27, can 

determine the species of insects by visualising the sounds that they produce [171]. In 

a similar experiment, Kulyuki et al. found that spectrograms performed worse than 

the other audio processing techniques [172], creating the need to evaluate on a 

case-by-case basis. 
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Figure 2.27 (a) Chromatic spectrogram (b) Enhanced R-space spectrogram (c) Gray 
spectrogram (d) R-space spectrogram used by Dong et al. for image classification based audio 

prediction of insect species [171]. 

 

For bees and hornets, more traditional techniques have been used to automatically 

classify based on acoustic signatures [173]. In such approaches, Mel-Frequency 

Cepstral Coefficients (MFCCs) are used to parameterise the acoustic signal to easily 

analyse it. A scale of pitches that maintains an equal distance below 1 kHz is 

referred to as a mel-scale, beyond 1 kHz the distance becomes logarithmic. This 

approximates how human hearing gives a bias to various frequencies and was 

originally designed to aid in speech pattern recognition. Such MFCCs can be fed 

handily into machine learning algorithms. 

Heise et al. managed to tell between the arrival and departure acoustic signals of 

bees simply by analysing the shape of the acoustic envelope, with no machine 

learning to speak of [174]. This is promising for lightening the load on applications 

that identify the species by reducing the processing load associated with machine 

learning. 

Devices have now been developed that work similarly to presence-and-absence RF-

based systems. They are low-powered, solar rechargeable stations that listen to the 



57 
 

immediate acoustic environment [175]. Their primary use is to measure pollinator 

density in an area, but no exact location is determined. 

While currently limited in scope for tracking insects, the audio approach remains 

appealing. With no tags and no requirements to broadcast any signals, the 

equipment can be simple and will not affect the insects themselves. The current 

major drawbacks are the low SNR of bees and other insects in their environment, 

limiting the range at which they can be heard.  

 

2.2.11 Time-series prediction 

Time series prediction is a potent method for classification or regression when 

previous input can provide context for current data. For example, time series is often 

utilised in text-to-speech where the previously detected words can provide context 

for the current spoken word, allowing a model to predict the word by using the 

context of the entire sentence. 

Time series analysis has been used to great effect in determining the motion of 

larger animals, particularly humans. Here it is often used for fall detection and 

continuous human activity recognition [176]. 

In bees, time-series analysis has been used in the form of Hidden Markov Models 

(HMMs) to monitor and classify bee swarm activity using Mel-Frequency Cepstral 

Coefficients (MFCCs) of acoustic data gathered from a hive [177]. Additionally, video 

data has been used to track and predict bee activity within a hive using HMMs [178, 

179]. Taking this concept further, time-series analysis has been used to detect and 

monitor bee dancing within the hive [139]. 

Dynamic time warping (DTW), another form of time-series analysis, has been used 

to identify bee species from acoustic signals and to detect the current state of a 

beehive (by monitoring the sounds of a queen to detect oncoming swarming 

behaviour [180, 181]). 
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Long Short-Term Memory (LSTM) neural networks are a recent development for 

time-series analysis and have already been used on bees by detecting that a 

beehive is currently queenless by analysing the audio from within [182]. Lastly, RFID 

alongside Recurrent Neural Networks (RNNs) have been used to forecast bee 

foraging activity by counting bees entering and leaving the hive [183].  

These studies show that time series analysis and prediction is an active area of 

research within bee tracking and behaviour analysis. By informing current predictions 

and forecasts using previously recorded data, models can overcome one of the most 

common limits imposed by techniques that only consider current data. This limit is 

that the current data alone does not provide sufficient context for accurate analysis. 

However, time-series analysis poses challenges. It often requires a continuous input 

of labelled data which can be taxing to produce. Similarly, it can require more data 

than other forms of machine learning to provide sufficient context over time. Non-

time series models can often make better use of the data in cases where it has been 

unfeasible to capture or label previous data. 

This is reflected in the presented studies which focus primarily on internal beehive 

data, especially acoustic and video, and are therefore more contained and easier to 

label. Only one study monitored bees outside of the hive or nest and this study was 

limited to RFID counting of entering and leaving bees [183]. 
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2.3 Machine Learning Algorithms 
2.3.1 Neural Networks 

Neural networks take their name for their perceived similarity to neurons found in 

animal brains, originally coined perceptrons by Rosenblatt in 1958 [184]. They are a 

machine learning process that attempts to adapt their weights to the data they are 

tasked with learning. Foundationally, they are based on artificial neurons that take a 

form as described in Figure 2.29.  

 

Figure 2.28 

Figure 2.29 A diagram of the node within a neural network, showing the inputs, weights, input 
function, and activation function. 

This neuron has n inputs which are coupled with an equal number of weights. An 

activation function determines where a neuron is fired (activated) or remains dormant 

(inactivated). The most common activation function is the Sigmoid function as in 

Equation 2.1, where 𝑥 is the neuron output. 

 

𝑓(𝑥)  =  
1

1 − 𝑒−x
 

 2.1 

 

The neuron weights can be tuned during the learning phase where the network is 

adapted to produce the optimal output given a set of inputs. Neurons are placed 
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together in layers as demonstrated in Figure 2.30. Each layer takes its inputs as the 

output from the previous layer (or the original data in the case of the first layer). 

Layers between the first and last layer are referred to as hidden layers as their 

output is rarely retrieved directly. 

 

 

Figure 2.30 A diagram of a neural network showing the input layer, weighted interconnections, 
hidden layers, and output layer. 

Training is the process of inputting data into the network for it to predict and be 

corrected. Training data has known values (such as class labels or regression 

values) for the network to attempt to predict. Learning is undertaken by a process 

known as backpropagation. Firstly, the network predicts an output based on its input 

data. This output is compared with the true, measured value for the original data. 

The deviation between the predicted value and the true value forms the loss metric 

for the network. The purpose of the learning is to minimise this loss value. To do this, 

the loss is fed back into the network and the weights within (for each neuron) are 

adjusted to decrease loss. The degree to which weights are adjusted is controlled by 

the learning rate. This rate is a value controlled during the learning process to fine-

tune the network. If too aggressive, the network may skip over the minimum possible 

value for the loss. Various optimiser algorithms exist to manage the weights and loss 
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as the learning is undertaken. The work in this thesis used the Adaptive Moment 

Estimation (Adam) algorithm most frequently [185]. 

The output of each layer within the network can be summarised as in Equation 2.2, 

where 𝑤𝑘,𝑗
𝑖  is the weights applied to the connection between node 𝑘 in the 𝑖 − 1 layer 

and node 𝑗 in the hidden layer at 𝑖. 𝑛𝑖 denotes the number of neurons in the 𝑖th layer. 

 ℎ𝑖
𝑗
 =  𝑓(Σ𝑘=1

𝑛𝑖−1 , 𝑤𝑘,𝑗
𝑖−1 , ℎ𝑖−1

𝑘 );  𝑖 =  2, . . . , 𝑁 and 𝑗 =  1, . . . , 𝑛𝑖 
 2.2 

The final output from the network can be written as in Equation 2.3. 𝑤𝑘,𝑗
𝑁  is the weight 

between the 𝑘th node in the 𝑁th hidden layer, and the 𝑗th node in the next layer. 𝑌 is 

the vector of the output layer; 𝐹 is the transform function and 𝑊 is the weights for all 

hidden layers.  

 𝑦𝑖  =  𝑓(Σ𝑘=1
𝑛𝑁   𝑤𝑘,𝑗

𝑁   ℎ𝑁
𝑘 );  𝑌 =  (𝑦𝑖, . . . , 𝑦𝑁+1) =  𝐹(𝑊,𝑋)  2.3 

After training is complete, the output from the network will consist of matrix 𝑌 which 

corresponds to the required predicted values. In the base case, the model is 

preserved with its current weights so that no more learning is undertaken. New data, 

lacking known output values, can be inputted into the network and predicted values 

generated for later use.  

In this thesis, neural networks were used to predict categorical labels. In such cases, 

the size of 𝑌 corresponded to the number of classes within the problem. The position 

of the largest value in 𝑌 denotes the predict class label for the input data. 

Neural networks are a popular machine learning tool and gave rise to the term deep 

learning. This term came about due to how scalable and specialised neural networks 

can become. Unlike other machine learning algorithms, neural networks can have 

more than a single set of hyperparameters. Hyperparameters are the values used to 

define how the model should behave and learn from the training data. Neural 

networks can have many layers of interconnected artificial neurons and there is no 
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limit to the number or shape of these layers, though overly large models can overfit 

on small datasets. These layers can have their own hyperparameters. 

This leads to the possibility of specialised sub-regions within models consisting of 

unique architectures of neurons and layers that, when working together, transform or 

manipulate the data in a way that is beyond (therefore deeper) than previous 

machine learning algorithms.  

A recent and famous example of this is the transformer model [186]. Here groups of 

layers and neurons function as “attention heads” which together contextualise the 

data within the model itself, allowing for key data to be amplified and redundant data 

to be diminished. 

Some important hyperparameters when designing neural networks are: 

• The number and shape of the hidden layers. This parameter gives rise to the 

possibility of specialised models, as each layer can have separate 

hyperparameters from the rest of the model. 

 

• The connectivity and isolation of different layers. Layers can be grouped and 

shaped to perform sub-functions within the model by modifying their 

connections with other layers. 

 

• The activation function, which controls how the neurons in a layer activate 

when presented with input. The activation of neurons is the way their input is 

signalled to be important to the process of the model prediction. It is also how, 

in a binary prediction case, the predicted class is decided. 

 

• The optimiser function, as mentioned previously, is the algorithm that 

orchestrates model optimisation by coordinating the model's current prediction 

error and the weights within the model to create a set of updates that 

decrease error over time. 

 

• Batch sizing, which is the number of data samples the network operates on 

before the optimiser updates the model. This parameter is often chosen as a 

limit of hardware resources rather than increasing model capability, however, 

a general understanding is that larger batch sizes smooth the learning curve 

and reduce the effect of outlying data samples on the training process. 
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• The number of epochs, which controls how many times the model iterates 

over the dataset while learning. Epochs, like batches, are often a hardware 

limitation. Given proper model metrics (discussed in Section 2.3.6) the model 

should converge, where the validation of the model shows no further 

improvement regardless of further epochs. 

 

Given the complexity of designing a neural network, it is suggested that once moving 

beyond a few (two or three) hidden layers it is best to search the literature for a good 

neural network structure rather than attempt to design one as part of a study not 

focused on that task. This is because creating a new model can be an entire, self-

contained, academic endeavour. This is reflected in this thesis, where the networks 

were small whilst in Chapter 5 where a predesigned set of architectures was chosen. 

2.3.2 Support Vector Machines 

Support Vector Machines (SVMs, [187]) are models for classification and regression 

problems. The core idea behind SVMs is simply that they create a hyperplane that 

separates the data into distinct classes. This is portrayed in Figure 2.31 where an 

optimal hyperplane has been determined which separates two classes of data with 

the maximum margin given at least two supporting vectors. A hyperplane in an n-

dimensional Euclidean space is a flat, n-1 dimensional subset of that space which 

divides the space into two disconnected parts.  

 

Figure 2.31 An optimal hyperplane between two datasets with a maximum margin to two 
support vectors. 
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The challenge arises when the data is not readily separable in n dimensions. To 

tackle this problem, SVMs use a kernel that projects the data into higher dimensional 

space where they can be readily separated, as demonstrated in Figure 2.32. SVMs 

use the ‘kernel trick’ which enables them to operate in this higher dimensional, 

implicit feature space without computing the coordinates of the data in that space by, 

instead, computing the inner products between the images of all pairs of data in the 

feature space. This is computationally cheaper than determining the coordinates 

within this higher dimensional space.  

 

 

Figure 2.32 A Visualisation of the projection of 2D datapoints into a higher dimensionality by a 
kernel so that a hyperplane may bisect the two classes cleanly. 

Many kernel functions exist, however, the most common are the linear (Equation 

2.4), polynomial (Equation 2.5), and radial basis function (RBF, Equation 2.6) 

kernels. In these equations, 𝑥 and 𝑦 are vectors of features computed from input 

samples. 

 𝑘(𝑥, 𝑦)   =  𝑥′𝑦 
 2.4 
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 𝑘(𝑥, 𝑦)   =  (𝑥′𝑦 +  𝑏)𝑑 
 2.5 

 𝑘(𝑥, 𝑦) = 𝑒𝑥𝑝(− 𝛾 || 𝑥 −  𝑦 ||2 ),  𝛾 =  
1

2𝜎2
  2.6 

 

In the polynomial case, two parameters can be tuned to best effect (b and d). b is the 

regularization parameter which determines the influence of higher-order versus 

lower-order terms in the polynomial. d is the degree of the polynomial and controls 

the working output space dimensionality when calculating data separability. Higher 

values of d allow for more precise fitting of the data but can cause overfitting where 

the SVM can become too specialised on its training data and does not work well with 

new data. 

In the case of the RBF, the tuneable parameter is the gamma 𝑦. Gamma defines the 

reach of each point within the training data.  If the gamma is low, each point in the 

training data will have greater reach, meaning that the decision boundary of the SVM 

will be highly flexed. Conversely, as gamma increases, the decision boundary will 

become increasingly linear. Gamma can decrease or increase the overall fit of the 

SVM model. 

The C parameter is another important parameter (hyperparameter) when designing 

an SVM. This parameter is inversely proportional to the margin size, so a larger 

value of C decreases the width of the margin. Generally, it controls how strictly the 

SVM should seek to avoid misclassifying each training sample. A smaller value of C 

gives the classifier more flexibility but allows it to make more mistakes. C is a 

dominant hyperparameter when training an SVM as it can greatly improve model 

performance when properly tuned. However, if mishandled, it will create a model 

which overfits its training data and is less useful for validation and testing samples. 

In most cases throughout this thesis the optimisation for the hyperparameters, 

including C, has been done via algorithms rather than manually. This increases the 

likelihood that the models will perform well and not overfit their training data. This 

optimisation is possible due to how SVM hyperparameters are implemented. 
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Unlike neural networks, the hyperparameters for an SVM are a single set of inputs. 

Therefore, it is easier to use algorithms to optimise these hyperparameters rather 

than relying on manual settings. This is discussed further in Section 2.3.4. SVMs are 

also less flexible and scalable when compared to neural networks. However, for 

smaller machine learning tasks they often compete well with neural networks. This is 

demonstrated throughout this thesis, where simple neural networks and SVMs are 

equally effective for predicting data classes.  

Compared with Random Forests, which are discussed in the next section, SVMs 

offer similar performance but have slight biases towards different classification tasks. 

As SVMs use the concept of distance (in higher dimensional spaces) to perform 

classification tasks, they can work better with data where the features are 

interrelated. For example, in Chapter 5 the best model was an SVM. This is the 

case, in part, because the data was a compressed signal, where each feature 

column was an adjacent value in the compressed signal.  SVMs may work less well 

when working with categorical or weakly related features, as the concept of distance 

between two samples may be less meaningful. 

SVMs were used in this thesis across all three chapters, but primarily in Chapter 5. 

Radar signals taken from the entrance of a beehive were converted into Log Area 

Ratios (LARs) and used as both training and testing data for a support vector 

machine model. 

 

2.3.3 Random Forests 

Random Forests (RF) are ensemble learning methods for classification and 

regression that work by constructing multiple decision trees during training [188]. 

Decision trees are a simple machine learning structure that creates a cascade of 

questions to determine which class data belong to. Creating a decision tree involves 

choosing the most pertinent questions to ask in the form of weighing the variables 

within the dataset for their ability to split the data into two distinct groups. 
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For classification, the output of the random forest is the class selected by the largest 

number of trees. For regression, the average prediction of the individual trees is the 

returned value.  

Random forests are generally preferred to decision trees alone because trees that 

grow very deep tend to learn irregular patterns and overfit their training sets. They 

become so specialised that they do not predict data that did not form part of their 

training set well. The random forest algorithm randomly samples features so that 

only a subset of variables is used to build each tree. Random forests then average 

the effects of individual these trees intending to reduce the variance of their 

predictions.  

One subsampling procedure is referred to as bagging. Given a training set 𝑋 =

 𝑥1, . . . , 𝑥𝑛 and responses 𝑌 =  𝑦, . . . , 𝑦𝑛 bagging selects a random sample (𝑏) from the 

set, replaces the data, and fits a tree (𝑓𝑏) to these samples, meaning a sample point 

can appear in multiple sub-samples. This process is visualised in Figure 2.33. 

 

Figure 2.33 Visualisation of the process of generating and training a random forest. 
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After training, predictions (�̂�) for samples 𝑥′ can be made either by averaging as in 

Equation 2.7 for regression or by taking the majority vote as in Equation 2.8 for a 

binary classification case. 𝐵 is the total number of trees in the forest, therefore the 

sum of all tree outputs is divided by 𝐵 in Equation 2.7 for the regression case, and if 

the sum of tree outputs is less than 
𝐵

2
 in the binary case Equation 2.8, then the vote 

for the overall output is 0. 

 
�̂�  =  

1

𝐵
 ∑ 𝑓

𝑏
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𝐵
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 2.7 
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 2.8 

 

Random forests were used in all three data chapters, but are most prominent 

towards the end of Chapter 3 and Chapter 4 where they deliver a strong 

performance both at predicting the flight of a bumblebee as it sleaves the nest and 

predicting whether bees recorded by thermal camera are leaving the hive or 

hovering near the entrance.  

Random Forests have several core hyperparameters, the most prominent of which is 

the number of trees within the forest. Unlike many hyperparameters, the number of 

trees does not by itself cause overfitting. As Random Forests take the average 

output of the total number of trees, overfitting is readily avoided because this process 

reduces variance while leaving any fundamental bias unchanged. Instead, increasing 

the number of trees will eventually cause a plateau in model accuracy where further 

trees do not produce better results. Optimising this parameter is simply finding the 

minimum number of trees to enter this plateau to reduce computational cost. 
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Another important parameter when creating Random Forests is the split criterion, 

which measures the quality when branches split within each tree to purify the data on 

each branch. A pure branch contains only one class of data. 

There exist a few split criterion metrics, including loss metrics as explained in 

Section 2.3.6. Similarly, Gini impurity measures the frequency at which any element 

of the dataset will be mislabelled when it is randomly labelled. Split criterion is 

typically a trade-off between small increases in accuracy versus computational 

expense. 

One parameter which can create a degree of overfitting is the maximum depth of the 

trees. This parameter limits the number of splits that can be performed in any single 

decision tree within the forest. A random forest of fully grown trees, where splitting 

continues until all branches are pure, might incur unnecessary variance and become 

overfitted. Tuning this parameter is a balance between increased training accuracy 

and overfitting. 

It is possible to set the minimum samples to be present in each leaf (terminating 

node within the tree). A split at any depth will only be considered if it leaves at least 

this many samples in each of the left and right branches. A maximum number of 

features can be set to control which features are evaluated when looking for the best 

split.  

In summary, Random Forests are one of the most flexible models which a single set 

of hyperparameters can control. However, they are still not as scalable or malleable 

as neural networks. In exchange, they are simpler to design. In this thesis, like 

SVMs, the hyperparameters for Random Forests have been optimised via an 

algorithm as they both use a single set of hyperparameters.  

Random Forests can suffer when the number of features is large, but the fraction of 

relevant variables is small. This is because, when considering a branch split, an 

imbalanced ratio of relevant to irrelevant features decreases the chances that good 

features will be chosen to form the splitting decision. 
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Compared with Support Vector Machines, Random Forests can excel when working 

with features that are weakly related or are categorical. This is because random 

forests will analyse a subset of the features when making a split decision, making the 

relationship between features in a series less important. This effect is shown in 

Chapters 3 and 4 where Random Forest models performed best. The feature sets in 

these chapters were weakly connected variables describing bee flights captured by 

either camera or harmonic radar. 

 

2.3.4 Cross Validation Bound Bayesian Hyperparameter Optimisation 

Bayesian hyperparameter optimisation (or tuning) is the process of using Bayes 

Theorem to direct the search to find the maximum or minimum of an objective, in this 

case, the accuracy (or loss) of a machine learning model by changing the 

hyperparameters of the models [189]. It is a derivation of Bayes’ theorem. Given 

data E, the posterior probability P(M|E) of a model M is equal to the likelihood P(E|M) 

of observing E given model M multiplied by the prior probability of P(M) and divided 

by the probability of P(E): 

 
𝑃(𝑀|𝐸) =  

𝑃(𝐸|𝑀)𝑃(𝑀)

𝑃(𝐸)
  2.9 

Since P(E) is the probability of observing E which is the input, this equation can be 

rewritten to show that the posterior probability P(M|E) of a model M is proportional to 

P(E|M)P(M):  

 𝑃(𝑀|𝐸)  ∝  𝑃(𝐸|𝑀)𝑃(𝑀)  2.10 

Posterior probability is the revised (updated) probability of an event occurring after 

taking into consideration new information. Prior probability is the probability of an 

event occurring prior to receiving new information.  
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Hyperparameters are the parameters that define the structure of the machine 

learning model before learning is undertaken. Examples include the number of trees 

in a random forest, the kernel in a support vector machine, and the size and 

activation function of layers in a neural network. These are chosen before the model 

is exposed to any data but have a measurable impact on the capability of the final, 

trained model. Badly chosen hyperparameters can cause overfitting or poor 

performance once a model is trained. 

The process works by iteratively training new models on the data and varying the 

hyperparameters using a search function to find the optimal values. This is different 

from manual tuning, where the programmer manually chooses the hyperparameters.  

Manual tuning has advantages in that the programmer can gain a deep insight into 

the problem and its data by conducting their search for ideal parameters. This 

human learning element can then be used to further improve the data pool itself, for 

example by expanding the data if it is lacking. It also has advantages if the process 

requires domain-level knowledge to find the best values. The cons of manual tuning 

are that the found values are unlikely to be optimal and the process can be time-

consuming. 

Bayesian approaches keep track of the model capability as they evaluate new sets 

of parameters which they use to form a probabilistic model mapping 

hyperparameters to a score on the objective function (such as the accuracy of the 

model.) 

In essence, they build a history based on past calls to the computationally expensive 

process which is training and evaluating the machine learning model. They then use 

this history to create a probabilistic model which can predict the next best sample 

point for hyperparameters that will perform well when calling the expensive training 

and evaluating process. The point is to reduce the number of calls to this process 

while maximising the increase in accuracy to save processing time [190].  

This probabilistic model is referred to as the surrogate model for the objective 

function and the steps to a Bayesian search can be understood as: 



72 
 

1. Build a surrogate model of the objective function. 

2. Find the hyperparameters that perform best on the surrogate. 

3. Test these hyperparameters on the objective function. 

4. Update the surrogate incorporating the new information. 

5. Repeat steps 2-4 until a maximum number of iterations has been completed 

or a timer expires. 

As an equation, this can be viewed as: 

 𝑥𝑜𝑝𝑡  =  𝑎𝑟𝑔 max
𝑥 ∈ 𝜒

𝑓(𝑥) 
 2.11 

Where 𝑓(𝑥) represents the objective function to maximise – the model accuracy, 𝑥𝑜𝑝𝑡 

is the set of hyperparameters that yields the highest value, and 𝑥 can take any value 

in the domain 𝜒. 𝜒 is the domain the programmer sets, including the minimum and 

maximum, or set, for all hyperparameters.  

A common way of conducting a Bayesian hyperparameter search involves using 

Gaussian Processes (GPs [191]) as a surrogate. In this case, the function 𝑓 is 

assumed to be a realisation of a GP with mean function 𝜇 and covariance kernel 𝐾, 

giving: 

 𝑓(𝑥) ~ 𝐺𝑃(𝜇, 𝐾) 
 2.12 

The covariance function describes assumptions about the data. The equations for 

the distribution of the prediction function, given the training observations, are highly 

sensitive to the covariation between the test locations and the training locations as 

expressed by the matrix 𝐾.  

For the covariance function the exponential square function is a popular choice: 

 
𝐾(𝑥𝑖 , 𝑥𝑗)  =  𝑒𝑥𝑝 (− 

1

2
 ||𝑥𝑖, − 𝑥𝑗||

2) 
 2.13 
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Where 𝑥𝑖 and 𝑥𝑗 represent the 𝑖th and 𝑗th samples, respectively. The process of 

determining the posterior distribution of 𝑓(𝑥) is: 

1. Sample t observations as the training set: 

 
𝐷1:𝑡  =  {𝑥𝑛, 𝑓𝑛}𝑛=1

𝑡 , 𝑓
𝑛
 =  𝑓(𝑥𝑛).  2.14 

 

2. Based on the function 𝑓, compute the function value 𝑓𝑡+1 = 𝑓(𝑥𝑡+1) at the new 

sample point 𝑥𝑡+1. According to the assumption of the Gaussian process, 𝑓𝑡:1 

in the training set plus the function value 𝑓𝑡+1 follows the 𝑡 + 1 normal 

distribution: 

 
[
𝑓
1:𝑡

𝑓
𝑡+1

]  ∽  𝑁 (0, [
𝐾 𝑘

𝑘𝑇 𝑘(𝑥𝑡+1, 𝑥𝑡+1)
]) 

 2.15 

 

where: 

 𝑓
1:𝑡
 =  [𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑡
]𝑇  2.16 

and: 

 

𝑘 =  [𝑘(𝑥𝑡+1, 𝑥1), 𝑘(𝑥𝑡+1, 𝑥2), . . . (𝑥𝑡+1, 𝑥𝑡)]. 
 2.17 

 

The Gaussian process returns the probability distribution over all possible values of 

𝑓𝑡+1. If the training set is large enough, the Gaussian process can obtain an 

approximate estimate of the function 𝑓(𝑥) distribution. 

After obtaining a surrogate of the objective function, Bayesian optimisation uses the 

acquisition function u to derive the maximum of function 𝑓. It is safe to assume that a 

high value of the acquisition function 𝜇 corresponds to a large value of the objective 

function 𝑓. 
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The simplest acquisition algorithm is the probability of improvement algorithm (PI) 

which tries to explore near the current optimal value point (𝑥+) to find the point (𝑥)  

most likely to prevail over the current optimal value. The search process continues 

until the number of iterations of the algorithm reaches an upper limit. It can be 

expressed as: 

 
𝑃𝐼(𝑥)  =  𝑃(𝑓(𝑥)  ≥  𝑓(𝑥+))  =  𝜙 (

𝜇(𝑥)  −  𝑓(𝑥+)

𝜎(𝑥)
) 

 2.18 

where: 

• Φ is the cumulative distribution function (CDF) of the standard normal 

distribution. 

• µ is the mean of the mean of the standard normal distribution. 

• σ2 is the variance of the standard normal distribution.  

However, this algorithm is greedy and only considers exploration and not the degree 

of improvement. Therefore, the sampling point is in a limited range and can easily fall 

into the local optimal solution and miss the global optimal solution. By adding term ε, 

ensuring that the improvement between 𝑓(𝑥) and 𝑓(𝑥+) is not less than this amount, 

then a minimum threshold for improvement can be ensured in the form: 

 𝑃𝐼(𝑥)  =  𝑃(𝑓(𝑥)  ≥  𝑓(𝑥+)  +  𝜀)  =  𝜙 (
𝜇(𝑥) − 𝑓(𝑥+) − 𝜀

𝜎(𝑥)
). 

 2.19 

Thus, the two core components (the surrogate and acquisition algorithms) allow for 

the informed search for ideal hyperparameters. However, the process is not without 

limits. Referring to the descriptive algorithm Equation 2.11, the domain 𝜒 is set by 

the programmer before the Bayesian hyperparameter optimisation. Should 𝜒 be 

sufficiently broad to cover the ideal hyperparameters for any given problem, it may 

also be broad enough to allow for the model to overfit the training data. To refresh, 

overfitting can occur when the model complexity is so high that it can, and does, 

learn to optimise based on noise within the dataset rather than valuable information 

within the set. 
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As such, hyperparameter optimisation is often bound to a process called cross-

validation. The core concept of cross-validation is: 

• Partition the training data into several subsets. 

• Holdout a different set each time the model is trained. 

• Test the model on the remaining set. 

• Repeat the process for each subset of the data. 

The most common cross-validation algorithm is the k-fold cross-validation algorithm, 

where k subsets are created and used as a test while the rest of the data is used to 

train the model. Cross-validation allows for the detection of overfitting because when 

part of the data is withheld, the model accuracy will drop when testing this data if the 

model has overfitted on the remaining data. This process is visualised in Figure 2.34. 

 

 

Figure 2.34 A simple visualisation of five-fold cross-validation which depicts how the data 
would be separated into five sets, with one set being held as testing data for five total 

iterations of evaluation. 

 

With hyperparameter tuning, the validation accuracy taken as an average across all 

k folds is used to inform the acquisition algorithm. This reduces the likelihood that 

overfitting will take place as once it is prevalent the accuracy will begin to drop and 

the overfitting hyperparameters will be avoided by the optimisation process. 
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2.3.5  Time Series Analysis 

Time series analysis and prediction is one of the primary avenues of future work, 

alongside those that will be discussed further in Section 6.2. However, time series 

work was not undertaken for several reasons: 

• The unconstrained environment that this project utilised when recording bees. 

As mentioned in the literature review, most studies have focused on settings 

where the bees were contained in an enclosed environment making labelling 

activity a simpler task. Time series needs clear, sequential labelling which can 

be hard to produce in an open environment. 

 

• Time series is costly as it requires an entire series of data to be labelled, 

leading to a dense but narrow dataset when labelling is challenging. This is 

problematic where a wider, more sparsely labelled dataset is preferred. This 

was the case in Chapter 5 (which provides more information) where different 

weather conditions were required to evaluate the overall functionality of the 

radar system across several days. 

 

• It is good to evaluate whether simpler techniques work first before moving 

forward with more advanced models and systems. One of the first 

suggestions or criticisms, if time series analysis was unsuccessful, would be 

whether a simpler model was tested as a proof-of-concept first. This is true for 

Chapter 3 which was novel in predicting bee tasks upon leaving the nest. 

Validating that it was possible with a simpler model was crucial, especially 

since the source dataset was considered small which might be a limitation for 

time series analysis (more information is present in the chapter.) 

Overall, times series analysis is an identified gap within the literature that this thesis 

does not address. There are clear barriers to utilising time series analysis in this 

work, but it is recognised that with more resources it would be a natural step forward 

for the work undertaken. 

 

2.3.6 Performance Evaluation and Metrics 

In addition to choosing appropriate machine learning algorithms, it is imperative to 

choose good metrics by which to measure the performance of such algorithms. 

These metrics are used both by the engineer responsible for creating the final 

machine learning models, as well as the model generation algorithms themselves, to 
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determine how well a model is performing its task. Metrics used throughout this 

thesis include: 

2.3.6.1 Accuracy 

Accuracy is the number of correct responses generated by the model, expressed as 

a percentage (e.g. 91% or 0.91) in relation to the total number of predictions 

undertaken. It is often the headline metric used to convey failure or success on 

behalf of the model. However, accuracy can sometimes not fully express the 

capabilities of a model. For example, with an unbalanced dataset where one class of 

data is overabundant versus all others, a model may optimise itself to prioritize 

correctly predicting this overrepresented class. It may then poorly predict the lesser 

classes. The accuracy may still be high, due to these lesser classes being a small 

subset of the data. This may give an inaccurate presentation of how well the model 

is performing.  

2.3.6.2 Loss 

Loss in machine learning is a crucial component for many models, particularly neural 

networks. It quantifies the difference between the predicted outputs of an algorithm 

and the actual targets. It both considers the number of incorrect predictions and the 

confidence of the model when making those predictions. A greater number of 

incorrect predictions and a high certainty create a high loss value. Loss is important 

to neural networks because their architecture makes direct use of it, first calculating 

its value and then using it to update the architecture’s internal state to reduce loss on 

subsequent predictions.  

The loss value is usually considered ideal as it approaches zero but has no strict 

upper bound and depends on the choice of algorithm used to generate it. Loss is 

therefore best used to measure iterative improvement as a model is trained (with the 

expectation that it decreases over time) or to directly compare two separate models 

with similar accuracy to determine the best model. A common type of loss for binary 

predictions is Log Loss. Chapter 3 used this loss to determine that a random forest 

had room for improvement, which was later utilized, despite a neural network having 

moderately superior accuracy. 
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2.3.6.3 Confusion Matrices 

A confusion matrix allows the visualisation of results produced by a model to assess 

its capabilities. A demonstrative example of a confusion matrix is presented in Table 

2.1. The actual classes A, B, and C are shown by rows and predicted classes are 

presented by columns, for example, 4 of class A were predicted as C. An ideal 

confusion matrix would have all samples present along its diagonal (shaded cells in 

the table). 

Table 2.1 An example of the structure of a confusion matrix. 

  Predicted 

 Class A B C 

Actual A 24 1 4 

B 3 26 5 

C 7 6 31 

 

Confusion matrices provide a quick and detailed evaluation of the results from a 

model. They become less useful as the number of classes increases as the overall 

performance becomes harder to discern from an abundance of information. They 

cannot present information on multi-label problems (where one sample may be both 

B and C), which do not feature in this thesis. Nor can they show results for 

hierarchical classification, where each class of A, B and C may be split by further 

classification (i.e. into A1 and A2). This type of classification is present in Chapter 5. 

While confusion matrices were not central to this thesis, the related metrics recall, 

and precision, and F1-score were used throughout. 

 

2.3.6.4 Recall, Precision and F1-Score 

Recall is a measure of a model correctly identifying true positives and is expressed 

as 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
. Like both accuracy and loss, it can be distorted by an 
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imbalanced dataset. In addition, in a multiclass problem recall must be calculated for 

each class and then combined into single metric, often via averaging. The averaging 

strategy plays a key role in evaluating model performance. If there is a class of 

interest (correctly predicting this class takes precedence over other classes) then it 

can be weighted to bias the recall appropriately. If classes are imbalanced, bias can 

be given to the sparser classes to provide a more meaningful value.  

Precision follows a similar concept, as it is the ratio between the number of true 

positive cases and all positive predictions, expressed as 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
. 

Like recall it can be distorted by some datasets and care must be taken when 

evaluating performance. Recall and precision are often discussed together as they 

will provide a deeper understanding than alone, or they are often combined into one 

metric, the F1-score. F1-score, also referred to as the harmonic mean, is expressed 

as  2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
. 

To summarise, recall focuses as a means to ensure the model is correctly identifying 

all true positive cases, whereas precision ensures the model is not incorrectly 

assigning the positive class to a true negative. They are good metrics independently, 

but recall can be high with precision being low and vice versa. F1-score combines 

the two and gives a singular metric that provides a measure like accuracy for 

determining model capability. F1-score may not be appropriate where either recall or 

precision is valued more than the other, as it gives equal weight to both. 

 

2.3.6.5 Micro- and Macro-Averaging 

As discussed, the balance within a dataset can reduce the effectiveness of metrics at 

describing model performance. Macro- and micro-averaging offer a means to tailor 

the metrics depending on the dataset being used. For macro averaging the average 

metric for each class is calculated and then averaged only according to the number 

of classes. This gives equal weight to each class, regardless of class population. 

Conversely, micro-averaging also considers the population of each class when 

computing an average and weights each class by its population.  
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These weightings can expose classification challenges in problems where there are 

classes with low populations. This means that if the model performs well on high 

population classes and poorly on low population classes, metrics will fluctuate. This 

safeguards against models showing strong performance only because of class 

imbalance. Micro- and macro- F1-score were used to show that, in Chapter 5, a 

model was suffering from a class imbalance problem. This allowed for a greater 

exploration of the data to determine ways of improving the models. 

 

  

2.4 Video Processing Techniques 
2.4.1 Gaussian Mixture Models for Background Subtraction 

Gaussian mixture models (GMMs) function on K-independent Gaussian distributions 

and are used to model K different clusters [192]. This is like k-means clustering. K-

means clustering can be briefly envisaged by the following steps: 

1. Choose the number of clusters K. 

2. Initialise the centre of each cluster. 

3. Assign each point in the problem to its nearest cluster. 

4. Recalculate the centre. 

5. Repeat until the central point ceases movement. 

Unlike k-means clustering, each point gets associated with all the clusters with a 

probability value. To do this, GMMs define their mixtures (clusters) as the following 

parameters: 

• A central mean µ. 

• A covariance Σ that defines the width or shape of the mixture. 

• A mixing probability π that defines the size of the Gaussian function.  

An illustrative example of these parameters is present in Figure 2.35 where graph (a) 

shows the mean centre µ and the shape-determining factor Σ in a two-dimensional 

Gaussian map. Graph (b) shows two independent Gaussian distributions in one 

dimension, their centres µ and the resulting Gaussian mixture with shape determined 

by 𝜋. 
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Figure 2.35: (a) Two-dimensional Gaussian distributions and (b) one-dimensional Gaussian 
distributions and an illustration of the resulting mixture. 

These three parameters must be optimised to form an ideal solution, ensuring that 

each Gaussian fits the data points belonging to each cluster. First, the Gaussian 

density function is given by Equation 2.20. 

 

𝒩(𝑋|𝜇, Σ)  =  
1

(2π)𝐷 / 2| Σ | 1 / 2
 exp ( −

1

2
 (𝑥 −  𝜇)𝑇 Σ−1(𝑥 −  𝜇)) 

 2.20 

 

where 𝑥 represents the data points, 𝐷 is the dimension of the points. 𝜇 and Σ are, as 

stated, the mean and covariance.  

The log of the above equation can be represented as Equation 2.21. 

 𝑙𝑛 𝒩(𝑥|𝜇, Σ)  =  −
𝐷

2
 𝑙𝑛 2𝜋 − 

1

2
 𝑙𝑛 Σ − 

1

2
 (𝑥 − 𝜇)𝑇Σ−1(𝑥 − 𝜇) 

 2.21 

 

With this, it would be possible to take a derivative, set it to zero, and the problem 

could be solved. However, this only works for one component and the mixing 



82 
 

coefficients are unknown. In most cases, the more complex, interacting problems 

between multiple components are solved with the Expectation Maximisation (EM) 

algorithm. 

The EM approach is an iterative one. Firstly, centres (𝜇) are created for each 

Gaussian distribution. Initially, this step can be handled by k-means clustering. All 

points within the dataset are then evaluated based on which centre most correctly 

describes their location. This is the estimation step. 

The maximisation step tweaks values for the parameters 𝜇, Σ, and π such that they 

better fit the points for which they have the most responsibility. The estimation-

maximisation steps are continued until the convergence. This happens when changes 

to µ, Σ, and π are so small they fall below a predetermined threshold. 

With a properly fitted GMM, new data points can be evaluated based on the 

probability that they belong to any of the K clusters in a way which is more flexible 

than k-means clustering. However, the process of building a GMM is computationally 

more expensive. 

In this thesis, GMMs are used to segment the foreground in the video recordings in 

Chapter 4. This problem is common usage for GMMs, and in its simplest form can be 

thought of as a two-cluster problem. The first cluster is the background of the 

recording and the second is the objects moving in the foreground. A GMM can be 

fitted to model the two classes of data. When new frames are received, the difference 

between the new frame and the learned background image is first computed. 

Then, decisions must be made. The differences detected may either be due to an 

object moving in the foreground, such as a car moving down a road, or they may be 

minor changes in the background, such as a gentle breeze in a tree at the side of the 

road. 

The GMM is used to predict the probability that each difference belongs to either 

class. Those that are predicted to belong to the background class are used to update 

the learned background image. Those that are determined to belong to the 

foreground class are retrieved for further analysis. 
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In practice, several clusters are used rather than two. This is because multiple areas 

of the foreground may have drastically different effects on the background subtraction 

phase, for example, the difference between a car on a road and a pedestrian on the 

pavement nearby. 

GMMs were used to segment foreground and background in this thesis for three 

reasons. The first is that foreground segmentation was not a novel aspect of the 

study, and the priority was to create the best model for predicting bee movement. 

Secondly, GMMs required less processing power and were easier to train when 

compared with more recent, deep learning approaches which increased the time that 

could be spent improving the bee prediction models. Lastly, a deeper learning model 

can often require more supervision, data preparation, and fine-tuning which would 

also increase overhead when the focus was better invested elsewhere. Moving to a 

deep learning segmentation model would be useful in future work to remove any 

inaccuracies introduced by the GMM system. 

 

2.4.2 Kalman Filter for Movement Prediction 

The Kalman filter is an algorithm for estimating the values in a measured system as 

they change over time, given some measurement uncertainty when those values are 

evaluated [193]. This filter was used in Chapter 4 to track bees across frames in a 

video recording. 

The Kalman filter assumes the sensors in use are noisy and the output and noise 

can be modelled as a function of a Gaussian probability distribution. It also assumes 

that this is true for all measurements taken by the system. 

A 2D Gaussian as used by the Kalman filter in this work can be described by a 1x2 

matrix describing the centre (or mean) position 𝑥 and velocity 𝑦, and a 2x2 

covariance matrix as shown in Equation 2.22 and Equation 2.23. The 2x2 matrix 

contains the terms Σ𝑥𝑥 and Σ𝑣𝑣 which are the variances associated with the position 

(Σ𝑥𝑥 ) and velocity (Σ𝑣𝑣)  along its diagonal. Adjacent to these is the term Σ𝑥𝑣 which 

serves as the correlation between the position and velocity errors. 
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  𝜇𝑡  =  (
𝜇𝑥
𝜇𝑣
) 

 2.22 

 

 Σ𝑡  =  (
Σ𝑥𝑥 Σ𝑥𝑣
Σ𝑣𝑥 Σ𝑣𝑣

) 
 2.23 

 

The diagonal of the covariance matrix is the variance of each dimension in the 2D 

system, and the off-diagonal elements are the covariance between position and 

velocity.  

The filter will update the mean and covariance matrix when new observations are 

detected, hence this being referred to as the system state. 

The Kalman filter, therefore, has two stages. The first is the prediction stage, which 

tries to predict the current state given the previous stage and the time that has 

passed. The update stage then combines the predicted state with a new, real 

measurement. 

The prediction stage uses a state-transition matrix (𝐹), or physical model, which 

relates the previous state to the updated state. The predicted mean for the predicted 

state is given by Equation 2.24, where 𝑢𝑡  is a control signal that is often missing. 

 𝜇𝑝  =  𝐹𝜇𝑡 +  𝐵𝑢𝑡  2.24 

The covariance matrix must also be changed as the uncertainty of the system 

continues. Process noise denoted by 𝑄 is the uncertainty created by the time that 

has passed since the last real measurement and is not accounted for in the base 

physical model 𝐹. The covariance is calculated as in Equation 2.25. 

 Σ𝑝  =  𝐹Σ𝑡𝐹𝑇  +  𝑄  2.25 
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The update stage works differently. Firstly, it is required to determine the Kalman 

gain Kg as in Equation 2.26. This gain is a factor using which new information is 

incorporated into the state and can be tuned to provide the best filter results. 

 Kg  =  𝐻Σ𝑝(𝐻Σ𝑝𝐻𝑇  +  𝑅)−1 
 2.26 

In this equation, 𝐻 is a transformation matrix which transforms the state into the 

measurement domain and 𝑅 is the measured state covariant matrix. New 

measurements can now be taken as 𝜇𝑚 and Σ𝑚. New versions of both the mean and 

covariant matrix must be calculated as 𝜇𝑢  and Σ𝑢 as in Equations 2.27 and  2.28 and 

will be the basis for all new predicted states. 

 

𝜇𝑢  =  𝜇𝑝  +  𝐾𝑔(𝜇
𝑚  −  𝐻𝜇𝑝) 

 2.27 

 

 Σ𝑢  = Σ𝑝  −  𝐾𝑔(𝐻Σ
𝑝𝐻𝑇  +  𝑅)𝐾𝑔

𝑇  2.28 

In total, these equations give a means of iteratively predicting the state of a moving 

object, factoring in real measurements, and updating expectations as time 

progresses. This Kalman filter was used in the thesis to predict the movement of 

honeybees in a video recording between each frame. This allowed for the tracking of 

bees from one location to the next. For this thesis, the bees were assumed to be 

constantly changing speed and therefore the Kalman filter used a constant 

acceleration model, and process noise was tuned by hand for each video. When a 

Kalman filter estimates the motion of an object it must account for unknown 

deviations from the model, this is referred to as the process noise. Since bees are 

capable of intricate, highly complex flight even in small spaces, the process noise 

was generally assumed to be large. 
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2.5 Signal Processing Techniques 
2.5.1 Linear Predictive Coding 

Linear Prediction (LP) analysis is one of the most capable tools in Digital Speech 

Processing. Feature extraction of speech is one of the most important issues in 

speech recognition. Linear Predictive Coding (LPC) is used for source coding of 

speech signals particularly for compression on cellular networks and represents the 

spectral envelope of a digital signal in compressed form. 

LPC is a source-filter model in that a source goes through a filter as in Equation 

2.29. The source, 𝑒(𝑛), originally modelled the vocal cords, while the resonant filter 

ℎ(𝑛) modelled the vocal tract [194]. 

 𝑥(𝑛) =  ℎ(𝑛) ∗ 𝑒(𝑛)  2.29 

The resonances give rise to formants, which are enhanced frequency bands in the 

sound produced. These closely match significant local peaks within the spectral 

envelope. LPC analyses the signal by estimating these formants, removing their 

effects from the signal, and estimating the characteristics of the remaining signal. 

This process is called inverse filtering and leaves behind an artifact known as the 

residue. The formants and residue can then be transmitted elsewhere to reconstruct 

the signal.  

That LPC extracts features from the audio in the form of a compressed spectral 

envelope is useful for machine learning. Feature selection is a core research area for 

machine learning, aiming to improve models by removing irrelevant or redundant 

data which can reduce computation time, improve accuracy, and facilitate a better 

understanding of the learning model [195]. Selecting good features often requires 

domain knowledge and often utilises existing algorithms that can describe data 

succinctly while preserving nuance that is useful to machine learning models. 
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LPC has gained traction for analysing signals that fit the source-filter model but are 

not speech or audio signals. Radar signals match this profile in that the source is the 

reflected waves from the object being measured and the resonant filter is the 

environmental- and hardware-sourced noise that impacts that signal [196].  

LPC determines the coefficients of a finite impulse response filter that predicts the 

next value in a sequence from current and previous inputs. This type of filter is also 

known as one-step forward linear predictor. LP analysis uses an all-pole filter 

described as: 

𝐻(𝑧) =  
1

𝐴(𝑧)
=

1

1 − ∑ 𝑎𝑘  ∙  𝑧−𝑘
𝑝
𝑘=1

 2.30  

where {𝑎𝑘 | (1 ≤ 𝑘 ≤ 𝑝)} are the predictor coefficients and 𝑝 is the order of the filter. 

In the time domain, Equation 2.30 matches Equation 2.31, and predicts a signal 

sample as a weighted sum of past samples. 

𝑠′(𝑛) =  ∑𝑎𝑘 ∙ 𝑠(𝑛 − 𝑘)

𝑝

𝑘=1

 2.31  

𝑠′(𝑛) is the predicted value based on the previous values in the source signal. LP 

analysis estimates the parameters for a segment of signal, the idea being to find 𝑎𝑘  ∙

𝑠 so that Equation (above) provides the closest approximation. The error, 𝑒, between 

predicted and correct value is: 

𝑒(𝑛) = 𝑠(𝑛) − 𝑠′(𝑛) 2.32  

The summed square error 𝐸 is used to find a set of candidate equations, as the 

minimum value of 𝐸 occurs when the derivative is zero with respect to each of the 

parameters 𝑎𝑘. The matrix form of these equations is 



88 
 

[

𝑟(𝑜)
𝑟(1)
…

𝑟(𝑝 − 1)

𝑟(1)
𝑟(0)
…

𝑟(𝑝 − 2)

𝑟(𝑝 − 1)
𝑟(𝑝 − 2)

…
𝑟(0)

]  × [

𝑎1
𝑎2…
𝑎𝑝

] =  [

𝑟(1)
𝑟(2)
…
𝑟(𝑝)

] 

where 𝑟(𝑖) is the autocorrelation of lag 𝑖 computed as  

2.33  

𝑟(𝑖) =  ∑ 𝑠(𝑚) ∙ 𝑠(𝑚 + 𝑖)

𝑁−1−𝑖

𝑚 = 0

 
2.34  

and 𝑁 is the length of the signal segment 𝑠(𝑛). 

The Levinson-Durbin algorithm solves the 𝑛𝑡ℎ order system of linear equations 

𝑅 ∙ 𝑎 = 𝑏 2.35  

for the case where 𝑅 is a Toeplitz matrix and 𝑏 is identical to the first column of 𝑅 

shifted by one element. 

The autocorrelation coefficients 𝑟(𝑘) are used to compute the LP coefficients 𝑎𝑖 , 𝑖 =

1…𝑝 by solving the set of equations  

∑𝑎𝑖 ∙ 𝑟(|𝑖 − 𝑘|) = 𝑟(𝑘)

𝑝

𝑖=1

 
2.36  

where 𝑘 = 1…𝑝. 

The following set of equations are solved using Levinson-Durbin recursion: 
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𝐸(0) = 𝑟(0) 2.37  

𝑘𝑖 = 
𝑟(𝑖) − ∑ 𝑎𝑗

𝑖−1  ∙ 𝑟(𝑖 − 𝑗)𝑖−1
𝑗=1

𝐸(𝑖 − 1)
 

2.38  

𝑎𝑖
(𝑖)
= 𝑘𝑖 2.39  

𝑎𝑗
(𝑖)
= 𝑎𝑗

𝑖−1 − 𝑘𝑖 ∙ 𝑎𝑖−𝑗
(𝑖−1)

 2.40  

𝐸(𝑖) = (1 − 𝑘𝑖
2) ∙ 𝐸(𝑖 − 1) 2.41  

where 1 ≤ 𝑗 ≤ 𝑖 − 1 and 1 ≤ 𝑖 ≤ 𝑝. The parameters 𝑘𝑖 are also referred to as the 

reflection coefficients. If |𝑘𝑖| ≤ 1the roots of the polynomial predictor lie within the 

unit circle and the all-pole filter is stable. 

LPCs themselves are not without drawbacks. Line spectral frequencies (LSFs) are 

often used to represent LPCs for transmission over a channel as they are more 

efficient while also being less prone to quantisation noise [197]. This is the error 

generated when the number of bits assigned to each LP coefficient does not allow 

sufficient differentiation. 

Line spectral frequencies are generated from the roots of two polynomials which are 

constructed from the prediction filter 𝐴(𝑧) (see Equation 2.30) as: 

 𝑃(𝑧)  =  𝐴(𝑧)  + 𝑧−(𝑝+1)𝐴(𝑧−1) 
 2.42 

 𝑄(𝑧)  =  𝐴(𝑧)  − 𝑧−(𝑝+1)𝐴(𝑧−1) 
 2.43 

The LSF representation of the LP polynomial consists of the location of the roots of 𝑃 

and 𝑄. An algorithm to determine these roots is to evaluate the polynomial at a 

sequence of closely spaced points around the unit circle, observing when the result 

changes sign which indicates the root lies between the points tested. 
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LSFs are the de facto representation of LPCs in modern speech coding. However, 

they are computationally expensive to calculate for many coefficients and therefore 

limit the capacity for their use for machine learning purposes when many features 

can be required. 

Log Area Ratios (LARs) are another method of representing LPCs that, while not as 

noise-free as LSFs, are simpler to compute [198]. The relationship between LAR and 

LPC is: 

 𝐿𝐴𝑅 =  𝑙𝑜𝑔 (
𝐴𝑖

 𝐴𝑖+1
) = 𝑙𝑜𝑔 (

1 + 𝑎𝑖

 1− 𝑎𝑖
) , 𝐴𝑝+1 = 1.  2.44 

where 𝑎𝑖 is the 𝑖𝑡ℎ parcor coefficients which can be found by: 

 𝑎 =  𝑎𝑖
(𝑖)
, 1 ≤ 𝑖 ≤ 𝑝  2.45 

where 𝑎𝑖
(𝑖)

 is the 𝑖𝑡ℎ LPC calculated by the LPC model. 

LPCs, LSFs, and LARs were used in Chapter 5 as feature extraction techniques for 

complex radar signatures of bees at the entrance of beehives captured by a 5.8 GHz 

doppler radar. They proved particularly potent, even over other, more standard 

approaches to signal classification.   

 

2.5.2 Mel-Frequency Cepstral Coefficients 

The mel-frequency cepstrum (MFC) is a representation of the short-term power 

spectrum of a signal, based on a linear cosine transform of a log power spectrum on 

a nonlinear mel scale of frequency. 

The MFC has frequency bands that are equally placed on the mel scale, which 

approximates the human auditory system's response to sound more closely than 

linear frequency bands. Mel frequency cepstral coefficients (MFCCs) are coefficients 

that collectively make up an MFC [199]. They are computed as follows: 
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• Take the discrete Fourier transform of a discrete-time signal divided into 

windows. 

• Map the powers of the spectrum into the mel scale using the transform 

present in Equation 2.46, using triangular overlapping windows. 

• Take the logarithmic scale of each of the mel scale frequency windows. 

• Invert the mel scale algorithm to return the signal to the standard domain. 

• Compute the discrete Fourier transform of the new signal. 

 
∅ = 2595 𝑙𝑜𝑔10(

𝑓

700
+ 1)  2.46 

MFCCs have a long history of information retrieval in music, from MP3 encoding to 

feature extraction for machine learning. Though unusual in the realm of radar, 

transforming the scale of the underlying data can be useful. While not directly used 

in this thesis, an earlier related contribution explored adapting the mel-scale to match 

radar data to determine if could be useful for classification. This is covered in 

Appendix C and summarised in the introduction to Chapter 5. 

 

2.6 Munkres Assignment Algorithm 

The Munkres Assignment Algorithm is a variation of the Hungarian Assignment 

Algorithm [200]. An assignment algorithm seeks to distribute n tasks between n 

workers in such a way to find the minimum assignment cost (assuming each task 

creates a cost when assigned to a given worker.) This is useful in computer science 

in general to optimise how work is performed and find the best candidates in a given 

optimisation problem. 

A simple interpretation of the process is as follows, where potential assignments are 

marked (using prime and star in this case): 

1. Create an n by n matrix representation of workers and jobs. 
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2. For each row of the matrix, find the smallest element and subtract it from 

every element in that row, creating a zero somewhere in that row (the 

minimum element, representing the lowest cost assignment for one row.) 

3. Find a zero (𝑍) in the matrix. If there is no starred zero in its row or column, 

star 𝑍. Repeat for each element in the matrix. Go to step 4. 

4. Cover each column containing a starred zero. If all columns are covered the 

starred zeros now represent a complete set of ideal unique assignments. The 

process can terminate. If this is not the case, continue to step 5. 

5. Find a noncovered zero and mark it with prime. If there are no starred zeros in 

the row containing this primed zero, continue to step 6. Otherwise, cover this 

row and uncover the column containing the starred zero. Continue in this 

manner until there are no uncovered zeros left. Save the smallest uncovered 

value and go to step 7. 

6. Construct a series of alternating primed and starred zeros as follows: Let 𝑍0 

represent the uncovered primed zero found in step 4. Let 𝑍1 be the starred 

zero in the column of 𝑍0 if there is one. 𝑍2 will denote the primed zero in the 

row of 𝑍1 (which is certain to exist.) Continue in this manner until there is a 

primed zero with no starred zero in its column. Remove the star marker from 

each zero in the series, place a start marker on each primed zero, remove 

every prime marker and uncover the matrix completely. Return to step 4. 

7. Add the value found in step 5 to every element of each covered row and 

subtract it from every element of each uncovered column. Return to step 4 

without altering any stars, primes, or covered lines. 

When the process is finished, each row and column will have one value highlighted 

with a star marker. This is the optimal assignment for that row and column in the 

context of minimising the total cost within the matrix. 

This Munkres assignment algorithm is commonly used when assigning potential 

movement-tracking candidates to previously recorded entities. This is how it was 

used in Chapter 4, where new bee detections were required to be assigned to 

existing tracks found. It was possible to detect new bees by setting a maximum cost 

value. This maximum cost would remove a candidate from the assignment problem 

when a new bee detection was too costly to assign to any existing bee path. Bees 
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that were not assigned any new detections (because they were not a minimum cost 

assignment) were flagged and removed from consideration after three frames. 

Therefore, it was possible to detect bees leaving the frame using the cost 

assignment.  

 

2.7 Summary and Discussion 

This chapter contains a literature review and methodology section. The literature 

review discusses current tracking solutions for bees and similar animals. It also 

provides an overview of the current machine learning work that has been done to 

predict insect movement and behaviour. A theme within the literature review is the 

importance of understanding the different metrics that can be used to measure the 

success of a bee tracking system, such as the range, accuracy, and risk to the bees. 

This thesis prioritises accuracy more than any other metric as the integration of 

machine learning with tracking systems is a new topic within the field. 

The methodology section discusses the algorithms used throughout the thesis, their 

background, implementation, and some limitations. More information is included 

within the main chapters as the methodology covers common implementation 

details. 

Several gaps within the literature have been identified. One, time series prediction, 

has already been discussed, and additional gaps are present. There is a gap in the 

literature given that no machine learning has been integrated with harmonic radar 

tracking of bees. Similarly, the literature contains few examples of using radar or 

cameras alongside machine learning to count the activity of bees near the beehive 

entrance. This thesis includes three chapters which each address one of these gaps. 

In general, the literature review shows that despite concern over the long-term 

population stability of bees there are few efficient machine-learning integrated 

tracking systems. Machine learning can automate the data- and labour-heavy 

process of counting bee activity.  
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Concerning the research questions for the thesis, this chapter supports the 

investigation into identifying key technologies to pair with machine learning to track 

bees. The chapter further supports evaluating the feasibility and success of these 

systems. Lastly, discovering the limitations of such technologies is important to 

providing useful output for later researchers.  
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3 Early Prediction of Bumblebee Flight Task* 

3.1 Introduction 

This chapter details the development of machine learning models capable of 

predicting bumblebee flight task shortly after leaving the nest, and was used to 

publish a paper [201]. In addition to the content of the paper, this chapter adds 

discussion which contextualises the results for the thesis and adds Section 3.6 which 

further explores Random Forest models. 

Before the onset of this thesis project, the author was contracted to help develop a 

self-piloting drone to track bee flights using a battery-less piezoelectric tag and 

antenna system at the university. This created a string of successful experiments in 

iteratively improving the design of the tag system and the self-piloting software [86, 

202]. The original project goal for this thesis was to extend this system to 3000 

meters tracking distance.  

A brief overview of this system is illustrated in Figure 3.1, showing both a conceptual 

design and photographs of the bee-tracking drone system.  

An immediate concern became apparent due to the nature of the drone and target.  

The drone in question, the DJI Matrice 200, was a workhorse drone. Able to carry  

larger payloads at great speed, it lacked agility compared to the bees. 

In addition, this drone would not fit between gaps that would accommodate the bee 

such as small hedgerows, or between farm buildings. Interference could affect data 

capture when the bee flew under cover such as shrubbery. It was apparent the drone 

would need a system to either predict the bee's next position or make use of partially 

recorded flights. Classification of flight tasks could serve as an auxiliary aid to drones 

that can match the characteristics of the flight at hand.  
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Figure 3.1 (a) The design of bee tracking drone, showing how the signal is converted into 
command signals for the drone to follow. (b) The antenna system mounted between the 

drone's feet. (c) The piezoelectric tag on a bumblebee. (d) A closeup of the tag circuitry.An 
immediate concern became apparent due to the nature of the drone and target. The drone in 
question, the DJI Matrice 200, was a workhorse drone. Able to carry larger payloads at great 

speed, it lacked agility compared to the bees. 

By making use of incomplete data, a robust algorithm for the early classification of 

flight purposes could make it possible to monitor how colonies of bees divide their 

labour resources between exploration for new floral resources and exploitation of 

those already known. This would allow researchers or commercial users of 

bumblebee pollinators to monitor the efficiency of pollination, and colony health and 

predict future needs in time to respond flexibly to them: an increase in exploration 

flights might suggest that currently known resources are insufficient to support the 

colony; while a drop in exploitation flights could predict upcoming starvation. 

Furthermore, these methods would scale well, opening the potential to monitor 

pollination services over large areas or allow researchers to investigate interactions 

between colonies in resource exploitation. 

In this chapter, data, shared by the Rothamsted Research group, was used to 

generate models to predict bumblebee flight tasks. This data was taken by their 

harmonic radar, a system different from the drone with a lower time-resolution. 
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However, the data provided a useful example of the type of data that might be 

gathered by the drone.  

3.2 Data 

Woodgate et al. used harmonic radar for lifetime tracking of bumblebee workers, 

exploring how their flight patterns developed with experience [203]. The authors 

described an algorithm for classifying flights into those which explore new resources 

versus those focused on foraging from known floral sources. This algorithm was 

inherently simple and effective. An exploitation flight was a flight that consisted of a 

single loop where the bee stopped for a length of time at a location it had previously 

investigated. All other flights, including those with multiple loops to and from the nest, 

were considered exploration flights. In this work, the concern lies with improving the 

data acquisition of similar studies and investigating the automated early classification 

of these flights. 

Individual bees seemed to follow a loose pattern of some initial exploration flights 

followed by periods of exclusive exploitation flights. This, in turn, could be included in 

the dataset as information to assist with prediction. This is true only if each bee can 

be uniquely always identified. Radio-frequency techniques do not easily afford this. 

Therefore, it was decided to exclude this so that the algorithm generated can 

function with a wide range of technologies, some of which may not uniquely identify 

the bee. 

Some fixed conditions could influence the outcome such as experiments being 

undertaken during daylight hours in good weather. The primary concern with the 

dataset was that there were too many potential variables to fully describe all drivers 

that might affect bee behaviour. This range includes things as simple as local 

temperature up to small undetectable air currents. 

The data consisted of 37591 unique data points taken from 244 bee flights. It 

represented coordinates as the distance in meters from the source nest. Using this 

data in this study allowed for the extraction of meta-data such as current speed, 

average speed, distance from the nest, and perpendicular distance from the average 

bearing. A summary of these is given in Table 3.1. 
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An additional metric was used as described in the original work, named 

digressiveness. This measure was a numerical representation of flight efficiency, 

with a value of 1 representing a perfectly efficient flight. Given that the work here 

focuses on machine learning, a small adjustment was made to this metric to enable 

better normalisation. This original equation is shown in Equation 3.1 with the 

changes made as in Equation 3.2. 

 
𝑫 =

𝑭𝒍𝒊𝒈𝒉𝒕 𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆

𝟐 ∗ 𝑶𝒑𝒕𝒊𝒎𝒂𝒍 𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆
 

 

3.1 

 

 𝐷 =
𝐹𝑙𝑖𝑔ℎ𝑡 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
− 1 3.2 

 

These changes were made as the emphasis is on early detection of a task, where 

the insect may not yet have returned to the nest, therefore only the outward journey 

is important necessitating the removal of the factor of two in the original equation.  

With this new equation, a perfect flight would be 𝐷 = 0 rather than 𝐷 = 1 as per the 

original specification, allowing better normalisation of digressiveness over the series. 

A simple demonstration is present in Figure 3.2 showing the digressiveness value for 

a selection of lines. 
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Table 3.1 Available variables within the source dataset and derivative variables used to train 
the machine learning models. 

Source Variable Description/Count 

Source dataset 

variables 

Exploration flight readings 24285 

Exploitation flight 

readings 

13306 

Flight number Unique flight ID 

Bee number Unique bee ID 

Digressiveness See Equation 3.1 

Date and time Date of flight and time of 

day 

X, Y position X and Y coordinate 

(meters) from nest 

Radar X and Y X and Y coordinate 

(meters) from nest 

Nest latitude, longitude Global position of nest 

Radar latitude, longitude Global position of radar 

Bee latitude, longitude Global position of bee 
   

Additional, calculated 

variables used as 

model input 

Current speed Distance between 

coordinates over time 

between measurements 

Average speed Average distance covered 

over time 

Distance from nest Distance (meters) from 

nest 

Perpendicular distance 

from average bearing 

Distance between 

average bearing 

coordinate and current 

location (both equidistant 

from nest.) 

Digressiveness See Equation 3.2 
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Figure 3.2 Example digressiveness metrics for hypothetical bee flight patterns. 

It is noted that additional metrics could be used that describes the bumblebees' 

trajectory from the nest, which would likely aid in classification such as the exact 

heading from North which would highlight the bearing of flowers the bee is targeting. 

However, this work aimed to strip positional information from the data to allow any 

generated models to work with other colonies with different geographical features. 

By not including bearing as a metric, the characteristics of the landscape for this nest 

are not dominant in determining predictions. Because the data is expressed in more 

general terms such as distance from the nest, current speed, and average speed, 

the data from other colonies might be substituted effectively. 

 

3.3 Filtering and Preparation Methods 

There is a caveat when using the data in that localisation error can occur [203].  For 

instance, occlusions such as those caused by the bee flying behind a tree would 

mask the detection leading to dropouts in the dataset. An example of this is shown in 

Figure 3.3, detailing the missing elements of otherwise strong tracks. In the case of 

flight 83, there is a large distance gap which could affect the data. Similarly, in flight 
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130, the bee was likely busy collecting pollen from shrubbery for some time which 

led to it being occluded. In the current work, the concern is with when the bee is both 

moving and able to be seen therefore both tracks must be filtered down to the 

relevant parts. 

 

Figure 3.3 Details of (a) flight 83 and (b) flight 130 showing lost segments of flight (as solid red 
lines), with T being time since track beginning. 

 

As the work was focused on the early prediction of the bumblebee flight task to 

replicate the conditions faced by the drone (which was to benefit from and continue 

from this work), a sampling window of 50 positional readings was used. This is the 

first 50 positions read by the radar if they satisfy the data filtering process and was 

equivalent to two and half minutes from first to final detection. This was chosen as a 

reasonable time for the drone to track the bee while still to make a prediction as to 
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the bee’s flight purpose if the bee signal was subsequently lost. An additional reason 

for limiting the number of points for consideration was that some bee flights were 

extremely long with one case of a bee not returning until the following day. 

To aid the machine learning, an additional set of filters was originally designed to 

strip out noisy values (potential radar errors or where bees were behaving erratically) 

from the dataset. 

After filtering for lost time, the secondary chosen approach for filtering the data was 

to focus on three variables: current speed, perpendicular deviation from current 

bearing, and digressiveness.  Perpendicular deviation takes the bearing of the flight, 

including the current point, and evaluates the absolute distance between the average 

bearing and the bee's true position, serving as a method of understanding how 

quickly the bee changes direction without using specific positional information. 

The distribution of unfiltered data was explored by normalising the data between 0 

and 1 for each feature to view the distribution of values. This was done by 

subtracting the minimum value and dividing the result by the remaining maximum. 

This process was reversible so that realistic limits could be evaluated to determine if 

they improved data distribution by inspecting the data distribution pre- and post- 

normalisation. These limits were determined to be a max speed of the bumblebee of 

8 meters per second, a perpendicular deviation of no more than 8 meters, and a 

digressiveness of 2 or less. The normalised distribution of the data is presented in 

Figure 3.4. 
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Figure 3.4 Filtered (Solid line) and unfiltered (Dashed line) normalised data distributions of the 
dataset. 

The filtration of digressiveness is key as some rare flights had multiple, short-

distance occlusion losses. Coupled with the radar's accuracy (two meters) this could 

give the appearance of the bee looping multiple times in a short distance, skewing 

results. 

It is also noted that the limitations on speed are less than with similar research where 

the maximum speed of a bumblebee is around 15 meters a second [50], however, 

this could be due to previous research noting a range of 3 to 15 meters a second 

depending on environmental conditions such as wind resistance. 

 

3.4 Initial Experiment 

The filtered data was split into two similar-sized sets for both classes (n~1130 each) 

before being fed into the following models; 
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• A random forest classifier (RF [188]) of 1000 nodes initialised to a random 

state. 

• A support vector machine classifier (SVM [187]) with a radial basis function 

kernel, regularization of 1, and a kernel coefficient of 0.5. 

•  A neural network (NN [204]) with two hidden layers of scaled exponential 

linear units (SELU) with a final sigmoid activation layer and a dropout rate of 

0.5. 

The size of each dataset is the number of points present in the first 50 readings in 

each flight, filtered based on the discussed parameters. There was an approximate 

3:1 ratio of available points for exploitation and exploration respectively pre- and 

post-filtering. 

Under-sampling was first utilised as imbalanced datasets are challenging to train 

models upon.  To strengthen the conceptual results of the work, the learning 

outcomes for both filtered and unfiltered data are included. This allows the 

demonstration of patterns discovered from filtered data matching patterns in 

unfiltered data. 

To confirm prediction validity, both accuracy and loss were evaluated. Binary cross-

entropy loss, also known as log loss, was used as a loss function for all the models 

generated. This loss can loosely be interpreted as the proportion of incorrect 

predictions produced by the model in a set, in addition to its confidence in those 

predictions. A perfect loss would have a value of zero, as demonstrated in Equation 

3.3. In this case, 𝑖 is the index of a given prediction, 𝑦𝑖 represents the target value 

output and �̂� is the predicted value. 

 𝑙𝑜𝑠𝑠𝑖 = 𝑦𝑖 ⋅ 𝑙𝑜𝑔 𝑦�̂� + (1 − 𝑦𝑖) ⋅ 𝑙𝑜𝑔(1 − 𝑦�̂�)  3.3 

To calculate the loss for both the RF and SVM, these models were created in scikit-

learn with SVM probabilities determined by Platt's method [205]. 

For the original learning outcomes, an 8:2 ratio was used to split data into training 

and testing sets for the models, with the neural networking taking a small sample 
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(20%) of its training set to act as a validation set. In this method, the flights were 

disassembled into constituent context points and reformed into randomised 

composited sets. 

In the case of the neural network, the check-pointed model with the highest accuracy 

against the validation set was used as the outcome to limit any residual overfitting. 

For predictions over time, 180 flights were used as training with 64 flights held for 

testing. As the filtering process could shorten a flight to less than 50 measurements, 

three separate instances of each model were trained. The 50 measurement limit 

was, as discussed, to prioritise predicting the bee’s task soon after leaving the nest, 

with 50 readings being approximately two and a half minutes. 

One triplet of models would contain one NN, one SVM, and one RF. Each triplet of 

models shared the same set of flights. The average accuracy across sets of triplets 

was used as the final measurement.  

In essence, each of the three datasets was a random permutation of the original set, 

split further as discussed into a training and testing set. This served the purpose of 

reducing possible bias introduced by the training data having a disproportionate 

number of flights with the full 50 possible values versus the testing set.  

An important observation of this data is that measurements were taken every 3 

seconds by the radar. The initial measurement was not guaranteed to be the first 

possible point of the bumblebee leaving the nest as the bee could be obscured by 

the nest itself or masked by the rotation of the radar. To counteract this, predictions 

are made from the second point onwards so as not to make faulty assumptions as to 

a target's current speed. 

It is also prudent to mention that Woodgate et al. noted that their classification of 

flight tasks used an algorithm created to match human observation [203]. However, 

they note that such classification was not necessarily suited to the nuances of bee 

behaviour. Notably, they discuss the trade-off between capturing what was 

happening precisely while also creating a method that was as simple and universal 

as possible. This creates the possibility that where the machine learning structures 
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disagree with the original method, some of these instances may be due to the more 

complex nature of machine learning and represent the ground truth. This also formed 

part of the study. 

To investigate further, the unfiltered data were explored using Ward's method of 

clustering to build a set of data labels by calculating the incremental sum of squares. 

Following this, the method works by creating a simple nearest centroid classifier to 

estimate a label based on proximity to the nearest Ward cluster centroid [206].  As 

shown in a dendrogram present in Figure 3.5, there are indications that there exist 

multiple sub-flight types. Clustering the data into six, eight, ten and twelve clusters 

allowed investigation into whether successive points shared clusters, rather than 

neighbouring points belonging to unrelated clusters. This would indicate sub-flight 

characteristics. Further evidence that sub-flight types were present came as 

neighbouring points continued to share clusters each time the number of clusters 

varied. The goal was to determine if more than the described two categories of flight 

exist by predicting them over a small set of flights. This also allows exploration of 

whether multiple flight categories can be present in a single flight, indicating the 

possibility of either adaptive tasks or strict tasks. 

 

Figure 3.5 Dendrogram of unfiltered data, with the cluster threshold set to ten to match cluster 
analysis. 
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3.5 Initial Results and Discussion 

A final accuracy, on the initial 50 readings of each flight, was achieved as 91%, 81%, 

and 85% for the neural network, support vector classifier, and random forest 

classifier respectively. This is the result when flights were disassembled and 

individual points re-composited to form sets, stripping them of intra-flight 

relationships. These are detailed in Table 3.2, showing that the random forest 

performs very similarly regardless of filtering the data, even doing somewhat better 

with unfiltered data. Both the neural network and the support vector machine benefit 

from filtering the data, however, the SVM does have lower loss with unfiltered data. 

These results do indicate that the patterns within the data exist both with and without 

filtering. 

As the dataset was limited to 244 flights, it was not possible to disaggregate the 

dataset by either ambient temperature or time of day. For example, the random 

forest improved to 90% accuracy and 0.27 loss when the time of day was included. 

However, this may be an overstatement of the algorithm's capabilities. After 

approximately 6pm, all recorded flights (6 total flights) were exploitation flights. This 

could mean that bees leave the nest that late in the day only for food or that there 

was not enough data to capture the truth of the matter, so the algorithm would likely 

(incorrectly) assign exploitation to all flights in this slot.  More flights would provide 

the correct ratio of classes for the algorithm to attribute a label. Given this limitation, 

time was not used though it may be reincorporated as the dataset is further 

expanded. This also supports previous arguments in favour of keeping the variables 

as general as possible. 

Table 3.2 Initial Learning results: Strongest results in bold. 

Method Filtration Accuracy Loss 

Neural Network Filtered 
Unfiltered 

91.0% 
75.2% 

0.42 
0.60 

Random Forest Filtered 
Unfiltered 

85.1% 
86.9% 

0.35 
0.32 

Support Vector Machine Filtered 
Unfiltered 

81.3% 
71.2% 

0.59 
0.55 
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More interesting for this study was the accuracy versus flight time. As each 

subsequent point contains more context about the flight, such as a more refined 

value for average speed, it is expected to see an increase in accuracy over time.  

It proved prudent to evaluate the results as an average of models across three sets. 

To take the example of the neural network, results were 50%, 69%, and 47% for 

each triplet respectively on the initial prediction (2 measurements taken.) While some 

sway is to be expected, there is a 22% accuracy shift between the weakest and 

strongest results. For comparison, the RF managed 74%, 71%, and 73%. This is a 

much more typical sway with a gap of 3% accuracy. 

However, as time progresses this shift tapers out such that at the peak accuracy of 

the neural network, the results are 94%, 93%, and 90%. Comparatively, at this point, 

the RF returned an accuracy of 79%, 81%, and 72%, now producing a 9% shift in 

accuracy.  

The likely reason behind these shifts is due to imperfect filtering of the data, a 

smaller number of test flights than ideal, a residual error left from the radar itself, and 

the discussed random flight order in the dataset. As previously mentioned, the first 

reading of the bee was not always adjacent to the nest which created the possibility 

of feed-forward error as points taken for learning purposes contain continuously 

more context about the flight. Flights were validated on whether their initial distance 

from the nest (x) was less than or equal to the distance between the first and second 

reading (y). Assuming acceleration upon leaving the nest, the bee must have been 

airborne for longer than the three-second rotation of the radar if x is greater than y. 

53% of recorded flights began with the bee already beyond y distance from the nest, 

making speed at these early points unknowable. 

With a larger number of flights recorded, an adaptive filter could be developed such 

that these issues may be addressed. For example, having a lower speed limit at the 

start of a flight. This might be expected as the bee accelerates away from the nest 

and would serve to curtail the use of flights where the bee had already covered some 

distance.  With 244 flights, such an adaptive filter would lack the proper context to 

correctly determine a mean value for this speed. 
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The binary cross-entropy loss across model triplets is much more stable, though the 

trend for SVM results to spike remains. This supports the idea that accuracy issues 

stem from data points that are either incorrectly filtered or form part of a set that was 

labelled incorrectly by the original algorithm. 

As shown in Figure 3.6, the loss values are strongest with the random forest. The 

SVM results lack stability, and while both the neural network and random forest start 

competitive, the random forest in time outpaces the competition. 

 

Figure 3.6 (a) Average accuracy and (b) loss over time of the models trained on the dataset. 
Error bars are for the min and max values across model triplets. The horizontal axis is the time 

from the first detection by the radar, regardless of the time of day. 

Conversely, with accuracy, the results favour the neural network. It is worth noting 

that both the random forest and support vector classifiers manage the initial 
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classification with higher accuracy than the neural network. However, the neural 

network reaches its highest accuracy faster, with 81% at the 4th measurement (12 

seconds) and a peak of 92% at the 6th measurement (18 seconds.) The neural 

network is also the strongest model over the entirety of the dataset. 

Observing both loss and accuracy together, the neural network is strongest. Before 

18 seconds, the neural network and random forest are almost equal in loss value, 

but the neural network quickly climbs to its peak accuracy whereas the random 

forest takes much longer to reach similar results.  

Another way of interpreting these results lies in looking at model predictions on 

specific flights. Figure 3.7 shows two flights, one exploration (flight 233) and one 

exploitation (flight 89.) Flight 233 had a total flight prediction accuracy of 90%, 

though even at its third prediction it made a mistake. Flight 83 had a final accuracy of 

75% and made a substantial error on its ninth prediction by producing incorrect 

results with almost certainty. 

Both flights produce a majority vote in favour of the correct result within the first four 

measurements, supporting the initial findings presented here. 
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Figure 3.7 First 12 positions of two flights, (a) flight 233 and (b) flight 89, with confidence 
scores. Scores below 50 indicate an incorrect prediction represented by ▲. A score of 0 would 

indicate total confidence in an incorrect prediction, and a score of 100 indicates a perfect 
prediction. Correct predictions are marked by ●. 

 

Interestingly, these early results provide context surrounding some of the incorrect 

predictions created by this approach. Flight 64 is an exploration flight, yet the neural 

network predicted only 10% of the points correctly. Context is provided in Figure 3.8 

and shows that for the first 12 measurements, this flight bears a striking resemblance 

to flight 89. However, the full flight plot shows the characteristic looping and 

backtracking associated with exploration flight.   



112 
 

 

Figure 3.8 (a) First 12 samples of flight 64 with predictions plus (b) total plot of flight 64 
showing characteristics of exploration. 

 

As mentioned, cluster analysis was also performed. No filter was used, however, as 

with the models themselves, only the first 50 measurements were evaluated. The 

goal was to determine if there is justification for there being more than two types of 

flight present in the dataset and whether flight 64 could be classed as a hybrid flight. 

Ten clusters were formed from the entire dataset minus flights 64, 89, and 233. The 

cluster number was chosen to achieve good granularity when separating these 

flights into sub-flight types, allowing a comparison to be drawn between the structure 

of the flights. With these cluster centroids, predictions were undertaken using the 

one-nearest neighbour classifier approach. Results of predictions for flight 64 in 

Figure 3.9 show that segments of the flight remain intact, rather than there being 
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randomly clustered data. This indicates that even a relatively simple algorithm can 

segment a flight into similar sections. Furthermore, there appear to be repetitive 

clusters based on flight parameters. Using the example of cluster 5 (C5), it is present 

before the major arc of the flight and immediately following, indicating the same 

behaviour both before and after this arc.  

It is important to note the functions of the clusters would require further analysis. This 

would also likely need a larger sample of flights to provide better definitions. 

However, it is important to evaluate the possibility of hybrid flights, or perhaps flights 

that do not fall under the umbrella of either exploitation or exploration.  

Looking at the composition of the three flights in question, again shown in Figure 3.9, 

shows that it is likely that 64 does fall under a hybrid category. Like the exploitation 

flight 89 that it was mischaracterised as, it contains four component clusters rather 

than the two present in exploration flight 233. On the two overlapping clusters C5 

and C6, flight 64 falls directly between flight 89 and 233 in terms of proportion. The 

exploration flight is strictly composed of these two clusters, with an overwhelming 

majority of C6 (88%). Flight 64 is much more like 89 with 52% and 38% respectively. 

 



114 
 

 

Figure 3.9 (a) Flight 64 labelled with nearest centroid classifier and (b) proportional 
constitutions of flights 64, 89, and 233 of their component clusters. 

 

An expanded look at this experiment is presented in Figure 3.10. The distributions of 

clusters between flights remain reasonably consistent, with flight 64 appearing to be 

somewhere between the exploitation and exploration flights. This is true until there 

are only six clusters, where the flight patterns become similar. 

This is evidence that hybrid flights exist. In this case, it could be that the bee went in 

search of additional food after a first visit. Further work could investigate correlating 

clusters with other behaviours. Verification of these clusters would need to be 

completed, seeking to find meaningful and resilient functions for each. Some clusters 

may trivial behaviour, such as a cluster being: Bee flying cruising towards or away 

from the hive. Such clusters would not be relevant to overall flight function. 
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Figure 3.10 The results from clustering when varying the total number of clusters. 
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3.6 The Dangers of Subsampling, Manual Tuning, and the 
Question of Loss 

The low loss value for the Random Forest encouraged further investigation. In 

addition, subsampling leaves large portions of the data unexplored, meaning that 

results could be different when using a different subset. 

Sample weighting is a means to allow a model to use the entire dataset by giving the 

underrepresented class a greater weight when fitting the model. It is not a guarantee 

of a better model but is a useful way of measuring how the model might perform 

when exposed to the entire dataset. 

Hyperparameters are the parameters that define the Random Forest such as the 

number of trees, the depth of each tree, and the criterion that causes a branch on 

each tree to split. By setting these manually, the model is limited by the operator. 

Hyperparameter tuning is a method of using a search function (such as a Bayesian 

Search) to determine the best fit for these parameters automatically. This would be 

expected to improve results moderately. 

The hyperparameter limits for the random forest were as follows: 

• Between 10 and 1000 trees in increments of 10. 

• A split quality criterion of either gini impurities or entropy. 

• A number of samples to split of either log2 total features or the square root of 

total features. 

• A max tree depth of 10 and 1000 in increments of 10. 

• Minimum samples to split in set [2, 5, 10, 15]. 

• Minimum samples per leaf in set [1, 2, 4, 6, 8]. 

Lastly, rigour can be improved by using cross-validation. K-fold cross-validation splits 

the dataset into k number of subsets (folds) and uses one as a testing set while 

training on all others. It iteratively ensures that each fold is used as a testing set 

once, meaning for 10-fold cross-validation, ten versions of the model are generated.  
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Putting all these techniques together, a random forest model was trained using 

weights with all the data. The results of Figure 3.11 show how the model performed 

in each fold of a 10-fold cross-validated training and testing session. Both filtered 

and unfiltered data have been evaluated. The average accuracy for filtered data was 

87.96% and for unfiltered was 90.72%.  

 

Figure 3.11 (a) Accuracy (b) Loss - Per fold results from the 10-fold cross-validated 
experiment.  

This follows the under-sampling results, where the unfiltered accuracy surpassed the 

filtered accuracy. The random forest is resilient to the effects of the unfiltered data 

and does better with the whole dataset present. The best-case accuracy for both 

filtered and unfiltered data also surpassed the neural network on the under-sampled 

data, however, the averages are a better measure of overall performance. 

The experiment was also conducted by varying the number of folds. The results of 

this experiment are presented in Figure 3.12. Again, the model does better with 

unfiltered data, showing less variance as the number of folds increases. This 

variance for filtered data is likely to be caused by the smaller folds containing harder 

to classify data that do not have a representation in the remaining training set. The 

filtered data surpasses the unfiltered data in the best-case scenario, approaching 

95% but this is not a stable result for the set because it is a one fold in many and 

does not represent the entire set.  

The high accuracy and low loss for this dataset are evidence that the random forest 

did not benefit from the filtering algorithm. When coupled with the hyperparameter 
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tuning and sample weighting the random forest remained fully capable of predicting 

flight labels. In the future, with a larger dataset, it would be beneficial to investigate 

whether this result remains. It could be that filtering the dataset removes easy-to-

classify outliers, rather than adding noise into the set which makes learning difficult. 

 

Figure 3.12 Results from varying the number of cross-validation folds in the experiment. The 
line shows the average result. The shaded area illustrates the range encapsulated by the 

minimum and maximum results. 
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3.7 Summary, Limits and Conclusion 

This chapter detailed the development of a bee flight task classification system with 

a focus on early prediction. There were models created that were more than 90% 

accurate at predicting this task. A breakdown of different filtering techniques is 

presented as well as their effect on the model accuracy. In addition, k-fold cross-

validation and automated hyperparameter tuning have been investigated to improve 

the models. 

Limits exist in the methods used in this chapter. Whilst there are many thousands of 

individual points, there were only 244 flights. Results from the accuracy-vs-time 

assessment are only proof of concept. It was always the goal of this thesis to expand 

upon this work and provide a larger dataset for similar evaluations. Future work may 

face challenges as more hard-to-classify flights are recorded by the equipment at the 

University. 

This is a weakness that cannot be addressed with the current data. Data of this kind 

are still rare and require expensive, sparse equipment to gather. The drone project 

that was to be done as part of this thesis was designed to alleviate this very problem. 

However, the project was discontinued when the hardware engineer who created the 

sensor system left the university and there were insufficient funds to hire a 

replacement to develop and maintain the equipment. 

Conversely, studies such as this, though limited, are crucial in laying the groundwork 

and securing interest for future more thorough work using larger datasets. It is hoped 

that the drone project will be revived, and a more complete version of this work can 

be undertaken. 

The final validation for the algorithm must be tested in the field. Real-time execution 

of the algorithm with third-party assessment would refine measurement precision. 

This could be in the form of observing bee pollen load on return to differentiate 

between foraging and other flight types. Additional harmonic radar data gathering will 

enable further classification of the detected clusters (for example predation and 

disease). Early classification of behaviour types can improve unmanned drone 

airtime both in prioritising bees to save battery life and in enabling adaptive flight to 
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match bee flight patterns. This in turn will serve as more proof that the algorithm is 

correctly predicting to match field observations. 

These proof-of-concept results show that a rapid automated prediction of bumblebee 

flight tasks could be possible. This is a prediction of whether a bumblebee is 

exploring new resources or exploiting ones already known. 

These results open pathways to expand on the radar tracking of insects by allowing 

fast determination of flight errands. This could allow for automatic prioritisation of 

exploring bees over foraging bees for longer-range tracking to build maps of nest 

resource acquisition. Similarly, it would allow for a shorter-range system to sit near a 

nest to monitor the number of bees leaving for each task over time, without needing 

knowledge of a bee's destination. 

With more development, this would lead to being able to monitor resource use and 

pollination efficiency in near-real-time so that interventions can be made to improve 

them, such as moving nests to help them make better use of crops or providing 

supplementary food when colonies are in need. 

Further work could augment the process to predict the future needs of the colony 

and nest health. Too many exploration flights might suggest they are not getting 

enough food; too few exploration flights might suggest the colony is over-reliant on a 

small number of food sources and will be in trouble if those plants stop flowering. 

This could scale to monitoring multiple colonies over a large area, such as an entire 

farm, and allow for moving colonies to areas that are not getting enough pollination. 

In addition, it would be possible to monitor wild bees to work out where conservation 

resources should be concentrated and researchers can start to look at how the 

foraging decision of one colony affects another. This could provide insights into how 

the pattern of nest foraging vs exploring affects the nest's overall health. 

Time series analysis was not undertaken in this chapter but is recognised as future 

work. The limiting factor was the small number of total flights (244) which would 

present challenges for time series analysis. More data would be required to fully 

explore the technique, a limitation that this work overcomes by working with points 
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within flights as disconnected prediction tasks. In addition, the work focused on 

providing a proof-of-concept that demonstrated that a bee’s task could be predicted 

upon leaving the nest. This work is novel within the field and the results show that a 

comparatively simple model is successful, without exploring time series analysis. 

Gaps in the detections of bees when they were foraging within bushes, as well as 

the variable lengths of flights, might be barriers to time-series analysis. However, 

time series prediction may provide the means to detect multi-purpose flights, 

detecting the transition from one flight behaviour to another. This would be 

particularly useful in the drone project by, for example, detecting that a bee intends 

to return home just before the drone loses sight of it. The drone could fly back to the 

nest and validate the return of the bee, without needing to track it the entire way. 

Given the 3-second time delay of the tracking system, a faster system, such as the 

one in development, might be able to produce better results. The additional 

resolution offered by more measurements in a shorter time frame offers a potential 

boost in performance. This may result in classification being possible in a shorter 

period which would further reduce the range requirement of a classification device, 

thereby potentially making them easier and cheaper to manufacture. 

These models represent proof of concept that real-time evaluation of bumblebee 

tasks can be carried out successfully and could aid in automated tracking solutions 

for bumblebees and other colony insects. 
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4 A Comparison of Machine-Learning Assisted Optical 
and Thermal Camera Systems for Beehive Activity 
Counting* 

4.1 Introduction 

This chapter details the development of twin camera systems to classify outward bee 

flights from the entrance of beehives, and was used to publish a paper [207]. In 

addition to the content of the paper, this chapter adds further context for how the 

results relate to the concerns of the thesis. No additional sections were added to this 

chapter. 

This study was inspired by the work of fellow student Sara Bariselli. Her work is 

focused on determining whether the foraging and exploration flights of bees are 

affected by the local magnetic field. 

As part of her requirements, she needed to reliably gather the details of all outwards 

flights from a hive across the trial period. This totalled hundreds of flights per hour of 

investigation, a labelling task that would take weeks to conduct manually but could 

be achieved trivially by sufficiently capable machine learning. 

Some flights were difficult to classify. As with the work of Susanto, some flights 

exiting the hive were not true foraging or exploration flights [126]. These were 

instead local short flights which were not relevant to the work. There exists an 

abundance of literature about using cameras to track bees [208]. However, few of 

these use machine learning to classify flight behaviour. 

In addition, studies so far only used visible spectrum camera systems. A noted 

weakness of this approach is the lack of adaptability of such systems to difficult 

lighting conditions. For example, optical cameras require good lighting and contrast 

to accurately count activity and are susceptible to shadows. During periods of 

insufficient natural light bulbs can be used but the heat and light generated by these 

may impact bee behaviour [208]. Similarly, infrared sensors require the modification 

of a hive entrance by adding an emitter [209]. 
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Thermal cameras have the potential to overcome all of these drawbacks. Capturing 

the body heat of the bees as a contrast image versus a background, they will 

operate in any environment where the temperature is lower or higher than that of the 

bee. As shown in Figure 4.1, the bee’s body is not uniform in temperature and they 

will appear contrasted against most backgrounds. The thorax of the bee is warmer 

than the abdomen and legs, therefore should the environmental temperature match 

the thorax the abdomen and legs will still appear against nearby objects. 

 

 

Figure 4.1 Anatomy of a honeybee under thermal camera, flying in front of a warm sucrose 
solution feeder. The thorax was 21°C (±1°C.) 

 

This work implemented a hierarchical camera system where a higher resolution, 

wider field of view optical camera can provide information as to whether a bee is 

leaving, entering, or hovering near the hive entrance. To summarise, this work is an 

investigation into whether machine learning would allow a thermal camera, with 

lower base specifications than a competing optical camera, to operate with the same 

efficiency counting beehive entrance activity. Showing that this is the case by using 
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machine learning to boost the thermal camera, the work demonstrates the versatility 

of thermal cameras and is an argument for their use considering that they do not rely 

on lighting conditions, suffer from the effects of shadows, or need modification to 

hive entrances. The use of movement characteristics for machine learning creates 

an opportunity for future work to predict the presence of predators such as the 

Asian Hornet (Vespa Velutina) by using an expanded version of the system 

developed. 

 

4.2 Materials and Methods 

The thermal camera used was a HT-301 designed by HTI-Instruments. It is a 

microbolometer camera with a resolution of 384 by 288 pixels, operating at 25 Hz 

with a field of view of 28.2° by 21.3°. The primary optical camera used was a GoPro 

© Hero 7 Black model with a resolution of 1920 by 1440 pixels, operating at 30Hz 

with a field of view of 94.4° by 72.2°. 

The 25 Hz framerate represents how frequently the resistance is measured from the 

pixel sensors, which are affected by an increase in temperature caused by incoming 

infrared radiation at the target frequencies. Larger, more sudden shifts in resistance 

take longer to dissipate resulting in variable data change rates within the frame, 

causing fast-moving objects to appear as streaks. 

A Panasonic © compact system camera (DC-GX800) using a resolution of 1920 by 

1080 pixels, 50 Hz framerate, and variable field of view was used as the reference 

camera. This camera was used when a flight could not be confidently labelled solely 

on the information of the two test cameras. These cameras are shown in Figure 4.2. 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/vespidae
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/vespa
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Figure 4.2 (a) The thermal camera (b) The GoPro © camera and (c) the Panasonic © camera 

 

The two primary cameras were suspended above the entrance of the hive facing 

downwards at a distance of one meter, whereas the ambiguous decision camera 

was fixed to a tripod approximately 2.5 m from the hive directly facing, and parallel, 

to the hive entrance. Cropped views from each camera are shown by Figure 4.3, 

indicating their relative positions. Raw pixel values from the thermal camera are 

interpreted through a colour map embedded in the software provided by the 

manufacturer. The particular colour map used made no difference to the tracking 

software and was chosen to aid with the label correction process. The thermal 

camera had the option to embed minimum, maximum, and centre-point temperatures 

as labels into the video frames. The labels would act as moving objects within the 

frame and would interfere with object tracking tools. Therefore, this overlay was 

disabled resulting in only the contrast images being recovered. 
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Figure 4.3 Cropped views from (a) Ambiguous decision camera (b) Thermal camera (c) Optical 
camera, and a diagram of the camera arrangement. 

 

Videos were recorded across six days, between 10 am and 4 pm, with between 

30 min and an hour of footage per day. Ambient temperature varied between 12 °C 

and 16 °C. Bees were given warm sucrose feed at least two hours before recording 

to encourage activity. Artificially increasing bee activity allowed an improved 

understanding of the model performances under high load. The feeder was placed 

more than fifty meters away from the hive to reduce unnecessary hovering activity. 

Overcast days were favoured to produce a neutral environment for the optical 

camera. In bright conditions, this camera would be susceptible to bee shadows 

creating false detections that would impact the optical track extraction and labelling 

algorithms, but also required sufficient light to detect the bees. Techniques exist in 

literature to compensate for other conditions but thermal cameras do not need these, 

necessitating keeping a fair environment for both cameras. 
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Flights were extracted from the raw video files using software written in MATLAB. 

Gaussian mixture models generated a foreground detector by comparing each frame 

in the raw videos with the learned background model [192]. The parameters for this 

foreground detector were selected by hand for each video from each camera. The 

detected shapes were analysed based on their size to determine eligibility for being 

considered bees, aiming to remove small shapes resulting from minor movements 

such as blades of grass. 

Each eligible shape was assigned a Kalman filter unless otherwise attributed to an 

existing flight [210]. Between frames, assigning objects to existing flights was 

handled by computing the costs as the pixel-wise distance between the predicted 

locations generated by the Kalman filter from the previous frame’s objects and the 

new detections from the current frame. The Munkres variant of the Hungarian 

algorithm was used to minimise the total cost of assigning each object to an existing 

flight [200]. A base cost was used, and tuned much like the foreground detector, to 

determine non-assignment. Unassigned objects could go on to become new flights 

and flights that had no new object assignments in three frames were flagged as 

completed and no longer considered. 

At the end of processing, the video resulted in several flights consisting of continued 

𝑥 and 𝑦 pixel coordinates, the longest and shortest axis of the extracted shapes per 

frame, the frame time of each detection, and a unique ID. Predicted Kalman 

coordinates were not included. 

Initially, a simple naive filter was attempted. Similar in principle to that found 

in [133] it used a set of exit points around the edge of the camera frame. Flights that 

started nearest the hive point and ended nearest the exit point could be labelled as 

”out” whereas those that started near an exit and entered could be labelled “in.” 

Finally, null points were used near the centre of the frame to allow for labelling of 

invalid hover flights, those that neither started nor ended near the entrance to the 

hive. 

This filtering system is visualised in Figure 4.4, however, emergent issues were 

impacting the quality of extracted flight information when considering the field of view 

of the cameras. 
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Figure 4.4 Naive filter and visualised problematic flights. Squares represent camera frames 
and their borders. Flights (a) and (c) show flights that exited the frame border limit, and 

outgoing and incoming flights may not be the same individual. Trajectories (b) and (d) show 
how two flights may be fused if the end of the incoming flight occurs within the same frame as 

the outgoing second flight. 

 

For example, flight (a) in Figure 4.4 starts and ends near the entrance of the hive. It 

should be discarded as an invalid flight as the bee did not leave the vicinity. 

However, it crosses the edge of the frame and appears as in (c). This means one 

exit and one entrance flight would be recorded. Bees were noted to fly out as far as 

1.5 m only to return to the hive, putting them out of view of both primary cameras. 

The filter produced issues not unique to the field of view. Flights in (b) are one valid 

‘in’ flight and one valid ‘out’ flight. However, if the two flights overlapped it would be 

possible for the extraction algorithm to fuse the flights, resulting in the flight present 

in (d) meaning one hover flight was recorded rather than one incoming and one 

outgoing flight. 

One way to discern the difference between these cases was by analysing the 

dimensions of the extracted shapes. Figure 4.5 shows four flights captured by the 

camera systems. In (a) and (c) the bee is flying at speed in a straight line, whereas in 

(b) and (d) it is flying to the side at a slower speed. At the edge of the frame, this 

may be enough to ascertain the difference between a bee leaving the area and one 
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soon to return as part of an invalid flight. However, this is much less clear on the 

optical camera given the lower contrast and higher frame rate. 

 

Figure 4.5 Flights showing different exit strategies captured by the cameras. Images (a) and (c) 
show two different bees flying straight ahead, whereas (b) and (d) show two different bees 

flying more horizontally. Note the smudged nature of these high-speed flights on the thermal 
camera, caused by the resistance change delay associated with microbolometer technology. 

 

Also of concern were flights involving a loop where the bee turned around shortly 

after leaving the hive to face the entrance before continuing its flight as shown 

in Figure 4.6. As such, classifying these correctly would mean that some bees 

moving to the side were classifiable as outward flights. This would be true where the 

flight was truncated by the edge of the frame and a full loop was not captured. 

To address these issues machine learning techniques were explored. These aimed 

to correctly label flights when the edge of the frame caused truncated flights and 

where other issues with the flight extraction software emerged. Cases such as 

overlapping shapes breaking the tracking of a flight between frames and fused flights 

were both examples of issues with the tracking system. 
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Figure 4.6 Two flights where the bee turned back to face the hive before flying away, behaviour 
associated with new foragers orientating themselves with respect to the hive. Flight 1 went on 

to complete a second loop but this was not captured fully by the tracking algorithm. 

Incoming flights were not subject to machine learning. This was because the naive 

filter was adequate for counting inward flights and valid incoming flights would have 

the same profile by being at the edge of the frame and returning to the hive entrance. 

A pipeline showing the process of classifying flights is presented in Figure 4.7. 

 

Figure 4.7 Flight classification pipeline, showing the naïve filter which removes flights on start 
and end position. Machine learning models used flight behaviour data extracted from all 

coordinates for a flight. 

Figure 4.8 shows two overlapping flights taken from an annotated video. These two 

bees (8287 and 8286) have distinct profiles when flying into the hive. Flight 8287 is 

more direct and linear. Flight 8286 is much slower with one big loop and a final 

partial loop. Their behaviours could be a result of space at the entrance (8287 

entered first), the size of their bodies, and many other unknown factors. As such, 

predicting specific behaviour from these types of flights (such as return from 

hover/return from foraging) would prove difficult. 
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Figure 4.8 Two overlapping inwards flights (8387 and 8286) showing different behaviours, (a) 
shows a screenshot from an annotated video and (b) shows a plot of the two flights. 

 

The machine learning was based on 43 features, typically focused on the minimum, 

maximum, average, and last three measures of the following variables; 

• Shape longest and shortest axis.  

• Shape ratio and growth.  

• Track life in seconds.  

• Distances of the first detection to the hive and the nearest exit. 

• Distances of the last detection to the hive and the nearest exit,  

• Closest distance to the hive and the nearest exit.  

• Current angle versus average bearing angle.  

• Current angle versus perpendicular to the hive entrance.  

• Change in angle over time. 

• Number of loops and loop lifespans. 

• Duration and size of dropouts (frames where tracking failed).  
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• Acceleration and speed 

Most of the more valuable information of a flight was encoded during the last three 

measurements taken of the location of the bees, thus the inclusion of minimum, 

maximum, and average of these ‘end’ variables in addition to the general copies. 

Learning and testing took place in three stages. First, the naive filter results were 

hand-corrected by a human observer. Second, machine learning algorithms were 

trained on the labelled dataset. Finally, the algorithms were tested on a new video. 

This process was repeated multiple times, with the learning algorithms taking place 

of the naive filter in subsequent iterations. This continuous process allowed for the 

monitoring of test accuracy and the identification of weaknesses in both the features 

used and the underlying flight extraction algorithm. 

Once the test accuracy for the algorithms began to plateau after three training and 

testing phases, a final test was arranged with a new recording and the procedure 

was assessed for veracity against a human counter. 

The algorithms used were K-nearest neighbour (KNN), neural network (NN), support 

vector machine (SVM), and random forest classifiers (RF) [184, 187, 188]. A 

Bayesian search was enacted to tune the hyperparameters for the KNN, SVM, and 

RF approaches choosing from the possibilities as follows [211]; 

• For KNN: Number of neighbours and nearest neighbour algorithm. 

• For SVM: Regularisation parameter, kernel, kernel degree, and kernel 

coefficient. 

• For RF: Number of estimators, split criterion, and the number of features to 

consider for a split. 

For the neural network, the model used composed of three hidden layers of 64 

neurons each using the rectified linear unit activation (ReLU) function [212]. The 

shape of this network was chosen by manual testing to find the best 

hyperparameters, investigating the width and depth of the network compared to the 

final accuracy. Minor changes to this structure did not yield significant change across 

either dataset. 
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4.3 Results and Discussion 

Extraction times for both camera systems is shown in Figure 4.9, showing that the 

thermal camera system demonstrated faster extraction and did not grow 

exponentially, explained by fewer pixels being processed and clearer shape 

extraction. The exponential growth in the visual camera system is attributed to visual 

clutter such as debris and raw computational complexity due to resolution and field 

of view. The greater field of view included more objects that require foreground 

extraction, filtering, and labelling. This includes undesirable extractions such as 

blades of grass increasing the number of artefacts requiring attention. 

 

Figure 4.9 Time cost per frame to extract flights from both thermal and visual camera systems, 
with a simple 3rd degree polynomial fit. 

 

The labelling of individual flights encountered issues when tracks split. Figure 4.10 

(a) shows two flights where labelling could become ambiguous. In the Figure, a loop 

is formed as the bee flies away from the hive but it is broken by the edge of the 

frame. Deciding which section to label as an outward flight and which to disregard is 

challenging when the second section was missing for other flights. Labelling the first 

section as an outward flight would add a flight into the learning pool that, by itself, is 
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not statistically clear as an outward flight because it is curving back towards the hive. 

This would increase the residual error in the models generated. 

 

Figure 4.10 (a) Trajectory of an unclassifiable flight caused by the edge of the frame and (b) a 
screenshot illustrating an interrupted flight. 

 

Similarly, in the screenshot flight Figure 4.10 (b), the track has been interrupted 

when two bees passed close together. The yellow bounding box, showing the 

predicted location of the first section as obtained by the Kalman filter, has been 

correctly labelled as invalid. The white bounding box has been correctly labelled as 

an out flight. In other cases, the second section of the flight may not be recovered 

and the remaining first section is unclassified. It could either be removed from the 

data set, meaning that a flight is labelled as missing, or labelled as an out flight and 

add error to the generated models. 
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The first stage of the training process involved using the naive filter to count outgoing 

flights. In the video recorded as a sample, using the naive filter resulted in 3220 

outgoing flights counted. Of these, 1687 visual out flights were extracted correctly 

with 1533 flights later rejected by human expertise. This means that the naive filter 

achieved an accuracy of 52.39% and almost doubled the true number of out flights 

counted. 

For the thermal video, 3735 outgoing flights were counted by the naive filter. This 

was then corrected to 1685 outgoing flights and 2050 incorrect flights, resulting in an 

accuracy of 45.11%. 

The accuracy of the inward flight count by naive filter was wholly dependent on the 

underlying motion tracking system. Flights detected at the edge of the frame and 

ending near the entrance of the hive were required to be seen as inward flights. The 

inverse was not true for outward flights. Inwards flights which were truncated due to 

poor tracking were unavoidable, but distinguishing these using machine learning 

would be difficult. Inwards bees would hover if the entrance was congested, and this 

would be hard for any machine learning algorithm to separate from other hovering 

bees. A better underlying tracking algorithm, especially a deep learning approach, 

might prove useful in the future. Once inward flights were removed, the remaining 

hovering and outwards flights were inputted into the machine learning models. To do 

this, the features discussed were computed from the raw positional coordinates to 

form one row of data per flight, which was then given a label and used to train the 

models. 

As these two videos were aligned by hand, a comparison of flight links between 

systems was possible. The mode difference in time between thermal and visual 

extracted flights was 0 s, with an average difference of 0.0468 s. 75.1% of flights 

occurred across systems within 0.5 s of each other. The larger differences can be 

explained by the fused, split, and frame-edge flights as discussed above. Fused 

flights may cause significant time variance across systems as an outgoing flight may 

be fused with a longer hover flight due to extraction errors, and this hover flight may 

have been present for many frames before the outgoing flight. This increases the 

discrepancy between the two systems. 
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The machine learning models were trained from these initial results Table 4.1. With 

thermal data, the KNN and NN are equally efficient algorithms, followed by RF 

and SVM. Thermal data outperformed optical data by <2%. 

The most accurate models from this training dataset were then used to label a new 

video. For the thermal data, this is the neural network. For the visual data, the RF 

was used with the hyperparameters chosen by Bayesian search as entropy for the 

criterion, log2 features considered for a split and 1611 estimators used. 

Table 4.1 Results of the first training. Precision is measured as true positive count over true positive 
count plus false positive count. Recall is measured as true positive over true positive plus false 
negative. F1 score is a combination of recall and precision, known as the harmonic mean. 

Video 
Type 

Algorithm Accuracy (%) Precision Recall F1-score 

Thermal 

NN 92.40 0.912 0.904 0.908 

RF 89.93 0.884 0.874 0.879 

SVM 90.55 0.887 0.881 0.884 

KNN 92.40 0.913 0.903 0.908 

Optical 

     

NN 90.50 0.892 0.891 0.891 

RF 91.07 0.894 0.893 0.893 

SVM 90.69 0.900 0.901 0.900 

KNN 89.25 0.871 0.897 0.884 

Under test conditions, the optical results were that 4053 flights were predicted as 

out, with only 1149 being correctly labelled. In addition, 5471 flights were predicted 

as invalid flights with 221 of these being incorrectly labelled. The overall accuracy of 

these predictions was 67.19%, however, precision was 0.84 and recall 0.28. These 

results were because the test dataset was several times larger than the training set, 

increasing the possibility of flights that bore no resemblance to any flight seen prior, 

making classification more difficult. The wide field of view of the optical camera 

meant many more variations of flights were possible. Lastly, the removal of the naive 

filter meant many flights that were previously removed for consideration by this filter 

now needed classification by the trained model. This was because some outgoing 

flights were filtered out by the naive system as the underlying tracking algorithm did 

not successfully track them to the edge of the frame. 
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Results for the thermal camera showed 1727 flights were labelled as outgoing of 

which 1328 were correctly labelled. 6647 flights were predicted as invalid flights and 

111 of these were incorrectly labelled. This gave an accuracy of 93.91%, a precision 

of 0.77, and a recall of 0.92. 

The data from this test was then added to the training set and further train/test 

iterations as in Table 4.2. Iterations identified features likely to aid in classification. 

The number and duration of loops were subsequently added, as was the nearest and 

furthest distance measure from both hive and closest exit.  

Table 4.2 Results of the two following training iterations and the second test. 

Type Algorithm Accuracy (%) Precision Recall F1-score 

Thermal NN 93.06 0.907 0.905 0.906 
Train RF 93.02 0.921 0.898 0.909 

2 SVM 93.02 0.920 0.889 0.904 
 KNN 91.72 0.886 0.894 0.889 
      

Thermal Test 2 RF 95.56 0.902 0.919 0.911 
      

Thermal NN 94.35 0.931 0.887 0.909 
Train RF 94.70 0.927 0.904 0.916 

3 SVM 94.41 0.916 0.908 0.912 
 KNN 93.89 0.908 0.900 0.904 
      

Optical NN 92.29 0.889 0.912 0.900 
Train RF 92.34 0.896 0.899 0.898 

2 SVM 92.19 0.894 0.899 0.897 
 KNN 89.75 0.865 0.875 0.870 
      

Optical Test 2 RF 95.93 0.923 0.955 0.939 
      

Optical NN 94.23 0.919 0.915 0.917 
Train RF 94.37 0.926 0.917 0.922 

3 SVM 93.81 0.917 0.912 0.915 
 KNN 92.56 0.893 0.909 0.901 

 

In addition, refinements were made to the parameters controlling the track extraction 

in MATLAB, particularly as the test results from the first optical test showed that 

flights were missing from the collected data. These refinements improved the 
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selection of control parameters for the Gaussian models used in flight extraction 

based on the observations of the human labeller. 

Accuracy started to plateau by the third training iteration. The more complex learning 

algorithms became noticeably more accurate and precise than the simpler KNN. In 

both cases, the algorithm selected for the second test was random forest, which 

became the strongest model in the final training iteration. For thermal data, the RF 

used entropy as the criterion, the square root of feature count to consider for splitting 

and 316 estimators. For optical data, the RF used the same parameters except for 

2500 estimators, significantly higher than the thermal data, owing to the need to rely 

on more features to make decisions. The issues from the first optical test were no 

longer present by the second test, explained by the growth in the dataset covering 

more complex flights. 

4.4 Feature Importance 

To confirm that the need for more complex models to classify optical data was due to 

the shape metrics, feature importance was extracted from the random forest and the 

support vector machine using a linear kernel. For random forest, the feature 

importance was calculated as the mean impurity decrease within each tree when 

splitting using a set feature, scaled so that the set of importances summed to one. 

For the linear kernel of the SVM, the weights represent the vector coordinates which 

are orthogonal to the hyperplane and their direction indicates class. Again, these 

were scaled to sum to one. 

The top ten features from both RF and SVM for both thermal and visual data are 

presented in Table 4.3. Textual columns are the feature type and the adjacent 

numerical column is the feature importance. Importance for all records within one 

table sum to 1.0. Only the first 10 records are shown. A key is present in the table 

footer, as each column is coloured based on the type of feature represented. 

For thermal data, max shape ratio, max shape length, and final growth were the 

most important features across both models. Max shape ratio for SVM and max 

shape length for RF were the most valuable variables for classification and twice as 

important as any other unrelated variable. 
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Table 4.3 Feature importances for all model and video types. (a) is the table for thermal 
random forest data, (b) for thermal support vector machine data, (c) for visible spectrum 

random forest data, and (d) for visible spectrum support vector machine data. 

(a) 
  

(b) 
  

 
Thermal RF 

 
Thermal SVM  

Max Shape Size 0.1574 
 

Max Shape Ratio 0.2233  
Max Shape Ratio 0.0819 

 
Final Growth Ratio 0.1797  

Max Angle Vs Final 
Bearing Angle 

0.0750 
 

Acceleration Summary 0.1120 

 
Last Distance to Hive 0.0694 

 
Final Acceleration 
Summary 

0.0923 

 
Average Angle Vs 
Final Bearing Angle 

0.0620 
 

Life In Seconds 0.0859 

 
Exit Angle versus Final 
Bearing  Angle 

0.0560 
 

Number of Loops 0.0336 

 
Average Jump 0.0371 

 
Growth Ratio Total 0.0317  

Max Jump 0.0354 
 

Max Time Difference 0.0311  
Max End Change in 
Angle 

0.0334 
 

Bearing Vs Exit Angle 0.0262 

 
Final Bearing Angle Vs 
Bearing Angle 

0.0326 
 

Average Angle Vs Final 
Bearing Angle 

0.0203 

      

(c)  
  

(d) 
  

 Visual RF  Visual SVM   
Bearing Vs Exit Angle 0.1183 

 
Min Change in Angle 0.1480  

Exit Angle versus Final 
Bearing  Angle 

0.0970 
 

Max Shape Ratio 0.0933 

 
Average Jump 0.0846 

 
Life In Seconds 0.0733  

Max End Change in 
Angle 

0.0698 
 

Final Acceleration 
Summary 

0.0707 

 
Max Jump 0.0675 

 
Growth Ratio Total 0.0602  

Average End Change 
in Angle 

0.0584 
 

Min Shape Size 0.0592 

 
Max Angle Vs Final 
Bearing Angle 

0.0520 
 

Average Change in 
Angle 

0.0514 

 
Average Acceleration 0.0393 

 
Average Jump 0.0471  

Last Distance to Exit 0.0357 
 

Exit Angle versus Final 
Bearing  Angle 

0.0424 

 
Average Angle Vs 
Final Bearing Angle 

0.0305 
 

Average Angle Vs Final 
Bearing Angle 

0.0412 

      

  Key    

  Shape    

  Angle    

  Speed    

  Misc    
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For optical data, the smallest change in bearing and overall bearing versus exit angle 

was most important for the SVM and RF respectively. Only two shape metrics 

appeared in the five most important features for each algorithm and no type of metric 

was twice as predominant as the next. This showed that, for optical data, learning 

was more nuanced, involving greater use of the features available. 

 

4.5 Wasp Detection 

In addition to bee tracks, wasps (Vespula Vulgaris) were also detected. There were 

too few of these detections for machine learning, at most four detections in a 20 min 

period. The presence of wasps supports that future development of this technique 

could include models able to count and monitor other insects that interact with a 

hive. For example, in Figure 4.11 a wasp was observed to fly close to a hive and 

hover near the entrance, before finding an isolated bee on the hive platform. There, it 

flew in proximity to the bee until that bee then fled off the frame. The wasp then 

returned to the entrance of the hive before flying away when it was clear that there 

was no access to the hive. 

 

Figure 4.11 The flight of a wasp captured investigating the hive and harassing bees, including 
image of the wasp taken by thermal and optical cameras compared with similar images of 

bees. 
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Other interactions were observed, such as wasps flying directly to the entrance of 

the hive to be met by guard bees that then discouraged further investigation and 

tailed the wasp for a short distance as it left the area. Wasps will probe honeybee 

hives to test whether ingress to steal honey is feasible [213]. Thermal images of a 

wasp did not differ significantly from those of bees, especially when moving and the 

signature was blurred. Wasps appeared characteristically brighter than honeybees 

with optical cameras which will be useful for their identification. Their movement 

patterns are discernible from incoming, outgoing, and hovering bees. Interactions 

between these two species create more possible data permutations than just bee 

flights alone, which will necessitate more comprehensive data gathering. 

4.6 Test Stage 

Once the final training iteration was completed, a test was conducted using a final 

recording. For this recording, human expertise was used to attain the true number of 

in, out, and invalid flights working with a recording as demonstrated in Figure 4.12. 

Video times were cropped across camera systems to be an exact match, beginning 

and ending in synchronicity. Fused flights were identified and counted as lost flights, 

as were any double-counted flights as per split flights. Flights lost to failings in the 

underlying track extraction algorithm were also counted (Table 4.4). 

The underlying tracking algorithm was 95.08% effective at recovering flights from 

optical recordings and 93.88% with thermal recordings. These are the useful flights 

(those that are not invalid.) The overall accuracy of the algorithms was 96.16% for 

optical data and 97.92% for thermal data, though the accuracy metrics were inflated 

by the greater size of the true negative (invalid/hovering flight) class. More useful 

measures would be a precision of 0.91 and recall of 0.90 for optical data. For 

thermal, precision was 0.92 and recall 0.90. For completeness, the original naive 

filter correctly labelled 549 flights with optical data and 286 with thermal data, far 

below the models created here. 
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Figure 4.12 Cropped screenshot of each camera system during the test phase, showing (a) 
thermal camera results and (b) optical camera results. 

 

 

 

Table 4.4 Results of the test recording. 

Type Missed 
Flights 

Counted 
In 

Counted 
Out 

False 
Positives 

False 
Negatives 

True 
Negatives 

Visual 82 902 681 65 62 2562 

Thermal 102 907 668 64 55 4992 
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Both cameras performed well in classification and flight extraction, however, the 

thermal camera missed an additional 20 flights because they occurred outside of the 

frame. This results in an unavoidable 24.39% increase in missed flights over the 

optical camera system. The optical camera system achieved an accuracy of 95.53%, 

with precision of 0.92 and recall of 0.96, in its second to last test stage. This is a 

noticeably better result than the thermal camera at any of the test or train stages. 

The efficacy of each system will vary according to the environmental conditions on 

the days that they are used. The thermal camera can function under a wider range of 

lighting conditions compared to the optical system, making them more responsive 

under variable environmental conditions. 

Further data is required to fully develop the dataset to account for all possibilities 

associated with seasonal changes affecting ambient temperature, wind conditions, 

and particularly rain. Rain would appear as a darker object moving within a frame 

before colliding with the hive entrance or ground and could be mistaken for bees. 

Wind will make the flights of bees more erratic. These issues could be addressed in 

future work. During this study it was noted that bees were quick to return to the hive 

and reduce activity when conditions became too windy or wet. 

 

4.7 Summary, Limits and Conclusion 

The work in this chapter has demonstrated that thermal cameras are a contender for 

bee counting applications. To do this, it directly compared the results when 

classifying bee flights from both a thermal and optical camera.  Neural Network, 

Random Forest, Support Vector Machine and Nearest Neighbour models were 

developed and evaluated on both optical and thermal data. 

Thermal cameras offer significant benefits. Their flexibility in deployment is greater 

than that of optical cameras, working in poorly lit conditions and without visual aids. 

They require less modification of beehive entrances and are passive devices that will 

not disturb bee behaviour. 
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The results suggest that despite the smaller field of view, fewer pixels, and lower 

frame rate, the thermal camera is comparable to the optical camera with the aid of 

machine learning. Both systems are at least 93% successful at extracting flights and 

96% successful at classifying these flights. Recall and precision metrics demonstrate 

that the thermal system is equal and often better for classification due to the 

improved shape metrics gathered and the models are not as complex. Flights are 

more cost-efficient to recover from thermal footage due to fewer pixels to consider. 

As thermal cameras continue to decrease in price and increase in capabilities this 

advantage will grow. 

The limits of this work come from two sources. Firstly, it was difficult to gather 

sufficient data and provide labels. The study is limited by the smaller data set. 

Secondly, bees were labelled by human observers. This introduces the possibility of 

observer bias into the labelling process, specifically the chance that there could be 

disagreement over a particular assigned label. 

The end goal of this work would include building a system that removed the human 

element from the labelling process which would reduce or remove the possibility of 

ambiguous labelling. However, to build this system, data must be supplied and 

currently this can only be done with human labelling for now. 

Expanding the dataset for this work will allow the inclusion of variable weather 

conditions and environmental temperatures. This would create a robust model for the 

system described to function in all weather conditions. 

Further work in this developmental pathway could include a more intelligent flight 

extraction algorithm, able to reconstitute broken flights from frame-edge and collision 

losses. A reinforcement model, able to tune the extraction parameters, would 

increase the fidelity of the data and permit improved analyses. 

Consideration could also be made to spot other insects near the entrance of the hive 

and classify them based on shape and movement metrics similar to those here. An 

example would be the Asian Hornet which is known for hawking behaviour at the 

entrance to beehives. 
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Lastly, investigation to correlate flight behaviour with younger bees, particularly 

investigating orientation loops, would allow for the monitoring and counting of fresh 

foragers from a hive as a health metric for managed hives. 
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5 Challenges in Developing a Real-time Bee Counting 
Radar using Machine Learning* 

5.1 Introduction 

This chapter details the investigation to build a real-time radar-based counter for the 

entrance of a beehive, and was used to publish a paper [214]. This chapter closely 

matches the content of the paper and only contains small additions to provide further 

discussion around the key motivations of the thesis. 

This work discusses the challenges of counting bee activity using machine learning 

and radar. It provides a breakdown of the data processing and models used. The 

radar was constructed during the Ph.D. work of fellow student Nawaf Aldabashi, and 

the need for such a radar was borne by S & A Produce, a company specialising in 

using bee pollinators for soft fruit. 

This company wanted to keep good, accurate records of the productivity of their 

bees highlighting those that were not thriving. In addition to the requisite hardware 

and software needed to be developed that could interpret radar signals reflected 

from bees and produce labels to describe the activity taking place. 

The final radar module supporting the effort was a 5.8 GHz continuous-wave (CW) 

radar Printed Circuit Board (PCB). The PCB module integrated an in-

phase/quadrature (IQ) mixer for the discrimination of positive and negative Doppler 

shifts. The IQ mixer fed 2 channels with identical 60-dB custom-designed Variable 

Gain Amplifiers (VGAs) and 100-dB common mode rejection ratio (CMRR) for 

amplification of the Intermediate Frequency (IF) signal. The VGAs additionally 

included low-pass filters limiting the IF output to the DC-408 Hz range. The VGA’s 

output was fed to a laptop using an external USB sound card with a 44.1 kHz 

sampling rate. 

The work that follows provides the details of creating machine learning models to run 

on portable hardware that would function to generate labels for the activity at the 

entrance of a beehive being measured. 
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5.2 Preliminary Work 

Prior to this chapter, two studies were performed by the author using machine 

learning (ML) with the radar for proof of concept [215, 216]. At first, a binary (inwards 

versus outwards) classification problem was undertaken to validate that the radar 

was suitable for extracting signals of sufficient quality for machine learning. In 

addition, these experiments were taking place outdoors and ensured the capability of 

ML to classify noise-prone signals.  

The radar used in these experiments was an earlier prototype utilising singular 

breadboards for each component, placed two meters from the hive with input 

captured by a laptop. A camera allowed for labelling each segment of captured data. 

This setup is shown in Figure 5.1. 

 

Figure 5.1 (a) Early prototype of the radar, placed in front of this hive to capture activity. (b) 
Later implementation of the radar in a repeat of the experiment. 

This preliminary study utilised an image-recognition neural network (MobileNetV2 

[217]) on spectrograms generated from raw signals with axes that were limited to 

200Hz and then removed, with samples displayed in Figure 5.2. Results were 87.8% 

accuracy at distinguishing inwards versus outwards bees using this method. 
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Figure 5.2 Spectrograms of Outwards and Inwards bees as captured by the radar, in 0.4 
second samples limited between 0 - 200 Hz and with axes removed. 

 

A follow-up study was conducted to find alternative feature extraction systems for the 

signals [216]. Both spectrogram generation and image recognition networks are 

computationally expensive and would hinder progress towards a real-time, low-

power deployment solution. 

In summary, the feature extraction techniques utilised were: 

• Linear Predictive Codes (LPCs [218]) and Line Spectral Frequencies 

(LSPs [219]): These techniques are formerly signal compression techniques 

that are for reduced transmission load when broadcasting signals. However, 

they encode complex signals in a spectral envelope form describing the most 

prominent peaks. Therefore, they are suitable for feature extraction using 

those prominent peaks. 

• Mel-Frequency Cepstral Coefficients (MFCCs [220]) and alternative form 

BFCCs: These techniques generated descriptors of the signal’s short-term 

power spectrum, after a linear cosine transform of a log-power spectrum with 

an alternate, non-linear scale. With MFCC this scale is designed to 

approximate the weight applied by human hearing. The alternative form, 

BFCC, sought to find a better scale for bee radar signatures. 

• Temporal Features: More traditional descriptors for signals included mean 

amplitude, root mean square, zero-crossing rate, short-time energy, spectral 

centroid, kurtosis, skew, standard deviation, mean, variance, and energy. 

 

In addition, substitute machine learning models were explored that would potentially 

allow better utilisation of these new extracted features. These models were: 
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• Neural Network (NN [204]): A small sequential model using two densely 

connected layers of 32 neurons each, activated by the scaled exponential 

linear unit function (SELU.) This model was optimised by the Adam algorithm. 

• Support Vector Machine (SVM [187]): An SVM with runtime hyperparameter 

tuning using Bayesian Searching. Limits were a regularization parameter 

between 1e-6 and 100, a kernel coefficient of 1e-6 to 100, and a polynomial 

kernel function degree between 1 and 5. Kernel choice was between linear, 

polynomial, radial basis function, or sigmoid. 

• Random Forest (RF [188]): An RF with parameter tuning. The estimator 

count varied between 100 and 1000, in increments of 100. Branch split 

criterion was either decided using Gini impurities or entropy for information 

gain. The number of features to consider for a split was either the square root 

or log2 of the total number of features. 

 

Finally, the problem was expanded to include hovering bees. Hovering was defined 

as all behaviour where the bee might fly close to the entrance of the hive but make 

no attempt to enter or leave the area. The bee might move closer, or further away, 

from the radar. It also included extended inward flights that were longer than the 

sampling window of 0.4 seconds. This was to train the models not to double count 

long inward flights where the bee faced congestion and hovered prior to entry. 

Classifying this behaviour was valuable in both a commercial and research setting, 

first by removing the potential for these hovering flights to be falsely classified as 

entry and exit. In addition, it may prove that standalone hovering flights, or hovering 

before leaving, can be attributed to bee orientation flights, which can be a good 

indicator of growth, measured by the rate of young bees first leaving the hive [221]. 

Results for predicting between inwards, outwards, and hovering bees were strong. 

These results are presented in Figure 5.3. To summarize, in a binary problem, all 

feature-extraction methods bar one failed to compete with the more capable image-

recognition deep learning model. The BFCC algorithm, a modified MFCC, achieved 

slightly better results at 91.1%.  

When the problem was expanded to three classes (inwards, outward, hovering bees) 

all feature extraction and modelling algorithms lost potency except for the models 

learning from the Line Spectral Frequencies (LSPs.) These models did well, 

especially the support vector machine which gained more than 20% accuracy and 

achieved 93.4%. 
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Figure 5.3 Visual plot of the results from different feature extraction methods for both binary 
and ternary classifications. Included is a comparative (dotted lines) for the deep-learning 

image recognition model using spectrogram representation of the bee signatures. 

 

The results from this stage informed the experiments in this chapter, where LSPs 

were used alongside spectrogram deep-learning as a benchmark. These two 

approaches were the strongest in their respective previous studies and thus were 

targeted to handle the more complex next stage.  

LSPs were later deemed to also be too computationally expensive and were 

replaced by Log Area Ratios (LARs.) LARs are not as efficient as LSPs for their 

original intended purpose (requiring more values to encode a signal, meaning more 

transmission bandwidth). However, they are significantly simpler to compute, 

meaning they make a good feature extraction technique where a minor increase in 

the number of features is not troubling.  
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5.3 Methods 

The computing system was designed to minimize both cost and power consumption 

and was centred on a Raspberry Pi 4B. Without an AI Accelerator or equivalent, the 

Pi was not suitable for a deep learning approach. Instead, this system would 

leverage Support Vector Machines (SVMs [187]) to match previous work [215, 216]. 

The sampling time was limited to 0.4 s. This window represents the smallest 

observed complete event in the original dataset. Even within 0.4 s, most recorded 

samples included one or more hovering bees as well as the other classes. In 4.4% of 

samples, both an inward and outward bee event took place within 0.4 s. This is true 

of overlapping inward and outward bees as well. A smaller percentage (0.18%) 

contained multiple overlaps such as two inward and one outward. 

Other research studies, without machine learning or automatic counting, have placed 

the radar onto the hive surface, facing outward [107, 109, 110]. The approach was 

chosen to overcome the following challenges of such placements: 

• It removed the need to modify the hive. This is advisable given that the 

system may be used on wild bees. 

• Bees crawl at the entrance and may cover either antenna, as in Figure 5.4. 

• Antennae have a radiation pattern that may cause flights to be lost from the 

detection cone if, for example, they walk to the edge of the hive before 

takeoff. 

• While offering some protection against hovering bees, surface-mounted 

radar may still be obscured more infrequently. 

• Limited research suggests that bees may be sensitive to the frequencies 

used and the equipment will function as a source of heat, which may affect 

behavior [222, 223]. 
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Figure 5.4 A thermal imaging camera capture of bees crawling over the entrance of a busy 
hive. 

 

The position in this study ensured that the entire front surface of the hive was in view 

of the radar, and it was less invasive and the setup quicker. Hovering bees and 

weaker power reflection at the entrance of the hive remained an issue because of 

the free space between the radar and hive entrance. 

Challenges were expected from the outset because there was no effort to 

standardize bee flights or control flight direction. Bees were free to leave in any 

direction, even crawling along the edge of the hive until takeoff on a side face. 

Similarly, on approach, bees could arrive from any angle and could be as quick or 

slow to enter as needed. When the entrance was congested, bees would often hover 

on arrival until there was space to enter, mimicking other hovering bees and 

obfuscating other activity when flying close to the antennae. The free-flying bees 

created complex radar samples that could not be intuitively labeled solely on 

signature structure alone. 

Initial data were gathered across three days, consisting of twelve recordings with a 

maximum duration of 20 min each. Different hives were used during each day. 

Replacing the radar between sample gathering periods was not precise, because the 

system needed to be flexible, so long as it was placed within the expected range (1–

2 m) of the hive as in Figure 5.1. When working with wild colonies it would not be 
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possible to guarantee the same distance or angle, nor would it be advisable to force 

such placement if minimal disturbance was desired. 

Each radar stream was accompanied by a video from a digital camera. The video 

recording was initiated first, and the radar data were aligned by the operator counting 

down to the commencement of the radar recording. This was suitable to align within 

half a second. Two or three clean bee events would, by matching video frames to 

timestamps, allow complete alignment. 

This source dataset was gathered to train the algorithms. Once trained, these would 

then be used to label entire videos. The operator would provide corrections of the 

sample labels where needed and the resultant datasets fed into the training data 

pool. 

The machine learning models would be expected to label entire videos. Therefore, 

an additional dataset was later included that featured one full-length recording that 

was disaggregated into 0.4 s samples, and this was labeled and included in its 

entirety. 

An overlapping window of 0.1 s was used to extract samples from consecutive or 

extended events, such as long hovering flights and background samples. A flexible 

approach was used when samples were not an ideal length for sub-division, 

modifying the final overlap to ensure all source data were used. For example, a 

signal of 0.6 s would be split into two 0.4 s samples with an overlap of 0.2 s. 

Feature extraction for the primary system was achieved by using Log Area Ratios 

(LARs) derived from Linear Predictive Codes (LPCs) [198]. LPCs and their 

derivatives are a means of expressing the spectral envelope of a signal in 

compressed form. Their use in machine learning for radar data is relatively new and 

has successfully classified other, non-acoustic, signals [152, 196, 224]. 

The LARs were used to train a support vector machine with Bayesian 

hyperparameter optimization. Five different models were trained to evaluate whether 

there were benefits to breaking the classification problem into sub-problems with 

models for each. These problems were: 
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• Four-way classification. 

• Background samples versus all others. 

• Hover samples versus in and out. 

• Three-way classification (hover, in, and out). 

• Binary classification (in and out). 

These models were chosen to allow multiple potential classification pathways. Either 

four-way brute classification, or splitting the problem into multiple, potentially easier, 

problems as demonstrated in Figure 5.5. These separate pathways were developed 

to maximize the opportunity for binary classifications that can favor SVM models 

[225, 226]. 

 

Figure 5.5 Three prediction pathways (P1, P2, P3) toward labelling samples. Continued binary 
classifications may favour Support Vector Machine (SVM) architecture over multi-class 
problems. 

 

To provide context, similar models to those in the author’s previous work were used 

[215]. This was firstly a DenseNet deep learning architecture with a custom head 

network [227]. This network would operate on spectrograms generated from the 0.4 

s samples. While unlikely to be lightweight enough to run on portable hardware, this 

model would provide a crucial understanding regarding the suitability of the data for 

machine learning. 
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To compare with other networks, MobileNetV2, VGG19, and a custom image 

processing network were also evaluated [217, 228]. The structure of both the custom 

network and DenseNet201 are shown in Figure 5.6. 

 

 

Figure 5.6 (a) Structure of the custom image processing network and (b) Structure of 
DenseNet201 and custom header network. 
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All of these networks were trained on the spectrogram data to measure performance 

and determine if image processing networks were still suitable for classifying the bee 

signals. 

 

5.4 Results 
5.4.1 Preliminary Results 

Generated spectrograms of the signal samples provided evidence that signatures 

would have less information above 300 Hz (see Figure 5.7). This would exceed the 

typical flight speed of a bee at 8 m/s. As image processing networks require small 

inputs of no more than a few hundred pixels square, this work limited the upper 

range of spectrograms to 300 Hz and then 150 Hz to maximize image quality. The 

change to 150 Hz was initiated as accelerating and decelerating bees were always 

much slower than their cruising speed and spectrograms contained little information 

above 150 Hz. Any information here was lost in the contrast limits of the generated 

images and would only penalize the models. Empty space in already small images 

would reduce the resolution of the lower-frequency, more powerful signatures. 

 

Figure 5.7 (a) A complete signal sample (outward bee) spectrogram limited to 150 Hz matching 
the images that were inputted into the deep learning models. (b) A larger range, high contrast 
(wider colour gamut) spectrogram of the same signal shows a paucity of information beyond 
150 Hz. 
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However, results from the deep learning approach were weak, with the most precise 

being DenseNet with and accuracy of 46.73%. Given the four-way classification 

nature of the problem, this is better than a random choice, but the results warranted 

further investigation. 

For comparison, the custom network achieved 45.39%, VGG19 delivered 42.93% 

and MobileNetV2 44.87%. The similarity in results shows that the inability to predict 

the correct class reliably is likely a limit created by the data representation rather 

than the capability of the models themselves. This is supported by the fact that the 

custom, untrained network was second in accuracy to DenseNet201 and performed 

more accurately than the alternatives.  

By using LARs, it was possible to achieve a preliminary accuracy of 75.12% in a 

four-way scenario (Figure 5.9). In all cases, a 9:1 split of training and testing data 

was used and the results were gathered as an average of tenfold cross-validation. 

The Figure shows the outputs of running the experiment with three sets of data: 

Set A: The single channel, manually gathered Doppler data from the radar. 

Set B: The dual channel, manually gathered IQ data from the radar. 

Set C: The dual channel, complete IQ dataset including both the manual set and the 

full recording breakdown dataset. 

A visualisation of the sets and their sources is given by Figure 5.8. 
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Figure 5.8 Visualisation of the classification set types and their sources. 

 

Figure 5.9 Results from preliminary machine learning models (Support Vector Machines) using 
Log Area Ratio (LAR) implementation. 

 

Set C would be the dataset used in the testing phase of the work. This shows a 

performance penalty associated with fully captured datasets rather than hand-

chosen samples. This is not unexpected, as more difficult samples (such as those 

with overlapping events) were required to be included. The results show that 
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complete IQ datasets are more suited for machine learning than single-channel 

results. 

Separating the problem into smaller challenges did not create better results. While 

background prediction is good (91.59%), this would then be followed by either hover 

prediction (83.19%) or three-way prediction (78.65%); together these would fall 

below base prediction accuracy (75.12%). The targets are the labels generated by 

the final classification, the inward and outward bees. Knowledge of background and 

hovering signals is useful but is not the goal of this work. 

A potential route for better classification would be to use speed-distance profile 

images of the bees in flight. Much like spectrograms, these could be used to train 

deep image-recognition models. A concern would be the effect of noise and multiple 

bees, which may have more of an effect in a speed-distance profile than the already 

significant effect in a spectrogram (see section 5.4.2). Given that the spectrogram 

approach performed poorly, and that the LAR approach was promising, the decision 

was made to prioritise the LAR approach. An additional benefit was the reduction in 

processing requirements as LARs are much simpler to compute and build models 

for. 

 

5.4.2 Exploring the Weaker Results 

The weaker-than-expected results spurred a further investigation into the 

spectrograms generated. Complex signals, difficult to classify, became apparent due 

to the free-flying nature of the targets. Figure 5.10 shows an ideal sample of four 

consecutive outward flights of bees, which quickly accelerate toward the radar before 

passing by in proximity as confirmed by video recording. The first two flights overlap 

on the spectrogram, hindering the ability of the machine learning to count them 

separately as they exist in one 0.4 s window. 
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Figure 5.10 (a) Image showing the trajectories of four bees and (b) spectrogram recording of 
this event. The first two overlapped, limiting attempts to separate them. The numbered lines 

are the four flights recorded both in the video and spectrogram. 

 

However, not all flights were clean. Figure 5.11 shows both a visual record and a 

spectrogram of complex overlapping events. These events are as follows: 

1. Takeoff for a single bee. 

2. Flight of the first bee to the right and behind the radar. 

3. A hovering bee emerges from under the radar and flies off-screen to the left. 

4. Vertical takeoff of two bees, one does not approach the radar. 

5. The second of the two bees loops, increasing speed, and exits the frame. 

6. The inward bee from the screenshot appears. 

7. The first of the three bees in the screenshot takes off. 

8. Two more bees take off after the first. 

9. Closest approach of the exiting bees. 

10. Inward bee enters the hive. 

11. The last view of the exiting bees, flying away from the radar both left and 

right. 
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Figure 5.11 (a) A screenshot of the video recording of an event and (b) the corresponding 
spectrogram representation of the signal, showing complex overlapping elements. The red 
circles are the bees recorded across the events and the numbered items show correlation 

between spectrogram and the video recording. 

 

While the signal happened across eight seconds and would be broken down into 

smaller, easier-to-classify samples, there is a paucity of information when multiple 

overlapping events took place. Specifically, between events 7 and 10, there is a 

compounding of the signals, justifying that the spectrogram approach would be met 

with failure. 

Some events were too similar in the target frequencies to separate visually. An 

example of these is provided in Figure 5.12. The first event (a) is of a hovering bee 

that moves both towards and away from the radar with variable speed. The second 

event (b) is two inward bees flying towards the entrance of the hive; however, there 

is a sudden uplift of wind, which makes their flight difficult, and they struggle to fly 

along a fixed path. 
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Figure 5.12 Two signals (a) showing a hovering bee signal and (b) showing an inward bee 
signal. 

 

Figure 5.13 shows three hovering bees, none of which enter the hive or leaves the 

area during the segment. At 0.4, 0.75, and 1.5 s some examples are like the outward 

signals present in the ideal sample. Multiple hovering bees in a signal recording were 

common. 

 

Figure 5.13 A hovering signal of three bees shows similarities to outward bee signals. 
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These signals are a close visual match to other, less ideal outward signals. In the 

samples collected, there were matches between all four classes. A spectrogram 

deep learning approach would encounter a point of no improvement due to the 

restraints of the visualization format. In the future, as this dataset is expanded, the 

visual overlap will continue to grow. 

Given this limitation, questions emerged regarding the signal compression 

techniques and mild success. To understand how the data allowed the models to 

perform well, several exploratory investigations were undertaken. 

The major disparity between these results and others found in literature was the 

number of LARs used in this work. It is common to expect 10 or fewer LP coefficients 

(equivalent in number to LARs) for each small window, itself less than 100 

milliseconds [196]. 

In contrast, the models required that the 400-millisecond signal not be subdivided, 

and as such, the number of coefficients climbed at first to 240 per window for a 44.1 

KHz sample rate and 100 per window for a down-sampled 3.5 KHz rate. This high 

number of coefficients is problematic. As the number of coefficients increases the 

algorithm quickly includes noise from the source. 

Using the full number of coefficients, accuracy response as a function of the sample 

rate was assessed. The results are presented in Figure 5.14. This shows that 

accuracy required a sampling rate of greater than 3 KHz to achieve a plateau of 

growth. The exception to this was predicting background and binary signals, which 

had a strong response from any sampling rate, expected as these are simpler 

predictions. 
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Figure 5.14 Accuracy versus sampling rate across the different prediction pathways, showing 
that accuracy changes in response to varying the sampling rate of the signal. 

To investigate signal sub-division to match other works in the literature, the 

Raspberry Pi was first benchmarked to confirm limits to the number of coefficients 

that could be used. The results are presented in Table 5.1 and ‘times required’ have 

been measured to include running a prediction. This is to ensure the process 

happens faster than the 0.4 s window. 

Table 5.1 Possible sub-window sizes on the Raspberry Pi © and the maximum number of 
coefficients per window possible. 

Sub-Window Size Encoding Limit Total Number of Features per Channel Time Required 

40 ms 76 760 350 ms 
50 ms 84 672 348 ms 
80 ms 96 480 349 ms 
200 ms 110 220 352 ms 

400 ms (full window) 240 240 351 ms 

 

Generating many coefficients for a 0.4 s window is computationally taxing. By using 

multi-core processing to handle each channel separately, the Raspberry Pi could 

encode 240 LARs in a 0.35 s window. 

With these limits, a benchmarking routine was created to determine accuracy as a 

measure of the sub-window size and number of coefficients. The experiment was 
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also conducted when downsampling the signal to 3 KHz and 1 KHz to measure 

whether lower frequency components become more important when sub-dividing the 

window. 

The findings are presented in Figure 5.15, demonstrating that the sub-division of the 

sample window decreases accuracy. For completeness, all sub-window lengths with 

the full 240 LARs are included, which would not be possible to run in real time on the 

Raspberry Pi. Even with all coefficients available, LPC derivative machine learning 

accuracy decreases as the signal is segmented. As LPCs are compression 

techniques, it can be understood that segmenting the signal further decreased the 

information in each resulting window. A comparison would be the segmentation of 

four similar spoken words into small time windows, which would decrease the overall 

context included as opposed to encoding the entire words with one compression 

window. 

 

Figure 5.15 Results from sub-windowing the signal with differing coefficient numbers (Support 
Vector Machines). This includes accuracy at 44.1 KHz sampling rate and change in accuracy at 

both 3 KHz and 1 KHz. At 1000 Hz, some window/coefficient combinations could not be run 
due to insufficient data. 
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It became clear that there were either high-frequency and/or low-power components 

to the signals that were not easily shown on a spectrogram. These elements were 

crucial for machine learning success. The signal could not be further segmented 

without decreasing accuracy. Together, these findings supported that these 

components are being obscured by background noise. 

It had been an expected evolution of the work to begin creating filtering algorithms to 

strip out the clutter associated with outdoor recordings in variable weather. However, 

the complexity of the filters will now become more challenging. Preserving complex 

patterns while removing the effects of wind and other clutter will be challenging. 

However, without filtration, the machine learning models would be unlikely to adapt 

to new recordings. The existing data were recorded as subsets each from a single or 

group of videos, each with its own setups and environmental conditions. This could 

be introducing noise into the dataset, which meant that models were unprepared for 

new sets of data from previously unseen conditions. 

The following question was whether leaving the sampling rate at the maximum 44.1 

KHz was introducing needless noise that was affecting the feature encoding stage. 

Another routine was designed to measure how accuracy reflected the number of 

coefficients at differing sample frequencies. Lowering the sampling rate decreases 

accuracy, as shown in Figure 5.16. However, at lower sampling frequencies, 

accuracy requires fewer encoding coefficients. A notable plateau is present at 100 

coefficients or more with a sampling frequency of 3.5 KHz, followed similarly by other 

sampling frequencies with the same number of coefficients. 
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Figure 5.16 Accuracy versus the number of encoding coefficients for a range of sampling 
frequencies. Legend indicates sampling frequency in Hz. When using a 1.5 KHz sampling rate, 

it was not feasible to include large numbers of coefficients as the data became sparse. 

While these results compare poorly to allowing an unrestricted sampling frequency, 

they show that the models require fewer LARs at lower frequencies to achieve 

maximum accuracy. This could indicate that the models may have been learning 

more general patterns in the data when given lower sampling frequencies to work 

with. When running the final tests, the results of lower-frequency, fewer-coefficient 

encoding would be included to measure whether models could become more 

generalized. 

Now that it had been determined that the models were not influenced by noise 

included with an unrestricted sampling rate, it became prudent to analyze the signals 

in greater depth. LPCs are a compressed form of the spectral envelope of a signal. 

As such, it was useful to generate the spectral envelope for each signal and produce 

a standard deviation per class. Spectral envelopes were generated by determining 

spectral peaks, using short time spectrum estimate, within the signal and then using 

shape-preserving piecewise interpolation with a moving average to generate the 

envelope [229]. These were generated over sampling windows matching those of the 

LPC data. In Figure 5.17(a), the standard deviation of all spectral envelopes in each 

class is shown up to 1.5 KHz. Standard deviation is preferred as averaging spectral 
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envelopes would remove most peaks, illustrated in Figure 5.17(b). Here, the classes 

have very similar profiles except that each is separated by marginal strength 

difference. 

The standard deviation in the background class is the flattest, except for several 

peaks centered at 1 KHz, which is faint noise in the signals, often masked by the 

bees themselves, caused by the recording equipment. The mean of the classes 

shows that this peak is very prevalent across samples. 

The bees themselves are visible as a strong peak of deviation at sub 150 Hz 

frequencies, matching the signatures seen on spectrograms. Outward signals have a 

peak slightly higher in frequency, which can be explained by bees rapidly 

accelerating away from the hive. Inward bees decelerate and hovering bees are 

unlikely to reach a maximum speed near the hive. Notable peaks can be seen at 400 

Hz and 800 Hz. Smaller peaks can be seen throughout, some more pronounced in 

one class over others but these are minor. 

The range of the classes is shown in Figure 5.17(c), calculated as the difference 

between the strongest and weakest sample at each frequency. This shows that all 

classes have a similar magnitude of range. Even the background class has a notable 

range matching inward, outward, and hovering bees at the frequencies of interest (0-

200Hz). This is most likely caused by bees in a few background samples that were 

near the radar but out of sight of the camera, perhaps directly behind the radar or off 

to the left and right. Unfortunately, without a 360° view, this is not avoidable. These 

could also be caused by low frequency environmental clutter, such as particularly 

strong gusts of wind that caused the equipment to vibrate. 

The hovering class has the largest range across most frequencies. This is not 

unexpected at the class would be the most complex. Hovering was typically triggered 

when the entrance became congested and as such, many bees were seen hovering 

at the same time. Hence, the frequencies content of these signals was diverse and 

amplified by the number of individuals. Inward and outward bees were more 

commonly alone or sampled alongside one or two hovering bees and therefore have 

a smaller range. 
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Figure 5.17 (a) The standard deviation of each class' spectral envelope (b) the mean of each 
class' spectral envelope and (c) the range of each class' spectral envelope. 

 

 



170 
 

5.4.3 Testing Stage 

The machine learning was assessed on its accuracy in predicting the entire test set 

with all other data included as learning data (Figure 5.18). Significant penalties when 

using a separate setup are apparent. When exposed to new data, from a new radar 

position in differing conditions, the models lose their capabilities. Four-way 

classification accuracy drops to 70%, with a precision of 0.63 and recall of 0.70 due 

to imbalanced class sizes. 

Sets in this figure are as follows: 

• Set A: the complete training dataset was used, sampled at 44.1 KHz with 240 

LARs. 

• Set B: the complete training dataset was used, sampled at 3.5 KHz with 100 

LARs. 

• Set C: the smaller, manually extracted dataset with higher training accuracy 

was used, sampled at 44.1 KHz with 240 LARs. 

• Set D: the smaller, manually extracted dataset with higher training accuracy 

was used, sampled at 3.5 KHz with 100 LARs. 

 

Figure 5.18 Testing results (from Support Vector Machines) from the final stage that show a 
decrease in performance versus the preliminary results. This is an effect of recording in 

outdoor spaces with variable conditions. 
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For completeness, the results for a down-sampled dataset at 3.5 KHz with 100 

coefficients are included. Overall accuracy improved by 1–12% despite the lower 

training accuracy. A critical note for the four-way classification is that no inward bees 

were predicted correctly (121 samples or 4.8% of the data to label). The figures for 

this four-way classification are skewed by the much larger hover and background 

classes. This is evident when looking at the F1 macro scores, which expose 

accuracy bias caused by imbalanced classes. 

Set B outperformed Set A despite lower training-stage results. This supports that 

different frequency bands and coefficient numbers benefit some classifications 

despite lower training accuracy. While adding more recordings, from differing 

weather and hive conditions, will improve the results further, the results above 

suggest that future gains will be ever-diminishing. 

To achieve complete capability in this system, filters are a requirement. These filters 

will be challenging because of the complex signatures that form part of the machine-

learning process. 

 

5.5 Discussion 

Compared to previous work, the results from this work are poorer [216]. For three-

way classification, 93.37% accuracy was achieved, and 91.13% binary accuracy was 

achieved in the last effort. Similar results for this work were 81.67% and 88.33% 

accuracy for three-way and binary classification respectively (see Figure 5). 

However, some key changes in the experimental setup explain the differences. This 

study used no data augmentation as the volume of data was considered sufficient. 

Data augmentation improves smaller datasets by creating a larger pool for training 

but can also make a set more homogenous and therefore easier to classify. The data 

recorded here were gathered across multiple days from more than one hive, which 

differs from previous studies where one hive was used on one day. The changes in 

radar distance and angle, coupled with varying weather, introduce more difficulty. 
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These additional challenges were inevitable in the development of a real-time 

implementation radar classification system. 

Nevertheless, the expected outcome of this study was to meet or exceed previous 

results. Without this being achieved, there is further work remaining to overcome the 

shortcomings highlighted in this study. 

The closest study in the literature to this work comes from Souza Cunha et al. in 

2020 [107]. This study used the root mean square (RMS) of a Doppler radar as a 

measure of activity at the hive entrance, validating this by manually counting bees 

during recordings using a handheld clicker. RMS has key benefits as it is a simple, 

non-ML approach that gives a good measure of activity, which they were able to 

show correlates to hive health. As such, this approach is closer to field deployment 

readiness than the work here. However, they admit that ‘non-foraging’ bees 

(equivalent to hovering bees in this work) are counted in the RMS signal and there is 

no discernment between inward and outward bees using the radar. This work is an 

attempt to overcome these limitations and once fully developed will provide more 

precise information for future study. 

The results show a pattern in that so long as sufficient data are available for each 

hive, distance, and weather condition, then the models are reasonably accurate. As 

soon as new conditions are introduced, the models lose accuracy. This is not 

unexpected, but the degree to which minor signal elements are necessary for good 

classification was not anticipated. These minor elements would too easily be 

removed by simple filters for environmental conditions. 

Hovering bees introduce unique challenges in that, given the resolution of the radar, 

they appear to mimic the flights of other bees. They do this by passing close to the 

entrance of the hive while accelerating or decelerating, but not stopping. Minor 

differences in the signals will be useful to detect the difference between a slowing 

bee and one that stops. Again, these differences will be subject to interference from 

the environment. 

Despite lower performance during initial training, models trained on subsampled 

signals with fewer LARs performed better than those with the complete data. This 
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supports the interpretation that the bulk of useful information is contained at lower 

frequencies. This is also shown when investigating the spectral envelope of each 

class, which shows more deviation at lower frequencies. However, the identification 

of which exact frequency bands are most important is challenging. Further work 

could look at performing statistical analysis of the signals in depth. This could 

provide guidance when developing filters as to which frequency bands are most 

important. 

Hand-picked samples provided better training accuracy than the dataset containing 

all available data. The dataset containing all the data was more useful at the test 

stage. This is evidence that a hybrid approach may be useful in the future, with a 

dataset containing a core set of hand-chosen, clearer samples to provide a strong 

foundation. This is in addition to containing entire recording breakdowns, which will 

provide many hard-to-classify ambiguous samples. 

This work is useful as no similar attempt has been made to classify honeybee activity 

at the entrance of a beehive using Doppler radar. Early experiments such as the one 

presented are necessary to identify the limits of existing technologies and algorithms 

as well as provide guidance for overcoming such restrictions. 

This research implies that further work is needed to create a deployable real-time 

radar. A greater understanding of radar bee signatures is required so that good 

filtration can be enacted that does not remove the weaker signal elements. 

 

5.6 Summary and Conclusion 

An investigation into generating machine learning models to classify real-time radar 

data on honeybees has been detailed. These models aimed to monitor and count 

activity at the entrance to the beehives. Data gathered in this fashion, which are 

automatically labelled by machine learning models, would provide valuable data for 

ecological research and for businesses looking to improve their use of honeybees. 

The models generated in this work achieved an accuracy of 70%, though, by other 

metrics, the class imbalance created biased results. 
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Data were gathered from multiple hives across a few days from beehives kept at a 

farm. The data were split into 0.4 s samples, labelled by using video camera 

recordings of each event, and transformed into Log Area Ratios. These were then 

used to train Support Vector Machines to predict labels for new samples. 

Challenges in progressing further have been identified. It is argued that a filter is 

needed, as high-frequency, weak signal elements appear to be needed for 

successful classification. These high frequencies are subject to interference and 

contain weak signal components that will be difficult to preserve. A greater 

understanding of these weak signal components is needed. 

The limits of this work are clear. Four days of data were used from a small selection 

of beehives. To develop the solution further, many more hives would be required. 

Data would need to be captured that reflected all feasible weather conditions. Some, 

such as rain, may render the system incapable of predictions at all. In addition, an 

intelligent filter must be investigated to provide a means of removing much of the 

radar clutter that is unavoidable when recording outdoors while preserving weak but 

vital signal elements. 

No further machine learning work is advised until filters are developed. Though 

additional data will result in increased accuracy, the system will not be resilient until 

environmental changes can be addressed. This work has functioned to provide 

specifications that future filters will need. With suitable further study, the work 

supports that the capability will exist to classify honeybee activity in real time. 
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6 Summary, Future Work, and Conclusion 

 

6.1 Discussion and Limitations 

This thesis explored whether machine learning algorithms can be used with current 

tracking technology to classify bee behaviours and movement. Each chapter tackles 

this question using a different technological approach. Each of the studied systems 

present functional advantages and disadvantages. The research was motivated by 

urgent need to monitor land use by pollinators such as bumblebees and that 

availability of large data volumes generated when tracking thousands of individuals. 

This volume of data can be utilised in real-time when driven by AI. 

Machine learning was useful for classifying the activity of bees. However, there are 

several key limitations which affected data analysis in all the chapters. These were: 

• The studies were limited by the availability and expense of gathering data, 

and the human error introduced when labelling data. 

• The outdoor, wild, and unconstrained nature of bee activity allowed for 

complex interacting behaviours that became difficult to classify with current 

machine-learning capabilities. 

All three analytical chapters suffered from insufficient data to cover all in-field use 

cases for the machine learning models being generated. Data of this type is 

challenging to collect, quantify and label, often taking months. 

Determining which technology has the most potential for combined machine-learning 

success is complex. The auto-piloted drone/harmonic radar approach (better 

referred to as the long-distance tracking approach) presented more exciting 

possibilities. An early idea was to consider developing a system that would 

automatically build a map of which resources were visited at a given stage of 

development/time of year. Similar studies have been achieved using long range 

tracking, but not with an automated approach. The increased scale and automation 

would provide a level of detail of the development of bee colony that would exceed 
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current literature and provide visual maps that would be useful for public 

engagement to bolster support for bee-friendly legislation.  

The thermal/optical camera approach was the most appropriate system for practical 

use. While requiring more computational power than the radar, it was less affected 

by environmental conditions and presented a two-dimensional view of the target 

rather than the equivalent one dimension of the radar. 

Compared to the two previously mentioned systems (auto-piloted drone/harmonic 

radar or thermal/optical camera), radar was cheaper, more power efficient, and 

robust. It has potential to be mass-deployed to monitor multiple hives.  

The heterogeneity of the machine learning models used is a result of the current best 

practices in literature, the hardware available, and the type of data being studied. 

While it would have been interesting to investigate a regression task (rather than the 

classification problems presented in this thesis), the data in question required 

classification. Similarly, neural networks, support vector machines, and random 

forests are standard approaches across the literature and are used in all three 

chapters. It would have been novel to explore other, more experimental machine 

learning models. However, given that the problem at hand was already taxing and in 

a niche area, compounding the complexity by using models other than tried and 

tested approaches would have potentially created unnecessary obstacles.  

The author briefly investigated other classification models for each chapter, but their 

accuracy scores were so poor compared with the existing systems that they were 

quickly abandoned. Similarly, the author did consider attempting to build larger, more 

in-depth neural networks with specialist functions (such as a long-short-term memory 

networks or transformer networks.) However these typically require significant 

hardware expenditure that was out of range for the project. There was an interest in 

keeping hardware requirements low throughout the project to create solutions that 

would be available in real-time, or close to such.    
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6.2 Future Work 

Recent developments have seen the release of affordable time-of-flight (ToF) 

camera sensors. ToF sensors allow for three-dimensional capture of an environment 

by timing the return of photons emitted by the sensor at several sample points (the 

effective pixels of the camera). These cameras have comparable image quality to 

the thermal camera but would additionally provide depth information. A fully three-

dimensional rendition of the activity near a beehive would be more useful for 

machine learning classification if it could be shown that the camera was suitable for 

the task.  

Further work could also look to bypass the 0.4-second window used in the radar 

study. This window was chosen as it matched the smallest sample in an early 

dataset. It also benefitted the study as it was not unreasonable for an observer to 

provide labels for this data on a 0.4-second scale. Smaller windows would prove 

increasingly challenging to label. Smaller windows might make it difficult to compute 

output faster than the data is gathered, making a real-time radar system unlikely. 

However, it was possible for a 0.4-second sample to contain multiple bee signatures 

with no clear means of separation. By using smaller, partially overlapping windows it 

might be possible to detect multiple signatures, but this would also be an 

unreasonably challenging approach for an observer to provide labelling. It would also 

become likely that the models double-count a single bee if it appears in overlapping 

samples. 

Another approach might be the further develop the thermal camera machine learning 

model to assist the radar system by providing accurate and automated labelling. A 

sufficiently capable model would be able to provide 34-millisecond precision when 

labelling bee flights if the camera and radar feed were synced appropriately. Thus, a 

camera-based model would generate large, precise datasets that could be used to 

train the radar model, eventually removing the need for the camera. However, any 

small imperfections in the camera-based machine learning would be inherited by the 

radar model. 
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It could potentially be further developed by converting the model to a regression 

system, whereby a regression value is predicted for inward, outward, and hovering 

bees. Peaks in the inward and outward predicted values (over time) would 

correspond to bees landing or first taking off, respectively for inward and outward 

bees, allowing for very fine counting of overlapping signals. The hovering value could 

be used to infer the total number of hovering individuals. This would be conditional 

on the radar hardware itself having sufficient resolution. 

Combining different technological approaches and using machine learning to bridge 

gaps or provide additional functionality will be an area of increasing interest moving 

forward. It could be possible to increase the resolution at which bees can be 

monitored through a “combined arms” approach where different technologies interact 

to provide greater fidelity. This could include using penetrating radar (or terahertz 

imaging), if safety is not a concern, to map the positions of bees within a hive with a 

particular focus on the queen.   

The thermal camera could be used to monitor movement inside an intact hive box, 

as it does not rely on any lighting or infrared emitters (which may generate heat and 

affect bee behaviour). This could be a novel research pathway to investigate 

interactions that happen within the hive. However, the lens for the camera would 

likely become dirty quickly and obscure the view. This would be a challenging project 

coupled with the low field of view of thermal cameras. Thermal camera lenses are 

made of expensive germanium as it does not absorb the observed infrared 

frequencies. Recently works have looked at developing cheaper, plastic alternatives 

that could replace these lenses. It might become possible to create a window into the 

side of a hive, allowing the thermal camera to see inside while blocking natural light 

frequencies, protecting the camera from dirt. 

The long-range tracking project (utilising drones and harmonic radar) could be 

readily enhanced by using drone gathered datasets to ensure that machine-learning 

outputs are the same as harmonic radar data sets. Assuming that this is successful, 

expanding the work on unsupervised clustering of bee flights might yield insights into 

how bees make use of their environment given that an unsupervised algorithm is not 

biased by human-provided labels.  



179 
 

An expanded dataset would also allow for more thorough development of the flight 

task prediction models, particularly by identifying outlier flights that may not be 

present in the small harmonic dataset. By successfully classifying the bee flight task, 

it might become possible to tailor the code used to automatically pilot a drone based 

on which task the bee is undertaking, ensuring that tracking is more successful. A 

foraging bee is likely to be more direct, meaning the drone would need to prioritise 

acceleration and ignore minor deviations in favour of an overall projection of the 

bee’s path. An exploring bee is likely to be more changeable meaning the drone 

would need to be more flexible and prioritise minor changes in the bee’s path. It may 

follow that a machine learning model could pilot the drone by directly tuning flight 

parameters based on the target’s movements in real time. 

6.3 Review of Research Questions 

In the following manner, the research questions for this thesis have been addressed: 

• Which bee tracking technologies are most useful when paired with 

machine learning? This question has been answered during the 

summary discussion in this chapter. In short, there is no superior system. 

Each of the chosen technologies has strengths and weaknesses that 

make them strong candidates for being the best choice. All the systems 

would benefit from future work to improve them and remove some of the 

identified limitations. 

• Are existing model architectures capable of predicting bee behaviour 

as captured by these technologies? This question has been answered 

in each chapter. The work in this thesis shows that current machine 

learning models can predict bee behaviour as captured by the systems 

used in this thesis. Each chapter contains a thorough breakdown of the 

success of each model and technology pair.  As before, more work is 

required to better understand the data that is captured and engineer new 

models with greater performance. 

• What are the limits of machine learning in this field? A common thread 

throughout this thesis has been to identify the limitations of each system. 
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This question has been answered in all chapters including this final 

chapter. The limitations of the systems included are clear and ideas have 

been presented for future improvement and work. 

6.4 Review of Research Aims and Objectives 

The core aim of this thesis was to understand and report on the contribution that 

machine learning could make toward tracking and understanding bee behaviour.  

This was encapsulated by a central set of objectives. These objectives have been 

met as follows: 

• Identify key tracking technologies with the greatest potential to 

integrate with machine learning: Several candidate technologies have 

been investigated to determine how well they might integrate with machine 

learning to track and predict bees. Each main chapter (3, 4, and 5) contains 

different hardware and software systems. 

• Design experimental setups to gather bee movement and/or behaviour 

data using these technologies: Across chapters, experiments have been 

designed and conducted to evaluate the suitability of a technological 

approach. Data from these experiments have been gathered for two of the 

main chapters (4 and 5) and used to train models. In chapter 3, data was 

provided by an external group that was similar enough to the proposed 

system when the proposed system became unusable. 

• Generate suitable machine learning models to predict movement and 

behaviour using the acquired data: Models have been generated in 

chapters 3, 4, and 5 for each of the candidate systems. 

• Evaluate the strengths and weaknesses of the models created (and 

their experimental setups) identifying the sources of any limitations: 

Models have been evaluated from the perspective of best prediction accuracy 

for either predicting bee tasks or bee activity near the hive/nest. 

• Of the three technologies, provide informed discussion about which 

might benefit most or least from the machine learning integration: This 

objective has been met in this final chapter, where discussion about the 
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strengths and weaknesses of the technologies (when compared with each 

other) has been provided. 

• Discuss whether the experiments show support for using machine 

learning to aid in the design of future bee counting and modelling 

systems: The overall finding from this thesis is that there exists strong 

support from the data and evidence for pursuing further development of 

machine learning integrated bee counting and modelling systems. However, 

as has been addressed in this conclusion chapter, several technical and 

labour limitations exist which must be addressed. 

 

6.5 Conclusion 

This project contributes to the current literature as there has been a documented 

need for more intelligent, data-intensive methods for monitoring bee movement and 

behaviour. It has identified strong candidate technologies to facilitate better tracking 

of bees and has investigated integrating machine learning to automate the 

monitoring process. The output is a foundation of data, machine learning models, 

discussion, and future ideas that are ready for further development.  



182 
 

7 References 

1.  Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & 

Kunin, W. E. (2010). Global pollinator declines: Trends, impacts and drivers. 

Trends in Ecology and Evolution. https://doi.org/10.1016/j.tree.2010.01.007 

2.  Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B., & Collen, B. 

(2014). Defaunation in the Anthropocene. Science. 

https://doi.org/10.1126/science.1251817 

3.  Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., 

… De Kroon, H. (2017). More than 75 percent decline over 27 years in total 

flying insect biomass in protected areas. PLoS ONE, 12(10). 

https://doi.org/10.1371/journal.pone.0185809 

4.  Williams, P. H. (1982). The Distribution and Decline of British Bumble Bees 

(Bombus Latr.). Journal of Apicultural Research, 21(4). 

https://doi.org/10.1080/00218839.1982.11100549 

5.  Sirois-Delisle, C., & Kerr, J. T. (2018). Climate change-driven range losses 

among bumblebee species are poised to accelerate. Scientific Reports, 8(1). 

https://doi.org/10.1038/s41598-018-32665-y 

6.  Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, 

S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in 

changing landscapes for world crops. Proceedings of the Royal Society B: 

Biological Sciences. https://doi.org/10.1098/rspb.2006.3721 

7.  Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are 

pollinated by animals? Oikos, 120(3). https://doi.org/10.1111/j.1600-

0706.2010.18644.x 

8.  Kleijn, D., Winfree, R., Bartomeus, I., Carvalheiro, L. G., Henry, M., Isaacs, R., 

… Potts, S. G. (2015). Delivery of crop pollination services is an insufficient 

argument for wild pollinator conservation. Nature Communications, 6. 

https://doi.org/10.1038/ncomms8414 



183 
 

9.  Patel, V., Pauli, N., Biggs, E., Barbour, L., & Boruff, B. (2021). Why bees are 

critical for achieving sustainable development. Ambio, 50(1). 

https://doi.org/10.1007/s13280-020-01333-9 

10.  Sánchez-Bayo, F., & Wyckhuys, K. A. G. (2019). Worldwide decline of the 

entomofauna: A review of its drivers. Biological Conservation. 

https://doi.org/10.1016/j.biocon.2019.01.020 

11.  Leather, S. R. (2018). “Ecological Armageddon” – more evidence for the 

drastic decline in insect numbers. Annals of Applied Biology. 

https://doi.org/10.1111/aab.12410 

12.  Vogel, G. (2017). Where have all the insects gone? Science. 

https://doi.org/10.1126/science.356.6338.576 

13.  Stokstad, E. (2018). European Union expands ban of three neonicotinoid 

pesticides. Science. https://doi.org/10.1126/science.aau0152 

14.  Van der Sluijs, J. P., Simon-Delso, N., Goulson, D., Maxim, L., Bonmatin, J. 

M., & Belzunces, L. P. (2013). Neonicotinoids, bee disorders and the 

sustainability of pollinator services. Current Opinion in Environmental 

Sustainability. https://doi.org/10.1016/j.cosust.2013.05.007 

15.  El Hassani, A. K., Dacher, M., Gary, V., Lambin, M., Gauthier, M., & 

Armengaud, C. (2008). Effects of sublethal doses of acetamiprid and 

thiamethoxam on the behavior of the honeybee (Apis mellifera). Archives of 

Environmental Contamination and Toxicology, 54(4). 

https://doi.org/10.1007/s00244-007-9071-8 

16.  Brandt, A., Gorenflo, A., Siede, R., Meixner, M., & Büchler, R. (2016). The 

neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the 

immunocompetence of honey bees (Apis mellifera L.). Journal of Insect 

Physiology, 86. https://doi.org/10.1016/j.jinsphys.2016.01.001 

17.  Goulson, D. (2003). Conserving wild bees for crop pollination. Food, 

Agriculture & Environment, 1(1). 



184 
 

18.  Carrié, R., Andrieu, E., Ouin, A., & Steffan-Dewenter, I. (2017). Interactive 

effects of landscape-wide intensity of farming practices and landscape 

complexity on wild bee diversity. Landscape Ecology, 32(8). 

https://doi.org/10.1007/s10980-017-0530-y 

19.  St Clair, A. L., St Clair, A. L., Zhang, G., Dolezal, A. G., O’Neal, M. E., Toth, A. 

L., & Toth, A. L. (2020). Diversified Farming in a Monoculture Landscape: 

Effects on Honey Bee Health and Wild Bee Communities. Environmental 

Entomology, 49(3). https://doi.org/10.1093/ee/nvaa031 

20.  Ahrné, K., Bengtsson, J., & Elmqvist, T. (2009). Bumble bees (Bombus spp) 

along a gradient of increasing urbanization. PLoS ONE, 4(5). 

https://doi.org/10.1371/journal.pone.0005574 

21.  Martin, S. J. (2001). The role of varroa and viral pathogens in the collapse of 

honeybee colonies: A modelling approach. Journal of Applied Ecology, 38(5). 

https://doi.org/10.1046/j.1365-2664.2001.00662.x 

22.  Eliash, N., & Mikheyev, A. (2020). Varroa mite evolution: a neglected aspect of 

worldwide bee collapses? Current Opinion in Insect Science. 

https://doi.org/10.1016/j.cois.2019.11.004 

23.  Keeling, M. J., Franklin, D. N., Datta, S., Brown, M. A., & Budge, G. E. (2017). 

Predicting the spread of the Asian hornet (Vespa velutina) following its 

incursion into Great Britain. Scientific Reports, 7(1). 

https://doi.org/10.1038/s41598-017-06212-0 

24.  Ricketts, T. H., Regetz, J., Steffan-Dewenter, I., Cunningham, S. A., Kremen, 

C., Bogdanski, A., … Viana, B. F. (2008). Landscape effects on crop 

pollination services: Are there general patterns? Ecology Letters, 11(5). 

https://doi.org/10.1111/j.1461-0248.2008.01157.x 

25.  Rortais, A., Villemant, C., Gargominy, O., Rome, Q., Haxaire, J., 

Papachristoforou, A., & Arnold, G. (2010). A New Enemy of Honeybees in 

Europe: the Asian Hornet, Vespa velutina. Atlas of Biodiversity Risks. 



185 
 

26.  Franklin, D. N., Brown, M. A., Datta, S., Cuthbertson, A. G. S., Budge, G. E., & 

Keeling, M. J. (2017). Invasion dynamics of Asian hornet, Vespa velutina 

(Hymenoptera: Vespidae): a case study of a commune in south-west France. 

Applied Entomology and Zoology, 52(2). https://doi.org/10.1007/s13355-016-

0470-z 

27.  Tan, K., Radloff, S. E., Li, J. J., Hepburn, H. R., Yang, M. X., Zhang, L. J., & 

Neumann, P. (2007). Bee-hawking by the wasp, Vespa velutina, on the 

honeybees Apis cerana and A. mellifera. Naturwissenschaften, 94(6). 

https://doi.org/10.1007/s00114-006-0210-2 

28.  Ken, T., Hepburn, H. R., Radloff, S. E., Yusheng, Y., Yiqiu, L., Danyin, Z., & 

Neumann, P. (2005). Heat-balling wasps by honeybees. Naturwissenschaften, 

92(10). https://doi.org/10.1007/s00114-005-0026-5 

29.  Koeniger, N., Koeniger, G., Gries, M., Tingek, S., & Kelitu, A. (1996). 

Observations on colony defense of Apis nuluensis Tingek, Koeniger and 

Koeniger, 1996 and predatory behavior of the hornet, Vespa multimaculata 

Pérez, 1910. Apidologie, 27(5). https://doi.org/10.1051/apido:19960502 

30.  Turchi, L., & Derijard, B. (2018). Options for the biological and physical control 

of Vespa velutina nigrithorax (Hym.: Vespidae) in Europe: A review. Journal of 

Applied Entomology. https://doi.org/10.1111/jen.12515 

31.  Kohl, P. L., & Rutschmann, B. (2018). The neglected bee trees: European 

beech forests as a home for feral honey bee colonies. PeerJ, 2018(4). 

https://doi.org/10.7717/peerj.4602 

32.  Visscher, P., & Seely, D. (2010). Bee-lining as a research technique in 

ecological studies of honey bees. American Bee Journal, 129(8), 536–539. 

33.  Monceau, K., Bonnard, O., & Thiéry, D. (2012). Chasing the queens of the 

alien predator of honeybees: A water drop in the invasiveness ocean. Open 

Journal of Ecology, 02(04). https://doi.org/10.4236/oje.2012.24022 

34.  Goldarazena, A., de Heredia, I. P., Romon, P., Iturrondobeitia, J. C., Gonzalez, 



186 
 

M., & Lopez, S. (2015). Spread of the yellow-legged hornet vespa velutina 

nigrithorax du Buysson (Hymenoptera: Vespidae) across Northern Spain. 

EPPO Bulletin, 45(1). https://doi.org/10.1111/epp.12185 

35.  Chapman, J. W., Drake, V. A., & Reynolds, D. R. (2011). Recent insights from 

radar studies of insect flight. Annual Review of Entomology, 56. 

https://doi.org/10.1146/annurev-ento-120709-144820 

36.  Beekman, M., & Ratnieks, F. L. W. (2000). Long-range foraging by the honey-

bee, Apis mellifera L. Functional Ecology, 14(4). https://doi.org/10.1046/j.1365-

2435.2000.00443.x 

37.  Psychoudakis, D., Moulder, W., Chen, C. C., Zhu, H., & Volakis, J. L. (2008). A 

portable low-power harmonic radar system and conformal tag for insect 

tracking. IEEE Antennas and Wireless Propagation Letters, 7. 

https://doi.org/10.1109/LAWP.2008.2004512 

38.  O’Neal, M. E., Landis, D. A., Rothwell, E., Kempel, L., & Reinhard, D. (2004). 

Tracking insects with harmonic radar: A case study. American Entomologist, 

50(4). https://doi.org/10.1093/ae/50.4.212 

39.  Batsleer, F., Bonte, D., Dekeukeleire, D., Goossens, S., Poelmans, W., Van 

der Cruyssen, E., … Vandegehuchte, M. L. (2020). The neglected impact of 

tracking devices on terrestrial arthropods. Methods in Ecology and Evolution. 

https://doi.org/10.1111/2041-210X.13356 

40.  Tsai, Z. M., Jau, P. H., Kuo, N. C., Kao, J. C., Lin, K. Y., Chang, F. R., … 

Wang, H. (2013). A high-range-accuracy and high-sensitivity harmonic radar 

using pulse pseudorandom code for bee searching. IEEE Transactions on 

Microwave Theory and Techniques, 61(1). 

https://doi.org/10.1109/TMTT.2012.2230020 

41.  Maggiora, R., Saccani, M., Milanesio, D., & Porporato, M. (2019). An 

Innovative Harmonic Radar to Track Flying Insects: the Case of Vespa 

velutina. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-48511-8 



187 
 

42.  Menzel, R., Kirbach, A., Haass, W. D., Fischer, B., Fuchs, J., Koblofsky, M., … 

Greggers, U. (2011). A common frame of reference for learned and 

communicated vectors in honeybee navigation. Current Biology, 21(8). 

https://doi.org/10.1016/j.cub.2011.02.039 

43.  Fischer, J., Müller, T., Spatz, A. K., Greggers, U., Grünewald, B., & Menzel, R. 

(2014). Neonicotinoids interfere with specific components of navigation in 

honeybees. PLoS ONE, 9(3). https://doi.org/10.1371/journal.pone.0091364 

44.  Wolf, S., McMahon, D. P., Lim, K. S., Pull, C. D., Clark, S. J., Paxton, R. J., & 

Osborne, J. L. (2014). So near and yet so far: Harmonic radar reveals reduced 

homing ability of nosema infected honeybees. PLoS ONE, 9(8). 

https://doi.org/10.1371/journal.pone.0103989 

45.  Greggers, U., Schöning, C., Degen, J., & Menzel, R. (2013). Scouts behave as 

streakers in honeybee swarms. Naturwissenschaften, 100(8). 

https://doi.org/10.1007/s00114-013-1077-7 

46.  Milanesio, D., Saccani, M., Maggiora, R., Laurino, D., & Porporato, M. (2016). 

Design of an harmonic radar for the tracking of the Asian yellow-legged hornet. 

Ecology and Evolution, 6(7). https://doi.org/10.1002/ece3.2011 

47.  Milanesio, D., Saccani, M., Maggiora, R., Laurino, D., & Porporato, M. (2017). 

Recent upgrades of the harmonic radar for the tracking of the Asian yellow-

legged hornet. Ecology and Evolution, 7(13). https://doi.org/10.1002/ece3.3053 

48.  Hansen, R. C. (1981). Fundamental Limitations in Antennas. Proceedings of 

the IEEE, 69(2). https://doi.org/10.1109/PROC.1981.11950 

49.  Tahir, N., & Brooker, G. (2011). Recent developments and recommendations 

for improving harmonic radar tracking systems. In Proceedings of the 5th 

European Conference on Antennas and Propagation, EUCAP 2011. 

50.  Osborne, J. L., Clark, S. J., Morris, R. J., Williams, I. H., Riley, J. R., Smith, A. 

D., … Edwards, A. S. (1999). A landscape-scale study of bumble bee foraging 

range and constancy, using harmonic radar. Journal of Applied Ecology, 36(4). 



188 
 

https://doi.org/10.1046/j.1365-2664.1999.00428.x 

51.  Riley, J. R., & Smith, A. D. (2002). Design considerations for an harmonic 

radar to investigate the flight of insects at low altitude. Computers and 

Electronics in Agriculture, 35(2–3). https://doi.org/10.1016/S0168-

1699(02)00016-9 

52.  Lee, J. W., Kwon, H., & Lee, B. (2006). Design consideration of UHF RFID tag 

for increased reading range. In IEEE MTT-S International Microwave 

Symposium Digest. https://doi.org/10.1109/MWSYM.2006.249638 

53.  Wang, J., Zhang, J., Saha, R., Jin, H., & Kumar, S. (2019). Pushing the range 

limits of commercial passive RFIDs. In Proceedings of the 16th USENIX 

Symposium on Networked Systems Design and Implementation, NSDI 2019. 

54.  Nunes-Silva, P., Hrncir, M., Guimarães, J. T. F., Arruda, H., Costa, L., Pessin, 

G., … Imperatriz-Fonseca, V. L. (2019). Applications of RFID technology on 

the study of bees. Insectes Sociaux. https://doi.org/10.1007/s00040-018-0660-

5 

55.  de Souza, P., Marendy, P., Barbosa, K., Budi, S., Hirsch, P., Nikolic, N., … 

Davie, A. (2018). Low-cost electronic tagging system for bee monitoring. 

Sensors (Switzerland), 18(7). https://doi.org/10.3390/s18072124 

56.  Robinson, E. J. H., Smith, F. D., Sullivan, K. M. E., & Franks, N. R. (2009). Do 

ants make direct comparisons? Proceedings of the Royal Society B: Biological 

Sciences, 276(1667). https://doi.org/10.1098/rspb.2009.0350 

57.  Easton, A. H., & Goulson, D. (2013). The Neonicotinoid Insecticide 

Imidacloprid Repels Pollinating Flies and Beetles at Field-Realistic 

Concentrations. PLoS ONE, 8(1). 

https://doi.org/10.1371/journal.pone.0054819 

58.  Silcox, D. E., Doskocil, J. P., Sorenson, C. E., & Brandenburg, R. L. (2011). 

Radio frequency identification tagging: A novel approach to monitoring surface 

and subterranean insects. American Entomologist, 57(2). 



189 
 

https://doi.org/10.1093/ae/57.2.86 

59.  Barlow, S. E., O’Neill, M. A., & Pavlik, B. M. (2019). A prototype RFID tag for 

detecting bumblebee visitations within fragmented landscapes. Journal of 

Biological Engineering, 13(1). https://doi.org/10.1186/s13036-019-0143-x 

60.  Cochran, W. W., & Lord, R. D. (1963). A Radio-Tracking System for Wild 

Animals. The Journal of Wildlife Management, 27(1). 

https://doi.org/10.2307/3797775 

61.  Mackay, R. S. (1964). Galapagos tortoise and marine iguana deep body 

temperatures measured by radio telemetry. Nature, 204(4956). 

https://doi.org/10.1038/204355a0 

62.  Levett, S., & Walls, S. (2011). Tracking the elusive life of the Emperor 

Dagonfly Anax imperator Leach. Journal of the British Dragonfly Society, 

27(1). 

63.  Hagen, M., Wikelski, M., & Kissling, W. D. (2011). Space use of bumblebees 

(Bombus spp.) revealed by radio-tracking. PLoS ONE, 6(5). 

https://doi.org/10.1371/journal.pone.0019997 

64.  Wikelski, M., Moxley, J., Eaton-Mordas, A., López-Uribe, M. M., Holland, R., 

Moskowitz, D., … Kays, R. (2010). Large-range movements of neotropical 

orchid bees observed via radio telemetry. PLoS ONE, 5(5). 

https://doi.org/10.1371/journal.pone.0010738 

65.  Pasquet, R. S., Peltier, A., Hufford, M. B., Oudin, E., Saulnier, J., Paul, L., … 

Gepts, P. (2008). Long-distance pollen flow assessment through evaluation of 

pollinator foraging range suggests transgene escape distances. Proceedings 

of the National Academy of Sciences of the United States of America, 105(36). 

https://doi.org/10.1073/pnas.0806040105 

66.  Neill, E., & Jensen, P. (2014). Ground-based radio tracking: a best practice 

protocol. New Zealand Department of Conservation. 



190 
 

67.  Cochran, W. W., Warner, D. W., Tester, J. R., & Kuechle, V. B. (1965). 

Automatic Radio-Tracking System for Monitoring Animal Movements. 

BioScience, 15(2). https://doi.org/10.2307/1293346 

68.  Searcy, S. W., Schueller, J. K., Bae, Y. H., & Stout, B. A. (1990). Measurement 

of agricultural field location using microwave frequency triangulation. 

Computers and Electronics in Agriculture, 4(3). https://doi.org/10.1016/0168-

1699(90)90020-P 

69.  Kays, R., Tilak, S., Crofoot, M., Fountain, T., Obando, D., Ortega, A., … 

Wikelski, M. (2011). Tracking animal location and activity with an automated 

radio telemetry system in a tropical rainforest. Computer Journal, 54(12). 

https://doi.org/10.1093/comjnl/bxr072 

70.  Stark, K. E., Jackson, G. D., & Lyle, J. M. (2005). Tracking arrow squid 

movements with an automated acoustic telemetry system. Marine Ecology 

Progress Series, 299. https://doi.org/10.3354/meps299167 

71.  Körner, F., Speck, R., Göktoǧan, A. H., & Sukkarieh, S. (2010). Autonomous 

airborne wildlife tracking using radio signal strength. In IEEE/RSJ 2010 

International Conference on Intelligent Robots and Systems, IROS 2010 - 

Conference Proceedings. https://doi.org/10.1109/IROS.2010.5654385 

72.  Cliff, O. M., Fitch, R., Sukkarieh, S., Saunders, D. L., & Heinsohn, R. (2015). 

Online localization of radio-tagged wildlife with an autonomous aerial robot 

system. In Robotics: Science and Systems (Vol. 11). 

https://doi.org/10.15607/RSS.2015.XI.042 

73.  Dressel, L. K., & Kochenderfer, M. J. (2018). Efficient and low-cost localization 

of radio signals with a multirotor UAV. 2018 AIAA Guidance, Navigation, and 

Control Conference. 

74.  Nguyen, H. Van, Chesser, M., Koh, L. P., Rezatofighi, S. H., & Ranasinghe, D. 

C. (2019). TrackerBots: Autonomous unmanned aerial vehicle for real-time 

localization and tracking of multiple radio-tagged animals. Journal of Field 



191 
 

Robotics, 36(3). https://doi.org/10.1002/rob.21857 

75.  Shafer, M. W., Vega, G., Rothfus, K., & Flikkema, P. (2019). UAV wildlife 

radiotelemetry: System and methods of localization. Methods in Ecology and 

Evolution, 10(10). https://doi.org/10.1111/2041-210X.13261 

76.  Patton, D. R., Beaty, D. W., & Smith, R. H. (1973). Solar Panels: An Energy 

Source for Radio Transmitters on Wildlife. The Journal of Wildlife 

Management, 37(2). https://doi.org/10.2307/3798910 

77.  Silva, R., Afán, I., Gil, J. A., & Bustamante, J. (2017). Seasonal and circadian 

biases in bird tracking with solar GPS-tags. PLoS ONE, 12(10). 

https://doi.org/10.1371/journal.pone.0185344 

78.  Lu, Y., Marty, F., Galayko, D., Laheurte, J.-M., & Basset, P. (2017). A MEMS 

EVEH-Assisted Long-Range RFID Tag System for Applications with Low-

Frequency Vibrations. https://doi.org/10.3390/proceedings1040582 

79.  Chen, Y. L., Liu, D., Wang, S., Li, Y. F., & Zhang, X. S. (2019). Self-powered 

smart active RFID tag integrated with wearable hybrid nanogenerator. Nano 

Energy, 64. https://doi.org/10.1016/j.nanoen.2019.103911 

80.  Umeda, M., Nakamura, K., & Ueha, S. (1996). Analysis of the transformation 

of mechanical impact energy to electric energy using piezoelectric vibrator. 

Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes 

and Review Papers, 35(5 B). https://doi.org/10.1143/jjap.35.3267 

81.  Takeuchi, M., Matsuzawa, S., Tairaku, K., & Takatsu, C. (2007). Piezoelectric 

generator as power supply for RFID-tags and applications. In Proceedings - 

IEEE Ultrasonics Symposium. https://doi.org/10.1109/ULTSYM.2007.644 

82.  Li, H., Tian, C., Lu, J., Myjak, M. J., Martinez, J. J., Brown, R. S., & Deng, Z. D. 

(2016). An Energy Harvesting Underwater Acoustic Transmitter for Aquatic 

Animals. Scientific Reports, 6. https://doi.org/10.1038/srep33804 

83.  Snowdon, M. M., Horne, J., Gyr, B., & Jia, Y. (2018). Feasibility of vibration 



192 
 

energy harvesting powered wireless tracking of falcons in flight. In Journal of 

Physics: Conference Series (Vol. 1052). https://doi.org/10.1088/1742-

6596/1052/1/012049 

84.  Chang, S. C., Yaul, F. M., Sullivan, F. O., Otten, D. M., Lang, J. H., & Initiative, 

E. (2009). Harvesting Energy from moth vibrations during flight. International 

Workshop on Micro and Nanotechnologies for Power Generation and Energy 

Conversion Applications. 

85.  Aktakka, E. E., Kim, H., & Najafi, K. (2011). Energy scavenging from insect 

flight. Journal of Micromechanics and Microengineering, 21(9). 

https://doi.org/10.1088/0960-1317/21/9/095016 

86.  Shearwood, J., Hung, D. M. Y., Cross, P., Preston, S., & Palego, C. (2018). 

Honey-Bee Localization Using an Energy Harvesting Device and Power Based 

Angle of Arrival Estimation. In IEEE MTT-S International Microwave 

Symposium Digest (Vol. 2018-June). 

https://doi.org/10.1109/MWSYM.2018.8439173 

87.  Soulsbury, C. D., Gray, H. E., Smith, L. M., Braithwaite, V., Cotter, S. C., 

Elwood, R. W., … Collins, L. M. (2020). The welfare and ethics of research 

involving wild animals: A primer. Methods in Ecology and Evolution. 

https://doi.org/10.1111/2041-210X.13435 

88.  Drinkwater, E., Robinson, E. J. H., & Hart, A. G. (2019). Keeping invertebrate 

research ethical in a landscape of shifting public opinion. Methods in Ecology 

and Evolution. https://doi.org/10.1111/2041-210X.13208 

89.  Godfrey, J. D., & Bryant, D. M. (2003). Effects of radio transmitters: Review of 

recent radio-tracking studies. Science for Conservation, (214). 

90.  Aldridge, H. D. J. N., & Brigham, R. M. (1988). Load Carrying and 

Maneuverability in an Insectivorous Bat: a Test of the 5% “Rule” of Radio-

Telemetry. Journal of Mammalogy, 69(2). https://doi.org/10.2307/1381393 

91.  Geen, G. R., Robinson, R. A., & Baillie, S. R. (2019). Effects of tracking 



193 
 

devices on individual birds – a review of the evidence. Journal of Avian 

Biology. https://doi.org/10.1111/jav.01823 

92.  Barron, D. G., Brawn, J. D., & Weatherhead, P. J. (2010). Meta-analysis of 

transmitter effects on avian behaviour and ecology. Methods in Ecology and 

Evolution, 1(2). https://doi.org/10.1111/j.2041-210x.2010.00013.x 

93.  Bodey, T. W., Cleasby, I. R., Bell, F., Parr, N., Schultz, A., Votier, S. C., & 

Bearhop, S. (2018). A phylogenetically controlled meta-analysis of biologging 

device effects on birds: Deleterious effects and a call for more standardized 

reporting of study data. Methods in Ecology and Evolution, 9(4). 

https://doi.org/10.1111/2041-210X.12934 

94.  Bowlin, M. S., Henningsson, P., Muijres, F. T., Vleugels, R. H. E., Liechti, F., & 

Hedenström, A. (2010). The effects of geolocator drag and weight on the flight 

ranges of small migrants. Methods in Ecology and Evolution, 1(4). 

https://doi.org/10.1111/j.2041-210x.2010.00043.x 

95.  Portugal, S. J., & White, C. R. (2018). Miniaturization of biologgers is not 

alleviating the 5% rule. Methods in Ecology and Evolution. 

https://doi.org/10.1111/2041-210X.13013 

96.  White, C. R., Cassey, P., Schimpf, N. G., Halsey, L. G., Green, J. A., & 

Portugal, S. J. (2013). Methods & techniques: Implantation reduces the 

negative effects of bio-logging devices on birds. Journal of Experimental 

Biology, 216(4). https://doi.org/10.1242/jeb.076554 

97.  Boiteau, G., & Colpitts, B. (2001). Electronic tags for the tracking of insects in 

flight: Effect of weight on flight performance of adult Colorado potato beetles. 

Entomologia Experimentalis et Applicata, 100(2). 

https://doi.org/10.1046/j.1570-7458.2001.00863.x 

98.  Boiteau, G., Meloche, F., Vincent, C., & Leskey, T. C. (2009). Effectiveness of 

glues used for harmonic radar tag attachment and impact on survival and 

behavior of three insect pests. Environmental Entomology, 38(1). 



194 
 

https://doi.org/10.1603/022.038.0121 

99.  Gui, L. Y., Huang, X. Q., Li, C. R., & Boiteau, G. (2011). Validation of harmonic 

radar tags to study movement of Chinese citrus fly. Canadian Entomologist, 

143(4). https://doi.org/10.4039/n11-017 

100.  Feuerbacher, E., Fewell, J. H., Roberts, S. P., Smith, E. F., & Harrison, J. F. 

(2003). Effects of load type (pollen or nectar) and load mass on hovering 

metabolic rate and mechanical power output in the honey bee Apis mellifera. 

Journal of Experimental Biology, 206(11). https://doi.org/10.1242/jeb.00347 

101.  Kim, J., Jung, M., Kim, H. G., & Lee, D. H. (2016). Potential of harmonic radar 

system for use on five economically important insects: Radar tag attachment 

on insects and its impact on flight capacity. Journal of Asia-Pacific 

Entomology, 19(2). https://doi.org/10.1016/j.aspen.2016.03.013 

102.  Switzer, C. M., & Combes, S. A. (2016). Bombus impatiens (Hymenoptera: 

Apidae) display reduced pollen foraging behavior when marked with bee tags 

vs. paint. Journal of Melittology, (62). https://doi.org/10.17161/jom.v0i62.5679 

103.  Lach, L., Kratz, M., & Baer, B. (2015). Parasitized honey bees are less likely to 

forage and carry less pollen. Journal of Invertebrate Pathology, 130. 

https://doi.org/10.1016/j.jip.2015.06.003 

104.  Poissonnier, L. A., Jackson, A. L., & Tanner, C. J. (2015). Cold and CO2 

narcosis have long-lasting and dissimilar effects on Bombus terrestris. 

Insectes Sociaux, 62(3). https://doi.org/10.1007/s00040-015-0404-8 

105.  Cucurachi, S., Tamis, W. L. M., Vijver, M. G., Peijnenburg, W. J. G. M., Bolte, 

J. F. B., & de Snoo, G. R. (2013). A review of the ecological effects of 

radiofrequency electromagnetic fields (RF-EMF). Environment International. 

https://doi.org/10.1016/j.envint.2012.10.009 

106.  Darney, K., Giraudin, A., Joseph, R., Abadie, P., Aupinel, P., Decourtye, A., … 

Gauthier, M. (2016). Effect of high-frequency radiations on survival of the 

honeybee (Apis mellifera L.). Apidologie, 47(5). 



195 
 

https://doi.org/10.1007/s13592-015-0421-7 

107.  Souza Cunha, A. E., Rose, J., Prior, J., Aumann, H. M., Emanetoglu, N. W., & 

Drummond, F. A. (2020). A novel non-invasive radar to monitor honey bee 

colony health. Computers and Electronics in Agriculture, 170. 

https://doi.org/10.1016/j.compag.2020.105241 

108.  IR 2030 - UK Interface Requirements 2030: License Excempt Short Range 

Devices (SRDs). (2023). Ofcom UK. 

109.  Aumann, H., Payal, B., Emanetoglu, N. W., & Drummond, F. (2017). An index 

for assessing the foraging activities of honeybees with a Doppler sensor. In 

SAS 2017 - 2017 IEEE Sensors Applications Symposium, Proceedings. 

https://doi.org/10.1109/SAS.2017.7894090 

110.  Aumann, H. M. (2018). A technique for measuring the RCS of free-flying 

honeybees with a 24 GHz CW Doppler radar. In IET Conference Publications 

(Vol. 2018). https://doi.org/10.1049/cp.2018.0540 

111.  Aumann, H. M., & Emanetoglu, N. W. (2017). The radar microphone: A new 

way of monitoring honey bee sounds. In Proceedings of IEEE Sensors. 

https://doi.org/10.1109/ICSENS.2016.7808865 

112.  Zacepins, A., Brusbardis, V., Meitalovs, J., & Stalidzans, E. (2015). Challenges 

in the development of Precision Beekeeping. Biosystems Engineering. 

https://doi.org/10.1016/j.biosystemseng.2014.12.001 

113.  Meikle, W. G., & Holst, N. (2015). Application of continuous monitoring of 

honeybee colonies. Apidologie. https://doi.org/10.1007/s13592-014-0298-x 

114.  Zacepins, A., Kviesis, A., Pecka, A., & Osadcuks, V. (2017). Development of 

Internet of Things concept for Precision Beekeeping. In 2017 18th International 

Carpathian Control Conference, ICCC 2017. 

https://doi.org/10.1109/CarpathianCC.2017.7970365 

115.  Human, H., Brodschneider, R., Dietemann, V., Dively, G., Ellis, J. D., 



196 
 

Forsgren, E., … Zheng, H. Q. (2013). Miscellaneous standard methods for 

Apis mellifera research. Journal of Apicultural Research. 

https://doi.org/10.3896/IBRA.1.52.4.10 

116.  Zacepins, A., & Stalidzans, E. (2013). Information processing for remote 

recognition of the state of bee colonies and apiaries in precision beekeeping 

(apiculture). Biosystems and Information technology, 2(1). 

https://doi.org/10.11592/bit.130502 

117.  Dineva, K., & Atanasova, T. (2018). Applying machine learning against 

beehives dataset. In International Multidisciplinary Scientific GeoConference 

Surveying Geology and Mining Ecology Management, SGEM (Vol. 18). 

https://doi.org/10.5593/sgem2018/6.2/S25.005 

118.  Kridi, D. S., de Carvalho, C. G. N., & Gomes, D. G. (2016). Application of 

wireless sensor networks for beehive monitoring and in-hive thermal patterns 

detection. Computers and Electronics in Agriculture, 127. 

https://doi.org/10.1016/j.compag.2016.05.013 

119.  Freitas, B. M., Sousa, R. M., & Bomfim, I. G. A. (2007). Absconding and 

migratory behaviors of feral Africanized honey bee (Apis mellifera L.) colonies 

in NE Brazil. Acta Scientiarum - Biological Sciences, 29(4). 

120.  Edwards-Murphy, F., Magno, M., Whelan, P. M., O’Halloran, J., & Popovici, E. 

M. (2016). B+WSN: Smart beehive with preliminary decision tree analysis for 

agriculture and honey bee health monitoring. Computers and Electronics in 

Agriculture, 124. https://doi.org/10.1016/j.compag.2016.04.008 

121.  Robles-Guerrero, A., Saucedo-Anaya, T., González-Ramírez, E., & De la 

Rosa-Vargas, J. I. (2019). Analysis of a multiclass classification problem by 

Lasso Logistic Regression and Singular Value Decomposition to identify sound 

patterns in queenless bee colonies. Computers and Electronics in Agriculture, 

159. https://doi.org/10.1016/j.compag.2019.02.024 

122.  Rafael Braga, A., G. Gomes, D., Rogers, R., E. Hassler, E., M. Freitas, B., & 



197 
 

A. Cazier, J. (2020). A method for mining combined data from in-hive sensors, 

weather and apiary inspections to forecast the health status of honey bee 

colonies. Computers and Electronics in Agriculture, 169. 

https://doi.org/10.1016/j.compag.2019.105161 

123.  Luke, E. P., Kollias, P., Johnson, K. L., & Clothiaux, E. E. (2008). A technique 

for the automatic detection of insect clutter in cloud radar returns. Journal of 

Atmospheric and Oceanic Technology, 25(9). 

https://doi.org/10.1175/2007JTECHA953.1 

124.  Islam, T., Rico-Ramirez, M. A., Han, D., & Srivastava, P. K. (2012). Artificial 

intelligence techniques for clutter identification with polarimetric radar 

signatures. Atmospheric Research, 109–110. 

https://doi.org/10.1016/j.atmosres.2012.02.007 

125.  Cabanes, G., Bennani, Y., Chartagnat, C., & Fresneau, D. (2008). 

Topographic connectionist unsupervised learning for RFID behavior data 

mining. In RFID Technology - Concepts, Applications, Challenges - 

Proceedings of the 2nd International Workshop on RFID Technology - 

Concepts, Applications, Challenges, IWRT 2008; In Conjunction with ICEIS 

2008. https://doi.org/10.5220/0001733400630072 

126.  Susanto, F., Gillard, T., De Souza, P., Vincent, B., Budi, S., Almeida, A., … 

He, J. (2018). Addressing RFID misreadings to better infer bee hive activity. 

IEEE Access, 6. https://doi.org/10.1109/ACCESS.2018.2844181 

127.  Hu, C., Kong, S., Wang, R., Long, T., & Fu, X. (2018). Identification of 

Migratory Insects from their Physical Features using a Decision-Tree Support 

Vector Machine and its Application to Radar Entomology. Scientific Reports, 

8(1). https://doi.org/10.1038/s41598-018-23825-1 

128.  Hu, C., Kong, S., Wang, R., Zhang, F., & Wang, L. (2020). Insect mass 

estimation based on radar cross section parameters and support vector 

regression algorithm. Remote Sensing. https://doi.org/10.3390/rs12111903 



198 
 

129.  Arruda, H., Imperatriz-Fonseca, V., De Souza, P., & Pessin, G. (2018). 

Identifying Bee Species by Means of the Foraging Pattern Using Machine 

Learning. In Proceedings of the International Joint Conference on Neural 

Networks (Vol. 2018-July). https://doi.org/10.1109/IJCNN.2018.8489608 

130.  Gomes, P. A. B., de Carvalho, E. C., Arruda, H. M., de Souza, P., & Pessin, G. 

(2017). Exploiting recurrent neural networks in the forecasting of bees’ level of 

activity. In Lecture Notes in Computer Science (including subseries Lecture 

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 10613 

LNCS). https://doi.org/10.1007/978-3-319-68600-4_30 

131.  Gama, F., Arruda, H. M., Carvalho, H. V., de Souza, P., & Pessin, G. (2017). 

Improving our understanding of the behavior of bees through anomaly 

detection techniques. In Lecture Notes in Computer Science (including 

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics) (Vol. 10614 LNCS). https://doi.org/10.1007/978-3-319-68612-

7_59 

132.  Yang, C., & Collins, J. (2016). A model for honey bee tracking on 2D video. In 

International Conference Image and Vision Computing New Zealand (Vol. 

2016-November). https://doi.org/10.1109/IVCNZ.2015.7761542 

133.  Magnier, B., Ekszterowicz, G., Laurent, J., Rival, M., & Pfister, F. (2018). Bee 

hive traffic monitoring by tracking bee flight paths. In VISIGRAPP 2018 - 

Proceedings of the 13th International Joint Conference on Computer Vision, 

Imaging and Computer Graphics Theory and Applications (Vol. 5). 

https://doi.org/10.5220/0006628205630571 

134.  Westwanska, W. W., & Respondek, J. S. (2019). Counting instances of objects 

in color images using u-net network on example of honey bees. In 

Proceedings of the 2019 Federated Conference on Computer Science and 

Information Systems, FedCSIS 2019. https://doi.org/10.15439/2019F94 

135.  Kulyukin, V., & Mukherjee, S. (2019). On video analysis of omnidirectional bee 

traffic: Counting bee motions with motion detection and image classification. 



199 
 

Applied Sciences (Switzerland), 9(18). https://doi.org/10.3390/app9183743 

136.  Urteaga-Reyesvera, J. C., & Possani-Espinosa, A. (2016). Scorpions: 

Classification of poisonous species using shape features. In 2016 International 

Conference on Electronics, Communications and Computers, CONIELECOMP 

2016. https://doi.org/10.1109/CONIELECOMP.2016.7438563 

137.  Puig, E., Gonzalez, F., Hamilton, G., & Grundy, P. (2015). Assessment of crop 

insect damage using unmanned aerial systems: A machine learning approach. 

In Proceedings - 21st International Congress on Modelling and Simulation, 

MODSIM 2015. https://doi.org/10.36334/modsim.2015.f12.puig 

138.  Alves, T. S., Pinto, M. A., Ventura, P., Neves, C. J., Biron, D. G., Junior, A. C., 

… Rodrigues, P. J. (2020). Automatic detection and classification of honey bee 

comb cells using deep learning. Computers and Electronics in Agriculture, 170. 

https://doi.org/10.1016/j.compag.2020.105244 

139.  Veeraraghavan, A., Chellappa, R., & Srinivasan, M. (2008). Shape-and-

behavior-encoded tracking of bee dances. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 30(3). 

https://doi.org/10.1109/TPAMI.2007.70707 

140.  Blut, C., Crespi, A., Mersch, D., Keller, L., Zhao, L., Kollmann, M., … Beye, M. 

(2017). Automated computer-based detection of encounter behaviours in 

groups of honeybees. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-

017-17863-4 

141.  Boenisch, F., Rosemann, B., Wild, B., Dormagen, D., Wario, F., & Landgraf, T. 

(2018). Tracking all members of a honey bee colony over their lifetime using 

learned models of correspondence. Frontiers Robotics AI, 5(APR). 

https://doi.org/10.3389/frobt.2018.00035 

142.  Schmaranzer, A., & Stabentheiner, S. (1987). Thermographic determination of 

body temperatures in honey bees and hornets: Calibration and applications. 

Thermology, 2. 



200 
 

143.  MARTIN, S. J. (1990). Nest thermoregulation in Vespa simillima, V.tropica and 

V.analis. Ecological Entomology, 15(3). https://doi.org/10.1111/j.1365-

2311.1990.tb00812.x 

144.  Roberts, B. R., & Osborne, J. L. (2019). Testing the efficacy of a thermal 

camera as a search tool for locating wild bumble bee nests. Journal of 

Apicultural Research, 58(4). https://doi.org/10.1080/00218839.2019.1614724 

145.  Lioy, S., Bianchi, E., Biglia, A., Bessone, M., Laurino, D., & Porporato, M. 

(2021). Viability of thermal imaging in detecting nests of the invasive hornet 

Vespa velutina. Insect Science, 28(1). https://doi.org/10.1111/1744-

7917.12760 

146.  Koziarski, M., & Cyganek, B. (2018). Impact of low resolution on image 

recognition with deep neural networks: An experimental study. International 

Journal of Applied Mathematics and Computer Science, 28(4). 

https://doi.org/10.2478/amcs-2018-0056 

147.  Mei, L., Guan, Z. G., Zhou, H. J., Lv, J., Zhu, Z. R., Cheng, J. A., … 

Somesfalean, G. (2012). Agricultural pest monitoring using fluorescence lidar 

techniques Feasibility study. In Applied Physics B: Lasers and Optics (Vol. 

106). https://doi.org/10.1007/s00340-011-4785-8 

148.  Adelabu, S., Mutanga, O., & Adam, E. (2014). Evaluating the impact of red-

edge band from Rapideye image for classifying insect defoliation levels. 

ISPRS Journal of Photogrammetry and Remote Sensing, 95. 

https://doi.org/10.1016/j.isprsjprs.2014.05.013 

149.  Adelabu, S., Mutanga, O., Adam, E., & Sebego, R. (2014). Spectral 

discrimination of insect defoliation levels in mopane woodland using 

hyperspectral data. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 7(1). 

https://doi.org/10.1109/JSTARS.2013.2258329 

150.  Mullen, E. R., Rutschman, P., Pegram, N., Patt, J. M., Adamczyk, J. J., & 



201 
 

Johanson. (2016). Laser system for identification, tracking, and control of flying 

insects. Optics Express, 24(11). https://doi.org/10.1364/oe.24.011828 

151.  Silva, D. F., De Souza, V. M. A., Batista, G. E. A. P. A., Keogh, E., & Ellis, D. 

P. W. (2013). Applying machine learning and audio analysis techniques to 

insect recognition in intelligent traps. In Proceedings - 2013 12th International 

Conference on Machine Learning and Applications, ICMLA 2013 (Vol. 1). 

https://doi.org/10.1109/ICMLA.2013.24 

152.  Silva, D. F., Souza, V. M. A., Ellis, D. P. W., Keogh, E. J., & Batista, G. E. A. P. 

A. (2015). Exploring Low Cost Laser Sensors to Identify Flying Insect Species. 

Journal of Intelligent & Robotic Systems, 80(S1). 

https://doi.org/10.1007/s10846-014-0168-9 

153.  Heupel, M. R., Semmens, J. M., & Hobday, A. J. (2006). Automated acoustic 

tracking of aquatic animals: Scales, design and deployment of listening station 

arrays. Marine and Freshwater Research. https://doi.org/10.1071/MF05091 

154.  Lehmann, E. A., & Johansson, A. M. (2007). Particle filter with integrated voice 

activity detection for acoustic source tracking. Eurasip Journal on Advances in 

Signal Processing, 2007. https://doi.org/10.1155/2007/50870 

155.  Birchfield, S. T., & Gangishetty, R. (2005). Acoustic localization by interaural 

level difference. In ICASSP, IEEE International Conference on Acoustics, 

Speech and Signal Processing - Proceedings (Vol. IV). 

https://doi.org/10.1109/ICASSP.2005.1416207 

156.  Valin, J. M., Michaud, F., Rouat, J., & Létourneau, D. (2003). Robust Sound 

Source Localization Using a Microphone Array on a Mobile Robot. In IEEE 

International Conference on Intelligent Robots and Systems (Vol. 2). 

https://doi.org/10.1109/iros.2003.1248813 

157.  Argentieri, S., Danès, P., & Souères, P. (2015). A survey on sound source 

localization in robotics: From binaural to array processing methods. Computer 

Speech and Language, 34(1). https://doi.org/10.1016/j.csl.2015.03.003 



202 
 

158.  Zhang, C., Florencio, D., Ba, D. E., & Zhang, Z. (2008). Maximum likelihood 

sound source localization and beamforming for directional microphone arrays 

in distributed meetings. In IEEE Transactions on Multimedia (Vol. 10). 

https://doi.org/10.1109/TMM.2008.917406 

159.  Pavlidi, D., Griffin, A., Puigt, M., & Mouchtaris, A. (2013). Real-time multiple 

sound source localization and counting using a circular microphone array. 

IEEE Transactions on Audio, Speech and Language Processing, 21(10). 

https://doi.org/10.1109/TASL.2013.2272524 

160.  Nakadai, K., Matsuura, D., Okuno, H. G., & Kitano, H. (2003). Applying 

Scattering Theory to Robot Audition System: Robust Sound Source 

Localization and Extraction. In IEEE International Conference on Intelligent 

Robots and Systems (Vol. 2). https://doi.org/10.1109/iros.2003.1248800 

161.  Nakamura, K., Nakadai, K., Asano, F., Hasegawa, Y., & Tsujino, H. (2009). 

Intelligent sound source localization for dynamic environments. In 2009 

IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 

2009. https://doi.org/10.1109/IROS.2009.5354419 

162.  Hoshiba, K., Washizaki, K., Wakabayashi, M., Ishiki, T., Kumon, M., Bando, Y., 

… Okuno, H. G. (2017). Design of UAV-embedded microphone array system 

for sound source localization in outdoor environments. Sensors (Switzerland), 

17(11). https://doi.org/10.3390/s17112535 

163.  Strauss, M., Mordel, P., Miguet, V., & Deleforge, A. (2018). DREGON: Dataset 

and Methods for UAV-Embedded Sound Source Localization. In IEEE 

International Conference on Intelligent Robots and Systems. 

https://doi.org/10.1109/IROS.2018.8593581 

164.  Wang, L., & Cavallaro, A. (2018). Acoustic sensing from a multi-rotor drone. 

IEEE Sensors Journal, 18(11). https://doi.org/10.1109/JSEN.2018.2825879 

165.  Ruiz-Espitia, O., Martinez-Carranza, J., & Rascon, C. (2018). AIRA-UAS: An 

Evaluation Corpus for Audio Processing in Unmanned Aerial System. In 2018 



203 
 

International Conference on Unmanned Aircraft Systems, ICUAS 2018. 

https://doi.org/10.1109/ICUAS.2018.8453466 

166.  Michelsen, A., Towne, W. F., Kirchner, W. H., & Kryger, P. (1987). The 

acoustic near field of a dancing honeybee. Journal of Comparative Physiology 

A, 161(5). https://doi.org/10.1007/BF00605005 

167.  LARSEN, O. N., GLEFFE, G., & TENGÖ, J. (1986). Vibration and sound 

communication in solitary bees and wasps. Physiological Entomology, 11(3). 

https://doi.org/10.1111/j.1365-3032.1986.tb00416.x 

168.  Islam, R., Stimpson, A., & Cummings, M. (2017). Small UAV Noise Analysis. 

Humans and Autonomy Laboratory, Duke University, Durham, NC, USA. 

169.  Coggins, K. M., & Principe, J. (1998). Detection and classification of insect 

sounds in a grain silo using a neural network. In IEEE International Conference 

on Neural Networks - Conference Proceedings (Vol. 3). 

https://doi.org/10.1109/ijcnn.1998.687123 

170.  Wang, Y., Huang, Q., Zhang, X., & Ren, B. (2014). Application of insect songs 

in monitoring population density level of Locusta migratoria migratoria 

(Orthoptera: Acrididae). Zoological Studies, 53(1). 

https://doi.org/10.1186/s40555-014-0055-x 

171.  Dong, X., Yan, N., & Wei, Y. (2018). Insect Sound Recognition Based on 

Convolutional Neural Network. In 2018 3rd IEEE International Conference on 

Image, Vision and Computing, ICIVC 2018. 

https://doi.org/10.1109/ICIVC.2018.8492871 

172.  Kulyukin, V., Mukherjee, S., & Amlathe, P. (2018). Toward audio beehive 

monitoring: Deep learning vs. standard machine learning in classifying beehive 

audio samples. Applied Sciences (Switzerland), 8(9). 

https://doi.org/10.3390/app8091573 

173.  Kawakita, S., & Ichikawa, K. (2019). Automated classification of bees and 

hornet using acoustic analysis of their flight sounds. Apidologie, 50(1). 



204 
 

https://doi.org/10.1007/s13592-018-0619-6 

174.  Heise, D., Miller, Z., Harrison, E., Gradisek, A., Grad, J., & Galen, C. (2019). 

Acoustically Tracking the Comings and Goings of Bumblebees. In SAS 2019 - 

2019 IEEE Sensors Applications Symposium, Conference Proceedings. 

https://doi.org/10.1109/SAS.2019.8705973 

175.  Van Goethem, S., Verwulgen, S., Goethijn, F., & Steckel, J. (2019). An IoT 

solution for measuring bee pollination efficacy. In IEEE 5th World Forum on 

Internet of Things, WF-IoT 2019 - Conference Proceedings. 

https://doi.org/10.1109/WF-IoT.2019.8767298 

176.  Mehta, R., Sharifzadeh, S., Palade, V., Tan, B., Daneshkhah, A., & 

Karayaneva, Y. (2023). Deep Learning Techniques for Radar-Based 

Continuous Human Activity Recognition. Machine Learning and Knowledge 

Extraction, 5(4), 1493–1518. https://doi.org/10.3390/make5040075 

177.  Zgank, A. (2018). Acoustic monitoring and classification of bee swarm activity 

using MFCC feature extraction and HMM acoustic modeling. In 12th 

International Conference ELEKTRO 2018, 2018 ELEKTRO Conference 

Proceedings. https://doi.org/10.1109/ELEKTRO.2018.8398253 

178.  Feldman, A., & Balch, T. (2003). Automatic identification of bee movement. 

Proceedings of the 2nd International Workshop on the Mathematics and 

Algorithms of Social Insects. 

179.  Feldman, A., & Balch, T. (2003). Automatic Identification of Bee Movement 

Using Human Trainable Models of Behavior. Mathematics and Algorithms of 

Social Insects. 

180.  Arif Abdul Rahuman, S., Veerappan, J., & Rajesh, R. V. (2016). Classification 

of flying insects with high performance using improved DTW algorithm based 

on hidden Markov model. Brazilian Archives of Biology and Technology, 

59(Specialissue2). https://doi.org/10.1590/1678-4324-2016161054 

181.  Polyniak, Y., Fedasyuk, D., & Marusenkova, T. (2019). Identification of Bee 



205 
 

Colony Acoustic Signals using the Dynamic Time Warping Algorithm. 

ECONTECHMOD: An International Quarterly Journal on Economics of 

Technology and Modelling Processes, 8. 

182.  Ruvinga, S., Hunter, G. J. A., Duran, O., & Nebel, J. C. (2021). Use of LSTM 

Networks to Identify “Queenlessness” in Honeybee Hives from Audio Signals. 

In 2021 17th International Conference on Intelligent Environments, IE 2021 - 

Proceedings. https://doi.org/10.1109/IE51775.2021.9486575 

183.  Gomes, P. A. B., Suhara, Y., Nunes-Silva, P., Costa, L., Arruda, H., Venturieri, 

G., … Pessin, G. (2020). An Amazon stingless bee foraging activity predicted 

using recurrent artificial neural networks and attribute selection. Scientific 

Reports, 10(1). https://doi.org/10.1038/s41598-019-56352-8 

184.  Rosenblatt, F. (1958). The perceptron: A probabilistic model for information 

storage and organization in the brain. Psychological Review, 65(6). 

https://doi.org/10.1037/h0042519 

185.  Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. 

In 3rd International Conference on Learning Representations, ICLR 2015 - 

Conference Track Proceedings. 

186.  Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., 

… Polosukhin, I. (2017). Attention is all you need. In Advances in Neural 

Information Processing Systems (Vol. 2017-December). 

187.  Drucker, H., Surges, C. J. C., Kaufman, L., Smola, A., & Vapnik, V. (1997). 

Support vector regression machines. In Advances in Neural Information 

Processing Systems. 

188.  Breiman, L. (2001). Random forests. Machine Learning. 

https://doi.org/10.1023/A:1010933404324 

189.  Wu, J., Chen, X. Y., Zhang, H., Xiong, L. D., Lei, H., & Deng, S. H. (2019). 

Hyperparameter optimization for machine learning models based on Bayesian 

optimization. Journal of Electronic Science and Technology, 17(1). 



206 
 

https://doi.org/10.11989/JEST.1674-862X.80904120 

190.  Martinez-Cantin, R. (2015). BayesOpt: A Bayesian optimization library for 

nonlinear optimization, experimental design and bandits. Journal of Machine 

Learning Research, 15. 

191.  Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for 

machine learning. 2006. The MIT Press, Cambridge, MA, USA (Vol. 38). 

192.  Stauffer, C., & Grimson, W. E. L. (1999). Adaptive background mixture models 

for real-time tracking. Proceedings of the IEEE Computer Society Conference 

on Computer Vision and Pattern Recognition, 2. 

https://doi.org/10.1109/cvpr.1999.784637 

193.  Kalman, R. E. (1960). A new approach to linear filtering and prediction 

problems. Journal of Fluids Engineering, Transactions of the ASME, 82(1). 

https://doi.org/10.1115/1.3662552 

194.  Fazlali, B., & Eshghi, M. (2011). A Pipeline design for implementation of LPC 

Feature Extraction System based on Levinson-Durbin Algorithm. In 2011 19th 

Iranian Conference on Electrical Engineering, ICEE 2011. 

195.  Cai, J., Luo, J., Wang, S., & Yang, S. (2018). Feature selection in machine 

learning: A new perspective. Neurocomputing, 300. 

https://doi.org/10.1016/j.neucom.2017.11.077 

196.  Javier, R. J., & Kim, Y. (2014). Application of linear predictive coding for 

human activity classification based on micro-doppler signatures. IEEE 

Geoscience and Remote Sensing Letters, 11(10). 

https://doi.org/10.1109/LGRS.2014.2311819 

197.  McLoughlin, I. V. (2008). Line spectral pairs. Signal Processing. 

https://doi.org/10.1016/j.sigpro.2007.09.003 

198.  Makhoul, J. (1975). Linear Prediction: A Tutorial Review. Proceedings of the 

IEEE, 63(4). https://doi.org/10.1109/PROC.1975.9792 



207 
 

199.  Sigurdsson, S., Petersen, K. B., & Lehn-Schiøler, T. (2006). Mel frequency 

cepstral coefficients: An evaluation of robustness of MP3 encoded music. In 

ISMIR 2006 - 7th International Conference on Music Information Retrieval. 

200.  Munkres, J. (1957). Algorithms for the Assignment and Transportation 

Problems. Journal of the Society for Industrial and Applied Mathematics, 5(1). 

https://doi.org/10.1137/0105003 

201.  Williams, S. M., Aldabashi, N., Palego, C., Woodgate, J. L., Makinson, J. C., & 

Cross, P. (2021). Early prediction of bumblebee flight task using machine 

learning. Computers and Electronics in Agriculture, 184. 

https://doi.org/10.1016/j.compag.2021.106065 

202.  Shearwood, J., Williams, S., Aldabashi, N., Cross, P., Freitas, B. M., Zhang, 

C., & Palego, C. (2020). Localization and tracking bees using a battery-less 

transmitter and an autonomous unmanned aerial vehicle. In IEEE MTT-S 

International Microwave Symposium Digest (Vol. 2020-August). 

https://doi.org/10.1109/IMS30576.2020.9223950 

203.  Woodgate, J. L., Makinson, J. C., Lim, K. S., Reynolds, A. M., & Chittka, L. 

(2016). Life-long radar tracking of bumblebees. PLoS ONE. 

https://doi.org/10.1371/journal.pone.0160333 

204.  Klambauer, G., Unterthiner, T., Mayr, A., & Hochreiter, S. (2017). Self-

normalizing neural networks. In Advances in Neural Information Processing 

Systems. 

205.  Platt, J., & others. (1999). Probabilistic outputs for support vector machines 

and comparisons to regularized likelihood methods. Advances in large margin 

classifiers. 

206.  Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. 

Journal of the American Statistical Association, 58(301). 

https://doi.org/10.1080/01621459.1963.10500845 

207.  Williams, S. M., Bariselli, S., Palego, C., Holland, R., & Cross, P. (2022). A 



208 
 

comparison of machine-learning assisted optical and thermal camera systems 

for beehive activity counting. Smart Agricultural Technology, 2. 

https://doi.org/10.1016/j.atech.2022.100038 

208.  Odemer, R. (2022). Approaches, challenges and recent advances in 

automated bee counting devices: A review. Annals of Applied Biology. 

https://doi.org/10.1111/aab.12727 

209.  Struye, M. H., Mortier, H. J., Arnold, G., Miniggio, C., & Borneck, R. (1994). 

Microprocessor-controlled monitoring of honeybee flight activity at the hive 

entrance. Apidologie, 25(4). https://doi.org/10.1051/apido:19940405 

210.  Welch, G., & Bishop, G. (2006). An Introduction to the Kalman Filter. In 

Practice, 7(1). https://doi.org/10.1.1.117.6808 

211.  Mockus, J. (1977). ON BAYESIAN METHODS FOR SEEKING THE 

EXTREMUM AND THEIR APPLICATION. 

212.  Nair, V., & Hinton, G. E. (2010). Rectified linear units improve Restricted 

Boltzmann machines. In ICML 2010 - Proceedings, 27th International 

Conference on Machine Learning. 

213.  Donovan, B. J. (1984). Occurrence of the common wasp, vespula vulgaris (L.) 

(hymenoptera: Vespidae) in new zealand. New Zealand Journal of Zoology, 

11(4). https://doi.org/10.1080/03014223.1984.10428256 

214.  Williams, S. M., Aldabashi, N., Cross, P., & Palego, C. (2023). Challenges in 

Developing a Real-Time Bee-Counting Radar. Sensors, 23(11). 

https://doi.org/10.3390/s23115250 

215.  Aldabashi, N., Williams, S., Eltokhy, A., Palmer, E., Cross, P., & Palego, C. 

(2021). Integration of 5.8GHz Doppler Radar and Machine Learning for 

Automated Honeybee Hive Surveillance and Logging. In IEEE MTT-S 

International Microwave Symposium Digest (Vol. 2021-June). 

https://doi.org/10.1109/IMS19712.2021.9574826 



209 
 

216.  Aldabashi, N., Morton Williams, S., Eltokhy, A., Palmer, E., Cross, P., & 

Palego, C. (2023). A Machine Learning Integrated 5.8-GHz Continuous-Wave 

Radar for Honeybee Monitoring and Behavior ClassificationNo Title. IEEE 

Transactions on Microwave Theory and Techniques. 

217.  Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). 

MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of 

the IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition. https://doi.org/10.1109/CVPR.2018.00474 

218.  Shaughnessy, D. O. (1988). Linear predictive coding. IEEE Potentials. 

https://doi.org/10.1109/45.1890 

219.  Itakura, F. (1975). Line spectrum representation of linear predictor coefficients 

of speech signals. The Journal of the Acoustical Society of America. 

https://doi.org/10.1121/1.1995189 

220.  Vergin, R., O’Shaughnessy, D., & Farhat, A. (1999). Generalized mel 

frequency cepstral coefficients for large-vocabulary speaker-independent 

continuous-speech recognition. IEEE Transactions on Speech and Audio 

Processing. https://doi.org/10.1109/89.784104 

221.  Capaldi, E. A., Smith, A. D., Osborne, J. L., Fahrbach, S. E., Farris, S. M., 

Reynolds, D. R., … Riley, J. R. (2000). Ontogeny of orientation flight in the 

honeybee revealed by harmonic radar. Nature. 

https://doi.org/10.1038/35000564 

222.  Thielens, A., Greco, M. K., Verloock, L., Martens, L., & Joseph, W. (2020). 

Radio-Frequency Electromagnetic Field Exposure of Western Honey Bees. 

Scientific Reports, 10(1). https://doi.org/10.1038/s41598-019-56948-0 

223.  Favre, D. (2011). Mobile phone-induced honeybee worker piping. Apidologie, 

42(3). https://doi.org/10.1007/s13592-011-0016-x 

224.  Khan, M. I., Jan, M. A., Muhammad, Y., Do, D. T., Rehman, A. ur, 

Mavromoustakis, C. X., & Pallis, E. (2021). Tracking vital signs of a patient 



210 
 

using channel state information and machine learning for a smart healthcare 

system. Neural Computing and Applications. https://doi.org/10.1007/s00521-

020-05631-x 

225.  Mathur, A., & Foody, G. M. (2008). Multiclass and binary SVM classification: 

Implications for training and classification users. IEEE Geoscience and 

Remote Sensing Letters, 5(2). https://doi.org/10.1109/LGRS.2008.915597 

226.  Duan, K. B., & Keerthi, S. S. (2005). Which is the best multiclass SVM 

method? An empirical study. In Lecture Notes in Computer Science. 

https://doi.org/10.1007/11494683_28 

227.  Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely 

connected convolutional networks. In Proceedings - 30th IEEE Conference on 

Computer Vision and Pattern Recognition, CVPR 2017 (Vol. 2017-January). 

https://doi.org/10.1109/CVPR.2017.243 

228.  Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for 

large-scale image recognition. In 3rd International Conference on Learning 

Representations, ICLR 2015 - Conference Track Proceedings. 

229.  Schwarz, D., & Rodet, X. (1999). Spectral Envelope Estimation and 

Representation for Sound Analysis-Synthesis. In International Computer Music 

Conference, ICMC Proceedings. 

230.  Isbell, F., Gonzalez, A., Loreau, M., Cowles, J., Díaz, S., Hector, A., … 

Larigauderie, A. (2017). Linking the influence and dependence of people on 

biodiversity across scales. Nature. https://doi.org/10.1038/nature22899 

231.  Riley, J. R., Smith, A. D., Reynolds, D. R., Edwards, A. S., Osborne, J. L., 

Williams, I. H., … Poppy, G. M. (1996). Tracking bees with harmonic radar. 

Nature, 379(6560). https://doi.org/10.1038/379029b0 

232.  Gurbuz, O. D., & Rebeiz, G. M. (2015). A 1.6-2.3-GHz RF MEMS 

reconfigurable quadrature coupler and its application to a 360° reflective-type 

phase shifter. IEEE Transactions on Microwave Theory and Techniques, 



211 
 

63(2). https://doi.org/10.1109/TMTT.2014.2379258 

233.  Braga, A. R., Hassler, E. E., Gomes, D. G., Freitas, B. M., & Cazier, J. A. 

(2019). IoT for development: Building a classification algorithm to help 

beekeepers detect honeybee health problems early. In 25th Americas 

Conference on Information Systems, AMCIS 2019. 

234.  Shearwood, J., Aldabashi, N., Eltokhy, A., Franklin, E. L., Raine, N. E., Zhang, 

C., … Palego, C. (2021). C-Band Telemetry of Insect Pollinators Using a 

Miniature Transmitter and a Self-Piloted Drone. IEEE Transactions on 

Microwave Theory and Techniques, 69(1). 

https://doi.org/10.1109/TMTT.2020.3034323 

235.  Hajovsky, R. G., Deam, A. P., & Lagrone, A. H. (1966). Radar Reflections from 

Insects in the Lower Atmosphere. IEEE Transactions on Antennas and 

Propagation. https://doi.org/10.1109/TAP.1966.1138665 

236.  Wolf, W. W., Vaughn, C. R., Harris, R., & Loper, G. M. (1993). Insect radar 

cross-sections for aerial density measurements and target classification. 

Transactions of the American Society of Agricultural Engineers, 36(3). 

https://doi.org/10.13031/2013.28420 

237.  Morse, D. H. (1971). The Insectivorous Bird as an Adaptive Strategy. Annual 

Review of Ecology and Systematics, 2(1). 

https://doi.org/10.1146/annurev.es.02.110171.001141 

238.  Öckinger, E., & Smith, H. G. (2007). Semi-natural grasslands as population 

sources for pollinating insects in agricultural landscapes. Journal of Applied 

Ecology, 44(1). https://doi.org/10.1111/j.1365-2664.2006.01250.x 

239.  Yang, L. H., & Gratton, C. (2014). Insects as drivers of ecosystem processes. 

Current Opinion in Insect Science. https://doi.org/10.1016/j.cois.2014.06.004 

240.  The Regional Report for Africa on Pollinators and Pollination and Food 

Production. (2016). In IPBES and FAO (pp. 1–49). Bonn, Germany. 



212 
 

241.  Carreck, N., & Williams, I. (1998). The economic value of bees in the UK. Bee 

World, 79(3). https://doi.org/10.1080/0005772X.1998.11099393 

242.  Kairo, G., Biron, D. G., Ben Abdelkader, F., Bonnet, M., Tchamitchian, S., 

Cousin, M., … Brunet, J. L. (2017). Nosema ceranae, Fipronil and their 

combination compromise honey bee reproduction via changes in male 

physiology. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-08380-

5 

243.  Schneider, S. S., & McNally, L. C. (1992). Factors influencing seasonal 

absconding in colonies of the African honey bee, Apis mellifera scutellata. 

Insectes Sociaux, 39(4). https://doi.org/10.1007/BF01240624 

244.  Woodgate, J. L., Makinson, J. C., Rossi, N., Lim, K. S., Reynolds, A. M., 

Rawlings, C. J., & Chittka, L. (2021). Harmonic radar tracking reveals that 

honeybee drones navigate between multiple aerial leks. iScience, 24(6). 

https://doi.org/10.1016/j.isci.2021.102499 

245.  Reynolds, A. M., Swain, J. L., Smith, A. D., Martin, A. P., & Osborne, J. L. 

(2009). Honeybees use a Lévy flight search strategy and odour-mediated 

anemotaxis to relocate food sources. Behavioral Ecology and Sociobiology, 

64(1). https://doi.org/10.1007/s00265-009-0826-2 

246.  King, M. J., Buchmann, S. L., & Spangler, H. (1996). Activity of asynchronous 

flight muscle from two bee families during sonication (buzzing). Journal of 

Experimental Biology. https://doi.org/10.1242/jeb.199.10.2317 

247.  Jankauski, M. A. (2020). Measuring the frequency response of the honeybee 

thorax. Bioinspiration and Biomimetics, 15(4). https://doi.org/10.1088/1748-

3190/ab835b 

248.  Carlson, A. B. (2000). Communications Systems (3rd Editio.). New York, NY, 

USA: McGraw-Hill. 

 



213 
 

 

 



*Published as J. Shearwood, S Williams, N Aldabashi, P Cross, B M Freitas, C 
Zhang and C Palego., "Localization and Tracking Bees Using a Battery-less 
Transmitter and an Autonomous Unmanned Aerial Vehicle," 2020 IEEE/MTT-S 
International Microwave Symposium (IMS), Los Angeles, CA, USA, 2020, pp. 1263-
1266, doi: 10.1109/IMS30576.2020.9223950. 

Appendices 

A - Localization and Tracking Bees Using a Battery-less 
Transmitter and an Autonomous Unmanned Aerial Vehicle* 

 

1. Introduction 

Novel technologies are required to understand the recent declines in pollinators and 

particularly bee species [230]. Although state of the art telemetry systems have 

provided some insights [63], [231], they rely on transmitters that exceed a bee's body 

weight or are unable to cover the entire foraging range. 

Recent studies have achieved considerable size and weight reduction of the 

transmitters by replacing the battery with a compact energy harvester, whilst 

demonstrating localization and near hive monitoring [86]. 

A radio telemetry system designed for the localization and long range tracking of 

honeybees (Apis mellifera) and bumblebees (Bombus spp.) is presented herein. The 

system comprises a miniaturized energy harvester to power a 5.8 GHz bee-wearable 

transmitter. A compact phased-array antenna is combined with a logarithmic detector 

and processing unit to compute the AOA. A built-in WiFi module supports 

autonomous logging for Low Range (LoRa) sensor networks and unobtrusive 

monitoring applications. The fabrication of a custom made housing unit allows for the 

integration of the tracking system to an unmanned aerial vehicle (UAV), which is 

programmed to locate and autonomously follow the emitted signal.  
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2. Miniature Self-powered Radio Telemetry Tag 

The self-powered transmitter tag is shown with its main components in Figure 1 (a). 

To determine the maximum tag weight which honeybees can support, dummy tags 

were 3D printed with various weights and aspect ratios and attached to insects as 

shown in Figure 1 (b). Table 1 reports the results of tests performed to assess flight 

capability which allowed us to determine a maximum tag weight of 35mg.  

This corresponds to approximately a third of A. mellifera's mass (∼95mg). By 

contrast, a ∼80mg tag matching the one in previous research [86] could be carried 

by large insect such as carpenter bees (Xylocopa spp.) (∼240mg) and bumblebees 

(∼200mg), but inhibited honeybees flight. 

 

Figure 1 (a) Transmitter tag component breakdown. (b) Fabricated 3D printed test structure to 
evaluate flight performance under various tag weights. 

Table 1 Comparative assessment of various bees' ability to fly depending on tag weight 

Bee With 80mg tag With 35mg tag 

Honeybee 0% 90% 

Bumblebee 90% 100% 

Carpenter Bee 100% 100% 

 

As a bee's wing-beat frequency varies depending on environmental variables [63], a 

non-resonant energy harvester design was pursued with direct excitation from the 
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insect's thoracic vibration. This eliminated the need for increased tip mass and 

allowed straightforward fabrication of the piezoelectric beam with a uniform section. 

For tag miniaturization a thin (50μm) and flexible FR4-substrate was chosen, which 

reduced weight and physical hindrance whilst enabling easier attachment of the tag 

to the bee's thorax (Figure 2). Bees were temporarily immobilized and placed in the 

sponge slot visible in Figure 2 (a) before the tag was attached using removable glue. 

 

Figure 2 (a) Attachment of the self-powered transmitter tag to a bumblebee (b) simulated 
return loss for transmitting antenna with and without bee. 

The use of a flexible material decreased circuit volume from 9.6mm2 to 0.6mm2, 

whilst reducing tag weight to ∼30mg. Multi-physics optimization ensured the energy 

harvester provided 3.7μW maximum power. Schottky diodes were employed for 

rectification of the harvester's output AC waveform since their low voltage operation 

yields the highest output voltage. Energy was then stored within a 1μF ceramic 

capacitor, specifically chosen for higher energy output within short (∼1s) 

transmission periods before being converted into an RF signal and radiated through 

the transmitting antenna. 
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The antenna was designed to be as small, lightweight and isotropic as possible in 

order to 1) reduce physical hindrance to the bee; 2) minimize transmitter circuitry 

complexity to cope with continuous direction changes during flight. 

The possibility of integrating the antenna and energy harvester was explored for 

weight minimization but ruled out since the high dielectric constant of the energy 

harvester leads to low antenna efficiency and very small bandwidth. A simple 

monopole configuration with a thin wire was considered sufficiently lightweight and 

omnidirectional for the application. The simulated impedance match of the 

transmitting antenna is shown in Figure 2 (b). It can be observed that despite the 

proximity of the bee's body and the piezoelectric material, the transmitting antenna 

offers an acceptable return loss performance at 5.8 GHz. 

 

3. Phased Array and Feeding Network 

For AOA determination we designed and fabricated a multilayer microstrip antenna 

array with phase shifters integrated into the feeding network. Figure 3 shows the 

fabricated antenna, along with the measured and simulated results for the microstrip 

array impedance match. The slight shift in antenna resonance was attributable to 

fabrication tolerances. 

To allow for continuous steering of the antenna radiation pattern, phase shifters were 

integrated into the feed for each element. 

The phase shifter consists of a quadrature coupler loaded by controllable reactive 

loads (varactors) to provide a tuneable 360° phase shift [232]. 
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Figure 3 Fabricated phased array antenna (a), and (b) measured vs simulated return loss for 
microstrip antenna array. (c) Phase shift between input and output port as reactance of circuit 

is changed. 

 

In order to maintain a compact structure, the feeding network substrate material was 

selected with a much higher dielectric constant (Rogers TMM 10i ϵr=9.8) than the 

antenna substrate (Rogers TMM 4 ϵr=4.5). The smaller feed network wavelength 

also allowed the antenna array to maintain appropriate spacing between elements 

(D=0.5λ), thus eliminating any scan blindness and grating lobes. 

In order to achieve reactive load tuning diode varactors were selected based on their 

small size and the ease to solder. The change in active element impedance was 

evaluated for all scan angles of interest to ensure a return loss of < -10 dB for +/-50° 

in azimuth and elevation. 
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The feeding network and simulated phase shift for the integrated phase shifters can 

be observed in Figure 3 (c) confirming the +/- 50° scanning range with load variation 

0.15-1 pF. 

 

4. Autonomous Tracking 

a. Monitoring of Bumblebee Nest through a Stationary Receiver 

A logarithmic detector was used to transduce the received signal power into an 

output voltage. The voltage was fed into a processing unit where the RSSI was 

recorded for each scan angle of the beam. With a receiver sensitivity of -70dBm 

corresponding to an output voltage of 2V, the receiver system was capable of 

operating within a 20m range. To eliminate false readings any AOA estimate with a 

RSSI > 2V, which corresponds to P < -70dBm, was deemed to be erroneous. 

The antenna beam was scanned every 1° in the azimuth plane. Five readings were 

taken per scan angle, an example of which is reported in the inset of Figure 4, and 

the average RSSI reading was computed for AOA estimation. 

In the preliminary tests, the system was mounted on a static support 10m from the 

nest, whilst tagged bees continuously left and returned to the nest (Figure 4). A 

typical flight from and to the hive allowed us to record the azimuth/elevation 

coordinates and record the flight duration (Table 2) along with the associated RSSI 

(not reported). This could be used for: indirect estimation of the foraging time; to 

verify if the recorded flight direction matched the known location of food supplies and 

assess number of trips a bee takes outside the hive each day. Tagged bumblebees 

were able to roam within the nest unhindered by the tag, in contrast with harmonic 

radar telemetry [63] which requires tag removal before the bee can re-enter the nest. 
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Figure 4 Experimental setup to monitor bumblebees entering and leaving the nest with 10m 
separation from the antenna array. Inset figure reports the received signal strength displayed 

as an output voltage vs azimuth scan angle for an estimated AOA of 30°. 

 

Table 2 Recorded angular coordinates and time for tagged bee leaving and returning to hive. 

Take off Landing 

Time Azimuth Elevation Time Azimuth Elevation 

0s 5° 5° 1425s 35° 30° 

3s -12° 17° 1428s 12° 10° 

6s 25° 19° 1431 -20° 22° 

9s N/A N/A 1434s -10° 5° 

Total Flight Time 23.9 minutes 
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By overcoming the cm-range limitation and required transponder-nest proximity in 

typical radio frequency identification (RFID) data loggers [54], the present system 

also demonstrated its potential for unobtrusive data logging. Remote monitoring of 

flower to flower bee-foraging was achieved in a greenhouse environment by 

accessing the static receiver via a LoRa board, which will be presented later. This 

could be additionally correlated to ambient hive (or greenhouse) parameters 

(temperature, humidity, and lighting) for autonomous monitoring of colony health 

[233]. 

 

b. Integration to UAV for Autonomous Dynamic Tracking 

A compact housing unit was designed and fabricated using additive manufacturing to 

allow for the integration of the receiver unit onto a drone as seen in Figure 5. The 

inbuilt software development kit (SDK) allowed for connection of additional sensors 

and microcontrollers via serial universal asynchronous receiver/transmitter (UART) 

communication. This was utilised for sending all captured data from the AOA 

estimation to the drone's processing unit. The data was then stored into a frame, 

encrypted for easy identification of the start and end of a data sequence, and 

transmitted to a remote base station via the drone inbuilt communication system. 

The AOA estimation was determined from decoding the incoming data thus allowing 

determination of the bee's bearing and location relative to the drone. The bearing 

was transmitted back to the drone as a command to update its position. The RSSI 

was also condensed into a heat map, which displayed the estimated AOA in real 

time (Figure 5). 
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Figure 5 (a) And (b). Heat map obtained in real time outlining AOA estimates for the bee's 
position. (c) Antenna array, logarithmic detector and processing unit attached to drone 

approaching the target. 

 

c. Performance of the Autonomous Tracking System 

The autonomous tracking performance involved releasing tagged bees in a plastic, 

semitransparent container 25×15x10cm3, The drone hovered at 10m altitude at 

several locations with horizontal projection ≲ 20m from the tagged bee. When the 

bee flapped its wings inside the box the system was able to locate the target and 

autonomously move towards the location of the tagged bee. The drone 

autonomously updated its bearing and the internal log readings were subsequently 

plotted for two representative experiments (Figure 6 (a)). Further tests were 

conducted to demonstrate the long-range autonomous tracking potential of 

unconstrained targets. Tracking of freely moving tags (borne by an assisting student) 

were achieved over a 50 m range with battery-powered and handheld replicas of the 

tags. As shown by Figure 6 (b) the drone's flight path followed the tag emitter and 

recorded both linear and a zig zag trajectories with an acceptable margin of error 

(+1-5°). The margin of error can be explained by the drone being programmed to 
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simultaneously update its roll, pitch and yaw, generating a deviation between the 

target and drone's path. 

 

Figure 6 Update in drone's position over time while tracking (a) tagged bee flying in a plastic 
container. (b) Student walking a different paths with a handheld transmitter. 

 

Whilst the preliminary tests were limited to a 50m range and up to 25% of typical bee 

flight speed, they suggest that a substantially increased range could be achieved. 

They were also instrumental in implementing additional capabilities such as adaptive 

speed and roll in control into later versions of the tracking code. 

 

5. Discussion 

Besides the moderate tracking error observed within each experiment (Figure 6), the 

tracking performance was observed to vary over repetitions of the same experiment 
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due to AOA estimation errors. However, the target was successfully tracked even 

when the earliest versions of the tracking code resulted in processing and response 

times as high as 2s. The current self-piloting code ensures response times of 1s 

whilst adding adaptive speed and path smoothing control. Therefore, the soon to be 

deployed enhanced system is predicted to enable more efficient tracking of 

unconstrained and nimble bee motion. 

As the system is relies upon harvesting energy from the insect's thoracic vibration 

during flight, localization is only possible when the targets are actively moving, both 

in the static and dynamic receiver scenarios. For dynamic tracking, the drone can be 

programmed to store, or hover above, the last recorded motion location. 

 

6. Conclusion 

A novel solution is herein presented to empower telemetry studies on a variety of 

bee species. The system consists of a battery-less transmitter, a phased array 

antenna operating at 5.8 GHz, and a self-piloting drone acting on the received RSSI 

signal while harvesting real time localization data. Experimental results have 

demonstrated the system capability to track near hive bee coordinates through a 

static receiver approach which can be used for foraging time estimation; 

autonomously converge towards flying bees in a container from up to 20m distance; 

autonomously track freely moving targets over a 50m range. Further work is ongoing 

to improve drone's response and test freely flying bees. 



*Published as N. Aldabashi, S. Williams, A. Eltokhy, E. Palmer, P. Cross and C. 
Palego, "Integration of 5.8GHz Doppler Radar and Machine Learning for Automated 
Honeybee Hive Surveillance and Logging," 2021 IEEE MTT-S International 
Microwave Symposium (IMS), Atlanta, GA, USA, 2021, pp. 625-628, doi: 
10.1109/IMS19712.2021.9574826. 

B - Integration of 5.8GHz Doppler Radar and Machine 
Learning for Automated Honeybee Hive Surveillance and 
Logging* 

 

1. Introduction 

The loss of biomass, which includes the decline of honeybee colonies, strongly 

affects global industry, especially agriculture [1]. Building systems able to assess 

colony activity in real time offers a path to monitor and assess colony health and 

potentially enact stress mitigation procedures. 

Radio telemetry, harmonic radars, and RFID tags have been employed to track 

insects and study their behavior over their entire forage range [63, 203, 234]. 

Nevertheless, there has been growing concern that tagging insects may affect 

behavior negatively. Nectar and pollen load accounts for 35% and 20% of the body's 

weight respectively, and rarely reaches 80% [100]. In addition to the tag's weight, 

other parameters such as its balance, size, drag and even the glue used for 

attachment may affect an insects' take-off ability and overall behavior [63, 101]. 

Radars have been employed from frequency ranges of 5.8GHz to 24GHz for tag-less 

monitoring of honeybees [109, 110, 235, 236]. Incoming and outgoing bees at the 

hive entrance generate a Doppler frequency whose magnitude and duration can be 

correlated to insect motion and activity. However, to the authors knowledge there 

has been no assessment of honeybee (Apis mellifera) RCS at 5.8GHz. This work 

aims at 1) filling this gap considering the relevance in WLAN and 5G applications 

and 2) empowering 5.8GHz doppler radar with machine learning (ML) to facilitate 

honeybee hive unobtrusive and autonomous surveillance.
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2. 5.8 Ghz Doppler Radar 

A block diagram of the 5.8GHz Doppler radar is shown in Figure 1 (a). The Doppler 

radar was built using commercial radio frequency (RF) modules. The radar operated 

with a transmitted power of 30 dBm, while comprising a transmitting (Tx) and 

receiving antenna (Rx) with gains of 12dBi and 14dBi respectively. The received 

signal was down-converted and amplified by an 80dB amplifier with variable gain. 

Radar output was sampled at 44.1 KHz in 16-bit wave format and fed to a laptop for 

processing using an external USB sound card. The choice of 5.8GHz was due to the 

wide availability of off-shelf components, which allows the future integration of the 

components into a single board. The experimental setup shown in Figure 1 (b) 

outlines the hive, the portable radar unit, a data acquisition laptop and a video 

camera to complement the captured radar signal with visual recording of the hive's 

activity. 

 

Figure 1 (a) Block diagram of the 5.8ghz doppler radar (b) experimental setup outlining the 
honeybee hive, the portable radar unit, a laptop for data acquisition and the video camera. 
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3. Honeybee RCS Approximation 

Hajovsky reported honeybee RCSat 9.4GHz from −40 to −45dBsm [235]. Wolf et al. 

[236] assessed the average honeybee RCS to be −65.9dBsm and −61.5dBsm for 

horizontal and vertical polarization, respectively, at 8-12GHz. Since the insects were 

anesthetized, the RCS measurements were not affected by honeybee movements 

and wing beats. Free flying honeybee RCS at 24GHz averaged at −50dBsm for 11 

bees in [110]. On the modeling side, insect RCS calculation is complex due to the 

involvement of multiple shapes, layers and dielectric constants. Since spheres are a 

common radar calibration standard, steel and water spheres were parametrically 

simulated in this study with increasing diameters at 5.8GHz. Additionally, an ellipsoid 

with a fixed height and width of 2mm and 3mm, respectively, was simulated, while 

changing the ellipsoid length to match different honeybee body sizes. Finally, a 

complete honeybee model was simulated to obtain its RCS value. The resulting RCS 

values are shown for different targets in Figure 2. 

 

Figure 2 Simulated (dashed) and measured (symbols) RCS trends for different targets in the 
study. 

 

The simulation results indicated a relatively close value of the water sphere and steel 

sphere RCS at 5.8GHz. The simulated RCS of the 4mm, 3mm and 2mm steel 

spheres were −64.6dBsm, −71.6dBsm and −82.1 dBsm respectively. Critically, the 
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RCS of the 3-4mm diameter steel spheres matched the 10-15mm ellipsoid's RCS (-

75.8 to −63.9dBsm respectively) with a 0.7dBsm difference between the 4mm steel 

sphere and 15mm ellipsoid. 

This suggests the validity of 4mm steel spheres as a model to approximate a 

honeybee's RCS. For further comparison, the simulated honeybee RCS are 

additionally shown in Figure 2 ranging between −70.7 and −67.5dBsm, for honeybee 

length of 10-15mm, respectively. This matches the ellipsoid and steel sphere RCS, 

hence further supporting the adoption of 4mm steel sphere for calibration. 

 

4. Calibration Procedure 

Radar calibration was performed by dropping a 4mm steel sphere vertically from a 

height of 2m and capturing the radar signature of free falling calibration standards 

under the gravitational force Both Tx and Rx were set to point upwards to measure 

the entire free fall duration of the 4mm steel sphere, as illustrated in Figure 3 (c). 

Figure 3 (a) shows the 4mm steel sphere in free fall using the Short Time Fourier 

Transform (STFT). The speed of the 4mm steel sphere in free fall was found to be 

6.26m/s corresponding to a calculated free fall time of 0.64 seconds. The peak 

Doppler frequency was 240Hz. This results in a maximum speed of 6.20m/s, where 

the total time of free fall corresponds to 0.64 seconds. The peak magnitude of the 

free falling 4mm steel sphere was normalized to the value obtained from the 

simulations of the 4mm steel sphere (−64.6dBsm). Consequently, 4mm (n=9), 3mm 

(n=3) and 2mm steel spheres (n=3) RCS values were measured to validate the RCS 

measurement and repeatability. The average values were −64.7, −70 and −79dBsm 

for 4mm, 3mm and 2mm steel spheres. These values were found to be in 

accordance with the simulated RCS values, and were additionally plotted in Figure 2 

as symbols. 
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Figure 3 (a) 4mm steel sphere drop showing a comparison along gravitational acceleration. (b) 
Effect of steel sphere bounce after the initial drop.(c) setup for the free-falling sphere 

experiment. 

 

5. Free Flying Honeybee RCS 

The Doppler radar was placed at a 2m distance facing the entrance of the honeybee 

hive as visible in Figure 1 (b). This allowed monitoring bee behavior that occurred at 

the entrance of the hive. The video recordings permitted visual cross-validation of 

honeybee activity, which were later used to extract honeybee behavior as separate 

wave files. 

Outgoing and incoming events were clearly discriminated through Doppler 

measurements. Bees leaving the hive rapidly flew out accelerating in an ascending 

trajectory, which was observed as an increasing Doppler shift. By contrast, bees 

returning resulted in a decreasing Doppler shift due to deceleration as they 

approached for landing. Figure 4 (a) represents a departing bee event with an 

increasing doppler frequency peaking at 170Hz, which indicates a flying speed of 

15.81km/h. This bee was initially measured to fly at a speed of 1.1m/s as it 

accelerated to 4.39m/s (15.81km/h) with an acceleration of 10.2m/s2. The bee's 

acceleration approached the gravitational acceleration (9.8m/s2) observed when 

dropping the 4mm sphere in Figure 3 (a) (dotted line). By contrast, Figure 4 (b) 
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shows a returning bee measurement, with a decreasing doppler frequency peaking 

at 96Hz, indicating an initial flying speed of 8.93km/h. This bee was observed to 

decelerate from its initial peak speed of 2.48m/s (8.93km/h) to a final 0.7m1s before 

entering the hive. The RCS values measured for both the departing and arriving 

bees (n=164) ranged between −55 to −60dBsm ± 3dBsm, which is close to the 

simulated ellipsoid range and honeybee RCS. 

 

Figure 4 Radar signature for (a) honeybee departing from the hive in a straight ascending line. 
(b) Honeybee returning to the hive entrance in a more errant pattern. 

 

6. Doppler Radar Integration with Machine Learning 

The radar system allowed gathering of consistent data that could be used for hive 

access logging and indirect estimation of foraging time. However, manual correlation 

of doppler signatures with video footage was onerous, prone to human error, and 

impractical for assessing bee activity in the field. Therefore, an automated approach 

based on artificial intelligence was investigated. Experiments were undertaken on a 

small set of labelled audio data files (n = 600). The goal was to identify the hive's 
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outgoing/incoming bees, using the signal intensity and signature as a means of 

identification. A window was used matching the size of the smallest audio file of 

approximately 0.4s to splice the data further into 1250 pieces. A side effect of this 

process was the generation of samples containing only background noise, therefore 

a filter was produced to remove these samples. Additionally, the data was 

normalized based on the maximum signal intensity across files. Image prediction 

based on a neural network containing both pretrained and naïve elements was 

undertaken using spectrograms of the audio, with the aim to predict between 

incoming and outgoing bees [171]. This technique of predicting over visual 

representations of audio signatures is becoming more common, due to the 

substantial improvements in recent image prediction neural networks. Prebuilt 

elements of the well-known MobileNet V2 architecture were not further trained, as 

this was detrimental to results [217]. This can be explained by differences in the data 

used and the real-world object data that such networks are trained upon. More 

typical audio-based machine learning techniques were also explored. The most 

efficient approach was to use random forest, processing the data as Line Spectral 

Pairs (LSPs) [152]. The data was split to a 4:1:1 ratio of training, validation, and test 

data in both cases. The neural network achieved a maximum accuracy of 87.8% with 

a Binary Cross Entropy loss of 0.43 with the learning curve demonstrated in Figure 

5, where an epoch is one full round of training over the entire dataset. The random 

forest approach achieved 81.4% with a loss of 0.45. Losses in these examples 

represent a penalty associated to the degree at which the algorithm was incorrect, 

with the target being zero. The most significant barrier to refining the results were the 

signals containing overlapping behaviours as these were labelled according to the 

strongest element. 
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Figure 5 Learning curve of the fitted model showing a consistent accuracy limit and eventual 
overfitting being at epoch 16. 

7. Discussion 

The average RCS measurements of the departing and arriving bees was −59.06 and 

−59.5dBsm respectively. Variations in the bee's body size, wingbeats and their 

aspect angle with respect to the doppler radar might affect measured RCS values 

[235]. Additionally, factoring in the bee's complex dielectric constant, it is expected 

that the measured RCS deviates from the simulated RCS. Radar integration with ML 

techniques can enhance the probablility of correctly identifying outgoing/incoming 

bees from a hive, automate unobtrusive logging, and potentially allow monitoring of 

more complex behaviors.  

8. Conclusion 

Free flying honeybee RCS was measured using a 5.8GHz doppler radar. Simulation 

results supported using 4mm steel spheres calibration targets, which were measured 

to confirm accurate RCS measurements, and further verified with 3mm and 2mm 

steel spheres measurements. The RCS measurements of free flying bees were 

found to be in in the range of −55 to −60dBsm ± 3dBsm. The integration of the radar 

with ML techniques allowed interpretation of bees leaving/entering the hive with a 

maximum accuracy of 87.8%. These early results show high promise for future 

developments. Further work is undertaken to miniaturize the design and to develop 

future classification algorithms.
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1. Introduction 

The decrease of insect biomass has impacted global industries and agriculture [3, 

10] as insects are relied upon for pollination, nutrients cycling, and derivatory 

functions [7, 237–239]. The significant annual contribution of insects to ecosystem 

services is estimated to range between U.S. $235 and U.S. $557 billion in value 

[240]. Among such insects are bees (Apidae)—known as the most important 

pollinating insects—which include the European honeybee (Apis mellifera) and the 

buff-tailed bumblebee (Bombus terrestris) [6]. Approximately, 80% of global 

pollination services are attributed to honeybees, making them a key component of 

the ecosystem [1, 24, 241].  

Recent findings show that the combinational exposure of stressors inflicts 

detrimental effects on colony health, hive performance, and their population level 

[242]. For example, honeybee absconding, a significant cause of colony loss in 

pollinators, has been linked to intra-colony food pattern changes and foraging 

stresses [243]. The development of monitoring technologies for real-time 

assessment of insect activity is a key element in studies to further increase our 

understanding [86, 234, 244] and manage populations of Apidae.  

Multiple sensors can be used for real-time probing of hive internal or in situ 

parameters, such as temperature, humidity, weight, and activity [112]. Radio 

telemetry, harmonic radars, and radio-frequency identification (RFID) tags have also 

enabled insect tracking and potentially support statistical analysis of their behavior 

over the entire forage range [63, 86, 203]. Nevertheless, there has been concern that 

tagging of Apidae for tracking purposes hinders natural movement and considerably 

affects insect response. 
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A generally adopted guideline prescribes that the tag’s weight should not exceed the 

maximum nectar and pollen load which typically achieves 59% of a honeybee’s body 

weight, but can reach 80% [245]. Thus, even placing tags as light as 30%–50% of 

bee bodyweight can potentially alter their take-off ability, foraging inclination, and 

overall performance [63, 100, 101].  

Moreover, bee catching, optimum tag positioning, and attachment are inherently 

stressful and time-consuming processes in tag-based tracking approaches.  

Tag-free continuous-wave (CW) radar systems have been designed, ranging from 

5.8 to 24 GHz [109, 110, 215, 235, 236] and based on Doppler shift correlation with 

bee’s speed and acceleration. However, such systems were relatively invasive in 

that the radar was placed at the hive’s entrance.  

A primary aim of this work is to develop a comparatively unobtrusive 5.8-GHz CW 

radar to monitor free-flying honeybees at a 2 m range from the hive and facing its 

entrance/exit. The 5.8-GHz-frequency band was chosen as a compromise between 

signal quality, monitoring range, and the wide availability of off-shelf components. 

This allowed expanding our original work [215] by integrating the CW radar into the 

single portable printed circuit board (PCB) in Figure 1 (b). The final aim of this work 

is create an autonomous machine learning (ML)-based radar for long-term data 

collection, supporting continuous hive health monitoring. 
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Figure 1 (a) Block diagram of the 5.8-GHz CW radar and (b) PCB implementation. (c) Setup for 
the hive monitoring experiment. 

 

2. 5.8-GHz CW Radar Design 

The setup of the 5.8-GHz CW radar is shown in Figure 1 (c). An important 

requirement that dictates the design of the CW radar is the radar cross section 

(RCS) of the target. The RCS of honeybees has been experimentally investigated at 

different frequency bands between 5.8 and 24 GHz [109, 110, 215, 235, 236]. At 9.4 

GHz, the RCS of honeybees ranged from −40 to −45 dBsm [235], whereas at 24 

GHz, free-flying honeybees RCS averaged at −50 dBsm for 11 bees [110]. Wolf et 

al. [236] mentioned honeybee RCS at 8–12 GHz to average between −65.9 and 

−61.5 dBsm for horizontal and vertical polarization, respectively. Finally, at 5.8 GHz, 

the RCS of honeybees averaged between −55 and −60 dBsm [215].  
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The 5.8-GHz CW radar was designed with such parameters in mind, while factoring 

in a 2–3 m range from the hive. It was based upon inexpensive commercial radio 

frequency (RF) modules powered by a LiPo battery with switch mode power supplies 

(SMPS) for voltage regulation. This increased monitoring flexibility and allowed 

identification of a wider range of behaviors (e.g., hovering, flight patterns, and 

missing the entrance) than mere entry/exit.  

The IF signal of the double-balanced mixer (DBM) was amplified by a 60-dB custom-

built variable gain amplifier (VGA) with 100-dB common-mode rejection ratio 

(CMRR) and integrated a low pass filter covering our frequency range of interest up 

to 408 Hz. The VGA’s output was recorded in 16-bit wave formats and fed to a 

laptop using an external USB sound card sampled at 44.1 kHz. The recorded wave 

files were processed on a laptop equipped with MATLAB. The 5.8-GHz CW radar 

parameters are summarized in Table 1.  

 

Table 1 5.8-GHz Radar Parameters 

Parameter Parameter Value 

Frequency 5.8 GHz 

Peak transmitted power 28 dBm 

Radar range 2 meter 

Transmitter gain 12 dBi 

Transmitter beamwidth 42°H and V 

Receiver gain 17 dBi 

Receiver beamwidth 32°H and 76°V 

RF Receiver gain 38.40 dB 

Receiver noise figure 2.22 dB 

 

Circuit optimization enabled integrating the functional system in [215] into the 45 × 

40 mm four-layer PCB in Figure 1 (b) with an approximate cost of U.S. $75 and the 

same specifications as the original system.  



237 
 

While millimeter-wave modules afford superior radar resolution, the sensitivity-cost 

trade-off achievable at 5.8 GHz is critical in greenhouse scenarios requiring multiple 

receiver deployment. 

 

3. Predicted Versus Measured Radar Signatures 

A. Doppler Signatures: DBM Receiver 

Although bee flight may involve composite/heterogeneous motion patterns, 

identification of uniform motion segments was a valuable abstraction to guide further 

analysis. Simplified Doppler shift models were first analytically derived by 

considering: ideal point scatterers; elementary motion segments with either uniform 

speed and uniform acceleration or sinusoidally varying acceleration (pendulum 

motion); and representative bee range, speed, and acceleration as extracted from 

previous experiments [215]. 

MATLAB was then used for accurate spectrogram calculation accounting for: target 

range and angular deviation; spherical targets that matched the honeybee’s 

extracted RCS at 5.8 GHz; and power spectral density variation from path loss and 

TX/RX antenna directivity. The availability of measurement data for either real 

honeybees or spherical calibration targets resulted in the spectrogram pairs visible in 

Figure 2 (a) and (b) through (e) and (f) for each elementary motion segment. Notice 

that every modeled motion modulates the backscattered signal phase as a function 

of the motion basic parameters and transmitted signal wavelength 𝜆. Since the 

models presented in Eq. 1–4 express Doppler frequency shift as a proxy for target 

radial speed 𝑣𝑅(𝑡), they effectively describe demodulation of frequency-modulated 

waveforms with 𝛽 =
2

𝜆
 modulation index and 𝑣𝑅(𝑡) modulating signal. Thus, from CW 

radar theory, the expected Doppler shift signature for a target moving at uniform 

radial velocity 𝑣𝑅 and a DBM receiver architecture is of the type 

 
𝑓𝑑1(𝑡)  =  

2𝑣𝑅
𝜆
 =  

2𝑓0𝑣𝑟
𝑐

 Eq. 1 
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where 𝜆 is dictated by the transmitter signal frequency 𝑓0 and the speed of light 𝑐, 

resulting in the predicted spectrogram in Figure 2 (a). The predicted Doppler 

signature for a uniform accelerated motion with radial acceleration 𝑎𝑅 is 

 
𝑓𝑑2(𝑡)  =  

2𝑎𝑅𝑡

𝜆
 

Eq. 2 

leading to theoretical and measured signatures in Figure 2 (c) and (d), respectively. 

The spectrograms in Figure 2 (b) and (d) represent rare examples of bee free flights 

at constant speed (acceleration) in front of the radar over appreciable time spans. 

The predicted Doppler shift for a simple pendulum is as follows, neglecting friction 

over small angle swings: 

 
𝑓𝑑3(𝑡)  =  

2𝑙�̇�

𝜆
 𝑐𝑜𝑠 𝜃 Eq. 3 
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Figure 2 Doppler signatures: (a), (c), and (e) for target motion across elementary segments as 
predicted from CW radar theory + MATLAB models and (b), (d), and (f) for measured honeybee 
metal sphere target. (g) Measured near-hive bee signatures reproducing some of the modeled 

elementary motions. 



240 
 

where 𝑙 is the pendulum length and 𝜃 is the swing angle coordinate. While not 

directly applied in bee flight analysis, such motion type was key to radar calibration 

and RCS extraction. It also supported the analysis of more articulate periodical 

motion patterns which were involved in bee hovering behavior. One such pattern is 

circular motion which was experimentally characterized by forcing pendulum circular 

swings at some distance from the observer. For a target rotating at angular speed ω𝑜 

over a circumference of radius 𝑟 centered at distance 𝑅0 and in the same plane as 

the radar, the predicted Doppler signal is 

 

𝑓𝑑4(𝑡)  =  2ω𝑜𝑟 
𝑠𝑖𝑛 (𝜃 + 𝑡𝑎𝑛−1

𝑠𝑖𝑛𝜃
𝑅0  −  𝑐𝑜𝑠𝜃

)

𝜆
 Eq. 4 

The resulting simulated and measured signatures also appear in Figure 2 (e) and (f), 

respectively, which outlines the resemblance with a simple pendulum motion. 

Field experiments demonstrated the radar’s capability to detect free-flying 

honeybees from a 2 m range and for motion segments comparable to the idealized 

models. Representative instances of flight detection are shown in Figure 2 (g). A 

leaving flight is shown to result in a red shift of 254 Hz corresponding to a speed of 

6.46 m/s (23.25 km/h), which slightly deviated from the linear trend described by Eq. 

1 due to saturation of the leaving speed. Similarly, a returning flight signature 

outlined blue shift from the initial 130-Hz value, corresponding to a speed of 3.35 m/s 

(12.09 km/h), to the final 60-Hz value, corresponding to a speed of 1.55 m/s (5.52 

km/h). The returning bee signal also featured a higher power spectral density 

indicating closer proximity to the hive.  

Notice that the initial linear deceleration trend was followed by bee speed oscillation 

before landing. The stationary, winding, or periodical aspect in similar segments was 

visually confirmed through the camera data and generally branded as “hovering.” An 

even more prominent instance of hovering appears in the inset of Figure 2 (g), 

evoking a spiraling down circular motion signature. Hovering was frequently 

observed both during take-off and landing events, possibly in response to a busy 

hive entrance. Bees were also observed briefly flying out to instantly return to the 
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hive’s entrance, resulting in net zero in/out logging. This spurred the hovering 

classification effort described later. 

 

B. Micro-Doppler Signatures: IQ Receiver 

Micro-Doppler analysis was additionally afforded to disentangle minor motion 

signatures, such as bee thorax vibration and wingbeat, from gross body translation. 

This enabled identification of different insect species (e.g., honeybee versus 

bumblebee), while potentially supporting disambiguation of more complex patterns 

with similar Doppler signals. In order to gain approaching and receding micromotion 

discrimination, a micro-Doppler module was also developed to include a quadrature 

receiver.  

Micro-Doppler signatures of uniform speed flights were well-approximated through 

linear scatterer combination of: constant speed body translation as ruled by Eq. 1 

and harmonic (spring) motion to additionally model wing flapping 

 
𝑓𝑑5(𝑡)  =  

2

𝜆
[𝑣𝑟  +  𝐴𝑤ω𝑤𝑐𝑜𝑠ω𝑤𝑡] Eq. 5 

where 𝐴𝑤 and ω𝑤 are the wingbeat amplitude (∼1 mm) and angular speed (∼2𝜋·200 

Hz), respectively. The ratio of honeybee wings to main body RCS used for micro-

doppler signature prediction was of the order of 1:5, and both motions were radially 

directed in the approximate model. More accurate spectrogram calculation was 

obtained by modeling bee body as a 15-mm-long, 3-mm-wide ellipsoid and wing 

length of 9.7 mm while also allowing both positive and negative Doppler shifts for in-

phase/quadrature (IQ) mixing response.  

Calculations were specifically carried out for a bumblebee, flapping wings at lower 

frequency than typical honeybee (∼175 versus 220 Hz [246, 247]) and approaching 

the IQ receiver at low body speed of 𝑣𝑅 = 0.05 m/s. Overlapping to uniform speed 

translation in Eq. 1 of the harmonic motion in Eq. 5 was more conveniently analyzed 
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through phase modulation (PM) formalism. Hence, a quadrature-carrier description 

of the received micro-Doppler signal had the form 

 𝑥𝑟𝑡 =  𝐴[𝑐𝑜𝑠 (𝛽 𝑐𝑜𝑠 ω𝑤𝑡)  −  𝑠𝑖𝑛 (𝑐𝑜𝑠 (𝛽 𝑐𝑜𝑠 ω𝑤𝑡))] Eq. 6 

where 𝐴 is an RCS-dependent amplitude term and 𝛽 =  A𝑤ω𝑤 ~ 2 for A𝑤 ~ 1 cm is 

the modulation index, thus indicating departure from a narrowband tone modulation 

(𝛽 <   1) scenario. Therefore, standard PM analysis [248] yielded 

 
𝑥𝑟(𝑡)  =  𝐴∑ 𝐽𝑛(𝛽)(−1)

𝑛
2  𝑐𝑜𝑠 (2𝜋(𝑓𝐵  +  𝑛𝑓𝑤

∞

𝑛=−∞
𝐸𝑣𝑒𝑛

))  

+  −  𝐴∑ 𝐽|𝑛|(𝛽)(−1)
𝑛 − 1
2  𝑠𝑖𝑛 (2𝜋(𝑓𝐵  +  𝑛𝑓𝑤

∞

𝑛=−∞
𝑂𝑑𝑑

)) 
Eq. 7 

where 𝑓𝐵 is the frequency shift for the main body translation, and 𝐽𝑛(𝛽) is the 

coefficient for the Bessel function of the first kind. Eq. 7 only slightly deviates from 

standard PM formulas since Eq. 5 forces a 𝛽 cos𝜔𝑤𝑡, rather than the conventional 

𝛽 sin𝜔𝑤𝑡 dependence, and is seen to result in spectral lines at 𝑓𝑤 ± 𝑓𝐵 in Figure 3 

(a). Slow body speed also forces 𝑓𝐵 ≪ 𝑓𝑤 and 𝑓𝑤 ± 𝑓𝐵  ~ 𝑓𝑤, unlike 𝑓𝐵 ≫ 𝑓𝑤 in 

narrowband tone modulation, which underpins the following experimental scenario 

and allows direct wingbeat frequency extraction. 

For experimental validation, a bumblebee was placed in a transparent container 

allowing restrained flight range along with simultaneous video recording of both the 

insect motion and the radar output. Video segments were selected for comparison 

with the radar readouts where the insect was either dashing and rubbing its limbs 

against the box walls without flapping its wings or fluttering/flying through wing 

flapping. The corresponding radar recorded files were processed as a short-time 

Fourier transform (STFT) to extract micro-Doppler signatures with a window length of 

256 samples out of the 44.1k samples and an overlap of 250. Figure 3 (b) represents 

the recorded micro-Doppler signature and clearly outlines the expected features from 

theoretical calculations. 
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Figure 3 (a) Predicted micro-Doppler signal for bumblebee approaching the radar at 0.05-m/s 
constant speed and using IQ receivers. (b) Micro-Doppler signal recorded though IQ mixer for 

mostly fluttering bumblebee motion in a transparent container. 

 

The spectral power density mainly concentrated around the expected 2-Hz 

component corresponding to body fluttering at 0.05 m/s. Although this was 

somewhat cluttered by coexistence of additional motion types (e.g., rubbing of limbs 

against box walls), fluttering was captured in the video footage and precisely timed 

by audio recording of “buzzing bursts.”  

Weaker but clear horizontal bands at ±(𝑛𝑓𝑤 ± 𝑣𝑅) for 𝑛 = 1, 2 confirmed coexistence 

and mixing of the translation and harmonic motions components, as from the model 

in Eq. 5–7. Furthermore, the extracted wingbeat frequency 𝑓𝑤 = 175 Hz matched the 

typical bumblebee range [246].  
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This confirmed the approach applicability to classify insect species, or even micro-

Doppler profiling of individuals within a species. However, due to the late adoption of 

the IQ mixing approach, the ML analysis in later sections could be only supported 

through double-balanced mixing. 

 

C. Classification of More Complex Free-Flight Patterns 

While the elementary motion segments described so far assist identification and 

logging of near-hive activities, free-flying bee patterns are markedly different 

because: uniform motion patterns represent a minority of all recorded motions; 

direction and motion type changes occur frequently and at unpredictable rate; 

individual bee flights and their radar image are heavily influenced by other insect 

flights within the detection cone; nonflying nontargets such as bees crawling (and still 

flapping wings, or buzzing) on the hive walls in the detection cone result in significant 

clutter; and in outdoor experiments, wind is also a source of noise forcing flight path 

alteration, hive and radar setup shaking, and electromagnetic (EM) background (e.g., 

grass, bushes, and branches) fluctuation.  

The specificity of honeybee behavior unpredictability and interference from collective 

dynamics add to the general challenge in radar detection, for example, from warping 

of the received signal due to the antenna radiation pattern. As such, extraction of 

microwave features, from a traditional signal processing standpoint, is a challenging 

task in most outdoor bee detection scenarios. This explains why the ML algorithms 

described in later sections focused on behavioral classifications more than, or 

independently of, direct microwave features extraction. 

Building an ML model to classify simple and separable away/toward and circular 

motion segments results in accuracy in excess of 95%. The availability of analytical 

models to tune upon enables the extraction of Doppler radar features such as 

effective speed, and periodical features with accuracy between 85% (when circular 

motion is included) and 97% (without circular motion). However, the key point is that 

ML is largely unnecessary for such “well-behaved” flight instances where direct 

spectrogram readout allows efficient feature extraction.  
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Pursuing too strict a comparison between traditional signal processing and ML-

extracted features might be misleading and overlook potential opportunities in new 

approaches. ML has the capacity to enable correct behavioral classification even 

when microwave features extraction, whether through traditional processing or ML, is 

impossible. This is largely due to the fact that confirmation from video footage and 

expert beekeeper insight is used for algorithm training even for instances where 

distinct motion types produce virtually identical spectrograms (e.g., radial versus 

circular oscillations).  

Assessing where ML-feature extraction breaks down due to overlapping of multiple 

signals or sheer clutter is a compelling research question. However, the topic 

appears conveniently explorable in a more forgiving scenario than outdoor free-flying 

bee detection. 

 

4. RCS and Range Increase Using Silver Coating 

Additional investigations were directed at increasing the honeybee’s RCS as a 

means to enhance detection range without drastic hardware changes. While higher 

RCS could be achieved at 10.5 or 24 GHz [110], frequency increase was ruled out to 

maintain the low cost and commercial availability of the present components, along 

with coherence with earlier pollinators telemetry systems [86, 215, 234].  

The RCS for spherical targets of different material was first simulated as a function of 

the target diameter using CST Microwave Studio. The simulated RCSs are shown in  

Figure 4 (a) for steel spheres and wooden spheres. The simulated RCS for a full-

wave model of a honeybee is reported in Figure 4 (a). The honeybee’s model length 

was varied between 10 and 15 mm. Interestingly, the bee model matched both the 

amplitude and slope of the 4-mm steel sphere RCS versus size curve. The 4-mm 

water sphere dispersive model (DC 𝜀′ = 78 and 𝜎 = 1.59 S/m) in Figure 4 (a) was 

also extrapolated to match the RCS calculation at 10.5 and 24 GHz in [110].  

Although the simulated RCS of the 4-mm wood sphere was −83.9 dBsm, which is 

below the radar detection threshold (−80 dBsm), coating the wood sphere with a 
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∼100-µm silver layer (𝜎 = 6.30 × 107 S/m) was predicted to increase the RCS by an 

average of 11.7 dBsm and to a detectable −72.06 dBsm.  

 

Figure 4 (a) Simulated RCS values of steel, water, wooded spheres, and a bee. (b) Signal 
amplitude increasing as pendulum target increases in RCS. The four wave files were combined 

to demonstrate the increase in amplitude. 

 

The ∼100-µm coating was obtained through a small brush stroke and validated by 

profilometer measurements to guide later application of silver nanoparticle layers.  
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The simulation results in Figure 4 (a) also show that while the coated wood sphere 

achieved higher RCS compared to the uncoated wood sphere, it featured a 

decisively lower RCS than the 4-mm steel or water sphere.  

Experimental validation of the RCS increase through silver coating was achieved 

through IQ radar detection of target oscillations in a pendulum setup [215]. Targets 

were suspended through a non-metallic support and a thin 15-cm thread placed 0.5 

m from the radar. Oscillations of 30◦ were allowed perpendicularly to the radar 

antenna’s main beam axis and alternatively suspending: no target; a 4-mm wood 

sphere; a 4-mm coated wood sphere; and a 4-mm steel sphere. The results shown 

in Figure 4 (b) indicate that the uncoated wood sphere was poorly detected as its 

RCS was below the minimum detectable signal, resulting in a barely distinct 

signature from the unloaded wire case.  

By contrast, a clear oscillating behavior was detected for the coated wood sphere. 

Finally, the steel sphere showed an even stronger signature in accordance with the 

higher RCS, confirming the simulated trend shown in Figure 4 (a).  

Silver coating was expected to enhance the bee detection range in accordance with 

the modeled RCS increase, also through no hardware modifications. The predicted 

radar detection range for uncoated and coated targets is reported in Figure 5 (a). 

This study informed a theoretical and experimental cost-benefit analysis of using 

coating to increase bee radar detection range. Notice the uncoated bee detection is 

within the approximation of the 4-mm steel sphere, which agrees with [110] and 

[215].  

A coated bee model was developed as suggested in Figure 4 (a) and used to plot 

the curves visible in Figure 4 (a) and Figure 5 (a). Such model aimed at maximizing 

the bee’s coated surface while not impairing its flight capacity nor obstructing the 

breathing ability, by avoiding coating of bee wings and spiracles.  

Feasibility of applying silver coating through a single small brush stroke was 

experimentally tested using (dead) specimens. The scanning electron microscope 

(SEM) photograph shown in Figure 5 (b) outlines a honeybee’s layer of coated hair 

(seta) with length ranging from 300 to 900 µm. The bee’s surface available for 
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coating favors distribution of silver coating in a closely packed arrangement that 

could approach the performance of the coating layers used for the RCS study. As 

shown in Figure 4 (a) and Figure 5 (a), the RCS and detection range improvement 

for a partially coated honeybee could achieve 18 dBsm and ∼4 m, respectively. Such 

enhancement seems potentially interesting to dynamic tracking applications, 

drastically reducing tag load along with the challenges in higher frequency modules.  

Nevertheless, for near-hive monitoring via stationary transceivers, the ∼2-m range 

achieved while avoiding the invasiveness/inconvenience of the coating process 

might be preferable. 

 

Figure 5 (a) Increased detection range of both coated wooden sphere and coated bee 
(displayed in the top right corner). (b) SEM image of honeybee thorax displaying the coated 

honeybee seta. 



249 
 

 

5. Machine Learning 

The volume of data collected using the DBM was suitable for ML. Many data 

quantification techniques are available for audio signals derived from the RF Doppler 

signature, such as line spectral frequencies (LSFs), linear predictive codes (LPCs), 

and Mel-frequency Cepstral coefficients (MFCCs) [218–220]. These were chosen to 

specifically address the lack of directional information in the DBM data.  

Simple temporal features of the signal were additional candidates for ML including 

mean amplitude, rms, zero-crossing rate, short-time energy, spectral centroid, 

kurtosis, skew, standard deviation, mean, variance, and energy. These were 

combined as the temporal data. 

 

A. Binary Classification 

Initial concern was the classification of the signals into two separate classes of bees 

entering the hive and bees leaving. This was not as simple as looking at the direction 

(toward/away from the radar) of flight as insects could move in a completely free 

environment irrespective of the radar. Our previous work looked at using 

spectrograms of the signatures as a means of classifying the radar signals, building 

from the MobileNet V2 architecture [217]. This achieved 88.7% accuracy but was a 

computationally expensive approach. In addition, it was shown that such neural 

networks (NNs) maladapted to this data due to their training on real-world objects 

rather than radar signatures. Spectrograms are a 2-D representation of a 1-D signal, 

whereas image-processing NN is designed primarily to classify 3-D objects 

represented in 2-D. 

To retrain such a network requires a large quantity of data on par with MobileNet’s 

original work. Audio (rather than spectrogram) processing was a feasible alternative 

as all the 5.8-GHz output radar signals contained relevant information at sub-1-kHz 

frequencies. Audio files were subdivided into 0.4-s segments, with each being vetted 

for a minimum signal.  
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The window of 0.4 s was deemed a suitable trade-off in view of the system 

application as a real-time monitor. This window matched our initial observation of the 

smallest complete event in the dataset. Subdividing this event further would risk 

failing to supply complete information to the ML. Larger windows did not offer 

sufficient improvements in accuracy to combat the additional cost in terms of 

samples. For rapid in-and-out signals, the window of 0.4 s emerged as a threshold 

between clear separation and overlapped, unusable samples. Some windows 

without sufficient information, such as tail ends of a signal (representing less than 

5% of the length of the sample), were discarded. This created approximately 700 

bee-in to 600 bee-out signals.  

To generate more data, augmentation approaches were investigated. These 

included adding artificial noise, time shifting, and pitch shifting. The sensitive, RF 

nature of our data meant that noise and pitch alteration could not be enacted without 

compromising the ability for predictions, and thus, time-shifting was used.  

As each signal was 0.4 s long, shifting could be affected at 0.1, 0.2, and 0.3 s, 

allowing for a fourfold volume increase, in addition to balancing the dataset. Support 

vector machine (SVM), random forest, and NN were learning algorithms to generate 

the augmented dataset [187, 188, 204]. A standard train-test split ratio of 4:1 was 

used, with the NN taking an additional 10% of the training data as a validation set.  

Data quantized by the above methodologies were much smaller than spectrogram 

images and therefore did not need the raw predictive power associated with 

MobileNet’s capabilities. A smaller sequential model was chosen, using two densely 

connected layers of 32 neurons each, activated by a scaled exponential linear unit 

(SELU) function. Although rectified linear unit (RELU) was first used as an activation 

function, we noted that SELU performed slightly better across all datasets. This 

difference was small (<2% accuracy) but significant enough to warrant the change. 

The final layer had a dropout rate of 0.5 to minimize risk of overfitting from the 

smaller than ideal number of samples.  

The model itself was optimized using the Adam algorithm due to the number of 

parameters (∼1400 in the case of the MFCC/bee-frequency Cepstral coefficient 

(BFCC) approach) [185]. Larger networks were also tried, both increasing the layer 
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and neuron count, but it was found that the network quickly reached a point of 

overfitting even when increasing the dropout rate significantly.  

For comparison, the random forest and SVM used runtime hyperparameter tuning. 

For each data quantization method, the hyperparameters were chosen via Bayesian 

optimization, which was done on fourfold cross-validation with each cross-validator 

running five times. The random forest used values from the following possible 

hyperparameters: 

1. estimator count between 100 and 1000, in increments of 100;  

2. split criterion of either Gini impurities or entropy for information gain;  

3. the number of features to consider for a split being either the square root or 

log2 of the total number of features.  

Additionally, the SVM hyperparameters were from the following possibilities:  

1. a regularization parameter between 1e-6 and 100; 

2. kernel coefficient of 1e-6 to 100; 

3. polynomial kernel function degree between 1 and 5; 

4. a kernel choice of either linear, polynomial, radial basis function, or sigmoid. 

Initial experiments showed that the MFCC and LSF approaches were the strongest 

predictors with both achieving approximately 85% accuracy. Mel-frequency in MFCC 

refers to the melodic scale used to attune audio to match how it is processed by the 

human ear. The simplest form of this is expressed as 

 
𝐹𝑚  =  𝐶 log10  (1 + 

𝐹

𝐷
) 

 Eq. 8 

where 𝐹𝑚 is the Mel-frequency of natural frequency 𝐹, the constant (𝐶) is 2595, and 

the denominator (𝐷) is 700 in the original equation.  

Though this gave relatively reliable results, it has little to do with MFCCs original use 

of approximating human ear perceived frequency. Our data were from the radar and, 

while stored as audio, did not represent physical sound. The two primary parameters 
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of the equation (the constant and the denominator) allowed for tuning and 

subsequent impact assessment on the final algorithm precision.  

The parameters were changed to 1250 for 𝐶 and 175 for 𝐷 as a test point. These 

were chosen to maintain the new curve close to the original MFCC curve but 

emphasized frequencies below 500 Hz, where most activity was observed. The 

resulting estimate is demonstrated in Figure 6 (a) and resulted in a 2% accuracy 

improvement for the random forest model. At each point, the random forest was 

retrained and tested on the data five times, with each iteration having a bootstrapped 

randomized copy of the data. This ensured that only a mean accuracy was used, 

and the results would be replicable. The generated grid gave a clear indication of the 

optimal parameters to be used as demonstrated in Figure 6 (b), though it is noted 

that Figure 6 (b) has been smoothed via a Gaussian filter to allow improved parsing. 

The results suggest that the best parameters in our case were a constant (𝐶) of 2325 

and a denominator of 260 (𝐷).  

When these parameters were returned into the equation for testing, it showed an 

increased accuracy of 91.1%, an improvement even on the more computationally 

expensive spectrogram approach. The hyperparameters found to achieve these 

results were 900 estimators, entropy as a split criterion, and the square root of total 

feature count being used as a baseline when looking for the best split. A full 

breakdown of results including all algorithms used alongside each quantization 

method is presented in Table 2. The strength of this BFCC technique is that the 

original experiment can now serve as a testbed for when the dataset size is 

increased. Sample points can be taken from the original, computationally expensive, 

modeling and compared to later results to test for deviation, which would indicate 

that the constant and denominator need further refinement. This can be achieved 

without remodeling the parameters entirely. 
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Figure 6 (a) Natural versus modified frequency values as produced by altering the standard 
Mel-frequency algorithm, showing the original difference, the first estimate, and the eventual 

best version. (b) Plot of the two parameters of the MFCC algorithm (constant and denominator) 
and the effect that their change has on the accuracy of results. The z-axis shows the absolute 

difference between the accuracy and loss of the trained random forest. 
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Table 2 Accuracy and Loss breakdown for different learning algorithms and classification 
approaches. 

  Binary 

Classification 

Ternary 

Classification 

Algorithm Approach Accuracy 

(%) 

Loss Accuracy 

(%) 

Loss 

Neural Network 

LPC 69.02 0.4787 66.54 0.5896 

LSF 85.48 0.3647 89.22 0.2933 

MFCC 79.01 0.4718 58.36 0.6636 

BFCC 79.77 0.4528 58.18 0.6498 

Temporal 72.05 0.5602 52.23 0.6293 

Random Forest 

LPC 73.42 0.5979 65.43 0.9348 

LSF 84.66 0.4634 88.85 0.7117 

MFCC 85.23 0.4255 63.20 0.9091 

BFCC 91.13 0.3693 63.75 0.8943 

Temporal 70.68 0.5750 65.80 0.8645 

Support Vector 

Machine 

LPC 55.61 0.6590 65.80 0.9149 

LSF 67.67 0.5066 93.37 0.2667 

MFCC 63.56 0.5566 58.36 0.9126 

BFCC 71.23 0.5145 58.29 0.8930 

Temporal 64.38 0.5806 52.42 0.9927 

 

B. Ternary Classification 

Adding hovering to entry and exit movement was deemed a critical improvement to 

the system. Hovering is defined as all behavior where the bee might fly close to the 

entrance of the hive but make no attempt to enter or leave the area. The bee might 

move closer, or further away, from the radar. It might also move in and out of the 

detection cone rapidly or stay in view for prolonged periods. In essence, the bee 

moves freely causing signals that resemble those of bees entering and leaving as in 

Figure 7 (a). Classifying this behavior is valuable in both a commercial and research 
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setting, first by removing the potential for these hovering flights to be falsely 

classified as entry and exit. In addition, it may prove that standalone hovering flights, 

or hovering before leaving, can be attributed to bee orientation flights, which can be 

a good indicator of growth, measured by the rate of young bees first leaving the hive 

[221]. 

Following the previous procedure of windowing, 200 samples were recovered of 

strictly hovering behavior. It should be emphasized that we also revisited the original 

data and split any samples that contained hovering and either of the other types. To 

balance the dataset, samples of hovering were given additional time shifts of 0.15 

and 0.25 s creating an approximate equilibrium between all three classes. With log 

loss being unsuitable for ternary predictions, and to find comparable loss values 

between ML models, hinge loss was chosen as a suitable replacement [226]. It was 

observed from the results that both MFCC and BFCC algorithm lost almost all 

predictive power, in contrast to the binary results. At best, these techniques were 

closely matched at 64% accuracy.  

Full accuracy and loss values are provided in Table 2 for each learning algorithm 

alongside each quantization method.  

However, LSFs improved significantly over binary results. An improvement was seen 

in SVM prediction, with an achieved accuracy of 93.4%. Not only is this the best 

result in ternary results, but it is also a significant improvement in prediction across 

all models trained.  

The hyperparameters found for this accuracy were a regularization parameter of 

13.9, a polynomial degree of 2, and a kernel coefficient of 25.2, using a polynomial 

kernel.  

These results appear as an outlier for SVM, both from the binary (best result 71.2%) 

and ternary (second-best result 65.8%) classifications. The SVM was trained in 15 

separate instances with separate permutations of test and train data. This 15-fold 

cross-validation returned an average accuracy of 91.02% with a loss of 0.3046. Even 

when moving 20% additional random data from the training set into the testing set, 

for a 3:2 ratio of train and test, the accuracy only dropped to 89.5% with a loss of 
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0.3774. The results are also supported by the NN that achieved 89.2% accuracy and 

0.2933 loss, only trailing the SVM results slightly. 

The random forest also achieved 88.9% accuracy, though with significantly higher 

loss. The final step for ML was to compare with the potential of the previous 

spectrogram approach. The spectrogram system was expanded to incorporate three 

classes with no other changes with respect to the previous work [215]. This three-

class NN system achieved an accuracy of 75.5%, much below its original two-class 

success of 88.7%.  

A full visual breakdown of the results across both works is demonstrated in Figure 7 

(b). The spectrograms accuracy reduction for three-way classification is likely due to 

the limitations in image resolution and lack of visual difference between the three 

classes.  

In theory, the availability of both positive and negative frequency shifts enabled by IQ 

data would likely increase spectrogram diversification and classification accuracy. 

However, this would come at the expense of increased computational costs 

associated with image processing NNs.  

Finally, a higher resolution analog-to-digital converter (ADC) and a higher frequency 

radar providing a higher RCS for honeybees are expected to overcome the 

limitations in image resolution. 
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Figure 7 (a) Visualization of a bee hovering in front of a hive. The bee might come closer or 
move further away in addition to its other movements. (b) Visual plot of the progress from two 
to three classes across all included audio quantization methods, in addition to two benchmark 

lines for comparison to the NN, spectrogram method featured in the previous work. 

C. ML Summary 

Results from both binary and ternary (audio-based) classifications show that the 

dataset has potential to be used in ML applications. In particular, the processed 

Doppler data have the potential to make predictions more accurate enabling species 

identification and monitoring of traffic in a more diverse area, such as wild woodland.  

A real-time implementation of either binary or ternary classification to monitor hive 

entrance activity overextended periods of time would make for an interesting 

research topic, especially correlating activity to several other metrics such as hive 

health, pollination success, and reproductive success. The present algorithms 
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reliance on audio-frequency rather than image/spectrogram processing is a key 

enabler for edge computing architectures. Similarly, the cost-capacity trade off 

achieved at 5.8 GHz benefits from the requirement for processing boards with lower 

data compression than in higher frequency systems.  

Commercially, being able to monitor traffic would provide information on which hives 

are inactive and in need of replacement for maximum pollination efficacy.  

The future availability of IQ data could potentially support a comparative study of our 

ML-based ternary classification approach to classical signal processing techniques 

such as hidden Markov model (HMM).  

It should be noticed that the application of HMM to the DBM data to detect entering, 

leaving, and hovering motion resulted in very poor accuracy of 53%. By providing 

insight on bee’s direction, IQ data would allow for more robust classification 

algorithms ultimately ushering higher prediction accuracy. 

 

6. Conclusion 

This article demonstrates that the current 5.8-GHz CW radar can be deployed to 

monitor free-flying honeybee activity. This allows long-term data collection that 

facilitates hive surveillance. The radar system was able to identify different near-hive 

behavior such as leaving, entering, and hovering. In addition to the ability to record 

free-flying honeybees, the radar was also capable of detecting micro-Doppler signals 

associated with bee wing/limb motion, using both a DBM and an IQ mixer. The 

developed simulation model accurately predicted calibration target RCS and 

detection range increase when adding silver coating whose applicability was both 

theoretically and practically explored.  

The volume and quality of the data collected by the radar using the DBM setup were 

suitable for ML analysis, which was investigated in depth. The BFCC algorithm 

resulted in the highest classification accuracy of 91.13% and loss of 0.3693 when 

using the random forest algorithm in binary classification. In ternary classification, the 

LSF approach exhibited the highest accuracy rate of 93.37% and the lowest loss of 
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0.2667 when using the SVM algorithm. It is believed that IQ data, higher ADC 

resolution, and advanced signal processing techniques could further improve the 

already considerable accuracy rate.  

Due to the potential of both real-time hive status monitoring and complex behavior 

classification, the system can support the extraction of behavioral data as a proxy for 

important hive health metrics. Real-time and automated monitoring could additionally 

provide beehive owners with data on inactive hives or potential need for human 

mitigation. This would not only assist bee farms in hive surveillance tasks; it would 

also empower soft fruit industry stakeholders with innovative means to monitor 

biological pollinator behavior and efficiency at relevant locations and/or the impact of 

specific flower patches and polytunnels settings to increase the overall yield. 




