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ABSTRACT 

Wastewater-based epidemiology (WBE) represents an effective complementary tool for the 

surveillance of infectious diseases when the capacity of conventional clinical testing is limited 

or when there is a significant proportion of infectious asymptomatic cases in the community 

being monitored. Two of the current challenges of WBE is understanding how the wastewater 

matrix affects virus recovery and how to translate the wastewater results into a number of 

infected individuals.  

To address these challenges, wastewater surveillance was undertaken at a large regional 

hospital (Ysbyty Gwynedd) in Wales, UK. The samples were analysed using qPCR for three 

viruses of public health concern: influenza A virus, norovirus GII (NoVGII) and SARS-CoV-2. 

Additionally, the concentrations of ammonium-nitrogen and orthophosphate and the faecal 

indicator, namely crAssphage, were trialled as estimates for human urine or faecal load (i.e. 

population captured). The mathematical models to estimate the population numbers 

included empirical equations following the Central Limit Theorem premise (EMCLT) and three 

separate Monte-Carlo-Bayesian approaches (MCBA). Additionally, pH, electrical conductivity 

(EC) and turbidity were also measured to characterise the wastewater matrix. 

Modelling based on an adaptive neuro-fuzzy interference system was used to assess the 

impact of wastewater parameters on virus recovery, and literature research was used to 

interpret the relationship. Ammonium and phosphate had a positive modelled association on 

virus recovery, likely due to their concentrations being correlated with the number of 

individuals shedding into the wastewater system. SARS-CoV-2 and crAssphage detection was 

greatest in the pH range 7.6 – 8.5 and from 6.8 – 8.5, respectively. Turbidity was not 

associated with SARS-CoV-2 but was with crAssphage, which was attributed to the association 

of the latter with faecal matter. EC was positively associated with the recovery of both viruses, 

starting at >0.75 mS/cm due to soluble organic matter and ions inhibiting virus sorption. 

However, it also reflects the capture of human effluent, which has a high EC value (ca. 20 

mS/cm). 

CrAssphage-based total population estimates were within the expected boundaries in 35.7% 

of cases, whereas ammonium and phosphate gave significant overestimates with 

considerable fluctuations likely due to unknown sources of discharge. One MCBA provided 

realistic results for NoVGII and influenza A virus, whereas two other MCBA and the EMCLT 

provided promising results for SARS-CoV-2 and crAssphage. For validation, the SARS-CoV-2 

estimates were compared with COVID-19 clinical cases in the region of Gwynedd, whereas 

the influenza A virus estimates were compared with national cases. The infection numbers 

were converted into proportion of the total population by dividing the estimates with the 

crAssphage-based estimates or the clinical numbers by the census data of Gwynedd or Wales. 

For influenza A, RNA concentrations in wastewater did not coincide with the increase of cases 

in Wales, probably due to low virus detection rates. Hence, the clinical validation was not 

successful. When the SARS-CoV-2 estimates were overestimated, it was likely due to 

underestimated crAssphage estimates of the total population. When converting to percent 
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changes, there was a significant correlation between the estimated and reported trends, 

pointing out to the potential suitability of the models. However, validation with clinical data 

may be difficult in a hospital setting due to a dynamic population, a residential area being 

more suitable. 

The study has expanded on the usefulness of MCBA and EMCLT for WBE, and providing their 

adjustments, particularly normalising virus concentration, they could be implemented for 

routine surveillance. They are useful in settings with dynamic populations, such as a hospital, 

where predictions cannot be made about the population infection susceptibility. Despite the 

assessed impact of physico-chemical parameters on virus recovery, the wastewater matrix is 

complex and requires a more comprehensive study that explores other parameters (e.g., bio-

chemical oxygen demand, total organic carbon) and investigates mathematical relationships. 
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1. Introduction 

Epidemiology is a field concerned with the prevalence of various diseases in populations and 

allows healthcare practitioners to take informed decisions, plan strategies, and adopt policies 

in order to prevent the spread of diseases and to improve public health. 

Within the context of epidemiology, wastewater-based epidemiology (WBE) has emerged, 

and it is a rapidly developing field. One of the earliest uses of WBE can be dated back to 1939 

for poliovirus surveillance, and it has been the major monitoring tool for poliovirus since 

(Singer et al., 2023; Klapsa et al., 2022). Later, in the 1990s, it evolved to allow the monitoring 

of household liquid waste and illicit drug use (EMCDDA, 2022).  Currently, one of its largest 

applications is the surveillance of infectious diseases. During the COVID-19 pandemic, the 

monitoring of SARS-CoV-2 through wastewater proved to be essential in many countries for 

informing public health responses (Figure 1) (Singer et al., 2023; O’Keeffe, 2021). Other 

applications include for surveillance of antimicrobial resistance, chemicals exposure and for 

estimating drug and pharmaceutical consumption (O’Keeffe, 2021). 

Generally, WBE consists of analysing wastewater to gather information on community health. 

With the COVID-19 pandemic, where the proportion of unreported cases was estimated at 

92.9% (Maugeri et al., 2020), and with the need to prepare for future endemics or pandemics, 

the importance of alternative epidemiological surveillance tools became more evident. 

Thereby, WBE may represent an effective tool for epidemiological surveillance especially 

when used in conjunction with the conventional methods.   

Currently, WBE provides data about geographical and temporal trends, however, this paper 

aims to go beyond trends, and to rationalise the data collected from the wastewater analysis, 

the final aim being whether the actual number of infection cases can be inferred. 

 
Figure 1. Infectious disease monitoring with wastewater-based epidemiology. Upon exposure of the 
population to infectious diseases (or chemicals) and subsequent infection spread, the population 
contributes to wastewater with specific markers that can be identified. The wastewater is either 
sampled at a wastewater treatment plant (WWTP) or at any point before that. After sampling, it is 
transferred to a laboratory for analysis which allows for an estimation of the disease spread in the 
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community, data which can be analysed complementary to clinical-based epidemiological surveillance 
methods. Image created with BioRender (2024). 
 

1.1 Comparative evaluation of wastewater-based epidemiology 
Wastewater samples can provide time-averaged estimates of disease load in the whole 

population within an individual sewage catchment (i.e., sewershed), especially when 

composite samples (i.e. small volumes collected and mixed at regular time intervals) are 

collected (EMCDDA, 2022). This provides a cost-efficient and quick alternative to mass clinical 

testing when that is not viable, such as due to economic or logistics reasons (Shrestha et al., 

2021). Additionally, since wastewater testing is anonymous and less invasive, WBE may 

overcome ethical barriers (Sims & Kasprzyk-Hordern, 2020). For example, the advantage over 

epidemiological surveillance based on questionnaires or surveys is that it eliminates the risk 

of incomplete disclosure or data fabrication by respondents due to fear of stigmatization 

(O’Keeffe, 2021). When comparing to sentinel surveillance or clinical-based surveillance, WBE 

has an advantage when the clinical testing capacity is limited, or the asymptomatic cases 

represent a significant portion of infections. Some studies have also used WBE to initiate mass 

clinical testing (Diemert & Yan, 2020; Schmitz et al., 2021; Shrestha et al., 2021). WBE can also 

offer more timely epidemiological data than sentinel or clinical-based surveillance, which 

allows to detect an outbreak 4-5 days earlier (Morvan et al., 2022). It is generally explained 

by a bigger delay from specimen collection to reporting date in clinical-based surveillance and 

due to the transmission and viral shedding occurring before the onset of symptoms (He et al., 

2020; Peccia et al., 2020). Therefore, public health responses, such as increased testing or 

lockdown measures, can be implemented in a timely manner.  

On the other hand, disadvantages are that there is variability and uncertainty in the pathogen 

degradation rate, pathogen residency in the sewage system, infection incubation period, 

infection stage and pathogen excretion, environmental factors, and variation in the 

concerned population (Li et al., 2021; Wade et al., 2022).  While uncertainty was previously 

quantified (20-40%) and disentangled in numerous modelling papers, it remains a topic of 

further research to allow for an accurate translation of wastewater concentration into 

prevalence in the population (Joung et al., 2023; Li et al., 2021; Nourbakhsh et al., 2022). 

Depending on the target, it can also be challenging to select the biomarker since it should be 

relatively stable and sufficiently abundant in wastewater (Sims & Kasprzyk-Hordern, 2020). A 

disadvantage identified in some studies is the significant time-lag between data collection and 

data analysis (Sims & Kasprzyk-Hordern, 2020). However, with proper logistics as 

demonstrated at the “Wales Environmental Wastewater Analysis for Surveillance and Health” 

(WEWASH) (Welsh Government, 2023), wastewater samples can be processed and analysed 

within 24 – 48 hours from collection, allowing for timely data reporting.  

 

1.2 Targeted Viruses 
The quantitative detection of viruses in wastewater provides an assessment of viral 

prevalence and distribution in a population (Morvan et al., 2022; Singer et al., 2023). 
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However, it may also provide other information, such as the efficiency of disinfection 

procedures (e.g., WWTP processes) and an assessment of the down-stream risk of 

waterborne viral contamination of recreational and bathing waters (Corpuz et al., 2020).  

The focus of this study will be influenza A virus and SARS-CoV-2 as they represent major 

respiratory viruses of increasing public concern due to their endemic and pandemic potential, 

and the damage it can cause to society in terms of economic losses, public health and life 

satisfaction. Norovirus GII (NoVGII) is another target of this study as this is the predominant 

norovirus genotype responsible for gastroenteritis (Huhti et al., 2011). Noroviruses have 

several transmission routes (e.g., food-borne, person-to-person), a low infectious dose, high 

shedding rates, and relatively high environmental stability, hence are difficult to prevent and 

contain (Barclay et al., 2014). This renders norovirus the most common cause of sporadic 

gastroenteritis and outbreaks of acute gastroenteritis in the UK (Barclay et al., 2014). Hence 

the rapid identification of norovirus outbreaks is essential in containing its further spread.  

Viral abundance and diversity in wastewater are dependent on the virus pathophysiology 

such as the organ system infected (e.g., noroviruses and the gastrointestinal system), the 

route of infection, and the extent of the spread within the population (Corpuz et al., 2020). It 

also should be noted that virus structure (e.g. enveloped vs non-enveloped) also determines 

its prevalence in wastewater by defining its environmental stability. Therefore, to understand 

virus behaviour in the sewage system, it is necessary to understand infection at both an 

individual level and at a population level. 

 

1.2.1 Influenza A Virus 
Influenza A virus is an enveloped ssRNA virus and was responsible for the 1918 Spanish Flu 

pandemic which resulted in an estimated >50 million deaths and 500 million infection cases 

globally (CDC, 2018; Blümel et al., 2009). 

Influenza is a respiratory infection, 

individuals being infectious commonly for up 

to four days after the onset of symptoms 

(Mayo Clinic, 2022a). Common symptoms 

include headaches, fever, dry persistent 

cough, rhinitis, myalgia, pharyngitis and 

fatigue (Mayo Clinic, 2022a). Influenza 

viruses are capable of antigenic evolution, or 

mutations, through drift and shift events, 

which are characterised by small changes 

and, respectively, considerable genome 

changes (Blümel et al., 2009), hence being of 

significant public health concern. Unlike 

antigenic drifts to which the population is 

likely to have already formed partial 

immunity, antigenic shifts strains are more 

dangerous due to most of the population 

Figure 2. Influenza A virus cross-species 
transmission. The cross-species transmission of 
influenza A virus depends on the strain and is 
usually coupled with antigenic drift or shift events, 
thereby eliciting fewer immune responses. Image 
and Data Source: (Long et al., 2019). 
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having little to no immunity against them. Additionally, influenza A virus can infect other 

species than humans (i.e., birds, horses, pigs and humans), a cross infection likely contributing 

to an antigenic shift (Figure 2) (Blümel et al., 2009). For example, the 1918 H1N1 “Spanish 

Flu” and the 1968 H3N2 “Hong Kong Flu” were of avian origin (Short et al., 2015), while the 

2009 N1H1 “Swine Flu” pandemic was of combined avian, swine and human origin (Mayo 

Clinic, 2021). And it is even believed that the cross-species transmission such as of the H5N1 

avian influenza not only has the future capacity to become a human infectious disease but 

also that of global pandemic level (Riedel, 2006).  

 

Two potential ways in which influenza A virus localises in the gastrointestinal system and is 

being shed in faeces, and later in wastewater, are through haematogenous dissemination to 

organs and through replication in intestinal cells (Minodier et al., 2015). In the latter case, as 

demonstrated in vitro, specific receptors, i.e., sialic acid-α2,6-galactose-terminated 

saccharides, localised on the epithelial cells of the human gastrointestinal system allow for 

virus binding and subsequent cellular infection and viral replication (Minodier et al., 2015). 

 

A study detected influenza A and B viruses in 36.4% of faecal samples from 22 individuals with 

the mean virus copy number being 1.0x106 gene copies (gc) per g stool (Hirose et al., 2016). 

Four studies recorded lower mean values, these being 4 ± 0.8 log10 copies/g stool, 

6.5 ± 2.7 × 104 copies/ml of faecal suspension, 3.2 × 104 copies per gram stool, and 1.44 x 104 

gc/ml (Chan et al., 2011; al Khatib et al., 2021; Chan et al., 2009; To et al., 2010). This is 

consistent with another study recording varying values of 2.5x104-4.2x106 gc/g of stool (Arena 

et al., 2012). Therefore, the high titres and abundance of virus in stool makes influenza viruses 

a good WBE target. 

 

1.2.2 SARS-CoV-2 
SARS-CoV-2 is an enveloped ssRNA virus and is responsible for the ongoing COVID-19 

pandemic with more than 627 million confirmed cases and 6.5 million deaths as of 26th Oct 

2022 (WHO, 2022). Moreover, as new variants continue to appear, it is likely to that the 

infection cases will surge in a seasonal pattern (Murray & Piot, 2021). Symptoms are flu-like 

or cold-like, commonly lasting up to two weeks, and include fever, continuous tussis, ageusia, 

hyposmia, fatigue, myalgia, headache, pharyngitis, rhinitis (NHS, 2022).   

 

SARS-CoV-2 is occasionally shed in urine (<5% of COVID-19 cases) but more often it can lead 

to a gastrointestinal infection and is shed in faeces (30-60% of cases) (Gupta et al., 2020; 

Zhang et al., 2021; Guo et al., 2021; Jones et al., 2020; Anjos et al., 2022). SARS-CoV-2 infects 

cells through binding to the angiotensin-converting enzyme 2 (ACE2) receptor, followed by 

activation of the cell entry process mediated by the host-cell protease enzymes, i.e., TMPRSS2 

and lysosomal proteases cathepsins (Scudellari, 2021). These are expressed on the surface of 

respiratory cells, particularly ACE2 and TMPRSS2 on lung alveolar type 2 cells, oesophageal 

upper epithelial and gland cells (Scudellari, 2021; Zhang et al., 2020). An analysis of single cell 

co-expression of ACE2 and TMPRSS2 found that these proteins are abundantly expressed in 
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the enterocytes of the ileum and colon regions of the gastrointestinal systems (Zhang et al., 

2020). Moreover, ACE2 is expressed on all regions of the small intestine, and in an experiment 

involving human small intestinal organoids, SARS-CoV-2 demonstrated its capacity to 

effectively infect all enterocytes (Hamming et al., 2004; Lamers et al., 2020). Together, this 

evidence demonstrates SARS-CoV-2 infection and presence in the gastrointestinal system, 

and subsequent SARS-CoV-2 faecal shedding. 

 

Different studies report different prevalence of SARS-CoV-2 in faeces. For example, a study in 

China from data gathered on a 93 patients cohort reported a detection rate of 59% while 

another study in Liverpool, UK reported detecting SARS-CoV-2 in 18% of COVID-19 infections 

(Guo et al., 2021; Vaselli et al., 2021). The shedding rate in faeces varies among different 

studies from 102 to 107 gc/ml, the variation depending on the severity of the infection (Jones 

et al., 2020). A study found that 3 patients had a SARS-CoV-2 concentration of 6x105 to 7x106 

gc/g stool (Zang et al., 2020). While another two studies reported concentrations of up to 7.5 

log10 gc/g stool (Wölfel et al., 2020; Han et al., 2020). 

 

A study found that the sputum is a significant source of SARS-CoV-2 in wastewater (Li et al., 

2022a). Simulations of maximum theoretical virus concentration in wastewater that account 

for sputum and faecal contribution instead of only faecal contribution demonstrated that 91% 

of WBE literature data were within the maximum theoretical concentration as opposed to 

only 63% (Li et al., 2022a). However, sputum contribution was not considered in the present 

study due to unknown total sputum shedding per capita.  

 

Additionally, SARS-CoV-2 with the concentration of 3.2x102 gc/ml was detected in urine for 

1/9 patients (Peng et al., 2020), while another study reported SARS-CoV-2 with a 

concentration of 5.48-5.79 log10 gc/ml for 2 patients (Yoon et al., 2020).  However, urinary 

shedding is very rare, and it is most likely to occur in hospitalised patients with mild to severe 

COVID-19 infections (Jones et al., 2020). At the same time, another study reported no SARS-

CoV-2 in 27 urine samples derived from COVID-19 patients (Wölfel et al., 2020).  

 

1.2.3 Norovirus GII 
Norovirus, particularly the GII strains (NoVGII), also known as the “winter-vomiting bug” is 

responsible for an estimated of 685 million cases worldwide of acute gastroenteritis annually 

(CDC, 2021). Gastroenteritis is characterised by diarrhoea, emesis and dyspepsia, symptoms 

usually lasting up to three days (Mayo Clinic, 2022b). Genogroups I and IV are also associated 

with gastroenteritis in humans (Hassan & Baldridge, 2019). Recently, in England, the UK 

Health Security Agency (UKHSA) reported an increase in norovirus outbreaks from 24 to 40 in 

a short time period, specifically the week commencing 6th Feb to the week commencing 14th 

Feb 2022, hence emphasising the importance of its timely epidemiological control (UKHSA, 

2022b).  
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Noroviruses are non-enveloped and single-stranded RNA (ssRNA) viruses, being transmitted 

primarily through the faecal-oral route  (Seitz et al., 2011). VP1, a norovirus capsid protein 

produced upon cell infection, was detected in enterocytes, and in macrophages, dendritic 

cells and B/T lymphocytes within gut-associated lymphoid tissue, pointing to a possible viral 

capacity to infect these cell types (Hassan & Baldridge, 2019). The gut epithelial barrier is 

overcome potentially though microfold cells which allow human norovirus transcytosis 

(Hassan & Baldridge, 2019). For infection initiation, human noroviruses bind to histo-blood 

group antigens, localised on the surface of enterocytes, as well as in saliva and other 

secretions (Hassan & Baldridge, 2019). However, another working model of norovirus 

intestine infection proposes that noroviruses are only transcytosised across the epithelium 

barrier (enterocytes) in order to gain access and to infect immune cells within the gut lamina 

propria (Karst & Wobus, 2015).  

 

Based on data collected from 40 patients, a study found that the median norovirus 

concentration was 8.48 log10 to 8.97 log10 copies per gram of faeces (Lee et al., 2007).  These 

findings are consistent with another study which demonstrated that 7 employees with acute 

gastroenteritis had a mean norovirus concentration of 8.33 log10 gc/g stool while elderly 

residents with the mean age of 78.7 years had a mean norovirus concentration of 9.63 log10 

gc/g stool (Lai et al., 2013). Also, the concentration reaches as high as 10.5 log10 copies/g of 

faeces in patients with prolonged diarrhoea (≥4 days) (Lee et al., 2007).  

 

NoVGII is relatively stable in the environment enabling it to maintain its infectivity in 

groundwater for more than 2 months but being detectable for over 3 years at 25oC (Seitz et 

al., 2011). It is also expected to be periodically prevalent in hospital wastewater in response 

to localised outbreaks (UKHSA, 2022b). This is supported by a systematic review reporting a 

82.1% detection rate of noroviruses in wastewater, consistent with an experimental study 

detecting NoVGII in 96.1% of raw wastewater samples at a WWTP (Huang et al., 2022; Fumian 

et al., 2019). 

 

1.3 Population Estimation 
For the estimation of the population served by the sewage draining point, ammonium, 

phosphate and crAssphage concentrations are investigated. 

1.3.1 Ammonium and Phosphate 
Ammonium and phosphate population markers are often used due to the low-cost and 

speediness of their measurement in wastewater requiring only a centrifugation step and a 

simple colorimetric-based quantification method. Despite of its input from agricultural and 

industrial sources, ammonium has been validated previously for normalising virus 

concentrations when estimating viral carriage rate in the population (Been et al., 2014; 

Hutchison et al., 2022). Although research estimating contribution per capita is available 

(Alexander & Stevens, 1976), a similar exercise has not been undertaken for the use of 

phosphate as a human faecal or urine marker. Due to their widespread use of lifecare 

products, such as synthetic detergents, phosphate may be a poor indicator of human faecal 
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or urine load and population number estimation (LennTech, 2022). Nonetheless, if the human 

exogenous phosphate discharge is relatively constant, then the phosphate fluctuations could 

originate from a change in the population number. 

1.3.1 CrAssphage 
CrAssphage is a bacteriophage associated with the human gut and is used as a tracking marker 

for human faecal contamination, reaching concentrations of 7.3x104-4.9x107 gc/100ml in 

wastewater samples (Sala-Comorera et al., 2021; Park et al., 2020). This is consistent with 

another study recording a crAssphage concentration of 5.28-7.38 log10 gc/100ml in 

wastewater samples from a hospital and residential buildings (Kongprajug, Mongkolsuk & 

Sirikanchana, 2019). CrAssphage can be detected in 48%-68.5% of healthy human stool 

samples, and the prevalence can increase up to 71.4% during norovirus outbreaks (Park et al., 

2020). It is estimated to be present in ca. 75% of faeces from healthy individuals (Mertz & 

Speicher, 2020). However, other reports suggest a CrAssphage prevalence of only 35.7% 

among U.S. residents (Honap et al., 2020). The study recorded a mean concentration of 8.1 

log10 gc/g stool for individuals without acute gastrointestinal symptoms and 8.4 log10 gc/g 

stool for healthy children with the age ≤ years old, while the mean concentration decreased 

to 5.9 log10 gc/g in faeces sampled during a norovirus outbreak (Park et al., 2020). 

The advantage of using crAssphage as an indicator of human faecal contamination is that it is 

specific to humans. While some cross-reactivity has been shown with dog, gull, poultry, pig 

and cattle faeces, the levels of crAssphage found in these non-human sources were several 

orders of magnitude lower than that of human sources (Park et al., 2020; Ahmed et al., 2018; 

García-Aljaro et al., 2017; Stachler et al., 2017). Also, crAssphage is present exclusively in 

faeces, and not in other excretion or secretion sources, such as saliva, emesis matter or nasal 

secretions (Park et al., 2020). 

The estimation of the population based on the crAssphage concentration will be done 

according to the modelling method outlined in the Materials and Methods section.  

1.4 Mathematical Modelling 

Mathematical models are useful to understand how viral particles behave in sewerage 

systems (i.e. physical hydrological models) but also to estimate the probability of infection 

cases in relation to measured RNA/DNA concentrations (i.e. epidemiological models) (Joung 

et al., 2023; Sonnenwald et al., 2023). Two mathematical approaches are investigated for the 

potential to give an accurate estimation of the number of infection cases based on the 

detected viral concentration, an equation-based model following the Central Limit Theorem 

premise (EMCLT) and the Monte-Carlo-Bayesian approach (MCBA). Briefly, they rely on the 

volumetric flow rate and the viral contribution into wastewater of the average individual. 

Since the researched wastewater site encompasses a hospital setting, the epidemiological 

dynamics would differ from a residential or urban area. Significant population movement, 

higher immunisation profile of frontline workers, more preventive measures (frequent 

disinfections and hand washing, face covering) and, simultaneously, higher rate of infectious 

patients than in the wider community would yield epidemiological models accounting for 
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person-to-person transmission uncertain within a hospital setting. Although person-to-

person transmission models would facilitate the simulation of infection transmission among 

in-patients, it would be difficult to account for virus transmission or shedding from individuals 

visiting the hospital (Cooper et al., 2023). EMCLT and MCBA don’t require prior or current 

knowledge of the transmission profile or population movement, and allow for a simple to 

implement, real-time representation of the infection burden within the setting, which made 

them, the models of choice for this study.  

1.4.1 The Central Limit Theorem 

The Central Limit Theorem (CLT) is a 

statistical method to quantify uncertainty 

by inferring the population mean based on 

the sample mean (LaMorte, 2016). If 

multiple samples are taken from the same 

population, then it is likely that it would 

result in different estimates of means, 

creating a distribution of the sample 

means (LaMorte, 2016). In CLT, the 

distribution of sample means is 

approximately normal providing a 

sufficiently large random sample size 

(n≥30), regardless of the population 

distribution except special cases, such as 

for a Cauchy distribution due to its infinite 

variance (Figure 3) (Chang et al., 2006). 

Furthermore, the sample size requirement of n≥30 can be ignored in the case of a normal 

population or of a binomial population (e.g., dichotomous outcome) (LaMorte, 2016).  

In the context of EMCLT, an important assumption is that, similarly to multiple sample means 

giving an estimate of the population mean, the CLT permits the estimation of the mean for 

the probability distribution of the virus concentration in wastewater for any given population 

size (N) (Saththasivam et al., 2021). There, the probability distribution of the virus 

concentration in wastewater only for one sample or one individual is not necessarily normal, 

and its mean is not necessarily an accurate estimate of the population mean. However, with 

a sufficiently large N, the probability distribution becomes normal, and its approximation of 

the mean becomes more accurate. Similarly, the probability of all the other variables related 

to this large population, such as viral shedding, approximate a normal distribution. This 

assumption of a normal distribution for all the parameters of N, providing a sufficiently large 

size of N, will allow to perform an inversion procedure to obtain a normal probability 

distribution for N, the standard deviation and mean of which can be estimated with equations 

as outlined in “2.2.2 Modelling Method 1 (Equation-based Model Following the Central Limit 

Figure 3. Distribution under Central Limit Theorem. 
Providing a finite variance of the population and 
independent and random sampling of the means (𝑋̅), 
the sampled means will have a normal distribution 
regardless of the population distribution. This 
requires a sufficiently large sample size of means, 
n≥30. Image Source: (Singh, 2018). Data Source: 
(LaMorte, 2016; Chang et al., 2006). 
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Theorem Premise)”. In this study, the EMCLT is an alternative to the MCBA since the latter 

involves lengthy calculations requiring relatively significant computational power. 

1.4.2 The Monte-Carlo-Bayesian Approach 

In the presence of uncertainty associated with variables, which are hard to predict (e.g. 

wastewater flow rate, faecal load or virus faecal shedding), a method to create a probability 

distribution of possible outcomes is through Monte-Carlo simulations (Kenton, 2022). It is not 

a substitute for empirical evidence, but an approach for modelling probability. Generally, 

Monte-Carlo simulations are repeated calculations using each time a different set of randomly 

generated values, which themselves can also be derived from a probability distribution (e.g., 

uniform or normal) (IBM, 2020). As the number of recalculations increases, the accuracy of 

the forecast model also increases. The randomly generated sets as a representation of the 

variable uncertainty are between minimum and maximum values as determined through 

historical experimental data. It should also be noted that the random values are in reality 

pseudo-random numbers due to most algorithms using deterministic mathematical functions. 

For it to be a truly random variable, the algorithm must use an external variable that is 

unpredictable and relates to a random behaviour (e.g., radioactive decay, or a quantum level 

process). In this mathematical model, full Monte-Carlo simulations were used for multiple 

population estimates to generate the corresponding probability distribution of virus 

concentrations in wastewater. 

Bayes’ rule offers the framework to solve conditional probability problems through a 

mathematical equation (Westbury, 2010). The equation describes how to calculate 

probability of event A given condition B, which is referred to as the posterior probability. This 

requires knowledge about prior probabilities of each event independently, and the 

probability of event B given A (Westbury, 2010). Within the context of MCBA, the Bayes’ rule 

results in equation (12). Since the virus concentration in wastewater is a variable measured 

experimentally, the Bayesian aspect of the model uses the probability of the simulated 

concentrations for each population number to derive the probability distribution of the total 

population for the corresponding measured virus concentration (Saththasivam et al., 2021). 

This can be thought of as an inversion procedure. A visual representation of this Bayesian 

transformation can be observed in the example provided in the “9. Appendix: Supplementary 

Materials”. 

Although there are several proposed approaches to estimate the number of required Monte-

Carlo simulations, and even though some suggest using an absolute number of approximately 

20000 simulations (Quinlan, 2015), Oberle (2015) developed a procedure based on Dunnigan 

and Agresti critique of the Wald method, offering an iterations number estimation method 

individual to the problem (Oberle, 2015).  
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It can be summarized as follows: while the inequality in the equation  

𝑧𝛼/2×√𝑝̂𝑞̂

𝑛
+

𝑧𝛼/2
2

4𝑛2

1+(𝑧𝛼/2
2 )/𝑛

< ∆  (1) 

is false, the Monte-Carlo simulation continues, where n – the number of iterations, 𝑧𝛼/2
2  – the 

z-multiplier (has a value of 1.96 for a CI of 95%), p – the population proportion where 𝑝̂ is its 

natural estimator, 𝑞̂ = 1 − 𝑝̂, and Δ – half the length of the confidence interval. However, this 

approach may result in an iteration number of the order of hundreds of thousands of 

iterations which is not feasible to be implemented without significant procession power. 

 

1.4.3 Normalisation of Pathogen Concentrations 

An unknown factor is the rate at which pathogens are uncaptured during sample pre-

collection (e.g., degradation and adherence to solid particles) and post-collection, including 

laboratory analysis (e.g., poor virus recoveries for wastewater concentration and RNA 

extraction, or inhibited virus detection). If known, the value of losses can be used for the 

normalisation of the detected concentration and a more accurate estimate of the population.  

While using the EMCLT, viral losses are assumed to be 0 due to uncertainty. However, in the 

MCBA, viral losses are accounted for by (pseudo-) random number generation between the 

values of 0 (no degradation) to 1 (all viruses were lost) inclusive. This would vary considerably 

from sample to sample due to varying flow rate, wastewater matrices, distance from the 

source to the sampling point, temperature, presence of disinfectants, time between sampling 

and analysis, varying pathogen residency time in the sewer etc. The whole breadth of factors 

is impossible to estimate at the moment, but it is possible to measure and account for factors 

such as turbidity and electrical conductivity as indicators of increased residency in the sewer 

and adherence to solid particles. While the maximum viral loss is to remain 1 (all the particles 

were lost), the minimum viral loss can be established. 

The concentration normalisation approach should also account for viral losses related to the 

laboratory methodology. For example, while concentrating the wastewater sample (as 

outlined in the methodology section), the pellet which contains a small fraction of the viral 

quantity, is typically discarded. Different experiments report different viral recovery in the 

pellet. A recent article reports that at turbidity of approximately 100 NTU, the virus recovery 

in the pellet represents approximately 1% comparative to the viral recovery from the 

wastewater concentrate (Farkas et al., 2021), hence if the turbidity of the sample is >100 NTU, 

then as a first step of the concentration normalisation, the detected concentration can be 

multiplied by 1.01. However, some research reports a SARS-CoV-2 recovery in the pellet of up 

to ~9% (Ahmed et al., 2021) and even 23% (Forés et al., 2021). 

Several chemical parameters, such as ammonium and phosphate concentrations, turbidity, 

electrical conductivity (EC), and pH, will be studied to understand the spatial and temporal 
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heterogeneity of the wastewater matrix, potentially allowing for normalisation of the 

detected pathogen concentration for anomalies in the flow. 

Different liquid concentration methods are available, and since they rely on different 

mechanisms for concentration, a variability in the recovery can be observed. For this study, 

an ammonium sulphate-based precipitation method was used. The procedure is identical to 

the method used by Farkas et al. (2022), who reported a viral recovery of 6.2%. Therefore, it 

may be possible to normalise the concentration by the corresponding factor, hence 

accounting for viral losses related to the laboratory method. 

1.5 Objectives of the project 
The main hypothesis is that the number of infectious disease cases can be calculated using 

wastewater data analysis. The chosen targets include SARS-CoV-2, influenza A virus and 

norovirus GII. The concentrations of ammonium and phosphate, as well as that of crAssphage, 

were tested as indicators of the population total number contributing to the collected 

wastewater sample.  

A rational correlation between virus concentration and electrical conductivity as an indicator 

of salinity and dissolved organic mass, and turbidity was sought as an indicator of the total 

amount of solid particles. If found, the correlation can be used to normalise wastewater viral 

concentration data.  

If the number of infection cases can be calculated with sufficient confidence, then it will 

contribute positively to the development of WBE, and it can prove to be an effective tool for 

epidemiological insight. 
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2. Materials and Methods 

2.1 Laboratory Analysis 
 

2.1.1 Sample Collection 
The sampling was performed at a wastewater drainage point located near the regional 

hospital Ysbyty Gwynedd, Wales, under the aegis of the Wales Environmental Wastewater 

Analysis for Surveillance and Health programme (Welsh Government, 2020 – 2023). The 

catchment area included the hospital and a small amount of the nearby residential area 

dedicated to nurses working in the hospital. The wastewater system was not completely 

isolated from the surface, hence there was an additional surface water contribution during 

rainfall events.  

Sampling was performed in two stages: 28th Oct 2021 till 16th Dec 2021, then it resumed on 

11th Jan 2022 till 20th May 2022. Between 28th Oct and 16th Dec 2021, 12 individual 2-hour 

composites (frequency of 15 ml every 10 minutes) were collected over 24 hours taken 

Monday to Friday, except for 14th Dec between 8:00 and 16:00 when the samples were a one-

go grab every 10 minutes. After 11th Jan 2022, the sampling was consistent with composites 

being collected regularly over a 24-hour period (50 ml every 10 minutes) by the installed 

refrigerated autosampler (Teledyne ISCO Avalanche), providing 1 sample per 24 hours, after 

which they were transported to the laboratory at 4oC. As the weekly composite sample 

collection started on Monday, they were transported to the laboratory on Tuesday to Friday 

(4 samples per week). There, the samples were processed in a biosafety level 2 laboratory. 

Due to logistics, it was not always possible to collect samples every Monday to Friday between 

28th Oct 2021 and 16th Dec 2021, or every Tuesday to Friday between 11th Jan 2022 and 20th 

May 2022. Moreover, occasionally, the collection for 2-hours composites was unsuccessful 

for specific different hours during the day.  

The total number of collected samples was 377. During the first stage of the collection, the 

sampling was at times inconsistent in terms of the total collected volume due to autosampler 

issues, and hence it was not always possible to perform all the laboratory analyses on the 

samples. During the second stage, the sampling was consistent with the same volume being 

collected throughout the whole period, and all the laboratory analyses were performed. 

Among the collected 377 samples, only 344 samples were processed completely in terms of 

virological and chemical parameters analyses. 

During sample collection, the volumetric flow rate was measured. The collected data was then 

compared and adjusted with the total water use data provided by the Ysbyty Gwynedd estate 

manager. 
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2.1.2 Chemical Parameters 
Wastewater pH and electrical conductivity were measured with a SevenCompact pH/Cond 

S213 meter (Mettler Toledo). Turbidity and free Cl- was measure with a HI-83414-02 Turbidity 

and Free and Total Chlorine Meter (Hanna Instruments), respectively.  

For ammonium (NH4
+) and orthophosphate (PO4

3-) measurements, spectrometry-based 

methods were used, and the optical density (absorbance) readings were performed on a 

SPECTROstar® Nano spectrometer (BMG Labtech). The phosphate determination method was 

based on the reaction of phosphate within the sample (80 µL) with ammonium molybdate 

(180 µL, 14 ml of >95% H2SO4 and 2.1 mg of ammonium molybdate tetrahydrate diluted with 

H2O to a total volume of 500 ml) and ascorbic acid (30 µL, 1 g C6H7O6 diluted in 10 ml of H2O), 

followed by 30 minutes incubation and spectrometry reading at 820 nm.  

For ammonium determination, the sample (150 µL) was reacted with 15 µL of EDTA (C(EDTA) 

= 0.06 g/ml) to prevent metal ions interference (e.g., Mg2+), 60 µL of Sal-Na-nitroprusside 

(6.252 g sodium salicylate and 0.1 g of sodium nitroprusside dihydrate in 80 ml of H2O), and 

30 µL of Na-K2PO4 (1.18 g NaOH and 3.98 g K2PO4 in 36 ml of H2O and 4 ml of NaClO). The 

incubation time was 10 minutes followed by absorbance reading at 667 nm. 

For more details on the approach, refer to the methods described elsewhere (Murphy & Riley, 

1962; Mulvaney, 2018).  

The data collected from ammonium and phosphate measurements were considered 

sufficiently accurate, and the measurement did not require repetition when the R2 of the 

standards linear regression was >0.95. 

 

2.1.3 Wastewater Concentration 
In order to reduce the sample volume from 150 ml to 1 ml, the samples were concentrated 

using an ammonium-sulphate-based concentration method (Kevill et al., 2022). This method 

previously demonstrated the most optimal combination of parameters for viral recovery, 

concentration factor, procession time and cost per sample when compared with polyethylene 

glycol-based precipitation methods and InnovaPrep or Amicon ultrafiltration methods (Farkas 

et al., 2022).  

The first laboratory analysis step was to separate the solid matter, which was achieved by 

centrifuging 200 ml of wastewater at 10000 RCF for 10 minutes at 4°C. From this, 150 ml of 

supernatant was kept, while the rest, including the solid matter, was discarded. The 150 ml 

sample was transferred to another centrifuge bottle containing 60 g of ammonium sulphate 

salt, (NH4)2SO4. After inverting the sample sufficiently to allow the salt to dissolve completely, 

achieving an ammonium sulphate concentration of 40% w/v, the bottles were incubated for 

1 hour at 4oC. The next step was sample centrifugation at 10000 RCF for 30 minutes at 4°C in 

order to achieve organic molecules precipitation. The supernatant was discarded, while the 

precipitate was resuspended in 850 µl of NucliSens® lysis buffer (BioMerieux), achieving an 

approximate 1 ml of concentrate. The 1 ml of wastewater concentrate was transferred into a 

2.2 ml 96-well Kingfisher deep well plate (Thermo Scientific) for nucleic acids extraction.  
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2.1.4 Nucleic Acid Extraction 
The nucleic acids extraction, and separation from other organic molecules, was based on a 

magnetic silica beads method using NucliSens® easyMAG® reagents (bioMérieux, 2022). The 

extraction process was performed automatically on a Kingfisher 96 Flex System (Thermo 

Scientific) as described by Kevill et al. (2022).   

The extraction process began with adding 50 µl of beads into the 1 ml sample and incubating 

for 10 minutes, hence binding the beads to polar molecules including organic molecules. It 

followed by “washing” the beads twice with 385 µl of wash buffer 1, then twice with 485 µl 

of wash buffer 2, and once with 500 µl of wash buffer 3. Once the separation from impurities 

was completed, the beads were introduced into an elution solution and incubated at 60oC for 

5 minutes where the nucleic acids were separated from the beads. Upon the removal of the 

magnet from the elution plate, the nucleic acids remained in the elution plate while the beads 

were removed and discarded. The elution plate with 100 µl of eluate containing nucleic acids 

was then ready for analysis with quantitative polymerase chain reaction (qPCR) for DNA virus 

(crAssphage) or reverse-transcription qPCR (RT-qPCR) for RNA viruses.  

 

2.1.5 Nucleic Acids Quantification 
For the identification of SARS-CoV-2, influenza A virus, NoVGII RNA genetic material, RT-qPCR 

was used, and for the identification of crAssphage bacteriophage DNA genetic material, qPCR 

was used. The qPCR reactions were performed on a QuantStudio Flex 6 real-time PCR 

machine. The protocols were devised by Farkas et al. (2022a).  

The primers and probes (Table 1) were mixed into 1 ml solutions, called P/P mixes, with the 

following final concentrations: SARS-CoV-2 P/P – 10 µM forward primer, 20 µM reverse 

primer, 2.5 µM probe; NoVGII P/P – 10 µM forward primer, 20 µM reverse primer, 5 µM 

probe; influenza A virus P/P – 10 µM forward primer, 20 µM reverse primer, 5 µM probe; 

crAssphage bacteriophage P/P - 5 µM forward primer, 10 µM reverse primer, 5 µM probe. 
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Table 1. Virus target sequences primers and probes. 

Virus 

Type 

Forward 
primer 

sequence 
 

Reverse 
primer 

sequence 
 

Probe 
sequence 

 

Probe 
dyes 

 

Ta 
 

Target DNA 
sequence 

 

Standard 
Type 

SARS-CoV-2 
 

GACCCCAA
AATCAGCG
AAAT 
 

TCTGGTTAC
TGCCAGTTG
AATCTG 
 

ACCCCGCAT
TACGTTTGG
TGGACC 
 

FAM-
MGB 
 

60 
 

GACCCCAAAATCAGCGAA
ATGCACCCCGCATTACGT
TTGGTGGACCCTCAGATT
CAACTGGCAGTAACCAGA
ATGGTGGGGCGCGATCA
AAACAACGTCGGCCCCA 

Synthetic 
RNA (Kevill 
et al., 2022) 
 

Norovirus 
GII 
 

ATGTTCAG
RTGGATGA
GRTTCTCW
GA 
 

TCGACGCCA
TCTTCATTCA
CA  
 

AGCACGTG
GGAGGGCG
ATCG  
 

FAM-
QSY 
 

60 
 

ATGTTCAGATGGATGAGA
TTCTCAGATCTGAGCACG
TGGGAGGGCGATCGCAA
TCTGGCTCCCAGTTTTGT
GAATGAAGATGGCGTCG
A 

plasmid 
DNA 
(Farkas et 
al., 2017) 

Influenza A 
Virus 
 

CAAGACCA
ATCYTGTC
ACCTCTGA
C      
 

GCATTYTGG
ACAAAVCGT
CTACG  
 

TGCAGTCCT FAM-
ZEN-
IABkFQ 
 

60 
 

AAAGACAAGACCAATCCT
GTCACCTCTGACTAAGGG
GATTTTAGGATTTGTGTT
CACGCTCACCGTGCCCAG
TGAGCGAGGACTGCAGC
GTAGACGCTTTGTCCAAA
ATGCCCTAAATGGG 

Synthetic 
Influenza 
H1N1 
(2002) RNA 
control 
(Twist 
Bioscience, 
USA) 
 

CrAssphage 
 

CAGAAGTA
CAAACTCC
TAAAAAAC
GTAGAG  
 

GATGACCAA
TAAACAAGC
CATTAGC  

AATAACGAT
TTACGTGAT
GTAAC 
 

FAM-
TAMRA 
 

60 
 

CAGAAGTACAAACTCCTA
AAAAACGTAGAGGTAGA
GGTATTAATAACGATTTA
CGTGATGTAACTCGTAAA
AAGTTTGATGAACGTACT
GATTGTAATAAAGCTAAT
GGCTTGTTTATTGGTC 

Plasmid 
DNA 
(Farkas et 
al., 2019) 

 

Through a 1:10 serial dilution, DNA or RNA standards (Table 1) were obtained for the 

corresponding virus with concentrations of 105 copies/µl to 100 copies/µl, and an additional 

two negative control standards were used.  

The reaction components for a total final reaction volume of 20 µl per well for crAssphage 

qPCR were 6.3 µl of H2O, 8 µl of Quantifast no ROX qPCR mix, 2 µl of Quantifast ROX qPCR 

mix, 1 µl of BSA (1 mg/l), 0.7 µl of P/P mix, 2 µl of sample/standard. 

The reaction components for a total final reaction volume of 20 µl per well for SARS-CoV-2, 

NoVGII and influenza A virus RT-qPCRs were 8.68 µl of H2O, 5 µl of TaqMan Virus Fast one-

step RT-qPCR mix, 1 µl of BSA (1 mg/l), 0.32 µl of MgSO4 (50 mM), 1 µl of P/P Mix and 4 µl of 

sample/standard. 

The reaction conditions for QuantiFast Probe DNA qPCR were 1 cycle of 5 min at 95oC for 

denaturation, 40 cycles of 15 sec at 95oC for denaturation followed by 1 min at 60oC for 

annealing-extension. The fluorescence was captured during annealing-extension. 
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The reaction conditions for TaqMan RNA RT-qPCR were 1 cycle of 30 min at 50oC for reverse 

transcription, 1 cycle of 20 sec at 95oC for denaturation, 45 cycles of 3 sec at 95oC followed 

by 45 sec 60°C for annealing-extension. The fluorescence was captured during annealing-

extension. 

The file output from the QuantStudio Flex 6 real-time PCR machine was then analysed using 

the QuantStudio Real-time PCR software v1.7 (Applied Biosystems). 

Each sample, standard or negative control, had two replicates, which were used to calculate 

the mean value. To accept the standard curve, the following quality criteria were set: slope 

between -3.1 and -3.6, efficiency between 90% and 110% and R2 >0.95. Whenever the 

negative control of the concentration, extraction or qPCR phase were contaminated, single 

positive samples with a concentration lower than two times the contamination concentration 

were removed.  

2.2 Data Analysis 
The RT-qPCR or qPCR results, representing the viral concentration in nucleic acid eluent 

(gc/µl), were used to obtain the initial sample concentration with the formula: 

C1V1 = C2V2 (2), 

where C1 and V1 – concentration and volume of the initial sample, C2 and V2 – concentration 

and volume of the concentrate.  

After calculating the concentrations of the non-concentrated initial wastewater samples, the 

values were ready to be integrated in the modelling methodology. 

The two tested modelling methods were the EMCLT and the MCBA, which were compared 

against each other and against the available clinical data. It should be noted that the EMCLT 

was an intermediate step in the MCBA as well as a separate model. 

The modelling methodologies required the following variables: volume flow rate, virus faecal 

load, faecal shedding rate, viral losses, ammonium and phosphate production per day per 

capita. For these variables, the literature was researched to find mean values and the range 

within which each of the variables do fit. For the flow rate values, experimental 

measurements of the sewage sampling site were conducted which were used in conjunction 

with data for the total used water kindly provided by the hospital management. 

2.2.1 Population Estimation with Ammonium and Phosphate 

The population was estimated based on wastewater ammonium and phosphate 

concentrations according to the equation: 

𝑃 =
𝐶×𝐹

𝑀
   (3), 

where P – the population estimate, F – volumetric flow rate (l/day), C – measured ammonium 

or phosphate concentration (mg/l), M – estimated average amount of daily NH4
+ or PO4

3- 

production per person (mg/day/person). 
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However, there is a very high variation and sometimes conflicting evidence in the amount of 

ammonium and phosphate discharged by the average individual in a day. For example, the 

total average phosphorus in urine, including phosphate, was determined to be between 800 

and 2000 mg/L, and it reflects the phosphorus intake and metabolism rather than having a 

relatively static value (Münch & Winker, 2011). However, the high variability in phosphate 

concentrations could be due to Münch & Winker (2021) using a measurement of the 

concentration in a single sample per person.  

In contrast, other studies advise that for a measurement with a reliability index of >80%, it is 

required to collect two to three 24-hour urine samples, and to calculate the average 

concentration (Cupisti & Gallieni, 2018). According to three different studies measuring 

urinary biomarkers in multiple 24h urine samples, the authors reported mean phosphate 

concentrations (±SD) of 1032 ± 300 mg/d, 738 ± 221 mg/d and 850 ± 256 mg/d (Sun et al., 

2017). For population estimation, the phosphate results collected by the NHSII study was 

selected (mean of 850 ± 256 mg/d). 

An overview of renal ammonia metabolism has estimated that the average urinary ammonia 

excretion is 30-40 mmol/d, which is equivalent to 511-681 mg/d (Weiner & Verlander, 2013). 

This is consistent with a report of urine composition by the German Society for International 

Cooperation that reports an ammonium/ammonia-N average composition of 460 mg/L 

(Münch & Winker, 2011). Considering a normal 24-hour urine volume being 800-2000 mL 

(MedlinePlus, 2022), 460 mg/L would be equal to 368-920 mg/d. Due to urea hydrolysis, the 

ammonium concentration in stored urine can increase up to 8.1 g/L within 2 – 4 weeks, 

however, the sampling and the laboratory analysis was performed within 1 – 3 days and hence 

the measurement was not affected by hydrolysis.  

An ammonia excretion value of 511-681 mg/d and 368-920 mg/d as outlined above conflicts 

with other studies reporting an ammonia discharge of approximately 6 g/d/capita (Zheng et 

al., 2017). A survey in Lausanne, Switzerland with a low ammonia industrial input, reported 

an ammonia-N discharge of 6.9 ± 0.4 g/day/capita (Been et al., 2014). This is consistent with 

two other studies performed in China reporting a discharge of 5.78-7.57 g/d/capita and 6.4 

g/d/capita (Zheng et al., 2017; Xie et al., 2008; Zhu et al., 2010). The reason for such a big 

difference in ammonia-nitrogen estimates (~0.6 g/d and 6 g/d) per capita is very likely to due 

to the fact that the studies reporting ~600 mg/d/capita were referring specifically to the 

concentration in urine, while the ~6 g/d/capita estimates were referring to the total 

household ammonia-nitrogen discharge in wastewater, in the latter case it could have been 

derived from household products and also include faecal inputs.  

Since the studies reporting approx. 6 g/d/capita were performed for the purpose of 

wastewater-based epidemiology, which accounts for total ammonia-nitrogen discharge per 

capita rather than only ammonium urine concentration, and since the wastewater sampling 

point serves not only the hospital (approximately 500 patients’ beds) but also the nurse 
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residential area in the hospital proximity, the ~ 6 g/d/capita studies were used for further 

population estimation. 

2.2.2 Modelling Method 1 (Equation-based Model Following the Central 

Limit Theorem Premise) 

As explained in “1.4.1 The Central Limit Theorem”, let us assume that the probability 

distribution of the virus concentration in wastewater becomes normal for a sufficiently large 

population. According to the same CLT-based assumption, all the other variables related to 

this population will also approximate a normal distribution.  

The estimate of the population will be centred at: 

𝑁 =
𝐶𝑅𝑁𝐴𝐹

𝛼̅𝛽̅(1−𝛾̅)
  (4), 

where N – estimate of population, CRNA – measured virus concentration in wastewater (gc/L), 

F – mean volumetric flow rate (L/day), α – mean faecal load (g/day/person), β – mean faecal 

shedding (viral copies/g), γ – mean viral losses (Saththasivam et al., 2021). 

Following the estimation of N, the next steps require the estimation of its standard deviation. 

As described by Saththasivam et al. (2021), initially, the mean total number of viral genome 

copies is calculated with the equation: 

𝑀̅𝑅𝑁𝐴  = 𝑁𝛼̅𝛽̅(1 − 𝛾̅) (5), 

where the variance was given by: 

𝛿𝑀𝑅𝑁𝐴
2 = 𝑁 ((𝛼̅2 + 𝛿𝛼2)(𝛽̅2 + 𝛿𝛽2)((1 − 𝛾̅)2 + 𝛿𝛾2) − (𝛼̅𝛽̅(1 − 𝑦̅))

2

) (6). 

The CRNA described in (4) also follows a normal distribution, which variance of CRNA is given by: 

𝛿𝐶𝑅𝑁𝐴
2 = (𝑀̅𝑅𝑁𝐴

2 + 𝛿𝑀𝑅𝑁𝐴
2 ) (

1

𝐹2 +
𝛿𝐹2

𝐹4 ) −  
𝑀̅𝑅𝑁𝐴

2

𝐹2   (7). 

The above variance of CRNA represents uncertainty of population origin, and it can be referred 

to as intrinsic δCRNA
2. Uncertainty can also originate from laboratory measurements, and that 

can be referred to as measurement δCRNA
2. When the latter is available, it can be included in 

the calculation of the total CRNA variance with the formula: 

(𝛿𝐶𝑅𝑁𝐴
2 )𝑇𝑜𝑡𝑎𝑙 = (𝛿𝐶𝑅𝑁𝐴

2 )𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 + (𝛿𝐶𝑅𝑁𝐴
2 )𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 (8). 

In this study, the total CRNA variance is given only by the intrinsic δCRNA
2 (7), because the 

laboratory analysis produced only two final replicates, which were used to calculate the mean 

CRNA but, which, is not enough to calculate a meaningful measurement variance. 
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Using a fixed estimate of N in (4), we calculated the total variance of CRNA. Under the 

assumption of a normal distribution for N, we can finalise by estimating its standard deviation 

with: 

𝛿𝑁 =
𝛿𝐶𝑅𝑁𝐴𝐹

𝛼̅𝛽̅(1−𝛾̅)
  (9). 

Finally, the two main outputs of the EMCLT are the population estimate, N, and its standard 

deviation, δN. The estimates represent the total population when the virus concentration is 

that of crAssphage, and they represent the infected population when the virus concentration 

is that of SARS-CoV-2, influenza A virus and NoVGII. The assumption of a normal distribution 

under CLT is essential to argument that the standard deviation is a valuable indicator of the 

probability dispersion of the population estimate (Madadizadeh et al., 2015). 

 

2.2.3 Modelling Method 2 (Monte-Carlo-Bayesian Approach) 

The MCBA can be summarised in the following way: Monte-Carlo calculations were applied 

to create a set of probability distributions of simulated virus concentrations for various 

numbers of the population, N. After this, the Bayes’ rule was applied to obtain the posterior 

probability of N given the experimentally measured viral concentration.  

Three MCBAs were employed, with the differences relating to (pseudo-) random number 

generation for viral losses. MCBA 1 assumes viral losses between [0; 1] corresponding to 0% 

to 100%. MCBA 2 assumes viral losses between a minimum X viral loss and maximum 100%. 

The minimum X viral loss was determined by estimating N with the measured concentration, 

followed by using a full Monte-Carlo simulation intermediate step where a viral distribution 

with viral losses [0; 1] was determined after which the minimum X viral losses were calculated 

with the formula: 

γmin = 1 – (Cmeasured/Cestimated_min) (10), 

where γmin – estimated minimum viral losses, Cmeasured – measured viral concentration, 

Cestimated_min – minimum concentration as simulated with the full Monte-Carlo approach 

assuming viral losses between [0; 1]. The MCBA 2 continued by applying the estimated γmin as 

the lower boundary for all the subsequential estimation of N values within the second MCBA 

simulation. The MCBA 3 was based on calculating a minimum X viral loss for each measured 

concentration individually through an intermediate full Monte-Carlo simulation where the 

losses were initially assumed to be between 0% and 100%. After that, the approach continued 

with using the estimated losses [γmin; 1] for a second Monte-Carlo simulation where all the 

subsequential N values were calculated.   

The steps can be summarised as follows for all the 3 variations of the MCBA: 
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1. An initial estimate for N, which will be referred to as Nestimate, was obtained similarly 

to the EMCLT (4): 

𝑁 =
𝐶𝑅𝑁𝐴𝐹

𝛼̅𝛽̅(1−𝛾̅)
  . 

2. A dataset of N values was calculated as follows: 

𝑁𝑖 = 𝑓 × 𝑚 × 𝑁𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 , 𝑚 = 1, 2, …, j, 

where f – the frequency of the dataset, which was chosen to be 0.1 due to the limited 

computational power, m – the position of the N value in the dataset being generated, 

Nestimate – calculated in the previous step using (4), Nm – the simulated population 

value, j – the size of the dataset of N values. It is recommended to choose the value 

for the dataset size, j, so that during the last iteration when 

𝑚 = 𝑗 

the value of  

𝑓 × 𝑚 

will be equal to two. This will ensure that the dataset of N values will include the 

maximum value of 2 x Nestimate. For example, assume a frequency of 0.1 and a dataset 

size of 20. During the last iteration, it will result in an Nm of 2 x Nestimate. This 

recommended setting ensures that, at a later stage, the dataset of N values will be 

wide enough to allow for an accurate inference of the probability distribution of the 

population numbers based on a measured virus concentration. 

The frequency was set at 0.1 but was also increased to 0.01 or 0.001 when the 

computational power permitted, specifically for small Nestimate <500 individuals. Also, 

in the case of Nestimate being a relatively low value, such as 25 individuals, the algorithm 

was adjusted to establish the frequency of 1 individual, e.g., the N dataset being [0, 1, 

2, 3, 4 …, 48, 49, 50]. The maximum value of the N dataset can also be increased from 

2 x Nestimate to, e.g., 5 x Nestimate, depending on the maximum experimentally measured 

concentrations since at times the measured concentrations can have outliers outside 

the normal range. 

3. For the obtained values N1 to Nm in step 2, viral concentrations were calculated for 

each individual N separately as follows: 

𝐶𝑅𝑁𝐴 =
∑ 𝛼𝑖𝛽𝑖(1−𝛾𝑖)𝑁

𝑖=1

𝐹𝑖
 (11), 
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where “i” is a counter for the number of infected individuals up to the number of 

individuals as indicated by the value of N. 

Sets for αi, βi, γi, Fi variables were generated (pseudo-) randomly within a predefined 

range, following a uniform distribution. For αi, the range depended on the virus, and 

was within the minimum and maximum viral concentration shed in faeces as 

established by several articles. For βi, the range was 51-796 g/cap/day (Rose et al., 

2015). For γi, the range was 0 to 1. For the generation of one Monte-Carlo datapoint 

(one simulated concentration), αi, βi, γi, Fi datasets were generated, containing 

random values the count of which corresponded to the total number of individuals, N. 

The number of Monte-Carlo simulations or datapoints (M) was chosen manually, with 

at least 250 simulations. For example, for the MCBA 1, 2000 simulations were chosen 

as the most feasible number of iterations in terms of computational power, 

The generated Monte-Carlo datapoints will represent the probability distribution of 

CRNA for each individual value of N from the dataset obtained in step 3. 

4. In the case of MCBA 2 and 3, the probability distribution obtained in step 3 was used 

to estimate a minimum value of viral losses, using (10). In the case of MCBA 1, this 

step is omitted.  

 

For MCBA 2, one unique γmin was obtained, using (10), where Cmeasured is the average 

of all measured viral concentrations in wastewater (Table 5). In the case of MCBA 3, 

γmin was calculated individually for each measured viral concentration. For both, MCBA 

2 and 3, step 3 was then rerun using the new lower boundary for viral losses for 

random number generation, while the upper boundary remained 1, corresponding to 

100%. 

 

The advantage of MCBA 2 is that it is almost twice as efficient in terms of the algorithm 

computational time when comparing to MCBA 3, due to estimating γmin only once. 

Whereas, MCBA 3 may prove more flexible in the estimation of γmin, but will require 

more computational power.  

 

5. In order to obtain a probability distribution instead of a datapoints distribution, the 

total number of Monte-Carlo data points within an interval was divided by the total 

number of Monte-Carlo data points. 

 

Therefore, a histogram can be obtained giving the probability distribution (or density) 

of CRNA for a given value of N. 

 

6. Since CRNA was a measured value and not a random one, the Bayes’ rule was used to 

obtain a probability distribution of N given the known measured value of CRNA.  
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The probability that the number of infected individuals is N based on the measured 

concentration (CRNA) was calculated with the formula: 

𝑃(𝑁|𝐶𝑅𝑁𝐴) =
𝑃(𝐶𝑅𝑁𝐴|𝑁)𝑃(𝑁)

𝑃(𝐶𝑅𝑁𝐴)
  (12). 

The probability of obtaining the measured concentration given a value N, expressed 

as P(CRNA/N), was calculated by taking the number of Monte-Carlo points in an interval 

where the measured CRNA fits and dividing it by the total number of Monte-Carlo 

points. The interval width, in this case, depended on a value, which was chosen 

manually, and we will refer to as acceptable deviation, the interval width 

corresponding to CRNA ± acceptable deviation. The chosen acceptable deviation 

depends on the frequency of the simulated data points. For example, viruses with 

higher wastewater concentration and faecal virus shedding had a more disperse 

distribution for the same number of MCBA simulations than a virus with lower 

concentration and faecal shedding. Therefore, such viruses require a higher value for 

acceptable deviation. As a result, the earlier mentioned calculation of P(CRNA/N) will 

be up to the uncertainty which equals this interval width.  

For influenza A virus, the acceptable deviation was 102 (all approaches). For norovirus 

GII, the acceptable deviation was 104 (all approaches). For SARS-CoV-2, the acceptable 

deviation was 104 (MCBA 1 and 3) and 2x103 (MCBA 2). For crAssphage, the acceptable 

deviation was 105 (MCBA 1), 5x104 (MCBA 2) and 104 (MCBA 3). These are arbitrarily 

chosen values which were found to be the most suitable for this experiment as to be 

able to include and count datapoints values within a highly dispersed range. However, 

the higher the number of simulations, the smaller the acceptable deviation, and the 

MCBA 3 allows for a smaller acceptable deviation as in the case of crAssphage since 

the simulations are generated for the N values that are in a proximity of the N estimate 

as determined by the measured concentration. 

Since CRNA was measured, there was no uncertainty regarding its value, the probability 

being 100% and the denominator being 1. The formula is reduced to: 

P(N/CRNA) = P(CRNA/N) x P(N), 

The right hand side of the equation was calculated as follows. For every value of N, 

the number of Monte-Carlo points that were within the range of the measured CRNA 

and its chosen acceptable deviation were counted. The obtained counts for each 

individual value of N were then divided by the total number of counts among all values 

of N, which can be plotted as the probability distribution for N given the measured 

CRNA.  

The modelling was performed in the Python programming language (version 3.10.0), and the 

code for MCBA 1, 2 and 3 can be found in the Appendix, Supplementary Materials (Figure S1-

S3). The mean, variance, standard deviation, and a 99% confidence interval of the N 

probability datasets by measured concentration was also obtained as detailed in the MCBA 

Python codes. 
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2.2.4 Gaussian Filter and Polynomial Trendline 
Two main approaches for data transformation to visualise the underlying trends were a 

Gaussian filter and a polynomial trendline. 

A Gaussian filter is a tool used to compute derivatives of an image, or of y-axis values in this 

experiment, thereby smoothing and reducing the noise. Since all the coding is performed in 

Python, the library SciPy was used, specifically scipy.ndimage. To import the package, the 

following command is applied “from scipy.ndimage.filters import gaussian_filter1d”, where 

scipy.ndimage.gaussian_filter1d takes the following arguments: input and sigma, for example 

“output_dataset = gaussian_filter1d(input_dataset, sigma)”. The argument sigma is the 

standard deviation for the Gaussian kernel, which can be perceived as the “smoothing” factor 

(SciPy v1.9.0 Manual, 2022). In this case the function implements a 1-dimension filter. 

For generating a polynomial trendline in Python, the library “NumPy” was used, specifically 

“numpy.poly1d” and “numpy.polyfit” packages. The polynomial order in all cases was chosen 

to be 10. Additionally, from the “sklearn.metrics” package it was used the function “r2_score” 

so that to estimate R2. The used function can be observed in Figure S5. 

2.2.5 Comparison of Estimates with Clinical Data 
For ethical and patient confidentiality reasons, it was not possible to obtain the data of 

clinically diagnosed in-care cases of SARS-CoV-2, influenza A virus and NoVGII at the Ysbyty 

Gwynedd hospital, hence information about the diagnosed infectious cases for Wales and 

Gwynedd was researched in publicly available sources, such as public official reports issued 

by Public Health Wales, UK Health Security Agency, or Office for National Statistics. We 

assume that cases in the community are closely correlated with hospitalisations. 

The number of reported infectious cases were divided by the total number of the population 

as to estimate the prevalence in the community, whereas the viral cases estimated with the 

EMCLT or MCBA were divided by the population number estimated with the crAssphage 

concentration, and the value was multiplied by 100 for both to obtain the percentage. The 

datasets were integrated into data frames with the library “pandas”. The proportion obtained 

previously was converted to percent changes with the function “pct_change()” as to obtain 

the relative change in time of the reported cases proportion and estimated cases proportion. 

The results were processed with the Gaussian filter of varying sigma argument (see “Gaussian 

Filter and Polynomial Trendline”) section. 

The Pearson pairwise correlation between the percent changes of the reported and estimated 

cases proportion was computed with the function “DataFrame.corr()”. 

A second method to capture and quantify synchronicity was dynamic time warping (DTW), 

usually used in economic time-series (Franses & Wiemann, 2020). The employed code is 

provided in Figure S4. The used library is “dtw” and specifically the function 

“accelerated_dtw”. Due to the collected data being discontinues, DTW was applied only for 

data collected after 10th Jan 2021. For the visualisations of the DTW results, a map is provided 

which describes the warping path and the distance matrix.  
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2.2.6 Association between Wastewater Physico-chemical Characteristics 

and Detected Virus Concentration 

To model the impact of wastewater characteristics on virus recovery, a Sugeno adaptive 

neuro-fuzzy interference system (ANFIS) was used, specifically fuzzy subtractive clustering. 

Generally, subtractive clustering organises data into clusters based on the similarity of the 

data to the cluster through specific membership functions (MFs), such as Gaussian MFs 

(Keshavarzi et al., 2017). Since MFs also include the association strength of datapoints to 

various clusters, one datapoint can belong to multiple clusters but of varying levels of 

strengths. For example, assume the system has 10 clusters expressed as Gaussian MFs. The 

datapoint x from input dataset 1 can belong to input cluster number 6 with a strength of 80% 

and, at the same time, it can belong to cluster 7 with a strength of 85%, while not belonging 

at all to other input clusters. If input 1 was the only input we had, then datapoint x will 

correspond to output cluster 6 and 7 with the same level of membership strength, 80% and 

85%. If there was input dataset 2, and we take a datapoint y, let’s assume it belonged to input 

cluster 7 with a strength of 60% and to cluster 8 with a strength of 65%. If the relationship 

between inputs 1 and 2 is characterised by the expression “and” (Figure 4), datapoints x and 

y will result in association with only the output cluster 7 with a strength of 60%. During the 

final layers of defuzzification and aggregated output, the algorithm sums up the MF strengths 

of those two datapoints for all clusters, and then derives a corresponding output value. The 

full structure of the employed ANFIS can be observed in Figure 4. 

 

Figure 4. Structure of the Adaptive Neuro-Fuzzy Interference System (ANFIS) based on a Subtractive 
Clustering with Two Input Variables. The ANFIS structure incorporates 5 layers: fuzzification layer 
(receives the input data and applies the membership functions (MF) as node functions), rule layer, also 
called interference layer (the node output indicates the firing strength of the rule), normalisation layer 
(normalises the firing strength of each rule), defuzzification layer (receives the normalised values and 
the consequence parameters), total output layer (calculates the sum of the rules’ outputs and returns 
it as a final output). The rule layer and the normalisation layer are represented as the layer “Rule”. The 
defuzzification layer “Output MF” is an adaptative node containing functions that indicate the 
contribution or strength of the membership rules’ towards the final aggregated output. 
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Coding in MATLAB R2022a (The Mathworks, Natick, USA) and the embedded Neuro-Fuzzy 

Designer were used to develop the model. Two variables were used as input data at the same 

time and related to the virus concentration (Table 4). In the employed system, the two inputs 

were related to each other with an “and” logical operator. The model training was comprised 

of 2 stages: initial FIS training and FIS tuning. The initial FIS training was performed with 2 

statements:  

“fisOpt = genfisOptions("SubtractiveClustering", "ClusterInfluenceRange", 0.5, 

"SquashFactor", 0.5, "AcceptRatio", 0.5, "RejectRatio", 0.01);  

fis = genfis(datain_train, dataout_train, fisOpt);”.  

The obtained FIS was tuned with the statements:  

“opt = anfisOptions('InitialFIS', fis, 'EpochNumber', 40, 'InitialStepSize',0.1);  

fis2 = anfis([datain_train dataout_train], opt);”. 

For each individual combination of input and output parameters (Table 6), various 

combinations of the squash factor, accept ratio, reject ratio, epoch number and initial step 

size were trialled to achieve the lowest error. An important aspect of the tuning stage was to 

not overfit the model to the training data, hence the epoch number was kept relatively low 

at approximately 30-40 epochs. 

To obtain an initial evaluation of the model, the statement “fuzout = evalfis(fis, datain_train);” 

was used where “fuzout” are the modelled virus concentrations and “datain-train” are the 

measured virus concentrations, both being 1-D arrays. Therefore, the variables “fuzout” and 

“datain-train” can be plotted against each other. 

To exclude the outliers, only the data within 2 standard deviations from the mean value was 

used, corresponding to approximately 95% of the distribution. 

The Pearson correlation coefficient (R value) was calculated with the MATLAB function 

“corrcoef(A,B)” where the variables A and B are the modelled and measured viral 

concentrations, corresponding to the formula: 

𝜌(𝐴, 𝐵) =
1

𝑁−1
× ∑ (

𝐴𝑖−µ𝐴

𝜎𝐴
)𝑁

𝑖=1 × (
𝐵𝑖−µ𝐵

𝜎𝐵
)  (13), 

where μA and σA are the mean and standard deviation of A, and μB and σB are the mean and 

standard deviation of B. The A values corresponds to the measured values whereas the B 

values correspond to the predicted values. 

The root mean square error (RMSE) was calculated with the expression: 

𝑅𝑀𝑆𝐸 =  √∑
(𝐴𝑖−𝐵𝑖)

2

𝑁
𝑁
𝑖=1   (14). 
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3. Results 

3.1 Characteristics of Wastewater Physico-chemical Parameters 
The results for the wastewater physico-chemical parameters pH, electrical conductivity, 

turbidity, ammonium and phosphate are recorded in Table 4. Overall, the data demonstrated 

a significant variation rather than data being centred around a mean value. The change of the 

sampling approach from 2-hour 12 composite samples a day to a one 24-hour composite 

sample a day did not influence the chemical parameters results significantly. The mean and 

standard deviation values between the two sampling regimes were relatively close to each 

other, and the differences were likely to result from day-to-day variability.  

Table 4. Physico-chemical Parameters Results of Hospital-Derived Wastewater 

Physico-chemical Parameter Mean SD Min Max 

pH 7.69 0.46 6.21 8.75 

Electrical Conductivity (µS/cm) 917 529 172 7179 

Turbidity (NTU) 119 217 2.5 2985 

Ammonium Concentration (mg/l) 32.3 17.8 0.1 84.8 

Phosphate Concentration (mg/l) 3.45 1.91 0.03 12.56 

NTU – Nephelometric turbidity units, SD – standard deviation. 

 

3.2 Virus Detection  
The qPCR or RT-qPCR results are recorded in Table 5. CrAssphage had a detection rate of 100% 

and a mean concentration in wastewater of 7.36 log10 gc/l, indicating that all samples 

contained faecal material, and the suitability of using crAssphage bacteriophage as a human 

marker. SARS-CoV-2 had the second highest detection rate and norovirus GII had the third 

(Table 5). This indicates that SARS-CoV-2 and NoVGII were extensively present within the 

hospital catchment area (sewershed) during the study period (Table S3; Table S4). The SARS-

CoV-2 detection rate increased by 8.5% and the NoVGII detection rate decreased by 29% in 

the second sampling period. The mean concentrations were also not consistent between the 

two sampling regimes. It decreased from 7.26 log10 gc/l in the first sampling regime to 6.84 

log10 gc/l in the second regime for SARS-CoV-2, and from 7.43 log10 gc/l to 7.04 log10 gc/l for 

crAssphage. For NoVGII, the mean concentration increased from 5.58 log10 gc/l to 6.33 log10 

gc/l. In contrast, Influenza A virus had the lowest detection rate of 8.8% at relatively low 

concentrations, all positive detections taking place in 2021 during the first sampling regime 

(Table S1). The positive samples, however, did not correlate well with the seasonality of 

influenza A as there were similar or higher number of acute respiratory incidents and higher 

hospital admission rates for Flu A in UK in the second sampling regime, with the positivity rate 

peaking in the week of 07/03/2022 (UKHSA, 2022c). Other possible reasons include the 

hospital having a relatively much lower admission rate, low viral shedding rates (Table 7) and 

a relatively lower viral resistance to environmental stress (i.e., loss of signal due to RNA 

degradation in the wastewater). 
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Table 5. Wastewater Virus Detection Parameters 

Virus Type 
Number 

of 
Samples 

Detection 
Rate (%) 

Mean Median SD Q1 Q2 Q3 IQR  

Influenza A 
Virus 

352 8.8 4.21 2.82 4.69 2.59 2.82 3.39 3.32 

Norovirus 
GII 

113 74.3 6.09 4.87 6.61 4.33 4.87 5.56 5.54 

SARS-CoV-2 364 78.6 4.49 3.38 5.23 2.80 3.38 4.02 3.99 

CrAssphage 376 100 7.36 6.31 7.82 5.88 6.31 6.92 6.88 

The mean, median, standard deviation (SD), 25th percentile (Q1), 50th percentile (Q2), 75th percentile 
(Q3), and the interquartile range (IQR) were calculated based only on the positive results and are 
expressed in log10 gene copies per litre. 

 

3.3 Association between Wastewater Physico-chemical Characteristics 

and Detected Concentrations of SARS-CoV-2 and CrAssphage 
Various ANFIS structures, such as Gaussian functions or subtractive clustering, were trialled 

for different input combinations (Table 6) to identify the most suitable structure.  

It was decided to implement subtractive clustering with subsequent conversion to a 3-D 

representation for the evaluation of the wastewater characteristics for the following reasons. 

The logic of subtractive clustering (see Materials and Methods section 2.2.6) is the most 

suitable because data is organised in clusters based on similarity and, hence points to trends, 

and due to the fact that this method could be applied consistently for all paired input 

combinations as opposed to different structures fitting different input combinations. 

The performance results of the initial FIS and the tuned FIS are presented in Table 6. When 

the tuning stage had resulted into an unacceptable error rate and a high RMSE, the 3-D model 

of the initial untuned FIS was presented for visual evaluation.  

Interestingly, the performance evaluation and the correlation between all the modelled and 

measured values (Figure S17 – Figure S26) indicates that the model consistently 

underestimated at higher concentration and overestimated at lower concentrations the virus 

output concentrations for both SARS-CoV-2 and crAssphage, potentially due to a non-uniform 

data distribution and an insufficiently large training dataset. 
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Table 6. ANFIS Model Input-Output Combinations and Their Performance. 

Virus 
Output 

Input Parameters 
Initial FIS Training Data Tuned FIS Training Data 

R RMSE R RMSE 
SA

R
S-

C
o

V
-2

 

pH and ammonium 0.352 32476.7 0.349 32512.0 

pH and phosphate 0.448 29107.5 0.596 26135.2 

ammonium and phosphate 0.480 28984.3 0.418 30010.0 

electrical conductivity and 
turbidity 

0.166 34342.4 0.168 34328.6 

electrical conductivity and pH 0.286 32946.9 0.392 31633.1 

crAssphage and ammonium 0.174 34716.7 -0.006 4.3E+11 

crAssphage and phosphate 0.193 32438.3 0.182 32664.7 

crAssphage and turbidity 0.111 34914.8 0.017 2201382.7 

crAssphage and pH 0.190 34144.9 0.195 34115.6 

crAssphage and electrical 
conductivity 

0.135 34657.6 0.135 34657.7 

C
rA

ss
p

h
ag

e 

pH and ammonium 0.510 26755635.2 0.553 25913118.1 

pH and phosphate 0.485 26168140.2 0.515 25651357.2 

ammonium and phosphate 0.535 26068188.0 0.557 25632331.8 

electrical conductivity and 
turbidity 

0.445 27137828.9 0.454 26994247.3 

electrical conductivity and pH 0.355 27471025.5 0.507 25334406.7 

SARS-CoV-2 and ammonium 0.271 24727624.6 0.335 24199922.1 

SARS-CoV-2 and phosphate 0.300 23123446.9 0.300 23123522.8 

SARS-CoV-2 and turbidity 0.360 23904951.3 0.373 23771063.2 

SARS-CoV-2 and pH 0.424 22235103.4 0.372 22794337.3 

SARS-CoV-2 and electrical 
conductivity 

0.269 23071293.7 0.284 22966868.2 

The input parameters and virus output refer to the input pair and single output combinations used for 
the training of the adaptive neuro-fuzzy interference system (ANFIS) which occurred in 2 stages: initial 
FIS training and FIS tuning. The performance results for pre-tuning and post-tuning model are 
presented, indicating how well the measured output correlated with the modelled output.  

 

The obtained 3-D models can be observed in Figure 5 – Figure 12. When visually comparing 

the models where SARS-CoV-2 was as an output against crAssphage as an output, it is 

essential to consider that the crAssphage axis magnitude reached 8 log10 gc/l whereas for 

SARS-CoV-2, it typically reached 4-5 log10 gc/l.  

The highest SARS-CoV-2 modelled recoveries were observed at pH 7.6 – 8.3 and ammonium 

>25 mg/l (Figure 5). High crAssphage modelled concentrations were observed at pH 6.8 – 7.2 

and ammonium 0 – 50 mg/l, the virus concentration increasing drastically at an ammonium 

concentration >60 mg/l (Figure 5).  
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Figure 5. The Modelled Impact of Ammonium and pH on Virus Concentration. The modelling is based 
on a Sugeno adaptive neuro-fuzzy interference system (ANFIS), the sub-method being subtractive 
clustering followed by tuning with the training data, where the inputs are ammonium and pH, and the 
outputs are the SARS-CoV-2 concentration (A) or crAssphage concentration (B).  

 

With an increasing phosphate concentration, specifically >3.5 mg/l, and pH of 7.6 – 8.4, also 

increased the SARS-CoV-2 concentration (Figure 6), whereas for crAssphage, the 

concentrations were the highest at pH 8.15 – 8.5, the concentration increase having occurred 

uniformly to phosphate starting at 1.5 mg/l. CrAssphage also solely demonstrated high 

modelled recoveries at pH 6.9 – 7.5 and phosphate concentrations of 2.50 – 6.75 mg/l. 
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Figure 6. The Modelled Impact of Phosphate and pH on Virus Concentration. The modelling is based 
on a Sugeno adaptive neuro-fuzzy interference system (ANFIS), the sub-method being subtractive 
clustering followed by tuning with the training data, where the inputs are phosphate and pH, and the 
outputs are the SARS-CoV-2 concentration (A) or crAssphage concentration (B).  

Interestingly, the impact trends of ammonium and phosphate (Figure 7) differed for the two 

viruses. The SARS-CoV-2 recovery trend demonstrated a continuous increase at a phosphate 

concentration of >6.5 mg/l and ammonium concentration of 10 – 50 mg/l, and a much 

significant virus concentration increase at ammonium concentration of >10 mg/l and low 

phosphate concentration, 0 – 1 mg/l. A relatively lower recovery (up to 4.5 log10 gc/l) with a 

dynamic increase occurred simultaneously with the increase in ammonium and phosphate 

concentration. The impact trend on crAssphage recovery (Figure 7) demonstrated that with 

an increasing phosphate concentration increased the virus concentration regardless of the 

ammonium concentration, suggesting no direct correlation between ammonium and 

crAssphage. However, a higher peak can be observed at ammonium concentrations of 

approximately 56 mg/l. 
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Figure 7. The Modelled Impact of Ammonium and Phosphate on Virus Concentration. The modelling 
is based on a Sugeno adaptive neuro-fuzzy interference system (ANFIS), the sub-method being 
subtractive clustering followed by tuning with the training data, where the inputs are phosphate and 
ammonium, and the outputs are the SARS-CoV-2 concentration (A) or crAssphage concentration (B).  

The turbidity and electrical conductivity modelled impact (Figure 8) demonstrated that an 

increase in turbidity did not result in an increase in virus recovery whereas an increase in 

electrical conductivity resulted in a positive trend of virus concentration. The optimal 

conditions for a higher SARS-CoV-2 recovery as modelled below are approximately <200 NTU 

and an increasing electrical conductivity with the peak having been at approximately 1550 – 

1825 µS/cm, whereas for crAssphage, a more significant concentration increase happened at 

100 – 400 NTU and at higher electrical conductivities.   
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Figure 8. The Modelled Impact of Turbidity and Electrical conductivity on Virus Concentration. The 
modelling is based on a Sugeno adaptive neuro-fuzzy interference system (ANFIS), the sub-method 
being subtractive clustering followed by tuning with the training data, where the inputs are turbidity 
and electrical conductivity, and the outputs are the SARS-CoV-2 concentration (A) or crAssphage 
concentration (B).  

Interestingly, in the case of both viruses, the modelled virus concentration was static for 

specific electrical conductivities when the turbidity increased. SARS-CoV-2 concentration was 

relatively static at >350 NTU and 0 – 600 µS/cm, whereas crAssphage concentrations at lower 

electrical conductivities started increasing at approximately 180 NTU, remaining static at >280 

NTU, whereas at higher electrical conductivities, it remained static at >450 NTU. In case of 

crAssphage, the specific values at which the virus concentration was static depended on the 

electrical conductivity (i.e., an increasing electrical conductivity also increased the value at 

which the virus concentration is static).  



41 
 

An increase in electrical conductivity at a specific range of pH correlated well with the 

modelled virus concentrations (Figure 9).  

 

Figure 9. The Modelled Impact of Electrical conductivity and pH on Virus Concentration. The 
modelling is based on a Sugeno adaptive neuro-fuzzy interference system (ANFIS), the sub-method 
being subtractive clustering followed by tuning with the training data, where the inputs are pH and 
electrical conductivity, and the outputs are the SARS-CoV-2 concentration (A) or crAssphage 
concentration (B).  

Both SARS-CoV-2 and crAssphage modelled concentrations demonstrated a trend of 

increasing concentrations simultaneously with electrical conductivity starting at 

approximately 750 µS/cm, the optimal pH being 7.8 – 8.2 for the former and 6.8 – 7.8 for the 

latter. In the case of crAssphage it should also be noted that the concentration peak was 

specifically between pH 7.4 – 7.6. 
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Ammonium and one of the two virus concentrations impact on the second virus 

concentrations differed for both modelled viruses’ concentrations (Figure 10). 

 

Figure 10. The Modelled Impact of Ammonium and CrAssphage (or SARS-CoV-2) on SARS-CoV-2 (or 
CrAssphage) Concentration. The modelling is based on a Sugeno adaptive neuro-fuzzy interference 
system (ANFIS), the sub-method being subtractive clustering followed by tuning with the training data, 
where the inputs are ammonium and crAssphage concentration (panel A) or ammonium and SARS-
CoV-2 concentration (panel B), and the outputs are the SARS-CoV-2 concentration (A) or crAssphage 
concentration (B). Due to an unacceptable error of the tuned model B, the non-tuned initial FIS is 
presented for panel B. 
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Due to an increased error associated with the tuning process for the model, it was presented 

the untuned FIS which also should illustrate the model’s trends (Figure 10, Panel A), however, 

it is expected to be less accurate in relation to fitting the training data. The modelled SARS-

CoV-2 recovery demonstrated increased values of up to 4.7 log10 gc/l at ammonium 

concentrations of 45 – 58 mg/l and crAssphage concentrations up to 7.95 log10 gc/l. 

Interestingly, the modelled SARS-CoV-2 concentration increased simultaneously with the 

crAssphage concentration within the ammonium concentration range of 0 – 10 mg/l, while at 

higher ammonium concentrations, the trend was not maintained. The increased SARS-CoV-2 

concentration at ammonium of 0 – 10 mg/l displayed similarities to the previously observed 

models’ trends (Figure 5; Figure 7), although a relatively lower modelled SARS-CoV-2 

concentration, 4.3-4.6 log10 gc/l (Figure 5; Figure 7), as opposed to 5.6 log10 gc/l (Figure 10). 

These observations differ from the modelled crAssphage concentration (Figure 10) which 

showed that with an increase in the detected SARS-CoV-2 concentration and an increase in 

the ammonium concentration also increased the crAssphage concentration. However, the 

modelled crAssphage concentration still increased gradually and simultaneously with the 

increase in ammonium concentration, albeit slower, at low SARS-CoV-2 concentrations (0 – 

4.7 log10 gc/l). 

Some of the trends observed in the modelled impact of phosphate and one of the viruses on 

the second virus did agree (Figure 11). At a phosphate concentration of 0 – 2 mg/l, and an 

increasing crAssphage (or SARS-CoV-2) concentration also increased the SARS-CoV-2 

concentration (or crAssphage respectively). There was also a common trend of increased 

modelled virus recovery at phosphate concentrations of 4 – 7 mg/l and lower concentrations 

for the input virus.  

An important observation is that when SARS-CoV-2 and crAssphage were switched among 

each other in terms of being the output in the ANFIS model, only a few of the trends were 

preserved, pointing out to the differences in the optimal conditions required for relatively 

higher SARS-CoV-2, or respectively, higher crAssphage recoveries (Figure 5 – Figure 12).  
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Figure 11. The Modelled Impact of Phosphate and CrAssphage (or SARS-CoV-2) on SARS-CoV-2 (or 
CrAssphage) Concentration. The modelling is based on a Sugeno adaptive neuro-fuzzy interference 
system (ANFIS), the sub-method being subtractive clustering followed by tuning with the training data, 
where the inputs are phosphate and crAssphage concentration (panel A) or phosphate and SARS-CoV-
2 concentration (panel B), and the outputs are the SARS-CoV-2 concentration (A) or crAssphage 
concentration (B).  

 

SARS-CoV-2 modelled concentration (Figure 12) demonstrated that the optimal pH conditions 

were 7.6 – 8.4 (up to 4.34 log10 gc/l), the increase in the crAssphage concentration only slightly 

having contributed to an increase in the SARS-CoV-2 modelled concentration. SARS-CoV-2 

lower recoveries can also be observed at pH 6.8 – 7.6. 
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Figure 12. The Modelled Impact of pH and CrAssphage (or SARS-CoV-2) on SARS-CoV-2 (or 
CrAssphage) Concentration. The modelling is based on a Sugeno adaptive neuro-fuzzy interference 
system (ANFIS), the sub-method being subtractive clustering followed by tuning with the training data, 
where the inputs are pH and crAssphage concentration (panel A) or pH and SARS-CoV-2 concentration 
(panel B), and the outputs are the SARS-CoV-2 concentration (A) or crAssphage concentration (B).  

 

 

CrAssphage projected concentrations demonstrated high values at pH 8.2 – 8.4, and 

significantly higher values at pH 7 – 7.35 and with an increase in the SARS-CoV-2 

concentration, also increased the projected crAssphage concentration (Figure 12). 

The pH conditions correlating with higher SARS-CoV-2 and crAssphage concentrations (Figure 

12) coincided with those from previous models (Figure 5; Figure 6; Figure 9). 
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The modelled impact of turbidity or electrical conductivity and one virus concentration on the 

second virus concentration can be found in Figure S27 And Figure S28. Common observed 

trends are that at turbidity values of >150 NTU and an increasing crAssphage/SARS-CoV-2 

concentration, also increased the modelled SARS-CoV-2/crAssphage concentration.  

Additionally, at electrical conductivities of 1100 – 1800 µS/cm, the modelled SARS-CoV-2 

concentrations showed significantly higher values regardless of the crAssphage concentration 

(Figure S28). Whereas the crAssphage model demonstrated that the optimal electrical 

conductivity for higher virus concentrations were at values of >1400 µS/cm, the increase in 

the SARS-CoV-2 concentration only slightly having correlated with the increase in the 

crAssphage concentration. The described optimal electrical conductivity values were 

consistent with the previous model in Figure 8.  

 

3.4 Total and Infected Population Estimates 
The data required for the population estimation with the EMCLT and the MCBA were collected 

from literature or measured experimentally in the case of the volumetric flow rate. These 

were recorded in the Table 7. It was not possible to find a standard deviation for crAssphage 

and NoVGII faecal shedding, hence for these 2 viruses, the standard deviation for the EMCLT 

infected population estimate was not calculated. 

When a reliable mean value for a parameter could not be found, but a median value was 

available, the mean concentration used for modelling was selected based on the median 

value. Since the EMCLT and the employed MCBA assumes symmetrical normal distributions, 

it is expected that the mean and median values are close to each other. This was the case for 

the selected mean concentration for crAssphage and SARS-CoV-2. 
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Table 7. Mathematical Modelling Parameters 

 

An example of how exactly the MCBA was performed, is provided in the Appendix (Figure S6; 

Figure S7; Figure S8), specifically of the Approach 3 which also explains the Approach 1, 2 and 

the EMCLT.  

The population at Ysbyty Gwynedd was estimated to be within the boundaries of 1500-3500 

individuals, including the capacity of in-patients, commuting staff and population movement, 

such as visitors or out-patients. This range was used to evaluate the population estimate 

models. 

The results of the simulations with the MCBA 1, 2 and 3 were integrated into figures alongside 

the EMCLT results for visual comparison (Figure S9, Figure S10, Figure S11, Figure S12). 

 Virus Units Selected 

Concentration 

of Mean 

Selected 

Range of 

Concentration 

Standard 

Deviation 

(σ) 

Reference 

Ammonium 

amount 

discharged 

daily by a 

person  

 [MNH4-N] = 

mg/d/capita 

6000 

mg/d/capita 

4000-8000 

mg/d/capita 

N/A (Zheng et al., 

2017) 

Phosphate 

amount 

disposed 

daily by a 

person  

 [MPO4-P] = 

mg/d/capita 

850 

mg/d/capita 

594-1106 

mg/d/capita 

N/A (Sun et al., 

2017) 

Volumetric 

Flow rate 

 [F] = L/day 1920000 L/day 

 

1824000-

2072235 L/day 

96000 L/day 

(5% of the 

reading) 

Measured 

experimentally 

Faecal load   [α] = 

g/day/capita 

149 

g/day/capita 

51-796 

g/day/capita 

95 

g/day/capita 

(Rose et al., 

2015; 

Saththasivam 

et al., 2021) 

Viral faecal 

shedding  

CrAssphage [β] = 

copies/g 

8.1 log10 

copies/g 

4.1-10.1 log10 

copies/g 

Not 

available 

(Park et al., 

2020) 

SARS-CoV-

2 

6.9 log10 

copies/g 

4.3-10.81 log10 

copies/g 

7.47 log10 

copies/g 

(Anjos et al., 

2022; 

Saththasivam 

et al., 2021) 

Influenza A 

Virus  

4.5 log10 

copies/g 

3.69–7.9 log10 

copies/g 

4.8 log10 

copies/g 

(Chan et al., 

2011, 2009) 

NoVGII  8.48 log10 

copies/g 

7.79–10.11 

log10 copies/g 

Not 

available 

(Lee et al., 

2007) 

The table details the chemical parameters used throughout the modelling methods. The volumetric flow rate 
was measured experimentally on 2 occasions at the sampling manhole near the hospital, and the result was 
compared with the total water usage for the catchment. The “selected concentration of mean” was derived 
from the mean or median values when the former was not available.  
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Additionally, the mean, standard deviation, 99% confidence interval and the minimum 

degradation rate are provided for the estimated populations for each MCBA (Table S3, Table 

S4, Table S5, Table S6). 

The EMCLT and MCBA 2 and 3 crAssphage-based estimates performed the best with 19.6%-

21% of values being within the population limits of 1500-3000 individuals, whereas in 73%-

75% of estimates, the total population number was underestimated (Figure S9). The MCBA 1 

based on crAssphage wastewater concentration proved to be unsuitable for the total 

population estimation, whereas the ammonium and phosphate based estimates significantly 

overestimated the total population (Figure S9). 

The probability distributions for each obtained population estimate are not given. 

In the Appendix, it can also be found separately the EMCLT population estimate results for 

SARS-CoV-2, crAssphage, NoVGII and influenza A virus (Table S1). The standard deviation for 

the infected population estimate was calculated only for crAssphage and SARS-CoV-2.  

Influenza A virus and NoVGII detection was not consistent throughout the study period. 

Therefore, it was not possible to create a reliable continuous trend for these two. Assuming 

the parameters of Table 7, the MCBA 1 proved not to be feasible in the case of influenza A 

due to the unrealistic estimation of the population number of 0-3 individuals given the 

detected concentrations (Table S5) in a volumetric flow rate of 1920000 ± 5% litres/day.  

The MCBA 2 and 3 estimates were usually similar each other in the case of crAssphage, SARS-

CoV-2 and influenza A. This is due to viral losses for each approach being well aligned. 

Surprisingly, although the EMCLT assumed a 𝛾̅ of 0, the estimates were within approximately 

± 10% of the MCBA 2 and 3.  In the case of norovirus GII, the calculated γmin for MCBA 3 was 

not consistent for most of the estimates and jointly considering the EMCLT estimates for other 

viruses being higher than the MCBA estimates, it points out the flaw of the selected number 

of iterations which was no more than 5000 simulations (Supplementary Materials, “Monte-

Carlo-Bayesian Approach Example”). However, for the γmin calculation step, the number of 

simulations was even lower, 500 data points for MCBA 2 and 250 data points for MCBA 3. 

These values were selected based on the computational power and also because at 250-300 

simulations, the distributions of the data points have normalised.  
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3.5 Comparison of Estimates with Clinical Data 

3.5.1 SARS-CoV-2 
It was not possible to obtain the data for the in-care clinical cases at Ysbyty Gwynedd. 

However, SARS-CoV-2 reported cases for the county Gwynedd were used instead (UKHSA, 

2022a). The population in Gwynedd is 117,400 as of 2021 (ONS, 2022a). The population 

estimates of SARS-CoV-2 were divided by the population estimates based on crAssphage for 

each model and compared against the COVID-19 reported cases in Gwynedd divided by the 

total population of Gwynedd (Figure 13). It is not known if an increased or decreased disease 

prevalence can be expected in the hospital comparing to the community. On one side, 

healthcare professionals are at a higher risk of infection and a hospital is a hub for infected 

individuals or for those at a higher infection risk. On the other hand, extensive cleaning 

procedures are to be undertaken in a hospital, not all out-patients or visitors use toilet 

facilities and symptomatic individuals are more likely to undertake precautionary measures. 

However, correlation between the hospital and the community prevalence of COVID-19 is 

expected. 

  

 

 

 

 

Figure 13. Proportion of estimated SARS-CoV-2 cases at Ysbyty Gwynedd against proportion of 
reported cases in Gwynedd. The proportion of estimated SARS-CoV-2 cases at Ysbyty Gwynedd was 
calculated by dividing the SARS-CoV-2 population estimates by the crAssphage population estimates, 
while the proportion of reported cases in Gwynedd was calculated by dividing the number of cases 
reported clinically by the total population of Gwynedd, both being subsequently multiplied by 100. A 
Gaussian filter is applied with a sigma value of 3. 
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In Figure S13, the comparison from Figure 13 is demonstrated with smaller values for the 

sigma argument in the Gaussian filtered plots or a lower “noise reducing” effect. Upon visual 

examination of the trends, a significant similarity can be observed, however it should be noted 

that the y-axis scale is exponential. Even if the reported cases were adjusted for the ratios of 

confirmed to unreported cases of SARS-CoV-2 as established previously to be between 1:11 

and 1:15 (not shown) (95% CI between 1:4.2 and 1:17.5) (McMahan et al., 2021), the model 

still overestimated the proportion of people infected with SARS-CoV-2 in the hospital 

catchment comparing to the whole county. 

In order to quantify the correlation observed in Figure 13, the proportions were converted to 

percent changes, and the pairwise Pearson correlation of the estimate-based percent versus 

reported-based changes was calculated (Table 8).  

Table 8. Pairwise Pearson Correlation of SARS-CoV-2 Estimated Cases at Ysbyty Gwynedd against 
Reported Cases in Gwynedd Proportions Percent Changes 

sigma MCBA 1 MCBA 2 MCBA 3 EMCLT 

0 -0.098 -0.042 0.066 0.035 

1† 0.111 0.166 0.051 0.081 

2† 0.309 0.321 0.274 0.246 

3† 0.379 0.426 0.336 0.315 

1* 0.225 0.286 0.187 0.190 

2* 0.605 0.525 0.377 0.331 

3* 0.750 0.694 0.556 0.496 

5* 0.970 0.906 0.832 0.796 

Sigma was applied before percent conversion - *. Sigma was applied before and after percent 
conversion - †. 

The percentage changes were also plotted for visual comparison (Figure 14). Additionally, 

Figure S14 and Figure S15 show comparisons of percent changes with varying sigma argument 

values as described in Table 8. With an increasing sigma argument, especially when applied 

before and after percent changes calculation, also increased the pairwise correlation. 
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Figure 14. Estimated Cases at Ysbyty Gwynedd against Reported Cases in Gwynedd Proportions 
Percent Changes. Initially the proportions are calculated by dividing the SARS-CoV-2 population 
estimates by the crAssphage population estimates for each of the modelling method: the Monte-Carlo-
Bayesian approach (MCBA) 1, 2, 3 and the equation model following the Central Limit Theorem premise 
(CLT), and another proportion is calculated separately by dividing the SARS-CoV-2 reported cases in 
Gwynedd by the total population of Gwynedd. The proportions are computed with a Gaussian filter of 
a sigma argument of 3 only once before the conversion to percent changes. Then the percent changes 
were calculated for each proportion separately. 

Although the population estimates proportion were much higher than the reported cases 

proportion (Figure 13), the percent changes (Figure 14) demonstrated that the changes in the 

reported cases did indeed follow a similar trend as the estimated cases based on wastewater 

virus concentration.  

The results of DTW can be observed in Figure 15, the method being applied on the estimated 

and reported cases proportions. Although the diagonal sections demonstrate an identity 

between the compared groups, the shifts towards either of the axes demonstrated that there 

lacks significant and consistent trend similarity and predictive capacity in terms of infected 

population prediction. However, the reason is that a Gaussian filter was not applied, hence 

the estimate trends have inconsistent significant variations (Figure S13), not allowing for 

proper quantification of the trends’ similarity. 
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Figure 15. Dynamic Time Warping of SARS-CoV-2 Estimated Cases Proportion at Ysbyty Gwynedd against 
Reported Cases Proportion in Gwynedd. The SARS-CoV-2 infected population estimates proportion at Ysbyty 
Gwynedd were compared against the SARS-CoV-2 reported population proportion in Gwynedd by Dynamic Time 
Warping (DTW). The estimates proportion were calculated by dividing the SARS-CoV-2 infected population 
estimate by crAssphage infected population estimate. The reported cases proportion was calculated by dividing 
the SARS-CoV-2 cases in Gwynedd by the total population of Gwynedd. The x and y axis represent the matrix cost, 
where the minimum path with minimum distance is computed as the sum of the absolute differences. A match is 
described by a diagonal warping path, hence indicating temporal alignment between the two series. Each of the 
Monte-Carlo-Bayesian approach (MCBA) and the equation model following the Central Limit Theorem premise 
(CLT) is compared independently against the COVID-19 reported cases in Gwynedd. A left-hand or a right-hand 
deviation from the diagonal indicates a leading or lagging relationship. For example, a right-hand shift towards 
the Estimated Cases Axes indicate that the proportion of estimated cases has increased sooner or has increased 
proportionally more than the proportion of reported cases in Gwynedd. In panel A, it can be observed a significant 
left-hand shift towards the “COVID-19 Reported Cases” axis and then a right-hand shift, whereas no diagonal 
path is present, this indicating no alignment between the trends. For panel C and D, although there is a significant 
portion of the path being diagonal which shows trend alignment, the cost matrix is 389.52 and 477.78, which is 
close to panel A, 446.59, indicating extensive adjustment by the DTW model in order to fit the trends. Therefore, 
it is unlikely that panel C and D have identified significant trend similarity or a lagging/leading relationship. The 
best result was yielded by panel B with the lowest cost matrix and the highest proportion of the diagonal path.  
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In Figure 15, the SARS-CoV-2 MCBA 2 estimates proportion demonstrated the highest trend 

similarity with the COVID-19 reported cases proportion. However, a left-hand shift was 

present, indicating that the reported cases proportion has increased sooner or proportionally 

more, followed by trend alignment where the estimated cases trend was lagging the reported 

cases trend. This then follows by a right-hand shift, reducing the lagging distance of the 

estimated cases trend. In conclusion, the results demonstrate insufficient trend similarity and 

identity between the compared datasets. A significant limitation is that the clinical SARS-CoV-

2 cases were bigger datasets containing data for almost each day between the study period, 

while the estimate cases datasets contained data for several days in a week. The lack of 

alignment is not necessarily due to the lack of WBE predictive capability of clinical cases but 

can be due to a much higher uncertainty in terms of viral losses and a lower accuracy in 

estimating the number of cases. Additionally, a factor is also that the clinically reported case 

numbers are not completely representative of the disease prevalence and do underestimate 

the spread within the catchment, whereas WBE would remove this limitation. However, this 

would be indicated by a right-hand shift towards the estimated cases axes (Figure 15) rather 

than the reported axes, demonstrating an inaccuracy in the employed infected population 

estimation models.  

Another DTW comparison was between only the estimated and reported cases only on the 

same date (Figure S16); however, this adjustment did not improve the temporal alignment as 

quantified by the “minimum path” for any of the methods but the SARS-CoV-2 MCBA 1.  

3.5.2 Influenza A  
The weekly diagnosed influenza A cases in Wales as determined based on specimens 

submitted for virological testing for hospital patients and non-sentinel GPs, were retrieved 

from public resources (Table S7) (PHW, 2022). Influenza A estimates were cumulated by week, 

as well as the crAssphage estimates, after which the influenza A virus weekly estimates were 

divided by the crAssphage weekly estimates and compared against the weekly influenza A 

diagnosed cases divided by the total Wales population, the population in Wales being 

3,107,500 as of 2021 (ONS, 2022b).  

There is a significant discrepancy between the estimated Influenza A cases proportion and 

the diagnosed one (Table 9), however for the week 15/11/2021 – 05/12/2021, the estimated 

proportion reaches the range of 0.87% – 11.44%, a more realistic estimate which coincides 

with the CDC estimate of the prevalence of symptomatic flu illness of 3% – 11% (CDC, 2022b).  
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Table 9. Influenza A virus Estimated Cases Proportion at Ysbyty Gwynedd against Influenza A 
Diagnosed Cases Proportion in Wales 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Week by Start 
Date 

MCBA 1 (%) 
MCBA 2 

(%) 
MCBA 3 

(%) 
EMCLT 

(%) 
Diagnosed Cases 
Proportion (%) 

08/11/2021 89.996 61.704 2273.896 2026.124 0.022 

15/11/2021 29.239 11.442 4.003 4.318 0.046 

22/11/2021 0.873 N/A  2.370 0.615 0.045 

29/11/2021 1.011 N/A  0.117 0.178 0.098 

06/12/2021 79.941 78.022 95.027 89.131 0.164 

13/12/2021 97.560 67.796 77.487 62.470 0.130 

The estimated cases proportion at the hospital Ysbyty Gwynedd was calculated by dividing the 
Influenza A estimated cases by the crAssphage population estimates whereas the proportion for 
Wales was calculated by dividing the number of clinically diagnosed cases in Wales by the number of 
tested specimens.  
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4. Discussion 

4.1 Total Population Estimation 

The projected total population numbers with crAssphage, ammonium and phosphate 

concentrations according to the EMCLT and MCBA demonstrated high variations conflicting 

with the expected population limits of 1500-3000 individuals (Figure S9). Generally, the 

ammonium and phosphate estimates were significantly above the higher limit, likely 

indicating that the ammonium and phosphate contribution per capita was underestimated. It 

resulted from a higher concentration discharge than 6 g/day/capita for ammonium and 

approximately 1 g/day/capita for phosphate. However, in previous research, the ammonium-

based population estimates agreed with the corresponding population numbers (Zheng et al., 

2017; Been et al., 2014). A significant difference is that Zheng et al. (2017) and Been et al. 

(2014) performed sampling of influent water at a WWTP, whilst in this hospital-based study 

sampling was performed at a nearby manhole. This factor is suggested to be important 

because at the hospital, there is likely to be an increased use of disinfectants containing 

quaternary ammonium compounds, especially during the SARS-CoV-2 pandemic (Hora et al., 

2020). This would increase the total ammonium concentration unproportionally to the total 

population. In contrast, at a WWTP, unique events of increased ammonium disposal are likely 

to have a smaller effect on the population number predictability due to being diluted with a 

higher volume of wastewater. Therefore, ammonium did not prove to be suitable to estimate 

the population number within the hospital catchment. Additionally, urine-derived ammonium 

release increases with urea hydrolysis, and depending on the amount of urease, it can take 

up to 2-4 weeks for complete hydrolysis (Münch & Winker, 2011). Therefore, the difference 

of the amount of hydrolysed urea among processed wastewater samples is a source of error 

for total population estimates. It is therefore recommended that future estimates measure 

total soluble N in wastewater (i.e. ammonium, urea etc) to better estimate N loading rate.  

For the same reason, phosphate-based population estimates are not accurate either since 

phosphate is a complexing agent used in disinfectants and cleaning products (Yangxin, Jin & 

Bayly, 2008; Köhler, 2006). This conclusion is supported by the significant similarity in the 

trends of ammonium- and phosphate-based population estimates and by the fact that the 

population numbers fluctuated by 5000 – 10000 individuals, an unrealistic change for a 

catchment with an expected population of 1500 – 3000 individuals (Figure S9). Also, since 

these two trends mostly do not agree with the crAssphage-based trends (Figure S9), and 

assuming that the crAssphage losses rate was mostly consistent throughout the whole study 

period, it again demonstrates that the ammonium and phosphate fluctuations are not 

proportional exclusively to the population number. However, in this case, ammonium and 

phosphate concentrations can be evaluated for other purposes, for example for assessing 

virus degradation or normalising virological data (Hutchison et al., 2022). 

The MCBA 1 is not suitable for crAssphage-based population estimation in the current setting. 

The EMCLT and MCBA 2 and 3 crAssphage-based estimates trends were within the proximity 
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of each other for most of the study period (Table S2; Table S6) despite the fact that the MCBA 

2 and 3 assumed viral losses of >97% while the EMCLT had a 𝛾̅ of 0. It is unclear the reason of 

this similarity at such significantly different degradation rates between the MCBA and the 

EMCLT.  Normalisation of the crAssphage-based estimates by the coefficient corresponding 

to the number of individuals shedding crAssphage in faeces did not improve the outcome 

since the trend overestimated and underestimated over periods of time of similar length. The 

obtained minimum viral losses rate of >97% is a realistic estimate considering that the 

ammonium-sulphate based concentration method had a mean recovery rate of 6% (Farkas et 

al., 2022a). Previous research has found a significant relationship between the served 

population and the crAssphage load, but no studies have estimated the exact population 

number based on crAssphage (Wilder et al., 2021). However, it should be noted that methods 

for crAssphage recovery from wastewater have not been optimised and their recovery is 

subject to considerable uncertainty. Potential solutions to solve the inaccuracy of the model 

are the following. Firstly, the crAssphage wastewater concentration is to be normalised with 

another human biomarker such as creatine, the pepper mild mottle virus (PMMoV) or the 

human mitochondrial gene NADH dehydrogenase subunit 5 (Hutchison et al., 2022). 

Secondly, the distribution of the crAssphage faecal shedding rate should be repeatedly 

evaluated in more detail for normality. In case it is a non-normal distribution, the distribution 

pattern should be integrated into the MCBA by artificially and proportionally increasing the 

incidence of pseudo-random number generation within specific intervals while decreasing for 

other intervals. 

 

4.2 Wastewater Physico-chemical Properties Effect on SARS-CoV-2 

and CrAssphage Concentration 

Although previous experimental and ANFIS-based research on coronaviruses demonstrated 

that the viral RNA remains stable in the pH range of 7.1 – 7.4 (Casanova et al., 2009; Amoah 

et al., 2022), the employed ANFIS models demonstrated that the most optimal pH conditions 

for SARS-CoV-2 are in the range of 7.6 – 8.5 (Figure 5; Figure 6; Figure 9; Figure 12). This finding 

coincides with the pH range of 7.5 – 9.0 at which SARS-CoV-2 structural proteins human ACE2 

and the S-protein have been shown to be stable (Xie et al., 2022). This difference is likely to 

originate from different chemical composition of wastewater as sampled from a hospital in 

this study or from the WWTP in Amoah et al. (2022) study. Similarly, for crAssphage, 

experimental data on five phage viruses from the same Podoviridae family demonstrated the 

optimal pH for stability to be in the range of 5 – 10 (Hamdi et al., 2016), corresponding with 

the ANFIS modelling indicating the most optimal pH conditions to be 6.8 – 7.8 and 8.15 – 8.5 

(Figure 5; Figure 6; Figure 9; Figure 12). While it can be argued that the ANFIS model has 

narrowed the optimal pH range for crAssphage, it should be noted that the pH of wastewater 

is relatively stable (Table 4). Therefore, there was no sufficient data to train the model at pH 

values of <6.5 and >8.5, however, these values are unlikely for wastewater. The pH values 

which correlated with a higher concentration for both viruses corresponded with the mean 
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wastewater pH (Table 4), hence wastewater pH at the detected values does not contribute to 

SARS-CoV-2 or crAssphage instability, and their subsequent degradation. Therefore, it was 

also not possible to link the pH value to particular cleaning products. Factoring in the impact 

of a wastewater dilution factor on the cleaning product potential to degrade the pathogen or 

its genetic material requires more research. Since their pH vary, direct measurement of 

markers, such as total chlorine, might be more practical in a wastewater surveillance setting, 

and will remove uncertainties originating from using pH as a proxy indicator (Sridhar et al., 

2022; CDC, 2022a).  

Electrical conductivity can be interpreted as a good indicator of wastewater salinity, which 

electrostatically affects the binding capacity of viruses to charged surfaces, such as organic 

matter, a higher salt content promoting hydrophobic interactions (Farkas et al., 2022b; Liu et 

al., 2017). However, other indirect effects of salts are the change of pH and the formation of 

precipitates that adsorb viruses (Lukasik et al., 2000). Additionally, electrical conductivity is 

also an indicator of the dissolved organic matter (DOM) in wastewater, which may 

competitively inhibit virus sorption to polar sites. Therefore, it is predicted that with an 

increasing electrical conductivity, viruses detach from solid particles, hence increasing virus 

recovery from the liquid component of wastewater. That was observed for SARS-CoV-2 and 

crAssphage, EC correlating with higher virus recovery, starting at values of approximately 750 

µS/cm as inferred from multiple ANFIS plots (Figure 8; Figure 9; Figure S28).  

Some research reports the opposite, that salinity levels are negatively correlated with virus 

recovery from the liquid environment and positively correlated with virus sorption due to viral 

particles detaching from porous material as a result of salinity reduction (Zhang, Zabarankin 

& Prigiobbe, 2019). However, the model provided by Zhang, Zabarankin & Prigiobbe (2019) 

lacks sufficient experimental data. Moreover, different viruses have different charge 

distribution on the virion surface (i.e. positive and negatively charged domains), hence are 

likely to interact differently. For example, the charge distribution of the SARS-CoV-2 intact 

virion is heterogenous with the stalk part of the spike protein being net negatively charged 

while the apical part, particularly the receptor binding domain, being net positively charged 

(Adamczyk, Batys & Barbasz, 2021; Jones et al., 2022). The overall net charge is expected to 

be negative due to the isoelectric point being below pH 7 (Jones et al., 2022). Since the solid 

matter within raw wastewater contains organic matter, which is mostly negatively charged 

due to carboxylic and phenolic groups, the SARS-CoV-2 negative net charge will result in 

repulsion against particulate organic matter (Park et al., 2018). When positively charged 

groups will be present on particulate organic matter or other surfaces, SARS-CoV-2 virion 

attachment to them may be inhibited by salinity and DOM as demonstrated by the EC positive 

correlation with virus recovery. However, the wastewater matrix is complex, and it is unclear 

how the positive charge of the apical part of the SARS-CoV-2 spike protein would affect these 

electrostatic interactions. Moreover, even more uncertainty is introduced when the viral 

capsid is damaged or the nucleic acid is unprotected, which changes the surface charge (Jones 

et al., 2022).  
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In the case of influenza A virus, the surface net charge is positive, particularly due to 

haemagglutinin on its surface (Kobayashi & Suzuki, 2012; Arinaminpathy & Grenfell, 2010). In 

contrast, NoVGII has a surface net negative charge at environmental pH (da Silva et al., 2011; 

Mertens & Velev, 2015). Therefore, influenza A virus is likely to be attracted to negatively 

charged surfaces and receptors (e.g., wastewater organic matter), which is contrary to the 

NoVGII or SARS-CoV-2 electro-static interaction (Adamczyk, Batys & Barbasz, 2021). 

Unfortunately, it was not possible to train an ANFIS for influenza A virus given its much lower 

detection rate; however, other statistical analysis, such as principal component analysis, 

would make that possible. For modelling different viruses’ sorption interactions, more 

research is required about the wastewater solid fraction composition and electric charge, and 

whether it is composed mostly of negatively charged organic matter.  

The positive relationship between EC and SARS-CoV-2 and crAssphage virus recovery is also 

consistent with previous research that has shown that different wastewater concentration 

methods with and without pre-treatment give different viral recoveries. NaCl pre-treatment 

enhanced viral recovery from the liquid part of wastewater which was attributed to Na+ and 

Cl- additional competition for the polar binding sites on the surface of solid polar particles 

(Farkas et al., 2022b). However, in the experiment, NaCl was added to achieve a concentration 

of approximately 1.2% (Farkas et al., 2022b), whereas the NaCl concentration of >95% 

wastewater samples wastewater was <0.1% (<1500 µS/cm) as calculated by converting 

electrical conductivity into a NaCl concentration. Therefore, the salinity of the wastewater 

samples at the measured values (Table 7) is likely to have a smaller effect on virus recovery 

from the liquid part of wastewater comparing to the study from Farkas et al. (2022). 

The positive association between ammonium concentration and viral recovery (Figure 5; 

Figure 7; Figure 10) is consistent with another ANFIS-based study (Keshavarzi et al., 2017). 

The phosphate concentration demonstrated a stronger association with the crAssphage 

concentration comparing to SARS-CoV-2 recovery due to the association of crAssphage with 

faecal matter and of faecal matter with orthophosphate (Figure 6; Figure 7; Figure 11) (Farkas 

et al., 2023; Chapuis-Lardy et al., 2004). In a larger population as demonstrated by higher 

ammonium or phosphate concentrations, increases the potential for a higher load of SARS-

CoV-2 or crAssphage in wastewater (Keshavarzi et al., 2017). 

In relation with the correlation between crAssphage and turbidity (Figure 8; Figure S27), 

previous research indicates weak to no correlation between crAssphage concentration and 

turbidity or total suspended solids of influent wastewater samples (Jennings et al., 2020; 

Cuevas-Ferrando et al., 2022).  

4.3 Models Validation 

The EMCLT and Monte-Carlo simulations have been previously trialled to estimate the SARS-

CoV-2 infected population based on WBE data (Hasan et al., 2021; Vallejo et al., 2022), but 

little to no research is available for norovirus GII, influenza A virus and crAssphage. 
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The evidence presented here suggests that the MCBA and the EMCLT overestimated the 

infected population proportions at Ysbyty Gwynedd, however, on-site data is required to 

confirm the results (Figure 13). The overestimation persists even if the reported number of 

cases are multiplied by a factor of 11 or 15 to account for the unreported number of SARS-

CoV-2 cases (McMahan et al., 2021). A previous study of the EMCLT demonstrated that the 

model provided a realistic estimation of the SARS-CoV-2 infected population but also 

underpredicted the number when the infection cases were lower (Saththasivam et al., 2021). 

However, the reasons for other research models’ underestimation are different than the 

SARS-CoV-2 infections overestimation of this study. This is due to the fact that previous 

research compared the estimated cases directly with the confirmed cases, which was not 

possible for this study. The hospital infected proportions were compared with the county 

infected proportions, which have different demographics and epidemiological dynamics. 

Possible explanations for the overestimation are an increased incidence of SARS-CoV-2 within 

the hospital catchment, underestimation of the total population based on crAssphage 

wastewater concentration, or inaccurate parameters set for the MCBA. Although, the 

percentage changes correlated well between the comparison groups (Table 8; Figure 14). 

Additionally, this points to the suitability of crAssphage data to normalise the SARS-CoV-2 

data. Two other studies that used a susceptible-exposed-infectious recovered (SEIR) model 

have performed significantly better than the employed EMCLT and the MCBAs, finding a 

similarity ratio of 10:9 and 1:1 between the estimated cases at a WWTP and the adjusted for 

under-reporting (McMahan et al., 2022, 2021).  

Previous research identified the predictive capacity of WBE using standard methods such as 

a visual inspection of the trends or Pearson and Spearman correlations (Olesen, Imakaev & 

Duvallet, 2021). DTW was not successful at validating the previously observed similarity of 

the trends in Figure 13 or at identifying the capacity of WBE in predicting an increase or a 

decrease in the number of infections due to not being possible to apply the Gaussian function 

which resulted in significant oscillations of the trends (Figure S13). However, the lead time of 

wastewater-based COVID-19 measurements against the case counts was previously 

estimated to be between 2 to 14 days depending on the setting (Zhang et al., 2022; Olesen, 

Imakaev & Duvallet, 2021). 

The influenza A estimated prevalence for week 29/11/2021 was close to the Wales clinical 

cases proportion for week 06/12/2021, and between 15/11/2021 and 05/12/2021 (Table 9), 

it coincided with the CDC estimate of influenza A prevalence in the community of 3 – 11% 

(CDC, 2022b). Besides the positivity rate for Wales and the CDC estimates, sentinel swabbing 

in the UK found that the influenza A positivity rate reached as high as 4% for the week of 

08/11/2021 which matches the MCBA 3 and EMCLT estimated proportions of 4% and 4.3%, 

respectively, for the week of 15/11/2021 (Table 9) (UKHSA, 2022c). Other similarities were 

observed between the estimated and sentinel swabbing positivity rates or the hospital 

admission rates in UK; however, the leading time was not consistent. Despite previous 

research describing the WBE capability to identify influenza A outbreaks (Wolfe et al., 2022), 
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the short period of time of influenza A virus positive detection (Table S7) was not sufficient 

to infer firm conclusions about the estimated-reported trends of this study.  

The detection rate of NoVGII (Table 5) was consistent with the results of a systematic review 

reporting an 82.1% norovirus detection in wastewater (Huang et al., 2022), and the detection 

between 13/12/2021 and 04/03/2022 in multiple intervals of 3-4 days alongside the MCBA 1 

estimates of 1 – 3 infected individuals is consistent with the norovirus infection period of up 

to 3 days (Table S3) (Mayo Clinic, 2022b). On the other hand, the MCBA 2, 3 and the EMCLT 

provided estimates (Table S1; Table S3) and would be treated as a health emergency, which 

was not the case, proving that these models are unsuitable for NoVGII. Nonetheless, the 

increase in the detected norovirus concentration and the MCBA 1 estimated cases between 

29/03/2022 and 14/04/2022 indicated an outbreak at Ysbyty Gwynedd, but no outbreak was 

reported publicly specifically at the hospital. However, for the week commencing 14/03/2022, 

a significant peak was observed in the weekly reported norovirus cases in England based on 

laboratory reports and a peak of norovirus outbreaks was observed at hospitals in England as 

reported to the Hospital Norovirus Outbreak Reporting System (UKHSA, 2023). While the 

increase in laboratory reports and hospitals outbreaks in England does not demonstrate that 

an outbreak occurred at Ysbyty Gwynedd, it could provide basis for the assumption of the 

outbreak being possible based on national trends. Additionally, previous research has 

successfully used WBE to predict NoVGII outbreaks 2-3 weeks in advance (Hellmér et al., 

2014). However, similarly to influenza A virus estimates, longer surveillance time for NoVGII 

detection is required. 
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5. Study Limitations 

The initial sampling was performed as 12 individual 2-hour composite samples, followed by 

one 24-hour composite sample taken daily. The study accounted for this transition by using 

the daily mean values for the viruses, ammonium and phosphate concentrations, however, a 

thorough comparison between the two periods was not explored. Since sampling was done 

at the maintenance hole situated directly outside the hospital, it is likely that the fast-stream 

effluent was not homogenised sufficiently, and the sampled wastewater was not 

representative of the whole volume of wastewater passing the sampling point. This may have 

contributed to significant trend fluctuations, especially for low-abundance viruses, such as 

influenza A virus.  

The parameters of the ANFIS model were selected as the most optimal based on the size of 

the dataset, which also yielded a high error rate in terms of the RMSE and the predictive 

capability. Perfect correlation could have been achieved by overfitting the dataset, but that 

would not provide any conclusions on the paired influence of two wastewater parameters on 

virus concentration. The solution is to decrease the similarity cluster influence range that 

would allow for more model membership relationships to be built, hence more accurate 

predictions to be made, providing there is one. However, due to a limit in the computational 

power and due to the size of the dataset that was not possible. Another limitation of the 

ANFIS model is that it explored exclusively the paired impact of two wastewater parameters 

on the virus concentration. Since it encompassed only the operator “and”, it was not exploring 

the “or” relationships when one of the parameters had an impact while the second one did 

not. Additionally, other statistical approaches exploring the impact of chemical parameters 

on virus concentrations were not tested, which otherwise, would have put the described 

impact into a more quantifiable and statistically significant perspective. 

An important data analysis tool was the Gaussian filter. Its function was to reduce fluctuations 

to allow an easier comparison of the two trends. The limitation is that without this function, 

most of the similarities cannot be easily observed or quantified due to high variations in 

trends and outliers. The study tested a range of parameters for this function as to observe the 

corresponding change and the effect the function had in influencing the similarity. Although 

the Gaussian filter is efficient in reducing the trends jumps or “noise” of a variable, hence 

allowing to easier observe the trend over a time period, a too large reducing effect, 

manifested by choosing a higher sigma argument, may result in skewed conclusions, requiring 

a complementary statistical analysis to confirm the conclusions. Additionally, the need to 

apply this filter points out to inconsistencies of the methodology, particularly on the data 

analysis side such as the lack of direct comparison groups (no clinical data within the 

catchment) and potential inaccuracy or unsuitability of the MCBA or the EMCLT. However, 

the inconsistency could originate on the laboratory and study design sides such as the 

unsuitability of crAssphage as a human biomarker or the requirement to normalise virus 

concentrations with other human biomarkers.  
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A significant limitation is that the study resorted to comparing the population estimates with 

the reported cases of a much larger area by converting the estimated and the reported cases 

numbers into proportions corresponding to the total population. Additionally, there was an 

inconsistent influenza A virus detection, and it was not possible to observe the trends over a 

sufficiently large period. Samples were also negative when the number of influenza A cases 

has peaked in Wales, however, this may have resulted from an uneven disease spread 

distribution, e.g., many cases being concentrated in urban areas. 

For random number generation in the context of the MCBA, the sampling was done from a 

uniform distribution. While under the CLT assumption, the simulated virus concentration 

would result in a normal distribution regardless of the initial distribution of parameters for a 

sufficiently large population, the distributions of the parameters, especially that of virus and 

faecal shedding, should be incorporated in the random number generation process to ensure 

accuracy even at low population numbers. Another significant limitation is that the EMCLT 

assumption of a normal virus concentration distribution for sufficiently large populations was 

not tested. In future studies, it can be addressed through Monte-Carlo simulations of normal 

and non-normal distributions for the parameters related to that large population, or through 

a sensitivity analysis. 

Theoretically, crAssphage is the most suitable human biomarker among those investigated 

here. We ascribe this to it exclusively being related to its presence in human faecal matter, 

while ammonium and phosphate are less suitable as human biomarkers. It is not possible to 

differentiate the endogenous ammonium or phosphate contribution from exogenous 

sources. Moreover, the exogenous contribution, such as disinfectants discharge, is not likely 

to be consistent over time.  

The estimated cases trend was explored with DTW for the potential to be leading for the 

reported cases trend. However, the wastewater RNA concentration is leading only when the 

number of cases is surging, after which it becomes lagging because individuals continue faecal 

shedding following recovery from the infection. 

 

 

 

 

 

 

 

 

 



63 
 

6. Conclusion 

The study explored several approaches for the estimation of the total and infected population 

numbers to improve the outcome of wastewater surveillance in a near-source context 

(hospital). Additionally, several parameters of the wastewater matrix were studied for their 

impact on viruses based on previous research and ANFIS modelling. 

Ammonium and phosphate were not good total population estimators due to significant 

fluctuations and unknown exogenous human discharge sources. Even if a more 

representative chemical discharge mean value was available, the fluctuations of the 

concentration would not allow for an adequate population number estimation. A range 

depending on the time of the day would be more suitable, but it is unknown whether it will 

be consistent over longer periods of time. CrAssphage was a more successful population 

estimator, but consistent sampling, model adjustment and concentration normalisation are 

essential to increase the accuracy of the model to a more acceptable success rate. Other 

human biomarkers should be explored to cross-validate with crAssphage. 

The ANFIS model assessed the impact of the physico-chemical parameters on SARS-CoV-2 and 

crAssphage recoveries. Ammonium and phosphate concentrations had a directly proportional 

modelled correlation on viruses’ concentrations likely due to ammonium and phosphate one 

of the main sources being urine, ammonium being better correlated with SARS-CoV-2 and 

phosphate with crAssphage. Most of the wastewater samples were within the pH range 

where the modelled recoveries were the highest, hence viral losses are likely to be due to 

other factors than pH. Additionally, the ANFIS modelled impact demonstrated that electrical 

conductivity correlates with virus concentration. This results from DOM and dissolved salts, 

such as NaCl, competitively inhibiting virus sorption, hence sample pre-concentration 

treatment with salts may increase virus recovery from turbid wastewater. Turbidity had a 

more notable impact on crAssphage recovery than on SARS-CoV-2. Although the model was 

based on finding clusters of similarity, other complementary statistics exploring linear and 

non-linear correlations, such as Spearman pairwise correlation, are essential to confirm the 

found impact of the physico-chemical parameters, and to subsequently establish an equation 

relationship.  

CrAssphage, SARS-CoV-2 and NoVGII were detected at a relatively high rate and concentration 

in wastewater. Therefore, a large dataset was available for the modelling of the population 

number infected with crAssphage, SARS-CoV-2 and norovirus GII. At the same time, influenza 

A virus was detected sporadically, lacking trends to infer any conclusions. 

The modelling results achieved for NoVGII and SARS-CoV-2 are promising. The MCBA 1 was 

suitable for NoVGII and influenza A virus, while the MCBA 2, 3 and the EMCLT was suitable 

for SARS-CoV-2 and crAssphage. The MCBA 1 has consistently calculated a norovirus infected 

population of 1-3 individuals in intervals of 3-4 days from an expected daily dynamic 

population of >1500 individuals. It was deemed to be an accurate estimation due to the 

norovirus infection period of up to 3 days. The model also identified a norovirus outbreak at 
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the hospital providing realistic estimates (5 – 40 individuals) but no clinical data was available 

to validate the results. For SARS-CoV-2 estimates, the MCBA 2, 3 and the EMCLT has provided 

realistic estimates. For validation, the infected estimates proportion cases were compared to 

the reported proportion observed from county-scale data, which showed that the estimated 

proportions were significantly overestimated. When converted to percentage changes, there 

was a significant correlation between the trends of the estimated and reported SARS-CoV-2 

cases proportions. Consequently, the estimated cases should be compared directly with the 

reported cases rather than their total population proportions.   

The capability to estimate the total and the infected population number is essential for the 

progression of WBE, and this study has provided insights into the effect of wastewater 

physico-chemical parameters and the usefulness of the EMCLT and different MCBAs. The use 

of infected population proportions to compare catchments of different sizes yielded 

inaccurate results due to an inaccurate crAssphage-based total population estimation. Due to 

the difficulty to count (dynamic population) and obtain the active number of infectious cases 

within a hospital catchment, future infected population models research should focus on 

larger catchments and perform direct comparisons with the number of reported cases.   
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7. Future Directions 

To improve future results of the ANFIS model, the influence range of the cluster should be 

reduced, hence achieving smaller and more numerous clusters and, subsequently, a higher 

number of membership functions, allowing for a higher degree of freedom as to how the 

input parameters influence the output which is the virus concentration. However, this 

approach would require larger datasets and splitting the dataset into training and testing 

dataset, e.g., with a 80-20 ratio, as to be able to validate the model and to avoid model 

overfitting to the training data.  

For the exploration of the wastewater parameters influence on virus recovery, besides the 

ANFIS modelling, monotonic and non-monotonic non-linear correlative relationships are 

necessary, such as the Spearman and Pearson pairwise and/or the mutual information and 

maximal integration correlations. The measurement of additional wastewater physico-

chemical properties may provide more information on the potential influences on virus 

recovery (Li et al., 2022b; Amoah et al., 2022; Maal-Bared et al., 2022). For example, total or 

free chlorine is associated with virus inactivation and degradation and can be measured with 

a N,N-diethyl-p-phenylenediamine method (CDC, 2022a; Qiao et al., 2022). Other research 

has linked biochemical oxygen demand with an increased SARS-CoV-2 RNA concentration, 

likely due to the presence of organic matter (Nasseri et al., 2021). This can be measured by 

monitoring the dissolved oxygen either with a probe or with the Winkler method (APHA, 

1992). Wastewater also contains extraction and PCR inhibitors such as metal ions which can 

be measured with inductivity-coupled plasma mass-spectrometry, therefore, providing an 

initial correlative assessment of metal ions concentration impact on virus recovery (Schrader 

et al., 2012; Yakimovich & Alekseev, 2018). Lastly, it would also be useful to measure total 

dissolved N (as a better measure of N loading rate) and also humic substances (qPCR 

inhibition).  

To account for viral losses associated with laboratory processes, that varies among samples, 

and for the purpose of quality control, the wastewater can be spiked with control non-human 

viruses upon arrival at the laboratory or at the start of the analysis. The spiking virus should 

be surrogate to the target virus in terms of genome structure (e.g., ssRNA, dsRNA, ssDNA, 

dsDNA) and the virion structure (e.g., enveloped, non-enveloped, spherical, helical, 

polyhedral) (Farkas et al., 2020). Previous research has successfully used murine mengovirus, 

murine norovirus, and porcine respiratory and reproductive syndrome virus, but it is not 

limited to these viruses (Farkas et al., 2018, 2021). 

Besides crAssphage and ammonium-nitrogen, other human biomarkers are suggested to be 

evaluated, including pepper mild mottle virus (PMMoV), human mitochondrial gene NADH 

dehydrogenase subunit 5 and creatinine (Maal-Bared et al., 2022; Hutchison et al., 2022). All 

three were previously demonstrated to improve the correlation of surveyed viruses in 

wastewater, particularly SARS-CoV-2, and clinical data. Furthermore, normalisation by these 

biomarkers have improved the WBE leading correlation, the lead time being 1 – 4 days for 



66 
 

PMMoV and, respectively, up to 5 days for creatinine and mitochondrial normalisation (Maal-

Bared et al., 2022; Hutchison et al., 2022). Although creatinine may be not a suitable 

biomarker when sampling is performed at a WWTP due to wastewater long travel distances 

and a short half-life of approximately 24 hours (Thai et al., 2014), it might be a suitable 

biomarker when the sampling is performed near the source such as at a manhole near a 

hospital. 

Before re-evaluating the EMCLT and the MCBAs, parameters such as faecal load per capita, 

virus faecal shedding rate or the volumetric flow rate should be researched in more detail in 

terms of their values range and distribution. This study has assumed a normal distribution 

which is likely to be inaccurate. Therefore, if present, the non-normal distribution should be 

integrated into MCBAs as explained in “4.3 Models Validation”. 

An additional infection number model discussed parallelly to the main modelling work was 

SEIR, which as explained in “4.3 Models Validation” performed significantly better than MCBA 

or EMCLT with a similarity ratio of 10:9 and 1:1 between estimated and adjusted reported 

cases (McMahan et al., 2022, 2021). The advantage of SEIR is that it organises the population 

into 4 subcategories: susceptible, exposed, infectious and recovered individuals (McMahan 

et al., 2021). It also uses Monte-Carlo simulations to predict a potential distribution of the 

mass rate of virus gc/day in wastewater over time in days depending on active infectious cases 

(McMahan et al., 2021). Therefore, the predicted numbers are based on a continuous trend 

taking into account the previous epidemiological situation and the virus mass rate in 

wastewater according to its probability as calculated with Monte-Carlo simulations, which is 

unlike this study MCBAs where each individual quantitative detection of viruses in 

wastewater is an independent event from previous detections. SEIR may provide an 

advantage in a residential area, however, since it relies on the susceptible, exposed, infectious 

or recovered number of individuals, the MCBA may be more appropriate for a hospital setting 

due to the number of people being more dynamic.  
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9. Appendix: Supplementary Materials 
import random 

from openpyxl import load_workbook 

import numpy 

import pandas as pd 

import statistics 

import scipy.stats as st 

 

 

''' 

1. Estimates N based on an average concentration. 

2. Generates an N_dataset based on the N calculated in step 1, where the elements are 0.005xN, 0.01xN, 

0.015xN up to 2xN. 

3. For each N from the N_dataset, creates a Monte-Carlo full simulation. 

   Assumes a degradation between 0% and 100% or [0;1]. 

4. Checks each experimentally measured concentration within an acceptable deviation against the 

concentrations generated 

    for each of the N from step 3. Subsequently calculates what is the minimum N and the maximum N. 

5. Also, per each measured concentration, calculates and exports the probability for each N. 

''' 

 

 

def n_estimate(): 

    test_concentration_gc_L = 918513  # to be used only once  

    ''' 

    test_concentration_gc_L = 23005960  # to be used only once  

    test_concentration_gc_L = 23368  # to be used only once  

    test_concentration_gc_L = 4000  # to be used only once  

    test_concentration_gc_L = 918513  # to be used only once  

    ''' 

    flow_l_day = 1920000 

    mean_alpha = 149 

    mean_beta = 301995172  # for Norovirus GII 

    ''' 

    mean_beta = 125892541  # for CrAssphage    

    mean_beta = 32000  # for Influenza A 

    mean_beta = 8010000  # for SARS-CoV-2 

    mean_beta = 301995172  # for Norovirus GII 

    ''' 

    mean_gamma = 0 

    n_estimate_local = (test_concentration_gc_L * flow_l_day) / (mean_alpha * mean_beta * (1 - mean_gamma)) 

    return n_estimate_local 

 

 

def get_virus_concentration_list(): 

    from openpyxl import load_workbook 

    workbook_v6 = load_workbook(filename="Xres_cl.xlsx", read_only=True)  # filename="Xres_cl.xlsx" for 

influenza and norovirus 

    sheet_v6 = workbook_v6.active 

    labels = [] 

    ''' 

    for row in sheet_v6.iter_rows(min_row=1, max_row=1): 

        for i in row: 

            labels.append(i.value) 

    ''' 

    virus_concentration_dataset = [] 

    # min_col=42, max_col=42  #  for SARS_CoV-2 

    # min_col=36, max_col=36  #  for CrAssphage 

    # min_col=18, max_col=18  #  for Influenza A and Norovirus GII 

    # min_row=2, max_row=353  #  for Influenza A 

    # min_row=354, max_row=466  #  for Norovirus GII 

    for value in sheet_v6.iter_rows(min_row=354, max_row=466, min_col=18, max_col=18, values_only=True): 

        for i in value: 

            if i >= 0: 

                virus_concentration_dataset.append(i*666.6666)  # *666.6666 only for CrAssphage, Norovirus 

GII, Influenza A 

            else: 

                virus_concentration_dataset.append(1) 

    sample_date_dataset = [] 

    # column 5 for flu and norovirus 

    # column 8 for crass and sars-cov-2 

    for value in sheet_v6.iter_rows(min_row=354, max_row=466, min_col=5, max_col=5, values_only=True): 

        for i in value: 

            date_only = i.date() 

            sample_date_dataset.append(date_only) 

    ''' 

    grab_comp_dataset = [] 

    for value in sheet_v6.iter_rows(min_row=2, min_col=12, max_col=12, values_only=True): 

        for i in value: 

            grab_comp_dataset.append(i) 

     ''' 

    return virus_concentration_dataset, sample_date_dataset 

 

 

def monte_carlo_concentration_list_for_n(n): 

    monte_carlo_concentration_list = [] 
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    for i in range(2000):  # choose the number of simulations 

        concentration = 0 

        for j in range(n): 

            alpha_random_dataset = random.randint(51, 796) 

            beta_random_dataset = random.randint(61659500, 12882495517)  # for Norovirus GII 

            ''' 

            beta_random_dataset = random.randint(12589, 12589254117)  # for CrAssphage 

            beta_random_dataset = random.randint(4900, 80000000)  # for Influenza A 

            beta_random_dataset = random.randint(20000, 65300000000)  # for SARS-CoV-2 

            beta_random_dataset = random.randint(61659500, 12882495517)  # for Norovirus GII         

            ''' 

            gamma_random_dataset = random.uniform(0, 1) 

            concentration_temp = (alpha_random_dataset * beta_random_dataset * (1 - gamma_random_dataset)) 

            concentration += concentration_temp 

        flow_random_dataset = random.randint(1824000, 2072235) 

        concentration = concentration / flow_random_dataset 

        monte_carlo_concentration_list.append(concentration) 

    return monte_carlo_concentration_list 

 

 

def determine_range_of_n_by_a_measured_concentration(measured_concentration): 

    deviation_min = measured_concentration - acceptable_deviation 

    deviation_max = measured_concentration + acceptable_deviation 

    in_n_number_of_concentrations_within_measured_interval = [] 

    i = 0 

    for key in monte_carlo_concentration_dictionary_by_n: 

        temp_concentrations_list = monte_carlo_concentration_dictionary_by_n[key] 

        in_n_number_of_concentrations_within_measured_interval.append(0) 

        for j in range(len(temp_concentrations_list)): 

            if deviation_min <= temp_concentrations_list[j] <= deviation_max: 

                in_n_number_of_concentrations_within_measured_interval[i] += 1 

        i += 1 

    del i 

    del temp_concentrations_list 

    return in_n_number_of_concentrations_within_measured_interval 

 

 

def mean_by_date(concentration_list_local, date_list_local): 

    concentration_mean_cumulated_by_date_temporary = [] 

    for a in range(len(date_list_local)): 

        if date_list_local[a] not in concentration_mean_cumulated_by_date_temporary: 

            concentration_mean_cumulated_by_date_temporary.append([date_list_local[a]][0]) 

 

    concentration_mean_cumulated_by_date = [] 

    for a in range(len(concentration_mean_cumulated_by_date_temporary)): 

        concentration_mean_cumulated_by_date.append([concentration_mean_cumulated_by_date_temporary[a], 0]) 

 

    counter_list = [] 

    for a in range(len(concentration_mean_cumulated_by_date)): 

        counter = 0 

        for b in range(len(date_list_local)): 

            if concentration_mean_cumulated_by_date[a][0] == date_list_local[b]: 

                counter += 1 

                if concentration_list_local[b] >= 0: 

                    concentration_mean_cumulated_by_date[a][1] = concentration_mean_cumulated_by_date[a][1] 

+ \ 

                                                                 concentration_list_local[b] 

        counter_list.append(counter) 

 

    concentration_mean_by_date = [] 

    concentration_mean_dates = [] 

    for a in range(len(concentration_mean_cumulated_by_date)): 

        concentration_mean_by_date.append(concentration_mean_cumulated_by_date[a][1]) 

        concentration_mean_dates.append(concentration_mean_cumulated_by_date[a][0]) 

    for a in range(len(counter_list)): 

        concentration_mean_by_date[a] = concentration_mean_by_date[a] / counter_list[a] 

    return concentration_mean_by_date, concentration_mean_dates 

 

 

n_estimate = n_estimate() 

N_dataset = [] 

print(n_estimate) 

i = 0 

while i <= 0.1:  # can be changed to <=4 when there is no N for higher concentration 

    i += 0.001 

    N_dataset.append(round(n_estimate * i)) 

del i 

 

 

original_length = len(N_dataset) 

N_dataset = list(dict.fromkeys(N_dataset)) 

while original_length > len(N_dataset): 

    N_dataset.append(N_dataset[-1] + 1) 

N_dataset = list(dict.fromkeys(N_dataset)) 

while original_length > len(N_dataset): 

    N_dataset.append(N_dataset[-1] + 4) 

N_dataset = list(dict.fromkeys(N_dataset)) 

while original_length > len(N_dataset): 

    N_dataset.append(N_dataset[-1] + 3) 

del original_length 
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monte_carlo_concentration_dictionary_by_n = {} 

for i in range(len(N_dataset)): 

    temp_concentration_list = monte_carlo_concentration_list_for_n(N_dataset[i]) 

    monte_carlo_concentration_dictionary_by_n[N_dataset[i]] = temp_concentration_list 

    print(N_dataset[i]) 

del temp_concentration_list 

 

measured_concentration_list, date_list = get_virus_concentration_list() 

# conversion into average by date 

measured_concentration_list, date_list = mean_by_date(measured_concentration_list, date_list) 

 

acceptable_deviation = 10000   # for Norovirus GII 

''' 

acceptable_deviation = 100000   # for CrAssphage 

acceptable_deviation = 100   # for Influenza A 

acceptable_deviation = 10000   # for SARS-CoV-2 

acceptable_deviation = 10000   # for Norovirus GII 

''' 

 

n_minimum_list = [] 

n_maximum_list = [] 

n_by_probability_list = [] 

mean_n_list = [] 

variance_list = [] 

standard_deviation_list = [] 

confidence_interval_list = [] 

 

for i in measured_concentration_list: 

    in_n_number_of_concentrations_within_measured_interval = 

determine_range_of_n_by_a_measured_concentration(i) 

    # the values produced in in_n_number_of_concentrations_within_measured_interval corresponds with 

N_dataset 

    for j in range(len(in_n_number_of_concentrations_within_measured_interval)): 

        if in_n_number_of_concentrations_within_measured_interval[j] > 0: 

            minimum_n = N_dataset[j] 

            break 

        else: 

            minimum_n = 'Min does not exist' 

    for k in reversed(in_n_number_of_concentrations_within_measured_interval): 

        if k > 0: 

            index = len(in_n_number_of_concentrations_within_measured_interval) - 

in_n_number_of_concentrations_within_measured_interval[::-1].index(k) - 1 

            maximum_n = N_dataset[index] 

            break 

        else: 

            maximum_n = 'Max does not exist' 

    n_minimum_list.append(minimum_n) 

    n_maximum_list.append(maximum_n) 

 

    #  A new list is created from the N_dataset that corresponds with the number of occurrences of the 

measured concentration in the interval 

    all_n = [] 

    for i in range(len(N_dataset)): 

        for k in range(in_n_number_of_concentrations_within_measured_interval[i]): 

            all_n.append(N_dataset[i]) 

 

    if len(all_n) == 0: 

        mean_n_list.append('N/A') 

        variance_list.append('N/A') 

        standard_deviation_list.append('N/A') 

        confidence_interval_list.append('N/A') 

    else: 

        #  Calculate Mean 

        mean_for_all_n = sum(all_n)/len(all_n) 

        mean_n_list.append(round(mean_for_all_n, 2)) 

        #  Calculate Variance 

        #  Calculate SD 

        if len(all_n) <= 1: 

            variance_list.append("N/A") 

            standard_deviation_list.append("N/A") 

        else: 

            variance = statistics.variance(all_n) 

            variance_list.append(round(variance, 2)) 

            standard_deviation = statistics.stdev(all_n) 

            standard_deviation_list.append(round(standard_deviation, 2)) 

        #  Calculate a 99% Confidence Interval 

        confidence_interval = st.norm.interval(alpha=0.99, loc=numpy.mean(all_n), scale=st.sem(all_n)) 

        confidence_interval = (round(confidence_interval[0], 2), round(confidence_interval[1], 2)) 

        confidence_interval_list.append(confidence_interval) 

    total_number_of_points = 0 

    for j in range(len(in_n_number_of_concentrations_within_measured_interval)): 

        total_number_of_points += in_n_number_of_concentrations_within_measured_interval[j] 

    if total_number_of_points == 0: 

        total_number_of_points = 1  # to prevent a division by zero event 

    for j in range(len(in_n_number_of_concentrations_within_measured_interval)): 

        in_n_number_of_concentrations_within_measured_interval[j] = 

round((in_n_number_of_concentrations_within_measured_interval[j]/total_number_of_points)*100, 2) 

 

    #  append only N with a probability >0 

    index_list = [] 
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    N_intermediate = [] 

    in_n_number_of_concentrations_within_measured_interval_intermediate = [] 

    for j in range(len(N_dataset)): 

        if in_n_number_of_concentrations_within_measured_interval[j] > 0: 

            

in_n_number_of_concentrations_within_measured_interval_intermediate.append(in_n_number_of_concentrations_wi

thin_measured_interval[j]) 

            N_intermediate.append(N_dataset[j]) 

    n_by_probability_list.append([in_n_number_of_concentrations_within_measured_interval_intermediate, 

N_intermediate]) 

 

 

intermediate_dict = {'Date': date_list, 

                     'Measured Concentration (log10 gc/L)': numpy.log10(measured_concentration_list), 

                     'Minimum N': n_minimum_list, 

                     'Maximum N': n_maximum_list, 

                     'Mean N': mean_n_list, 

                     'Variance (σ^2)': variance_list, 

                     'Standard Deviation (σ)': standard_deviation_list, 

                     'Confidence Interval (CI, 99%)': confidence_interval_list, 

                     'N dataset by probability': n_by_probability_list, 

                     'Minimum Viral Losses': 0} 

df = pd.DataFrame(intermediate_dict) 

df.to_excel('export_dataframe_approach1.xlsx', index=False, header=True) 

Figure S1. Monte-Carlo-Bayesian Approach 1 Code. The code was developed in the Python 

programming language. It allows for Monte-Carlo-Bayesian simulations, specifically the 

approach 1 as explained in the description provided within the code.  
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import random 

from openpyxl import load_workbook 

import numpy 

import pandas as pd 

import statistics 

import scipy.stats as st 

 

 

''' 

0. An average concentration is calculated from all the measured concentrations 

1. Estimates N based on an average concentration. 

2. Generates an N_dataset based on the N calculated in step 1, where the elements are 0.005xN, 0.01xN, 

0.015xN up to 2xN. 

3. Calculates the minimal degradation rate (gamma minimum) 

4. For each N from the N_dataset, creates a Monte-Carlo full simulation. 

   Assumes the degradation between the calculated gamma minimum and 100% or [gamma_minimum; 1] for all the 

next operations. 

5. Checks each experimentally measured concentration within an acceptable deviation against the 

concentrations generated 

    for each of the N from step 3. Subsequently calculates what is the minimum N and the maximum N. 

6. Also, per each measured concentration, calculates and exports the probability for each N. 

''' 

 

 

def n_estimate(): 

    test_concentration_gc_L = 918513  # to be used only once for Norovirus GII minimum gamma estimation 

    ''' 

    test_concentration_gc_L = 23005960  # to be used only once  

    test_concentration_gc_L = 23368  # to be used only once  

    test_concentration_gc_L = 4000  # to be used only once  

    test_concentration_gc_L = 918513  # to be used only once  

    ''' 

    flow_l_day = 1920000 

    mean_alpha = 149 

    mean_beta = 301995172  # for Norovirus GII 

    ''' 

    mean_beta = 125892541  # for CrAssphage    

    mean_beta = 32000  # for Influenza A 

    mean_beta = 8010000  # for SARS-CoV-2 

    mean_beta = 301995172  # for Norovirus GII 

    ''' 

    mean_gamma = 0 

    n_estimate_local = (test_concentration_gc_L * flow_l_day) / (mean_alpha * mean_beta * (1 - mean_gamma)) 

    return n_estimate_local 

 

 

def get_virus_concentration_list(): 

    from openpyxl import load_workbook 

    workbook_v6 = load_workbook(filename="Xres_cl.xlsx", read_only=True)  # filename="Xres_cl.xlsx" for 

influenza and norovirus 

    sheet_v6 = workbook_v6.active 

    labels = [] 

    ''' 

    for row in sheet_v6.iter_rows(min_row=1, max_row=1): 

        for i in row: 

            labels.append(i.value) 

    ''' 

    virus_concentration_dataset = [] 

    # min_col=42, max_col=42  #  for SARS_CoV-2 

    # min_col=36, max_col=36  #  for CrAssphage 

    # min_col=18, max_col=18  #  for Influenza A and Norovirus GII 

    # min_row=2, max_row=353  #  for Influenza A 

    # min_row=354, max_row=466  #  for Norovirus GII 

    for value in sheet_v6.iter_rows(min_row=354, max_row=466, min_col=18, max_col=18, values_only=True): 

        for i in value: 

            if i >= 0: 

                virus_concentration_dataset.append(i*666.6666)  # *666.6666 only for CrAssphage, Norovirus 

GII, Influenza A 

            else: 

                virus_concentration_dataset.append(1) 

    sample_date_dataset = [] 

    # column 5 for flu and norovirus 

    # column 8 for crass and sars-cov-2 

    for value in sheet_v6.iter_rows(min_row=354, max_row=466, min_col=5, max_col=5, values_only=True): 

        for i in value: 

            date_only = i.date() 

            sample_date_dataset.append(date_only) 

    ''' 

    grab_comp_dataset = [] 

    for value in sheet_v6.iter_rows(min_row=2, min_col=12, max_col=12, values_only=True): 

        for i in value: 

            grab_comp_dataset.append(i) 

     ''' 

    return virus_concentration_dataset, sample_date_dataset 

 

 

def determine_average_gamma(n): 

    monte_carlo_concentration_list = [] 

    for i in range(500):  # choose the number of simulations 

        concentration = 0 
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        for j in range(n): 

            alpha_random_dataset = random.randint(51, 796) 

            beta_random_dataset = random.randint(61659500, 12882495517)  # for Norovirus GII 

            ''' 

            beta_random_dataset = random.randint(12589, 12589254117)  # for CrAssphage 

            beta_random_dataset = random.randint(4900, 80000000)  # for Influenza A 

            beta_random_dataset = random.randint(20000, 65300000000)  # for SARS-CoV-2 

            beta_random_dataset = random.randint(61659500, 12882495517)  # for Norovirus GII         

            ''' 

            gamma_random_dataset = random.uniform(0, 1) 

            concentration_temp = (alpha_random_dataset * beta_random_dataset * (1 - gamma_random_dataset)) 

            concentration += concentration_temp 

        flow_random_dataset = random.randint(1824000, 2072235) 

        concentration = concentration / flow_random_dataset 

        monte_carlo_concentration_list.append(concentration) 

 

        test_concentration_gc_L = 918513  # to be used only once for Norovirus GII minimum gamma estimation 

        ''' 

        test_concentration_gc_L = 23005960  # to be used only once for CrAssphage minimum gamma estimation 

        test_concentration_gc_L = 23368  # to be used only once for SARS-CoV-2 minimum gamma estimation  

        test_concentration_gc_L = 7966  # to be used only once for Influenza A minimum gamma estimation  

        test_concentration_gc_L = 918513  # to be used only once for Norovirus GII minimum gamma estimation  

        ''' 

        calculated_average_gamma = 1 - (test_concentration_gc_L/min(monte_carlo_concentration_list)) 

 

    return calculated_average_gamma 

 

 

def monte_carlo_concentration_list_for_n(n, minimum_gamma): 

    monte_carlo_concentration_list = [] 

    for i in range(2000):  # choose the number of simulations 

        concentration = 0 

        for j in range(n): 

            alpha_random_dataset = random.randint(51, 796) 

            beta_random_dataset = random.randint(61659500, 12882495517)  # for Norovirus GII 

            ''' 

            beta_random_dataset = random.randint(12589, 12589254117)  # for CrAssphage 

            beta_random_dataset = random.randint(4900, 80000000)  # for Influenza A 

            beta_random_dataset = random.randint(20000, 65300000000)  # for SARS-CoV-2 

            beta_random_dataset = random.randint(61659500, 12882495517)  # for Norovirus GII         

            ''' 

            gamma_random_dataset = random.uniform(minimum_gamma, 1) 

            concentration_temp = (alpha_random_dataset * beta_random_dataset * (1 - gamma_random_dataset)) 

            concentration += concentration_temp 

        flow_random_dataset = random.randint(1824000, 2072235) 

        concentration = concentration / flow_random_dataset 

        monte_carlo_concentration_list.append(concentration) 

    return monte_carlo_concentration_list 

 

 

def determine_range_of_n_by_a_measured_concentration(measured_concentration): 

    deviation_min = measured_concentration - acceptable_deviation 

    deviation_max = measured_concentration + acceptable_deviation 

    in_n_number_of_concentrations_within_measured_interval = [] 

    i = 0 

    for key in monte_carlo_concentration_dictionary_by_n: 

        temp_concentrations_list = monte_carlo_concentration_dictionary_by_n[key] 

        in_n_number_of_concentrations_within_measured_interval.append(0) 

        for j in range(len(temp_concentrations_list)): 

            if deviation_min <= temp_concentrations_list[j] <= deviation_max: 

                in_n_number_of_concentrations_within_measured_interval[i] += 1 

        i += 1 

    del i 

    del temp_concentrations_list 

    return in_n_number_of_concentrations_within_measured_interval 

 

 

def mean_by_date(concentration_list_local, date_list_local): 

    concentration_mean_cumulated_by_date_temporary = [] 

    for a in range(len(date_list_local)): 

        if date_list_local[a] not in concentration_mean_cumulated_by_date_temporary: 

            concentration_mean_cumulated_by_date_temporary.append([date_list_local[a]][0]) 

 

    concentration_mean_cumulated_by_date = [] 

    for a in range(len(concentration_mean_cumulated_by_date_temporary)): 

        concentration_mean_cumulated_by_date.append([concentration_mean_cumulated_by_date_temporary[a], 0]) 

 

    counter_list = [] 

    for a in range(len(concentration_mean_cumulated_by_date)): 

        counter = 0 

        for b in range(len(date_list_local)): 

            if concentration_mean_cumulated_by_date[a][0] == date_list_local[b]: 

                counter += 1 

                if concentration_list_local[b] >= 0: 

                    concentration_mean_cumulated_by_date[a][1] = concentration_mean_cumulated_by_date[a][1] 

+ \ 

                                                                 concentration_list_local[b] 

        counter_list.append(counter) 

 

    concentration_mean_by_date = [] 
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    concentration_mean_dates = [] 

    for a in range(len(concentration_mean_cumulated_by_date)): 

        concentration_mean_by_date.append(concentration_mean_cumulated_by_date[a][1]) 

        concentration_mean_dates.append(concentration_mean_cumulated_by_date[a][0]) 

    for a in range(len(counter_list)): 

        concentration_mean_by_date[a] = concentration_mean_by_date[a] / counter_list[a] 

    return concentration_mean_by_date, concentration_mean_dates 

 

 

n_estimate = n_estimate() 

N_dataset = [] 

print(n_estimate) 

i = 0 

while i <= 8:  # can be changed to <=4 when there is no N for higher concentration 

    i += 0.025 

    N_dataset.append(round(n_estimate * i)) 

del i 

 

i = 10 

while i <= 250: 

    N_dataset.append(320 + i) 

    i += 15 

del i 

average_minimum_gamma = determine_average_gamma(round(n_estimate)) 

 

original_length = len(N_dataset) 

N_dataset = list(dict.fromkeys(N_dataset)) 

while original_length > len(N_dataset): 

    N_dataset.append(N_dataset[-1] + 1) 

N_dataset = list(dict.fromkeys(N_dataset)) 

while original_length > len(N_dataset): 

    N_dataset.append(N_dataset[-1] + 4) 

N_dataset = list(dict.fromkeys(N_dataset)) 

while original_length > len(N_dataset): 

    N_dataset.append(N_dataset[-1] + 3) 

del original_length 

monte_carlo_concentration_dictionary_by_n = {} 

for i in range(len(N_dataset)): 

    temp_concentration_list = monte_carlo_concentration_list_for_n(N_dataset[i], average_minimum_gamma) 

    monte_carlo_concentration_dictionary_by_n[N_dataset[i]] = temp_concentration_list 

    print(N_dataset[i]) 

del temp_concentration_list 

 

measured_concentration_list, date_list = get_virus_concentration_list() 

# conversion into average by date 

measured_concentration_list, date_list = mean_by_date(measured_concentration_list, date_list) 

 

acceptable_deviation = 10000   # for Norovirus GII 

''' 

acceptable_deviation = 50000   # for CrAssphage 

acceptable_deviation = 100   # for Influenza A 

acceptable_deviation = 2000   # for SARS-CoV-2 

acceptable_deviation = 10000   # for Norovirus GII 

''' 

 

n_minimum_list = [] 

n_maximum_list = [] 

n_by_probability_list = [] 

mean_n_list = [] 

variance_list = [] 

standard_deviation_list = [] 

confidence_interval_list = [] 

 

for i in measured_concentration_list: 

    in_n_number_of_concentrations_within_measured_interval = 

determine_range_of_n_by_a_measured_concentration(i) 

    # the values produced in in_n_number_of_concentrations_within_measured_interval corresponds with 

N_dataset 

    for j in range(len(in_n_number_of_concentrations_within_measured_interval)): 

        if in_n_number_of_concentrations_within_measured_interval[j] > 0: 

            minimum_n = N_dataset[j] 

            break 

        else: 

            minimum_n = 'Min does not exist' 

    for k in reversed(in_n_number_of_concentrations_within_measured_interval): 

        if k > 0: 

            index = len(in_n_number_of_concentrations_within_measured_interval) - 

in_n_number_of_concentrations_within_measured_interval[::-1].index(k) - 1 

            maximum_n = N_dataset[index] 

            break 

        else: 

            maximum_n = 'Max does not exist' 

    n_minimum_list.append(minimum_n) 

    n_maximum_list.append(maximum_n) 

 

    #  A new list is created from the N_dataset that corresponds with the number of occurrences of the 

measured concentration in the interval 

    all_n = [] 

    for i in range(len(N_dataset)): 

        for k in range(in_n_number_of_concentrations_within_measured_interval[i]): 
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            all_n.append(N_dataset[i]) 

 

    if len(all_n) == 0: 

        mean_n_list.append('N/A') 

        variance_list.append('N/A') 

        standard_deviation_list.append('N/A') 

        confidence_interval_list.append('N/A') 

    else: 

        #  Calculate Mean 

        mean_for_all_n = sum(all_n)/len(all_n) 

        mean_n_list.append(round(mean_for_all_n, 2)) 

        #  Calculate Variance 

        #  Calculate SD 

        if len(all_n) <= 1: 

            variance_list.append("N/A") 

            standard_deviation_list.append("N/A") 

        else: 

            variance = statistics.variance(all_n) 

            variance_list.append(round(variance, 2)) 

            standard_deviation = statistics.stdev(all_n) 

            standard_deviation_list.append(round(standard_deviation, 2)) 

        #  Calculate a 99% Confidence Interval 

        confidence_interval = st.norm.interval(alpha=0.99, loc=numpy.mean(all_n), scale=st.sem(all_n)) 

        confidence_interval = (round(confidence_interval[0], 2), round(confidence_interval[1], 2)) 

        confidence_interval_list.append(confidence_interval) 

    total_number_of_points = 0 

    for j in range(len(in_n_number_of_concentrations_within_measured_interval)): 

        total_number_of_points += in_n_number_of_concentrations_within_measured_interval[j] 

    if total_number_of_points == 0: 

        total_number_of_points = 1  # to prevent a division by zero event 

    for j in range(len(in_n_number_of_concentrations_within_measured_interval)): 

        in_n_number_of_concentrations_within_measured_interval[j] = 

round((in_n_number_of_concentrations_within_measured_interval[j]/total_number_of_points)*100, 2) 

 

    #  append only N with a probability >0 

    index_list = [] 

    N_intermediate = [] 

    in_n_number_of_concentrations_within_measured_interval_intermediate = [] 

    for j in range(len(N_dataset)): 

        if in_n_number_of_concentrations_within_measured_interval[j] > 0: 

            

in_n_number_of_concentrations_within_measured_interval_intermediate.append(in_n_number_of_concentrations_wi

thin_measured_interval[j]) 

            N_intermediate.append(N_dataset[j]) 

    n_by_probability_list.append([in_n_number_of_concentrations_within_measured_interval_intermediate, 

N_intermediate]) 

 

 

intermediate_dict = {'Date': date_list, 

                     'Measured Concentration (log10 gc/L)': numpy.log10(measured_concentration_list), 

                     'Minimum N': n_minimum_list, 

                     'Maximum N': n_maximum_list, 

                     'Mean N': mean_n_list, 

                     'Variance (σ^2)': variance_list, 

                     'Standard Deviation (σ)': standard_deviation_list, 

                     'Confidence Interval (CI, 99%)': confidence_interval_list, 

                     'N dataset by probability': n_by_probability_list, 

                     'Minimum Viral Losses': average_minimum_gamma} 

df = pd.DataFrame(intermediate_dict) 

df.to_excel('export_dataframe_approach2.xlsx', index=False, header=True) 

Figure S2. Monte-Carlo-Bayesian Approach 2 Code. The code was developed in the Python 

programming language. It allows for Monte-Carlo-Bayesian simulations, specifically the 

approach 2 as explained in the description provided within the code.  
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import random 

from openpyxl import load_workbook 

import numpy 

import scipy.stats as st 

import pandas as pd 

import statistics 

 

 

''' 

All the following operations are performed individually for each of the measured concentration: 

 

1. Estimates N based on the measured concentration. 

2. Generates an N_dataset based on the N calculated in step 1, where the elements are 0.005xN, 0.01xN, 

0.015xN up to 2xN. 

3. Calculates the minimal degradation rate (gamma minimum) 

4. For each N from the N_dataset, creates a Monte-Carlo full simulation. 

   Assumes the degradation between the calculated gamma minimum and 100% or [gamma_minimum; 1] for all the 

next operations. 

5. Checks measured concentration within an acceptable deviation against the concentrations generated 

    for each of the N from step 3. Subsequently calculates what is the minimum N and the maximum N. 

6. Also, calculates and exports the probability for each N. 

''' 

 

 

def n_estimate_function(concentration): 

    flow_l_day = 1920000 

    mean_alpha = 149 

    mean_beta = 301995172  # for Norovirus GII 

    ''' 

    mean_beta = 125892541  # for CrAssphage    

    mean_beta = 32000  # for Influenza A 

    mean_beta = 8010000  # for SARS-CoV-2 

    mean_beta = 301995172  # for Norovirus GII 

    ''' 

    mean_gamma = 0 

    n_estimate_local = (concentration * flow_l_day) / (mean_alpha * mean_beta * (1 - mean_gamma)) 

    return n_estimate_local 

 

 

def get_virus_data_list(): 

    from openpyxl import load_workbook 

    workbook_v6 = load_workbook(filename="Xres_cl.xlsx", read_only=True)  # filename="Xres_cl.xlsx for 

influenza and norovirus 

    sheet_v6 = workbook_v6.active 

    labels = [] 

    ''' 

    for row in sheet_v6.iter_rows(min_row=1, max_row=1): 

        for i in row: 

            labels.append(i.value) 

    ''' 

    virus_concentration_dataset = [] 

    # min_col=42, max_col=42  #  for SARS_CoV-2 

    # min_col=36, max_col=36  #  for CrAssphage 

    # min_col=18, max_col=18  #  for Influenza A and Norovirus GII 

    # min_row=2, max_row=353  #  for Influenza A 

    # min_row=354, max_row=466  #  for Norovirus GII 

    for value in sheet_v6.iter_rows(min_row=354, max_row=466, min_col=18, max_col=18, values_only=True): 

        for i in value: 

            if i >= 0: 

                virus_concentration_dataset.append(i*666.6666)  # *666.6666 only for CrAssphage, Norovirus 

GII, Influenza A 

            else: 

                virus_concentration_dataset.append(1) 

    sample_date_dataset = [] 

    # column 5 for flu and norovirus 

    # column 8 for crass and sars-cov-2 

    for value in sheet_v6.iter_rows(min_row=354, max_row=466, min_col=5, max_col=5, values_only=True): 

        for i in value: 

            date_only = i.date() 

            sample_date_dataset.append(date_only) 

    ''' 

    grab_comp_dataset = [] 

    for value in sheet_v6.iter_rows(min_row=2, min_col=12, max_col=12, values_only=True): 

        for i in value: 

            grab_comp_dataset.append(i) 

     ''' 

    return virus_concentration_dataset, sample_date_dataset 

 

 

def determine_average_gamma(n, concentration_variable): 

    monte_carlo_concentration_list = [] 

    for i in range(250):  # choose the number of simulations 

        concentration = 0 

        for j in range(n): 

            alpha_random_dataset = random.randint(51, 796) 

            beta_random_dataset = random.randint(61659500, 12882495517)  # for Norovirus GII 

            ''' 

            beta_random_dataset = random.randint(12589, 12589254117)  # for CrAssphage 

            beta_random_dataset = random.randint(4900, 80000000)  # for Influenza A 

            beta_random_dataset = random.randint(20000, 65300000000)  # for SARS-CoV-2 
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            beta_random_dataset = random.randint(61659500, 12882495517)  # for Norovirus GII         

            ''' 

            gamma_random_dataset = random.uniform(0, 1) 

            concentration_temp = (alpha_random_dataset * beta_random_dataset * (1 - gamma_random_dataset)) 

            concentration += concentration_temp 

        flow_random_dataset = random.randint(1824000, 2072235) 

        concentration = concentration / flow_random_dataset 

        monte_carlo_concentration_list.append(concentration) 

        if min(monte_carlo_concentration_list) <= 0: 

            calculated_minimum_gamma = 0 

        else: 

            calculated_minimum_gamma = 1 - (concentration_variable/min(monte_carlo_concentration_list)) 

    return calculated_minimum_gamma 

 

 

def monte_carlo_concentration_list_for_n(n, minimum_gamma_local): 

    monte_carlo_concentration_list = [] 

    for i in range(700):  # choose the number of simulations 

        concentration = 0 

        for j in range(n): 

            alpha_random_dataset = random.randint(51, 796) 

            beta_random_dataset = random.randint(61659500, 12882495517)  # for Norovirus GII 

            ''' 

            beta_random_dataset = random.randint(12589, 12589254117)  # for CrAssphage 

            beta_random_dataset = random.randint(4900, 80000000)  # for Influenza A 

            beta_random_dataset = random.randint(20000, 65300000000)  # for SARS-CoV-2 

            beta_random_dataset = random.randint(61659500, 12882495517)  # for Norovirus GII         

            ''' 

            gamma_random_dataset = random.uniform(minimum_gamma_local, 1) 

            concentration_temp = (alpha_random_dataset * beta_random_dataset * (1 - gamma_random_dataset)) 

            concentration += concentration_temp 

        flow_random_dataset = random.randint(1824000, 2072235) 

        concentration = concentration / flow_random_dataset 

        monte_carlo_concentration_list.append(concentration) 

    return monte_carlo_concentration_list 

 

 

def determine_range_of_n_by_a_measured_concentration(concentration_local): 

    deviation_min = concentration_local - acceptable_deviation 

    deviation_max = concentration_local + acceptable_deviation 

    in_n_number_of_concentrations_within_measured_interval_local = [] 

    i = 0 

    for key in monte_carlo_concentration_dictionary_by_n: 

        temp_concentrations_list = monte_carlo_concentration_dictionary_by_n[key] 

        in_n_number_of_concentrations_within_measured_interval_local.append(0) 

        for j in range(len(temp_concentrations_list)): 

            if deviation_min <= temp_concentrations_list[j] <= deviation_max: 

                in_n_number_of_concentrations_within_measured_interval_local[i] += 1 

        i += 1 

    return in_n_number_of_concentrations_within_measured_interval_local 

 

 

def mean_by_date(concentration_list_local, date_list_local): 

    concentration_mean_cumulated_by_date_temporary = [] 

    for a in range(len(date_list_local)): 

        if date_list_local[a] not in concentration_mean_cumulated_by_date_temporary: 

            concentration_mean_cumulated_by_date_temporary.append([date_list_local[a]][0]) 

 

    concentration_mean_cumulated_by_date = [] 

    for a in range(len(concentration_mean_cumulated_by_date_temporary)): 

        concentration_mean_cumulated_by_date.append([concentration_mean_cumulated_by_date_temporary[a], 0]) 

 

    counter_list = [] 

    for a in range(len(concentration_mean_cumulated_by_date)): 

        counter = 0 

        for b in range(len(date_list_local)): 

            if concentration_mean_cumulated_by_date[a][0] == date_list_local[b]: 

                counter += 1 

                if concentration_list_local[b] >= 0: 

                    concentration_mean_cumulated_by_date[a][1] = concentration_mean_cumulated_by_date[a][1] 

+ \ 

                                                                 concentration_list_local[b] 

        counter_list.append(counter) 

 

    concentration_mean_by_date = [] 

    concentration_mean_dates = [] 

    for a in range(len(concentration_mean_cumulated_by_date)): 

        concentration_mean_by_date.append(concentration_mean_cumulated_by_date[a][1]) 

        concentration_mean_dates.append(concentration_mean_cumulated_by_date[a][0]) 

    for a in range(len(counter_list)): 

        concentration_mean_by_date[a] = concentration_mean_by_date[a] / counter_list[a] 

    return concentration_mean_by_date, concentration_mean_dates 

 

 

measured_concentration_list, date_list = get_virus_data_list() 

# conversion into average by date 

measured_concentration_list, date_list = mean_by_date(measured_concentration_list, date_list) 

 

print(measured_concentration_list) 

# choose the acceptable deviation from the measured concentration 
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acceptable_deviation = 10000   # for Norovirus GII 

''' 

acceptable_deviation = 10000   # for CrAssphage 

acceptable_deviation = 100   # for Influenza A 

acceptable_deviation = 10000   # for SARS-CoV-2 

acceptable_deviation = 10000   # for Norovirus GII 

''' 

n_minimum_list = [] 

n_maximum_list = [] 

gamma_minimum_list = [] 

n_estimate_list = [] 

n_by_probability_list = [] 

n_by_occurrence_list = [] 

mean_n_list = [] 

variance_list = [] 

standard_deviation_list = [] 

confidence_interval_list = [] 

 

for measured_concentration in measured_concentration_list: 

    n_estimate = n_estimate_function(measured_concentration) 

    minimum_gamma = determine_average_gamma(round(n_estimate), measured_concentration) 

    if minimum_gamma < 0: 

        minimum_gamma = 0 

    n_estimate_list.append(n_estimate) 

    gamma_minimum_list.append(minimum_gamma) 

 

    if n_estimate == 0: 

        n_estimate = 1  # this is to append an n =! 0 so that it does not give errors later 

    N_dataset = [] 

    print(n_estimate) 

    i = 0 

    while i <= 2: 

        i += 0.05  # choose the fractionation of the population 

        if round(n_estimate * i) == 0: 

            N_dataset.append(round(i*100))  # this is to append an n =! 0 so that it does not give errors 

later 

        else: 

            N_dataset.append(round(n_estimate * i)) 

    del i 

 

    original_length = len(N_dataset) 

    N_dataset = list(dict.fromkeys(N_dataset)) 

    while original_length > len(N_dataset): 

        N_dataset.append(N_dataset[-1] + 1) 

    N_dataset = list(dict.fromkeys(N_dataset)) 

    while original_length > len(N_dataset): 

        N_dataset.append(N_dataset[-1] + 4) 

    N_dataset = list(dict.fromkeys(N_dataset)) 

    while original_length > len(N_dataset): 

        N_dataset.append(N_dataset[-1] + 3) 

    del original_length 

 

    monte_carlo_concentration_dictionary_by_n = {} 

    for i in range(len(N_dataset)): 

        temp_concentration_list = monte_carlo_concentration_list_for_n(N_dataset[i], minimum_gamma) 

        monte_carlo_concentration_dictionary_by_n[N_dataset[i]] = temp_concentration_list 

    del temp_concentration_list 

    in_n_number_of_concentrations_within_measured_interval = 

determine_range_of_n_by_a_measured_concentration(measured_concentration) 

    # the values produced in in_n_number_of_concentrations_within_measured_interval corresponds with 

N_dataset 

 

    for j in range(len(in_n_number_of_concentrations_within_measured_interval)): 

        if in_n_number_of_concentrations_within_measured_interval[j] > 0: 

            minimum_n = N_dataset[j] 

            break 

        else: 

            minimum_n = 'Min does not exist' 

    for k in reversed(in_n_number_of_concentrations_within_measured_interval): 

        if k > 0: 

            index = len(in_n_number_of_concentrations_within_measured_interval) - 

in_n_number_of_concentrations_within_measured_interval[::-1].index(k) - 1 

            maximum_n = N_dataset[index] 

            break 

        else: 

            maximum_n = 'Max does not exist' 

 

    n_minimum_list.append(minimum_n) 

    n_maximum_list.append(maximum_n) 

 

    #  delete all N that had a 0 probability 

    index_list = [] 

    for i in range(len(N_dataset)): 

        if in_n_number_of_concentrations_within_measured_interval[i] == 0: 

            index_list.append(i) 

    for i in reversed(index_list): 

        del in_n_number_of_concentrations_within_measured_interval[i] 

        del N_dataset[i] 

 

    #  A new list is created from the N_dataset that corresponds with the number of occurrences of the 
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measured concentration in the interval 

    all_n = [] 

    for i in range(len(N_dataset)): 

        for k in range(in_n_number_of_concentrations_within_measured_interval[i]): 

            all_n.append(N_dataset[i]) 

 

    if len(all_n) == 0: 

        mean_n_list.append('N/A') 

        variance_list.append('N/A') 

        standard_deviation_list.append('N/A') 

        confidence_interval_list.append('N/A') 

    else: 

        #  Calculate Mean 

        mean_for_all_n = sum(all_n)/len(all_n) 

        mean_n_list.append(round(mean_for_all_n, 2)) 

        #  Calculate Variance 

        #  Calculate SD 

        if len(all_n) <= 1: 

            variance_list.append("N/A") 

            standard_deviation_list.append("N/A") 

        else: 

            variance = statistics.variance(all_n) 

            variance_list.append(round(variance, 2)) 

            standard_deviation = statistics.stdev(all_n) 

            standard_deviation_list.append(round(standard_deviation, 2)) 

        #  Calculate a 99% Confidence Interval 

        confidence_interval = st.norm.interval(alpha=0.99, loc=numpy.mean(all_n), scale=st.sem(all_n)) 

        confidence_interval = (round(confidence_interval[0], 2), round(confidence_interval[1], 2)) 

        confidence_interval_list.append(confidence_interval) 

 

    total_number_of_points = 0 

    for i in range(len(in_n_number_of_concentrations_within_measured_interval)): 

        total_number_of_points += in_n_number_of_concentrations_within_measured_interval[i] 

    if total_number_of_points == 0: 

        total_number_of_points = 1  # to prevent a division by zero error 

    for i in range(len(in_n_number_of_concentrations_within_measured_interval)): 

        in_n_number_of_concentrations_within_measured_interval[i] = 

round((in_n_number_of_concentrations_within_measured_interval[i]/total_number_of_points)*100, 2) 

    n_by_probability_list.append([in_n_number_of_concentrations_within_measured_interval, N_dataset]) 

 

 

intermediate_dict = {'Date': date_list, 

                     'Measured Concentration (log10 gc/L)': numpy.log10(measured_concentration_list), 

                     'Minimum Viral Losses': gamma_minimum_list, 

                     'N Estimate (losses = 0)': n_estimate_list, 

                     'Minimum N': n_minimum_list, 

                     'Maximum N': n_maximum_list, 

                     'Mean N': mean_n_list, 

                     'Variance (σ^2)': variance_list, 

                     'Standard Deviation (σ)': standard_deviation_list, 

                     'Confidence Interval (CI, 99%)': confidence_interval_list, 

                     'N by probability': n_by_probability_list} 

df = pd.DataFrame(intermediate_dict) 

df.to_excel('export_dataframe_approach3.xlsx', index=False, header=True) 

Figure S3. Monte-Carlo-Bayesian Approach 3 Code. The code was developed in the Python 

programming language. It allows for Monte-Carlo-Bayesian simulations, specifically the 

approach 3 as explained in the description provided within the code. Additionally, an 

intermediate step during the code execution is the estimation of the population according to 

the Central Limit Theorem.  
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from openpyxl import load_workbook 

import matplotlib.pyplot as plot 

import numpy as np 

import pandas 

from dtw import accelerated_dtw 

 

workbook = load_workbook(filename="covid_estimates.xlsx", read_only=True) 

sheet = workbook.active 

 

# Collect the MCBA Approach 1 population estimates 

date_dataset1 = [] 

for value in sheet.iter_rows(min_row=2, max_row=93, min_col=1, max_col=1, values_only=True): 

    for i in value: 

        date_only = i.date() 

        date_dataset1.append(date_only) 

 

virus1_dataset = [] 

for value in sheet.iter_rows(min_row=2, max_row=93, min_col=12, max_col=12, values_only=True): 

    for i in value: 

        virus1_dataset.append(i) 

 

# removes empty data 

index_list = [] 

for i in range(len(virus1_dataset)): 

    index_list.append(i) 

index_list.reverse() 

for i in index_list: 

    if virus1_dataset[i] is None: 

        del virus1_dataset[i] 

        del date_dataset1[i] 

 

# Collect the MCBA Approach 2 population estimates 

date_dataset2 = [] 

for value in sheet.iter_rows(min_row=2, max_row=93, min_col=1, max_col=1, values_only=True): 

    for i in value: 

        date_only = i.date() 

        date_dataset2.append(date_only) 

 

virus2_dataset = [] 

for value in sheet.iter_rows(min_row=2, max_row=93, min_col=13, max_col=13, values_only=True): 

    for i in value: 

        virus2_dataset.append(i) 

 

# removes empty data 

index_list = [] 

for i in range(len(virus2_dataset)): 

    index_list.append(i) 

index_list.reverse() 

for i in index_list: 

    if virus2_dataset[i] is None: 

        del virus2_dataset[i] 

        del date_dataset2[i] 

 

# Collect the MCBA Approach 3 population estimates 

date_dataset3 = [] 

for value in sheet.iter_rows(min_row=2, max_row=93, min_col=1, max_col=1, values_only=True): 

    for i in value: 

        date_only = i.date() 

        date_dataset3.append(date_only) 

 

virus3_dataset = [] 

for value in sheet.iter_rows(min_row=2, max_row=93, min_col=14, max_col=14, values_only=True): 

    for i in value: 

        virus3_dataset.append(i) 

 

# removes empty data 

index_list = [] 

for i in range(len(virus3_dataset)): 

    index_list.append(i) 

index_list.reverse() 

for i in index_list: 

    if virus3_dataset[i] is None: 

        del virus3_dataset[i] 

        del date_dataset3[i] 

 

# Collect the CLT population estimates 

date_dataset4 = [] 

for value in sheet.iter_rows(min_row=2, max_row=93, min_col=1, max_col=1, values_only=True): 

    for i in value: 

        date_only = i.date() 

        date_dataset4.append(date_only) 

 

virus4_dataset = [] 

for value in sheet.iter_rows(min_row=2, max_row=93, min_col=15, max_col=15, values_only=True): 

    for i in value: 

        virus4_dataset.append(i) 

 

# removes empty data 

index_list = [] 

for i in range(len(virus4_dataset)): 
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    index_list.append(i) 

index_list.reverse() 

for i in index_list: 

    if virus4_dataset[i] is None: 

        del virus4_dataset[i] 

        del date_dataset4[i] 

 

# Collect COVID-19 diagnosed cases in Gwynedd 

date_dataset5 = [] 

for value in sheet.iter_rows(min_row=2, max_row=230, min_col=16, max_col=16, values_only=True): 

    for i in value: 

        date_only = i.date() 

        date_dataset5.append(date_only) 

 

virus5_dataset = [] 

for value in sheet.iter_rows(min_row=2, max_row=230, min_col=18, max_col=18, values_only=True): 

    for i in value: 

        virus5_dataset.append(i) 

 

# removes empty data 

index_list = [] 

for i in range(len(virus5_dataset)): 

    index_list.append(i) 

index_list.reverse() 

for i in index_list: 

    if virus5_dataset[i] is None: 

        del virus5_dataset[i] 

        del date_dataset5[i] 

 

# Select the data only after 10th of Jan 2022 

date_dataset1 = date_dataset1[20:] 

virus1_dataset = virus1_dataset[20:] 

date_dataset2 = date_dataset2[27:] 

virus2_dataset = virus2_dataset[27:] 

date_dataset3 = date_dataset3[30:] 

virus3_dataset = virus3_dataset[30:] 

date_dataset4 = date_dataset4[33:] 

virus4_dataset = virus4_dataset[33:] 

date_dataset5 = date_dataset5[10:135] 

virus5_dataset = virus5_dataset[10:135] 

 

intermediate_dict1 = {'Date': date_dataset1, 

                      'Virus1': virus1_dataset} 

intermediate_dict2 = {'Date': date_dataset2, 

                      'Virus2': virus2_dataset} 

intermediate_dict3 = {'Date': date_dataset3, 

                      'Virus3': virus3_dataset} 

intermediate_dict4 = {'Date': date_dataset4, 

                      'Virus4': virus4_dataset} 

intermediate_dict5 = {'Date': date_dataset5, 

                      'Virus5': virus5_dataset} 

 

df1 = pandas.DataFrame.from_dict(intermediate_dict1, orient='index') 

df1 = df1.transpose() 

df2 = pandas.DataFrame.from_dict(intermediate_dict2, orient='index') 

df2 = df2.transpose() 

df3 = pandas.DataFrame.from_dict(intermediate_dict3, orient='index') 

df3 = df3.transpose() 

df4 = pandas.DataFrame.from_dict(intermediate_dict4, orient='index') 

df4 = df4.transpose() 

df5 = pandas.DataFrame.from_dict(intermediate_dict5) 

 

df_1 = pandas.merge(df1, df5, on='Date', how='outer') 

df_2 = pandas.merge(df2, df5, on='Date', how='outer') 

df_3 = pandas.merge(df3, df5, on='Date', how='outer') 

df_4 = pandas.merge(df4, df5, on='Date', how='outer') 

 

# removes the rows containing empty data: the diagnosed cases are never empty, but only the estimated cases 

# to be included at the user's discretion for comparison 

 

df_1 = df_1.dropna() 

df_2 = df_2.dropna() 

df_3 = df_3.dropna() 

df_4 = df_4.dropna() 

 

 

df_1['Virus5'] = df_1['Virus5'].astype(float) 

df_1['Virus1'] = df_1['Virus1'].astype(float) 

df_2['Virus5'] = df_2['Virus5'].astype(float) 

df_2['Virus2'] = df_2['Virus2'].astype(float) 

df_3['Virus5'] = df_3['Virus5'].astype(float) 

df_3['Virus3'] = df_3['Virus3'].astype(float) 

df_4['Virus5'] = df_4['Virus5'].astype(float) 

df_4['Virus4'] = df_4['Virus4'].astype(float) 

 

''' 

# For MCBA Approach1 

d1 = df_1['Virus1'].interpolate().values 

d2 = df_1['Virus5'].interpolate().values 

# For MCBA Approach2 
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d1 = df_2['Virus2'].interpolate().values 

d2 = df_2['Virus5'].interpolate().values 

# For MCBA Approach3 

d1 = df_3['Virus3'].interpolate().values 

d2 = df_3['Virus5'].interpolate().values 

# For CLT 

d1 = df_4['Virus4'].interpolate().values 

d2 = df_4['Virus5'].interpolate().values 

''' 

# For CLT 

d1 = df_4['Virus4'].interpolate().values 

d2 = df_4['Virus5'].interpolate().values 

d, cost_matrix, acc_cost_matrix, path = accelerated_dtw(d1,d2, dist='euclidean') 

plot.imshow(acc_cost_matrix.T, origin='lower', cmap='OrRd', interpolation='nearest') 

plot.plot(path[0], path[1], 'b', linewidth=3, alpha=0.8) 

''' 

plot.xlabel('SARS-CoV-2 MCBA Approach 1 Estimated Cases') 

plot.xlabel('SARS-CoV-2 MCBA Approach 2 Estimated Cases') 

plot.xlabel('SARS-CoV-2 MCBA Approach 3 Estimated Cases') 

plot.xlabel('SARS-CoV-2 CLT Estimated Cases') 

''' 

plot.xlabel('SARS-CoV-2 CLT Estimated Cases') 

plot.ylabel('COVID-19 Diagnosed Cases') 

plot.title(f'DTW minimum path with minimum distance: {np.round(d,2)}') 

plot.show() 

Figure S4. Dynamic Time Warping Code for Comparison of Clinical and Estimated Data. The 

code was developed in the Python programming language.  

 
def pol_trendline_plot(time_variable, dependent_variable, label): 

    time_variable = mdates.date2num(time_variable) 

    polynomialOrder = 10 

    fittedParameters_A = numpy.poly1d(numpy.polyfit(time_variable, dependent_variable, 

polynomialOrder)) 

    print('Fitted Parameters A:', fittedParameters_A) 

    modelPredictions_A = numpy.polyval(fittedParameters_A, time_variable) 

    absError_A = modelPredictions_A - dependent_variable 

    SE_A = numpy.square(absError_A)  # squared errors A 

    MSE_A = numpy.mean(SE_A)  # mean squared errors A 

    RMSE_A = numpy.sqrt(MSE_A)  # Root Mean Squared Error, RMSE A 

    Rsquared_A = 1.0 - (numpy.var(absError_A) / numpy.var(dependent_variable)) 

    print('RMSE A:', RMSE_A) 

    print('R-squared A:', Rsquared_A) 

    print(r2_score(dependent_variable, fittedParameters_A(time_variable))) 

    xModel_A = numpy.linspace(min(time_variable), max(time_variable)) 

    yModel_A = numpy.polyval(fittedParameters_A, xModel_A) 

    ax.plot(xModel_A, yModel_A, linewidth=3, label=label) 

Figure S5. Polynomial Trendline Function. The code was developed in the Python programming 

language. It details a function required for the calculation of a polynomial trendline. The 

function requires three variables as arguments, two of which are of an array data type, and 

the third a string type. 
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Monte-Carlo-Bayesian Approach Example: 

1. For demonstration purposes, a mean value is calculated for the CrAssphage measured 

concentration, this being 27930540 or 7.45 log10 gc/l. 

 

2. N is estimated using the mean values according to Table 7 and the equation: 

𝑁 =
𝐶𝑅𝑁𝐴𝐹

𝛼̅𝛽̅(1−𝛾̅)
. 

Also, this N estimate would be the result as per the EMCLT. 

 

3. N estimate is 2859 individuals. 

 

4. The simulation is performed assuming viral losses between [0; 1] or 0-100%. The 

number of Monte-Carlo simulations in this case is 1000 data points. The histogram 

(Figure S6) is obtained by separating the range between the minimum and maximum 

simulated concentrations in 30 intervals of equal length. 

 
Figure S6. Monte-Carlo full simulation of crAssphage concentrations in wastewater. 
The probability of crAssphage concentrations in wastewater according to a Monte-
Carlo full simulation as expected for a population number of 2859 individuals. The 
number of simulated data-points is 1000. The number of intervals is 30 and the 
distribution was calculated by dividing the number of data points fitting within one 
interval by the total number of data points. 
 

5. A degradation range of 0% to 100% is unlikely in a field setting, hence the obtained 

histogram in the previous step will be used to estimate the minimum value of the 

degradation rate. This is done with the formula 

γmin = 1 – (Cmeasured/Cestimated_min), 

where γmin – minimum degradation rate, Cmeasured – the measured concentration in 

step 1, and Cestimated_min – the minimum simulated concentration from step 4. 
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6. Since  

Cestimated_min = 9.24 log10 gc/L, 

then  

(1 - γmin) = 27930540 gc/L ÷ 1737800828 gc/L, 

and 

γmin = 0.9839. 

Therefore, the range of the degradation rate is deducted to be [0.9839; 1], 

corresponding to viral losses of 98.39%-100%. 

 

This can be read in the following way: “Assuming a population estimate of 2859 

individuals and a measured concentration of CrAssphage in wastewater of 7.45 log10 

gc/L, the estimated viral losses were simulated to be in the range of 98.39%-100%”. 

 

7. The Monte-Carlo full simulation is repeated by using the γmin variable value obtained 

in step 6. In this case, 5000 simulations are performed (Figure S7). 

 

 

Figure S7. Monte-Carlo full simulation of crAssphage concentration in wastewater. The 
probability of crAssphage concentrations in wastewater according to a Monte-Carlo 
full simulation as expected for a population number of 2859 individuals and assuming 
viral losses between 98.39-100%. The number of simulated data-points is 5000. The 
number of intervals is 30 and the distribution was calculated by dividing the number 
of data points fitting within one interval by the total number of data points. 

 

8. Now, using the N estimated in step 2 and 3, a dataset of N values will be obtained 

which corresponds to an arithmetic progression of 0.05xN: 0.05N, 0.1N, 0.15N… 1.9N, 
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1.95N, 2N. And Monte-Carlo simulations in number of 1000 data points will be 

performed for each of the values from the N dataset.  

 

9. An acceptable deviation is chosen from the measured concentration. For 

demonstration purposes, the chosen acceptable deviation is 6 log10 gc/L. 

 

10. Within the range of the measured concentration ± acceptable deviation, it is 

calculated how many simulated concentration data points fit within the range, and it 

is divided by the total number of data points. This calculation is performed for each 

individual N value from the N dataset obtained in step 8. 

 

A histogram is plotted illustrating the distribution of the number of Monte-Carlo data 

points fitting within the acceptable deviation from the measured concentration 

according to the estimated population number. 

 

Figure S8. Probability of each population estimate according to the measured 
crAssphage concentration. The probability of each number of individuals of a 
population to result in a measured concentration of crAssphage in wastewater 
according to a full Monte-Carlo simulation while the probability was calculated 
through Bayes’ rule. 

In conclusion, Figure S8 depicts the expected density, distribution or probability for 

each of the estimated population numbers, assuming the measured crAssphage 

concentration, thereby indicating the simulated distribution of the population 

infected with CrAssphage. 
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Table S1. Population Estimates According to the Central Limit Theorem 

Date 

SARS-CoV-2 Influenza A Norovirus GII CrAssphage 

Measured 
Concentration 

(gc/L) 

Population 
Estimate 

SD 
Measured 

Concentration 
(gc/L) 

Population 
Estimate 

SD 
Measured 

Concentration 
(gc/L) 

Population 
Estimate 

Measured 
Concentration 

(gc/L) 

Population 
Estimate 

2021-10-28 1968.2 3.2 8 0.0 0.0 0 N/A N/A 1246483.9 127.6 

2021-10-29 6042.3 9.7 14 0.0 0.0 0 N/A N/A 1102212.4 112.8 

2021-11-01 27336.3 44 29 0.0 0.0 0 N/A N/A 3497303.0 358.0 

2021-11-02 40882.5 65.8 36 0.0 0.0 0 N/A N/A 4757886.2 487.0 

2021-11-03 7133.6 11.5 15 0.0 0.0 0 N/A N/A 3984320.1 407.8 

2021-11-04 6929.2 11.1 15 0.0 0.0 0 N/A N/A 4308999.6 441.1 

2021-11-05 423.2 0.7 4 0.0 0.0 0 N/A N/A 2580834.2 264.2 

2021-11-08 2169.3 3.5 8 0.0 0.0 0 N/A N/A 5067248.4 518.7 

2021-11-09 962.7 1.5 6 524.4 211.2 37 N/A N/A 4143788.5 424.1 

2021-11-10 633.0 1 4 3629.5 1461.5 118 N/A N/A 2563706.4 262.4 

2021-11-11 200290.8 322.2 81 327.5 131.9 29 N/A N/A 5072683.9 519.2 

2021-11-12 3705.9 6 11 67854.9 27324.1 1424 N/A N/A 2265422.6 231.9 

2021-11-15 659.2 1.1 5 41.2 16.6 10 N/A N/A 3755780.7 384.4 

2021-11-16 1669.9 2.7 7 0.0 0.0 0 N/A N/A 2150719.1 220.1 

2021-11-17 1057.8 1.7 6 0.0 0.0 0 N/A N/A 7726449.9 790.9 

2021-11-18 2004.3 3.2 8 0.0 0.0 0 N/A N/A 8192900.0 838.6 

2021-11-19 186.0 0.3 2 0.0 0.0 0 N/A N/A 6036388.1 617.9 

2021-11-23 990.8 1.6 6 0.0 0.0 0 N/A N/A 83201203.3 8516.2 

2021-11-24 2737.2 4.4 9 412.3 166.0 32 N/A N/A 146432181.7 14988.3 

2021-11-25 731.1 1.2 5 51.6 20.8 11 N/A N/A 229164943.8 23456.5 

2021-11-26 8196.2 13.2 16 289.7 116.7 27 N/A N/A 106413637.4 10892.1 

2021-11-29 829.0 1.3 5 0.0 0.0 0 N/A N/A 145771815.4 14920.7 

2021-11-30 1363.1 2.2 7 60.8 24.5 12 N/A N/A 134253098.1 13741.7 

2021-12-01 0.0 0 0 0.0 0.0 0 N/A N/A 73779722.6 7551.8 

2021-12-02 473.0 0.8 4 0.0 0.0 0 N/A N/A 194349167.2 19892.9 

2021-12-06 941.2 1.5 5 0.0 0.0 0 N/A N/A 680372.2 69.6 



98 
 

2021-12-07 11532.8 18.6 19 130.2 52.4 18 N/A N/A 756665.5 77.4 

2021-12-08 4595.3 7.4 12 613.3 247.0 40 N/A N/A 1215579.3 124.4 

2021-12-09 782.4 1.3 5 55.5 22.4 12 N/A N/A 754810.5 77.3 

2021-12-10 1357.0 2.2 7 19.1 7.7 7 N/A N/A 884271.0 90.5 

2021-12-13 29.3 0 1 48.0 19.3 11 111136.8 4.7 302215.5 30.9 

2021-12-14 7326.7 11.8 15 0.0 0.0 0 119962.8 5.1 553417.4 56.6 

2021-12-15 318014.5 511.6 103 0.0 0.0 0 1202461.0 51.3 1147019.3 117.4 

2021-12-16 78992.7 127.1 50 0.0 0.0 0 1558950.5 66.5 911191.0 93.3 

2022-01-11 27526.0 44.3 30 0.0 0.0 0 205598.1 8.8 45783688.8 4686.3 

2022-01-12 14020.0 22.6 21 0.0 0.0 0 24840.2 1.1 15113998.5 1547.0 

2022-01-13 12466.0 20.1 20 0.0 0.0 0 1783510.8 76.1 20907117.9 2140.0 

2022-01-18 11823.0 19 19 0.0 0.0 0 0.0 0.0 725453.3 74.3 

2022-01-19 2646.0 4.3 9 0.0 0.0 0 0.0 0.0 895906.6 91.7 

2022-01-20 5253.0 8.5 13 0.0 0.0 0 0.0 0.0 1525019.8 156.1 

2022-01-21 9246.0 14.9 17 0.0 0.0 0 0.0 0.0 4673452.9 478.4 

2022-01-26 2413.0 3.9 9 0.0 0.0 0 0.0 0.0 5525519.4 565.6 

2022-01-27 1133.0 1.8 6 0.0 0.0 0 0.0 0.0 1557313.2 159.4 

2022-01-28 1073.0 1.7 6 0.0 0.0 0 0.0 0.0 1061726.6 108.7 

2022-02-01 2650.0 4.3 9 0.0 0.0 0 0.0 0.0 1019553.2 104.4 

2022-02-02 2550.0 4.1 9 0.0 0.0 0 0.0 0.0 1384519.9 141.7 

2022-02-03 2190.0 3.5 8 0.0 0.0 0 0.0 0.0 1541526.5 157.8 

2022-02-04 208273.0 335.1 83 0.0 0.0 0 0.0 0.0 31698656.8 3244.6 

2022-02-08 25203.0 40.5 28 0.0 0.0 0 N/A N/A 2594086.4 265.5 

2022-02-09 8764.0 14.1 17 0.0 0.0 0 N/A N/A 1602686.5 164.0 

2022-02-11 17483.0 28.1 23 0.0 0.0 0 N/A N/A 27651390.6 2830.3 

2022-02-15 1270.0 2 6 0.0 0.0 0 N/A N/A 9143865.8 935.9 

2022-02-17 5031.0 8.1 13 0.0 0.0 0 N/A N/A 2156286.5 220.7 

2022-02-18 0.0 0 0 0.0 0.0 0 N/A N/A 1614233.2 165.2 

2022-02-22 106.0 0.2 2 0.0 0.0 0 N/A N/A 4863752.8 497.8 

2022-02-23 5750.0 9.3 13 0.0 0.0 0 N/A N/A 1450666.5 148.5 

2022-02-24 0.0 0 0 0.0 0.0 0 0.0 0.0 1169366.5 119.7 
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2022-02-25 906.0 1.5 5 0.0 0.0 0 122716.1 5.2 2171439.8 222.3 

2022-03-01 1736.0 2.8 7 0.0 0.0 0 59047.9 2.5 1096066.6 112.2 

2022-03-02 0.0 0 0 0.0 0.0 0 58427.1 2.5 2933093.0 300.2 

2022-03-03 3123.0 5 10 0.0 0.0 0 36657.5 1.6 684619.9 70.1 

2022-03-04 14146.0 22.8 21 0.0 0.0 0 24188.7 1.0 1651213.2 169.0 

2022-03-08 746.0 1.2 5 0.0 0.0 0 N/A N/A 3849226.3 394.0 

2022-03-09 4730.0 7.6 12 0.0 0.0 0 N/A N/A 1922359.8 196.8 

2022-03-10 0.0 0 0 0.0 0.0 0 N/A N/A 903059.9 92.4 

2022-03-11 1670.0 2.7 7 0.0 0.0 0 N/A N/A 742799.9 76.0 

2022-03-15 630.0 1 4 0.0 0.0 0 0.0 0.0 492653.3 50.4 

2022-03-16 62190.0 100 45 0.0 0.0 0 0.0 0.0 985953.2 100.9 

2022-03-17 12533.0 20.2 20 0.0 0.0 0 0.0 0.0 503666.6 51.6 

2022-03-18 73130.0 117.6 48 0.0 0.0 0 0.0 0.0 864446.6 88.5 

2022-03-22 27487.0 44.2 29 N/A N/A N/A N/A N/A 2127233.1 217.7 

2022-03-23 8927.0 14.4 17 N/A N/A N/A N/A N/A 1343739.9 137.5 

2022-03-24 8436.0 13.6 16 N/A N/A N/A N/A N/A 1033799.9 105.8 

2022-03-25 11464.0 18.4 19 N/A N/A N/A N/A N/A 961719.9 98.4 

2022-03-29 4553.0 7.3 12 0.0 0.0 0 2321199.5 99.0 10008139.0 1024.4 

2022-03-30 8113.0 13.1 16 0.0 0.0 0 1128173.4 48.1 38348282.8 3925.2 

2022-03-31 20356.0 32.7 25 0.0 0.0 0 3213769.9 137.1 11901705.5 1218.2 

2022-04-01 3123.0 5 10 0.0 0.0 0 1913305.9 81.6 3127659.7 320.1 

2022-04-05 7026.0 11.3 15 0.0 0.0 0 21925716.5 935.6 20813371.3 2130.4 

2022-04-06 3626.0 5.8 11 0.0 0.0 0 11823313.2 504.5 21972197.8 2249.0 

2022-04-07 6187.0 10 14 0.0 0.0 0 27150820.0 1158.5 31023070.2 3175.4 

2022-04-08 1102.0 1.8 6 0.0 0.0 0 2117679.1 90.4 42132175.8 4312.5 

2022-04-12 481.0 0.8 4 N/A N/A N/A 48278.2 2.1 11271818.9 1153.7 

2022-04-13 2652.0 4.3 9 N/A N/A N/A 13506.9 0.6 10440165.6 1068.6 

2022-04-14 7009.0 11.3 15 N/A N/A N/A 53110.7 2.3 7969752.5 815.8 

2022-04-20 3789.0 6.1 11 N/A N/A N/A N/A N/A 2489379.8 254.8 

2022-04-21 2926.0 4.7 10 N/A N/A N/A N/A N/A 16458005.0 1684.6 

2022-04-22 0.0 0 0 N/A N/A N/A N/A N/A 4596766.2 470.5 



100 
 

2022-04-26 7082.0 11.4 15 N/A N/A N/A N/A N/A 19172384.7 1962.4 

2022-04-27 203.0 0.3 3 N/A N/A N/A N/A N/A 15894451.7 1626.9 

2022-04-28 2414.0 3.9 9 N/A N/A N/A N/A N/A 28770783.8 2944.9 

2022-04-29 181.0 0.3 2 N/A N/A N/A N/A N/A 4081399.6 417.8 

2022-05-04 2787.0 4.5 9 N/A N/A N/A N/A N/A 17770931.6 1819.0 

2022-05-05 5855.0 9.4 14 N/A N/A N/A N/A N/A 37692782.9 3858.1 

2022-05-06 1077.0 1.7 6 N/A N/A N/A N/A N/A 19765658.0 2023.1 

2022-05-10 18126.0 29.2 24 N/A N/A N/A N/A N/A 32479383.4 3324.5 

2022-05-11 0.0 0 0 N/A N/A N/A N/A N/A 4755912.9 486.8 

2022-05-12 675.0 1.1 5 N/A N/A N/A N/A N/A 23905257.6 2446.9 

2022-05-13 0.0 0 0 N/A N/A N/A N/A N/A 29649157.0 3034.8 

2022-05-17 0.0 0 0 N/A N/A N/A N/A N/A 20081224.7 2055.4 

2022-05-18 291.0 0.5 3 N/A N/A N/A N/A N/A 29634163.7 3033.2 

2022-05-19 0.0 0 0 N/A N/A N/A N/A N/A 33347396.7 3413.3 

2022-05-20 0.0 0 0 N/A N/A N/A N/A N/A 23488151.0 2404.2 

The table depicts population estimates for each virus target according to the Central Limit Theorem. The standard deviation (SD) is provided only 
for SARS-CoV-2 and influenza A because it was possible to find all the required data only for these two targets. When the measured concentration 
displays “0.0” it indicates that no virus genome was detected in the wastewater samples. N/A – not applicable and indicates that the wastewater 
sample with the corresponding date was not analysed for that virus target.  
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Table S2. Total Population Estimates 

Date 
Population estimate (individuals) based on the wastewater concentration of 

Ammonium Phosphate 
CrAssphage, 

MCBA Approach 1 
CrAssphage, MCBA 

Approach 2 
CrAssphage, MCBA 

Approach 3 
CrAssphage, MCBA 

Approach 2 Adjusted 
CrAssphage, 

EMCLT 

2021-10-28 8318.7 6329.2 3.1 118.0 96.2 330.5 127.6 

2021-10-29 4019.6 2865.9 3.0 118.0 77.8 330.5 112.8 

2021-11-01 4721.6 5880.5 6.6 319.5 291.7 895.0 358.0 

2021-11-02 7501.1 7047.5 8.6 439.8 416.2 1232.0 487.0 

2021-11-03 5407.5 4732.2 7.3 366.5 345.2 1026.7 407.8 

2021-11-04 5556.9 4881.1 7.1 397.6 366.2 1113.6 441.1 

2021-11-05 6476.8 4557.2 4.7 236.7 207.8 663.0 264.2 

2021-11-08 N/A N/A 9.0 467.6 431.9 1309.7 518.7 

2021-11-09 N/A N/A 7.3 379.1 357.6 1062.0 424.1 

2021-11-10 11347.2 6121.4 4.8 236.1 215.6 661.4 262.4 

2021-11-11 10114.8 5446.6 9.0 467.5 439.9 1309.6 519.2 

2021-11-12 7982.9 6000.9 5.6 216.3 177.2 605.7 231.9 

2021-11-15 1886.4 7841.9 6.8 349.6 320.3 979.2 384.4 

2021-11-16 2056.3 6076.2 5.3 191.6 171.4 536.7 220.1 

2021-11-17 2348.8 11054.7 13.0 709.8 667.3 1988.3 790.9 

2021-11-18 13208.7 8254.4 14.0 759.0 761.0 2126.0 838.6 

2021-11-19 16488.2 10597.1 9.8 557.2 546.6 1560.8 617.9 

2021-11-23 8692.8 18352.9 122.7 7044.7 7665.0 19733.0 8516.2 

2021-11-24 10682.3 9808.3 215.7 N/A N/A N/A 14988.3 

2021-11-25 11159.5 10393.1 339.5 N/A N/A N/A 23456.5 

2021-11-26 11097.6 9450.9 158.1 N/A 9803.0 N/A 10892.1 

2021-11-29 13200.5 12547.8 212.8 N/A 13429.0 N/A 14920.7 

2021-11-30 9785.3 9856.7 197.6 N/A 11680.0 N/A 13741.7 

2021-12-01 4266.7 5729.9 108.1 6735.8 6797.0 18867.8 7551.8 

2021-12-02 5638.4 10977.9 287.6 N/A 19893.0 N/A 19892.9 

2021-12-06 15048.0 8903.5 2.3 59.0 44.2 165.3 69.6 
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2021-12-07 9248.5 5409.9 2.4 59.0 50.1 165.3 77.4 

2021-12-08 6511.2 4329.4 2.8 118.0 96.5 330.5 124.4 

2021-12-09 8086.4 6368.0 2.4 59.0 53.8 165.3 77.3 

2021-12-10 6286.9 6189.2 2.7 64.2 62.6 179.9 90.5 

2021-12-13 11876.8 9140.7 2.1 59.0 19.1 165.3 30.9 

2021-12-14 15080.0 7254.2 2.3 59.0 38.2 165.3 56.6 

2021-12-15 10820.9 10004.5 3.0 118.0 84.4 330.5 117.4 

2021-12-16 8899.2 7201.9 2.8 79.4 68.0 222.5 93.3 

2022-01-11 12080.0 12468.7 68.9 4207.0 4159.0 11784.3 4686.3 

2022-01-12 24156.8 9103.1 23.2 1388.2 1375.1 3888.5 1547.0 

2022-01-13 22051.2 10074.4 32.2 1922.6 1926.0 5385.4 2140.0 

2022-01-18 16889.6 9871.1 2.4 59.0 52.9 165.3 74.3 

2022-01-19 13862.4 7589.6 2.8 69.7 67.5 195.3 91.7 

2022-01-20 11827.2 10029.2 3.3 130.3 121.2 365.0 156.1 

2022-01-21 12220.8 7386.4 8.6 430.2 389.0 1205.0 478.4 

2022-01-26 N/A N/A 8.8 507.9 489.8 1422.7 565.6 

2022-01-27 N/A N/A 3.2 139.2 119.1 389.9 159.4 

2022-01-28 N/A N/A 3.0 118.0 83.8 330.5 108.7 

2022-02-01 10582.4 11497.4 3.0 118.0 76.0 330.5 104.4 

2022-02-02 17164.8 9148.2 3.6 118.0 95.4 330.5 141.7 

2022-02-03 14313.6 8628.7 3.3 133.9 119.9 375.1 157.8 

2022-02-04 17990.4 12333.2 46.1 2905.0 2920.0 8137.2 3244.6 

2022-02-08 14902.4 9758.1 5.1 238.1 213.2 666.9 265.5 

2022-02-09 11254.4 10932.7 3.3 156.2 127.1 437.6 164.0 

2022-02-11 13699.2 10752.0 41.3 2543.5 2500.2 7124.8 2830.3 

2022-02-15 13827.2 14569.4 14.5 847.2 837.1 2373.2 935.9 

2022-02-17 8192.0 2349.2 5.7 193.7 171.0 542.5 220.7 

2022-02-18 10956.8 7838.1 3.3 158.2 132.2 443.1 165.2 

2022-02-22 13824.0 9374.1 8.3 446.3 424.8 1250.2 497.8 

2022-02-23 10243.2 7386.4 3.6 118.4 107.8 331.7 148.5 
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2022-02-24 7664.0 6347.3 2.8 118.0 88.5 330.5 119.7 

2022-02-25 8659.2 5240.5 5.8 195.6 179.2 547.9 222.3 

2022-03-01 12464.0 10300.2 3.0 118.0 87.0 330.5 112.2 

2022-03-02 15820.8 9351.5 5.9 274.3 247.2 768.4 300.2 

2022-03-03 12595.2 11136.0 2.3 59.0 48.2 165.3 70.1 

2022-03-04 14288.0 8673.9 3.5 167.1 133.9 467.9 169.0 

2022-03-08 16860.8 16150.6 6.9 355.3 313.3 995.3 394.0 

2022-03-09 14691.2 9351.5 4.6 177.0 147.2 495.8 196.8 

2022-03-10 9353.6 9148.2 2.7 71.6 63.2 200.7 92.4 

2022-03-11 15152.0 10910.1 2.3 59.0 45.2 165.3 76.0 

2022-03-15 12633.6 7634.8 2.2 59.0 33.6 165.3 50.4 

2022-03-16 11107.2 7228.2 2.9 115.5 75.4 323.6 100.9 

2022-03-17 13568.0 7567.1 2.2 59.0 33.0 165.3 51.6 

2022-03-18 3718.4 8357.6 2.6 62.8 63.6 175.8 88.5 

2022-03-22 6166.4 7137.9 5.3 186.9 170.6 523.6 217.7 

2022-03-23 6643.2 7770.4 3.3 118.2 100.7 331.2 137.5 

2022-03-24 4764.8 11858.8 3.0 118.0 71.9 330.5 105.8 

2022-03-25 5635.2 8719.1 2.9 108.7 72.6 304.4 98.4 

2022-03-29 22454.4 10797.2 16.5 922.7 870.9 2584.7 1024.4 

2022-03-30 11500.8 8425.4 57.5 3523.4 3729.0 9869.5 3925.2 

2022-03-31 11792.0 9464.5 18.1 1094.0 1062.3 3064.4 1218.2 

2022-04-01 11830.4 7928.5 6.1 291.9 237.0 817.6 320.1 

2022-04-05 15929.6 5376.0 31.4 1924.1 1890.8 5389.7 2130.4 

2022-04-06 22195.2 5872.9 34.6 2030.2 2062.0 5686.9 2249.0 

2022-04-07 19788.8 8583.5 48.4 2850.0 2884.5 7983.3 3175.4 

2022-04-08 19574.4 12852.7 64.8 3910.3 3881.0 10953.3 4312.5 

2022-04-12 16483.2 19764.7 17.5 1040.8 980.6 2915.5 1153.7 

2022-04-13 12854.4 3907.8 16.6 962.2 944.0 2695.1 1068.6 

2022-04-14 13612.8 8651.3 13.7 736.8 698.4 2063.7 815.8 

2022-04-20 13510.4 7521.9 4.8 234.7 201.5 657.3 254.8 
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2022-04-21 13814.4 7183.1 24.6 1512.3 1541.2 4236.2 1684.6 

2022-04-22 20140.8 13281.9 7.9 423.8 377.2 1187.1 470.5 

2022-04-26 11376.0 7860.7 28.4 1769.7 1962.0 4957.0 1962.4 

2022-04-27 13804.8 8176.9 25.9 1459.1 1464.2 4087.0 1626.9 

2022-04-28 8112.0 4133.6 43.7 2620.9 2601.2 7341.5 2944.9 

2022-04-29 11836.8 7431.5 7.6 379.2 343.4 1062.2 417.8 

2022-05-04 21852.8 16060.2 27.8 1627.8 1614.3 4559.8 1819.0 

2022-05-05 15801.6 10548.7 55.9 3473.7 3472.0 9730.4 3858.1 

2022-05-06 17158.4 12378.4 30.0 1828.2 1745.3 5121.1 2023.1 

2022-05-10 10051.2 12039.5 50.2 2992.2 2992.0 8381.5 3324.5 

2022-05-11 14246.4 11768.5 8.6 439.6 416.8 1231.4 486.8 

2022-05-12 13971.2 9396.7 36.9 2218.2 2243.0 6213.4 2446.9 

2022-05-13 14220.8 12468.7 45.2 2718.6 2731.3 7615.1 3034.8 

2022-05-17 11782.4 11587.8 30.3 1839.7 1832.8 5153.3 2055.4 

2022-05-18 9843.2 6912.0 45.1 2713.1 2882.0 7599.8 3033.2 

2022-05-19 13779.2 9306.4 49.0 3078.3 3072.0 8622.6 3413.3 

2022-05-20 14518.4 7838.1 35.8 2163.4 2144.0 6059.9 2404.2 

Total population number according to the wastewater ammonium and phosphate concentration, and according to the Monte-Carlo-Bayesian 
Approach (MCBA) and the equation model following the Central Limit Theorem premise (EMCLT) for crAssphage-based estimates. The MCBA 
Approach 2 adjustment consists in the assumption that only 35.7% of people shed CrAssphage in faeces.
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Figure S9. Total Population Estimates comparing to the Population Expected Limits Total 
population estimates based on ammonium, phosphate, and crAssphage concentrations. 
Panel A: non-filtered data plot. Panel B: polynomial trendline of a 10-th order for each 
population estimate. The limits (black) are the expected numbers for the population within the 
catchment area. The MCBA Approach 2 adjustment consists in the assumption that only 35.7% 
of people shed CrAssphage in faeces. 

 

 

 



106 
 

 

 

 

Figure S10. SARS-CoV-2 Infected Population Estimates. Estimates of the population infected 
with SARS-CoV-2 according to the Monte-Carlo-Bayesian approach 1, 2 and 3, and the 
equation model following the Central Limit Theorem premise (CLT). Panel A: non-filtered data 
plot. Panel B: polynomial trendline of a 10-th order for each estimate type. 
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Figure S11. Influenza A Infected Population Estimates. Estimates of the population infected 
with influenza A according to the Monte-Carlo-Bayesian approach 1, 2 and 3, and the equation 
model following the Central Limit Theorem premise (CLT). Panel A: non-filtered scatter plot. 
Panel B: polynomial trendline of a 10-th order for each estimate type. 

 

Figure S12. Norovirus GII Infected Population Estimates. Estimates of the population infected 
with norovirus GII according to the Monte-Carlo-Bayesian approach 1, 2 and 3, and the 
equation model following the Central Limit Theorem premise (CLT). A Gaussian filter was 
applied, sigma=0.5. 
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Table S3. Norovirus GII Monte-Carlo-Bayesian Simulations Results 

Date 
  Approach 1 Approach 2 Approach 3 

Concentration (log10 

gc/L) 
Mean 

N 
SD 
(σ) 

99% CI 
Mean 

N 
SD 
(σ) 

99% CI γmin 
Mean 

N 
SD 
(σ) 

99% CI γmin 

2021-12-13 5.045857931 1.3 0.5 (1.12, 1.38) 4.0 2.0 (3.84, 4.18) 0.938 2.0 1.0 (1.7, 2.25) 0.781 

2021-12-14 5.079046568 1.4 0.6 (1.18, 1.53) 4.1 2.0 (3.95, 4.29) 0.938 1.5 0.8 (1.25, 1.76) 0.605 

2021-12-15 6.080071004 2.9 1.4 (2.39, 3.35) 28.8 5.8 (28.31, 29.27) 0.938 31.5 6.4 (30.12, 32.8) 0.944 

2021-12-16 6.192832338 3.3 1.4 (2.85, 3.82) 37.5 6.8 (36.91, 38.05) 0.938 44.4 7.0 (42.75, 45.98) 0.949 

2022-01-11 5.313019124 1.4 0.6 (1.23, 1.58) 6.0 2.7 (5.79, 6.25) 0.938 3.8 1.8 (3.41, 4.14) 0.891 

2022-01-12 4.395155045 1.1 0.3 (1.0, 1.13) 1.8 0.9 (1.74, 1.89) 0.938 1.0 0.2 (0.96, 1.1) 0.000 

2022-01-13 6.251275733 4.1 1.9 (3.52, 4.68) 42.7 7.3 (42.11, 43.32) 0.938 52.9 8.4 (50.93, 54.83) 0.952 

2022-02-25 5.088901383 1.4 0.6 (1.2, 1.6) 4.2 2.0 (4.02, 4.37) 0.938 1.9 1.0 (1.63, 2.19) 0.749 

2022-03-01 4.771204168 1.2 0.4 (1.05, 1.28) 2.7 1.4 (2.62, 2.85) 0.938 1.2 0.4 (1.04, 1.33) 0.550 

2022-03-02 4.76661404 1.2 0.4 (1.05, 1.29) 2.7 1.4 (2.59, 2.82) 0.938 1.3 0.7 (1.0, 1.58) 0.000 

2022-03-03 4.564163195 1.1 0.3 (1.01, 1.15) 2.1 1.1 (2.04, 2.23) 0.938 1.2 0.4 (0.97, 1.35) 0.000 

2022-03-04 4.383613083 1.1 0.3 (1.0, 1.14) 1.8 1.0 (1.73, 1.89) 0.938 1.1 0.3 (0.95, 1.19) 0.000 

2022-03-29 6.365712469 4.4 2.0 (3.73, 5.07) 54.8 8.6 (54.11, 55.57) 0.938 68.0 10.1 (65.12, 70.88) 0.951 

2022-03-30 6.052375864 2.9 1.7 (2.31, 3.42) 27.4 5.9 (26.88, 27.92) 0.938 28.0 5.7 (26.76, 29.16) 0.940 

2022-03-31 6.507014776 5.9 2.8 (4.88, 6.99) 75.3 10.0 (74.49, 76.16) 0.938 105.8 12.5 (101.85, 109.65) 0.957 

2022-04-01 6.281784405 4.3 2.4 (3.47, 5.06) 45.5 7.4 (44.87, 46.11) 0.938 60.3 8.3 (58.3, 62.2) 0.953 

2022-04-05 7.340953794 32.5 6.5 (30.13, 34.83) 518.3 32.6 (507.92, 528.73) 0.938 810.7 33.2 (782.13, 839.2) 0.962 

2022-04-06 7.072739192 19.0 5.3 (17.22, 20.75) 273.6 19.3 (271.89, 275.21) 0.938 439.2 36.7 (416.24, 462.11) 0.960 

2022-04-07 7.43378295 39.7 7.5 (37.41, 42.07) 572.3 6.4 (569.24, 575.38) 0.938 1006.8 61.5 (950.73, 1062.77) 0.962 

2022-04-08 6.325860141 4.2 1.6 (3.67, 4.69) 50.1 8.1 (49.39, 50.77) 0.938 58.6 9.0 (56.24, 60.99) 0.950 

2022-04-12 4.683751026 1.1 0.3 (1.02, 1.19) 2.5 1.3 (2.34, 2.56) 0.938 1.1 0.3 (0.96, 1.24) 0.000 

2022-04-13 4.130556713 1.1 0.3 (1.0, 1.13) 1.5 0.8 (1.44, 1.56) 0.938 1.0 0.2 (0.97, 1.12) 0.000 

2022-04-14 4.725182255 1.1 0.3 (1.02, 1.21) 2.6 1.3 (2.48, 2.71) 0.938 1.3 0.4 (1.02, 1.48) 0.029 

Results of the Monte-Carlo-Bayesian simulations for the detected norovirus GII concentration in wastewater: the detected concentration, the 
mean of the estimates distribution, the standard deviation (SD) of the distribution and the 99% confidence interval (CI 99%). The γmin for the 
approach 2 and 3 stands for the assumed minimum viral losses, which depends on the approach type and the measured concentration. 
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Table S4. SARS-CoV-2 Monte-Carlo-Bayesian Simulations Results 

Date 
  Approach 1 Approach 2 Approach 3 

Concentration (log10 
gc/L) 

Mean 
N 

SD 
(σ) 

99% CI 
Mean 

N 
SD 
(σ) 

99% CI γmin 
Mean 

N 
SD 
(σ) 

99% CI γmin 

2021-10-28 3.294069227 0.01 0.07 (0.0, 0.01) 2.72 1.72 (2.67, 2.78) 0.99963 1.36 0.62 (1.29, 1.42) 0.99330 

2021-10-29 3.78119869 0.01 0.09 (0.0, 0.01) 5.88 2.65 (5.8, 5.97) 0.99963 4.87 3.12 (4.78, 4.96) 0.99938 

2021-11-01 4.436740262 1 0 (nan, nan) 22.25 5.33 (22.08, 22.42) 0.99963 27.85 8.19 (27.63, 28.08) 0.99971 

2021-11-02 4.611537445 1 0 (nan, nan) 32.84 6.44 (32.63, 33.05) 0.99963 43.68 9.52 (43.37, 43.99) 0.99973 

2021-11-03 3.853307014 0.01 0.1 (0.0, 0.01) 6.71 2.84 (6.62, 6.81) 0.99963 5.28 3.39 (5.19, 5.38) 0.99941 

2021-11-04 3.840681008 0.01 0.1 (0.0, 0.01) 6.57 2.81 (6.48, 6.66) 0.99963 5.22 3.32 (5.12, 5.31) 0.99940 

2021-11-05 2.62651145 0 0.07 (0.0, 0.01) 2.14 1.3 (2.09, 2.19) 0.99963 1 0 (nan, nan) 0.00000 

2021-11-08 3.33632629 0.01 0.07 (0.0, 0.01) 2.92 1.78 (2.86, 2.98) 0.99963 1.86 1.09 (1.79, 1.94) 0.99735 

2021-11-09 2.983475934 0 0.07 (0.0, 0.01) 2.37 1.49 (2.32, 2.43) 0.99963 1.54 0.81 (1.47, 1.61) 0.99599 

2021-11-10 2.80140371 0 0.07 (0.0, 0.01) 2.23 1.36 (2.17, 2.28) 0.99963 1.03 0.16 (0.98, 1.07) 0.92432 

2021-11-11 5.301660893 1 0 (nan, nan) 156.08 14.74 (155.6, 156.56) 0.99963 259.89 21.62 (258.49, 261.28) 0.99978 

2021-11-12 3.568888674 0.01 0.07 (0.0, 0.01) 4.17 2.2 (4.09, 4.24) 0.99963 3.45 2.18 (3.37, 3.53) 0.99913 

2021-11-15 2.818995237 0 0.07 (0.0, 0.01) 2.24 1.37 (2.18, 2.29) 0.99963 1 0 (nan, nan) -0.89574 

2021-11-16 3.222690465 0.01 0.07 (0.0, 0.01) 2.63 1.67 (2.57, 2.69) 0.99963 1.56 0.84 (1.48, 1.63) 0.99531 

2021-11-17 3.024403563 0 0.07 (0.0, 0.01) 2.4 1.51 (2.35, 2.46) 0.99963 1.4 0.68 (1.33, 1.47) 0.99392 

2021-11-18 3.301951892 0.01 0.07 (0.0, 0.01) 2.74 1.73 (2.69, 2.8) 0.99963 1.62 0.91 (1.55, 1.69) 0.99645 

2021-11-19 2.269512944 0 0.07 (0.0, 0.01) 2.04 1.22 (1.98, 2.09) 0.99963 1 0 (nan, nan) 0.00000 

2021-11-23 2.995964081 0 0.07 (0.0, 0.01) 2.38 1.5 (2.33, 2.44) 0.99963 1.55 0.8 (1.49, 1.61) 0.99619 

2021-11-24 3.437310057 0.01 0.07 (0.0, 0.01) 3.41 1.93 (3.34, 3.47) 0.99963 2.13 1.28 (2.06, 2.21) 0.99809 

2021-11-25 2.863983384 0 0.07 (0.0, 0.01) 2.27 1.39 (2.21, 2.32) 0.99963 1.03 0.16 (0.96, 1.09) 0.87653 

2021-11-26 3.913612547 0.01 0.1 (0.0, 0.01) 7.52 3.02 (7.42, 7.62) 0.99963 5.21 3.3 (5.12, 5.3) 0.99937 

2021-11-29 2.918554531 0 0.07 (0.0, 0.01) 2.31 1.43 (2.26, 2.37) 0.99963 1.06 0.24 (0.91, 1.2) 0.60566 

2021-11-30 3.134524821 0.01 0.07 (0.0, 0.01) 2.52 1.59 (2.47, 2.58) 0.99963 1.16 0.42 (1.09, 1.23) 0.98236 

2021-12-02 2.674861141 0 0.07 (0.0, 0.01) 2.16 1.31 (2.11, 2.22) 0.99963 1 0 (nan, nan) 0.75290 

2021-12-06 2.973666537 0 0.07 (0.0, 0.01) 2.36 1.48 (2.31, 2.41) 0.99963 1.17 0.43 (1.1, 1.25) 0.97558 

2021-12-07 4.061936016 1 0 (nan, nan) 10.14 3.55 (10.03, 10.26) 0.99963 10.6 5.79 (10.48, 10.72) 0.99965 

2021-12-08 3.662309144 0.01 0.07 (0.0, 0.01) 4.82 2.38 (4.74, 4.9) 0.99963 3.52 2.27 (3.44, 3.61) 0.99910 

2021-12-09 2.893438093 0 0.07 (0.0, 0.01) 2.3 1.42 (2.24, 2.35) 0.99963 1 0 (nan, nan) 0.45176 

2021-12-10 3.132579848 0.01 0.07 (0.0, 0.01) 2.52 1.59 (2.46, 2.57) 0.99963 1.16 0.43 (1.1, 1.22) 0.98474 
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2021-12-13 1.467361417 0 0.07 (0.0, 0.01) 1.97 1.17 (1.92, 2.02) 0.99963 N/A N/A N/A 0.00000 

2021-12-14 3.864906793 0.01 0.1 (0.0, 0.01) 6.85 2.86 (6.76, 6.95) 0.99963 5.33 3.37 (5.23, 5.42) 0.99941 

2021-12-15 5.502446984 1.05 0.22 (0.92, 1.18) 193.6 4.99 (191.68, 195.52) 0.99963 438.17 29.12 (435.9, 440.43) 0.99979 

2021-12-16 4.897586775 1.06 0.25 (0.9, 1.22) 62.29 9.08 (62.0, 62.58) 0.99963 92.18 12.67 (91.64, 92.73) 0.99976 

2022-01-11 4.439743106 1 0 (nan, nan) 22.47 5.36 (22.29, 22.64) 0.99963 27.34 8.01 (27.12, 27.56) 0.99970 

2022-01-12 4.146748014 1 0 (nan, nan) 12.14 3.97 (12.01, 12.27) 0.99963 13.14 6.24 (13.01, 13.27) 0.99967 

2022-01-13 4.095727123 1 0 (nan, nan) 10.9 3.71 (10.78, 11.02) 0.99963 10.56 5.53 (10.45, 10.68) 0.99962 

2022-01-18 4.07272769 1 0 (nan, nan) 10.37 3.6 (10.25, 10.49) 0.99963 9.93 5.41 (9.81, 10.04) 0.99961 

2022-01-19 3.42258984 0.01 0.07 (0.0, 0.01) 3.34 1.91 (3.28, 3.41) 0.99963 2.05 1.21 (1.98, 2.12) 0.99792 

2022-01-20 3.720407401 0.01 0.08 (0.0, 0.01) 5.3 2.51 (5.21, 5.38) 0.99963 3.74 2.43 (3.65, 3.83) 0.99915 

2022-01-21 3.965953889 0.01 0.1 (0.0, 0.02) 8.35 3.18 (8.25, 8.46) 0.99963 7.26 4.52 (7.16, 7.37) 0.99955 

2022-01-26 3.382557322 0.01 0.07 (0.0, 0.01) 3.15 1.85 (3.09, 3.22) 0.99963 2.41 1.53 (2.33, 2.49) 0.99849 

2022-01-27 3.05422991 0 0.07 (0.0, 0.01) 2.43 1.53 (2.38, 2.49) 0.99963 1.54 0.85 (1.47, 1.62) 0.99572 

2022-01-28 3.030599722 0 0.07 (0.0, 0.01) 2.41 1.51 (2.35, 2.46) 0.99963 1.34 0.64 (1.27, 1.41) 0.99288 

2022-02-01 3.423245874 0.01 0.07 (0.0, 0.01) 3.35 1.91 (3.28, 3.41) 0.99963 2.44 1.53 (2.37, 2.52) 0.99854 

2022-02-02 3.40654018 0.01 0.07 (0.0, 0.01) 3.25 1.87 (3.19, 3.32) 0.99963 2.08 1.29 (2.01, 2.16) 0.99794 

2022-02-03 3.340444115 0.01 0.07 (0.0, 0.01) 2.94 1.78 (2.88, 3.0) 0.99963 2.51 1.59 (2.43, 2.59) 0.99868 

2022-02-04 5.318632973 1.1 0.31 (0.92, 1.28) 161.54 14.64 (161.06, 162.02) 0.99963 267.59 21.75 (266.15, 269.03) 0.99978 

2022-02-08 4.401452239 1 0 (nan, nan) 20.76 5.11 (20.59, 20.93) 0.99963 24.31 7.54 (24.11, 24.51) 0.99969 

2022-02-09 3.942702369 0.01 0.1 (0.0, 0.02) 7.96 3.1 (7.86, 8.06) 0.99963 6.09 3.85 (5.99, 6.19) 0.99946 

2022-02-11 4.242615958 1 0 (nan, nan) 14.73 4.24 (14.59, 14.87) 0.99963 14.56 6.09 (14.41, 14.71) 0.99963 

2022-02-15 3.103803721 0 0.07 (0.0, 0.01) 2.48 1.56 (2.42, 2.53) 0.99963 1.2 0.44 (1.13, 1.26) 0.98503 

2022-02-17 3.701654317 0.01 0.08 (0.0, 0.01) 5.14 2.47 (5.06, 5.22) 0.99963 1.98 1.19 (1.9, 2.05) 0.99723 

2022-02-22 2.025305865 0 0.07 (0.0, 0.01) 2 1.19 (1.95, 2.06) 0.99963 N/A N/A N/A 0.00000 

2022-02-23 3.759667845 0.01 0.09 (0.0, 0.01) 5.67 2.6 (5.58, 5.76) 0.99963 2.73 1.76 (2.65, 2.81) 0.99851 

2022-02-25 2.957128198 0 0.07 (0.0, 0.01) 2.34 1.47 (2.29, 2.4) 0.99963 1 0 (nan, nan) 0.71114 

2022-03-01 3.239549721 0.01 0.07 (0.0, 0.01) 2.65 1.68 (2.59, 2.7) 0.99963 1.75 0.99 (1.68, 1.82) 0.99706 

2022-03-03 3.494571984 0.01 0.07 (0.0, 0.01) 3.7 2.03 (3.64, 3.77) 0.99963 2.59 1.63 (2.52, 2.67) 0.99867 

2022-03-04 4.150633654 1 0 (nan, nan) 12.24 3.97 (12.11, 12.37) 0.99963 12.63 5.94 (12.5, 12.76) 0.99965 

2022-03-08 2.872738827 0 0.07 (0.0, 0.01) 2.28 1.41 (2.23, 2.33) 0.99963 1.09 0.29 (1.02, 1.17) 0.95180 

2022-03-09 3.674861141 0.01 0.08 (0.0, 0.01) 4.93 2.41 (4.85, 5.01) 0.99963 4.07 2.6 (3.98, 4.16) 0.99928 

2022-03-11 3.222716471 0.01 0.07 (0.0, 0.01) 2.63 1.67 (2.57, 2.69) 0.99963 1.41 0.72 (1.34, 1.49) 0.99356 

2022-03-15 2.799340549 0 0.07 (0.0, 0.01) 2.23 1.36 (2.17, 2.28) 0.99963 1.05 0.22 (0.99, 1.1) 0.93702 
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2022-03-16 4.793720557 1.1 0.3 (0.93, 1.26) 49.38 7.99 (49.12, 49.65) 0.99963 67.41 11.28 (66.97, 67.86) 0.99974 

2022-03-17 4.09805504 1 0 (nan, nan) 10.94 3.71 (10.81, 11.06) 0.99963 9.67 5.1 (9.56, 9.78) 0.99958 

2022-03-18 4.864095573 1.05 0.22 (0.92, 1.18) 57.66 8.81 (57.38, 57.95) 0.99963 81.81 12.07 (81.31, 82.32) 0.99974 

2022-03-22 4.439127342 1 0 (nan, nan) 22.41 5.36 (22.23, 22.58) 0.99963 27.78 8.02 (27.56, 28.0) 0.99971 

2022-03-23 3.950705535 0.01 0.1 (0.0, 0.02) 8.09 3.12 (7.99, 8.19) 0.99963 5.33 3.37 (5.24, 5.43) 0.99935 

2022-03-24 3.926136571 0.01 0.1 (0.0, 0.01) 7.71 3.05 (7.61, 7.81) 0.99963 5.94 3.76 (5.84, 6.03) 0.99945 

2022-03-25 4.059336177 1 0 (nan, nan) 10.09 3.55 (9.98, 10.21) 0.99963 7.1 4.04 (6.99, 7.2) 0.99945 

2022-03-29 3.65829765 0.01 0.07 (0.0, 0.01) 4.79 2.37 (4.71, 4.86) 0.99963 3.55 2.26 (3.47, 3.63) 0.99913 

2022-03-30 3.909181476 0.01 0.1 (0.0, 0.01) 7.47 3.01 (7.37, 7.57) 0.99963 5.87 3.71 (5.77, 5.97) 0.99945 

2022-03-31 4.308692442 1 0 (nan, nan) 16.77 4.57 (16.62, 16.92) 0.99963 20.77 7.55 (20.59, 20.95) 0.99971 

2022-04-01 3.494571984 0.01 0.07 (0.0, 0.01) 3.7 2.03 (3.64, 3.77) 0.99963 2.22 1.39 (2.15, 2.3) 0.99817 

2022-04-05 3.846708145 0.01 0.1 (0.0, 0.01) 6.62 2.82 (6.53, 6.72) 0.99963 5.4 3.44 (5.31, 5.5) 0.99943 

2022-04-06 3.5594278 0.01 0.07 (0.0, 0.01) 4.11 2.18 (4.03, 4.18) 0.99963 3.8 2.44 (3.71, 3.89) 0.99925 

2022-04-07 3.791480116 0.01 0.09 (0.0, 0.01) 6 2.68 (5.91, 6.09) 0.99963 5.9 3.74 (5.81, 6.0) 0.99952 

2022-04-08 3.042181595 0 0.07 (0.0, 0.01) 2.42 1.52 (2.37, 2.48) 0.99963 1.32 0.62 (1.25, 1.39) 0.99221 

2022-04-12 2.682145076 0 0.07 (0.0, 0.01) 2.17 1.31 (2.11, 2.22) 0.99963 1.01 0.12 (0.98, 1.05) 0.90565 

2022-04-13 3.42357352 0.01 0.07 (0.0, 0.01) 3.35 1.91 (3.28, 3.41) 0.99963 1.75 1.01 (1.67, 1.82) 0.99665 

2022-04-14 3.84565606 0.01 0.1 (0.0, 0.01) 6.61 2.82 (6.52, 6.71) 0.99963 5.59 3.53 (5.49, 5.68) 0.99945 

2022-04-20 3.578524605 0.01 0.07 (0.0, 0.01) 4.23 2.22 (4.16, 4.3) 0.99963 2.47 1.56 (2.39, 2.55) 0.99845 

2022-04-21 3.466274322 0.01 0.07 (0.0, 0.01) 3.55 1.98 (3.49, 3.62) 0.99963 1.45 0.73 (1.39, 1.51) 0.99477 

2022-04-26 3.850155922 0.01 0.1 (0.0, 0.01) 6.67 2.83 (6.58, 6.76) 0.99963 4.44 2.83 (4.35, 4.53) 0.99926 

2022-04-27 2.307496038 0 0.07 (0.0, 0.01) 2.04 1.23 (1.99, 2.1) 0.99963 1 N/A (nan, nan) 0.00000 

2022-04-28 3.382737266 0.01 0.07 (0.0, 0.01) 3.16 1.85 (3.09, 3.22) 0.99963 1.79 1.05 (1.72, 1.86) 0.99712 

2022-04-29 2.257678575 0 0.07 (0.0, 0.01) 2.03 1.22 (1.98, 2.09) 0.99963 1 0 (nan, nan) 0.00000 

2022-05-04 3.445136969 0.01 0.07 (0.0, 0.01) 3.45 1.93 (3.38, 3.51) 0.99963 2.35 1.47 (2.28, 2.43) 0.99846 

2022-05-05 3.767526899 0.01 0.09 (0.0, 0.01) 5.74 2.62 (5.65, 5.82) 0.99963 4.08 2.61 (3.99, 4.17) 0.99923 

2022-05-06 3.032215703 0 0.07 (0.0, 0.01) 2.41 1.51 (2.36, 2.47) 0.99963 1.32 0.6 (1.25, 1.39) 0.99212 

2022-05-10 4.258301976 1 0 (nan, nan) 15.2 4.29 (15.06, 15.34) 0.99963 15.79 6.32 (15.63, 15.94) 0.99965 

2022-05-12 2.829303773 0 0.07 (0.0, 0.01) 2.24 1.38 (2.19, 2.3) 0.99963 1.1 0.33 (1.02, 1.18) 0.95139 

2022-05-18 2.463892989 0 0.07 (0.0, 0.01) 2.08 1.25 (2.03, 2.13) 0.99963 1 0 (nan, nan) 0.00000 

Results of the Monte-Carlo-Bayesian simulations for the detected SARS-CoV-2 concentration in wastewater: the detected concentration, the mean 
of the estimates distribution, the standard deviation (SD) of the distribution and the 99% confidence interval (CI 99%). The γmin for the approach 
2 and 3 stands for the assumed minimum viral losses, which depends on the approach type and the measured concentration. 



112 
 

Table S5. Influenza A Monte-Carlo-Bayesian Simulations Results 

Date 
  Approach 1 Approach 2 Approach 3 

Concentration (log10 

gc/L) 
Mean 

N 
SD 
(σ) 

99% CI 
Mean 

N 
SD 
(σ) 

99% CI γmin 
Mean 

N 
SD 
(σ) 

99% CI γmin 

2021-11-09 2.719699446 2.12 0.35 (1.8, 2.45) 91.35 17.53 (89.86, 92.83) 0.99872 169.28 24.14 (168.15, 170.41) 0.99928 

2021-11-10 3.559842769 2.62 0.81 (2.11, 3.14) 652.69 39.6 (649.23, 656.14) 0.99872 1295.3 67.07 (1287.62, 1302.88) 0.99936 

2021-11-11 2.51527756 2.12 0.35 (1.8, 2.45) 57.53 20.3 (55.65, 59.4) 0.99872 95.87 20.03 (95.09, 96.65) 0.99920 

2021-11-12 4.831580897 17.07 5.54 (13.26, 20.88) N/A N/A N/A 0.99872 25503 899.2 
(24997.23, 
26008.11) 0.99939 

2021-11-15 1.615131358 2 N/A (nan, nan) 40 0 (nan, nan) 0.99872 12.82 7.77 (12.63, 13.0) 0.99861 

2021-11-24 2.615248402 2.12 0.35 (1.8, 2.45) 79.91 8.33 (79.19, 80.64) 0.99872 131.83 22.91 (130.87, 132.78) 0.99927 

2021-11-25 1.712462584 2 N/A (nan, nan) 40 0 (nan, nan) 0.99872 16.67 9.98 (16.46, 16.88) 0.99888 

2021-11-26 2.46199842 2.11 0.33 (1.82, 2.4) 45.68 14.17 (44.47, 46.88) 0.99872 83.85 19.59 (83.13, 84.58) 0.99919 

2021-11-30 1.784163204 2 N/A (nan, nan) 40 0 (nan, nan) 0.99872 13.67 8.22 (13.46, 13.88) 0.99852 

2021-12-07 2.114685059 2 0 (nan, nan) 40 0 (nan, nan) 0.99872 27.36 12.99 (26.97, 27.74) 0.99886 

2021-12-08 2.787672921 2.17 0.39 (1.88, 2.46) 114.23 16.47 (112.76, 115.7) 0.99872 201.46 25.94 (200.17, 202.75) 0.99929 

2021-12-09 1.744640584 2 N/A (nan, nan) 40 0 (nan, nan) 0.99872 14.81 8.94 (14.6, 15.02) 0.99869 

2021-12-10 1.281285896 2 N/A (nan, nan) 40 N/A (nan, nan) 0.99872 6.32 4 (6.17, 6.46) 0.99732 

2021-12-13 1.681140652 2 N/A (nan, nan) 40 0 (nan, nan) 0.99872 14.8 8.88 (14.61, 15.0) 0.99876 

Results of the Monte-Carlo-Bayesian simulations for the detected influenza A concentration in wastewater: the detected concentration, the mean 
of the estimates distribution, the standard deviation (SD) of the distribution and the 99% confidence interval (CI 99%). The γmin for the approach 
2 and 3 stands for the assumed minimum viral losses, which depends on the approach type and the measured concentration. 
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Table S6. CrAssphage Monte-Carlo-Bayesian Simulations Results 

Date 
  Approach 1 Approach 2 Approach 3 

Concentration (log10 
gc/L) 

Mean 
N 

SD 
(σ) 

99% CI 
Mean 

N 
SD 
(σ) 

99% CI γmin 
Mean 

N 
SD 
(σ) 

99% CI γmin 

2021-10-28 6.095686665 3.08 1.64 (2.5, 3.66) 118 0 (nan, nan) 0.98409 96.24 11.99 (92.55, 99.93) 0.98105 

2021-10-29 6.042265289 2.97 1.69 (2.41, 3.53) 118 0 (nan, nan) 0.98409 77.76 10.12 (74.55, 80.97) 0.97877 

2021-11-01 6.543733258 6.56 2.58 (5.67, 7.46) 319.52 30.17 (312.98, 326.07) 0.98409 291.66 19.02 (282.99, 300.32) 0.98246 

2021-11-02 6.677414049 8.55 3.26 (7.33, 9.78) 439.82 31.49 (433.71, 445.94) 0.98409 416.18 18 (406.29, 426.07) 0.98318 

2021-11-03 6.60035422 7.32 2.92 (6.34, 8.3) 366.53 26.62 (361.06, 372.0) 0.98409 345.21 28.29 (325.74, 364.69) 0.98295 

2021-11-04 6.634376451 7.08 2.41 (6.28, 7.89) 397.57 26.43 (391.79, 403.34) 0.98409 366.2 27.09 (350.6, 381.8) 0.98232 

2021-11-05 6.411760103 4.74 2.76 (3.81, 5.68) 236.7 11.42 (234.66, 238.73) 0.98409 207.78 14.96 (200.36, 215.19) 0.98154 

2021-11-08 6.704772193 9 2.99 (8.18, 9.82) 467.55 28.81 (461.57, 473.53) 0.98409 431.9 25.69 (417.1, 446.7) 0.98271 

2021-11-09 6.617397578 7.26 3.02 (6.27, 8.25) 379.14 29.4 (373.11, 385.16) 0.98409 357.56 27.31 (345.49, 369.62) 0.98299 

2021-11-10 6.408868289 4.77 2.63 (3.9, 5.64) 236.13 9.93 (234.37, 237.9) 0.98409 215.57 16.99 (209.32, 221.82) 0.98280 

2021-11-11 6.705237804 8.95 3.02 (8.11, 9.8) 467.53 28.9 (461.51, 473.55) 0.98409 439.87 27.69 (425.0, 454.74) 0.98299 

2021-11-12 6.355149235 5.61 2.73 (4.62, 6.59) 216.25 27.27 (209.19, 223.31) 0.98409 177.18 15.94 (170.04, 184.33) 0.98149 

2021-11-15 6.57470023 6.84 2.15 (6.16, 7.51) 349.57 18.83 (345.87, 353.27) 0.98409 320.27 24.21 (308.04, 332.5) 0.98280 

2021-11-16 6.332583696 5.33 2.41 (4.46, 6.2) 191.61 25.27 (186.01, 197.21) 0.98409 171.44 16.68 (164.73, 178.15) 0.98183 

2021-11-17 6.887979993 13 4.04 (11.72, 14.28) 709.82 42.38 (700.82, 718.83) 0.98409 667.25 24.39 (651.54, 682.96) 0.98310 

2021-11-18 6.913437655 14 4.93 (12.45, 15.55) 758.99 44.81 (749.12, 768.85) 0.98409 761 44.9 (717.29, 804.71) 0.98394 

2021-11-19 6.780777155 9.84 3.32 (8.75, 10.92) 557.2 33.82 (550.18, 564.22) 0.98409 546.57 31.61 (529.59, 563.54) 0.98366 

2021-11-23 7.920129608 122.72 13.06 
(118.51, 
126.92) 7044.7 89.58 

(6911.45, 
7177.88) 0.98409 7665 N/A (nan, nan) 0.98454 

2021-11-24 8.165636533 215.68 17.81 
(209.99, 
221.37) N/A N/A N/A 0.98409 N/A N/A N/A 0.98459 

2021-11-25 8.360148183 339.53 23.1 (331.35, 347.7) N/A N/A N/A 0.98409 N/A N/A N/A 0.98460 

2021-11-26 8.026997288 158.06 14.95 
(152.77, 
163.35) N/A N/A N/A 0.98409 9803 0 (nan, nan) 0.98453 

2021-11-29 8.163673562 212.84 14.05 
(208.45, 
217.23) N/A N/A N/A 0.98409 13429 N/A (nan, nan) 0.98465 

2021-11-30 8.127924316 197.63 15.39 
(192.08, 
203.18) N/A N/A N/A 0.98409 11680 N/A (nan, nan) 0.98454 

2021-12-01 7.867937018 108.08 13.24 
(103.78, 
112.38) 6735.8 234.6 

(6683.59, 
6787.99) 0.98409 6797 0 (nan, nan) 0.98444 
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2021-12-02 8.288582684 287.63 20.44 (281.2, 294.06) N/A N/A N/A 0.98409 19893 N/A (nan, nan) 0.98467 

2021-12-06 5.832746531 2.34 0.96 (2.0, 2.68) 59 0 (nan, nan) 0.98409 44.22 7.56 (42.37, 46.06) 0.97686 

2021-12-07 5.878903921 2.37 0.99 (2.0, 2.73) 59 0 (nan, nan) 0.98409 50.12 8.3 (47.89, 52.35) 0.97755 

2021-12-08 6.084783304 2.82 1.48 (2.31, 3.33) 118 0 (nan, nan) 0.98409 96.54 12.96 (92.79, 100.3) 0.98101 

2021-12-09 5.877837921 2.36 0.98 (2.0, 2.72) 59 0 (nan, nan) 0.98409 53.79 8.73 (51.84, 55.74) 0.97944 

2021-12-10 5.946585394 2.67 1.34 (2.17, 3.17) 64.21 16.99 (56.7, 71.71) 0.98409 62.58 8.19 (60.33, 64.83) 0.97937 

2021-12-13 5.480316771 2.05 0.38 (1.92, 2.17) 59 N/A (nan, nan) 0.98409 19.1 5.02 (18.22, 19.97) 0.97515 

2021-12-14 5.743052809 2.33 0.94 (2.0, 2.66) 59 0 (nan, nan) 0.98409 38.2 6.66 (36.75, 39.65) 0.97748 

2021-12-15 6.059570718 2.98 1.59 (2.44, 3.52) 118 0 (nan, nan) 0.98409 84.39 11.99 (80.8, 87.98) 0.97981 

2021-12-16 5.959609431 2.84 1.57 (2.27, 3.41) 79.42 28.62 (64.96, 93.88) 0.98409 67.95 9.79 (65.02, 70.88) 0.97994 

2022-01-11 7.660710781 68.86 9.74 (65.6, 72.13) 4207 165.7 
(4173.26, 
4240.75) 0.98409 4159 224.6 (3869.79, 4448.21) 0.98429 

2022-01-12 7.179379374 23.22 5.48 (21.5, 24.95) 1388.2 64.78 
(1373.32, 
1403.05) 0.98409 1375.1 64.53 (1319.7, 1430.52) 0.98376 

2022-01-13 7.320294169 32.21 5.99 (30.24, 34.19) 1922.6 86.84 
(1904.57, 
1940.62) 0.98409 1926 0 (nan, nan) 0.98419 

2022-01-18 5.860609437 2.38 1 (2.0, 2.75) 59 0 (nan, nan) 0.98409 52.94 8.03 (51.1, 54.79) 0.97949 

2022-01-19 5.952262725 2.76 1.4 (2.23, 3.29) 69.73 23.11 (59.37, 80.09) 0.98409 67.54 8.76 (65.43, 69.64) 0.98030 

2022-01-20 6.183275496 3.33 1.83 (2.69, 3.96) 130.29 24.13 (122.97, 137.62) 0.98409 121.16 13.49 (117.12, 125.2) 0.98133 

2022-01-21 6.669637867 8.59 3.01 (7.57, 9.6) 430.18 28.2 (424.17, 436.2) 0.98409 389 24.98 (376.84, 401.16) 0.98217 

2022-01-26 6.742373112 8.82 3.6 (7.52, 10.12) 507.92 31.64 (501.38, 514.47) 0.98409 489.77 37.45 (469.21, 510.34) 0.98334 

2022-01-27 6.192375959 3.23 1.86 (2.59, 3.87) 139.2 28.53 (130.02, 148.39) 0.98409 119.1 12.37 (115.08, 123.11) 0.98071 

2022-01-28 6.026012682 2.96 1.7 (2.38, 3.55) 118 0 (nan, nan) 0.98409 83.84 10.21 (81.06, 86.63) 0.98086 

2022-02-01 6.008409905 3.02 1.67 (2.44, 3.6) 118 0 (nan, nan) 0.98409 76.03 9.54 (73.46, 78.61) 0.98079 

2022-02-02 6.14129919 3.59 1.91 (2.9, 4.28) 118 0 (nan, nan) 0.98409 95.37 11.44 (91.36, 99.38) 0.97878 

2022-02-03 6.187950999 3.31 1.87 (2.66, 3.96) 133.92 26.4 (125.35, 142.49) 0.98409 119.86 10.96 (116.36, 123.36) 0.98135 

2022-02-04 7.50104086 46.14 7.23 (43.92, 48.37) 2905 128.6 
(2878.53, 
2931.41) 0.98409 2920 N/A (nan, nan) 0.98419 

2022-02-08 6.413984438 5.13 2.92 (4.1, 6.16) 238.09 13.18 (235.75, 240.43) 0.98409 213.21 17.87 (206.56, 219.85) 0.98205 

2022-02-09 6.20484858 3.3 1.89 (2.63, 3.97) 156.23 28.38 (147.55, 164.9) 0.98409 127.05 13.15 (122.53, 131.58) 0.98124 

2022-02-11 7.441716977 41.26 7.42 (38.73, 43.79) 2543.5 110.4 
(2521.73, 
2565.34) 0.98409 2500.2 115.5 (2378.76, 2621.57) 0.98435 

2022-02-15 6.961129841 14.47 3.86 (13.3, 15.63) 847.23 49.4 (835.94, 858.52) 0.98409 837.11 54.44 (790.37, 883.85) 0.98393 

2022-02-17 6.333706454 5.68 2.49 (4.8, 6.56) 193.69 26.35 (187.93, 199.45) 0.98409 171.03 13.74 (165.28, 176.77) 0.98142 

2022-02-18 6.207966268 3.33 1.84 (2.72, 3.94) 158.19 27.7 (149.6, 166.78) 0.98409 132.2 13.07 (127.7, 136.7) 0.98174 
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2022-02-22 6.686971498 8.28 3.16 (7.21, 9.34) 446.32 30.73 (439.92, 452.72) 0.98409 424.79 25.39 (412.42, 437.15) 0.98327 

2022-02-23 6.161567589 3.6 1.99 (2.88, 4.31) 118.4 4.83 (117.38, 119.42) 0.98409 107.75 12.02 (104.26, 111.23) 0.98023 

2022-02-24 6.067950666 2.83 1.48 (2.34, 3.33) 118 0 (nan, nan) 0.98409 88.48 9.22 (85.66, 91.3) 0.98048 

2022-02-25 6.33674779 5.78 2.61 (4.88, 6.69) 195.61 27.18 (189.56, 201.66) 0.98409 179.15 14.63 (173.6, 184.71) 0.98218 

2022-03-01 6.039836927 2.97 1.69 (2.41, 3.53) 118 0 (nan, nan) 0.98409 86.95 12.2 (83.39, 90.51) 0.98114 

2022-03-02 6.467325839 5.92 2.22 (5.21, 6.64) 274.33 27.92 (268.14, 280.52) 0.98409 247.2 17.92 (237.97, 256.43) 0.98258 

2022-03-03 5.835449539 2.33 0.95 (2.0, 2.67) 59 0 (nan, nan) 0.98409 48.21 7.5 (46.41, 50.0) 0.97834 

2022-03-04 6.217803143 3.45 1.81 (2.86, 4.04) 167.05 22.23 (160.76, 173.33) 0.98409 133.93 11.61 (129.97, 137.89) 0.98175 

2022-03-08 6.585373442 6.89 2.28 (6.1, 7.68) 355.31 18.09 (351.83, 358.79) 0.98409 313.32 26.57 (298.73, 327.91) 0.98233 

2022-03-09 6.283834678 4.59 2.19 (3.86, 5.33) 177 0 (nan, nan) 0.98409 147.18 15.63 (140.81, 153.54) 0.98095 

2022-03-10 5.955716563 2.74 1.39 (2.22, 3.27) 71.64 24.65 (59.64, 83.64) 0.98409 63.22 8.67 (60.88, 65.56) 0.97872 

2022-03-11 5.870871852 2.31 0.93 (1.97, 2.66) 59 0 (nan, nan) 0.98409 45.23 8.42 (42.97, 47.49) 0.97553 

2022-03-15 5.692541382 2.15 0.66 (1.93, 2.38) 59 0 (nan, nan) 0.98409 33.64 6.28 (32.36, 34.92) 0.97754 

2022-03-16 5.993856316 2.9 1.59 (2.32, 3.48) 115.54 12.04 (109.21, 121.87) 0.98409 75.42 9.62 (72.88, 77.96) 0.98049 

2022-03-17 5.702143166 2.2 0.75 (1.95, 2.45) 59 0 (nan, nan) 0.98409 33.04 6.35 (31.65, 34.42) 0.97680 

2022-03-18 5.936738161 2.6 1.3 (2.12, 3.09) 62.77 14.58 (57.29, 68.24) 0.98409 63.64 7.77 (61.66, 65.62) 0.97896 

2022-03-22 6.327815086 5.3 2.08 (4.57, 6.04) 186.92 21.91 (182.34, 191.5) 0.98409 170.6 17.59 (163.99, 177.2) 0.98193 

2022-03-23 6.128315202 3.3 1.83 (2.66, 3.94) 118.24 3.73 (117.63, 118.84) 0.98409 100.7 12.19 (96.78, 104.63) 0.98008 

2022-03-24 6.014436484 2.95 1.63 (2.4, 3.5) 118 0 (nan, nan) 0.98409 71.9 9.08 (69.52, 74.27) 0.97881 

2022-03-25 5.983048604 2.86 1.58 (2.28, 3.44) 108.68 22.1 (95.62, 121.75) 0.98409 72.57 9.08 (70.12, 75.02) 0.98008 

2022-03-29 7.000353328 16.49 4.82 (15.0, 17.99) 922.74 50.23 (911.96, 933.53) 0.98409 870.91 60.51 (823.91, 917.91) 0.98353 

2022-03-30 7.583745922 57.54 8.77 (54.88, 60.2) 3523.4 149.6 
(3492.34, 
3554.45) 0.98409 3729 160 (3522.89, 3935.11) 0.98440 

2022-03-31 7.075609199 18.1 4.79 (16.36, 19.84) 1094 61.69 (1081.3, 1106.67) 0.98409 1062.3 61.49 (1009.54, 1115.13) 0.98355 

2022-04-01 6.495219492 6.09 2.18 (5.35, 6.82) 291.87 14.37 (289.0, 294.74) 0.98409 236.95 24.06 (223.43, 250.48) 0.98121 

2022-04-05 7.318342431 31.43 6.51 (29.15, 33.71) 1924.1 83.54 
(1906.94, 
1941.28) 0.98409 1890.8 101.9 (1759.48, 2022.02) 0.98404 

2022-04-06 7.3418735 34.61 7.13 (32.37, 36.85) 2030.2 90.52 
(2011.92, 
2048.55) 0.98409 2062 129.9 (1868.81, 2255.19) 0.98441 

2022-04-07 7.491684776 48.37 7.67 (46.09, 50.65) 2850 133 (2823.2, 2876.88) 0.98409 2884.5 64.91 (2816.24, 2952.76) 0.98451 

2022-04-08 7.624613888 64.76 10.43 (61.14, 68.39) 3910.3 155.7 
(3878.93, 
3941.75) 0.98409 3881 0 (nan, nan) 0.98455 

2022-04-12 7.051994001 17.47 4.86 (15.82, 19.13) 1040.8 49.61 
(1030.62, 
1051.02) 0.98409 980.6 66.49 (926.44, 1034.76) 0.98301 

2022-04-13 7.018707388 16.57 4.96 (14.89, 18.25) 962.15 47.78 (952.54, 971.76) 0.98409 944 55.19 (885.96, 1002.04) 0.98403 
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2022-04-14 6.901444837 13.74 4.46 (12.28, 15.2) 736.75 37.99 (728.65, 744.85) 0.98409 698.38 36.57 (679.15, 717.6) 0.98351 

2022-04-20 6.396091153 4.77 2.14 (4.05, 5.48) 234.67 7.65 (233.18, 236.16) 0.98409 201.45 16.57 (194.87, 208.04) 0.98173 

2022-04-21 7.21637719 24.6 5.59 (22.88, 26.32) 1512.3 70.69 
(1497.92, 
1526.71) 0.98409 1541.2 56.7 (1495.02, 1587.38) 0.98418 

2022-04-22 6.662452416 7.85 2.82 (6.96, 8.74) 423.8 25.51 (418.52, 429.08) 0.98409 377.17 25.99 (363.22, 391.13) 0.98208 

2022-04-26 7.282676136 28.39 5.33 (26.64, 30.13) 1769.7 91.57 
(1751.08, 
1788.25) 0.98409 1962 N/A (nan, nan) 0.98404 

2022-04-27 7.201245552 25.89 6.49 (23.66, 28.13) 1459.1 72.21 
(1442.35, 
1475.76) 0.98409 1464.2 57.63 (1397.81, 1530.59) 0.98402 

2022-04-28 7.458951693 43.7 7.67 (41.08, 46.32) 2620.9 114.5 
(2597.66, 
2644.14) 0.98409 2601.2 120.4 (2474.61, 2727.73) 0.98421 

2022-04-29 6.610809117 7.61 2.98 (6.58, 8.63) 379.22 29.42 (372.91, 385.54) 0.98409 343.41 26.67 (330.66, 356.17) 0.98262 

2022-05-04 7.249710194 27.77 5.27 (26.07, 29.46) 1627.8 76.71 
(1611.26, 
1644.42) 0.98409 1614.3 80.66 (1540.79, 1687.71) 0.98395 

2022-05-05 7.576258203 55.92 9.77 (52.8, 59.04) 3473.7 145.5 
(3442.93, 
3504.56) 0.98409 3472 272.9 (2974.86, 3969.14) 0.98417 

2022-05-06 7.295911277 30 6.17 (28.07, 31.93) 1828.2 77.76 
(1810.52, 
1845.93) 0.98409 1745.3 127.1 (1581.57, 1908.93) 0.98394 

2022-05-10 7.511607776 50.15 8.39 (47.4, 52.89) 2992.2 122.7 
(2968.08, 
3016.28) 0.98409 2992 166 (2745.13, 3238.87) 0.98427 

2022-05-11 6.677233888 8.55 3.26 (7.33, 9.78) 439.62 31.52 (433.45, 445.8) 0.98409 416.75 26.18 (402.99, 430.51) 0.98303 

2022-05-12 7.378493428 36.88 7.5 (34.39, 39.38) 2218.2 93.18 
(2197.77, 
2238.63) 0.98409 2243 71.01 (2137.39, 2348.61) 0.98417 

2022-05-13 7.47201235 45.18 7.1 (42.86, 47.5) 2718.6 110.9 
(2696.13, 
2741.03) 0.98409 2731.3 114.5 (2626.95, 2835.55) 0.98424 

2022-05-17 7.302790195 30.27 6.4 (27.97, 32.58) 1839.7 81.69 
(1823.31, 
1856.17) 0.98409 1832.8 77.54 (1751.3, 1914.37) 0.98400 

2022-05-18 7.471792676 45.05 7.02 (42.72, 47.38) 2713.1 110.8 
(2689.83, 
2736.43) 0.98409 2882 N/A (nan, nan) 0.98435 

2022-05-19 7.523061935 49.03 7.63 (46.71, 51.34) 3078.3 125.9 
(3053.61, 
3102.94) 0.98409 3072 241.8 (2631.53, 3512.47) 0.98425 

2022-05-20 7.37084883 35.83 6.59 (33.74, 37.92) 2163.4 95.59 
(2142.37, 
2184.44) 0.98409 2144 90.33 (2049.01, 2238.99) 0.98423 

Results of the Monte-Carlo-Bayesian simulations for the detected crAssphage concentration in wastewater: the detected concentration, the mean 
of the estimates distribution, the standard deviation (SD) of the distribution and the 99% confidence interval (CI 99%). The γmin for the approach 
2 and 3 stands for the assumed minimum viral losses, which depends on the approach type and the measured concentration. 



 

Table S7. The number of influenza A cases in Wales and the detection of the virus in the 
wastewater sampled at Ysbyty Gwynedd. 

Week by Start 
Date 

Total Influenza A 
Cases 

Total Specimens 
Tested 

Influenza A Virus Detected at YG 

04/10/2021 5 10194 N/A 

11/10/2021 0 9412 N/A 

18/10/2021 5 8311 N/A 

25/10/2021 2 7537 No 

01/11/2021 3 6990 No 

08/11/2021 2 8753 Yes 

15/11/2021 4 8678 Yes 

22/11/2021 4 8819 Yes 

29/11/2021 9 9094 Yes 

06/12/2021 14 8486 Yes 

13/12/2021 11 8416 Yes 

20/12/2021 8 7468 No 

27/12/2021 6 8134 No 

03/01/2022 19 9001 No 

10/01/2022 4 7451 No 

17/01/2022 7 6049 No 

24/01/2022 4 6391 No 

31/01/2022 6 5593 No 

07/02/2022 2 5865 No 

14/02/2022 20 5997 No 

21/02/2022 12 5497 No 

28/02/2022 17 5879 No 

07/03/2022 27 4188 No 

14/03/2022 44 5864 No 

21/03/2022 43 5899 No 

28/03/2022 46 4509 No 

04/04/2022 70 3946 No 

11/04/2022 38 3180 N/A 

18/04/2022 40 4180 N/A 

25/04/2022 54 3114 N/A 

02/05/2022 53 2566 N/A 

09/05/2022 43 2868 N/A 

16/05/2022 24 3175 N/A 

23/05/2022 17 3056 N/A 

30/05/2022 11 2318 N/A 

06/06/2022 4 3135 N/A 

13/06/2022 13 3701 N/A 

The total influenza A cases numbers are based on the virus detection in specimens submitted 
for virological testing for hospital patients and non-sentinel GPs and in specimens from 
hospital patients submitted for RSV, Influenza A, and SARS-CoV-2 testing only in Wales. The 
table also presents whether the virus was detected in the wastewater sampled at Ysbyty 
Gwynedd (YG), yes standing for “detected”, “no” for not detected and a zero concentration 
and “N/A” is for dates when a wastewater sample was not available. 

 



 

 

Figure S13. Comparison of SARS-CoV-2 Infected Population Estimate at Ysbyty Gwynedd 
Proportion and the Reported Number Proportion in Gwynedd. The proportion of SARS-CoV-2 
estimates is compared against the proportion of SARS-CoV-2 cases in Gwynedd. The estimate 
proportion is calculated by dividing the SARS-CoV-2 estimate by the crAssphage estimate for 
each simulation method separately and multiplied by 100 (%). The proportion of SARS-CoV-2 
cases in Gwynedd is calculated by dividing the SARS-CoV-2 reported cases in Gwynedd by the 
total Gwynedd population and multiplied by 100 (%). The obtained values are filtered with a 
Gaussian filter of varying sigma value: 0.5 (panel A), 1 (panel B) and 2 (panel C). 



 

 

 

Figure S14. Comparison of Percent Changes of the Proportion of SARS-CoV-2 Infected 
Population Estimate and the Proportion of the Reported Cases Number. Initially the 
proportions are calculated by dividing the SARS-CoV-2 population estimates by the crAssphage 
population estimates in the case of the Monte-Carlo-Bayesian approach (MCBA) 1, 2, 3 and 
the equation model following the Central Limit Theorem premise (CLT) and separately by 
dividing the SARS-CoV-2 reported cases by the total population of Gwynedd. The proportions 
are computed with a Gaussian filter of varying sigma argument (only once before percent 
changes calculations): 0 (panel A), 1 (panel B), 2 (panel C) and 3 (panel D). Then the percent 
changes were calculated for each proportion separately. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure S15. Comparison of Percent Changes of the Proportion of SARS-CoV-2 Infected 
Population Estimate and the Proportion of the Reported Cases Number. Initially the 
proportions are calculated by dividing the SARS-CoV-2 population estimates by the crAssphage 
population estimates in the case of the Monte-Carlo-Bayesian approach (MCBA) 1, 2, 3 and 
the equation model following the Central Limit Theorem premise (CLT) and separately by 
dividing the SARS-CoV-2 reported cases by the total population of Gwynedd. Then the percent 
changes were calculated for each proportion separately. The proportions are computed with 
a Gaussian filter of varying sigma argument: 1 (panel A), 2 (panel B), 3 (panel C) and 5 (panel 
D) before and after the conversion to percent changes. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S16. Dynamic Time Warping of SARS-CoV-2 Infected Population Estimates Proportion 
against the Reported Cases Numbers Proportion. The SARS-CoV-2 infected population 
estimates proportion at Ysbyty Gwynedd were compared against the SARS-CoV-2 reported 
population proportion in Gwynedd by Dynamic Time Warping (DTW), hence allowing for 
measuring the similarity between these two time series. The estimates proportion were 
calculated by dividing the SARS-CoV-2 infected population estimate by crAssphage infected 
population estimate. The reported cases proportion was calculated by dividing the SARS-CoV-
2 cases in Gwynedd by the total population of Gwynedd. The x and y axis represent the matrix 
cost, where the minimum path with minimum distance is computed as the sum of the absolute 
differences. A match is described by a diagonal warping path, hence indicating temporal 
alignment between the two series. Each of the Monte-Carlo-Bayesian approach (MCBA) and 
the equation model following the Central Limit Theorem premise (CLT) is compared 
independently against the COVID-19 reported cases in Gwynedd. The series contain only the 
number of cases for the matching dates, whereas the non-matching dates were excluded from 
this comparison. A left-hand or a right-hand deviation from the diagonal indicates a leading 
or lagging relationship. For example, in panel A, it can be observed a significant right-hand 
shift of the diagonal towards the “SARS-CoV-2 MCBA Approach 1” axis, this indicating that the 



 

proportion of estimated cases has increased sooner or has increased proportionally more than 
the proportion of reported cases in Gwynedd. 

 

 

Figure S17. Correlation of Measured Virus Concentrations against Modelled Values based on 
the FIS pH and Ammonium Impact. The measured virus concentration is compared against the 
modelled virus concentration, the correlation being described by the linear regression (the R, 
R2 and RMSE can be found in Table 6). A perfect fit is described by a diagonal line where the 
test data has identical values on both axes. The model is a Sugeno adaptive neuro-fuzzy 
interference system (ANFIS) where pH and ammonium are the input parameters and SARS-
CoV-2 (A) or crAssphage (B) are the output parameters. The initial fuzzy interference system 
(FIS) is trained with subtractive clustering followed by tuning using input/output training data, 
which can also be described as additional fitting of the model to the training data. The figure 
depicts the final modelled data. 



 

 

 

Figure S18. Correlation of Measured Virus Concentrations against Modelled Values based on 
the FIS pH and Phosphate Impact. The measured virus concentration is compared against the 
modelled virus concentration, the correlation being described by the linear regression (the R, 
R2 and RMSE can be found in Table 6). A perfect fit is described by a diagonal line where the 
test data has identical values on both axes. The model is a Sugeno adaptive neuro-fuzzy 
interference system (ANFIS) where pH and phosphate are the input parameters and SARS-CoV-
2 (A) or crAssphage (B) are the output parameters. The initial fuzzy interference system (FIS) 
is trained with subtractive clustering followed by tuning using input/output training data, 
which can also be described as additional fitting of the model to the training data. The figure 
depicts the final modelled data. 

 



 

 

Figure S19. Correlation of Measured Virus Concentrations against Modelled Values based on 
the FIS Ammonium and Phosphate Impact. The measured virus concentration is compared 
against the modelled virus concentration, the correlation being described by the linear 
regression (the R, R2 and RMSE can be found in Table 6). A perfect fit is described by a diagonal 
line where the test data has identical values on both axes. The model is a Sugeno adaptive 
neuro-fuzzy interference system (ANFIS) where ammonium and phosphate are the input 
parameters and SARS-CoV-2 (A) or crAssphage (B) are the output parameters. The initial fuzzy 
interference system (FIS) is trained with subtractive clustering followed by tuning using 
input/output training data, which can also be described as additional fitting of the model to 
the training data. The figure depicts the final modelled data. 

 



 

 

Figure S20. Correlation of Measured Virus Concentrations against Modelled Values based on 
the FIS Electrical conductivity and Turbidity Impact. The measured virus concentration is 
compared against the modelled virus concentration, the correlation being described by the 
linear regression (the R, R2 and RMSE can be found in Table 6). A perfect fit is described by a 
diagonal line where the test data has identical values on both axes. The model is a Sugeno 
adaptive neuro-fuzzy interference system (ANFIS) where electrical conductivity and turbidity 
are the input parameters and SARS-CoV-2 (A) or crAssphage (B) are the output parameters. 
The initial fuzzy interference system (FIS) is trained with subtractive clustering followed by 
tuning using input/output training data, which can also be described as additional fitting of 
the model to the training data. The figure depicts the final modelled data. 



 

 

Figure S21. Correlation of Measured Virus Concentrations against Modelled Values based on 
the FIS Electrical conductivity and pH Impact. The measured virus concentration is compared 
against the modelled virus concentration, the correlation being described by the linear 
regression (the R, R2 and RMSE can be found in Table 6). A perfect fit is described by a diagonal 
line where the test data has identical values on both axes. The model is a Sugeno adaptive 
neuro-fuzzy interference system (ANFIS) where electrical conductivity and pH are the input 
parameters and SARS-CoV-2 (A) or crAssphage (B) are the output parameters. The initial fuzzy 
interference system (FIS) is trained with subtractive clustering followed by tuning using 
input/output training data, which can also be described as additional fitting of the model to 
the training data. The figure depicts the final modelled data. 

 



 

 

Figure S22. Correlation of Measured SARS-CoV-2 (or CrAssphage) Concentrations against 
Modelled Values based on the CrAssphage (or SARS-CoV-2) and Ammonium Impact. The 
measured virus concentration is compared against the modelled virus concentration, the 
correlation being described by the linear regression (the R, R2 and RMSE can be found in Table 
6). A perfect fit is described by a diagonal line where the test data has identical values on both 
axes. The model is a Sugeno adaptive neuro-fuzzy interference system (ANFIS) where 
crAssphage for panel A (or SARS-CoV-2 for panel B) and ammonium are the input parameters 
and SARS-CoV-2 (A) or crAssphage (B) are the output parameters. The initial fuzzy interference 
system (FIS) is trained with subtractive clustering followed by tuning using input/output 
training data, which can also be described as additional fitting of the model to the training 
data. The figure depicts the final modelled data. 



 

 

Figure S23. Correlation of Measured SARS-CoV-2 (or CrAssphage) Concentrations against 
Modelled Values based on the CrAssphage (or SARS-CoV-2) and Phosphate Impact. The 
measured virus concentration is compared against the modelled virus concentration, the 
correlation being described by the linear regression (the R, R2 and RMSE can be found in Table 
6). A perfect fit is described by a diagonal line where the test data has identical values on both 
axes. The model is a Sugeno adaptive neuro-fuzzy interference system (ANFIS) where 
crAssphage for panel A (or SARS-CoV-2 for panel B) and phosphate are the input parameters 
and SARS-CoV-2 (A) or crAssphage (B) are the output parameters. The initial fuzzy interference 
system (FIS) is trained with subtractive clustering followed by tuning using input/output 
training data, which can also be described as additional fitting of the model to the training 
data. The figure depicts the final modelled data. 

 



 

 

Figure S24. Correlation of Measured SARS-CoV-2 (or CrAssphage) Concentrations against 
Modelled Values based on the CrAssphage (or SARS-CoV-2) and Turbidity Impact. The 
measured virus concentration is compared against the modelled virus concentration, the 
correlation being described by the linear regression (the R, R2 and RMSE can be found in Table 
6). A perfect fit is described by a diagonal line where the test data has identical values on both 
axes. The model is a Sugeno adaptive neuro-fuzzy interference system (ANFIS) where 
crAssphage for panel A (or SARS-CoV-2 for panel B) and turbidity are the input parameters and 
SARS-CoV-2 (A) or crAssphage (B) are the output parameters. The initial fuzzy interference 
system (FIS) is trained with subtractive clustering followed by tuning using input/output 
training data, which can also be described as additional fitting of the model to the training 
data. The figure depicts the final modelled data. 



 

 

Figure S25. Correlation of Measured SARS-CoV-2 (or CrAssphage) Concentrations against 
Modelled Values based on the CrAssphage (or SARS-CoV-2) and pH Impact. The measured 
virus concentration is compared against the modelled virus concentration, the correlation 
being described by the linear regression (the R, R2 and RMSE can be found in Table 6). A perfect 
fit is described by a diagonal line where the test data has identical values on both axes. The 
model is a Sugeno adaptive neuro-fuzzy interference system (ANFIS) where crAssphage for 
panel A (or SARS-CoV-2 for panel B) and pH are the input parameters and SARS-CoV-2 (A) or 
crAssphage (B) are the output parameters. The initial fuzzy interference system (FIS) is trained 
with subtractive clustering followed by tuning using input/output training data, which can also 
be described as additional fitting of the model to the training data. The figure depicts the final 
modelled data. 



 

 

Figure S26. Correlation of Measured SARS-CoV-2 (or CrAssphage) Concentrations against 
Modelled Values based on the CrAssphage (or SARS-CoV-2) and Electrical conductivity Impact. 
The measured virus concentration is compared against the modelled virus concentration, the 
correlation being described by the linear regression (the R, R2 and RMSE can be found in Table 
6). A perfect fit is described by a diagonal line where the test data has identical values on both 
axes. The model is a Sugeno adaptive neuro-fuzzy interference system (ANFIS) where 
crAssphage for panel A (or SARS-CoV-2 for panel B) and electrical conductivity are the input 
parameters and SARS-CoV-2 (A) or crAssphage (B) are the output parameters. The initial fuzzy 
interference system (FIS) is trained with subtractive clustering followed by tuning using 
input/output training data, which can also be described as additional fitting of the model to 
the training data. The figure depicts the final modelled data. 

 



 

 

Figure S27. The Modelled Impact of Turbidity and CrAssphage (or SARS-CoV-2) on SARS-CoV-
2 (or CrAssphage) Concentration. The modelling is based on a Sugeno adaptive neuro-fuzzy 
interference system (ANFIS), the sub-method being subtractive clustering followed by tuning 
with the training data, where the inputs are turbidity and crAssphage concentration (panel A) 
or turbidity and SARS-CoV-2 concentration (panel B), and the outputs are the SARS-CoV-2 
concentration (A) or crAssphage concentration (B). Due to an unacceptable error of the tuned 
model A, the non-tuned initial FIS is presented for panel A. 

 

 

 

 

 



 

 

 

 

Figure S28. The Modelled Impact of Electrical conductivity and CrAssphage (or SARS-CoV-2) on 
SARS-CoV-2 (or CrAssphage) Concentration. The modelling is based on a Sugeno adaptive 
neuro-fuzzy interference system (ANFIS), the sub-method being subtractive clustering 
followed by tuning with the training data, where the inputs are electrical conductivity and 
crAssphage concentration (panel A) or electrical conductivity and SARS-CoV-2 concentration 
(panel B), and the outputs are the SARS-CoV-2 concentration (A) or crAssphage concentration 
(B).  

 

 




