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Subasinghe, S.M.C.U.P. (1998) Construction of growth models for Pinus nigra var. 
maritima (Ait.) Melville (Corsican pine) in Great Britain. 
Ph.D. Thesis, University of Wales Bangor, UK. 

ABSTRACT 

The British Forestry Commission (FC) provided data for 49 permanent sample plots of 
Corsican pine (Pinus nigra var. maritima (Ait.) Melville) in Great Britain. They covered 
various thinning types (low, intermediate, neutral, crown, exploitation), general yield 
classes (10-22) and initial planting densities (1736-6944 trees per ha). They had been 
measured at one to six year intervals and thinning was carried out at four to eight year 
intervals. 

The FC follows a detailed procedure for recording sample plot data for vanous 
measurements. Computer programmes were written to read these data to do the 
calculations for the construction of models. Models were initially constructed for separate 
thinning types by partitioning the data by thinning types (27 sample plots). Later, the 
possibility of using one set of parameters for each model for all thinning types was tested. 
However, there were only enough data to constrnct models for intermediate and neutral 
thinning types. Each data set was divided into two sets: 75% for constructing the models 
and 25% for validation. 

All models were constructed using regression analysis after determining the basic model 
structure by examining the scatter distributions and the correlation of selected explanatory 
variables with the corresponding response variable. All possible combinations of the 
explanatory variables were tested in order to obtain the best models. It was assumed that 
there was no natural mortality when thinning was carried out. The performance of the 
models was tested using statistical tests and standard residual distributions. Two models 
were constructed initially for each response variable, and after many tests, the best of the 
two models was selected. 

The growth models were constructed to predict the future diameter at breast height (dbh), 
future total height, current timber height, current total volume and current merchantable 
volume of individual trees of the main crop trees of Corsican pine growing in Great 
Britain. The dbh and total height prediction models used the present value of the same 
variables, a factor to represent the site and the duration of the simulation period. The 
timber height prediction model used an exponential function developed by multiplying 
dbh and total height. The total volume prediction model was constructed using basal area 
and total height of individual trees. The merchantable volume prediction model was a 
derivation of the selected total volume prediction model. A set of models was also 
constructed to predict the mean tree basal area, mean dbh and mean total height of the 
trees removed in thinning. The only explanatory variable of these models was the same 
value as the response variab le but just before thinning. A general procedure was described 
to estimate the number of trees removed in each thinning. 

Three selected models developed outside Great Britain for other species were re­
calibrated to Corsican pine in local British conditions without adding new factors or 
variables to compare the predictability of the new set of models. Bias was highlighted for 
many re-calibrated models indicating the necessity of new growth functions or variables. 
Finally the predictions of all the newly constructed and re-calibrated models were tested 
with the observed values against plantation age. 

All the newly constructed models indicated a very low bias and a high modelling 
efficiency of over 0.9. The signs of the estimated parameters of selected models were 
corrected to be compatible with the possible biological reality. When compared with the 
actual data, predictions of the newly constructed models were much closer to the actual 
values than the predictions from the re-calibrated models. 
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CHAPTERl:GENERALINTRODUCTION 

Corsican pine, Pinus nigra var. maritima (Ait.) Melville was introduced to Great 

Britain in 1759. It is a light demanding, wind-firm, frost hardy species which has 

persistent branches. Yield class normally varies from 6 to 20. The best growth 

rates can be obtained in areas where annual rainfall is low and temperatures are 

high in summer. The best soil types for Corsican pines are light sandy or heavy 

clays such as those in the Midlands, south and east of England. Corsican pine also 

grows successfully on the north-east coast of Scotland and notably in Culbin. This 

species tolerates more air pollution than other commonly grown conifers but is 

susceptible to die back caused by Gremmeniella abietina (Largerb.) Morelet. 

Rotation age is typically 45-80 years (Hart, 1994). 

In forestry, growth and yield are usually predicted by tables, graphs or 

mathematical models. Most of the time, the graphs and tables are constructed using 

growth and yield models which may comprise many separate, but interrelated 

components, each of which may influence and be influenced by other components 

and by assumptions in the model (Soares et al., 1995). Growth and yield models in 

forestry are divided into many categories by different authors ( e.g. Clutter et al., 

1992; Korzukhin et al. , 1996; Philip, 1994; Vanclay, 1994; Voit and Sands, 1996). 

There is not a clear definition for the correct method of classification but it is 

acceptable to use any method for the categorisation which is dependent on the 

requirement of the user or the modeller. 

According to Kimmins (1997) a model can take many different forms, but 

basically it is either an abstract or a physical entity that represents in some way the 

form and/or the function of real world entities and processes. Models may 

therefore be constructed as predictive tools and relatively little new knowledge 

may be acquired in their development. For the users, the value of models lies in 

what they can do, not in how the models were made. 

The models constructed for the present study will ultimately be re-calibrated for 

other Pinus species grown in Sri Lanka. Because of the lack of suitable data ( e.g. 

physiological and climatic) in Sri Lanka for process based and stochastic 

modelling, it was decided to construct empirical models at this stage. Because the 



models will be used under a range of conditions in Sri Lanka, and to allow for 

detailed output, individual tree level models were constmcted. 

The most important requirement for sound modelling is serial data for many 

growth seasons. Without such data from permanent sample plots, the modeller 

cannot easily surmise the history of the plantation, removals from thinning etc. It is 

important to remember that the extrapolation or projection of model predictions is 

frequently difficult to justify. 

For the present study, the Forestry Commission in Great Britain has given access 

to Corsican pine data for 49 sample plots re-measured over the period 1920-1992. 

All these plots were established in even-aged, monocultures. The plots were 

subjected to different thinning types: low, intermediate, neutral and exploitation. 

Some plots were maintained without thinning. General yield class varied from 10 

to 22. 

Biological knowledge of the various relationships between tree characteristics is 

very important in modelling, especially for selecting the explanatory variables, 

determining the correct sign of the parameters etc. For the growth of trees, the 

quality of the particular site plays a major role, irrespective of other stand 

characteristics such as stand density. In plantations, one efficient way to measure 

the quality of the site is top height' which is largely independent of stand density 

(Jenkins, pers. comm. ; Philip, 1994) and therefore, gives a clear idea about the 

quality of the site for the particular tree species. Top height is also easily measured 
, 

in the field . Many modellers have used the total heighf of plantations at a 

particular age as a measure of site quality known as "site index" (Alder, 1980; 

Burkhart and Tennent, 1977; Trousdell et al., 1974). 

For the present study, top height was estimated by developing total height and 

breast height diameter ( dbh) relationships. For each five year age class, a family of 

parallel lines was developed relating breast height diameter and total height for the 

prediction of top height. 

1 Definition of top height is given in page 10. 
2 Height of the tree from the ground level to the highest growing point (Philip, 1994 ). 
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In yield or growth prediction in forestry, volume is the most crucial variable. 

Various approaches have been used to address the problem of predicting present 

and future stem volume yield for management purposes. Prediction of future yield 

also requires the prediction of the relevant future stand characteristics such as the 

number of trees per hectare, the basal area per hectare and the average dominant 

height 
1 

(Pienaar, 1989). 

For the set of growth models newly constructed in this study, data were first 

partitioned by the thinning types to estimate separate sets of parameters for the 

same models. However, for the construction of growth models, only two thinning 

types namely, intermediate and neutral were sufficient in the data obtained from 

the Forestry Commission. There were 19 and 18 sample plots in the data which 

were maintained under intermediate and neutral thinning types respectively. For 

each thinning type, 75% of plots were used for model construction and the 

remaining 25% for the validation of the constructed models. In this study, some 

assumptions had to be made during the construction of some of the model 

structures such as: there is no natural mortality in plantations if thinning is carried 

out regularly; the shape of the crown of Corsican pine trees is conical; the rate of 

photosynthesis is dependent on the crown structure and volume. 

For each response variable, two models were developed so that the best model 

could be selected finally. The models for the main crop trees were developed using 

multiple linear regression except for the models constructed for the prediction of 

timber height of individual trees. For models predicting future growth, i.e. dbh and 

total height of individual trees, the explanatory variables selected were the present 

size of the response variable, passage of time between assessment (plantation age 

difference between the present time and the future time), and a factor to represent 

the site quality. For one total volume prediction model of individual trees, crown 
, 

characteristics were tried as explanatory variables. Merchantable volume-

prediction models were derived from the results of the total volume prediction 

models. Models for timber height prediction were constructed using non-linear 

regression between total height and dbh. For many models, number of existing 

trees per hectare or total basal area per hectare were tested as explanatory variables 

1 Definition of dominant height is given in page 10. 
2 Merchantable volume is the tree stem volume from the ground level to 7 cm over bark top 

diameter. 
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to represent the stand density. However, these variables could be not included 

either because they were not significant or changed the sign of more important 

parameters without improving the statistical properties of the model. 

For the prediction of the mean values of basal area, diameter at breast height and 

total height of the trees removed in thinnings, two models, i.e. one linear and one 

non-linear, were constructed for each variable. 

The predictability of the newly constructed models was compared with three of the 

well recognised empirical growth and yield models developed in the past. The 

selected models were developed by other authors outside of Great Britain and 

therefore, re-calibration was done to adapt these models to local conditions. 

For each model, graphs of residuals (standard residuals, whenever possible) versus 

fitted values were carefully examined for possible outliers or a particular pattern of 

distribution. When the number of residuals were very high, standard deviations of 

the residuals at selected fitted values were checked for an expected even 

distribution. Precision and bias were quantitatively tested using average model 

bias, mean absolute difference and the modelling efficiency in addition to the 

coefficient of variation (R\ These tests were also helpful for comparing the 

different models constructed to predict the same response variable. For the finally 

selected models, the test described by Weisburg (1985) was done to observe if 

there was any lack of fit. These models were then validated with the reserved data 

by overlaying the predictions on the raw data. 

After selecting the final models, the possibility of using one set of parameters for 

each model for intermediate and neutral thinning types, instead of separate 

parameter sets was tested. If the attempt was unsuccessful, separate parameter sets 

were selected for use in otherwise similar models. 

Finally, all the selected newly constructed and re-calibrated models were compared 

directly with the particular observed values for two sample plots selected from the 

plots reserved for validation for two thinning types. The models constructed in this 

study appear to provide more reliable outputs than the re-calibrated existing 

models. 
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CHAPTER 2: REVIEW OF LITERATURE 

2.1 Yield prediction of forests 

In timber management the predictions of volume production for forest managers 

have traditionally taken the form of yield tables which are tabular records 

showing expected volume of wood (board feet, cords, cubic feet, cubic metres 

etc.) per unit of land area (acre, hectare) by combinations of measurable 

characteristics of the forest stand (site quality, stand density) (Clutter et al., 

1992). 

2.1.1 History of yield predictions 

In the past, yield prediction was normally based on the projection forward of a 

simple historical bioassay, the pattern of biomass accumulation in merchantable 

biomass components over past rotations of many similar crops. As long as the 

future growth and economic conditions remain very similar to those of the past, it 

is difficult to imagine a better yield prediction method (Kimmins et al., 1990). 

Indeed a yield table is one of the oldest approaches to yield estimation. The 

concept was apparently first applied in the Chinese "Lung Chuan codes" some 

350 years ago (Vuokila, 1965). 

The technique as we know it today in commercial forestry was devised in Europe 

in the 18th century. The first yield tables were published in Germany in 1787 and 

within a hundred years, over a thousand yield tables had been published 

(Vanclay, 1994 ). The first conventional yield table for south Australian 

plantation stands was produced in 1931 by Grey from temporary plots (spot 

plots) (Lewis et al., 1976). Modem yield tables often include not only yields, but 

also stand height, mean diameter, number of stems, stand basal area and current 

and mean annual volume increments (Vanclay, 1994). 
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More sophisticated calculations and analytical techniques enabled additional 

variables to be included in yield calculation. Stand density was an obvious choice 

for a third variable after volume and site indices as it enables data from partially 

stocked plots to be used and means that the yield table can be applied to any 

stand. In 198 1, Edwards and Christie published yield tables, which are used 

today for management purpose in plantation forestry in Great Britain. This set of 

tables provides height, stems per hectare, volume per hectare after thinning, 

mean annual and cumulative volume production at five year intervals for many 

species and site management regime combinations. 

The approach has also been app lied to mixed stands, especially selection forests 

in central Europe. There are several ways to build compact tables for natural 

forests. The basal area of the dominant species may be expressed as a percentage 

of total stand basal area in mixed forests ( e.g. MacKinney et al., 193 7). The same 

technique could be used for uneven forests after identifying the main stand ( e.g. 

Duerr and Gevorkiantz, 1938). 

One of the important milestones in growth modelling in the 1960s was the 

understanding that growth and yield models must be compatible (Buckman, 

1962; Clutter, 1963). Forest managers had a need for both growth and yield 

models ( or tables) and it was important that these guides provided compatible 

results (Vanclay, 199 I). 

2.2 Growth and yield of trees and forests 

Growth refers to the increase in size of a population or an individual over a given 

period of time ( e.g. growth in volume of a stand in m
3 

ha-
1 
/). Yield refers to the 

final size of a population or individual at the end of a certain period ( e.g. total 

volume produced by a stand in m
3 

ha-
1
), and usually includes any removals ( e.g. 

thinnings) (Vanclay, 1994). Growth can be expressed and measured in several 

ways. One can look at number of stems; at biomass; at dry biomass; at volume; at 
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size e.g. length and diameter. The variable chosen as the most appropriate for 

modelling the growth or yield depends on one 's interest, and also on the process 

itself (Doucet and Sloep, 1992). 

Individual trees are the basic units of the forest (Liu and Ashton, 1995), and tree 

growth depends both on a tree' s own dimensions and the effect of other trees 

(Sievanen, 1993). The trees are usually different from each other in location, size 

and behaviour such as response to environmental stress, growth and reproduction 

patterns (DeAngelis and Gross, 1992). Growth rates are greatly influenced by site 

conditions and interaction among individual trees. The major type of interaction 

is competition for root and shoot space, a process which occurs when resources 

such as light and nutrients are in short supply (Liu and Ashton, 1995). 

2.2.1 Basal area 

Generally the change in basal area of individual trees with age is an exponential 

increase early on while in later years it is more or less linear so that a curve 

drawn of basal area against age for the early years can be extrapolated as a 

straight line continuing at the same slope as that found in the period just before 

culmination of the current annual increment (Fraser, 1980). 

2.2.2 Crown and canopy 

The crown structure is now often considered as a component of growth and yield 

models. Crown development and recession are determined by the tree 

interactions and its size is used as the predictor of future stem growth (Houllier et 

al., 1995). 

There have been many relationships developed between the crown dimensions 

and other tree characteristics. A trees crown reflects the cumulative level of 

competition over time (Mitchell, 1975). Increasing number of trees per unit area 

reduces crown length and reducing stand density through thinning slows the 
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recession of the crown base (Assman, 1970; Makela, 1997; Short and Burkhart, 

1992). Consequently, the present crown length is strongly influenced by growing 

conditions in the past and this suggests its use as an integrator for competition 

previously experienced by the tree (Hasenaur and Monserud, 1996). The use of 

the average crown diameter of the mean tree' allows a reasonable estimate to be 

made of the degree of crown competition (Christie, 1994). 

Horizontal crown development can be measured by crown diameter or crown 

projection area. These are indirect and crude methods of assessing photosynthetic 

area. Age and immediate stocking levels surrounding a tree affect the size and 

the growth of crown diameter (CD) and crown projection area (CPA); however, 

within a stand density and an age class, CD or CPA is highly related to stem 

diameter or basal area, respectively (Sprinz and Burkhart, 1987). 

The efficiency of tree crown production, defined as net assimilation, can be 

expressed as stem wood production per unit of leaf weight (Larson and 

Isebrands, 1972; Shelburne and Hedden, 1996). 

2.2.3 Stand density 

Stand density is a measure of the degree of crowding of live trees (Ayhan, 1978) 

which changes with thinning (Wenk, 1994), and within stocked areas is 

commonly expressed by various growing space ratios. Stand density is also a 

quantitative measure of live tree stocking expressed either relatively (as of unity), 

or absolutely (per unit area) in terms of number of trees, basal area, or volume 

(Ayhan, 1978). 

1 Mean tree value is the average value corresponding to the total number of trees per unit area. 
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2.2.4 Diameter 

The size class distribution of bh diameters is primarily dependent on the age 

structure of the stand. Multi-aged stands such as in irregular and selective 

forestry tend to have reversed J shaped diameter distributions, while even-aged 

stands exhibit mount shaped distributions with varying degrees of left or right 

skewness (Clutter et al., 1992). Diameter may be measured over or under bark -

in the latter case either by measuring bark thickness or by removing the bark at 

the point of measurement (Philip, 1994). 

2.2.5 Competition 

As the individual trees in the stand grow m size, trees begin to compete for 

resources such as water, light and mineral nutrients (Tang et al. , 1994). A tree's 

ability to survive in the stand can be related to its supply of available 

photosynthates (West, 1987), growth rate and size or some other measures of 

vigour, e.g. the rate of change of foliage dry weight (Makela and Hari, 1986). 

The roots of neighbouring trees begin to intermingle and eventually the overlap 

becomes sufficiently great to reduce the stem diameter growth of the tree and 

competition begins (Ayhan, 1978). More rapidly apparent is above ground 

competition for light. A tree's lower branches are shaded by its own upper crown 

and by the crowns of neighbouring trees. The ability of foliage to withstand 

shade varies greatly between species (Evans, 1996). 

Competition between trees in a forest is indicated by competition indices in many 

models. The philosophy behind the competition indices is that they can 

reasonably reflect the impacts of the amount of resources that a subject tree 

cannot obtain because of the competitive effect of the neighbouring individuals; 

and that tree growth is directly influenced by the degree of the competition 

(Daniels et al., 1986). 
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2.2.6 Height 

Height is an important variable as at a given age it reflects the quality of the site. 

Sites with tall trees of a given age and species are more fertile and productive 

than the sites with shorter trees of the same age (Philip, 1994). Chhetri and 

Fowler ( 1996b) wrote that total heights of trees are normally required for the 

estimation of growth and yield such as wood volume or number of trees. Low 

light intensity stimulated tree height growth at the expense of diameter growth 

(Ayhan, 1978). 

Top height and Dominant height 

Top height is the average total height of the hundred trees of the largest girth per 

hectare (Eriksson et al., 1997; Philip, 1994; Rollinson, 1985). However, some 

authors (Edwards, 1976) define it as the total height of the tree of the average 

basal area or diameter at breast height of the hundred largest girth trees per 

hectare. Dominant height is the total average height of hundred tallest trees per 

hectare (Philip, 1994). These definitions are not universal and recently top height 

and dominant height have been accepted as synonyms (Philip, 1994 ). 

2.2.7 Mortality 

Some researchers divide mortality into two maJor categories: regular and 

irregular. Regular mortality results from suppression or competition for limited 

resources such as light, water and nutrients. Irregular mortality occurs because of 

density independent forces including insect and pathogen attack and catastrophic 

factors such as hurricanes, windstorms, floods and fires (Liu and Ashton, 1995). 

In his experiments, Alder (1978) observed that in permanent sample plots after 

three years of planting, simple mortality due to suppression was not found to be a 

significant occurrence over the range of management practices if the thinning is 

carried out. 



2.2.8 Stand volume 

Tree volume is the most crucial variable in most forest management systems. 

After planting, the annual volume increment of even-aged plantations increases 

with age, reaches a peak after some years and then falls off. Since the more 

productive crops produce both a higher volume, and a higher proportion of it 

earlier, substantial increases in early yields can be obtained by concentrating a 

thinning programme in the most productive crops (Fraser, 1980). 

In their experiments, McClain et al. (1994) found that total and merchantable 

volume per tree increased for a ll species (i.e. black spruce, white spruce, and red 

pine) as initial spacing increased from 1.8m to 3.6m. However, volume 

production per unit area decreased significantly for all species as spacing 

increased. 

Current annual increment and mean annual increment 

The volume increment of a tree or a forest stand in the present year is called 

current annual volume increment (CAI) while its average increment over a period 

of years is called mean annual volume increment (MAI) (Hart, 1994). 

It is general ly found that the peak level of CAI is a more or less constant 

proportion of the maximum value of MAI. This peak of CAI generally occurs at 

about 60% of the age of the maximum MAI, so that if the age when CAI reached 

its peak is known, it is reasonable to assume that the maximum MAI will occur 

at about 1.7 times that age (Fraser, 1980). 

2.3 Thinning 

Thinning is the removal of a proportion of the trees in a crop (Hart, 1994) in 

order to provide more growing space for the remaining trees and thereby enhance 

their diameter increment, but also to provide an intermediate yield of timber 

(Hamilton, 1980). Thinning normally improves the final crop quality. 
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Estimated number of trees per hectare is dependent on the initial planting density 

and the type and the intensity of thinning which is carried out. In a low thinning, 

the average volume per tree of the thinnings will be about 75-80% of the crop 

mean volume, but in a crown thinning the mean volume per tree of thinnings 

may be about equal to or greater than the mean volume per tree for the main crop 

(Fraser, 1980). 

Normally, the number of trees in the main crop after eac~ thinning can be 

'"' calculated as the residual when the number of trees removedfthinning is known 

(Fraser, 1980). 

Self-thinning 

In forests where thinning is not carried out a higher number of trees are removed 

by natural mortality due to the higher level of competition which is called self­

thinning. The self-thinning of stands follows a typical pattern, where the slope of 

the curve decreases with age, indicating declining mortality with age 

(Kuuluvainen, 1991 ). According to Kimmins (1997), the self-thinning rule says 

that if the logarithm of mean total mass of individual plants is plotted against the 

logarithm of the number of plants per unit area (stand density)-fur fully stocked 

stands, a straight line with a slope of -3/2 results. The conceptual basis for this 

relationship is that any site has a maximum plant biomass-carrying capacity; as 

the present population approaches this limit, individual tree growth can continue 

only if the number of individuals is reduced (Kimmins, 1997). 

2.3.1 Thinning cycle 

The thinning cycle is the interval in years between successive thinnings. The 

choice of thinning cycle will usually depend on local management considerations 

and on the yield class of the crop. The usual length in temperate climates 

(Mayhead, pers. comm.) is from 4 to 6 years in young and fast growing crops and 

about 10 years for older and slower growing species (Rollinson , 1985). 
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2.3.2 Thinning intensity 

Thinning intensity is the rate at which volume is removed, e.g. 10 m
3
ha·'y/. It 

should not be confused with the thinning yield which is the actual volume per 

hectare removed in one thinning (Rollinson, 1985). 

The maximum thinning intensity which can be maintained without causing a loss 

of cumulative volume production is known as the marginal thinning intensity. 

The marginal thinning intensity is reasonably close to an intensity which in terms 

of annual rate of volume removal is 70% of the maximum mean annual volume 

increment (Hart, 1994). 

2.3.3 Thinning yield 

Thinning yield is the actual volume per unit area removed in any thinning 

(Rollinson, 1985). It has been found experimentally, in Great Britain and 

elsewhere, that the marginal thinning intensity is 70% of maximum mean annual 

increment. If the thinning cycle is five years, then each thinning will remove 

350% of the maximum MAI. 

There is li ttle to be gained in planting the tree species closely and the thinning of 

them unless there is a market for small timber (Mayhead, pers. comm.). This 

reflects the fact that the intensity of thinning assumed is such that cumulative 

volume production is reduced to levels more appropriate to wider spacing such as 

2.4 - 3.0m (Christie, 1994). 

2.4 Forest site 

One very important factor in model construction is the quality of the site. Site 

quality is defined as the sum of all the environmental factors affecting the biotic 

community of an ecosystem (Daniels et al., 1979b; Spurr and Barnes, 1980; 

Ford-Robertson, 1983). Productivity is defined as the maximum amount of 

timber that a site can produce over a given time (Davis and Johnson, 1987; Wang 

and Klinka, 1996). 
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It is well recognised that many factors which are physical or physiological in 

origin, contribute to stand growth. While some of these factors have been 

included in models of site index or productivity, they have been generally 

excluded from empirical systems of growth and yield. While there are some 

exceptions, it was, and in some cases still is, almost impossible to measure many 

of these factors in a forest with an intensity sufficient for them to be included 

with permanent sample plot data used to construct growth and yield models 

(Woollans et al., 1997). 

Some sites support luxuriant forests whilst others are capable only of supporting 

'poor' growth. These differences may be due to soil (fertility, drainage, etc.), 

climate (temperature and rainfall patterns), topography (elevation, aspect, etc.) 

and other factors and may be reflected in the species composition and the growth 

patterns (Vanclay, 1994). 

Whether a forester views a site m the ecological sense as a unit of a stable 

combination of site factors or in the management sense, as the primary 

production unit of forest produce (Shonau, 1988), the main aims of site 

evaluation are similar. In the first case the emphasis is on the identification of 

environmental factors related to tree growth and the prediction of forest yield, 

while in the second case, the importance of species choice and the development 

of growth models are stressed. In commercial forestry, dealing with exotic tree 

species, site evaluation is usually carried out by studying a considerable number 

of sample plots of a certain species under varying conditions, measuring tree 

growth on these plots and quantifying the various relevant site factors. When 

undertaking such a site factor analysis, it is assumed that the species in question 

has been planted on a wide scale, covering many different site conditions 

distributed in a normal pattern. This is seldom the case, for a poor representation 

of the various site conditions occurs frequently and that can lead to erroneous and 

misleading conclusions (Shonau and Purnell, 1988). 
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2.4.1 Classification of site quality 

Killian (1984) described the goal of site classification as clarifying the 

possibilities and risks to forest management and allowing the prediction of yield. 

Rennie (1963) and Carmean (1975) divided determination of site quality into 

direct and indirect methods: the production capacity is either measured directly 

from forest growth or estimated indirectly from site attributes expressing this 

capacity (Shonau, 1988). 

Direct methods of site quality evaluation have been used since the early 19th 

century. They measure site quality in terms of various expressions of tree growth 

such as height, basal area, timber volume, timber mass or production of resins, 

bark, cork and so forth (Tajchman and Waint, 1983). But, in commercial forestry 

MAI at culmination is the most meaningful. The main drawback of using MAI is 

its dependency on stand density as well as genotype, competing vegetation, 

disease, insects, site preparation and fertilisation (Shonau, 1988). 

Direct methods of evaluation require the existence, either now or in the past, of 

the species of interest at the particular location where site quality is to be 

evaluated. When on-site measurementSof the species of interest are not available, 

indirect methods must be employed. Direct methods almost invariably provide 

better evaluations of the site quality than indirect methods (Clutter et al., 1992). 

2.4.1.1 

(i) 

Direct methods for evaluating site quality 

Estimation site quality from historical yield records 

In agricultural enterprises the site quality of a given field for a particular crop is 

most commonly measured by simply averaging prior annual yields of the crop in 

question from that field using cases where the genetic constitution of the crop 

remains relatively constant. There are, however, few areas of the world where 

such procedures can be successfully employed in forestry today (Clutter et al., 

1992). 

15 



(ii) Estimation of site quality from stand volume data 

Since volume production is usually the growth parameter of greatest interest to 

the forest manager, an evaluation of site productivity in terms of volume is 

desirable, but the method of measuring volume must be standardised. Utilisable 

volume is inadequate because utilisation standards vary in time and place 

(Vanclay, 1994). 

The volume attained by a stand at any given age can be greatly affected by 

factors other than site quality and unless the factors are controlled or adjustments 

are made to reflect their effects, volumetric production differences among forest 

stand will have little relationship to true site quality differences (Clutter et al. , 

1992). 

Yield class 

The Forestry Commission in Great Britain uses the yield class system to classify 

the quality of forest sites. Yield class is an estimate of the maximum mean 

annual increment (MMAI) of stem volume per hectare per year. It is a specific 

growth rate category to which a crop can be assigned relatively easily (Hart, 

1994). Yields of forest tree variables wi ll vary depending on such factors as soil 

type, exposure, elevation and management treatment (Hart, 1994). Determination 

of the yield class of sample plots or forests is done by inspecting a graph of 

current annual increment and mean annual increment versus the plantation age 

(fig. 2.1). 

The MAI curve reaches a maximum where it crosses the CAI curve (Hart, 1994). 

This point (X in the figure 2.1) defines the maximum average rate of annual 

volume increment, which a particular stand can achieve and this indicates the 

yield class (Edwards and Christie, 1981 ). 
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Figure 2.1: Patterns of volume increment in even-aged stands. CAI - current 
annual increment; MAI - mean annual increment. Source - Edwards 
and Christie, 1981. 

General yield class 

Producing graphs like figure 2.1 is difficult for most forest stands and impossible 

for field managers. Fortunately a good relationship exists between top height and 

the cumulative volume production of stands and this can be used to avoid 

actually measuring or recording cumulative volume production. The logical 

sequence for managers wishing to assess yield class would thus be to measure 

top height, convert this to cumulative volume production, and divide this by the 

age of the stand to derive MAI. This procedure has been simplified by 

constructing top height/age curves from which yield class can be read directly. 

Yield class obtained through top height and age of the stand alone is termed 

general yield class (GYC) (Edwards and Christie, 1981). 

(iii) Estimation of site quality from stand height data 

For many species, areas of good site quality are areas where height growth rates 

are high. In other words, for these species, volume production potential and 

height growth are positively correlated (Edwards and Christie, 1981; Philip, 

1994). The practical utility of the volume-potential height growth correlation 

stems from the fact that the height development pattern of the larger trees in an 

even-aged stand is little affected by stand density and intermediate thinning 

(Clutter et al., 1992). 
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Site index 

The potential for wood production in even-aged monoculture forest stands is 

frequently assessed by an index of site quality (Magnussen and Penner, 1996) 

usually as the base of the height-age relationship which is referred to simply as 

the site index (SI) (Alder, 1980). 

Most height based methods of site quality evaluation involve the use of site index 

curves. Construction of site index curves is a fundamental task in much forestry 

yield research (Elfving and Kiviste, 1997). Any set of SI curves is simply a 

family of height development patterns with qualitative symbols or numbers 

associated with the curves for referencing purposes ( e.g. Fraser, 1980). The most 

common method of referencing uses the heights achieved at some specified 

reference age. This reference age, referred to as the "index age" or "base age", is 

commonly selected to lie close to the average rotation age. However, for many 

families of height development curves it makes little difference in practice what 

age is selected as the index age (Clutter et al., 1992). 

There are two fundamental uses for base-age specific site index equations: (a) to 

estimate height at any given age from the site index, and (b) to estimate site 

index at any given age (Wang and Payandeh, 1995). Site index is highly 

correlated with volume and is relatively insensitive to moderate variations in 

stand density (Nigh and Sit, 1996). 

2.4.1.2 

(i) 

Indirect methods for evaluating site quality 

Estimation of site quality from over-story inter-species 
relationships 

This method for evaluating site quality must be applied when the species ( or 

forest type) of interest is not present on the land area under evaluation. In this 

situation where other trees or vegetation are present, measurement made on 

present vegetation can be used to evaluate site quality for the species of interest 

(Clutter et al., 1992). 
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(ii) Estimation of site quality from lesser vegetation 
characteristics 

Since many environmental factors affect both over- and under-story vegetation, it 

is not unreasonable to expect that under-story vegetation characteristics could 

provide information on site quality for tree growth. The species composition of 

under-story vegetation present on a given site is often an excellent indicator of 

surface soil moisture availability, and the degree of luxuriousness of lower 

vegetation commonly reflects the fertility of the top-most horizon or horizons 

present in the soil surface. However, the characteristics of deeper soil horizons 

may have little impact on under-story vegetation, but still have great influence on 

the quality of the site for tree growth (Clutter et al., 1992). 

Killian (1984) agreed that vegetation is a very sensitive site indicator but wrote 

also that purely floristic systems such as ground vegetation types, plant 

communities and forest cover types gave satisfactory results only in natural or 

slightly altered forests. The use of plant indicators or communities is most 

suitable in the more temperate regions and it is difficult to apply in areas with a 

destroyed or disturbed vegetation that has been harvested or burnt rapidly, or in 

areas that have been used for agriculture or pastures with intensive cultivation or 

fertilisation (Shonau, 1988). 

(iii) Estimation of site quality from topographic and climatic data 

These methods divide the land surface into units with uniform characteristics and 

distinguish primary and secondary site factors which relate to tree growth. 

Primary factors such as microclimate, elevation, topography, parent material, 

surface water and ground water are independent from the ecosystem or forest 

community. Secondary site factors such as forest microclimate, forest soil, litter 

layer and moisture regime are developed and influenced by components of the 

ecosystem. Both primary and secondary site factors can be used to predict site 

quality (Shonau, 1988). 
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Climatic factors have generally been difficult to factor into silvicultural and 

ecological analysis. This is primarily because climate is recorded at a sparse 

irregularly network of meteorological stations. The problem is how to extrapolate 

from these few points for reliable estimates of climate at any location within a 

forest, region, province or continent (Mackey et al., 1996). This is even a 

problem in Great Britain with its long history of meteorological data (Mayhead, 

pers. comm.). 

The potential for wood production in even-aged monoculture forest stands is 

frequently assessed by an index of site quality (Magnussen and Penner, 1996). 

Any single estimate of site productivity must be approximate, because it 

summarises several multi-dimensional factors of the environment as a single 

index. The vegetation itself reflects most of the important site factors and the 

height growth of pure even-aged stands provides a good measure of site 

productivity for forest management purposes. The volume production is difficult 

to measure, and it is convenient to use an alternative which is easier to measure. 

In even-aged stand of a single species the most common alternative is site index, 

the expected height at nominated index age (Vanclay, 1994). 

2.5 Growth and yield models 

Growth estimation of living trees and stands is needed by managers for many 

purposes including: 

a. yield prediction, 

b. health monitoring, 

c. long term productivity monitoring, 

d. socio-economic analysis of forest influences 1 (Adlard, 1995), 

e. marketing, 

f. planning harvesting and 

g. planning long term machinery requirements. 

1 For example, the time of introduction of grazing animals may be constrained by the height 
growth of trees present. The time of "safe" introduction of animals could therefore be 
predicted from a height growth model. 
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Most forest growth models are constructed by several equations independently 

fitted to data (Soares et al., 1995) and these may comprise many separate but 

interrelated components, each of which may influence, and be influenced by 

other components and assumptions of the model (Vanclay, 1994; Jenkins, pers. 

comm.). These models usually describe growth rate as a regression function of 

variables such as site index, basal area and stem density. In most growth and 

yield models, site index is used to determine the growth potential or maximum 

growth rate (Liu and Ashton, 1995). 

In the 1970s researchers started to develop mathematical and computer models to 

simulate the development of stands and individual trees within the stands (Stage, 

1973; Clutter and Allison, 1974; Johnstone, 1976). 

2.5.1 Role of growth and yield models 

Growth models provide a reliable way to quantify silvicultural, roading and 

harvesting options to determine the sustainable timber yield, and examine the 

impact of forest management and harvesting on other values of the forest 

(Vanclay, 1994). 

2.5.2 Classification of growth and yield models 

Different authors categorise the yield models in different ways, e.g.: 

a. whole stand; size class and single tree level models (Clutter et al. , 

1992; Davis and Johnson, 1987; Mitchell, 1988; Philip, 1994; 

Vanclay, 1994 ), 

b. empirical, process-based and hybrid ( Kimmins et al., 1988; 

Kimmins et al., 1990; Korzukhin et al., 1996; Voit and Sands, 1996), 

c. deterministic and stochastic (Vanclay, 1994), 

d. distance dependent and distance independent (Clutter et al., 1992; 

Philip, 1994; Vanclay, 1994). 
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2.5.2.1 Whole stand models 

Whole stand models are often simple and robust, but may involve problems not 

possible in other approaches (Vanclay, 1994). Population parameters such as 

stocking (number of trees per unit area), plantation age, site index, stand basal 

area per hectare, number of trees per hectare (Clutter et al. , 1992), standing 

volume are used to predict the growth or yield of the whole forest. No detail of 

individual trees in the stand is determined (Vanclay, 1994). 

It should be noted that some stand level models ( e.g. diameter distribution 

models) produce tree level outputs (frequencies and average heights by dbh 

classes). However, they are still classified as stand level models because the 

inputs are stand level statistics (Clutter et al., 1992). 

2.5.2.2 Size class models 

Size class models provide some information regarding the structure of the stand. 

Several techniques are available to model stand structure, but one of the most 

widely used is the method of stand table projection, which essentially produces a 

histogram of stem diameter (Vanclay, 1994). 

2.5.2.3 Single tree level models 

The most detailed approach is that of single tree models which use the individual 

tree as the basic unit of modelling. The minimum data input required is a list 

specifying the characteristics of each tree in the stand. Some models also require 

the relative spatial position of the tree or tree height and crown class. Single tree 

models may be very complex, modelling branches and internal stem 

characteristics and may be linked to harvesting and conversion simulators ( e.g. 

Mitchell, 1988; Vanclay, 1988). 

Single tree growth has been found to be a better measure of stand growth than 

alternatives based on averages and predicting growth on a stand basis (Ayhan, 

1978). 
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2.5.2.4 Distance independent and distance dependent models 

A distance independent model relates stocking and competition through average 

and summed terms such as number of stems per hectare, basal area per hectare, 

angle counts etc. A distance dependent model however, uses the distances from 

the subject tree to its surrounding competitors as one of the independent 

variables to predict the growth. 

It has been argued that distance dependent tree level growth models provide 

more details on tree development and incorporate relationships expressing 

biological and ecological interactions at a more fundamental level than is 

possible with other model types. Some modellers seem to have drawn one or 

both of the following conclusions from this argument (Clutter et al., 1992): 

a. Stand level yield estimates obtained by accumulating predicted 

individual tree yields will have greater statistical precision than 

comparable estimates generated by stand level models. 

b. Distance dependent tree level models can be used to predict reliably 

growth on stand types for which no empirical data are available. 

2.5.2.5 Empirical and process-based models 

While a rigorous categorisation of models is difficult to define, it seems that 

there are two major classes of models in forestry. One class is categorised by 

empirical yield prediction models and the other by process-based physiological 

models (PBMs). A typical empirical yield prediction model is based on data from 

a few management regimes and attempts to use the current information about a 

forest to extrapolate overall and specific growth patterns. Under controlled 

conditions such empirical yield models are robust and amenable to rigorous 

statistical analysis, they often lead to solid, empirical relationships and tables of 
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stand properties that have proved to be reliable tools for the forest manager (Voit 

and Sands, 1996). 

Process-based models simulate the biological processes that convert carbon 

dioxide, nutrients and moisture into biomass through photosynthesis (Sievanen 

and Burk, 1993; Sievanen and Burk, 1994). These estimates have not yet been 

developed to the stage where biomass and biomass growth can be identified as 

individual cells and cell wall thickening and aggregated into trees with detailed 

dimensions for forest managers (Sievanen, 1993). 

One of the more empirical aspects of many process-based models has been the 

partitioning of photosynthates between leaves, roots and shoots (Vanclay, 1994). 

West (1987) assumed that 20% of net photosynthates would be used for new 

leaves, 20% for stem and branch development, and 60% for root growth. West 

(1993) developed the model further to examine more realistic ways to model 

photosynthate partitioning in response to functional relationships between tree 

parts. He assumed that the general growth strategy of trees is to maximise leaf 

production subject to a few constraints. 

Recent advances in forest growth modelling have indicated the high potential of 

process-oriented models for examining a variety of questions ranging from 

standard management problems to more complex issues of environmental change 

(Ek and Dudek, 1982; Shugart, 1984; Valentine, 1985; Voit and Sands, 1996). 

However, due to a number of difficulties their use has been rather limited 

(Makela, 1988). For example, rigorous testing of a PBM will require special 

measurements, such as determination of the components of stand biomass. The 

cost and labour intensity of obtaining such data are high. Lack of suitable data 

has evidently been an obstacle to testing PBMs (Sievanen, 1993; Sievanen and 

Burk, 1993). 

Although empirical growth models differ widely, common basic elements appear 

in most of them. Estimates are made of the changes with time of tree diameter, 

height, form, volume or all of these variables and also change in the number of 

trees per unit area. There are also other functions or variables, such as volume 
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estimates based on tree species, age, land quality, climate, area history and 

vegetation present. If the estimate is for a single species in a limited geographic 

area, other species are excluded and the effect of the current climate and 

prevalent soils of the area are included by default (Bruce and Wensel, 1988). 

2.5.2.6 Hybrid models 

The hybrid simulation approach involves combining the above two approaches 

(empirical and process-based) using the major strength of each approach to 

compensate for the major shortcoming of the other (Kimmins et al., 1988). This 

is done mainly by improving the empirical growth models by including 

additional explanatory variables such as growth indices derived from process­

based models (Woollans et al., 1997). 

2.5.2.7 Deterministic and stochastic models 

A deterministic model predicts the expected values under a given set of 

conditions, but a stochastic model incorporates uncertainty in the outcome by 

generating a random variable or variables from a prescribed probability function 

and adjusts the prediction by including the effect of this stochastic element 

(Philip, 1994). In other words, in deterministic modelling, processes are 

identified and understood in terms of basic mathematical and physical laws and 

axioms. In stochastic modelling, a random element is permitted and modelling is 

done by empirical probability distribution (Henderson-Sellers, 1996). This 

confers on the prediction a degree of variation to match reality. For example, a 

very sophisticated growth model might incorporate a variable representing the 

occurrence of abnormally dry periods. Then the prediction of growth and survival 

would be adjusted by using a value for the degree of drought in a particular 

period drawn from a probability distribution (Philip, 1994). 

Deterministic models will not be replaced by stochastic models; the efficiency 

and usefulness of deterministic models in providing information for forest 

management have been demonstrated and cannot be currently matched by 
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stochastic models. Deterministic models are more efficient at predicting the main 

response, and can be used to determine the optimum management strategies for 

forest management in a way not possible with stochastic models. Deterministic 

and stochastic models are complementary and used in concert may both prove 

useful in forest management (Vanclay, 1991 ). 

2.5.2.8 Explicit and implicit prediction models 

Explicit prediction systems are those which include equations to predict volume 

per unit area directly (i.e. some whole stand models). Implicit systems predict 

basic information on stand structure, and stand volume is obtained indirectly ( e.g. 

from tree or class mean diameters in single tree and size class models 

respectively) (Vanclay, 1994). 

Daniels et al. ( 1979a) compared the predictive ability of two empirical whole 

stand models and a empirical single tree model. The most accurate yield 

estimates (in terms of minimum mean square error) were provided by the whole 

stand distribution model. However, all three models provided estimates of 

sufficient accuracy for most plantation management uses. The relative costs of 

the predictions were 1 :25: 1400 for the whole stand yield model, the whole stand 

distribution model and the single tree model respectively. 

Mowrer (1989) demonstrated that computational efficiency is one cost of 

complex models, and that complex models may propagate greater variances than 

more simple whole stand models. This means that any error in the inventory of 

initial stand condition may be magnified by methods such as single tree models, 

whereas they may remain comparatively unaltered by less complex ones, but 

should be designed to provide specific information needs (Vanclay, 1994). 
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At present, single tree models are preferred over stand models by many forest 

scientists who are dealing with stand growth. In addition to this, the trend to 

complex ecosystem models is evident. Even so, stand level models will not be 

ruled out because of their simplicity, general applicability and reliability (Wenk, 

1994). 

The modeller of the biological phenomenon has a choice of several investigative 

approaches, and how this choice is exercised depends on at least three items: the 

state of knowledge about the system being modelled, the nature of the responses 

exhibited by the system, and the objectives of the modeller (Thornley, 1991). 

2.5.3 Predicting current growth and future yield 

Current growth predictions do not involve a projection of stand density, while 

predictions of future yield do involve such a projection, either explicitly or 

implicitly (Clutter et al., 1992). 

Harrison and Daniels ( 1988) wrote that the forest growth should be predicted on 

the basis of an understanding of the determinants of the forest growth, and 

estimates of how these determinants will change in the future rather than on the 

record of past tree growth. However, process oriented models have yet to be 

accepted by forest managers as a practical means of predicting yield. These 

models of forest growth have tended to be either too simple to account for all the 

significant determinants of growth (and therefore inflexible), or they have 

become extremely complex where attempts have been made to include all ( or a 

large number of) significant determinants. 
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2.6 Construction of growth and yield models 

A good model does not simply happen; it is planned that way. Modellers cannot 

combine several haphazardly formulated relationships and expect to get reliable 

predictions. Instead careful thought should be given to the design of the model at 

the outset of model construction. The following parts should be considered 

(Vanclay, 1994): 

a. what the model will be used for, 

b. what inputs will be provided, 

c. what outputs are required, 

d. the data available for fitting the model, 

e. the resources available to construct, test and use the model. 

Dixon et al. (1990) wrote that there are three major components essential to the 

development of models: 

a. an understanding of the process or relationship being modelled, 

b. mathematical, statistical, computational techniques and equipment 

capable of handling the problem, 

c. experimental or survey data. 

Gilchrist (1984) divided the procedure of statistical modelling into 5 steps: 

(i) Identification: this is the process of finding or choosing an appropriate 

model for a given situation. 

(ii) Estimation and fitting: though the general form of a model will be of 

interest to us:, in practice, it must be put into a detailed numerical form 

(parameters must be identified and quantified). This is the stage of moving from 

a general model to the specific numerical form which is called model fitting. The 

process of assigning numerical values to parameters is called estimation before 

using in the field. 
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(iii) Validation: although the model meets assumptions satisfactorily, relative 

contributions of each model element indicated by the signs of the parameters, the 

procedure of the construction and the accuracy of the predictions must be tested. 

(iv) Application: after completing the above tasks, the model can be applied 

to real populations for the predictions of particular variables. 

(v) Iteration: this is a process of continuous development, of going back a 

stage or two to make use of additional information. 

The following flow chart illustrates the connection between the five steps listed 

above. 

Identification +--- ---

1 
Estimation 

l Iteration 

Validation 

l 
Application 

(Source: Gilchrist, 1984) 

If the entire model construction procedure was designed at the outset, the 

following would have to be assumed as known: (i) which variables were the most 

important, (ii) over what ranges the variables should be studied, (iii) on what 

scale the variables and responses should be considered ( e.g. linear, logarithmic, 

or reciprocal scales), and (iv) what multi-variable transformations should be 

made (Box et al., 1978). 
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The structure of the forest growth model reflects the model objectives and 

different types of models are required to satisfy different purposes (Kimmins et 

al., 1990). The first step in model construction is to prepare an outline of the 

model, formulate the functional relationships required, and fit the functions to 

data (Vanclay, 1994). 

Chen et al. (1988) wrote that when multiple factors are involved, it becomes 

difficult to analyse the cause and effect relationship by conventional statistical 

procedures. In nature one factor may have a positive impact on growth while 

another factor neutralises its effect. 

One extreme approach to modelling is to derive the form of the model on the 

basis of an understanding of the situation (Gilchrist, 1984). Garcia (1984) and 

Weisburg (1985) wrote that it is wise to examine the relationships using plots 

before developing models. The most common diagnostic is the scatter plot of the 

variables (Weisburg, 1985), and this will also help to prove the assumptions 

(Dewar, 1993). It is also useful to plot residuals against explanatory variables in 

order to look for any transformations that may be required, and to check for the 

requirement of additional variables. In models of intensively managed 

plantations, mortality and recruitment may frequently be ignored (Vanclay, 

1994). 

An efficient way to see the major dependencies is to use stepwise regression. 

This is an alternative to examining a large number of residual plots, but is not a 

substitute for graphical inspection, and should serve as a way to highlight 

explanatory variables against which residuals should be plotted (Soares et al., 

1995). 

The improvement of high-speed computing equipment has made it possible for 

growth modellers to use the individual tree rather than the stand as the basic 

prediction unit. However, the fact that this is possible does not necessarily mean 

it is desirable, and considerable thought has been given to the relative merits of 

stand level versus tree level growth models (Clutter et al., 1992). 
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The measurements of the predictive variables are compared with the 

corresponding model predictions. In its most elementary form this comparison is 

performed mainly qualitatively by inspecting visually the agreement between the 

observed data and model predictions. More sophisticated approaches express the 

agreement between data and model quantitatively in terms of misfit measures 

which typically are functions of the error between measurements and the model 

predictions (Janssen and Heuberger, 1995). 

Success in developing models depends on carefully identifying the needs, 

selecting the important variables, formulating a suitable model, collecting good 

data (both quantity and quality), using reliable coefficient estimation procedures, 

and carefully evaluating the model. Good modellers rely as much on their 

knowledge of silviculture and on the biological principles of growth, as they do 

on statistical tests when selecting models and developing algorithms. Any 

relationship that violates accepted biological principles should be rejected, even 

if it results in efficient predictions for a particular data set. The model should be 

kept simple. Unnecessary complexity does not improve a model, and may create 

many problems. Every model is an abstraction of reality and will be wrong in 

some sense. Users should remember that all models may be wrong, and some 

may be more useful than others (Vanclay, 1994). 

2.6.1 Requirement of data 

Data requirements for the different approaches to model construction vary 

widely. Direct predicting models for yields can be developed from inventory data 

collected from temporary plots. Equations or systems of equations that explicitly 

or implicitly predict the growth require at least some re-measured plot data. 

Elaborate single tree growth models are the most demanding of data (Clutter et 

al., 1992). In forestry, trees are measured at 3 to 10 year intervals, but users of 

the growth models developed with the data may desire projections for intervals 

as short as one year (Amateis and McDill, 1993). 
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The ideal basis of constructing stand development and yield functions is long 

term re-measurement data of permanent sample plots. When single examination 

data are used, information of a past development of a given stand is usually 

unreliable, and therefore the stand cannot be placed in a sequence of stand 

development in relation to the other stands (Johnstone, 1976). 

According to Oderwald and Hans ( 1993), predictions outside the range of 

observed data are not generally considered in model building or validation. 

Predictions are rightly made only for the range of data on which the model is 

based, since statistical fitting procedures cannot take account of non-existent 

data. 

2.6.1.1 Transformation of data 

Suitable transformations can be determined graphically or analytically. The best 

way to obtain an idea about the transformation is the observation of the residual 

plots (e.g. Aitkin et al., 1989; Kassab, 1987). 

If a transformation has been used, predictions will contain transformation bias, 

the magnitude of which depends upon the variability of the data. Often the bias 

may be small enough to be ignored. However, where a poor fit is obtained, an 

adjustment should be made for this transformation bias when performing the 

back transformation. Weighted regression avoids the need for these 

transformations and corrections (Vanclay, 1994). 

2.6.1.2 Partition of data 

In addition to overall appraisals, it is desirable to partition data ( e.g. by age, site 

index or stand density), and examine model performance in each of several strata 

(e.g. Mayer and Butler, 1993). The most revealing insights may be obtained by 

devising strata based on a knowledge of the biological system, the model and the 

characteristics of the data. However, the absence of any visible inadequacies in 

any particular stratification does not imply that weaknesses cannot be found in an 

alternative stratification (V anclay, 1994). 
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According to Vanclay ( 1994 ), the temptation to use all the available data for the 

development of the model must be avoided, as it is equally important to have an 

independent set of data available for benchmark testing. The need for such 

testing is not diminished through the use of "self-calibrating" models. 

2.6.2 Equations 

The level of complexity of the approaches of the different kinds of equations has 

varied from the simplicity of single regression equation expressing the yield per 

unit area as a function of age, site class, and basal area, to the detailed intricacy 

of equation systems that simulate the growth of each individual tree in a stand as 

a function of its own characteristics, the characteristics of neighbouring trees and 

the distances to neighbouring trees (Clutter et al., 1992). 

2.6.2.1 Empirical and theoretical equations 

Empirical equations are expressions which describe the behaviour of the 

response variable without attempting to identify the causes or to explain the 

phenomenon. This does not mean that empirical functions provide biologically 

unrealistic predictions, nor does it mean that they are inferior to supposedly 

biologically-based equations. They can and should be formulated to behave in a 

biologically realistic way across a wide range of possible conditions (Vanclay, 

1994). 

In contrast to empirical equations, theoretical equations have an underlying 

hypothesis associated with the cause or function of the phenomenon described by 

the response variable. There are few theoretical equations formulated specially 

for forestry applications. Most theoretical growth and yield equations have been 

borrowed from other disciplines, and as a result may be rather empirical for some 

forestry applications. However, some general principles govern the behaviour of 

many systems, and provide the basis for these theoretical equations (Vanclay, 

1994). 
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An empirical study by Martin and Ek ( 1984), found that carefully formulated 

equations could be more accurate than theoretical equations for a wide range of 

data. However, according to Vanclay (1994), theoretically based equations may 

be more reliable for predictions which involve extrapolations beyond the range of 

the data. 

2.6.2.2 Stand Table Projection 

Stand table projection predicts the future stand table from the present stand table 

by adjusting each entry in the table with the estimated diameter and mortality 

increments. 

If no appropriate model exists for predicting the future yield, the usual recourse 

is use of one of the forest inventory procedures that estimate future stand growth 

from increment core measurements of past growth. These estimation procedures 

are generally referred to as 'stand table projection' (Clutter et al., 1992). 

Although stand table projection methods and equation prediction systems share 

the objective of predicting future yield, their physiological approaches are quite 

different. With equation prediction systems, the prediction of growth and future 

yield is obtained by comparing the subject stand with other similar stands whose 

growth rates have been measured over time. Stand table projection methods, on 

the other hand, attempt to predict the future growth rates of trees in the same time 

(Clutter et al., 1992). Pienaar ( 1989) attempted to produce a stand table 

following this method and discussed the possibilities. 

Stand table projection is a valuable tool for growth estimation for stands where 

no alternative procedure is available for the prediction of future yield. However, 

Clutter et al. (1992) believed that stand table projections are generally used 

insufficiently and are often applied incorrectly to give grossly inaccurate 

estimates of future growth and yield. Also serious errors can often be introduced 
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into stand table projection estimates through incorrect selection of sample trees, 

application of invalid growth assumptions and mis-estimation of mortality 

(Clutter et al., 1992). 

2.6.3 Regression analysis 

There are two main types of regressions i.e. linear and non-linear. The linear 

regression equation has the form: 

2.1 

where the Greek letters a, f3 1 , /3 2 represent unknown parameters believed to be 

constant for a given model/data set combination, whereas X1, X2 are variables 

(often called regressor, predictor, or independent variable) which may represent 

experimental settings, predetermined conditions, or uncontrolled observed values 

assumed to be measured without error. The response variable Y, is called the 

dependent variable, deviating from the expected (i.e. mean) value given by the 

regression line by an amount E , which is an unobservable random error term 

whose values are unknown but which is assumed to have a mean value of zero 

(Ratkowsky, 1983). 

Linear regression implies that explanatory variables enter the objective function 

in a linear and additive way. It in no way implies that the resulting relationships 

must be straight lines. This form of regression is widely used for fitting equations 

to data (Vanclay, 1994). 

A non-linear regression model 1s one m which the parameters appear non­

linearly, e.g.: 

2.2 

where: 01 and 0 2 are the parameters to be estimated (Ratkowsky, 1983). 
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The linearity or non-linearity of the model is determined by the way the 

parameters enter into the model and not by the way of the explanatory variables. 

Linear models are widely used in growth and yield studies, and offer several 

advantages. Most computer systems and many pocket calculators incorporate 

reliable algorithms to fit such equations to data. The solution to the equation is 

unique, easily obtained and rather robust, even when assumptions implicit in the 

method are violated (Vanclay, 1994 ). 

Many theoretical and asymptotic models are of non-linear form. Whilst non­

linear regression allows great flexibility in formulating models to ensure 

extrapolation, it does have some limitations. One problem is that, unlike linear 

regression, non-linear regression does not necessarily provide a unique best 

unbiased solution for a given set of variables. Non-linear solutions are 

determined iteratively, and may be influenced by the estimating method and the 

starting conditions specified by the user (Soares et al., 1995). 

The coefficient of determination 

, 
The coefficient of determination (R-), measures the proportion of total variation 

about the mean explained by the regression. R is the correlation between the 

observed and predicted response variable and is usually called the correlation 

coefficient (Draper and Smith, 1981). 

R
2 

is expressed as a proportion in the range 0-1 or a percentage in the range 0-
, 

100. The closer R- is to one ( or 100%) the better the fit. In such situations, the 

residual sum of squares, RSS = :E(y; - j\ )2 = 0 which implies Y; = Y; for all i's, 

i.e. the observed values are equal to the corresponding fitted values (Kassab, 

1987). In 1981 Draper and Smith wrote that R
2 

can take values as high as one ( or 

100%) when all theXvalues are different. When repeat runs exist in the data, the 

value of R
2 

cannot attain one no matter how well the model fits. R
2 

gives a higher 
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when number of explanatory variables are high. This is because no 

however good, can explain the variation in the data due to the pure error. 

tis ( e) are the differences between the observed (y) and predicted ( y) 

of the response variable. Residuals provide information regarding 

tions about the error term and the appropriateness of the model. Any 

te data analysis requires the examination of residuals (Weisburg, 1985; 

� et al., 1988). The most common method, especially useful in simple 

10n, is a plot of errors ( e,. ) versus the fitted values (y
,. 
). Isolated points in 

lots far from the expected values will be indicative of possible outliers 

urg, 1985). 

s 

s (points away from the others), should be investigated to see if they are 

1lt of human, instrumental or gross experimental errors, in which case they 

be discarded. If they are genuine, they may provide useful information. It 

1e that an important independent variable has been omitted from the model 

the error variances are not equal (Kassab, 1987). 

Fitting the equations to data 

are many techniques available for fitting equations to data and the 

riate one to use depends on the relationship chosen to represent the 

, the nature of the data, and on the resources available to fit the model 

and Wattes, 1988; Draper and Smith, 1981; Gilchrist, 1984; Ratkowsky, 

;eber and Wild, 1989). Models are often fitted using the growth increment 

pendent variable in a regression model (Rennolls, 1995; Sievanen et al., 

;oares et al., 1995). The regression models can be linear or non-linear, but, 
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removed by redefining the predictors into new linear combinations that are easier 

to interpret (Weisburg, 1985). 

2.9 Model errors 

Errors m independent variables may be random or non-random and they can 

occur for a number of reasons (Gertner, 1991): 

a. measurement errors, 

b. sampling errors, 

c. groupmg errors, 

d. process or prediction errors. 

Sample error occurs when an independent variable of a model is estimated with a 

sample procedure. Grouping errors are due to classification of the data, example: 

to size classes. Process errors occur when an independent variable of one model 

is predicted with another model without testing the bias. If the model used is 

linear, random errors with O means in the independent variables do not cause bias 

in the predictions. Random errors, however, increase the variance of the 

predictions (Kangas, 1996). 

2.10 Model evaluation 

Model evaluation is an important part of model building, and some examination 

of the model should be made at all stages of model design, fitting and 

implementation (Vanclay and Skovsgaard, 1997). Evaluation should not merely 

be an afterthought or an acceptance trial. A thorough evaluation of a model 

involves several steps, including two which are often called qualitative and 

quantitative tests in forest growth modelling (Vanclay, 1994). Model evaluation 

should extend to all model components and assumptions, and this requires a 

thorough understanding of the structure of the model and the interrelationships 

between components (Soares et al., 1995). 
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Model evaluation should reveal any errors and deficiencies of the model, and 

should establish (Vanclay, 1994): 

a. whether the equations used adequately represent the processes 

involved, 

b. if the equations have been combined in the model correctly, 

c. that the numerical constants obtained in fitting the model are the best 

estimates (unbiased minimum variance estimators), 

d. the range of site and stand conditions over which the model applies, 

e. if the model satisfied specified accuracy requirements, 

f. whether the model provides realistic predictions throughout this range, 

g. how sensitive model predictions are to errors in estimated coefficients 

and input variables. 

One of the most effective ways to examme model performance is to plot 

residuals for all possible combinations of tree and stand variables, and to look for 

patterns which may indicate serial correlation, dependencies on initial conditions 

or on projection length, or other systematic patterns ( e.g. Soares et al., 1995). It 

is common to plot observed values (y) against predicted values ( j) ), but in many 

cases it is more revealing to plot residuals ( e = y - y) versus observed values 

(Vanclay, 1994). 

Although model verification, calibration and validation are usually done by the 

modeller, model evaluation should be done by the user, who is responsible for 

the accuracy of the predictions (Buchman and Shifley, 1983). 

2.10.1 Model validation 

Even if yield tables or models are available, and early assessments have shown 

them to be reasonably applicable, it is still advisable to check the actual standing 

volume periodically, both to ensure that unexpected change in the growth pattern 

is not affecting the performance of the crops, and also that the form of control 

over thinning to ensure that the intensity of thinning is about right (Fraser, 1980). 
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"Model validation is the process of substantiating that the behaviour of the model 

represents that of the problem entity to satisfactory levels of confidence and 

accuracy consistent with the independent application of the model within its 

application domain" (Brown and Kulasiri, 1996). This involves the comparison 

of data obtained from the real system of interest with corresponding data 

generated from simulating of any model (Kassab, 1987; Reynolds and Chung, 

1986). 

If sufficient independent data are available, the model should be validated by 

comparing model predictions with data. In the absence of such validation data, 

errors in the uncertainty in the model structure cannot be detected. However, it is 

possible to quantify the uncertainty in the model prediction associations with the 

uncertainties in the model inputs and often to identify the inputs that are 

primarily responsible (Voet and Mohren, 1994). 

The validation process ends with one of four outcomes for a particular decision 

(Newberry and Stage, 1988): 

a. the model is adequate, 

b. the model needs revision using the available data identified in the 

process, 

c. the data appear inadequate to evaluate model, and new data are 

required, 

d. the model is inadequate. 

Benchmark tests 

For benchmarking in its purest form some data are set aside, or new data are 

obtained for benchmark tests. The most convincing test would use a set of data 

drawn from an independent population measured over a long period, but such 

data are rarely available. Growth modellers are frequently faced with the decision 

of having to partition a data set from a single population into two subsets, one for 

development and the other for the testing the model. Where ample data are 

available, this partitioning causes few problems. However, when data are scarce, 
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there is a temptation to use all the available data for development in an attempt to 

improve the model (Vanclay, 1994). 

2.10.2 Re-calibration of models 

Re-calibration refers to the search for adjustment to improve model predictions 

for a specific locality. Specific features in the growth model may require 

modification. This might involve development of local growth functions within 

the existing framework to improve accuracy; or it might involve the 

incorporation of subroutines for, for example, proportional losses from fire or 

wind fall possibly on a stochastic basis (Alder, 1978). 

Re-calibration also implies adjusting a growth model so that it provides good 

predictions for a new population. This may entail estimating new parameters for 

some or all of the equations of the model, or may use a scaling factor to adjust 

predictions (Vanclay, 1994). 

The creation of a variant of a growth model for a new locality may involve 

several steps. Firstly the model should be benchmarked using data from the new 

locality to determine if any re-calibration is needed. Given that some adj ustment 

is necessary, the residuals about predictions should be examined to see if a single 

scaling factor would be adequate, or if a more sophisticated adj ustment is 

necessary. If inspection of residuals indicates that a simple adjustment to 

increment rates would provide satisfactory predictions ( e.g. analogous to a better 

site productivity), then such re-calibration may be attempted. However, if a more 

complex adjustment to growth patterns is indicated, it may be preferable to 

abandon re-calibration attempts and to estimate new parameters for all 

coefficients in the model (Vanclay, 1994). 
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2.11 Model predictions 

Kimmins et al. (1988) indicated that in many applications of a model, it will not 

be necessary to include a large number of determinants of growth. Other 

applications may require a much more complex set of simulations. It is not 

possible to include a simulation of all determinants of growth, and even if it was, 

it would probably result in a model of such size and complexity that the model 

would have little value for forest managers as a yield predictor. Also because of 

the complexity of biological populations it is not possible to describe 

mathematically all the important interactions that affect the growth of single trees 

(Ayhan, 1978). 

The important thing is whether or nor the model will provide useful predictions, 

assessed by an appropriate suite of diagnostic tests. Prominent among these 

criteria is the requirement that the model provides biologically reasonable 

predictions for the whole range of possible conditions (Vanclay, 1994 ). 

Error dependencies on projection length or initial forest condition can be shown 

graphically, or by indicating the precision of simulations from different starting 

conditions or projection lengths. Temporal trends may be revealed by plotting 

residuals against the year of measurement (Soares et al., 1995). Direct graphical 

comparisons with the data appear to be much more useful for assessing the 

reliability of predictions (Garcia, 1984) than the quantitative tests because the 

former tests make it easier to identify the trends of predictions from the actual 

data. 

2.12 Conclusions for the review of literature 

The major points arising from the above review of the literature are summarised 

below: 
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(i) If the management regimes of plantations have not changed with time, 

projection of past trends of growth and yield01< adequate as complex models for 

successful predictions of future yield. 

(ii) Growth and yield models in forestry can be classified into many categories. 

However, there is no clear and obvious prescription of the correct method. It will 

be seen that process-based models are still in the development stage although 

they describe the relationships between the tree variables better than empirical 

models. The single tree level empirical models are more difficult to construct 

than whole stand or size class models due to the need for detailed data. However, 

some modellers confirmed that stand level empirical models are adequate for 

most management conditions. 

(iii) Most yield prediction systems are expressed as mathematical equations or 

systems of inter-relating equations rather than as tables so that computers can be 

used to generate predictions for any desired combinations of inputs. Regression 

analyses are the commonest techniques for fitting the equations to data. Linear 

regression equations are suitable for most occasions. For process-based models, 

non-linear regression techniques are used. 

(iv) When constructing models, there are several factors which may guide the 

selection of possible exp lanatory variables. Obviously if a certain variable is not 

present in the data available for model development, then that variable cannot be 

included in regression analyses leading to the development of the growth model. 

The variables used in growth models should not be an arbitrary collection of 

those correlated with growth or yield in a forest stand, but should be carefully 

chosen to ensure biologically realistic predictions across the whole range of 

possible conditions. 

(v) Reliable data are an important factor in model construction. The only way to 

obtain long term re-measured data is by maintaining permanent sample plots. If 

the modeller has enough data, it is common to partition them by thinning type, 
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age range or age class. in order to improve accuracy. A sub-set is also reserved 

for validation of constructed models. 

(vi) Plantations can either be maintained unthinned or under a specific well 

defined thinning regime. Plantations can be maintained properly under a well 

defined thinning regime than changing the thinning regime time to time. 

Thinning affects growth relationships by providing more space per tree. 

Therefore, caution must be exercised when models are developed for plantations 

with different thinning regimes because the growth and mortality rates may be 

different. 

(vii) Site quality plays a major role in tree growth and yield modelling. However, 

assessment of the site quality is difficult. Most of the time, modellers use a factor 

to represent the site quality. Top height related factors are the obvious choice 

because it is easy to measure and also independent from the stand density. 

(viii) The parameter signs must be explained biologically after estimations have 

been made. If any parameter violates acceptable theory, then it must be removed 

along with the variable from the model. 

(ix) Growth models must be able to be rej ected through the normal process of 

experimental testing. Model evaluation is an important part of model 

construction and will indicate the nature of the forests for which the model may 

be expected to yield reliable results, as well as areas in which further research 

and data collection are required. 

(x) Model evaluation involves several techniques. The coefficient of 

determination is not a good measure for assessing the predictive ability of 

models. There are formal tests available for such purpose to analyse the model 

performance quantitatively. Examination of the residual distributions with fitted 

values is a good assessment for model behaviour and possible outliers. 
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(xi) If an existing model is adapted for a different geographical locality, all or 

some of the parameters should be re-estimated to improve accuracy. Sometimes, 

different functions may need to be estimated to improve the predictions. 

2.13 Objectives of the present study 

Bearing in mind the literature reviewed above, and the available Corsican pine 

data, the following objectives were defined for the thesis: 

(i) To construct a set of empirical growth models to predict the following 

variables of individual trees; 

a. future growth of diameter at breast height, 

b. future total height growth, 

c. current timber height growth, 

d. current total tree volume, 

e. current merchantable volume, and 

to predict the following mean variables of trees removed in thinning; 

f. mean tree basal area, 

g. mean tree diameter ( dbh), 

h. mean tree total height. 

(ii) To re-calibrate three empirical growth and yield models for Corsican pine 

constructed out side of Great Britain for different species by Pienaar and 

Harrison (1989), Soares et al. (1995) and West and Mattay (1993). 

(iii) To compare the predictive ability of newly constructed growth models 

constructed for the present work with the re-calibrated models of paragraph (ii) 

above and observed data. 

46 



CHAPTER 3: MANIPULATION OF THE RAW 
DATA 

3.1 Introduction 

For a good model the very first priority is a sound data base. Even if the 

assumptions and the structures of the models are developed precisely, the 

efficiency and the reliability of these models can be very low if the data are 

measured, collected or grouped incorrectly. Collection and preparation of the data 

before fitting to the equations can take a long time and therefore often acts as the 

limiting factor in the modelling process. 

When a model is built to suit various site conditions, whatever the predictor and 

explanatory variables, it is necessary to obtain data which cover these conditions. 

Most models require long term re-measured data and therefore it is desirable to 

have access to permanent sample plots. Data resulting from re-measured sample 

plots or trees are referred to as a real growth series (Turnbull, 1963). There are 

many advantages in having permanent sample plots, rather than temporary ones, 

because continuous inventory data sample the forest on successive occasions, 

thus quantifying growth and change (Soares et al. , 1995). 

3.2 Source of the data used in this study 

The British Forestry Commission kindly provided access to the data for 49 

permanent sample plots of Corsican pine distributed in many parts of Great 

Britain (Figure 3.1). The data cover various thinning types, general yield classes 

etc. had been measured at one to six year intervals with thinning carried out at 

four to eight year intervals. Some sample plots were maintained unthinned. These 

data were used to construct and validate new models and also to re-calibrate and 

validate the selected models built in the past in other countries. 
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3.3 

3.3.1 

Description of the data 

The sample plots 

The Forestry Commission in Britain has a very specific way of recording sample 

plot details outlined in the code of sample plot procedure (Edwards, 1976). 

Various numbers are used to indicate various types of measurements and the 

qualities of sample plots and trees; these are shown in table 3. 1. 

I 187 

1426, 1427, 1428 

0 Cities 

■ Sample plots 

1245, 1246, 
1247, 1248 1633, 1634 

1635, 1636 
1637, 1638 
1639, 1640 
1641 , 1642 
1643, 1644 
1645, 1646 
1647, 1648 

■ 1649, 1650 

■ : :~~· 1652 

~1149, 1150, 
11 51 

1369, 1370 
1371, 1372 

151 9, 1543 

Figure 3.1: Map showing the locations of the 49 Corsican pine sample plots 
obtained from the Forestry Commission in Great Britain. 
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Plot Planting Plot General Local yield Thinning Space Space 
number year size, ha yield class, class, type & between between 

3 -I 3 -I intensity rows, m trees, m m ha yr-1 m ha yr-1 

1149 1920 0.3642 14 13 9125 1.2 1.2 
1150 1920 0.1012 14 13 9100 1.2 1.2 
11 51 1920 0.0809 16 15 1075 1.2 1.2 
1154 1926 0.2865 14 11 9000 1.4 1.4 
1157 1924 0.4047 16 14 9125 1.4 1.4 
11 81 1927 0.2023 16 13 3100 1.4 1.4 
1185 1924 0.1056 18 18 3100 1.5 1.5 
1186 1926 0.0947 14 12 3100 1.5 1.5 
1187 1924 0.0967 18 19 3100 1.5 1.5 
1214 1924 0.1825 12 14 3100 1.5 1.5 
1245 1928 0.1352 14 14 6100 1.4 1.4 
1246 1928 0.1202 14 15 3100 1.4 1.4 
1247 1928 0.1202 16 14 0 1.4 1.4 
1248 1928 0.1210 16 15 3100 1.4 1.4 
1366 1928 0. I 651 10 10 3100 1.4 1.4 
1369 1935 0.1295 12 15 0 0.9 0.9 
1370 1935 0.1012 14 17 3075 1.4 1.4 
1371 1935 0.0967 14 16 3100 1.8 1.8 
1372 1935 0.1360 14 13 3125 2.4 2.4 
1424 1922 0.1558 20 00 3100 1.8 1.8 
1426 1935 0.1352 18 13 0 0.9 0.9 
1427 1935 0.1437 14 12 3100 1.4 1.4 
1428 1935 0.1271 12 12 3100 1.8 1.8 
1430 1937 0.2003 18 19 3100 1.4 1.4 
1519 1934 0.0890 20 17 3100 1.2 1.2 
1543 1951 0.0558 22 18 3100 1.4 1.4 
1633 1951 0.0626 16 18 0 1.4 1.4 
1634 1951 0.0626 16 17 5350 1.4 1.4 
1635 1951 0.0658 16 17 5130 1.4 1.4 
1636 1951 0.0658 16 16 5230 1.4 1.4 
1637 1951 0.0658 16 16 5230 1.4 1.4 
1638 1951 0.0626 16 16 5120 1.4 1.4 
1639 1951 0.0626 16 18 0 1.4 1.4 
1640 1951 0.0626 14 14 5340 1.4 1.4 
1641 1951 0.0658 16 17 5130 1.4 1.4 
1642 1951 0.0626 16 17 5240 1.4 1.4 
1643 1951 0.0626 16 16 5350 1.4 1.4 
1644 1951 0.0626 16 16 5240 1.4 1.4 
1645 1951 0.0626 14 16 5120 1.4 1.4 
1646 1951 0.0626 14 15 5340 1.4 1.4 
1647 1951 0.0658 16 16 5130 1.4 1.4 
1648 1951 0.0626 16 18 5120 1.4 1.4 
1649 1951 0.0626 14 11 5340 1.4 1.4 
1650 1951 0.0626 16 17 5240 1.4 1.4 
1651 1951 0.0658 16 16 5230 1.4 1.4 
1652 1951 0.0626 16 16 5350 1.4 1.4 
1653 1951 0.0626 16 19 0 1.4 1.4 
1746 1964 0.0999 18 22 3100 1.6 1.6 
1749 1970 0.1020 22 24 3100 2.0 2.0 

Table 3.1: Description of the 49 Corsican pine sample plots obtained from the 
Forestry Commission. 
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3.3.1.1 Recording of thinnings 

"O" is used to indicate plots where thinning 1s not carried out ( control 

experiments). Thinning, when done, is recorded by four digit numbers. The first 

digit indicates the type of thinning as listed below: 

1 - low thinning, 

3 - intermediate thinning, 

5 - neutral thinning (systematic thinning), 

6 - crown thinning, 

7 - heavy crown thinning, 

9 - exploitation (Edwards, 1976). 

The next three digits are used to show the thinning intensity as a percentage of 

marginal thinning intensity (Jenkins, pers. comm.). The number 9125 would 

therefore indicate 125% of marginal thinning intensity of an exploitation 

thinning. 

3.3.2 The tree measurement data in sample plots 

Four major measurement types can be found for individual trees in each sample 

plot measured by the Forestry Commission. These four types (listed below) have 

different kinds of measurements for calculations of different forest tree variables. 

At the beginning of each measurement type, plot number, measurement year and 

the month and the type of the measurement are recorded. 

3.3.2.1 Measurement type 1 - general register 

All the living trees in the plot, both main crop and thinning, are recorded. Each 

tree has a tree number, classification number and the diameter in millimetres 

rounding to the nearest millimetre (Edwards, 1976). In the data file, 

measurements of five trees are recorded in one row ( 15 columns). Tree number is 

specific for a particular tree in the plot. The tree classification number contains 

three digits as follows (Hummel et al., 1959): 
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1st digit: 

2nd digit: 

3rd digit: 

1,2,3, or 4 to denote the position in the canopy ( dominant trees, 

co-dominant trees, sub-dominant trees and suppressed trees 

respectively), 

1,2, or 3 to denote stem quality (good stem, slightly defective 

stem, and very defective stem respectively), 

1,2, or 3 to denote crown shape and size (good crown, 

slightly defective crown and very defective crown respectively). 

Trees which are marked for subsequent thinning are indicated by minus sign (-) 

in front of the diameter value (Hummel et al., 1959). 

3.3.2.2 Measurement type 5 - standing height measurements 

Twenty trees (or less) where the diameter at breast height is 7.0 cm or above are 

systematically selected from the main crop trees of measurement type 1 using the 

sampling fraction for the height measurements (Edwards, 1976). Each tree has 

three descriptions: tree number, diameter at breast height in millimetres and total 

height in ten centimetre steps. On the data file, details of five trees are recorded 

m one row. 

However, the total number of trees for height measurements can be different; for 

example, according to Hummel et al. (1959) up to 40 trees could be selected. 

3.3.2.3 Measurement type 2 - main crop volume 
measurements 

Normally ten trees are selected from the measurement type 5 for standing tree 

volume measurements (Edwards, 1976; Hummel et al. , 1959). At least two rows 

are required to record the details for each tree. In the first row, tree number, 

diameter at breast height in millimetres, total height in ten centimetre steps, 

timber height in ten centimetre steps, height to the lower crown (lowest whorl of 

branches with dead ones), height to the upper (live) crown (lowest whorl of 

branches all alive) and crown diameter in ten centimetre steps are recorded 

respectively. Finally the number of sections measured for volume calculation is 

entered (Jenkins, pers. comm.). 
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The following numbers of rows are dependent on the number of stem sections 

measured; i.e. up to 5 sections - one row, up to 10 sections - 2 rows, up to 15 

sections - 3 rows etc. Each section has three measurements: the length of each 

section in ten centimetre steps; then the mid section diameter in millimetres; and 

finally the bark thickness at the mid point of each section in millimetres 

(Edwards, 1976). The final section always extends up to the point at which the 

stem diameter reduces to 7.0 cm over bark diameter (Jenkins, pers. comm.). 

3.3.2.4 Measurement type 3 - thinning tree volume 
measurements 

All the trees felled for thinning of 7.0 cm diameter at breast height and over are 

measured for volume provided that they number less than 40. If there are more, a 

sample of approximately 30 may be measured, if such sampling would save time 

(Edwards, 1976). 

Measurements are similar in every way to measurement type 2. But in the first 

row only five recordings i.e.; tree number, diameter at breast height in 

millimetres, total height in ten centimetre steps, timber height in ten centimetre 

steps and the number of sections measured respectively. 

A specimen of the sample plot measurement file is shown in the Appendix 1.1. 

3.4 

3.4.1 

Calculations used for the computer 
programs and model building 

Age at time of measurement 

The Forestry Commission uses the first of July as the operative date for an 

increase in age (Hummel et al., 1959). Following this procedure, between July in 

one year and June in the next year is considered as one growing year. The 

plantation age is determined by subtracting the planting year from the current 

year. 
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3.4.2 Mean diameter at breast height 

Mean diameter at breast height is defined for this study is: 

where: 

dbh- = ~ 'i.dbh/ 
g n 

dbh- = mean tree diameter at the breast height, cm 
g 

dbh; = diameter at breast height of the ith tree, cm 
' g = mean basal area tree, m-

3.1 

n = number of trees (Philip, 1994) 

Many authors (Philip, 1994; Vanclay, 1994) indicated that the arithmetic mean 

values are not suitable for tree volume calculations because they do not represent 

the real mean according to the tree size. Size of the individuals is important when 

calculating the values such as total volume because bigger trees contribute more 

to the total than the smaller trees. Therefore, the means of diameter at breast 

height and total height were determined by using equations 3.1 and 3.4 

respectively. The mean diameter calculated using equation 3.1, is also known as 

the quadratic mean diameter. 

3.4.3 

3.4.3.1 

Basal area 

Individual tree basal area 

Calculation of individual tree basal area was done by using the equation 3.2. 

1r dbh;2 

gi = 40000 3.2 
where: dbh; = diameter at breast height of the ith tree, cm 

' g; = basal area of the ith tree, m - (Philip, 1994) 

1r = 3.142 

3.4.3.2 Mean tree basal area 

The mean tree basal area is defined for this study as: 

where: 

- I:g; 
g=-

n 
2 

g = mean tree basal area of the ith tree, m 
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3.4.4 Mean total tree height 

For the present study, mean total tree height is defined as: 

3.4 

where: h = total height of the ith tree, m 
-
h = mean total tree height, m (Philip, 1994) 

3.4.5 Tree bole volume 

There are many equations to calculate the tree bole volume. However, the most 

compatible equation with the data obtained from the Forestry Commission was 

Huber's formula (3.5) even though it sometimes causes bias. Smalian's formula 

(Appendix 1.2) tends to introduce more bias than Huber's formula (Jenkins, pers. 

comm.). Newton's formula (Appendix 1.2) is more accurate than either Huber's 

or Smalian's formulae. However, both Newton' s and Smalian's formulae are 

impossible to apply to the Forestry Commission data. 

Total volume of a log of wood can be defined by Huber's formula as: 

where: 

v = [ 7r !,. ( d ,;,; )] 
S; 40000 

dm; = mid diameter of the ith log, cm 

!,. = length of the ith log, m 
3 

v = total volume of the ith log of the tree, m s, 

3.5 

(Philip, 1994) 
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3.4.5.1 Merchantable volume 

In Great Britain, the merchantable volume is taken to be from the base of the tree 

to the point of 7.0 cm over bark diameter. To calculate the merchantable volume 

of the whole tree the volume of the each section was calculated separately using 

Huber' s formula (3.5) and then added together (equation 3.6) using one of the 

computer programs written for the current work (Appendix 1.6). Merchantable 

volume of a tree is thus: 

where: 

3.4.5.2 

3 
v,,, = merchantable volume of the tree, m 

Total stem volume 

3.6 

Considering the final section of the tree above the 7.0 cm over bark diameter as a 

cone, total stem volume was calculated using formula 3.7. 

where: 

3.4.6 

(

n; d
2
(h-h,,,) l 

V = V + 
Ill 120000 

d = 7.0 cm 

h
111 

= timber height of the tree, m 

h = total height of the tree, m 
3 

v = total volume of the tree, m 

Crown volume 

3.7 

Volume of the live crown was calculated treating the crown of Corsican pine 

trees as a cone, using the following formula: 

3.8 
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where: 

3.4.7 

de = diameter at the base of the live crown of the tree, m 

he = height to the top of the tree from the live crown 

base, m 

vc = volume of the live crown of the tree, m
3 

Number of trees 

The number of trees in one sample plot was determined usmg the general 

register. Total number per hectare was calculated using equation 3.9. 

where: a = area of the plot, ha 

n = total number of trees 

N = total number of trees per hectare 

3.5 Computer programs written for the 
current work 

3.9 

FORTRAN (FORmula TRANsformation) is a computer programming language 

commonly chosen as the standard for forest modelling (Adman, 1984; Ashcroft 

et al., 1986; Balfour and Marwick, 1986; Hammond et al., 1988; Hughes et al., 

1978; Monro, 1983). For the current work several computer programs were 

written using FORTRAN 77 in order to read the Forestry Commission sample 

plot data and to do the necessary calculations prior to model construction. 
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3.5.1 Program 1 

This program reads different data types which were recorded in the different 

format in sample plot data files (flow chart - Figure 3.2; detailed program -

Appendix 1.3). The following sub-routines were written for the data calculation. 

11, 12. 13 

11 , 12. 13 

11, 12, 13 

11 , 12, 13 

ST ART 

CHARACTER • I 9 filename 
CHARACTER •so H 

Y es 

Yes 

Yes 

Yes 

Figure 3.2: Flow chart for program 1. 
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3.5.1.1 Sub-routine 1 

This sub-routine was written to separate the main crop and thinning trees using 

measurement type 1 data (general register) (flow chart - Figure 3.3; detailed sub­

routine - Appendix 1.4). 

( 
' 

START 

C HARACTER •so= STRING 

!'. 
STRING 

. J', 
'-

No STRING -::/= ' 
? 

l Yes 

11, .. .. ...... ,115 

i 
No Yes 

II , 13 i◄ 13 ( 0 11, 13 

No 
J ---.....___ 

Yes .,,,-· '-
14, 16 1 .. 16 ( 0 14, 16 

- ........ / 

l 
No Yes 

17. 19 i .. 19 ( 0 17. 19 

r 
No / "----...., Yes / ' 

11 0, 11 2 (◄ < 112 ( 0 110, 11 2 

No 
113, 115 14( .. --< 11 3, 115 

STOP 

Figure 3.3: Flow chart for sub-routine 1. 
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3.5.1.2 Sub-routine 2 

This sub-routine calculates the total volume, basal area and the total height of 

individual trees in main crop and thinning trees without the forked trees using the 

data from measurement types 2 and 3. It also calculates the total volume per plot 

(flow chart - Figure 3.4; detailed sub-routine - Appendix 1.5). 

Stems that fork below breast height are considered as two separate trees and, if 

the tree is forked immediately above the dbh point, it is considered as one tree. 

(Avery and Burkhart, 1994; Cailliez, 1980; Hamilton, 1988). However, for the 

volume estimations, both limbs in forked trees are measured up to the 7.0 cm 

over bark diameter. If these trees were added to the volume calculations, it 

would over estimate the volume per tree. Therefore, such trees were avoided 

when the programs were written. The following procedure was used to detect the 

trees which were forked above the breast height: 

where: h 
1 

= total height of the jth tree 

La 1 = additional length of the jth tree 

L; = length of the ith log 

3. 10 

If La is a negative number, the tree has two or more stems which a ll contribute to 

the total tree volume, and if it is not a negative number, the tree was considered 

to have a single bole. 

3.5.1.3 Sub-routine 3 

Sub-routine 3 was written to calculate the merchantable volume, basal area, total 

height and the timber height of individual trees in main crop and thinning trees, 

without forked trees, and the total merchantable volume per plot using the data 

from measurement types 2 and 3 (flow chart - Figure 3.5; detailed sub-routine -

Appendix 1.6). 
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3.5.1.4 Sub-routine 4 

This was written to calculate the total height, basal area, and total height*basal 

area of individual trees from measurement type 5 data (flow chart - Figure 3.6; 

detailed sub-routine - Appendix 1.7). 

( START ) 

CHARACTER •so STRING 
PARAMETER(Pl=3. 14l493, 

X=4.0°( 10.0**6.0)) 

D1=12 
Al =l3 

Hl=A l/10.0 
131 =PJ•(D I .. 2.0)/X 

Hl13 J=HJ• BJ 

D2=15 
A2=16 

1-12=A2/IO.O 
132=Pl*(D 1 .. 2.0)/X 

1-12132=1-12· 132 

1)3=18 
A3=19 

H3=A3/IO.O 
B3=Pl*(D I* •2.0)/X 

1-13133=1-13• 133 

D4=11 1 
A4=112 

1-14=A4/ JO.O 
134=PJ•(DI ••2.0)/X 

1-14B4=1-14°134 

D5=114 
A5=115 

HS=AS/ 10.0 
135=Pl*(D J **2.0)/X 

H5B5=HS•B5 

STOP 

No 

Figure 3.6: Flow chart for sub-routine 4. 
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3.5.1.5 Sub-routine 5 

Length of the lower crown and upper crown, upper crown diameter, volume of 

the live crown, height, diameter and basal area of individual trees were calculated 

by sub-routine 5 using the data from measurement type 2 (flow chart - Figure 3.7; 

detailed sub-routine - Appendix 1.8). 

8 

0 
N 

Figure 3.7: Flow chart for sub-routine 5. 
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3.5.2 Program 2 

This was written to calculate the total basal area, total diameter squared at breast 

height and total number of trees per plot and to write the diameter at breast height 

and basal area of individual trees using the result files from sub-routine l in 

program l (flow chart - Figure 3.8; detailed program - Appendix 1.9) 

, 
I, START 

11 .12.13 

11.12.13 

STOP ) 

No 

, 
I START ) 

CHARACTER •so STRING 

N=O 
TOTBA=0.0 

TOTSQDM=0.0 

STRING 

11 ,12 

DM=l2/10.0 
SQDM= DM .. 2.0 

BA=(3. 14 I 573"(12'"2.0))1 
(4.0°(10.0 .. 6.0)) 

N=N+ I 
TOTBA=TOTBA+BA 

TOTSQDM=TOTSQDM+SQDM 

11,DM,SQDM,BA 

N,TOTSQDM,TOTBA 

I 
(~_sr_o_r __,) 

Figure 3.8: Flow chart for program 2. 
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3.6 Summaries of the sample plot data 

Summaries of the sample plot data, expressed as the mean values, were required 

for two reasons. Firstly for the thinning prediction models, and secondly to obtain 

a general idea about the growing pattern of tree variables along with the 

thinnings. In order to facilitate subsequent analysis, the sample plot summary 

data were entered into standardised data files as follows (A diagram of the 

summary file for plot 1149 is given Appendix 1.10): 

(i) The year and the month of the measurements were taken from sub­

routine 1 and entered in the first column. The number of rows were 

dependent on the number of measurement occasions for each plot. 

(ii) In the second column, number of trees was entered. 

(iii) Mean diameter (cm) and mean height (m) were recorded to one decimal 

place in the next two columns respectively using data generated by sub­

routine 1, program 2 and sub-routine 4. For the calculation of mean 

values, equations 3.1 and 3.4 were used. 

(iv) 

(v) 

(vi) 

, 2 
Mean basal area ( m -) and the total basal area ( m ) were calculated to three 

decimal places 111 program 2 and were entered in columns 5 and 6 

respectively. 

3 3 
Mean total volume (m ) and total volume (m) were calculated to three 

decimal points using sub-routine 2. These values were recorded in the 

7th and 8th columns. 

3 

In the 9th and 10th columns, mean and total merchantable volume (m ) at 

each measurement time were entered using sub-routine 3. 
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For thinning trees in the same plot, steps (ii) to (vi) were repeated in the next 9 

columns. Finally, planting year, general yield class, thinning type and plot size 

were recorded. 

3. 7 Discussion 

If data handling errors are minimised then the precision of the model will be 

maximised. Therefore, individual numbering of the sample trees is very 

important because it is the only way of detecting measurement errors (Vanclay, 

1994 ). Before the fitting process was started, all the data were examined to find 

unusual characters, errors, or omissions. 

Considering the importance of re-measured data from permanent sample plots, 

Vanclay ( 1994) wrote that dynamic inventories should satisfy the data 

requirements for growth models for decades ahead. In order to provide for this 

next generation of growth models, it is appropriate to appraise critically the 

utility of the present dynamic inventory and to establish new plots specifically 

directed at collecting data for such future growth models. Such a series of elite 

plots should sample the range of forest conditions (and should include thinning 

studies) , but should be established in limited numbers so that appropriate care 

and attention can be given to detail and accuracy. 

When calculating volume, Huber' s, Newton's and Smalian' s formulae give 

correct results for a frustum of a quadratic paraboloid and a cylinder. If the log is 

not a frustum of a quadratic paraboloid and not a cylinder, then the use of either 

Huber's or Smalian's formula will introduce errors (Philip, 1994). Studying the 

tests done by Young et al. ( 1967), Jen.kins (pers. comm.) found that for 3 m tree 

logs, Smalian's formula over-estimated the tree bole volume by 1.4 % while 

Huber's formula under-estimated by 0.7 % for Sitka spruce. However, these 

values could not be included to determine the bias of the volume in the present 

data because the length of the logs varied in Forestry Commission tree 

measurements. The errors given by both Huber's and Smalian's formulae are 
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proportional to the length of the log and the square of the difference between the 

diameters of the two ends. However, the errors in the estimation of tree and log 

volumes are expected to be reduced by using Huber's formula and summing the 

volumes of sections which should be as sho11 as practicable (Philip, 1994), 

typically 3 m in this study. 

There are a number of forked trees in any pine plantation. However, 

determination of the number of such trees in a particular plantation is very 

difficult unless a visual observation. Removal of the forked trees can under­

estimate the total volume but the prediction of individual tree volume using other 

variables cannot be affected. Therefore, it was decided to remove the forked trees 

from the process of modelling in this study. The distorted trees of plantations are 

removed in the fist thinning. After the first thinning, there would be a negligib le 

number of such trees in managed plantations. Therefore, the distorted trees were 

not considered in this study. 

It was difficult to write a program for separating the main crop and thinning trees 

from the general register in order to calculate the total basal area values in one 

step. To overcome this problem, firstly the separation was done by using sub­

routine 1 and then a second program (program 2) was written for the essential 

calculations. In the data type 3 (measurements for the thinning volume 

calculations) there were only 5 columns in the 1st row, while this number was 8 

in the main crop measurements (refer section 3.5). Therefore when the programs 

and sub-routines were used for the thinning trees, 18 was replaced by 15. 
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CHAPTER 4: CONSTRUCTION OF THE NEW 
SET OF GROWTH MODELS 

4.1 Introduction 

In general, the two crucial requirements for a good model are that the 

relationships should be significant and the assumptions should be satisfied, in 

which case inferences and predictions from the fitted model are likely to be 

reliable (Kassab, 1987). 

Prior knowledge about the relationships between forest tree variables is very 

important in model building. Many variables have been used for modelling over 

time but some variables, such as crown dimensions have only recently been used. 

Crown structure has also been widely studied in recent years and is recognised to 

influence tree growth greatly and also stand dynamics (Deleuze, 1996; Hasenaur 

and Monserud, 1996; Maguire and Hann, 1989; Peterson, 1997; Valentine et al., 

1994). 

4.1.1 Constructing or developing growth and yield 
models 

Modelling the real world involves problem analysis, model building, and/or 

model validation, model selection and then application of the selected models 

(Henderson-Sellers, 1996). 

A first major step in regression analysis is to decide on the mathematical form of 

the model to be fitted to the data at hand (Kassab, 1987). The benefits of the 

mathematically presented model are that it is clearly defined and thus easily 

communicated, so that its strengths and weaknesses may be analysed (Gilchrist, 

1984). 
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Developing more than one model to predict a particular variable is important 

because it allows the modeller a good comparison of the performance of each 

model and the importance of each parameter. By identifying the good and poor 

part of each model, it is easier to develop one model by using only the good 

parts. 

4.1.2 Advantage of using a combination of tests 

A regression analysis on its own is not a very good indicator of the accuracy of a 

model. Standardised residual plots of fitted values do not give a quantitative 

result although they are a useful indicator of bias. The coefficient of 
, 

determination (R") is not a very reliable indicator of model performance 

(Weisburg, 1985). When the number of data or the number of explanatory 
, 

variables are high, R" tendsto indicate a number very close to 1 (or 100%) even if 

the model does not fit with the data well. Therefore the necessity of some other 

test of model performance such as lack of fit is clearly highlighted (Price, pers. 

comm.). 

4.1.3 Role of thinning in yield prediction 

Thinning is well known to increase the stem diameter growth of residual trees, 

but the mechanism behind this response is not well understood, and long term 

physiological responses to thinning are largely unknown (Peterson et al., 1997; 

Smith, 1986). In their experiments, Peterson et al. (1997) found that the growth 

responses of residual trees are generally attributed to increased crown volumes 

(i.e. increased photosynthetic area). Taking this into account, it is wise to first 

develop separate models for forests under different thinning regimes and then to 

combine these into one model if practicable. 
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4.2 Methods used for the construction of 
models 

As stated in Chapter 1, empirical models were decided to construct because of the 

lack of data for process-based modelling. The constructed models were 

individual tree level in order to obtain detailed predictions. 

4.2.1 

4.2.1.1 

Building the relationships for main crop trees 

Basal area 

Individual tree basal area (at breast height) at any age can be calculated if the 

diameter at breast height for the same tree at the particular age is known using 

the formula described below. 

where: 

4.2.1.2 

n dbh;2 

gi = 40000 (3.2) 4.1 

dbh; = diameter at breast height of the ith tree, cm 

2 
g; = basal area of the ith tree m 

Diameter at breast height 

(Philip, 1994) 

In this work it is assumed that the future growth of the individual tree diameter at 

breast height ( dbh) can be predicted as a function of the present dbh, current age, 

age at the time the prediction is required, current stand density and the quality of 

the site ( equation 4.2). 

where: 

4.2 

a = age of the plantation, years 

d = density of the plantation (number of surviving 
-I 

trees, ha ) 

dbh = diameter at breast height, cm 

s = quality of the site 

t = time at the beginning of the simulating period, 

years 

!l.t = duration of the simulating period, years 
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4.2.1.3 Total tree height 

The height of individual trees at any time in future can be predicted as a function 

of the current height of those trees, current age and age at the end of the 

simulating period, site quality, and the number of surviving trees per hectare 

(equation 4.3). 

where: 

4.3 

a = age of the plantation (years) 

d = density of the plantation (number of surviving trees), 

ha-1 

h = total height, m 

s = quality of the site 

t = time at the beginning of the simulating period 

6.t = Duration of the simulating period, years 

Competition is a very important factor affecting increases of dbh and height. 

Adding a competition index to the models will increase the complexity. 

Therefore it is avoided here by assuming the competition is represented by the 

present time measurement of the particular variable and the number of trees per 

ha. 

4.2.1.4 Timber height 

In Great Britain, timber height is usually taken as the height of the tree from the 

ground (uphill side) to the point at which the over bark diameter is 7.0 cm. 

Timber height can be predicted as a function of the total height and diameter 

( equation 4.4). 

h,;m = f(h, dbh) 4.4 

where: htim = timber height of the tree, m 
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Timber height is affected by the form of the tree. It is assumed in this thesis that 

the total height and the stem diameter at breast height represent the rate of taper. 

4.2.1.5 

(i) 

Total tree volume 

Total tree volume prediction model a 

For production forestry, individual tree volume is the most crucial variable. The 

basic equation of the current work is the common equation used to calculate the 

total volume of individual trees. 

v,. = g,. * h,. * ff,. 4.5 

where: 
• 2 

g. = basal area of the ith tree, m 
I 

ff,. = form factor of the ith tree 

h. = total height of the ith tree, m 
I 

v,. = total tree volume of the ith tree, m
3 

(Philip, 1994) 

The best and the shortest definition of the form of a tree or log is its shape. The 

shape may be regular, as for a solid of revolution, or - more commonly - irregular 

(Philip, 1994). 

The comparison of tree bole forms with various solids of revolution ( cylinders, 

paraboloids etc.) may be expressed in numerical terms as form factors. Such 

ratios are derived by dividing stem volume by the volume of a chosen solid 

(Avery and Burkhart, 1994). For example, the form may be expressed by the 

cylindrical form factor, that is the ratio of the volume of the tree or log to that of 

a cylinder of equal basal cross-sectional area and height (Philip, 1994). 

During the past century, the stem form of many tree species was studied by 

researchers in an attempt to explain the shape of the tree stems. Additional work 

is still needed in this area and no single theory has been developed that 
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adequately explains the variety of shapes that trees can assume (Figueiredo-Filho 

et al., 1996). 

Form factor is highly correlated with site variation, stand density, growth of 

crown and competition from the neighbouring trees. In this study form factor was 

replaced using the variables mentioned above which are easily measurable. Thus 

expanding equation 4.5: 

v = f(g, h, a, s, N, crown growth, competition) 4.6 

Dbh and total height at the beginning of the simulating period were used as 

explanatory variables for dbh and total height prediction models respectively. 

Therefore, a separate variable was not used for the competition assuming the 

current growth of dbh and total height for the particular models could replace it. 

However, the total volume prediction model is a current growth prediction model 

and therefore a separate variable for competition was tested. 

Growth responses of individual trees are generally attributed to increased crown 

volumes increasing photosynthetic surface area (Ginn et al., 1991). The shoot 

growth, cambial growth and root growth are initiated, controlled and maintained 

primarily by photosynthates and growth substances produced in the crown 

(Kozlowski, 1971) and it is well known that the quantity of carbohydrates 

produced by a tree depends primarily on the size of the main crown structure, 

crown leaf surface area, and the spacing of the roots to absorb water and mineral 

nutrients etc (Biging and Gill, 1997). 

In this study the shape of the crown of Pinus nigra is assumed to be conical and 

the calculation of the volume of the live crown (equation 3.8 - page 55) was 

made easier by this assumption. Sievanen et al. (1988) and Sievanen and Burk 

(1993; 1994) assumed that the leaves in the live crown of the Pinus species are 

evenly distributed. Combining these two assumptions it can be concluded that 

the rate of photosynthesis is dependent on the size of the crown and the amount 

of solar radiation received by the crown. The rate of photosynthesis of the tree 
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determines the rates of increase of the other variables. Thus the stem volume can 

be predicted as a function of the following variables as 4.6 but ignoring the factor 

competition. 

v = f(g, h, a, s, N, crown volume) 4.7 

Many authors (Deleuze, 1996; Hasenaur and Monserud, 1996; Maguire and 

Hann, 1989; Peterson, 1997; Sprinz and Burkhart, 1987) have written about the 

influence of the crown dimensions other than crown volume on tree growth. 

Therefore, the following measurements were used in addition to the crown 

volume and crown diameter for a better prediction 

Crown depth 

This is defined as: 

where: h = total height of the tree, m 

h = length of crown, m 
C 

4.8 

h = height to the live crown base from the ground, m 
cb 

(Hasenaur and Monserud, 1996; Philip, 1994) 

Live crown base 1s the position of tree stem where the first whorl of live 

branches arises. 

Crown ratio 

This is defined as: 

4.9 

where: c, = crown ratio (Hasenaur and Monserud, 1996) 
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(ii) Total volume prediction model b 

A second total volume prediction model ( 4.10) originally developed by 

Schumacher and Hall (Avrey and Burkhart, 1994) was selected for comparison of 

the predictability of the model described above. The non-linear form of this 

model is: 

4.10 

where: a, bl and b2 are unknown parameters 

(Avrey and Burkhart, 1994) 

The above model is frequently linearised as: 

log v = b0 + b: log( dbh) + b~ log(h) 4.11 

where: b0 , b; and b~ are unknown parameters 

(A very and Burkhart, 1994; Philip, 1994) 

4.2.1.6 Prediction of the future volume 

It is assumed that in a stand where thinning is being carried out, the self-thinning 

rate or natural mortality is zero or very close to zero ( equation 4.12) i.e.: 

No. trees just after thinning at time t = No. trees just before thinning at time t , 
I -

4.12 

The variables such as total height and basal area used to construct the total 

volume prediction models can be predicted at any time in the future using dbh 

and total height prediction models. Substituting these values in the volume 

prediction models, the future volume can be predicted. 
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4.2.1. 7 

(i) 

Merchantable volume 

Merchantable volume prediction model a 

As the current study progressed, the total volume prediction model a indicated 

that the form factor of Pinus nigra var. maritima trees is 0.5. It indicates that the 

average fonn factor is the same as would be expected from a quadratic 

paraboloid ( considering the shape of Corsican pine trees, approximation of a 

paraboloid). If a frustum of a paraboloid is considered which has a 7 cm top 

diameter: 

d 

D 

Figure 4.1: Diagram of a frustum of paraboloid. (Source: Hamilton, 1988). 

The volume of a frustum of a paraboloid as in Figure 4.1 can be expressed by the 

following two fonnulae: 

4.13 

4.14 

(Hamilton, 1988) 

Equation 4.14 was rearranged by removing n I 8 (to reduce the complexity) and 

substituting h with timber height to obtain the equation 4.15. 

_ b * {h ( dbh
2 

49.0 J} 
V mer - rim 10000 + 10000 4.15 
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where: 

(ii) 

h,;m = timber height (height to the 7 .0 cm 

diameter from the ground level), m 
3 

v
111

e, = merchantable volume of the tree, m 

b = unknown parameter 
, 

49.0 = 7.0- (the top over bark diameter), cm 

Merchantable volume model b 

over bark 

A derivation of the total volume prediction model a (equation 4.77 - page 124) 

was used as the second model. The upper part from the 7.0 cm over bark 

diameter of the tree stem was assumed to be a cone and the volume of this cone 

was subtracted from the total volume of the tree using the equation 4.16. 

vol =b* { ( h)-(n; 49.0* ( h-h,;"' ) )} 
mer g 40000 3 

where: h = total height of the tree, m 

b = unknown parameter 

4.16 

4.2.2 Prediction models of thinning tree variables 

The unit size of individual trees removed in thinning is closely related to the type 

of thinning. Therefore the size of the variables of the removed trees in thinning 

0\ ,) can be predicted by the same tree variables in the stand at just before 

thinning (y) ( equation 4.17). 

4.17 

This equation was substituted for each variable as expressed below to predict the 

thinned values of the particular variable. 
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However, the models were not constructed to predict the distribution of total 

height or dbh at this stage because the interest was simply to build the 

relationships between thinned and main crop tree variables. 

4.2.2.1 Basal area 

Models were not developed for the prediction of the basal area of individual trees 

for the main crop in this research work because it can easily be calculated using 

the equation 4.1. However, basal area prediction models were constructed for the 

trees removed in thinning for the user to select the appropriate model when 

determining the basal area (use of the basal area model or calculation of basal 

area using the dbh model). 

where: 

4.2.2.2 

4.18 

gb, = average basal area per tree just before thinning, m 
2 

g,1, = average basal area per tree to be thinned, m 
2 

a, b = unknown parameters 

Diameter at breast height 

Mean diameter at breast height of trees removed in thinning is expressed as: 

where: 

dbh,1, = a+ b * dbhb, 4.19 

dbhb, = average diameter at breast height per tree just 

before thinning, cm 

dbh '" = average diameter at breast height per tree to be 

thinned, cm 

a, b = unknown parameters 
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4.2.2.3 Total height 

Mean total height of trees removed in thinning can be expressed as: 

- -
h11, =a+ b * hbr 4.20 

-
where: hbr = average total height per tree just before 

thinning, m 
-
h rh = average total height per thinned tree, m 

a, b = unknown parameters 

4.2.2.4 Total tree volume 

Preliminary tests indicated that the main crop and thinned trees contain the same 

parameter for total volume prediction models highlighting the same form factor. 

Therefore, equations 4.18, 4.19 and 4.20 can be used to predict the volume of 

thinned trees. By substituting these values in the volume prediction models 

developed for the total volume prediction in main crop trees (equations 4.77 and 

4.78 - page 124), the average volume per tree removed in thinning can be 

estimated. 

4.2.2.5 Merchantable volume 

Timber height can be predicted using models 4.75 and 4.76 (page 119), if both 

the total height and the diameter at breast height are known. The models built for 

the prediction of merchantable volume of main crop trees can be substituted by 

the thinning variables so that the merchantable volume of the trees to be thinned 

can be predicted. 

4.2.2.6 Number of trees 

The volume of the trees removed in thinning can be calculated using the volume 

prediction models (equations 4.77 and 4.78 - page 124). The number of the trees 
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removed in thinning 1s calculated usmg the procedure described below with 

equations 4.21-4.23. 

volume removed in thinning = k 

volume just before thinning 4.21 

Knowing the thinning intensity, the volume removed in thinning can be 

calculated easily. The volume before thinning is given by the volume model 

because, within one thinning cycle, the number of trees remains constant 

(equation 4.12). Substituting these values into equation 4.21 the value of k can be 

calculated. If the left hand side of the equation 4.21 is expanded and re-arranged, 

then: 

where: 1161 = number of surviving trees just before thinning 

n 111 = number of trees removing in thinning 

vb
1 

= average total volume per tree just before 

thinning, m
3 

v
111 

= average total volume per tree removing in 

thinning, m
3 

4.22 

However, simplifying the equation 4.21, the number of trees removed in thinning 

can be calculated using the equation 4.23: 

total volume removed in thinning 
nth = -

V,h 4.23 

In the majority of the models constructed, two types of explanatory variables 

could be identified: essential and subsidiary variables. Essential variables are the 

most important explanatory variables which could not be removed from the 

model for the prediction of a particular variable ( e.g. the present value of the 
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response variable and the age difference in dbh and total height prediction 

models). The subsidiary variables could be removed from the models if they 

were not statistically significant ( e.g. crown dimensions in the total volume 

prediction model). However, before constructing the basic model structures, the 

distributions of each variable with the response variables were thoroughly 

examined using scatter plots in order to determine the correct sign of the 

parameter, shape of the distribution etc. In addition to scatter plots, descriptive 

statistics (i.e. arithmetic mean, median, minimum, maximum, lower quartile, 

upper quartile, variance, standard deviation, standard of the mean, coefficient of 

variance, skewness, standard error of skewness, kurtosis and standard error of 

kurtosis) of each variable and the correlation with the response variables were 

also examined to select the most appropriate explanatory variables. 

4.2.3 Determination of top height 

As a representative factor of the quality of the site, top height was used in the 

past because many authors (Clutter et al., 1992; Garcia 1983) have described it as 

a good indicator of the quality of the site in any forest. For the current study, the 

following method was used to obtain top height in the sample plot data. 

The relationship between height and dbh is exponential type. However, within a 

short period of time, it should be linear. First, the sample plot data were grouped 

by five year age-classes and then by general yield class. Then using simple linear 

regression, parameters were estimated to predict the height from the diameter at 

breast height of individual trees ( equation 4.24). 

where: 

h. = a + b * dbh. 
I I 

dbh; = diameter at breast height of ith tree, cm 

h; = total height of ith tree, m 

a, b = unknown parameters 
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Using the resulting models, the top height could be estimated if the average dbh 

of the 100 largest trees per hectare is known. 

In 1988, Hamilton explained that irrespective of the stand conditions, it is 

broadly true in British conditions that within a given height and dbh class, the 

height-dbh relationship remains same. This theory can easily be applied when the 

data are partitioned into short periods such as five years. Therefore, the expected 

result was a family of parallel lines of general yield classes for each age class. 

This was confirmed for most of the general yield classes in each age class. If the 

lines were not parallel, the procedure written below was followed to obtain the 

family of parallel lines. 

4.2.3.1 

(i) 

Obtaining a family of parallel lines 

Testing for common slope 

Two lines at a time were tested using the following procedure. 

For both lines the degrees of freedom ( df ), corrected sums of squares of X, Y 

and products ( L\"2
, Iy 2 Ixy ), residual degrees of freedom and residual sum of 

squares ( dfres, ssres) were calculated separately using the following formulae: 

where: 

df = (n -1) 
II 

11 (I Y) 2 

Iy2 = IY2 
--­

n 

II 

u2 = i X 2 - (I X)2 
n 

IJ fl 

uy = i(XY) - (I X)(I Y) 
n 

? (Ixy)2 
ssres = Iy- - I.x2 

Y = response variable (total height, m) 

4.25 

4.26 

4.27 

4.28 

4.29 

X = predictor variable ( diameter at breast height, cm) 
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Since only simple linear regressions were fitted, the residual df for each group is 

one less than the total df ( equation 4.30). 

df,es = df -1 4.30 

Then by adding the above results together, the pooled values for both equations 

(both lines) were obtained. 

The total values for residuals were obtained by using the following equations. 

_ (I: 2) _ (I:xy ) ~ooled 
SSres(lot) - Y pooled (I:_x2) 

pooled 

The mean square values for the residuals were obtained by: 

SS res( pooled) 
lnSres(pooled) = if 

C. pooled 

SS res( tot ) 
msres(tot ) = 

dfres(tot ) 

( SS res-tot - SS res- pooled ) 

ins res(resJ = (dr dr ) 
':J res-tot - ':J res- pooled 

4.31 

4.32 

4.33 

4.34 

The Fisher statistic (F) value for the test of common slopes was obtained by: 

F = msres(resl 
a.dfl,d/2 

ms res( pooled ) 

4.35 

An F-value was calculated for each pair of lines obtained from the regression 

analyses. The resultant F-values were checked with the theoretical F-values from 

the table for the appropriate degrees of freedom and at the 0.05 probability level. 

The majority of estimated slopes were significantly different from each other. 

Where a line was significantly different, the common slope for all the GYCs 
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(including the significant GYC) was estimated as the mean slope ignoring the 

significant line. 

where: 

(ii) 

"f,bi( ns ) 
b com =-­

nns 

b com = common slope for the non-significant lines 

b. = slope parameter for non-significant lines 
1(11s) 

4.36 

n = number of non-significant lines in each age class 
f/S 

Smoothing the intercept 

When the slope of an equation is changed, a re-adjustment of intercept might be 

needed to obtain precise predictions. Therefore the intercepts were modelled after 

smoothing with the general yield class to obtain a clear relationship (most of the 

time non-linear) using the following procedure. 

First the height intercept was re-adjusted using the equation 4.37. 

hS/11 = h- (bC0/11 * dbh) 4.37 

The arithmetic mean of the smoothed height was calculated using the equation 

4.38. 

where: 

-h - "i,hsm 
S111 - 4.38 

n 

dbh = diameter at breast height of individual tree, cm 

hs
111 

= smoothed height of individual tree, m 

h sm = mean smoothed height, m 

h = total height of individual tree, m 

n = number of trees 
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This procedure was followed for general yield class in each age class and then 

the mean smoothed height was regressed against the general yield class for each 

age class (equation 4.39) to estimate the new intercept for each GYC. 

-
h,,,, = f GYC 4.39 

The best fit (linear or non-linear) was selected following an examination of the 

residual plots, plots of fitted lines and calculated R
2 

values. The resultant 

parameters of the best fitted model were used to predict the intercept for each 

general yield class in each age class. Finally, using these intercepts and the 

common slopes the top heights were calculated ( 4.40). 

where: 

4.40 

a = new intercept 
sm 

h10p = top height, m 

dbh rop = mean diameter of the 100 thickest trees per ha, 

cm 
(Freese, 1990) 

Top height is the average total height of the 100 largest diameter trees per 

hectare. Assuming a random distribution of such trees, there would, on average, 

be one top height tree in 0.01 hectare. The sizes of the permanent sample plots 

established by the Forestry Commission varied. Therefore, the number of top 

height trees per plot were calculated by the following formula and rounded to the 

nearest whole number. 

No. of trees to be taken = plot size * 100 4.41 

The resultant number of trees was then used to determine the mean diameter of 

the 100 trees of largest diameter per hectare. 
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4.2.4 

4.2.4.1 

Partition of the data 

Thinning types 

The size of the surviving trees is influenced by the type of the thinning carried 

out. It was therefore decided to partition the data by the declared thinning regime. 

However, after examination of the data intermediate and neutral thinning types 

were selected for the current work because only these two thinning types 

contained enough sample plots (19 and 18 respectively out of 49) for model 

construction. 

4.2.4.2 Working and validation data 

The most common method of partitioning data for fitting the models and 

subsequently validating them is 3/4 and 1/4 respectively (Chhetri and Fowler, 

1996a; Shifley 1987; West 1981). From each thinning type 1/4 of the sample 

plots were randomly selected and reserved for the validation (Table 4.1 ). 

Intermediate thinning Neutral thinning 

Fitting 
1181 
1185 
1187 
1246 
1248 
1366 
1370 
1372 
1428 
1430 
1519 
1543 
1746 
1749 

Table 4.1: 

Validating Fitting Validating 
1186 1635 1634 
1214 1637 1645 
1371 1640 1648 
1424 1642 1649 
1427 1644 1652 

1647 
1651 
1636 
1638 
1641 
1643 
1646 
1650 

Partition of the sample plots by thinning type and by plot number 
used for the fitting and validating. 
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4.2.5 Fitting the equations to data 

The final set of growth models was constructed from a senes of models 

predicting certain tree growth variables. They were the models of predicting dbh, 

total height, timber height, total volume and merchantable volume for any tree 

and mean basal area, mean dbh and mean total height for the trees removed in 

thinning. The construction of each model was described in the following 

procedures. 

The GENSTAT statistical programme was selected for the construction of the 

models because of the robustness of both standard and non-standard non-linear 

regression (Lane and Payne, 1996; Payne et al. , 1993). 

Before constructing each model, the distributions of the response variables with 

the explanatory variables were examined using scatter plots. The basic statistics 

and correlations of both response and candidate explanatory variables were also 

studied for possible deviation from the model assumptions. 

4.2.5.1 

(i) 

Main crop predictions 

Diameter at breast height model 

Factors representing the site 

It is common to use site index as a variable to represent the site quality in growth 

and yield modelling. However, this value could be changed by variations of site 

due to the changes of nutrient and water levels. Therefore, some selected values 

at each measurement time were tested in the current work. 

In addition to top height, three variations were used to represent the quality of the 

site: 
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a. 

b. 

C. 

d. 

where: 

htop 

.
1 

_ h ,op(rl ) 
Sl etop ,age - -­

age,1 

site = ~ ba.age 
age,1 

' -1 G = total basal area, m-ha 

4.42 

4.43 

4.44 

4.45 

t, = time at the beginning of the simulating period, years 

Passage of time 

Passage of time is an important factor for the construction of models because the 

growth of most tree variables has a high correlation with the age of the tree. 

However, determination of the actual age of some plantations is sometimes 

difficult due to the lack of data. Therefore, the time difference between the 

beginning and the end of the simulating period ( 4.46) was used for the diameter 

prediction models. This reduces the complexity of the models which might have 

arisen from the use of the plantation ages at the beginning and the end of the 

simulating period as two explanatory variables. By using passage of time, it is 

possible to start with a value of a variable ( e.g. dbh) at the present time and use 

this to predict the future values of that variable irrespective of the current age of 

the stand. 

where: adif = difference between the start and the end of 

simulating period, years 

Transformation of the variables 

4.46 

Transformations were done in this work in order to find the best residual 

distributions, obtain some parameters equal to unity and sometimes to obtain the 

normal distribution. 
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The following transformations were tested m order to obtain the best fitting 

model while meeting all the assumptions. 

a. untransformed Y;, X;; 

b. square root .fy;, J;;; 
d 

1 1 
c. square y- , x,~ ; 

d. logarithmic log,0 (y ;) , log,0 (x;); and 

e. inverse 1 / Y;, 1 / X; . 

The tested explanatory variables (x) were: dbh at time t, site factors (h10p, 

sitetop,age, siteba,age, siteba,top), age difference and number of trees per hectare. 

The diameters at the beginning and end of the simulating period were 

conditioned to be the same because, 

if there is little difference in age in the diameter prediction model, then: 

( 4.47) 

Site factor can be ignored because it does not change when the age difference is 
Cl'\ 

zero or if one assumes trees are growing[an area where the competition has not 

started. 

Then ( 4.48) 

Conditioning a parameter to unity 

When the conditions mentioned in equations 4.47 and 4.48 are achieved, the 

parameter associated with the diameter at the present time must theoretically not 

be significantly different from unity. If they were significantly difference these 

were conditioned to equal one by re-arranging the model using the method 

described below. This procedure was followed in order to obtain the models 

which are compatible with the theory used for the structure formulation. 
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The deviation of parameters from unity was tested usmg formula 4.49 m 

GENSTAT (Payne et al., 1993). 

where: 

[ = P est - l 
cal 

se 

Pest= estimated value for the parameter 

se = standard error of the particular parameter 

teal= the calculated t-value 

4.49 

If the calculated t-value was lower than the theoretical t-value at 0.05 probability 

level at the appropriate degrees of freedom, the parameter was not significantly 

different from unity. 

However, if it was significantly different from unity, it was set to one using the 

following procedure. 

Assuming equation 4.50 was the model fitted to the data with a zero intercept, 

4.50 

If xn is the variable of interest, then parameter /3 1 should theoretically be equal to 

one. If /3 1 was found to be significantly different from unity, a new observed 

variable zi was obtained by equation 4.51 . 

4.51 

zi s were then regressed against the rest of the explanatory variables (4.52). 

z. = /3 ,1 
X , . + /3 3

1 
X 3. + 8. 

I - -1 I I 
4.52 
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Finally, the resultant new parameters were substituted in the original equation 

(4.50) to obtain the adjusted equation shown in 4.53. 

f3 I I 
Y· = X1· + , x,. +/3 3 X3· +£. I I _ - l I I 4.53 

(Whitaker, pers. comm.) 

However, following application of this method, model bias can be increased and 

a careful examination of the regression fit is therefore essential. 

(ii) Total height prediction model 

The first explanatory variable in the total height prediction model was the height 

at the beginning of the simulating period. Two variables were tested in order to 

represent the quality of the site i.e. hrop and sitetop,age· However, the other two 

variables were ignored assuming there is a higher correlation between the total 

height and top height than the total height and total basal area. Passage of time 

was also used as a variable in total height prediction models. 

Transformation of the variables 

Unlike for the dbh prediction models, the response variable total height at the 

time t
2 

and the first explanatory variable total height at the time t
1 

were not 

transformed for the total height prediction models because conditioning of the 

associated parameter with h were not necessary. However, all the other variables 
I 

were transformed in the way and for the reasons described in the dbh prediction 

models. 

(iii) Timber height prediction model 

A function was built by multiplying the over bark diameter at breast height (m) 

and the total height (m) of individual trees in order to obtain a single explanatory 

variable. This model was constructed to predict the timber height at a particular 

age using the dbh and total height at the same age. In that sense, this model is 
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different from the dbh and total height prediction models. Therefore, age was not 

used as an explanatory variable. Total height was originally tried as the only 

explanatory variable, but this was unsuccessful as indicated by bias in the 

residual distributions. Variables were transformed in the way and for the reasons 

described in dbh prediction models. 

(iv) Total volume prediction 

Data partitioning 

Data were divided by thinning type, and then by age in order to fit the models to 

one year at a time. The intention was to estimate the parameters for the selected 

model, or models, at each age and then to examine the pattern of each parameter 

with age. The resultant parameters were regressed against plantation age in order 

to build parameter prediction models. The resultant predicted parameters can be 

used to predict volume at any time in the future assuming all the explanatory 

variables at the particular age are known. 

As in equation 4.5 (page 72), the variable g*h was selected as the first 

explanatory variable and was used in conjunction with the following variables: 

(v) 

a. to represent the site, htop and sitetop,age, 

b. to represent the competition and the form factor, crown depth (c1i -

equation 4.8), crown ratio (c,. - equation 4.9) and crown volume (vc -

equation 3.8), 

c. to represent the competition through density of the plantation, total 

number trees per hectare (N) and total basal area per hectare (G). 

Merchantable volume prediction 

As in the total volume prediction models above, the intention was to estimate the 

parameters separately for each age and then to regress these against age in order 

to build parameter prediction models for each variable. Therefore the constructed 

models 4.15 and 4.16 (pages 76, 77) were fitted separately to the partitioned data. 
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4.2.5.2 Prediction of basal area, diameter at breast height 
and total height in thinned trees 

All the models constructed for predicting the thinned tree variables were stand­

level models and therefore the mean values were used. Mean values of dbh, basal 

area and total height were calculated separately for each thinning occasion using 

the formulae 3.1 , 3.3 (page 53) and 3.4 (page 54) respectively for each age. 

All three models contain just one explanatory variable which is the same as the 

response variable but just before the thinning. 

4.2.6 Evaluation of the models 

A combination of qualitative and quantitative tests were used to determine the 

bias and the precision of the constructed models. 

4.2.6.1 Qualitative tests 

The qualitative tests used for model evaluation in this study are: 

a. Standardised residual plots. 

b. Graphs of standard deviation of the residuals at selected points of 

fitted values. 

4.2.6.2 

(i) 

Quantitative tests 

Average model bias 

Average model bias was calculated in this study using the following formula: 

4.54 
n 
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(ii) Mean absolute difference 

This was calculated using the following formula: 

4.55 
n 

(iii) Modelling efficiency 

Modelling efficiency was calculated using the following formula: 

4.56 

where: n = number of data 

Y; = observed value for the ith variable 

Jl; = predicted value for the ith variable 

y = arithmetic mean value for the observed variables 

(Soares et al., 1995) 

4.2.7 Determination of the lack of fit 

The procedure introduced by Weisburg (1985) was followed to highlight the lack 

of fit of the models constructed. Weisburg suggested that the error of any 

mathematical model occurs for two reasons namely, lack of fit and pure error. 

Pure error occurs because of the different response values for similar explanatory 

values (i.e. population variance). Lack of fit arises because the model does not fit 

the trend in the data. Lack of fit may occur by not using enough explanatory 

variables and using inappropriate variables. 

The response values for similar explanatory variables were obtained using the 

following procedure. An illustration of an imaginary data set of a model which 

contains three explanatory variables is shown in Table 4.2 in order to facilitate 

understanding. 
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Before sorting After sorting 
y x, x, xj y x, x, 

I 5 7 I 4 
3 6 8 I 4 
3 5 9 I 4 
I 4 7 l 4 
2 4 9 l 4 
3 6 9 l 4 
2 4 7 l 5 
2 6 7 l 5 
1 6 7 l 5 
2 4 8 1 5 
2 5 7 1 5 
1 4 9 I 6 
I 5 8 1 6 
I 6 7 1 6 
1 5 8 2 4 
2 5 8 2 4 
1 4 7 2 4 
3 4 8 2 4 
3 6 9 2 4 
3 5 7 2 4 
2 6 7 2 5 
I 5 9 2 5 
2 4 9 2 5 
3 4 8 2 5 
2 6 8 2 6 
3 5 9 2 6 
3 5 7 2 6 
l 6 7 2 6 
l 4 9 2 6 
l 4 8 3 4 
2 4 8 3 4 
2 4 8 3 4 
2 5 9 3 4 
3 4 8 3 4 
3 6 8 3 4 
2 5 8 3 5 
3 4 9 3 5 
3 4 9 3 5 
1 5 7 3 5 
3 4 8 3 5 
2 6 9 3 6 
2 6 7 3 6 
3 5 7 3 6 
1 4 7 3 6 
3 6 8 3 6 

Table 4.2: An example of the data distribution of a model which contains three 
explanatory variables. 
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xj 
7 
7 
7 
8 
9 
9 
7 
7 
8 
8 
9 
7 
7 
7 
7 
8 
8 
8 
9 
9 
7 
8 
8 
9 
7 
7 
7 
8 
9 
8 
8 
8 
8 
9 
9 
7 
7 
7 
9 
9 
8 
8 
8 
9 
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First the data were sorted in ascending order, sorting with explanatory variable 

X
1

, then X : and finally by X
1

. 

If the number of data in each group (which has the similar explanatory variables) 

was less than two, that group was ignored from the calculations. For each group 

the following characteristics were determined for the response variable. 

(i) Average y value: 

y = Z:y; I n 4.57 

(ii) Sum of squares: 

ss = Z:(y; - y ) 2 4.58 

(iii) Degrees of freedom: 

df = n- 1 4.59 

where: n = no. of data within each group 

Then the total degrees of freedom (DF) and total sum of squares (SS) were 

calculated by summing all the d/and ss values respectively. These DF and SS are 

known as the pure error DF and pure error SS. 

The total residual DF and SS of the corresponding model were calculated by 

equations 4 .60 and 4.61 respectively. 

DF = N - 1 4.60 

4.61 

where: N = total no. of data in the response variable 
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The DF and SS for the lack of fit were obtained by subtracting the DF and SS for 

pure error from the residual DF and SS. Then the mean square (MS) values for 

lack of fit and pure error were calculated using the following formula 

MS= SS I DF 4.62 

Finally the F-value was calculated by the equation 4.63, 

F a.df l,d/2 = MS/ack_jit / MSpure_error 4.63 

The null hypothesis was that there was no lack of fit in the model constructed. If 

the calculated F-value was lower than the theoretical F-value in the table for a = 

0. 05; DFtack_Jit, DFpure_error the model was considered as adequate. 

4.2.8 Validation with the reserved data 

The reserved data were fitted to the constructed models for the similar thinning 

type without changing the originally estimated parameters. The distribution of 

normal residuals with the fitted values was observed. Whenever possible, fitted 

lines were observed after overlaying on the reserved data used for the validation. 

However, this was only possible when the fitted line resulted from simple linear 

or standard non-linear estimations. If residuals were normally distributed without 

an identifiable pattern, the model was finally selected to use in the field. 
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4.3 

4.3.1 

Results 

Estimation of top height 

Models for each general yield class in each 5 year age class were developed using 

equation 4.24 ( h; = a + b * dbh; ). The resultant parameters a and b are given in 

tables 4.3, 4.4 and 4.5 below: 

Age General yield class (GYC) 
class 
(vears) 10 12 14 16 18 20 22 
16-20 - - 5.35 - 8.57 - 7.03 
21-25 - 4.17 7.59 6.72 8.49 9.56 10.50 
26-30 8.93 9.13 10.21 9.41 9.23 10.07 12.49 
31-35 9.83 7.68 10.83 10.26 11.18 13.35 14.44 
36-40 10.56 10.78 13.22 12.20 16.18 17.53 -
41-45 - 12.49 17.50 13.55 15.11 21.20 -
46-50 14.64 - 18.89 17.76 18.51 20.98 -
51-55 - - 18.17 16.66 20.61 23.82 -
56-60 - - 17.04 18.02 19.97 23.84 -
61-65 - - 20.11 20.56 23.61 - -
66-70 - - 25.02 24.64 - - -
Table 4.3: Parameter a for h-dbh relationships (intermediate thinning) 

estimated via linear regression. 

Age General yield class (GYC) 
class 
(vears) 10 12 14 16 18 20 22 
16-20 - - 0.17 - 0.18 - 0.23 
21-25 - 0.27 0.17 0.29 0.21 0.1 7 0.21 
26-30 0.14 0.09 0.12 0.23 0.27 0.27 0.25 
31-35 0.19 0.21 0.18 0.22 0.26 0.18 0.24 
36-40 0.12 0.10 0.16 0.23 0.18 0.16 -
41-45 - 0.11 0.03 0.20 0.23 0.10 -

46-50 0.13 - 0.06 0.17 0.18 0.16 -
51-55 - - 0.10 0.20 0.17 0.13 -
56-60 - - 0.22 0.18 0.19 0.14 -
61-65 - - 0.15 0.15 0.14 - -
66-70 - - 0.05 0.10 - - -
Table 4.4: Parameter b for h-dbh relationships (intermediate thinning) 

estimated via linear regression. 
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Age class 

(years) 

16-20 
21-25 
26-30 
31-35 
36-40 
41-45 

Table 4.5: 

4.3.1.1 

Parameter 

a b 
GYC14 GYC16 GYC14 GYC16 

6.05 6.39 0.24 0.22 
8.08 8.23 0.20 0.21 

- 9.49 - 0.19 
8.55 10.52 0.25 0.20 

12.52 12.67 0.18 0.20 
15.04 16.34 0.13 0.13 

Resultant parameters of h-dbh relationships for each age class 
(neutral thinning). 

Obtaining sets of parallel lines for each age class 

A linear non-parallel fami ly of straight lines resulted for each age class ( e.g. 

Figure 4.2). A set of parallel lines was produced as the second step for each 

general yield class in each 5 year age class using the procedure described in 

section 4.2.3.1 (pages 82-85). 

20.0 .-------------------, 

c 15.0 --
... --= 0.0 

":i> I 0.0 --= -; -0 - 5.0 -

0.0 -------+--+----+---,----+-~ 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 

diameter at breast height, cm 

-o- 1 22 I I 
- I 

- x - 1 20 1 
- I 

-□- I 18 I , 

l-+ - 1- 16 I 

- x - 1-14 I 
- I 

--&-- 112 

- •- N 16 

- o-N 14 

Figure 4.2 : Resultant dbh-height relationships before smoothing the intercepts 
and slopes (age class 21 -25). 
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Five year age classes were selected for this procedure as these produced the most 

consistent relationships between height and dbh. The results of the F-tests for the 

common slopes of the general yield classes in each five year age class are given 

in Appendix 2.1. Most of the slopes were not statistically different from each 

other. Only the statistically similar lines were selected in order to calculate the 

mean slope. The calculated mean slopes for each age class are given in table 4.6. 

Age class (years) Common slope 
16-20 0.2077 
21 -25 0.2181 
26-30 0.1954 
31-35 0.2196 
36-40 0.1860 
41-45 (l)* 0.1147 

(II) 0.2160 
46-50 0.1400 
51-55 0.1566 
56-60 0.1835 
61 -65 0.1482 

* Age class 4 1-45 (I)- GYC IIO, 112, 120,122, Nl4, N16: (II) - GYC I16, I1 8 

Table 4.6: Calculated common (mean) slopes for each age class after testing 
the significance. 

Then the mean heights for each age class were re-estimated using the procedure 

outlined using equations 4.37 and 4.38 (page 84). The resultant values are given 

in the fo llowing table: 

Age class, General yield class, m3ha·1y/ 
years Intermediate thinning Neutral 

16-20 
21-25 
26-30 
31-35 
36-40 
4 1-45 
46-50 
51-55 
56-60 
61-65 

Table 4.7: 

thinning 
GYC GYC GYC GYC GYC GYC GYC GYC GYC 

10 12 14 16 18 20 22 14 16 
- - 4.75 - 7.60 - 7.41 6.41 6.34 
- - 4.96 6.88 6.85 8.36 8.84 7.79 8.13 
8.04 7.35 8.77 9.09 10.81 11.56 12.16 - 9.33 
9.30 9.30 9.3 1 10.31 12.17 14.23 13.02 9.30 10.07 

10.62 11.26 11.67 12.23 16.74 16.85 - 12.18 13.05 
- 14.20 15.17 14.51 17.17 18.86 - 14. 12 15.15 

14.39 - 16.21 17.88 19.86 21.59 - - -
- - 17.37 17.88 20.96 22.79 - - -
- - 18.26 17.99 20.40 21.79 - - -
- - 20.46 20.61 23.28 - - - -

Mean smoothed heights for each GYC in each age class after 
adjusting. 
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Tables 4.8a and 4.8b indicate the new intercepts for each set of parallel height 

diameter lines in each five year age class. In these tables the intercepts for all the 

general yield classes (10-22) are given including those for which raw data did not 

exist. Thinning type was not taken into account in the estimation of these 

intercepts because similar GYCs in the two thinning types indicated very similar 

results. 

Age class Relationship 
, 

K GYC New 
(years) intercept 
16-20 - b * gyc as,,, - a+ r 0.938 10 2.302 

( exponential) 12 4.329 
14 5.600 
16 6.398 
18 6.898 
20 7.212 
22 7.409 

21-25 a =a+b*rgJ•c 
sm 0.819 10 1.085 
( exponential) 12 5.117 

14 7.019 
16 7.917 
18 8.341 
20 8.541 
22 8.636 

26-30 a sm = a + c I (1 + exp( -b * (gyc - m))) 0.943 10 7.758 
(logistic) 12 7.912 

14 8.351 
16 9.327 
18 10.667 
20 11.664 
22 12.118 

31-35 as,,, =a+ c I (1 + exp(-b * (gyc - m))) 0.910 10 9.296 
(logistic) 12 9.303 

14 9.385 
16 10.108 
18 12.399 
20 13.447 
22 13.614 

36-40 a sm = a + c I (1 + exp( - b * (gyc - m))) 0.910 10 11.364 
(logistic) 12 11.364 

14 11.392 
16 12.663 
18 16.648 
20 16.931 
22 16.936 

Table 4.8a: Adjusted intercepts with new mean heights for each GYC. 
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Age class Relationship 
, 

R- GYC New 
(years) intercept 
41-45 (i) a,

111 
=a+ b * gyc 0.978 10 11.319 

(linear) 12 13.177 

(ii) a,111 =a+ b * gyc 1.000 14 15.035 

(linear) 16 13.140 
18 15.580 
20 20.608 
22 22.466 

46-50 a,111 =a+ c I (I+ exp(-b * (gyc - m))) 0.999 10 14.396 
(logistic) 12 15.046 

14 16.179 
16 17.857 
18 19.828 
20 21.600 
22 22.847 

51-55 a5 111 =a+ c I (I+ exp(-b * (gyc - m))) 1.000 10 17.330 

(logistic) 12 17.332 
14 17.366 
16 17.877 
18 20.959 
20 22.786 
22 22.954 

56-60 a =a+b*rg;•c 0.843 10 17.223 
sm 12 17.496 
( exponential) 

14 17.946 
16 18.687 
18 19.906 
20 21.912 
22 25.215 

61-65 a =a+b*rg;·c 1.000 10 20.450 
sm 

( exponential) 12 20.451 
14 20.459 
16 20.609 
18 23 .284 
20 25.351 
22 27.891 

Table 4.8b: Adjusted intercepts with new mean heights for each GYC. 

Although the relationships between the smoothed intercept and the general yield 

class were non-linear, a typical pattern from lowest to highest age class was not 

observed. For age class 41 -45, two lines were estimated as shown in Table 4.8b, 

because it was impossible to construct one family of lines without introducing 

bias. Despite careful examination of the raw data and the measurement 

procedures adopted, this bias could not be fully explained. The reason for this 
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bias is most likely due to some undocumented feature of the thinning practices 

adopted within some sample plots at this age class. In this study, the purpose of 

such work was to estimate the top height precisely using equation 4.40 (page 85). 

However, when the constructed models are used in the field, the user will be 

required to measure the top height of the particular plantation rather than using 

the above relationships. The resultant family of parallel lines for age class 21-25 

after following the above procedure is given in Figure 4.43. 

20.0 -

E 15.0 -
.... 

-o- gyc22 

- x - gyc20 I -e'D -□- gyc!S I -~ 10.0 --- -+- gyc16 I -~ .... 
0 5.0 -.... 

- :K- gycl4 I 
- .6- gyc12 I 
-+- gycl0 

0.0 -!---~ ----~--- ---
5.0 10.0 15.0 20.0 25.0 30.0 35.0 

diameter at breast height, cm 

Figure 4.3: The resultant dbh-height relationships after smoothing the 
intercepts and slopes ( age class 21-25). 

Finally the top height can be calculated using equation 4.40. 

4.3.2 Prediction of tree diameter at breast height 

In order to select the best possible explanations of model structures, first the 

distributions of the selected explanatory variables with the dbh at time t+M (Y­

axes of all the plots in Figure 4.4) were examined using scatter plots. The 

descriptive statistics of the tested variables and the correlation with the diameter 

at the time t+M are shown in Appendix 2.2(i) and Appendix 2.3(i) respectively. 
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Figure 4.4: Distribution of dbh at the end of the simulating period with the tested 
explanatory variables (intermediate thinning type). 
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4.3.2.1 Models developed for the prediction of dbh 

The model structure described in section 4.2.1.2 (page 70) is: 
dbh,+6 , = a + b1 * dbh, + b2 * a"if + b3 * s + b4 * d 

4.3.2.2 The best relationships 

(4.64) 

All the possibilities described on pages 87-89 were tested with the residual plots 
and by examining the R

2 
values. The factors selected to represent the site i.e. ht , top 

site , site and site were changed one at a time and the simulating period 
top.age ha.age bt1,top 

was repeated. The best and acceptable relationships are listed in Table 4.9. The 
transformation of dbh is always similar to the form of dbh. 

t +tu l 

Intermediate thinnin_g Neutral thinning 
Model R2 Model 

? R-

log dbh, + siteba.age + ✓a dif 0.990 ✓dbh, -~ba,age +ad,f 0.990 

✓dbh,1 +~ba,top +adif 0.991 ✓dbh,1 - Siteba ,age + a,;if 0.990 

.J dbh ti + siteba.age + a~i/ 0.991 ✓dbh II -~ ba,age + log adif 0.990 

✓dbh.11 + siteba,top + logadif 0.991 ✓dbh ti - siteba,top + a~i/ 0.990 

✓dbh11 +~ba,top + logadif 0.99 1 ✓dbh,1 - Iogsiteba,top + a~i/ 0.990 

✓dbh,1 + siteta.top + logadif 0.991 ✓dbh11 - ~ ba,top + logadif 0.990 

✓dbh11 + logsiteba,top + log adif 0.991 ✓dbh ti + 1 / siteba.top -1 / adif 0.990 

logdbh,1 + site,!p.age + ✓a di/ 0.991 ✓dbh,1 -site,op.age +adif 0.990 

logdbh,1 +~lop .age + a~i/ 0.992 ✓dbh ti - ~top.age + ✓adif 0.990 
log dbh/1 + site,op,age + log adif 0.991 ✓dbh, 1 -site,!p,age +a~i/ 0.990 
✓dbh,1 + log site,op,age + ✓a dif 0.992 ✓dbh ti - site,op,age + log adif 

0.990 
✓dbh11 + site!p.age + a~i/ 0.991 ✓dbh ti - log site/op.age - 1 / adif 0.990 

logdbhll - siteba,age + ✓a dif 0.990 

logdbh/1 - siteba,top + ✓a dif 0.990 

logdbh/1 - logsiteba,top + ✓a dif 0.990 

logdbh/1 + 1 / siteba,age + a~if 0.990 

logdbh/1 - sitelop,agr + ✓a dif 0.989 

logdbhtl -1 / sitelop,age + adif - d 0.989 

Table 4.9: The best relationships obtained after fitting the possible equations. 



In all the tabulated relationships, the parameter a (intercept) was not significantly 

different from zero at 0.05 probability level. 

According to the theory described by equations 4.47 and 4.48 (page 89) the 

parameter associated with dbh (b in model 4.64) should not theoretically be 
I I 

significantly different from one. However, in all the models, except one 

(intermediate thinning - ✓dbh 11 + siteba.iop + logadif ), the parameter b, was 

significantly different from one, although close. Therefore that parameter was 

forced manually to one by using the procedure described on pages 90 and 91 

(equations 4.49 to 4.53). 

Although the data were grouped by thinning type, ideally the basic model 

structure for both thinning types should be identical except for the parameter 

values. Four such identical models were found in this work. These models are 

listed below: 

(i) Dbh prediction model a 

This model is: 

(4.65) 

Parameters before forcing b1 ➔ l in this model 

Parameter Intermediate Neutral 
estimate std. error estimate std. error 

b, 1.00762 0.00074 1.05184 0.00166 

b" 0.34095 0.00895 -0.26630 0.02040 

bJ 0.00400 0.00008 0.00523 0.00014 

Parameters after forcing b1 ➔ 1 in this model 

Parameter Intermediate Neutral 
estimate std. Error estimate std. error 

b2 0.41773 0.00498 0.38444 0.00606 

bJ 0.00449 0.00006 0.00759 0.00013 
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(ii) Dbh prediction model b 

Dbh prediction model b is: 

(4.66) 

Parameters before forcing c1 ➔ 1 in this model 

Parameter Intermediate Neutral 
estimate std. error estimate std. error 

Cl 1.01383 0.00071 1.05047 0.00103 
c , 0.05882 0.00195 -0.05577 0.00268 
C 

J 
0.00382 0.00008 0.00491 0.00013 

Parameters after forcing c1 ➔ 1 in this model 

Parameter Intermediate Neutral 
estimate std. error estimate std. error 

CJ 0.08908 0.00120 0.06362 0.00141 
CJ 0.00479 0.00007 0.00901 0.00013 

(iii) Dbh prediction model c 

Dbh prediction model c is: 

(4.67) 

Parameters before forcing d
1 
➔ 1 in this model 

Parameter Intermediate Neutral 
estimate std. error estimate std. error 

d 
I 1.00157 0.00108 1.04992 0.00158 

d 
J 0.01855 0.00271 -0.09844 0.00313 

d1 0.28695 0.00674 0.29524 0.00756 

Parameters after forcing d 1 ➔ 1 in this model 

Parameter Intermediate Neutral 
estimate std. error estimate std. error 

di 0.01855 0.00271 -0.01804 0.00203 
d1 0.28695 0.00674 0.44869 0.00647 
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(iv) Dbh prediction model d 

This model is: 

(4.68) 

Parameters before forcing e1 ➔ 1 in this model 

Parameter Intermediate Neutral 
estimate std. error estimate std. error 

e 
I 0.97211 0.00093 1.00527 0.00137 

e1 0.01386 0.00044 -0.01324 0.00060 
e 

3 
0.02945 0.00055 0.02818 0.00079 

Parameters after forcing e1 ➔ 1 in this model 

Parameter Intermediate Neutral 
estimate std. error estimate std. error 

e1 0.00961 0.00044 -0.01206 0.00052 

e1 0.01487 0.00028 0.03088 0.00037 

The sign of each parameter must be the same in the models for both thinning 

types. However, in model c (4.67) and d (4.68), the parameters associated with 

the variables representing the quality of the site have different signs i.e. positive 

in intermediate thinning and negative in neutral thinning. Therefore, both models 

were ignored and dbh prediction models a ( 4.65) and b ( 4.66) selected for further 

testing. 

4.3.2.3 Evaluation of the diameter prediction models 

When the age difference increases, the dbh should also increase making the 

parameter associated with a dif positive. Dbh growth should also increase with the 

quality of the site if there is no other limitation for growth. Therefore, the 

parameter associated with the site should also be positive. 
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According to Whitaker (pei-s. comm.) it is impossible to calculate the standard 

residuals manually after smoothing parameters and, therefore it was decided 

instead to examine the distribution of normal residuals. The distribution of the 

normal residuals of dbh prediction model a for intermediate thinning and dbh 

prediction model b for both thinning types are given in Figure 4.5 and Appendix 

2.4(i) respectively. The normal residuals of both models were very similar and 

did not indicate a bias for the intermediate thinning type. In the neutral thinning 

type, there was an indication of over estimation at early ages after smoothing the 

parameters for both models. 
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Figure 4.5: The distribution of the normal residuals for dbh prediction model 
a (intermediate thinning). 
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The standard deviation of the residuals was distributed evenly with the fitted 

values (Figure 4.6) indicating a good fit except for model b at the fitted value 

point six. 

0.08 
.§ 
~ 
-~ 0.06 
-0 
-0 ... 
_g 0.04 
C 

£l 
"' 

0.02 

3.0 

I !:a int a 1

1

' 

I -
Bint b 

I □ ne~t a I I 
I - I I 

IC::lneut_ b 

4.0 5.0 6.0 7.0 

Selected fitted w.lue points 

Figure 4.6: Distribution of standard deviation of residuals at selected points of 
fitted values. 

The average model bias and the mean absolute difference for both models were 

very low and the modelling efficiency was over 0.98 (Table 4.10). After the 

validation tests with the reserved data (Figure 4.7) it was concluded that all the 

models were suitable for the field application and also that there was no 

indication of a lack of fit (Table 4.11). Therefore all four models were selected 

for further studies. 

Test Intermediate thinning Neutral thinning 
Model a Modelb Model a Modelb 

Average model bias -0.0020 0.0039 -0.0013 -0.0089 
Mean absolute difference 0.0580 0.0580 0.0570 0.0630 
Modelling efficiency 0.9920 0.9910 0.9870 0.9840 
Table 4.10: Results of the quantitative tests for selected dbh prediction 

models. 
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Model Intermediate thinning Neutral thinning 
No. of data= 5473 No. of data= 4024 

a 0.93 0.91 
b 0.90 0.24 

None of the F-values were significant at 0.05 probability level. 

Table 4.11: Results of lack of fit tests (F-values) for the selected dbh 
prediction models. 

Residuals of dbh prediction model a after fitting 
to the reserved data (intennediate thinning) 
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Figure 4. 7: Distribution of the residuals after fitting the unchanged models to 
the data reserved for validation. 
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4.3.3 Prediction of the total height of individual 
trees 

The distributions of selected explanatory variables with the total height at time 

t+t:i.t (Y-axes of the graphs in Figure 4.8) were examined in order to determine the 

correct sign of the parameters. These distributions for the intermediate thinning 

type are given in Figure 4.8. 
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Figure 4.8: Distribution of total height at the end of simulating period with the 
explanatory variables tested (intermediate thinning). 
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Descriptive statistics of the Y variables and the selected explanatory variables 

with the total height at time t+t1t are shown in Appendix 2.2(ii). and 2.3(ii) 

respectively. 

4.3.3.1 Models constructed for the prediction of total height 

The selected model structure according to section 4.2.1.3 (page 71) is, 

(4.69) 

4.3.3.2 The best relationships 

After trying all the possibilities described in page 91, the models listed in Table 

4.12 were selected because these were the only models which contained similar 

structures for both thinning types. 

When h alone was used to represent the quality of the site, it was not 
top 

statistically significant and the intercept (parameter a in model 4.69) was 

significantly different from zero. When the total number of trees per hectare was 

added as an additional predictor variable to the model, it was not statistically 

significant and also the distribution of standard residuals was not improved. 

Therefore the total number of trees per hectare was removed from the final 

equations and site was used to represent the site quality instead of h . 
rap.age top 

Intermediate thinning Neutral thinning 

Model Rz Model ' R-

h . i 
I + Sltetop,age + Qdifl 0.983 

h . i 
I + Sltetop,age + Qdiff 0.973 

h 1 + ~rop,age + a ~iff 0.983 ht1 + ~rop,age + a~iff 0.973 

Table 4.12: The best possible relationships obtained for the prediction of total 
height after fitting the possible equations. 

The intercepts of both equations listed above were not significantly different 

from zero at the 0.05 probability level. 
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The basic model structure for both diameter at breast height and total height was 

similar and therefore the theory described in equations 4.47 and 4.48 (page 89) 

could also be applied to the height prediction model. Therefore, assuming a tree 

growing on open ground or on a site where tree-tree competition has not started, 

and where age has not changed, then both explanatory and response heights 

would be the same (4.70) and therefore the parameter b
1 

associated with h
1 
should 

not be significantly different from one. 

(4.70) 

Both equations listed above were selected for further tests because they fulfilled 

the above requirements and also forcing parameters to unity was not necessary. 

(i) Total height prediction model a 

This model is: 

h -h b*. b* 2 
t+ t:11 - I + 2 slle,op,age + 3 adif (4.71) 

Parameter Intermediate thinning Neutral thinning 
estimate std. error estimate std. error 

bl 1.00301 0.00553 1.00070 0.01100 

b: 2.39100 0.14900 3.55555 0.35300 

b1 0.03337 0.00149 0.02807 0.00403 

(ii) Total height prediction model b 

This model is: 

h -h * ~ * i t+t:it - 1 + C2 -V Slte top,age + C3 Qdif (4.72) 

Parameter Intermediate thinning Neutral thinning 
estimate std, error estimate std. error 

Cl 0.99469 0.00601 0.99310 0.01160 

CJ 1.90600 0.12000 2.73400 0.27100 

CJ 0.03347 0.00150 0.02759 0.00405 
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4.3.3.3 Evaluation of the total height prediction models 

The distributions of standardised residuals of the total height prediction model a 

and b are included in Figure 4.9 and Appendix 2.4(ii) respectively. The standard 

residual distribution for both models for the intermediate thinning type showed 

an even distribution highlighting the high predictive ability of the model (Figure 

4.9) . The standard deviation of the residuals also indicated an even distribution 

for that thinning type (Figure 4.10). However, in the range of total height 13-16 

m there was an indication of over-estimation for neutral thinning and the 

distribution of the standard deviation at the 15m point of the fitted values had a 

narrower distribution than those for the other fitted values (Figure 4.10). More 

data are needed in the above range for neutral thinning type for a proper 

conclusion of this matter. These were unavailable for the present study. 
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Figure 4.9: Standard residual distributions of the total height prediction model 
a for both thinning types. 
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Figure 4.10: Distribution of the residual standard deviations with the fitted 
values. 

Looking at the distributions of the variables in Figure 4.8, age difference should 

have a positive parameter because the total height increases with age. The 

parameter associated with the quality of the site should also have a positive sign 

because under conditions of unrestricted growth, the height increases with site 

quality (increment of height goes up with both age and quality of the site). Both 

models indicate very low bias. Modelling efficiencies were over 0.95 (Table 

4.13). The results of the lack of fit testing were negative (Table 4.14) and when 
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applied to the reserved data (Figure 4.1 1 ), a good residual distribution could be 

seen. Therefore, both models were selected for further tests (Chapter 6). 

Test Intermediate thinning Neutral thinning 
Model a Model b Model a Model b 

Average model bias -0.053 0.121 0.076 0.054 
Mean absolute difference 0.564 0.503 0.557 0.379 
Modellin_g efficiency 0.982 0.990 0.956 0.981 
Table 4.13: Results of the quantitative tests applied for total height prediction 

models. 

Model Intermediate thinning Neutral thinning 
No. of data= 554 No. of data = 185 

a 0.99 1.31 
b 1.00 1.31 

None of the F-values were significant at 0.05 probability level. 

Table 4.14: Results of the lack of fit test (F-values) of total height prediction 
models. 

Intermediate thinning Neutra l thinning 

3.0 -
+ 3.0 

2.0 ++ 2.0 -"' 
-

++t "' -; * + 
-; 

::::l 
1.0 -- 1+ # ++++ 

::::l 1.0 -t-'O 'O ·;;; ! <';~4fi,,-it/ + 

·;;; 
+J+-t:tf+4' ** ... ... 

0.0 
,_ 

0.0 -- ,_ 
+y+-$;+* +=t++_f -; -; 

E -1.0 +- + + + E -1.0 \+ .:p-~ )-++ ,_ it+ + 
,_ 

+ + + 0 0 
C C + 

-2.0 -2.0 -
+ 

-3.0 -3.0 

5.0 15.0 25.0 35.0 5.0 10.0 15.0 20.0 25.0 

observed total height, m observed total height, m 

Figure 4.11: Residual distributions after fitting the unchanged model a to the 
reserved data for validation. 
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4.3.4 Prediction of timber height 

Unlike dbh and total height prediction models, the timber height prediction 

model is a current state prediction model. First the distributions of the selected 

explanatory variables with timber height (for intermediate thinning - Figure 4.12) 

were examined to find the basic model strncture. 

30.0 -r----- ----, 30.0 .----------, 

20.0 

10.0 -

0.0 -·~ - ---- --' 0.0 --~-----~ 
0.0 15.0 30.0 0.0 30.0 60.0 0.0 5.0 10.0 

total tree height, m diameter at bh, cm dbh*total height, m2 

Figure 4.12: Distribution of the timber height (Y-axes) with selected 
explanatory variables (intermediate thinning). 

The descriptive statistics and the correlations of all the variables used for timber 

height modelling are shown in Appendix 2.2(iii) and 2.3(iii) respectively. 

4.3.4.1 Developed models for the prediction of timber height 

From the observation of the distribution of variables in Figure 4.12, two types of 

relationships were identified for further development. 

(i) h,;,,, = a +b* h (4.73) 

(ii) h,;,,, =a+ (dbh * h)6 (4.74) 

The variable dbh *h could not be replaced by dbh itself because of the 

heteroscedasticity of the standard residuals with respect to the fitted values. 

Equation 4. 73 is a linear relationship with one explanatory variable (total height). 

In equation 4.74, timber height is predicted by an exponential function (dbh*total 

height). 
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4.3.4.2 The best relationships 

All the possible combinations of the explanatory variables were fitted to the data 
? 

and the standard residual plots and R- values were examined. The linear 

relationship ( equation 4. 73) was ignored due to the poor fit and the selected basic 

structure was equation 4.74. Selected best relationships obtained from that basic 

structure are listed in Table 4.15. 

Intermediate thinning Neutral thinning 
Model 

? 

Model Rl R-

h . = a + b * r(dbh'"l 
flm 0.967 h . =a+ b * r <"bh'h l 

ltln 0.969 
h . = + b * .j(dbh'h ) ,,,,, a r 0.968 I - + b * .j(dbh"h) 1,im - Q r 0.969 
h . =a + b * rlog(dbl,'h) 

tun 0.967 h . = a + b * r log(dbh' h) 
tun 0.969 

a, b and r are parameters. 
Table 4.15: The best relationships obtained for the prediction of timber height. 

The distribution of the standard residuals of the second model in the above table 

constructed for intermediate thinning type was poor. Therefore, the following two 

models were selected for further tests. 

(i) Timber height prediction model a 

This model is: 
h . = a + b * r J <1b1,• 1, 

11111 I I I (4.75) 

Parameter Intermediate thinning Neutral thinning 
estimate std. error estimate std. Error 

a, 56.89000 2.03000 29.45700 0.83800 
b, -65.71000 1.87000 -40.17500 0.52700 
r 

I 
0.79676 0.00822 0.60600 0.01310 

(ii) Timber height prediction model b 

This model is: 
h . = a + b * rlog(dbh'h) 

flm 2 2 2 (4.76) 

Parameter Intermediate thinning Neutral thinning 
estimate std. error estimate std. Error 

a 
2 -13.90800 0.61400 -33.65000 3.95000 

b 2 18.48700 0.60700 38.80000 3.95000 
r i 2.11400 0.03980 1.44100 0.04850 
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4.3.4.3 Evaluation of the timber height prediction models 

Standard residual distributions of the timber height models a and b are given in 

the Figure 4.13 and Appendix 2.4(iii) respectively. When the standard residual 

distributions were examined for both models constructed for the intermediate 

thinning type, a bias was indicated when the fitted values were lower than Sm. 

This is because it is impossible to have timber height below zero even if the total 

height is veljlow e.g. 2m. Such a distribution was not clearly highlighted in 

neutral thinning type (Figure 4.13 ). The distributions of the standard deviation of 

normal residuals with the fitted values indicated an increase with higher fitted 

values especially for the intermediate thinning type (Figure 4.14). 
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Figure 4.13: Standard residual distributions of timber height prediction 
model a. 
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Figure 4.14: Distribution of standard deviation of normal residuals at selected 
points of fitted values. 

However, the calculated values for average model bias and the mean absolute 

difference were negligible for all the timber height prediction models (Table 

4 .16). The lack of fit tests suggested that the model fit was adequate (Table 4.17). 

Test Intermediate thinning Neutral thinning 
Model a Modelb Model a Modelb 

Average model bias 0.0009 0.0019 0.0000 0.0000 
Mean absolute difference 0.8513 0.8551 0.5836 0.5868 
Modelling efficiency 0.9670 0.9660 0.9690 0.9690 
Table 4.16: The results of the quantitative tests applied for the timber height 

prediction models. 

Model Intermediate thinning Neutral thinning 
No. of data= 3247 No. of data = 1839 

a 0.88 0.79 
b 0.97 0.81 

None of the F-values were significant at 0.05 probability level. 

Table 4.17: Results of the lack of fit tests of timber height prediction models. 
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When both models were applied to the reserved data for the validation (Figure 

4.15), the residual distribution was higher for the intermediate thinning type than 

it was for the neutral thinning type. This may be due to the higher variation of 

timber height with total height and dbh observed in Figure 4.12 in the 

intermediate thinning type. As with diameter growth, the change in form factor 

and rate of taper in different parts of the bole of a tree depend upon the 

competition and site factors affection a tree at a particular age (Philip, 1994). In 

the data obtained for model construction and validation, the sample plots 

maintained under the intermediate thinning type covered a large range of GYCs 

and measurement periods, 10-22 and 1920-1995 respectively, while those for the 

neutral thinning type were 14-16 and 1951-1992. This could be the reason for 

such a distribution of timber height in the intermediate thinning type. 
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Figure 4.15: Distribution of the normal residuals after fitting the unchanged 
model a to the reserved data for validation. 
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4.3.5 Prediction of total volume of individual trees 

The distributions of the tested explanatory variables with total volume for the 

intermediate thinning type are given in Figure 4.16. 
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Figure 4.16: Distribution of tested explanatory variables with total volume 
(Y- axes) (intermediate thinning). 
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The descriptive statistics of the variables used for the modelling of the total tree 

volume and the correlations of the tested explanatory variables with the total 

volume are given in Appendices 2.2(iv) and 2.3(iv) respectively. 

4.3.5.1 Developed models for total volume prediction 

The relationships given in equations 4.7 and 4.11 (pages 74 and 75) were fitted 

separately to the data for each one-year age class. Model 4.11 was fitted to the 

data without changing the explanatory variables. Length of the crown, crown 

ratio and crown volume were not significant and when these variables were 

added, the standard residual distribution indicated no improvement to model 4.7. 

The variables h or site were also not statistically significant when added to 
top top.age 

the above model. Neither did they improve the distribution of the standardised 

residuals. The total number of trees or total basal area per hectare which were 

added to represent the competition were similarly non-significant. 

(i) Total volume prediction model a 

The resultant volume prediction model from the relationships in equation 4.7 is: 

(ii) 

v = b * ( n * dbh i J * h 
40000 

Total volume prediction model b 

4.77 

The linearised Shumacher-Hall model for individual tree volume prediction is: 

logv101 = c0 + c1 log(dbh) + c2 log(h) 4.78 

Theoretically, in model 4. 77, if one of the dbh or total tree height values = 0, the 

other variable has no value either. Then, the total volume ➔ 0, and therefore the 

intercept should not be statistically significant. Model 4.78 is the linear 

transformation of model 4.10 (page 75). Therefore the paramet~r c
0 

in model 4.78 

equals parameter b
0 

in model 4.11 (a in model 4.10 is equivalent to log a in the 

linear form which is c in model 4. 78). Therefore the theory applied to model 
0 

4.77 can be justified for model 4.78 as well. 
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4.3.5.2 Evaluation of the total volume prediction models 

When the total volume prediction model a was fitted to the data at each age, the 
, 

coefficient of determination (R-) was between 0.972-0.999 for both thinning 

types. That value varied between 0.891-0.996 for volume prediction model b. 

When the standard residuals were checked, they were distributed without 

showing any particular pattern at each age (Figure: 4.17). For convenience only 

the data at age 25 were given in Figure 4.17. The values estimated for the 

quantitative tests for all ages indicated negligible bias and very high modelling 

efficiency (Table 4.18). The calculated F-values used to observe the lack of fit 

(Table 4.19) indicated the models developed for all the ages were adequate. The 

ages listed in Tables 4.18 and 4.19 were the common ages for both intermediate 

and neutral thinning types. 

Model a - Age 25 Model b - Age 25 
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Figure 4.17a: Standard residuals for the intermediate thinning type at age 25 
years. 
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Figure 4.17b: Standard residuals for the neutral thinning type at age 25 years. 
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Age Test Intermediate thinning Neutral thinning 
Model a Model b Model a Model b 

19 Average model bias -0.0003 -0.00 I 3 -0.0001 0.0005 
Mean absolute difference 0.0035 0.0037 0.0030 0.0030 
Modelling efficiency 0.9920 0.9920 0.9840 0.9840 

24 Average model bias 0.0004 0.0024 0.0002 -0.0008 
Mean absolute difference 0.0061 0.0063 0.0044 0.0045 
Modelling efficiency 0.9900 0.9890 0.9890 0.9880 

25 Average model bias 0.0008 0.0027 0.0005 -0.0007 
Mean absolute difference 0.0061 0.0064 0.0036 0.0036 
Modelling efficiency 0.9870 0.9860 0.9860 0.9850 

26 Average model bias 0.0000 0.0004 0.0000 -0.0036 
Mean absolute difference 0.0042 0.0042 0.0024 0.0038 
Modelling efficiency 0.9970 0.9930 0.9970 0.9930 

28 Average model bias 0.0000 0.0050 0.0015 -0.0043 
Mean absolute difference 0.0062 0.0068 0.0023 0.0046 
Modelling efficiency 0.98 10 0.9730 0.9990 0.9930 

31 Average model bias -0.00 I 2 0.0049 0.001 1 0.0029 
Mean abso lute difference 0. 1470 0.0150 0.009 1 0.0093 
Modell ing efficiency 0.9780 0.9780 0.9850 0.9850 

36 Average model bias 0.0013 -0.00 I 0 0.0006 0.0 11 2 
Mean absolute difference 0.0042 0.0048 0.0136 0.0158 
Modelling effic iency 0.9750 0.9680 0.9840 0.9770 

37 Average model bias 0.00 12 -0.0 I 65 0.0001 0.0026 
Mean absolute difference 0.0139 0.2010 0.0165 0.0 166 
Modelling efficiency 0.9940 0.9840 0.9860 0.9860 

41 Average model bias -0.0049 -0.0062 -0.0007 0.0 196 
Mean absolute difference 0.02 11 0.02 1 I 0.0167 0.0230 
Modelling efficiency 0.9630 0.9620 0.9900 0.9800 

Table 4.18: Results of the quantitative tests of the total volume prediction 
models. 

Age Intermediate thinning Neutral thinning 
Model a Model b Model a Modelb 

19 0.87 0.73 1.14 0.99 
24 0.81 0.58 0.75 1.39 
25 0.77 0.63 1.23 0.62 
26 1.47 0.99 2.69 0.10 
28 1.15 0.90 2.24 0.57 
31 1.57 1.80 1.27 1.20 
36 1.18 0.23 1.14 1.19 
37 2.98 0.52 1.12 1.49 
41 1.16 0.95 4.44 1.34 .. 

None of the F-values were s1gmficant at 0.05 probab1hty level. 

Table 4.19: Calculated F-values for the lack of fit tests for total volume 
prediction models. 
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The results obtained from the quantitative tests and lack of fit test were 

confirmed by the validation with the reserved data (Figures 4. 18a and b) proving 

both the models are adequate for predicting the total volume of individual trees. 
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Figure 4.18a: Residual distributions after fitting unchanged volume prediction 
models to reserved data at age 25 (intermediate thinning type). 
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Figure 4.18b: Residual distributions after fitting unchanged volume prediction 
models to reserved data at age 25 (neutral thinning type). 

The reason for trying to construct parameter prediction models was to reduce the 

complexity of using specific parameters for each age. This work did not succeed 

because all the estimated parameters for total volume prediction models were 

distributed with age without any pattern (Figure 4.19). Therefore no regression 

relationships could be established. It is extremely difficult to use specific 

parameters for each age in the field and therefore, the possibility of using one set 

of parameter for all ages will be tested in Chapter 6. The connecting lines of the 

parameters estimated for the neutral thinning type was interrupted because of the 

lack of continuous measurements. 
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Figure 4.19: Distributions of parameters of the selected models for total volume 
prediction with age. 
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4.3.6 Prediction of merchantable volume 

The distributions of the tested explanatory variables with merchantable volume 

for the intermediate thinning type (Y-axes) are given in Figure 4.20. Descriptive 

statistics and the correlation of the variables used are shown in Appendices 2.2(v) 

and 2.3(v) respectively. 
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Figure 4.20: Distribution of tested explanatory variables with merchantable 
volume. 

4.3.6.1 Developed models to predict merchantable volume 

The relationships outlined in equations 4.15 and 4.16 (pages 76 and 77) were 

fitted separately to the data at each one year age class. 

(i) Merchantable volume prediction model a 

This is defined as: 

-b*{h (dbh 2 

49.0) } 
V mer - tim 10000 + 10000 4.79 (4.15) 
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(ii) Merchantable volume prediction model b 

This is defined as: 

v =c +c *{( *h)-(n *49.0*(h-h1
;"'))} 

mer O I g 40000 3 4.80 (4.16) 

4.3.6.2 Evaluation of the merchantable volume prediction 
models 

The R
2 

value for the merchantable volume prediction model a varied between 

0.977-0.998 for both thinning types. The range of R
2 

for the model b varied 

between 0.970-0.995. The standard residual distributions for all ages indicated 

normal distributions (residual distributions at age 25 years - Figures 4.21a and b). 

The average model bias and mean absolute difference of the models developed 

for all ages (Table 4.20) were very low allowing the modelling efficiency to be 

over 0.95. There was no lack of fit (Table 4.21). 
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Figure 4.21a: Standard residuals for the intermediate thinning type at age 25 
years. 
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Figure 4.21b: Standard residuals for the neutral thinning type at age 25 years. 
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Age Test Intermediate thinning Neutral thinnin,g 
Model a Model b Model a Modelb 

19 Average model bias -0,0004 0,0004 0.0000 0.0001 
Mean absolute difference 0,0026 0,0032 0,0019 0,0033 
Modelling efficiency 0,9920 0,9870 0,9930 0,98 10 

24 Average model bias -0,0008 0,0000 0.0003 0,0000 
Mean absolute difference 0,0071 0.0067 0.0036 0,0051 
Modelling efficiency 0.9870 0.9880 0,9920 0,9860 

25 Average model bias -0.0005 0,0003 0.0001 0.0000 
Mean absolute difference 0,0050 0,0063 0,0012 0.0033 
Modell ing efficiency 0,9910 0.9860 0,9980 0,9880 

26 Average model bias -0.0003 0,0001 0.0005 0.0000 
Mean absolute difference 0,0024 0.0048 0,0025 0,0027 
Modelling efficiency 0.9970 0.9880 0.9960 0,9950 

28 Average model bias -0.0002 0,0000 0,0008 0,0000 
Mean absolute difference 0,0026 0,0057 0,0019 0,0014 
Modelling efficiency 0,9960 0,9800 0.9990 0.9990 

31 Average model bias -0.0003 0,0000 0,0009 -0,0003 
Mean absolute difference 0,0 106 0.014 1 0,0063 0.0088 
Modelling efficiency 0,9870 0.9790 0.9920 0.9860 

36 Average model bias -0,000 I 0.0000 0,0007 0,0000 
Mean absolute difference 0,0017 0,0029 0.0121 0,0145 
Modell ing efficiency 0.9960 0,9840 0,9840 0.9790 

37 Average model bias 0,0009 0,0000 0.0008 0,0000 
Mean absolute difference 0,0147 0,0 187 0,0148 0,0189 
Modelling efficiency 0,9970 0.9870 0.9890 0.9890 

41 Average model bias 0,0021 0.0000 0,0010 0,0000 
Mean absolute difference 0,0152 0,0218 0,0114 0,0179 
Modelling efficiencv 0,9830 0,9610 0.9910 0,9780 

Table 4.20: Results of the quantitative tests of merchantable volume prediction 
models. 

Age Intermediate thinning Neutral thinning 
Model a Model b Model a Model b 

19 1.59 0.99 0.49 I.IO 
24 1.55 1.11 0.38 1.45 
25 1.28 1.16 0.48 0.95 
26 0.95 1.1 8 4.34 2.63 
28 0.82 1.72 5.40 1.12 
31 1.25 2.20 1.25 0.82 
36 0.73 1.13 1.07 0.81 
37 0.99 1.49 1.34 1.18 
41 9.80 4.66 1.33 1.42 .. 

None of the F-values were s1gmficant at 0.05 probability level. 

Table 4.21: Calculated F-values for the lack of fit tests for merchantable 
volume prediction models. 
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The residuals obtained after fi tting the models with unchanged parameters to the 

data reserved for validation indicated a normal distribution. An example is given 

in Figures 4.22a and b for age 25. 
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Figure 4.22a: Residual distributions after fitting unchanged volume prediction 
models to reserved data at age 25 (intermediate thinning type). 
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Figure 4.22b: Residual distributions after fitting unchanged volume prediction 
models to reserved data at age 25 (neutral thinning type). 

As in the total volume prediction model, parameter prediction models could not 

be developed with age because of the lack of any obvious relationship with age 

(Figure 4.23). In Chapter 6, the possibility of using one set of parameters for all 

ages will be discussed in order to reduce the complexity. 
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4.3.7 Prediction of thinning tree variables 

The relationships between response and explanatory variables were VeC'.'J scattered 

for each model when data for all the neutral thinning intensitie~[Lised (Figure 

4.24b ). Therefore to reduce the bias, only data from an documented intensity 

equal to or lower than the 300% of marginal thinning intensity were used (Figure 

4.24c ). However, such a point was not necessary for the intermediate thinning 

type because the thinning intensity was not as high (Figure 4.24a) as it was for 

the neutral thinning type. The descriptive statistics and the correlations of the 

selected variables are shown in Appendices 2.2(vi) and 2.3(vi) respectively. 
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Fig ure 4.24a: Distributions of the selected variables for intermediate thinning. 
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Figure 4.24b: Distributions of the selected variables for the neutral thinning type. 
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4.3.7.1 Models for the prediction of thinning variables 

Although the initial intention was to develop a linear relationship as described in 

equations, 4.18, 4.19, and 4.20 (pages 78 and 79) a logistic type curve was also 

tried as the second model for each variable because the trend of data was believed 

suitable for such a curve after observing the distributions in Figure 4.24. All the 

models constructed to predict the mean tree variables removed in thinning are 

given below: 

(i) Basal area prediction 

Basal area prediction model a 
gt,. = a, + b * g ht 

Parameter Intermediate thinning 
' estimate R- se 

0.949 
a, -0.0043 0.0012 

b 0.8614 0.0205 

Basal area prediction model b 

' R-

0.964 

g,1, = a2 + c1 /(1 + exp(-c2 * (g61 - c3 ))) 

Parameter Intermediate thinning 
R2 estimate ' se R-

0.951 0.979 
aJ -0.0292 0.0230 
c, 0.1918 0.0588 

cc 20.0710 7.0441 

CJ 0.0821 0.0107 

(ii) Diameter prediction 

Dbh prediction model a 

dbh th = a1 + b * dbh bt 

135 

4.8 1 

Neutral thinnin_g 
estimate se 

-0.0071 0.0012 
0.9249 0.0334 

4.82 

Neutral thinning 
estimate se 

0.0031 0.0031 

0.0564 0.0089 

81.7000 16.4210 

0.0418 0.0023 

4.83 



Parameter Intermediate thinning Neutral thinning , 
R- estimate se 

, 
K estimate se 

0.956 0.929 

a, -2.0594 0.5170 -4.0922 1.0900 

b 0.9576 0.0212 1.0270 0.0528 

Dbh prediction model b 

dbh,1, = a2 + c, /(1 + exp(-c2 * (dbhbr - C 3 ))) 4.84 

Parameter Intermediate thinning Neutral thinning , 
R- estimate se 

, 
R- estimate se 

0.958 0.944 

a1 -0.4321 6.6782 9.5240 1. 1111 
C 

I 54.4420 18.1321 15.1723 2.4152 

c, 0.0774 0.0281 0.3580 0.0885 

CJ 30.0801 3.2000 20.7272 0.6668 

(iii) Total height prediction 

Total height prediction model a 
- -
h,1r = a, + b * h1,, 4.85 

Parameter Intermediate thinning Neutral thinning 
, 

R- estimate se R2 estimate se 

0.985 0.987 

a, -0.3479 0.2158 1.0274 0.2053 

b 0.9694 0.0122 0.8789 0.0143 

Total height prediction model b 
- -
h,1, = a2 + c1 /(1 + exp(-c2 * (hbr - C3 ))) 4.86 

Parameter Intermediate thinning Neutral thinning 
R2 estimate se R2 estimate se 

0.986 0.988 
a2 -1.2514 3.4564 3.9300 3.4687 

c, 36.5667 6.7333 22.3456 9.5411 

c1 0.1130 0.0235 0.1697 0.0763 

CJ 17.8936 0.7620 16.0641 1.6944 
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4.3.7.2 Evaluation of the thinning prediction models 

In an intermediate thinning the suppressed and dead trees together with 

competing sub-dominant and dominant trees are removed (Edwards and Christie, 

1981 ). Therefore, the parameter associated with the explanatory variable 

(standing mean tree size) in linear models, should be lower than one. This 

condition was fulfilled by the regression analysis of the models built. In neutral 

thinnings, the trees are selected systematically, which means the size of the trees 

removed in thinning should be similar to the size of the main crop trees just 

before thinning. The corresponding parameter should therefore be equal to one. 

The only slope parameter which was not significantly different from unity was 

that associated with the dbh prediction model at 0.05 probability level. The same 

parameter in the basal area prediction model was significantly different from one 

at 0.05 probability level but, not significant at level 0. 1. The reason for the 

statistical s ignificance in the height model might be the removal of very large 

number of trees as thinnings which means more suppressed trees were removed 

thus reducing the slope parameter. 

According to the basic theory, if the size of a tree variable is equal to zero, the 

size of the same variable removed in immediate thinning should not have any 

value. This was not proved by the linear models and the intercepts were 

significantly different from zero except in the mean total tree height prediction 

model of intermediate thinning. The reason for this could be the removal of a 

large number of trees in the first thinning without considering the documented 

type of thinning in order to obtain a commercial profit (Jenkins, pers. comm.). 

Therefore, a valid range for all the models built for the prediction of thinning tree 

variables is recommended which is after the first thinning until 50 years of 

plantation age for both thinning types . 

The standard residual distribution of linear models constructed for basal area for 

both thinning types and for dbh for neutral thinning indicated bias (Figure 4.25a 

and b ). The residual distribution of the non-linear models (Appendix 2.4(iv)) for 

all the variables did not indicate this situation. 
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Figure 4.25a: Residuals after fitting the linear model to the data for the 
prediction of mean basal area of thinned trees. 
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Figure 4.25b: Residuals after fitting the linear model to the data for the 
prediction of mean diameter at breast height of thinned trees. 
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Figure 4.25c: Residuals after fitting the linear model to the data for the 
prediction of mean height of thinned trees. 
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Average model bias for all the models was very low. However, the mean absolute 

differences resultant for the dbh models for both thinning types were relatively 

high (Table 4.22). Modelling efficiency figures suggest that the accuracy is very 

high. The results of the lack of fit tests (Table: 4.23) revealed that the fitting 

procedures for all the models were adequate. 

Variable Test Intermediate thinning. Neutral thinning. 

model a Model b model a model b 
Basal area average model bias 0.0000 0.0000 0.0013 0.0013 

mean absolute difference 0.0051 0.0042 0.0022 0.0019 
mod. efficiency 0.9540 0.9550 0.9410 0.9500 

diameter at bh average model bias -0.0022 -0.0048 -0.0011 -0.0034 
mean absolute difference 1.2753 1.2356 0.9408 0.8279 
mod. efficiency 0.9630 0.9610 0.9330 0.9540 

total height average model bias 0.0000 0.0023 0.0034 0.0043 
mean absolute difference 0.4666 0.4666 0.2712 0.262 1 
mod. efficiency 0.9930 0.9920 0.9370 0.9920 

Table 4.22: Results of the quantitative tests applied for the th1nnmg pred1ct1on 
models. 

Variable Model Intermediate thinning Neutral thinning 
basal area a 1.59 1.50 

b 1.52 1.35 

diameter at bh a 0.58 1.76 
b 0.54 1.34 

total height a 1.70 1.17 
b 1.57 1.08 

None of the F-values were significant at 0.05 probability level. 
Table 4.23: Results of the lack of fit tests (F-values) for thinning prediction 

models. 

The distributions of the residuals obtained after fitting unchanged linear and non­

linear models were normal. However, in this chapter, the lines resulted after 

fitting the models were drawn on the raw data for validation (Figures 4.26 and 

4.27) for an easy comparison. The mean basal area and dbh prediction models 

indicated little over estimation with the higher fitted values, but more data are 

needed for a proper conclusion. 

Even though the quantitative tests indicated very similar results for linear and 

non-linear models, the standard residuals indicated bias for the neutral thinning 

type. For this reason and secondly to obtain the basic model structure for all three 

variables, non-linear regression models were selected to use in the field. 
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Figure 4.26a: The results after drawing the model predictions for mean basal 
area on raw data (intermediate thinning type). 
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Figure 4.26b: The results after drawing the model predictions for mean dbh on 
raw data (intermediate thinning type). 
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Figure 4.26c: The results after drawing the model predictions for mean total 
height on raw data (intermediate thinning type). 
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Figure 4.27a: The results after drawing the model predictions for mean basal 
area on raw data (neutral thinning type). 
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Figure 4.27b: The results after drawing the model predictions for mean dbh on 
raw data (neutral thinning type). 
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Figure 4.27c: The results after drawing the model predictions for mean total 
height on raw data (neutral thinning type). 
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4.4 Discussion 

4.4.1 Quantity of data used for model construction 

All the models constructed in this chapter had enough data. However, for the 

construction of some models like dbh in this study a large quantity of data was 

used (9477 trees from 27 sample plots). This is not an unusual procedure. For a 

development of site index equations, Elfving and Kiviste (1997) used 156 sample 

plots and Hasenaur and Monserud (1996) used 5090 plots containing 42479 data 

items for growth modelling. In 1988 Nystrom and Gemmel collected data on 799 

sample plots for model construction and Ritchie and Hann (1997) used data from 

105 Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) plantations for the 

evaluation of individual tree disaggregative prediction methods. 

4.4.2 Parameter estimation 

The most common procedure for estimating parameters is to use only the non­

overlapping growth intervals. There are fewer problems with serial correlation of 

real growth series - derived from either re-measured plots or trees - when the data 

are arranged in non-overlapping growth intervals ( e.g. 5-10, 15-20 etc.) rather 

than all possible intervals (Borders et al., 1988). Therefore non-overlapping 

growth intervals were used for the current work. 

4.4.3 Variables not included in constructed models 

Competition is a major factor determining the size of individual trees and the 

number of plants in the population (Kimmins, 1997). The change of growth due 

to competition and the environment is strongly related to plant size (Tang et al., 

1997). In a forest stand, there is a definite although not high correlation between 

variations in stand density and tree parameters (Pukkala, 1994). However, in the 

present study, total number of trees and total basal area per hectare which were 

initially included in dbh, total height and total volume prediction models were 

not statistically significant. All the crown dimensions used were also not 

statistically significant in the total volume prediction models. When correlations 

were tested with the response variables, they were relatively high for total trees 
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per hectare but always below 0.2 for total basal area per hectare (Appendix 2.3). 

The correlations for crown dimensions were not as low as those for basal area 

although not as high for total tree number (Appendix 2.3). This non-significance 

might be as an effect of the multi-colinearit~%'"~urred by using many explanatory 

variables for the volume prediction models. The above values were significant 

with the correct sign in some models, with the result that some of the more 

important explanatory variables became non-significant. Monserud and Sterba 

(1996) wrote that the growth of some tree species more sensitive to the crown 

ratio e.g. spruce, fir, and Scots pine than many other species. There were some 

factors such as dbh and total height which were essential for the models 

constructed in this study. These variables always took preO:!dence over non­

essential variables such as crown dimensions and total tree number. Therefore 

when an essential factor became statistically insignificant due to the addition of a 

non-essential factor to the model structure, that combination was removed from 

further studies. 

4.4.4 Model predictions 

It is very difficult to measure accurately the form factor directly. Therefore in the 

total volume prediction model a, an attempt was made to find the right 

combination of variables to replace the form factor in order to predict the total 

volume of individual trees. However, the estimated parameter (parameter b in 

model 4.77) represented the form factor itself and rejected the requirement for all 

variables except basal area and total height. The average value for that parameter 

(form factor) was very close to 0.5 suggesting the general shape of Corsican pine 

trees is an approximation of a paraboloid. 

The parameter b in the merchantable volume model a should theoretically be 

n/8=0.39 and the estimated mean value was 0.43 . The observed difference could 

be explained as the error of the particular parameter due to the variation of the 

main stem of individual trees from the shape of the paraboloid. 

Parameter c
0 

for the merchantable volume prediction model b (model 4.80) was 

largely statistically insignificant in older plantations (always very close to zero at 

each age even if it was statistically significant). However, this model was fitted to 
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the data without ignoring the intercept because in early ages that parameter was 

occasionally statistically significant. 

The main objective of this project was to construct models using measured tree 

variables and age as the explanatory data. For the thinning predictions, single tree 

models could not be developed unless an advanced graphical system was used to 

draw the size of trees using computer programs indicating the trees which should 

be marked for the next thinning. For this reason simple models were constructed 

using one explanatory variable which usually took tree mean values of the same 

response variable before thinning. 

A separate model for the prediction of total trees per hectare was not built in this 

work and instead a general procedure was described for the estimation of the 

number of trees removed in thinning. 

4.4.5 Testing of constructed models 

For the purpose of evaluation of the constructed models, a set of qualitative and 

quantitative tests was used. Qualitative tests are easier to understand, especially 

standard residual plots. These are also helpful for identifying the outliers and 

observing the distribution pattern of the residuals in the basic model structures. 

Because the number of data were very high in diameter, total height and timber 

height prediction models, bar graphs of the standard deviations of residuals at 

selected points of fitted values were used to observe the distribution of residual 

standard deviations. In a good model that distribution should be even. This test 

was not done for the thinning prediction models and total and merchantable 

volume prediction models because the number of data were too low. For the total 

height prediction models, one graph had to be drawn for each thinning type for 

the observation of residual standard deviance because the distribution of the data 

was narrower in the neutral thinning type. 

Three kinds of quantitative tests were used in the current work as a part of the 

evaluation of the constructed models. Average model bias is a measure of the 

expected error when several observations are to be combined by totalling or 

averaging. The mean absolute difference indicates the average error associated 
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with a single prediction (Soares et al., 1995; Vanclay, 1994). Modelling 

efficiency provides a simple index of performance on a relative scale, where one 

indicates a 'perfect fit ', and zero reveals that the model is no better than a simple 

average (Vanclay and Skovsgaard, 1997). The results of these tests are also 

helpful for the comparison of two or more models developed for the same 

predictions. Although the average model bias provides an average number, it is a 

useful test to know the direction of the bias (negative or positive). Modelling 
, 

efficiency is a better test than the R- in the regression results because sometimes 

R
2 

over-estimates the models properties if the number of explanatory variables 

is high. 

However, all the above tests did not give a clear definition of the adequacy or 

inadequacy of the constructed models. Therefore the test described by Weisburg 

(1985) was followed to identify the lack of fit. This test uses F-values for the 

appropriate degrees of freedom and therefore it is a good indicator for this 

purpose. 

The importance of validation with reserved data was discussed in the literature 

review. Instead of the normalised residual graphs, the fitted lines were drawn on 

the observed reserved data for the models built for thinning predictions. This was 

done with the intention of showing the distribution of the observed values along 

the fitted lines because the number of data was relatively low and interpretation 

was made possible because the models contained only one explanatory variable. 

Plots of standardised and normal residuals created from the validation data 

suggested that the bias of all the models constructed in this study was negligible 

(there was however, an indication of little bias in timber height models developed 

for the intermediate thinning type at the early ages). Quantitative tests confirmed 

that the mean absolute difference and the average model bias were very low for 

all the models. The test followed for lack of fit proved the process of fitting was 

adequate for all the models and the bias was not statistically significant. 

Therefore all the models were taken forward for testing of parameters to 

construct one unified model for both thinning types. 
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CHAPTER 5: RE-CALIBRATION OF THE 
SELECTED MODELS 

5.1 Introduction 

Although Sri Lanka has a considerable area of man-made single species 

plantation forests, the lack of growth and yield models is a disadvantage for 

planning and marketing. As described in earlier chapters, re-measured sample 

plot data are needed for sound modelling. A lack of such data means models 

developed for other species in foreigri countries might be re-calibrated for use in 

Sri Lanka. Therefore the models constructed in chapter 4 for Pinus nigra can be 

used for radiata pine (Pinus radiata D. Don) and Caribian pine (Pinus caribaea 

Mor.) in Sri Lanka. Re-calibration involves the re-estimation of model 

parameters and is a necessary procedure because two entirely different criteria 

can be fo und when adopting models from outside, i.e. different climatic zones 

and different species. Models may also be considered for use with entirely 

different genera; teak (Tectona grandis Linn. F.) and mahogany (Swietenia 

macrophylla King). For this reason, two types of re-calibration should be 

practised (i) re-calibration of models for same genus and (ii) re-calibration of the 

models fo r the different genera. 

Selected models were re-calibrated in the present chapter using the same sample 

plot data used for model construction in Chapter 4 in order to fulfil two 

requirements; i.e. to gain experience of the difficulties of adapting models from 

different geographical regions, and secondly to compare the accuracy of the 

models constructed in Chapter 4 with re-calibrated existing models. 

In 1997, Knowe et al. successfully re-calibrated models for red alder (Alnus 

rubra Bong.) plantations which were originally developed for pine and other 

conifer species by Hester et al., 1989; Pienaar and Harrison, 1986; and Wykoff, 

1990. Ottorini et al. (1996) tried to transfer a model initially developed for 

Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) to common ash (Fraxinus 

excelsior L.). Therefore, inter-genera transformation of models is not a strange or 

uncommon procedure. 
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5.2 Considerations for the selection of 
existing models 

The following factors were considered carefully before selecting models for re­

calibration: 

(i) All the models should contain regression equations 

The procedure used to build new models for the current work is based on 

regression analysis. Therefore similar types of models were used for comparison 

without selecting models in other forms i.e. graphs, computer software etc. 

(ii) Models developed outside of Great Britain 

This would help to observe the effect of different geographical regions on these 

growth or yield models. 

(iii) Models developed for species other than Pinus nigra 

Using such models for the re-calibration, difficulties encountered when 

transforming the models can be understood and the experience may be applicable 

when transforming the models built for the current work for the selected tree 

species grown in Sri Lanka. 

(iv) Models must be used widely 

A higher number of tests will have been done on models which are widely used 

in the forestry community. Such models have also been developed or used by a 

number of experienced modellers leaving much less room for bias. Using such 

models, the predictive ability of the new set of models built in Chapter 4 can be 

easily observed. 

(v) Models developed after the mid 1980s 

Model development has benefited from advances m technology. The most 

commonly used models have been built or developed recently using modem 

statistical techniques and computer software. 

(vi) Each model should contain at least two sub-models 

The set of models constructed for this work contains many parts. Therefore 

similar models were used for re-calibration. 

147 



(vii) Empirical models should not contain guessed parameters 

It is possible to guess some of the parameters in process based models (Makela, 

1997; Sievanen, 1993; Sievanen and Burk, 1993). However, none of the 

estimated parameters were guessed in this work and therefore all the selected 

empirical models contained only estimated parameters. 

(viii) The parameters and the explanatory variables should be explainable 

theoretically 

The sign of each parameter should be logical and the combination and the 

relationship of the variables in the selected models must be explainable. 

5.3 

5.3.1 

Methods applied for estimation of new 
parameters in re-calibration 

Partition of the data 

For the construction of a new set of growth and yield models in Chapter 4, the 

data were divided up according to thinning type. The same data partitions as used 

in Chapter 4 were used for re-calibration of the above models and for validating 

them (Table 4.1). However, different variables were needed for some of the 

selected models. The methods of gathering and preparing such data are described 

with the specific model when the results are discussed. 

5.3.2 Evaluation of the re-calibrated models 

A careful study of the processes of construction was done before selecting the 

existing models. However, after re-calibrating, it was still necessary to evaluate 

the models to know their suitability for the new geographical regions. Therefore, 

some of the tests used to evaluate the models newly constructed in Chapter 4 

were used for the same purpose with the re-calibrated models; they are 

considered below. 
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5.3.2.1 Qualitative tests 

Examination of standard residual distributions of residuals was selected. 

The majority of the selected models predict stand level variables and therefore 

the number of data used for re-calibrating and validating was relatively low. 

Because the distribution of the residuals could be observed easily, graphs of the 

standard deviations of the residuals distributed with the fitted values were not 

necessary. 

5.3.2.2 Quantitative tests 

The decided quantitative tests for the evaluation of models in this Chapter are: 

a. average model bias (equation 4.54 - page 93), 

b. mean absolute difference (equation 4.55 - page 94), 

c. modelling efficiency (equation 4.56 - page 94). 

5.3.2.3 Validation with the reserved data 

The reserved data were fitted to the re-calibrated models for each thinning type 

without changing the newly estimated parameters. The distribution of the normal 

residuals with the fitted values was then observed. 

5.3.3 Fitting equations 

Both linear and non-linear equations were fitted using the statistical program 

GENSTAT. Separate programs were written to obtain the parameters for the non-
? 

linear models (Appendices 3.1-3 .7). The basic regression results (K, standard 

residual plots and standard errors of the parameters) were then used to test the 

bias of models and the significance of parameters. If one or more parameter was 

not significant, re-parameterization was done by ignoring each one or two at a 

time, following the same tests, so as to obtain the best and simplest model. 
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5.4 

5.4.1 

Re-estimation of the parameters for 
selected models 

Models constructed by Pienaar and Harrison 
(1989) 

Pienaar and Harrison ( 1989) constructed a set of models for Pinus elliotti 

Englem. (slash pine) in Zululand in South Africa for both thinned and unthinned 

plantations. The model contained compatible prediction (prediction of current 

growth) and projection (prediction of future growth) equations for total basal area 

and total volume per hectare. 

5.4.1.1 Basal area prediction model 

The model constructed by Pienaar and Harrison for the prediction of total basal 

area 1s: 

5.1 

where: A = plantation age, years 

A = plantation age at last thinning, years 
' 

1 - I 
lnG = natural logarithms of basal area m-ha 

hd = average dominant height, m 
om 

N = number of surviving trees, ha·
1 

N = trees remaining after last thinning ha·
1 

a 

N = trees removed in last thinning ha·
1 

I 

b 
1
-b 

7 
= unknown parameters 
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Total basal area, number of standing trees and thinned trees per hectare were 

calculated separately for stand and thinned trees using program 2 included in 

Appendix 1.9. Data for each age were used. For total basal area (G) and total 

number of trees (N) in the model, both standing and thinned trees at each age 

were summed because the model predicts the total basal area per hectare at any 

required age. For each plot, the first data set was ignored because the trees 

removed in thinning at the previous age (N) could not be calculated for those 
' 

data. Top height was obtained using the height-diameter relationships developed 

in Chapter 4, and was used instead of dominant height because there is not a 

significant difference between these two heights (Philip, 1994). 

The initial parameters estimated by Pienaar and Harrison ( 1989) are included in 

Table 5.1. This model (5.1) has both linear and non-linear parts and all the 

parameters were estimated in one step using the program presented in Appendix 

3.1. Some parameters were statistically insignificant. As the second step, these 
, 

parameters were ignored and the model was re-parameterized observing R-

values and the plots of standard residuals using an extended program of the type 

presented in Appendix 3 .1 . 

Parameter Unthinned plantations Thinned plantations 

bo -0.6512 0.1432 

b, -25.0905 1.1054 

b2 0.2255 0.0097 

b1 0.9789 0.0351 

b~ 3.0660 0.1202 

bs 0.8636 0.2308 

b -0.1378 0.0073 
6 

b7 2.2955 0.1966 

Table 5.1: Initial parameters estimated by Pienaar and Harrison (1989) for the 
basal area prediction model. 

Fitting the model 5 .1 , seven possible structures were identified for the 

intermediate thinning type and eight equations for neutral thinning type. All the 

estimated R
2 

values for intermediate and neutral thinning types were between 

0.674-0.678 and 0.967-0.971 respectively. However, only two models were 
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identified which fulfilled the requirement that the selected model or models 

should be similar in the structure for both thinning types. 

(i) Basal area prediction model a 

The estimated parameters for the basal area projection model a (5.1 - with all 

parameters) are: 

Parameter Intermediate thinning Neutral thinning 
Estimate Standard error Estimate Standard error 

bo -1.5300 1.3200 4.6200 1.0700 

b, 80.7000 45.9000 -155.2000 26.6000 

b, 0.4513 0.1050 0.1239 0.0860 

bl 0.9121 0.2320 -0.2350 0.1770 

b 
~ 

-3.8100 3.6100 13.0700 2.0400 

bs -24.5300 8.4600 7.8600 4.3000 

b6 -0.3634 0.1710 -0.0307 0.0160 

bl 3.7500 3.2900 -0.8600 1.2900 

(ii) Basal area prediction model b 

The equation without parameter b
1

: 

lnG = bo +b, * ( ~ ) +b} *(ln N ) +b3 *(lnhdom) +b4 *Cn:) + 

b, * (In~;-") + b, * [ :: ( ~)] 

5.2 
Estimated parameters for the above model are: 

Parameter Intermediate thinnin_g Neutral thinning 
Estimate Standard error Estimate Standard error 

bo -1.4580 1.3150 3.6860 0.9600 

b, 80.1200 45.7200 -124.7000 22.4000 

b2 0.4506 0.10430 0.1818 0.0820 

b1 0.8908 0.22950 -0.0570 0.1560 

b 
4 

-3.8130 3.6050 10.8100 1.9800 

bs -24.3540 8.4330 3.5900 3.8300 

b6 -0.2500 0.07540 -0.0618 0.0090 
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Evaluation of the selected models 

The distributions of the standard residuals for models a and b are included in 

Figure 5.1 and Appendix 3.9(i) respectively. Both models displayed similar 

results in all the tests applied. The average bias was zero for both thinning types 

(Table 5.2). However, mean absolute difference was relatively high in the 

intermediate thinning type while the modelling efficiency (Table 5.2) and R
2 

were low. This can be explained by the standard residuals (Figure 5.1) and the 

normal residuals obtained by validating with the reserved data (Figure 5.2). 

Standard residual distribution was not even with the fitted data in the 

intermediate thinning type and the validation results indicated bias. The reason 

may be the similar distribution pattern of A in neutral thinning and more 
I 

scattered distribution in intermediate thinning. 

Intermediate thinning lute rme dia te thinning 
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Figure 5.1: Standard residual distribution of the selected basal area prediction 
model a. 

Test Intermediate thinning Neutral thinning 
Model a Modelb Model a Modelb 

Average model bias 0.0000 0.0000 -0.0001 0.0000 
Mean absolute difference 0.0850 0.0844 0.0345 0.0347 
Modelling efficiency 0.7000 0.6980 0.9720 0.9720 
Table 5.2: Results of the quantitative tests applied for the selected basal area 

prediction models. 
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The intention in the previous chapter was to construct models with less 

complexity. The same principle was used in this chapter and the model b 

(without the non-linear parameter) was selected for further examination. 

The parameters b
0

, b3' b~ and b
7 

indicated different signs and different magnitudes 

for both models (equations 5.1 and 5.2) for the two thinning types used. The 

magnitude and the sign of the initial parameters estimated by the authors for 

thinned and unthinned plantations were also different. Considering this situation, 

it can be assumed that the reason for the differences mentioned above is due to 

the sensitivity of the original model to the different thinning types. 

Intermediate thinning Ne utral thinning 

0.30 0.30 · 
"' + t + "' ~ + oi 
::: 0.15 · +.+ ::I 0.15 

"O + -t+ "O 

~*~ 
·;;; ·;;; 

Cl> t+ + + 
., ... 0.00 + + 
,_ 0.00 

~ + + + oi 
E ++t- + E ++++ "4-... -0.15 - ,_ -0.1 5 -0 + + 0 
C: + C: ++4.t 

-0.30 -0.30 

3.4 3.7 4.0 2.0 3.0 

fitted l11 G values , In (m'ha·1) fittedfoG values,ln(m'ha·1) 

Figure 5.2: Distribution of normal residuals after fitting the unchanged basal 

area prediction model a to reserved data for validation. 

5.4.1.2 Basal area projection model 

The model constructed for the projection of basal area by Pienaar and Harrison 

(1989) is: 

1n G2 = ln GI + bl * (-
1
- - -

1
-) + b2 * (ln N 2 - ln Ni)+ b) * (lnhdom(2) - lnhdom(I)) 

A2 Al 

+b4 * ( lnN2 _ In NI) +b5 * ( lnhdom(2) - lnhdom(I)) 
Ai Al A2 Al 

5.3 
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where: ' -1 G, = basal area at age A 
1
,m-ha 

' - I G
2 
= basal area at age A

2
,m-ha 

h, = average dominant height at age A , m 1om(/J I 

\ ,omo; = average dominant height at age A:' m 

N
1 
= number of surviving trees at age A 

1
, ha·

1 

N, = number of surviving trees at age A ,, ha·
1 

- -

The data required were gathered using the same methods as for the basal area 

prediction method. In the sample plot data measured by the Forestry 

Commission, the number of surviving trees between two near measurements are 

similar in number indicating the absence of mortality. Therefore, N, was used 

instead of N: - N, = 0, assuming the N, can reduce the effects which could ht.We 

emerged due to the geographical changes between two countries. 

Both linear and non-linear parts of the model were fitted in one step. The 

parameters estimated by Pienaar and Harrison (1989) for the original basal area 

projection model are listed in Table 5.3. 

Parameter Unthinned plantations Thinned plantations 
bo -0.6512 0.1432 
b, -25.0905 1.1054 

b: 0.2255 0.0097 

b1 0.9789 0.0351 

b 3.0660 0.1202 
4 

bs 0.8636 0.2308 

b6 -0.1378 0.0073 

bl 2.2955 0.1966 

Table 5.3: Initial parameters estimated by Pienaar and Harrison (1989) for the 
basal area projection model. 

In the original model, there was no associated parameter with the variable lnG/° 

In other words, this parameter was not significantly different from unity. When 

the model was used for the intermediate thinning type, this parameter was not 

significantly different from one. However, it was statistically significantly 

different from one when the model was fitted to the neutral thinnings. Therefore, 
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two stage fitting was used by forcing the relevant parameter to one manually, as 

described in the section 4.2.5.1 with equations 4.49 - 4.53 (pages 90 - 91). All the 

possible models were observed with and without the non-significant parameters 

using the program written in Appendix 3.2. 

Three appropriate models were identified for the intermediate thinning type, i.e. 

with all parameters, without parameter b
1

, without parameters b6,b1
. Four such 

models were identified for the neutral thinning type, i.e. as for intennediate 
, 

thinning and without parameters b , b and b . R- values were 0.890-0.912 and 
J 6 l 

0.880-0.883 for intermediate and neutral thinning respectively At the first 

attempt of fitting, the non- linear parameter became insignificant for the neutral 

thinning type. When the model was fitted without that parameter using linear 

regression, the parameter associated with lnG
1 

was not statistically significant 

from one. Therefore, R
2 

could be estimated. To be common to both thinning 

types, the following two models were selected for further studies. 

(i) Basal area projection model a 

The model without parameter b
1

: 

In G, - In G, + b, • ( ~ ' - ~,) + b, * (N,) + b, * (lnh,,.,,,, - lnh,-,,, ) 

+b4 *(lnN2 - lnNI) +b5 * ( lnhdom(2) - lnhdom(I)) +b6 *(NI ) 
A2 Al A2 Al Na 

The estimated parameters for the above model are given below: 

5.4 

Parameter Intermediate thinning Neutral thinning 
Estimate Standard error Estimate Standard error 

lnG
1 1.0450 0.0360 0.8888 0.0960 

bl -104.8000 44.5000 -95.000 124.0000 

b2 -0.0217 0.0190 0.0965 0.0450 

bl 0.0238 0.2610 0.8480 0.7270 

b4 17.5900 4.4600 16.7000 11.6000 

bs -6.4700 7.3800 -28.3000 18.0000 

b6 0.1202 0.3940 0.1380 0.2390 
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(ii) Basal area projection model b 

The model without parameters b and b : 
6 7 

5.5 

Estimated parameters for the basal area projection model b are: 

Parameter Intermediate thinning Neutral thinning 
Estimate Standard error Estimate Standard error 

LnG 
I 1.0350 0.0360 0.9054 0.0910 

b, -146.8400 73.7500 -45.5000 89.2000 
b, -0.0105 0.1990 0.0879 0.0420 

bj 0.1011 0.1730 1.0480 0.6350 
b 14.3380 
~ 

5.3430 11.7300 7.8200 

bs 5.1700 16.4900 -32.6000 16.2000 

Evaluation of the basal area projection models 

The standard residual distributions for model a and model b are given in Figure 

5.3 and Appendix 3.9(ii) respectively. The standard residual distributions for all 

the selected models were similar although there were some outliers in the data 

fitted for the intermediate thinning. However, as an overall conclusion, the data 

were over-estimated for both thinning types (Figure 5 .3). 

In the neutral thinning type there was an indication of the bias with the validation 

data (Figure 5.4). However, the distribution range of normal residuals in the 

neutral thinning type is much lower than that of intermediate thinning. 

The quantitative tests showed that the estimated values for average model bias, 

mean absolute difference and the modelling efficiency for the two selected 

models were similar for the neutral thinning type (Table 5.4). However, these 
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values were better for model a than model b for intermediate thinning and 

therefore model a ( 5 .4) was selected for further studies for both thinning types. 

Inte rme dia te thinning Neutral thinning 
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.!!? "' 2.0 + 2.0 -- + .;J <'I ++ :::, + :::, 
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Figure 5.3: Standard residual distribution of the selected basal area projection 
model a. 

Test Intermediate thinning Neutral thinning 
Model a Model b Model a Modelb 

Average model bias -0.0003 -0.0007 0.0001 0.0000 
Mean absolute difference 0.0304 0.0318 0.0430 0.0435 
Modellin_g efficiency 0.9240 0.9080 0.8950 0.8960 
Table 5.4: Quantitative test results applied for the selected basal area 

projection models. 
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Figure 5.4: Normal residual distribution of the basal area projection model a 
after validating with reserved data. 

158 



5.4.1.3 Stand volume prediction model 

The initial model constructed by Pienaar and Harrison ( 1989) for the prediction 

of total stand volume is: 

where: 
3 -I 

V = total stand volume m ha 

a
0
-a

3 
= unknown parameters 

In this model, the present volume is estimated; therefore time difference is not 

used. All the parameters in this model are linear, so multiple linear regression 

was used for the parameter estimation. The initial parameters estimated by the 

authors are shown in Table 5.3. 

Parameter Unthinned plantations Thinned plantations 

ao 

a, 

a2 

a1 
Table 5.5: 

-1.2333 0.0625 

0.0190 0.0081 

1.1899 0.0224 

0.8655 0.0162 

Parameters estimated initially for the total volume prediction 
model by Pienaar and Harrison (1989). 

Three better fits were identified for the thinning types in this study, i. e. with all 

the parameters and without parameter a
0 

for intermediate thinning and with all 
, 

the parameters for neutral thinning. R- values for the intermediate thinning type 

were 0.806 and 0.804 for the original model and the model without parameter a
0 

respectively. The corresponding value was 0.716 for the neutral thinning type. 

However, one model was common for the both thinning types and therefore that 

model ( 5. 7) was taken forward for further tests. 
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The estimated parameters for the above total volume prediction model is: 

Parameter Intermediate thinning Neutral thinning 
Estimate Standard error Estimate Standard error 

ao 1.0840 0.7690 6.0850 0.7360 
a, -0.3187 0.0640 -0.6218 0.0760 
a 

2 
0.5320 0.1480 -0.7500 0.1640 

a1 1.4100 0.1460 1.6350 0.1270 

Evaluation of stand volume prediction model 

The distributions of standard residuals were reasonable (Figure 5.5) although the 

' values estimated for R- and modelling efficiency (Table 5.6) were relatively low 

for both intermediate and neutral thinning types. The average model bias was a 

negative value for both thinning types (Table 5.6) indicating an over-estimation. 

The mean absolute differences were relatively low. 
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Figure 5.5: Standard residual distributions of the selected total volume 
prediction model. 

Test Intermediate thinning Neutral thinning 
Average model bias -0.0189 -0.0001 
Mean absolute difference 0.1384 0.1167 
Modelling efficiency 0.8720 0.7930 
Table 5.6: Quantitative results obtained from the selected volume prediction 

model. 
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The normal residuals resultant after fitting of the validation data (Figure 5.6) did 

not indicate a very good fit. A dramatic difference could be identified for the 

parameters estimated separately for two thinning types i.e. the magnitudes of the 

values estimated for a
0 

i.e. 1.08 for intermediate thinning and 6.08 for neutral 

thinning. Pienaar and Harrison ( 1989) estimated different magnitudes and signs 

for the initial parameters for thinned and unthinned plantations. This could be 

due to the sensitivity of the model parameters for different growth rates, and may 

be the reason for parameter differences examined after re-calibrating. 
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Figure 5.6: Residual distribution with the fitted values of the total volume 
prediction model to the reserved data for validation. 

5.4.1.4 Stand volume projection model 

The model constructed for volume projection by Pienaar and Harrison ( 1989) is: 

lnV2 = lnVI +al *(lnN2 - ln N1)+a2 *(lnhdom(2) - ln hdom(I))+ 

a 3 * (ln G2 - In G1) 

5.8 

As described in section 5 .4.1.1 , in the sample plot data lnN, = lnNJ allowing the 

model to be changed to: 
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The form of the above model is linear and therefore, multiple linear regression 

was used to estimate the parameters for Corsican pine plantations. However, the 

parameter associated with the variable lnV, was significantly different from unity 

in neutral thinning and therefore the two stage fit was used as described in 

section 4.2.5.1 (pages 90-91). Parameters estimated by Pienaar and Harrison for 

the initial model for slash pine are given in table 5.7. 

Parameter Unthinned plantations Thinned plantations 

ao -1.2333 0.0625 

a, 0.0190 0.0081 

a1 1.1899 0.0224 

a1 0.8655 0.0162 

Table 5.7: Parameters estimated for volume projection model by Pienaar and 
Harrison ( 1989) for slash pine. 

After fitting all possible equations to the data, the two best possible models i.e. 

with all parameters and without parameter a
1 

were identified for the intermediate 

thinning type. The three best models for the neutral thinning type were those with 
J 

all parameters, without parameter a 
I 

and without parameter a
1

• R- values were 

0.917 and 0.919 respectively for the two models in intermediate thinning. 
J 

However, R- values were not estimated for the models identified for neutral 

thinning because of the parameter estimation done by two stage fitting. The 

following two models, the forms of which were common to both intermediate 

and neutral thinning types, were selected for further tests. 

(i) Stand volume prediction model a 

The equation with all the parameters (5.9). Estimated parameters are: 

Parameter Intermediate thinning Neutral thinning 
Estimate Standard error Estimate Standard error 

lnV, 0.9639 0.0190 1.0000 * 

a, 0.0410 0.0170 -0.0234 0.0190 

ai 0.0420 0.1280 0.9691 0.7130 

a1 0.6580 0.1590 1.0400 0.3920 

* Standard error was not estimated for the parameter forced manually to be one. 

162 



(ii) Stand volume projection model b 

The model without parameter a,. 

5.10 

Estimated parameters for the selected total volume projection model b are: 

Parameter Intermediate thinning Neutral thinning 
Estimate Standard error Estimate Standard error 

lnV 
I 0.9649 0.0190 1.0000 * 

a 
I 0.0403 0.0170 0.0095 0.0158 

a1 0.6700 0.1530 1.2650 0.3530 
* Standard error was not estimated for the parameter forced manually to be one. 

Evaluation of stand volume projection models 

Distributions of normal residuals of models a and b are given in Figure 5.7 and 

Appendix 3.9(iii) respectively. Normal residuals were calculated for the neutral 

thinning type as due to the two-stage fitting process it was not possible to 

calculate standard residuals. The distribution of normal residuals of model b for 

neutral thinning indicated a very poor fit and therefore model b was not tested 

further. 
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Figure 5.7: St~.rJ residual distribution of the selected volume projection 
model a. 
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The modelling efficiency calculated for model a was relatively low for the 

neutral thinning type even though the average bias and mean absolute difference 

were low (Table 5.8). The validation results (Figure 5.8) showed very poor fit for 

neutral thinning. The reason could be due to three reasons, i.e. (i) forcing of one 

parameter; (ii) maintenance of a higher thinning intensity; or (iii) lack of another 

explanatory variable. 

Test Intermediate thinning Neutral thinning 
Average model bias -0.0006 0.0002 
Mean absolute difference 0.0849 0.1682 
Modelling efficiency 0.9230 0.7740 
Table 5.8: Results of the quantitative tests applied for the selected stand 

volume projection model. 

Intermediate thinning Neutral thinning 

0.60 ~---------~ 0.60 ~----------

"' ~ 
::i 0.30 

:'5! 
"' ~ 
i.. 0.00 
~ 

~ -0.30 -
C 

+ 
+ + ++ 
+ :j: 

-; 0.30 --
::I 

:'5! 
~ 0.00 --... 
-; 
E -0.30 --._ 
0 

+ 
+ 
++ ++ 

+ 

-0.60 __ ..__ _ _ __,_+_~-- ----J C -0.60 +---------- -

5.0 6.0 7.0 4.0 5.0 6.0 

fitted Lu V 1 val ucs , m3 ha·1 fittedl11V 1 values,m3 ha·1 

Figure 5.8: Normal residuals after fitting volume projection model a to the 
reserved data. 

5.4.2 Models developed by Soares et al. (1995) 

A model called PBRA VO was originally constructed by Pascoa (1990) for Pinus 

pinaster Ait. (maritime pine) in Portugal. Soares et al. (1995) adapted one 

version called Leiria which was developed for the National Forest of Leiria. The 

initial PBRA VO model has two sub-models: ' early growth model' which is used 

for the trees up to age 15 years (before the first thinning) and the 'main sub­

mode!' which is for plantations older than 15 years. The authors used the second 

sub-model for older plantations. This part of the model contained both individual 
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tree prediction (i.e. individual tree total height and total volume prediction 

models) and stand sub-models (i.e. prediction models for total basal area and 

number of surviving trees after thinning). 

5.4.2.1 Total height of individual trees 

The model developed by Soares et al. to predict the total height is: 

where: A = stand age, years 

dbh = diameter at breast height of individual trees, cm 
, • I 

G = stand basal area, m -,ha 

h = total height of individual trees, m 

h = dominant height, m 
dom 

N = stem number, ha 
., 

a
0
-a

5 
= unknown parameters 

5.11 

Top height was used instead of the dominant height. This model could easily be 

transformed to a linear form but only the original model was used avoiding any 

transformation bias. 

A program was written (Appendix 3.3) for estimating the parameters in this 

model. When statistically insignificant parameters were obtained after fitting the 

model in the first step, it was re-parameterized, ignoring the insignificant 

parameters one or two at a time. Parameters estimated for maritime pine by 

Soares et al. (1995) authors are shown in table 5.9. 

Parameter Estimation 

ao 1.8910 
a, 0.8907 

a2 -0.1467 

aJ 0.0755 

a 
4 

2.0010 

as 11.9600 

Table 5.9: Estimated parameters of total height prediction model for 
maritime pine by Soares et al. (1995). 
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Three possible models were identified for both thinning types. The model with 

all the parameters and a model without parameter a
2 

were common for both 

thinning types and were selected for further tests. The rejected models were one 

without parameters a
2 

and a
3 

for intermediate thinning and one without 

parameters a 
2 

and a 4 for neutral thinning. 

? 

The R- values were 0.952 for all the models identified for intermediate thinning 

and varied from 0.926 to 0.948 for neutral thinning. 

(i) Total height prediction model a 

The estimated parameters for the selected model a (model 5 .11 - with all the 

parameters) are given in the table below: 

Parameter Intermediate thinning Neutral thinning 

Estimate Standard error Estimate Standard error 

Ao 1.2080 0.1470 4.8600 1.7600 

al 0.9401 0.0380 0.7092 0.1010 

a , -0.0067 0.0280 0.0544 0.0290 

al 0.0202 0.0140 -0.0992 0.0280 

a -28.200 11.9000 66.3000 34.3000 
4 3.4070 0.6380 8.1900 1.3500 

a , 

(ii) Total height prediction model b 

The model without parameter a
2 

associated with total basal area per hectare (G) 

1s: 

5.12 

The estimated parameters for the above model are: 

Parameter Intermediate thinning Neutral thinning 

Estimate Standard error Estimate Standard error 

ao 1.2200 0.1390 3.8600 1.4800 

al 0.9347 0.0260 0.7746 0.0860 

a 0.0174 0.0080 -0.0750 0.0190 
3 

66.0000 34.4000 a4 -27.500 11.6000 

a, 3.4060 0.6370 8.2100 1.3500 
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Evaluation of the selected models 

The standard residual distributions for model a (Figure 5.9) and model b 

(Appendix 3.9(iv)) indicated unbiased distribution for both intermediate and 

neutral thinning types. 
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Figure 5.9: Standard residual distribution of the selected total height 
prediction model a. 

The values estimated from the quantitative tests indicated both very low average 

bias and very low mean absolute difference. The modelling efficiencies were 

always higher than 0.94 for all the models (Table 5.10). The normal residuals 

obtained after fitting the unchanged models to raw data indicated a normal 

distribution (Figure 5.10). 

Test Intermediate thinning Neutral thinning 
Model a Model b Model a Model b 

Average model bias -0.0008 -0.0008 -0.0011 -0.0013 
Mean absolute difference 0.8541 0.8666 0.5560 0.5463 
Modelling efficiency 0.9520 0.9520 0.9430 0.9420 
Table 5.10: Results of quantitative tests obtained from the selected total height 

prediction models. 
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Figure 5.10: Normal residual distributions after fitting the total height 
prediction model a to reserved data. 

The estimated parameters for the initial model by Soares et al. (1995) carried 

positive signs except parameter a
2 

which is associated with the total basal area 

per hectare. However, after re-calibration, some differences were found for the 

two thinning types, i.e. parameters a
2

, a
3 

and a
4 

indicated different signs; 

magnitudes were different for all parameters except parameter a r Therefore, to 

reduce the complexity, model b in which parameter a
2 

was not included (model 

5.12) was selected for further tests. Normally the total height of individual trees 

should increase with the number of trees (N) per unit area (McClain et al., 1994) 

allowing the associated parameter to be positive . This rule was broken by 

estimated parameter a 
3 

for neutral thinning. The initial parameter a 
4 

estimated 

for maritime pine (Table 5.9) associated with the inverse age carried a positive 

sign. After re-calibrating, it was positive for neutral thinning and negative for 

intermediate thinning. Theoretically, when the value of the inverse age increases, 

the total height decreases because height increases with the age. Two reasons can 

be assumed for the above difference. This problem could have emerged because 

of the high sensitivity of the model to the data collected under different 

conditions. The thinning intensity for the neutral thinning type was very high in 

the data used: sometimes over 300% of the marginal thinning intensity indicating 

a tendency towards an exploitation thinning regime. Under such high level of 

thinning intensities, the trees which had grown fast in the plantation could have 

been removed leaving many trees which were not growing as fast. Therefore, as 

an average, the height after the thinning could be similar or less than the height 

of the plantation before thinning, causing the associated parameter to be negative. 
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5.4.2.2 Total volume of individual trees 

The individual tree total volume prediction model developed by Soares et al. 

(1995) is: 

where: v = total volume of the individual trees, m
3 

b db 
1
, b 

2 
= unknown parameters 

5.13 

This model could have been used for all the individual trees gathered from the 

sample plot data without concerning the age. However, to be compatible with the 

volume prediction models constructed for the current work in Chapter 4, the 

same data sets grouped by one year age class were used for the re-calibration of 

this model. 

A program (Appendix 3.4) was written to estimate all the parameters in one step. 

In all the age classes used for both thinnings, parameters b 
1 

and b 
2 

was not 

statistically significant and the distribution of the standard residuals waS not 

changed when these two parameters were removed from the analysis. Therefore, 

the selected model used for both thinning types is described below: 

( 
1r * dbh 

2 * h) 
V = b * 0 

40000 
5.14 

Parameters estimated for maritime pine by Soares et al. are given in Table 5.11. 

Parameter Estimation 

bo 0.336 

bl 0.940 

b2 3.790 

Table 5.11: Parameters estimated by Soares et al. (1995) for the total volume 
prediction model for maritime pine. 
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Evaluation of the total volume prediction model 

The estimated parameters for different ages were similar (Appendix 3.8). The 

possibility of using one parameter for all ages will be tested in Chapter 6. For 

convenience, only the standard residual distribution at age 25 is shown in this 

chapter (Figure 5 .11 ). When observed, the residual distributions at all ages were 

even, without showing bias. This was confirmed by the quantitative tests (Table 

5.12). In these the average model bias was positive or negative but was always 

very low. Mean absolute difference was low and modelling efficiency was high 

for all ages for both thinning types. In table 5 .12, only the test results of common 

ages for intermediate and neutral thinning types were outlined. The normal 

residuals generated from the validation data indicated a reasonable fit (Figure 

5.12). 

When tested, it was observed that both non-linear parameters (b 
I 

and b
2

) of the 

original model (5.13) were not statistically significant, leaving the model in a 

linear form. In the original paper, the authors applied this model to the data of a 

wide range of ages. In this study, it was narrowed to one year age classes and this 

may be the reason for the non-significance of the above two parameters. 

Intermediate thinning Neutral thinning 
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Figure 5.11: Standard residual distribution at age 25 for total volume prediction 
model after re-calibrating the initial model developed by Soares et 
al. (1995). 
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Age Test Intermediate thinning Neutral thinning 
19 Average model bias -0.0013 -0.0009 

Mean absolute difference 0.0037 0.0031 
Modelling efficiency 0.9920 0.9870 

24 Average model bias 0.0024 -0.0006 
Mean absolute diffe rence 0.0063 0.0056 
Modelling efficiency 0.9890 0.9880 

25 Average model bias 0.0027 0.0012 
Mean absolute difference 0.0064 0.0057 
Modelling efficiency 0.9860 0.9870 

26 Average model bias 0.0004 -0.0005 
Mean absolute difference 0.0042 0.0043 
Modelling efficiency 0.9930 0.9920 

28 Average model bias 0.0050 0.0036 
Mean absolute difference 0.0068 0.0067 
Modelling efficiency 0.9730 0.9770 

3 1 Average model bias 0.0049 -0.0005 
Mean absolute difference 0.0150 0.0097 
Modell ing efficiency 0.9760 0.9850 

36 Average model bias -0.0010 0.0039 
Mean abso lute difference 0.0048 0.0133 
Modelling efficiency 0.9690 0.9860 

37 Average model bias -0.01 65 -0.0088 
Mean absol ute difference 0.020 1 0.0180 
Modell ing efficiency 0.9850 0.9850 

41 Average model bias -0.0062 0.0048 
Mean absolute difference 0.02 11 0.0189 
Modelling efficiency 0.9620 0.9840 

Table 5.12: Quantitative test results of the total volume prediction model after 
re-calibrating the initial model developed by Soares et al. (1995). 
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Figure 5.12: Normal residuals generated by fitting the volume prediction model 
to the reserved data at age 25. 
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5.4.2.3 Prediction of total basal area 

The whole stand level model developed by Soares et al.(1995) to predict the total 

basal area is: 

where: 

5.15 

A 
1 
= plantation age at the beginning of the simulating 

period, years 

A
2 
= plantation age at the end of the simulating period, 

years 
, .) 

G
1 
= total stand basal area at time A 

1
, m-ha 

, -I 
G

2 
= total stand basal area at time A

2
, m-ha 

c
1
,c

2 
= unknown parameters 

The present basal area per hectare was calculated using only the main crop trees 

and the basal area predicted by the model was calculated using both main crop 

and thinned trees. Top height was used instead of dominant height for the reasons 

outlined earlier. 

The initial values of parameters c
1 

and c
2 

estimated by Soares et al. (1995) were 

4.1780 and 0.0390 respectively. The original model was fitted to the data of the 

two thinning types separately using a GENST AT program written to estimate the 

non linear parameters (Appendix 3.5). For both thinning types the parameter c
2 

was not statistically significant. However, when the re-parameterization was 

done ignoring this parameter, the variance of they variate ( G) was exceeded by 

the residual variance, indicating a very poor fit. Therefore, the model with all the 

parameters (5.15) was selected. The parameter values for the two thinning types 

are given in the table below: 

Parameter Intermediate thinning Neutral thinning 
R2 Estimate std. Error R2 estimate std. error 

0.907 0.894 
c, 4.7440 0.181 4.4590 0.440 
c2 0.0140 0.011 0.0336 0.032 
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Evaluation of the selected models 

The estimated parameters for both thinning types were positive. Parameter c
2 

for 

intermediate thinning was lower than the same estimated parameter both for 

neutral thinning and in the initial model. The distributions of the standard 

residuals with the fitted values were even (Figure 5.13). R
2 

was reasonably high 

and modelling efficiency was 0.9 for both intermediate and neutral thinning types 

(Table 5 .1 3). Re-calibrated models for both thinning types indicated negative 

bias. However, the validation results indicated little bias in intermediate thinning 

(Figure 5.14). The number of data used in validation was very low for both 

thinning types, and therefore, a proper conclusion could not be attained from the 

validation. 
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Figure 5.13: Standard residual distributions of the total basal area prediction 
model after re-calibrating the initial model developed by Soares et 
al. (1995). 

Test Intermediate thinning Neutral thinning 
Average model bias -0.0782 -0.0561 
Mean absolute difference 1.0879 1.0984 
Modelling efficiency 0.9090 0.8960 
Table 5.13: Results of the quantitative tests applied for the resulted basal area 

prediction model. 

173 



lute rme dia te thinning Neutral thinning 
4.0 + 4.0 

"' 
++ 

+ "' -; + -; 
= 2.0 :I 2.0 - + 

"C + -0 ·;;; 
++ 

·;;; 
+ ~~+ ~ + <I' 

0.0 ... 0.0 ++ 
I. + +~-+-+-+ -; -; 

E E +++ + ... -2.0 + + I. -2.0 0 0 
C C: 

-4.0 -4.0 

30.0 40.0 50.0 60.0 10.0 20.0 30.0 40.0 50.0 

fitted sta nd ba values, m1 ha·1 fitted stand ba values, m2 ha·1 

Figure 5.14: Residual distribution of the basal area prediction model with 
validation data. 

5.4.2.4 Prediction of number of remaining trees 
after thinning 

The number of trees remaining after thinning is predicted by: 

N = N [1- (1- G I G )11 ]12 
r bt r b t 5.16 

where: G = stand basal area just before thinning, m
2
ha·

1 

ht 

G = stand basal area remaining after thinning, m
2
ha·

1 

r 

N = stem number just before thinning, ha·
1 

ht 

N = stem number remaining after thinning, ha·
1 

r 

J;,~ = unknown parameters 

The numbers of trees in the main crop after thinning, and removed as thinnings, 

were calculated using program 2 (Figure 3.8). In the original model, the basal 

area remaining after thinning ( G ) is defined by the user. However, for re-
r 

calibration, this value was calculated using sub-routine 2 (Figure 3.4) because 

thinned tree data could be obtained from the Forestry Commission sample plot 

measurements. 

Soares et al. (1995) estimated the values ofparameters,0 andJ; to be 0.7151 and 

0.8206 respectively for maritime pine. The non-linear equation was fitted to the 

data using a GENSTAT program (Appendix 3.6). For both thinning types, 
parameters -0 and J; were statistically significant and therefore the unchanged 
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model structure was selected. The estimated parameters are given in the table 

below: 

Parameter Intermediate thinning Neutral thinning 
Rl Estimate std. Error R2 estimate std. error 

0.988 0.963 

~ 0.6919 0.0586 0.7887 0.0637 

/2 0.8077 0.0990 1.1750 0.1220 

Evaluation of the selected model 

Although the R
2 

values for both the intermediate and neutral thinnings were high, 

the standard error of the model was also high, i.e. 54.0 and 59.8 respectively. The 

estimated parameters after re-calibration were similar to those in the original 

model. However, both models indicated bias when the standard residual 

distributions were examined (Figure 5.15). The worst fit occurred with the 

neutral thinning type . The quantitative results showed very high negative bias 

and high mean absolute differences (Table 5.14). The modelling efficiency was 

also low. All these tests indicate the poor fit of these models to the Forestry 

Commission Corsican pine data, and this was confirmed by the validation 

procedure (Figure 5 .16). This model might be developed originally for a different 

thinning type from the two thinning types used in this study, and this may be the 

reason for the bias generated by re-calibration. Because of its obvious 

unsuitability to the current study, this model was removed from any further tests. 

Intermediate thinning 
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Neutral thinning 
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Figure 5.15: Standard residual distributions of the tree prediction model after 
thinning, after re-calibrating. 
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Test Intermediate thinning Neutral thinning 
Average model bias -8.7741 -10.6747 
Mean absolute difference 37.4128 45.4172 
Modelling efficiency 0.7880 0.6640 
Table 5.14: Quantitative test results for the prediction model of the number of 

trees removed in thinning. 
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Figure 5.16: Residual distribution of the remaining tree number prediction 
model after thinning, with reserved data. 

5.4.3 Models built by West and Mattay (1993) 

This set of models was built by West and Mattay (1993) for the prediction of the 

growth of six eucalyptus species, i.e. Eucalyptus delegatensis R. Baker, E. 

diversicolor F. Muell. (Karri), E. grandis Hill ex Maiden, E. obliqua L'Her, E. 

piluaris Smith (Blackbutt) and E. regnans F.MuelL in Australia. Although the 

models were developed for six Eucalyptus species, they can be applied only for 

even-aged monoculture plantations_ 

5.4.3.1 Prediction of total tree height 

This sub-model was developed originally to obtain top height as an average of 

measured individual trees using the mean diameter values although it was named 

as a total height prediction model. 

h = 1.3 + dbh I (p + q * dbh) 5.17 

where: dbh = diameter at breast height, cm 
h = total height of individual trees, m 

p, q = unknown parameters 
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The initial parameters were not given in the paper by West and Mattay (1993). 

The same data set generated for the construction of total height prediction models 

in Chapter 4 was used for the re-calibration of the model 5 .17. 

The GENSTAT program outlined in Appendix 3.7 was used to estimate the 

parameters of the above non-linear model. Parameter q was not significant for 

intermediate thinning. However, when re-parameterization was done ignoring 

this parameter, the variance of the y variate (h) was exceeded by the residual 

variance indicating a poor fit. Therefore, the original model given in 5.17 was 

selected. The estimated parameters for this model are given below: 

Parameter Intermediate thinning Neutral thinning 
R2 estimate std. error R2 estimate std. error 

0.763 0.706 
p 1.8201 0.048 1.5836 0.084 
q -0.0008 0.002 0.0096 0.003 

Evaluation of the selected model 

The distributions of the standard residuals indicated slight over-estimation for 

both thinning types (Figure 5.17). The values estimated for both R
2 

and 

modelling efficiency were low for the two thinning types (Table 5 .15) However, 

the average model bias for both thinning types was low (Table 5.15). The 

distributions of normal residuals generated after fitting the validating data 

(Figure 5 .18) indicated bias. 

The estimated parameters p far intermediate and neutral thinning types were 

similar but, parameter q was negative for intermediate thinning and positive for 

neutral thinning. The magnitudes of parameter q were significantly different for 

two thinning types. 
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Figure 5.17: Distributions of standard residuals of the total height prediction 
model. 

Test Intermediate thinning Neutral thinning 
Average model bias -0.0081 -0.0075 
Mean absolute difference 1.9570 1.2165 
Modelling efficiency 0.7640 0.7080 
Table 5.15: Quantitative test results for the re-calibrated model initially built 

by West and Mattay (1993) to predict the total tree height. 
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Figure 5.18: Residual distribution of total height prediction model with the 
reserved data for validation. 

Being originally developed for the eucalyptus plantations, when applied to Pinus 

nigra the model may contain calibration errors without adding one or more new 

explanatory variables. 
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5.4.3.2 Stand volume (under bark) 

Two models were developed for estimating stand volume. Equation 5.18 is used 

for fu lly stocked, high quality stands and equation 5.19 estimates the under bark 

volume per hectare of the rest of the stands. However, there was not a clear 

definition of the measurement of the quality of the stands in the test data. 

Considering the model errors which could occur when re-calibrating this model 

to Corsican pine for the prediction of over bark volume instead of under bark 

volume, the second equation (5.19) was selected. 

5.18 

5.19 

where: A = stand age, years 
L I. -I 

D = stand density> s1E'.MS r~ 
s 

S = site index (top height at age 20 years), m year" 
3 -I 

Vub = under bark stem volume, m ha 

It is common to use a variable such as stand basal area to represent stand density 

as in equation 5 .19 (West and Mattay, 1993). Parameters initially estimated for 

the six eucalyptus species by West and Mattay in 1993 are shown in the Table 

5.16. 

Eucalyptus species Parameter 

b, b2 b3 
E. delegatensis 4.46 -27.5 0.1080 
E. diversicolor 5.16 -23.4 0.0505 
E. grandis 3.61 -28.4 0.0930 
E. obliqua 4.64 -31.1 0.0915 
E. piluaris 2.75 -42.5 0.1479 
E. re~nans 3.93 -32.2 0.1146 
Table 5.16: Parameters estimated for the total under bark volume prediction for 

eucalyptus species by West and Mattay (1993) using the model 5.18. 
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Model 5.19 was re-calibrated for over bark volume per hectare instead of the 

under bark volume using multiple linear regression. In the model built by West 

and Mattay (1993), the quality of the site was represented by site index 20 (top 

height at age 20) of the Eucalyptus species. Because the usual rotation age of 

Pinus nigra varies between 45-80 (Hart, 1994) two site indices, i.e. at 20 (to be 

compatible with the original model) and 40 years and top height at each age were 

used in this study to examine the possibility of replacing site index with top 

height at a particular age. Top height values ~calculated using the equation 

4.40 in Chapter 4. 

(i) Stand volume prediction model a 

The model constructed by West and Mattay to predict the stand volume for poor 

quality stands is: 

5.20 

where: SI
20 

= top height (m) at the age of 20, years 

The estimated parameters for the above model are given in the table below: 

Parameter Intermediate thinning Neutral thinning 
R- estimate std. error ' R- estimate std. error 

0.836 0.669 
bl 5.1260 0.261 5.1680 
b2 -38.3000 2.480 -31.1900 

b3 0.0811 0.016 0.0729 

b4 0.0200 0.004 0.0134 

(ii) Stand volume prediction model b 

The re-structured model with top height at age 40 as the site index is: 

where: S/
40 

= top height (m) at the age of 40, years 
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0.376 
3.700 
0.035 

0.004 
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The estimated parameters for the above model are: 

Parameter Intermediate thinning Neutral thinning 
' estimate std. error ' estimate std. error R- R-

0.821 0.641 
b, 5.1460 0.288 5.7850 0.635 
b2 -36.1000 2.480 -30.2400 3.870 
b1 0.0382 0.009 0.0017 0.034 

b4 0.01 96 0.004 0.0169 0.005 

(iii) Stand volume prediction model c 

The model with the top height at each age instead of site index of the original 

model is: 

5.22 

where: h = top height (m) at the age A, years IOp 

The estimated parameters are: 

Parameter Intermediate thinning Neutral thinning 
? R- estimate std. error 

? R- estimate std. error 
0.892 0.733 

bl 4.2200 0.267 2.2080 0.899 
b2 -1 2.6200 3.180 22.2000 13.200 
b1 0.0454 0.005 0.1202 0.029 

b4 0.0239 0.003 0.0153 0.004 

For the intermediate thinning type, all the parameters in all three models were 

statistically significant. However, for the neutral thinning type, parameter b 
3 

in 

model b (5.21) and parameter b
2 

in model c (5.22) was not statistically 

significant. However, to be compatible for both thinning types the unchanged 

models (5.20, 5.21 and 5.22) were selected. 
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Evaluation of the selected models 

Parameter b
2 

in model c estimated for the neutral thinning type was positive. 

Stand volume per unit area should increase with the plantation age if the number 

of trees per unit area is more or less constant. Therefore, parameter b
2 

which 

was associated with inverse age should have been negative. However, in the 

neutral thinning sample plots used for re-calibrating, thinning intensity and 

therefore the thinning yield is very high, sometimes more than 300% of the 

marginal thinning intensity. This explains the reason for the positive parameter 

associated with the inverse age because after thinning, the remaining number of 

trees is very much less than it was before thinning, leaving less total volume on 

the ground. In order to reduce the complexity of parameter sets with different 

signs for different thinning types, model c was removed from further studies. 

When the quality of the site increases, stand volume should also increase and the 

same phenomenon should happen when the stand basal area increases. All the 

parameters estimated for models a and b followed this pattern. 

All the models indicated a good distribution of standard residuals for both 

thinning types (Figure 5 .19) although the R
2 

and modelling efficiency values 

were low (Table 5 .1 7). Average model bias was zero and mean absolute 

difference was lower than 0.5 for all the models (Table 5.17). However, the 

normal residuals generated after fitting the unchanged models to the reserved 

data indicated bias for the neutral thinning type (Figure 5.20). 

Inte rme dia te thinning Ne utral thinning 
3.0 3.0 

+ + 
"' 1.5 + + *+ -; + 

+ :t.' ::, 
-0 + + ++++~ ·;;; 0.0 +.+ ~ + Cl,) +~ + .. 
'E ~ 

"' -1.5 +++ ++ 

"' 1.5 -; 
::, 
-0 
·;;; 0.0 Cl,) .. 
-c:i 

-1.5 .... 
"' + -1-1-+ 

-3.0 -3.0 
4.0 5.0 6.0 7.0 4.5 5.0 5.5 

fitted l11V val ues, In (m3 ha·') fitted ill V values, In (m3ha·') 

Figure 5.19a: Standard residual distributions of stand volume prediction model 
a. 
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Figure 5.19b: Standard residual distributions of stand volume prediction model 
b. 

Test Intermediate thinning Neutral thinning 
Model a Model b Model a Model b 

Average model bias 0.0000 0.0000 0.0001 0.0000 
Mean absolute difference 0. 1344 0.1401 0.1 190 0. 1318 
Modelling efficiency 0.8440 0.8440 0.6880 0.6620 
Table 5.17: Results of the quantitative tests applied for the selected stand 

volume prediction models. 
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Figure 5.20a: Distribution of the residuals after fitting the volume prediction 
model a to the reserved data. 
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Figure 5.20b: Distribution of the residuals after fitting the volume prediction 
model b to the reserved data. 

6.0 

Model b, in which the site index at age 40 was included, was selected for further 
? 

tests in this study even though it showed lower values for R- and modelling 

efficiency than model a for neutral thinning. The reason for not selecting the 

model a ( one with the site index at age 20) was that at age 20, some pine 

plantations have only just passed the age of first thinning, and at this stage, the 

number of removed trees could be very high leaving much space for the growing 

trees. Also the thinning type may not be regular at this stage (Jenkins, pers. 

comm.). Therefore, reliable top height values may not have been measured at age 

20 and taking the site index at age 40 indicates a more solid reference point about 

the site. 

5.5 Discussion on re-calibration of selected 
models 

Most of the re-calibrated models in this chapter do not predict the same variables 

as predicted by the newly constructed models in Chapter 4. The difference is that 

these re-calibrated models predict stand-level variables while the new growth and 

yield models of Chapter 4 predict tree-level variables. However, a comparison 

can be made after predicting the individual tree variables using the new models, 

and calculating the particular variables for a unit area. It was difficult to find 

empirical models which predict the tree-level variables from past work which 

would fulfil the requirements described in section 5.2. 
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There are many difficulties to be faced when a non-linear model is transformed 

to its linear form, i.e. (i) the non-normal distribution of the new error term; and 

(ii) inaccurate re-estimation of the precision of some of the original parameters 

(Kassab, 1987). Therefore all the non-linear models were fitted to the data 

without changing the non-linear form. Fitting non-standard non-linear models 

could not be done using standard GENST AT algorithms. Therefore, GENSTAT 

programs were newly written for this work. 

5.5.1 Testing the predictive ability of models 

For the constructed new models in Chapter 4, lack of fit was tested using the 

procedure described by Weisburg ( 1985). All the selected models for the re­

calibration in this chapter were constructed or developed by well-experienced 

modellers for wide use and therefore, lack of fit was unlikely to be an issue for 

these models. Because of this reason, it was not tested for the selected models. 

However, quantitative tests were used to indicate bias and also to compare the 

predictive ability of one model for the two thinning types or to compare two or 

more models which predict the same variable in one thinning type. 

5.5.2 Estimation of parameters 

Many of the models re-calibrated in this chapter contained parameters with 

different signs from the original structures. This situation can be statistically 

explained, but theoretically may not be correct. The main reason for such a 

difference may be because the original models were adapted from three different 

countries having entirely different climates from Great Britain. 

, 
The qualitative and quantitative results, together with the K values, indicated 

good results for all the models except the basal area prediction model developed 

by Pienaar and Harrison (1989) re-calibrated for the intermediate thinning type. 

As emphasised earlier in this chapter, the rate of removal of trees in each 
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thinning was very high for the plots which were maintained under a neutral 

thinning, sometimes over three times the marginal thinning intensity. This could 

dramatically affect the rate of growth of the remaining trees in plantations. 

From the beginning of the current study, the intention was to construct the best 

and the simplest models to predict the particular variables. The same objective 

was applied to the selected models for re-calibration. Therefore, whenever 

parameters were found statistically non-significant after re-calibrating, all the 

possible variations of models were tested with the qualitative and quantitative 

' tests and R- in order to find the simplest model. However sometimes the 

parameters which were statistically not significant were included in some models 

because either bias resulted if they were removed or the non-significant 

parameters for one thinning type were statistically significant for the other. 
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CHAPTER 6: TESTING FOR COMMON 
PARAMETERS FOR NEUTRAL AND 
INTERMEDIATE THINNING TYPES 

6.1 Introduction 

As stated earlier, the data obtained from the Forestry Commission in Great 

Britain contained only enough Corsican pine data for analysis of intermediate 

and neutral thinning types. However, estimating separate parameters for the 

separate thinning types sometimes creates major problems for the user, 

especially when converting the plantation or estate from one thinning regime to 

another. To overcome this disadvantage, the possibility of using one set of 

parameters for each model for both thinning types was tested. Although all the 

models selected from past work were developed as common models for thinned 

plantations ( e.g. Pienaar and Harrison, 1989; Soares et al. , 1995; West and 

Mattay, 1993), the same data partition was used in all cases so as to be 

compatible with the newly constructed models in Chapter 4. Given that all the 

re-calibrated models were originally designed for all thinning types (thinning 

types were not mentioned in the original papers), it was felt entirely appropriate 

to attempt re-parameterization on separate data sets. 

The two thinning types used for the building and re-calibrating of the models 

contain different numbers of data sets. The documented methods for testing the 

possibility of constructing a common model out of similar regression equations 

containing different parameter sets are very few. Therefore a simple t-test was 

identified to use for this purpose using the normal residuals. Another method 

was developed by McRoberts (1988) but this requires that the number of data 

for both sets should be similar and therefore this test was not used for the 

current work. For the two-sample t-test, the number of data in the two samples 

do not necessarily have to be similar. 
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6.2 

6.2.1 

Methods 

Testing of the significance of the parameters 
of volume prediction models for two thinning 
types 

For the newly constructed total volume and merchantable volume prediction 

models (Chapter 4) and the re-calibrated total volume prediction model 

developed by Soares et al. ( 199 5), the parameters were estimated for each age. 

Therefore, before pooling the data for both thinning types, the significance of 

the difference of the parameters at each age for the two thinning types was 

tested using the following procedure. 

A two-sample t-test was done for the parameters from each model using the 

procedure described below: 

t = 

where: 

6.1 

(n;" )(n11eu1) 

x. = arithmetic mean of the parameters estimated for 
Ill 

intermediate thinning 
x11ew = arithmetic mean of the parameters estimated for 

neutral thinning 
n;11 = number of data of intermediate thinning 

11
11

• 111 = number of data of neutral thinning 

s 2 = variance for the pooled data 
(Freese, 1990) 

The variance for the pooled data was calculated using the following method: 

6.2 

6.3 
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where: 

8 2 = SS;,, + SS,,,llf 
(n;,, - 1) + (n,,,llf - 1) 

SS;,, = corrected sum of squares of parameters of 

intermediate thinning 
SS,,,

111 
= corrected sum of squares of parameters of 

neutral thinning 
(Freese, 1990) 

6.4 

The calculated t-value for the degrees of freedom (n;,, - 1) + (n,,,
111 

- 1) was 

compared with the tabulated t-value at 0.05 probability level. The null 

hypothesis was that there was no significant difference between the parameters 

calculated for intermediate and neutral thinning types. If the calculated t-value 

was lower than the tabulated value (if the null hypothesis was accepted) it was 

confirmed that the parameters estimated (for each age class) were not 

significantly different for the two thinning types. Then the data at each age 

were pooled separately for the two thinning types in order to estimate the new 

parameters common for all ages for separate thinning types. Finally the tests 

described below were done to examine the validity of adopting one set of 

common parameters for both thinning types. 

6.2.2 

6.2.2.1 

Testing of the common parameter values 

Significance of the normal residuals 

First, the selected models identified in Chapter 4 and Chapter 5 were fitted to 

the pooled data for both thinning types to obtain a new set of parameters. When 

a parameter was required not to be significantly different from one, the 

possibility was tested using equation 4.49 (page 90). If that particular parameter 

was significant, it was manually forced to be one using the procedure described 

in equations 4.50 - 4.53 (page 90-91). 

The resultant models, with common parameters, were then compared with the 

data for intermediate and neutral thinning types. For this comparison, the 

normal residuals for each thinning type were calculated using the following 

equation: 

189 



where: 

s ,. = Y,- - y,. 

s ,. = error of the individual observation 

y,. = observed ith value 

y,. = predicted ith value from the model 

6.5 

Finally the two sample t-test (6.1) was done for the residuals of both thinning 

types using the null hypothesis that there was no significant difference between 

the normal residuals when the model from pooled data was fitted to the 

thinning types separately. 

6.2.2.2 Distribution of normal residuals versus fitted 
values 

Even if all the residuals were negatively or positively biased for both thinning 

types, they might still be statistically non-significant when the t-test is applied. 

Therefore, when the null hypothesis was accepted, the common model was 

fitted separately to the two thinning types and then the distribution of the 

normal residuals with the fitted values was observed to visually identify any 

bias. 

6.3 

6.3.1 

6.3.1.1 

Results 

Models newly constructed for this work 

Significance of the parameters in volume prediction 
models for the intermediate and neutral thinning 
types 

Results of the two-sample t-test described in section 6.2.1 for the volume 

prediction models constructed in Chapter 4 are given in Table 6.1. All the 

parameters in the total volume prediction models a and b and the merchantable 

volume model a and b were not statistically significant for the intermediate and 

neutral thinning types (Table 6.1 ). 
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Model Parameter Calculated Degrees of Significance 
t-value freedom 

Total volume 

Model a b 1.93 55 NS 

Model b co 0.27 55 NS 
c, 0.02 55 NS 
C : 0.10 55 NS 

Merchantable vo lume 

Model a b 0.10 55 NS 

Model b co 0.87 55 NS 
C 

I 1.31 55 NS 
None of the t-values were significant at 0.05 probability level. 
Table 6.1: Calculated t-values for each parameter in volume prediction 

models. 

6.3.1.2 Calculated t-values for residuals 

The resultant t-values for the residuals of both thinning types after fitting the 

common parameters are given in Table 6.2 below. 

Model Calculated Degrees of Significance 
t-value freedom 

Diameter at breast height 
Model a 10.05 7475 * 
Model b 14.46 7475 * 

Total height 
Model a 06.22 754 * 
Model b 05.95 754 * 

Timber height 
Model a 07.28 4084 * 
Model b 05.84 4084 * 

Total volume 
Model a 01.55 4072 NS 
Modelb 10.60 4072 * 

Merchantable volume 
Model a 06.38 4072 * 
Model b 00.44 4072 NS 

* significant at 0.05 probability level. 

Table 6.2: Calculated t-values for the residuals obtained after fitting the 
models contained common parameters to both thinning types. 
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Only model a of the total volume prediction model and model b of the 

merchantable volume prediction model indicated the possibility of using 

common sets of parameters for both thinning types (Table 6.2). Therefore, only 

these two models were selected for the residual tests. 

Parameter b in total volume prediction model a represents the form factor. 

Having a value of 0.50 indicated the shape of individual Corsican pine tree 

stems approximates a paraboloid. Because of the non-significance of the 

difference in this parameter, it can be assumed that this is more stable in the 

total volume prediction model a than the parameters in model b. The 

merchantable volume prediction model b was a derivation of the total volume 

model a. This could be the reason for the greater stability of parameters c
0 

and 

c, in that model than in the merchantable volume prediction model a. The less 

stability of the merchantable volume prediction model a could be due to the 

application of the assumption that the tree stem of Corsican pine is a 

paraboloid, instead of an approximation of a paraboloid. 

6.3.1.3 

(i) 

Estimated new common parameters for all ages for 
the selected models 

Total volume prediction model a 

The model constructed for predicting the total volume of individual trees in 

Chapter 4 is: 

v = b * ( n * dbh 2) * h 
40000 

6.6 

The newly estimated common parameter for all the ages for the above model is: 

Parameter Estimate Standard error Rz 

0.995 
b 0.5040 0.0004 
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(ii) Merchantable volume prediction model b 

The merchantable volume prediction model b for individual trees constructed 

in Chapter 4 is: 

V = C + C * (g * h) - . * mer 
{ (

n *490 (h-h ))} 
mer O 

1 40000 3 6.7 

Common parameters estimated for the two thinning types covering all ages are: 

Parameters Estimate Standard error 
, 

K 

0.995 
co -0.0038 0.0004 
c, 0.5061 0.0005 

After selecting the total volume model a and merchantable volume prediction 

model b, these two models were fitted to the data separately, but with the 

common set of parameters, in order to observe the distribution of the residuals. 

The results are shown in Figures 6.1 and 6.2. 

When comparing the normal residuals obtained after fitting the model with 

common parameters, the residual distributions were more scattered for the 

intermediate thinning type for both total and merchantable volume prediction 

models (Figure 6.1 and Figure 6.2). If the distribution is considered without the 

magnitude of the residuals taken into account, total and merchantable volume 

models fitted to the two thinning types indicated a reasonable fit. The use of 

both models is made more convenient by having one set of parameters instead 

of one set for each age or thinning type. Therefore, from all the volume 

prediction models newly constructed in Chapter 4, total volume prediction 

model a and merchantable volume prediction model b were shown to be the 

most appropriate for use in the field. 
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Figure 6.1: Nonnal residual distribution of the newly constructed total volwne 
prediction model a after fitting with the common parameter. 
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Figure 6.2: Nonnal residual distribution of the newly constructed merchantable 
volwne prediction model b after fitting with the common parameters. 

6.3.2 

6.3.2.1 

Re-calibrated models 

Models developed by Pienaar and Harrison (1989) 

These authors developed compatible equations for both prediction and 

projection of total basal area and total volwne. However, only the differences 

between parameters of the basal area projection model and the total volwne 

prediction model were not statistically significant for both thinning types in this 

study (Table 6.3). 
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Model Calculated Degrees of Significance 
t-value freedom 

Basal area prediction 
Modelb 5. 12 269 * 

Basal area projection 
Model a 0. 10 94 NS 

Volume prediction 0.83 175 NS 

Volume projection 
Model a 2.66 72 * 

* significant at 0.05 probability level. 
Table 6.3: Results of the two-sample t-tests of the re-calibrated models 

initially constructed by Pienaar and Harrison (1 989). 

(i) Basal area projection model 

The selected basal area projection model after the re-calibration in Chapter 5 is: 

In G, - In G, + b, • ( ~' - ~J + b, * (In N,) + b, * (Inh,,.,,, - Inh,,.,,,,) 

+b4 *(lnNI _ In N I) +b5 *( ln hdom(2) _ lnhdom( I)) +b6 *( N,) 
A2 Al A2 Al Na 

6.8 

Newly estimated common parameters for the above model are: 

Parameters Estimate Standard error Rz 

0.911 

I>, -129.9000 46.6000 
b2 0.0175 0.0209 

bJ 0.2100 0.2770 

b4 15.7200 4.6900 

bs -6.7000 7.5800 

b6 0.0006 0.0140 
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Distribution of the normal residuals with the fitted values 

The distribution of the normal residuals estimated after fitting the model with 

common parameters to both thinning types separately, indicated little over­

estimation (Figure 6.3). However, this model did not work well even with 

separate parameter sets for intermediate and neutral thinnings in Chapter 5. 

Therefore, it was decided to use the common parameter set estimated in this 

chapter. The different parameter sets estimated for the same model in chapter 5 

and in this chapter indicated different magnitudes providing an idea of the high 

sensitivity of the model to different data sets. 
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Figure 6.3: Distribution of normal residuals of the basal area projection 
model a after fitting with the common parameters. 

(ii) Total volume prediction model 

The total volume prediction model selected after re-calibrating the initial model 

constructed by Pienaar and Harrison (1989) is: 

6.9 

The estimated common parameters for both thinning types for the above model 

are given below: 
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Parameters Estimate Standard error ' R-

0.733 
ao 2.25 10 0.6160 
al -0.3685 0.0558 

a" 0.1880 0. 1270 
a 

3 1.4680 0.1060 

Distribution of the normal residuals with the fitted values 

The distribution of the normal residuals obtained after fitting the model with 

common parameters separately to the two thinning types (Figure 6.4) indicated 

similar results to those obtained after fitting the model with different 

parameters for two thinning types in the previous chapter (Figure 5.5). 

Therefore, the new common set of parameters was selected for use. 
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Figure 6.4: Normal residuals of total volume prediction model for both 
thinning types after fitting with common parameters. 

6.3.2.2 Models developed by Soares et al.(1995) 

(i) Significance of the parameter in the volume prediction 
model for the intermediate and neutral thinning types 

As for the newly constructed and developed total and merchantable volume 

prediction models, the parameter b 
O 

in the total volume prediction model 

developed by Soares et al. (1995) was not statistically significant for both 

thinning types when the two sample t-test was applied (Table 6.4). 
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Parameter Calculated Degrees of Significance 
t value freedom 

bo 1.55 55 NS 

Table 6.4: The calculated t-value for the parameters estimated for each age 
for the intermediate and neutral thinning types. 

(ii) Calculated t-values for the residuals 

The difference of the parameters in the model selected for the prediction of 

total tree height were statistically signjficant while the other two models were 

not (Table 6.5). Therefore only the total volume prediction and total basal area 

prediction model were taken forward to test the distribution of residuals. 

Model Calculated t value Degrees of Significance 
freedom 

Total height 
Model b 2.67 754 * 

Total volume 1.55 4072 NS 

Total basal area 0.1 8 94 NS 
* significant at 0.05 probability level 
Table 6.5: Results of the two sample t-test applied for the models 

developed by Soares et al. ( 1995). 

(iii) Total volume prediction model 

The selected model for the prediction of individual tree volume after re­

calibrating the initial model developed by Soares et al . (1995) is: 

(
n*dbh

2
*h) 

V = b * 0 
40000 

6. 10 

The common parameter for both thinning types for all ages for the above 

model is: 

Parameter Estimate Standard error Ri 

0.995 

bo 0.5041 0.0004 
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Distribution of the normal residuals with the fitted values 

The distributions of the normal residuals calculated for the intermediate 

thinning was more scattered than for the neutral thinning (Figure 6.5). 

However, comparing Figure 6.5 with the results obtained from the same model 

when fitted separately using separate parameters for each age in Chapter 5, the 

common parameter was believed to be adequate to predict the total volume of 

individual trees at any age if the diameter at breast height and total height is 

known. 
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Figure 6.5: Residual distribution of the volume prediction model with the 
common parameter. 

(iv) Total basal area prediction model 

The selected model in Chapter 5 to predict the total basal area is: 

6.11 

Estimated common parameters for the above model are: 

Parameter Estimate Standard error R2 

0.895 
Cl 4.6920 0.1630 
c2 0.0170 0_0106 
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Distribution of the normal residuals with the fitted values 

The distributions of the residuals observed in Figure 6.6 were very similar to 

the distributions observed in Figure 5.13 in Chapter 5 when fitted with the 

separate parameters. The magnitudes of parameters c and c, were also very 
I -

similar when estimated separately for the two thinning types and estimated for 

the pooled data. Therefore, the newly estimated common parameters in this 

chapter were selected for use. 
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Figure 6.6: Distribution of normal residuals after fitting the basal area 
prediction model with the common parameters. 

6.3.2.3 Models developed by West and Mattay (1993) 

Differences of the parameters of both the total tree height prediction model and 

the derivation of the total volume prediction model built by West and Mattay 

(1993) were statistically non-significant for intermediate and neutral thinning 

types thus indicating the robustness of the parameters (Table 6.6). 

Model Calculated t value Significance 
Total height 0.32 NS 

Total volume 
Modelb 0.36 NS 

None of the models were significant at 0.05 probability level 
Table 6.6: Calculated t-values for the models built by West and Mattay 

(1993). 
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(i) Total height prediction model 

The resulting model after re-calibration in Chapter 5 is: 

h = 1.3 + dbh I (p + q * dbh) 6. 12 

The estimated common parameters for the above model are: 

Parameter Estimate Standard error 
1 

K 

0.760 
p 1.8103 0.0399 
q -0.0003 0.0013 

Distribution of the normal residuals with the fitted values 

Very similar residual distributions were obtained when this model was fitted 

with separate parameters (Figure 5 .17) and common parameters (Figure 6. 7) to 

intermediate and neutral thinning types. Therefore, the new set of parameters 

was selected for use from this point on. 
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Figure 6.7: Nonnal residuals of the total height prediction model when 
fitted to the data with common parameters. 

(ii) Total volume prediction model b 

The selected total stand volume prediction model in Chapter 5 is: 

1nV=b1 +b2 *_!_+b3 *Sl40 +b4 *Ds 6.13 
A 
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The newly estimated common parameters in this chapter for the above model 

are: 

Parameter Estimate Stand error 
, 

R-

0.819 
B, 5.2250 0.2010 
b1 -34.9500 1.9500 
bl 0.0344 0.0079 
b 

./ 0.0180 0.0027 

Distribution of the normal residuals with the fitted values 

The distribution of the residuals for the both thinning types when the model 

was fitted with separate sets of parameters (Figure 5.19b) and common set of 

parameters (Figure 6.8) were very similar. This indicates that there is no harm 

in using the common parameters for intermediate and neutral thinning types 

and also indicates the robustness of the model for different data types. 
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Figure 6.8: Distribution of normal residuals of the total volume prediction 
model with common paramters. 
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6.4 

6.4.1 

Conclusions for the testing of common 
parameters for the intermediate and 
neutral thinning types 

Newly constructed models 

According to the tests used in this chapter, only the total volume prediction 

model a (6.6) and the merchantable volume prediction model b (6.7) present 

the possibility of using the same set of parameters for intermediate and neutral 

thinning types. Therefore, these two models were selected for use in future 

work. The other two models developed for volume predictions i.e. total volume 

prediction model band merchantable volume prediction model a were rejected. 

6.4.2 Re-calibrated models 

The basal area projection model and total volume prediction model developed 

by Pienaar and Harrison ( 1989), the total volume prediction model and total 

basal area prediction model developed by Soares et al. (1995) and both total 

height and the volume prediction models developed by West and Mattay (1993) 

were possible to use with common sets of parameters for the intermediate and 

neutral thinning types. Therefore these common models were selected for 

future use. The other re-calibrated and selected models which indicated 

significantly different parameters for intermediate and neutral thinning types 

are taken forward with separate parameter sets. 

6.5 Discussion 

It can be argued that as a test to observe the possibility of using one set of 

parameters, the examination of separate graphs of the residual distribution of 

two populations after fitting the common model is enough. But this test only 

indicates a visual impact of the possibility. It was necessary to define some sort 

of quantitative test. With the intention of fulfilling this requirement, the two 
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sample t-test was used. There is a disadvantage in using only the two sample t­

test for the residuals because, even if the residuals are very high, or unevenly 

distributed within one sample, the result could be statistically non-significant. 

However, this sort of trend can be easily identified using the residual plots. 

Therefore both tests were used. Using such tests, not only the possibility for 

common models, but also a sensitivity of the parameters of each model to 

different populations can be studied to some extent. 

The models constructed in this study to predict the mean sizes of the trees 

removed in thinning were not tested for the possibility of common parameters 

because that set of models is clearly dependent on the thinning type. 

When the confidence intervals were checked, these were shown to have 

different ranges for the similar parameters in similar models of the two thinning 

types except in the two models developed for the prediction of total height of 

individual trees in Chapter 4. Basically the result of Chapter 6 indicates that 

most models constructed for this study contain some parameters which have a 

high sensitivity to different thinning types. 
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CHA.PTER 7: COMPARISON OF THE MODEL 
PREDICTIONS 

7.1 Introduction 

The overall performances of the models constructed and re-calibrated were 

indicated by the tests applied for those models in Chapters 4, 5 and iLnumber 

of individual data used for the above tests was very high, sometimes over 

6000 and the sample data varied in general yield class, initial planting density 

and site quality. However, when the selected models are applied to a site in the 

field which has one general yield class and one planting density, the above tests 

could be brought into question because, if two data sets are biased with 

opposing signs and similar magnitudes, the test result can indicate a highly 

accurate model. To avoid such circumstances, one sample plot from each 

thinning type was selected and the predictive ability of the models compared 

directly with the observed data. This also allowed comparison of models newly 

constructed in Chapter 4 with the re-calibrated models in Chapter 5. 

However, all the re-calibrated models could not be tested because not all of 

these models predicted the same variables predicted by newly constructed 

models, such as timber height and merchantable volume. In such situations, 

only the predictions of the newly constructed models in Chapter 4 were 

compared with the observed values. 

7.2 

7.2.1 

Methods used for comparison of model 
predictions 

Selection of sample plots 

Only two sample plots were tested in order to reduce the amount of the present 

study. The sample plots reserved for validation were used in order to obtain 

independent results because these were not involved in the construction or re­

calibration of any model. One out of five sample plots from each thinning type 
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i.e. plot number 1186 for the intermediate thinning type and plot number 1648 

for the neutral thinning were randomly selected for the comparison tests. 

7.2.2 Comparison of dbh and total height 
predictions 

Dbh and total height models predict future values using variables such as top 

height and age difference together with the present value of the corresponding 

variable. Using the first data set in the selected sample plot, the values were 

predicted at the second measurement time. The predicted data set was used as 

the second set of diameter and total height at the beginning of the second 

simulation period and the next set of dbh values were predicted. This procedure 

was continued until the final data set was obtained at the last measurement. The 

arithmetic mean values at each time were then calculated using formula 7.1. 

The total heights of individual trees were also predicted using the re-calibrated 

models developed by Soares et al. (1995), and West and Mattay (1993), and the 

respective mean values were calculated. Finally all the mean values were 

compared with the mean observed values at each measurement. There are no 

re-calibrated models for the prediction of dbh. Therefore predicted dbh values 

were derived using only the newly constructed models in Chapter 4 to compare 

with the observed data. 

Arithmetic mean of a tree variable is defined as: 

- LY; 
y=- 7.1 

n 
where: n = number of data at each measurement 

y, = value of the response variable of ith tree 
l 

y = mean value of the response variable at each 

measurement 
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7.2.3 Comparison of timber height predictions 

The timber height prediction models constructed in Chapter 4 are growth 

prediction models. Timber height was predicted using the total height and dbh 

at each measurement. The mean observed and predicted timber heights at each 

measurement were then calculated using formula 7 .1. There are no re-calibrated 

models for the prediction of timber height. Therefore, predicted timber height 

values derived from only the newly constructed models a and b were compared 

with the observed values using line graphs. 

7.2.4 Comparison of total volume, merchantable 
volume and total basal area 

There are three re-calibrated models which predict total basal area per hectare 

i.e. the basal area prediction and projection models developed by Pienaar and 

Harrison ( 1989) and the basal area prediction model developed by Soares et al. 

(1995). The newly constructed models do not predict directly the total basal 

area per hectare. However, a comparison was done with the observed data after 

calculating the basal area per individual tree from newly constructed dbh 

prediction models ( equation 4.3) and then calculating the value per hectare 

using the following formula: 

n 
where: n = number of trees measured 

N = number of trees per hectare 
y = value of the ith tree 

I 

Y = total value per hectare 

7.2 

Newly constructed total and merchantable volume models and the total volume 

model constructed by Soares et al. ( 1995) predict individual tree values. These 

predictions were converted to per hectare values using formula 7.2 and 

compared with the observed values and the two other re-calibrated volume 

prediction and projection models constructed by Pienaar and Harrison (1989). 
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Observed total basal area and total volume were gathered by the same methods 

described in Chapter 5. The same procedure was used to calculate the 

merchantable volume per hectare. For the basal area and volume projection 

models developed by Pienaar and Harrison (1989) and the basal area prediction 

model developed by Soares et al. (1995), the values at the beginning of the 

current simulating period were the values predicted by the models for the 

previous simulating period. 

7.3 

7.3.1 

Results of comparison of model 
predictions 

Diameter at breast height 

For the intermediate thinning type, the newly constructed model b indicated the 

closest predictions to the observed data (Figure 7.1). For the neutral thinning 

type (Appendix 4. l(i)) the newly constructed model a was better, but the 

predictions were very similar. However, taking the results of both thinning 

types into consideration, model b was selected for use in the field because it 

indicated closer predictions to the observed data in intermediate thinning. 
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Figure 7.1: Comparison of the dbh predictions with the observed values for 
intermediate thinning. 

208 



7.3.2 Total height 

All the tested models predicted total height reasonably well for both the 

intermediate (Figure 7 .2) and neutral thinning types (Appendix 4.1 (ii)) until 

age 40. After age 40 in intermediate thinning, both re-calibrated models 

constructed by Soares et al. (1995) and West and Mattay (1993) started to 

disperse away from the observed data. However, there were no data available 

after age 40 in the neutral thinning, so further conclusions cannot be drawn. For 

both thinning types, the newly constructed total height prediction model a and 

b indicated better results than the re-calibrated models. Of the two new models, 

height prediction model a was selected for fi eld use due to its closer fit to the 

observed data. 
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Figure 7.2: Comparison of mean total heights predicted by new and re­
calibrated models with observed values for intermediate 
thinning. 

7.3.3 Timber height 

There are no re-calibrated models for the prediction of timber height. Both the 

newly constructed timber height models indicated very similar predictions to 

the observed data (intermediate thinning - Figure 7.3 and neutral thinning -

Appendix 4.1 (iii)). Therefore, the parameter in both models associated with 
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dbh*h, which determines the shape of the curve, was considered (section 

4.3.4.2 - page 119). In model a, it was less than one while in model b it was 

greater than one. Finally model a was selected for use in the field because when 

the parameter mentioned above is less than one, the function becomes 

asymptotic, which is compatible with biological realities. 
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Figure 7.3: Results of comparison of mean timber height values for the 
intermediate thinning type. 

7.3.4 Total volume 

Total volume per hectare was calculated from the individual tree prediction 

models for comparison with the observed data. The distributions of the 

predictions obtained from the total volume prediction models newly 

constructed in Chapter 4 and by Soares et al. (1995) were very similar to those 

of observed values for intermediate (Figure 7.4) and neutral thinning 

(Appendix 4.l(iv)). The models developed by Pienaar and Harrison (1989) and 

West and Mattay (1993) did not clearly indicate the reduction of total volume 

in intermediate thinning due to the removal of trees (Figure 7.4). In the neutral 

thinning type there was a steep decrease in the volume from age 19 to 25 years 

(Appendix 4.4(iv)). This decrease is due to the removal of a very large number 

of trees from the plots in the early stages in the neutral thinning type in order to 
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obtain a commercial profit. Unlike for the intermediate thinning type, all the 

tested models indicated the volume reductions in neutral thinning. However, 

the best models were the models constructed newly for this study and the 

model constructed by Soares et al. in 1995 which initially predicted the volume 

of individual trees using the total height and dbh. 
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Figure 7.4: Results of the comparisons of total volume predictions with the 
observed values for intermediate thinning. 

7 .3.5 Merchantable volume 

The newly constructed merchantable volume prediction model indicated very 

similar predictions to the observed values for the intermediate (Figure 7.5) and 

neutral (Appendix 4. l(v)) thinning types. There were no re-calibrated models 

available for the prediction of merchantable volume. 

7.3.6 Total basal area 

Total basal area per hectare was calculated from newly constructed dbh 

prediction models in order to compare with the predictions from the re­

calibrated models. All the models predicted the total basal area within 3m
2 

of 

the observed values for the neutral thinning type (Appendix 4.1 (vi)). However, 

211 



the predictions were more scattered for the intermediate thinning type (Figure 

7.6). The worst predictions for the intermediate thinning type came from the 

models developed by Pienaar and Harrison (1989). The newly constructed dbh 

prediction model b was selected to predict the total basal area due to the 

reasons described in Chapter 7 .3 .1. 
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Figure 7.5: Comparison of merchantable volume predictions for 
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7.4 Discussion concerning comparison of 
model predictions 

In this chapter model comparisons were done using only one sample plot form 

each thinning type in order to reduce the amount of the thesis. However, the 

predictions of all the models were tested with all the sample plots reserved for 

validation, and the examined results were very similar to the results of the two 

sample plots included in this chapter. 

For the construction and re-calibration of the growth models in Chapters 4 and 

5 non-overlapping growth intervals were used in order to minimise the 

correlation of the variables. However, for the model comparisons tested in this 

chapter, data at every possible measurement cycle were fitted to the models to 

obtain a higher number of data points. The reason was that a more precise 

comparison could be carried out with a higher number of data points. 

The observed mean values of dbh, total height and timber height were not 

smoothly distributed with respect to age. When trees are removed in thinning, 

the competition is reduced and this can increase the growth rate of the 

remaining individuals. Also, well-grown trees can be removed according to the 

preference of the forest manager leaving smaller trees on the ground. It is 

obvious that the removal of trees as thinnings causes dramatic changes in total 

stand volume, merchantable volume and total basal area per hectare. 

All the re-calibrated models indicated a greater dispersion for the tested sample 

plots with the exception of the total volume prediction model developed by 

Soares et al. (1995). These dispersions may be due to the adoption of the 

models from different geographical regions without adding new functions or 

variables. All the tested newly constructed models performed well suggesting 

confidence in their future field use. 
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CHAPTER 8: GENERAL DISCUSSION 

8.1 Construction of models 

The accuracy requirements of forest growth and yield models vary from user to 

user and may also depend on the levels at which the input variables are set. For 

a certain set of values for the input variables, the response variable may be 

large and the acceptable error may also be relatively large. However, for 

another set of variables the response may be small and the acceptable error may 

also be relatively small (Reynolds and Chung, 1986). 

Sometimes models are constructed to predict only one variable e.g. individual 

tree volume or stand volume per unit area, following many analyses at each 

stage to obtain the most precise model ( e.g. the work of Gertner, 1987; Mowrer 

and Frayer, 1986). However, sometimes, a set of growth and/or yield models 

are constructed or developed for the prediction of many variables using basic 

statistical analysis. The methods adopted are dependent on the requirements of 

the modeller or end-user. In this study, a combination of these two procedures 

was followed to construct a set of precise growth models. A similar procedure 

was followed by Soares et al. ( 1995) in order to further develop a set of growth 

models originally constructed by Pascoa (1990). 

As described in Chapter 2, process-based models are very much still in the 

development stage for forest yield and growth predictions, largely due to the 

difficulties of obtaining some of the measurements, such as the maintenance 

respiration of stem sap wood, and the senescence rate of fine roots ( e.g. 

Sievanen, 1993; Sievanen and Burk, 1993). Therefore, empirical models still 

play a major role in forestry. The data obtained from the British Forestry 

Commission lacked measurements which would be useful for process-based 

modelling. However, the result of Chapter 4 in the present study indicated that 

empirical growth models can be constructed to obtain highly precise 

predictions. 
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For a good model, the requirements of the accuracy from the starting point of 

data measurement through to the model fitting are a very important feature. The 

initial phase of the current study was to examine and filter the data as required 

for each model from the large number of data sets obtained. For these reasons, 

some complex computer programmes were written using the FORTRAN 

language as described in Chapter 3. Throughout the construction and use of 

these programmes, the results were checked from time to time via manual 

calculation in order to highlight all possible errors or mistakes. 

Stepwise regression is often used by modellers to estimate the parameters for 

given sets of variables, and to highlight the best combination of variables 

(Vanclay, 1994). However, for the present study, most of the explanatory 

variables were selected as essential on the basis of a biological knowledge of 

forest growth. Therefore, the basic model structures were built before 

estimating the parameters and fitting the data. So, instead of using stepwise 

regression, all possibilities were tested, changing one variable at a time and 

using all possible transformations. This procedure is slower than stepwise 

regression, but better models can be obtained which are both statistically and 

biologically compatible. 

8.1.1 Prediction of top height 

The sample plot data could be grouped into many categories on the basis of 

thinning type, thinning intensity, plantation age and general yield class. 

However, for top height prediction, five-year age classes were adopted after 

testing all the possible partitions. Some modellers did not use such age-wise 

partition for construction of height prediction models in order to obtain the top 

height (e.g. Renolls, 1995; Wang and Payandeh, 1995; West and Mattay, 

1993). Partition of data into five-year age classes reduced the complexity of the 

top height modelling procedure in this study. One set of parameters for each 

age class resulted from this procedure. If the top height prediction model had 

been constructed for field use, it would have been complicated for the average 

end-user. However, the reason behind this modelling procedure was to obtain a 

precise estimate of top height for use in the modelling procedures for other 

predictions, not for field use. 
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8.1.2 Prediction of growth variables for main crop 
trees 

Generally, modellers have used data covering many thinning regimes in order 

to construct growth and yield models ( e.g. Pienaar and Harrison, 1989; Soares 

et al. , 1995; Wenk, 1994). In such work, the sensitivity of parameters is 

difficult to identify unless a detailed validation procedure is carried out. 

However for the present study, it was decided to partition the sample plot data 

into sub-sets to obtain better predictions models. In the data used for model 

construction (27 sample plots), the clearest and most effective possible 

partition was by thinning type. If the data were divided by general yield class, 

parameters would need to be estimated for each yield class, and this could 

confuse the model user. The modelling process would also be more 

complicated such as the construction of parameter prediction models. 

Therefore, after partitioning the data only by thinning type, parameters which 

could be used without knowledge of the general yield class were estimated. 

Finally the possibility of one model for both thinning types for each particular 

variable was tested to reduce the ultimate complexity of the model test. 

However, this aim was unsuccessful on many occasions as described in 

Chapter 7. 

In forestry modelling it is a common procedure to use some assumptions ( e.g. 

the work of Makela, 1988; Sievanen, 1993). The most complex assumptions 

are made in process-based modelling and further tests are required to test the 

validity of those (Sievanen, 1993; Thomley, 1991). However, there are 

occasionally some simple assumptions made which are apparently not tested 

further ( e.g. Soares et al., 1995 on mortality) There were many assumptions 

used in this study, but the accuracy of these was not tested statistically due to 

their simplicity. Most of the assumptions ( e.g. that the shape of a Corsican pine 

tree crown is conical; that photosynthetic rate is dependent on tree crown size; 

that there is no natural mortality if thinning is carried out) were made for the 

total volume prediction model a (Chapter 4). However, these assumptions were 

ultimately not needed because the variables added as a result of making these 

were not statistically significant in that model. 
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All the explanatory variables were selected carefully after observing the 

correlations and the distributions with the response variables and most of these 

indicated a good correlation. Stand occupancy is an abstract, multi-dimensional 

concept used to describe the state of a stand of trees relative to the resource 

capital of the site. While technically feasib le to quantify, the many dimensions 

of resource consumption negate its use as a practical measure of stand 

occupancy (Dean and Baldwin, 1996). Consequently, foresters ( e.g. Nystrom 

and Gemmel, 1988; Tang et al., 1994) tend to use indirect measures, such as 

density indices, to quantify the stand occupancy. However, when total number 

of stems or total basal area per hectare was tested as subsidiary variables to 

represent the competition, these variables were found to be not statistically 

significant. This may be due to the combination of the selected essential 

variables for the constructed models. However, some modellers (Pienaar and 

Harrison, 1989; Soares et al. , 1995) used total tree number and total basal area 

per hectare successfully in their models. 

For the construction of the new models described in Chapter 4, four 

transformations were used i.e. logarithmic, square, square root and reciprocal. 

These transformations can be biologically explained and have been used in the 

past by various modellers ( e.g. Nystrom and Gemmel, 1988; Pienaar and 

Harrison, 1989; West and Mattay, 1993). Other possible transformations, such 

as arcsine were not used in the current study because of the incompatibility 

with biological reality. 

All the finally selected newly constructed models are satisfactory in form, 

meeting both statistical and biological assumptions. For any kind of regression 

model one should first observe the R
2 

value although it is not a very good 

indicator of model performance (Draper and Smith, 1981) and also the 

distribution of the residuals before using other tests. These initial tests 

indicated the high performance of all the newly constructed models. All the 

models had low bias and a high modelling efficiency over 0.9. The models re­

calibrated in Chapter 5 did not indicate such an accuracy except the model 

developed by Soares et al. (1995) to predict the individual tree volume. The 

signs of estimated parameters were all compatible with the possible biological 

explanations. The main reason for this could be the careful formulation of the 

basic model structures before estimating the parameters. However, there is an 
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indication of bias in the dbh prediction models for the neutral thinning type. 

This could be due to re-adjusting the parameter associated with dbh at time t . 
I 

In such cases, the parameters associated with the other explanatory variables in 

the model may have to be adjusted thus changing the slope and intercept 

slightly, and this can cause bias. 

8.1.3 Prediction of variables removed in thinning 

Models constructed for the prediction of mean variables for trees removed in 

thinning were simple and only one explanatory variable was used for each 

model, the response variable but just before thinning. This set of models 

indicate the relationships of the thinned and main crop trees for separate 

thinning types after first thinning. As Hart ( 1994) described, thinning type is 

highly related to the size of trees in the stand and therefore the prediction 

models of distribution of these variables were not constructed. In the present 

study, the number of trees removed in thinning or standing trees after thinning, 

can be estimated using the procedure described in section 4.2.2.6 and therefore 

prediction models of tree distribution were not constructed. However, the 

general procedure developed for the prediction of number of trees removed in 

thinning may be biased if non-natural mortality occurred due to fire, wind 

throw etc. To overcome this problem, some modellers (Jenkins, pers. comm.; 

Vanclay, 1994) emphasised the requirements of more stochastic type models. 

8.2 Re-calibration of models 

It was interesting to find that the re-calibrated models in Chapter 5 still needed 

much work such as adding more variables or functions no matter how well the 

parameters were re-estimated. Re-calibration is a procedure which should be 

done very carefully no matter how well the models were constructed in their 

original locations. This was proved as necessary in the present study. Even if 

the theory and the formulation of the basic model structures are accurate and 

acceptable, Alder (1978) found some model parts may require modifications, 

such as the development of local growth functions within the existing 

framework, to improve accuracy. 
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8.3 Observation of model performance 

Both qualitative and quantitative tests were used in this study for two reasons 

i.e. to observe the fit of the model to the data and to compare the performance 

of models for each data set. Tests such as average model bias and modelling 

efficiency, can also be expressed as percentages, but this was not done in this 

study because, for comparison, a proportion in the range 0-1 was equivalent 

and the significance of lack of fit of the models was tested by a specific test. 

There were other quantitative tests which can be used for comparison of model 

performances such as fractional variance, root mean square error, index of 

agreement and alternative index of agreement (Chhetri and Fowler, 1996a; 

Janssen and Heuberger, 1995). However, following the work done by Soares et 

al. (1995) on maritime pine, the three quantitative tests used in Chapters 4 and 

5 were believed robust enough to compare the ability of the models to predict 

the same variable as well as model performance. 

As stated earlier, the data for 49 sample plots in Great Britain obtained from 

the Forestry Commission, allowed only the modelling of variables for 

intermediate and neutral thinning types. There were a few sample plots which 

were maintained under other thinning regimes such as very low, crown, 

exploitation and also unthinned. For the originally estimated parameters for the 

total volume and basal area prediction and projection models developed by 

Pienaar and Harrison (1989), entirely different magnitudes and signs could be 

observed for thinned and unthinned plantations. In the present study, it was 

assumed that there is no mortality if thinning is carried out. This assumption 

was proved to be right by inspection of the Forestry Commission data. 

However, this assumption is wrong for unthinned plantations because of the 

inevitable self-thinning. The results may have been very different, as well as 

interesting, if it had been possible to estimate the parameters for unthinned 

sample plots. 

All three existing models were re-calibrated using the data obtained from the 

Forestry Q)mmission. The sensitivity of parameters of the newly constructed 

models can be tested if these models are re-calibrated to a different 

geographical location. This will be don·e as the next step by re-calibrating them 

to the pine plantations grown in Sri Lanka. 
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CHAPTER 9: GENERAL CONCLUSION 

9.1 Conclusions drawn from the present 
study 

The conclusions drawn from the present studies are: 

(i) All the models selected in Chapter 4 for the prediction of main crop and 

thinned tree variables indicated a reasonable distribution of the residuals with 

the fitted values, a negligible bias and very high modelling efficiency. 

Therefore all the selected models appear highly satisfactory for future use in the 

field. 

(ii) The factors used for representing site quality were different in each of the 

finally selected dbh and total height prediction models of individual trees. The 

factor total basal area/plantation age was more suitable for the dbh prediction 

models while top height/age was best for the total height prediction models. 

Even though the initial attempt was to represent the site quality using only top 

height related functions, total basal area/plantation age was selected for the 

dbh prediction model, assuming total basal area can represent competition and 

site quality in different plantations, if the planting density is the same. 

(iii) The dbh and total height prediction models of individual trees are the only 

models constructed in this work to predict future growth. The other models 

predict the current growth using dbh and total height. All the factors added to 

represent site quality and competition were either not statistically significant or 

did not improve the models whenever tested for the prediction models of 

current growth. However, predicting the future growth of tree variables using 

the current growth models is not difficult, because these models use total height 

and dbh as explanatory variables and these can be predicted by the dbh and 

total height prediction models. 
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(iv) The maximum age difference used for dbh and total height prediction 

models was 10 years. However, the recommended maximum projection length 

for these two models is 7-8 years in order to reduce the bias which could be 

introduced with a change of growth rates within a long period of growth such 

as 10 -15 years. 

(v) The re-calibrated models did not produce better results than the new set of 

models when tested for bias and modelling efficiency However, the models 

developed by Soares et al. (1995) and West and Mattay (1993) indicated better 

predictions than the set of models developed by Pienaar and Harrison (1989). 

The reason could be that Pienaar and Harrison (1989) developed compatible 

prediction and projection stand level models and the re-calibrating was 

probably not good enough without estimating new functions. 

(vi) When all the models were tested for the possibility of using one set of 

parameters instead of separate sets for intermediate and neutral thinning types, 

some of the models confirmed the possibility while some produced negative 

results. If the estimated parameters were robust they would be less sensitive to 

the different data sets. Only two newly constructed models i.e. total volume 

prediction model a and the merchantable volume prediction model b indicated 

the possibility of using common parameters for both thinning types. Among the 

re-calibrated models, the basal area projection and total volume prediction 

models developed by Pienaar and Harrison (1989), the total volume prediction 

model of individual trees and the total basal area prediction model developed 

by Soares et al. (1995) and both the total height and total volume prediction 

models constructed by West and Mattay (1993) indicated the possibility of 

usmg one set of parameters for intermediate thinning and neutral thinning 

types. 

(vii) The direct comparisons of the model predictions with the observed values 

were done for a sample plot for each thinning type to examine further the 

model behaviour for sub-sets of the populations. Results again confirmed that 

the best models were the new models constructed for the current work. Some of 
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the re-calibrated models, such as the volume prediction model developed by 

Soares et al. (1995) provided good results while some models were poor e.g. 

the basal area projection model developed by Pienaar and Harrison (1989). 

(viii) There are many empirical models found in plantation forestry, which have 

complex equations, such as non-standard non-linear relationships, to predict the 

same variable predicted by the constructed growth models in this study; e.g. 

Pienaar and Harrison (1989); Soares et al. (1995); Wenk (1994). However, this 

study proved that if the assumptions and relationships are correct, most of the 

time linear relationships can be used for growth prediction, which are as 

accurate as any other kind of models. 

9.2 Selected models for the prediction of 
main crop tree variables 

The newly constructed models selected for final use in the field for the main 

crop trees are listed below together with the estimated parameters. 

(i) Diameter at breast height 

Intermediate thinning 

✓dbh,+6t = ✓dbh , + 0.0891 * Siteba.age + 0.0048 * a~if ') .1 

Neutral thinning 

✓dbh ,+6t = ✓dbh, + 0.0636 * Siteba ,age + 0.0090 * a~if <J.,2 

(ii) Total height 

Intermediate thinning 

h1+ 6 1 =h, + 2.39I0*site10p,age +0.0334*a~if 

Neutral thinning 

h1+61 = h, + 3.5556 * site10p,age + 0.0281 * a~1 9A 
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(iii) Timber height 

Intermediate thinning 

h,im = 56.8900-65.7100*0.7968 Jdbl,•i, 

Neutral thinning 

h,im = 29.4570 - 40.1750 * 0.6060Jdbl,•I, 

*In the timber height prediction models dbh should be in metf,c'.s (m). 

(iv) Total volume 

(v) 

v=0.5040*(n *dbh
2

)*h 
40000 

Merchantable volume 

9.5 

9,.6 

9.7 

v = -0.0038 + 0.5061 * {((n * dbh
2 J) * h-(n * 

49.o *(h -h,;"' )J} 
mu 40000 40000 3 

9.8 

9.3 Prediction of mean variables for trees 
removed in thinning 

The sample plots used for the construction of models to predict the thinned tree 

variables highlighted a different first thinning from the documented thinning 

regime with a very high yield. Therefore, a valid range for all the models built 

for the prediction of thinning tree variables is recommended which starts after 

the first thinning and runs for 50 years of plantation 1;fe for both thinning types. 

(i) Basal area 

Intermediate thinning 
g,h =-0.0292 + 0.1918/(l + exp(- 20.0710*(g6, -0.0821))) 9_9 
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Neutral thinning 

g11z = 0.0031 + 0.0564 /(1 + exp(-81. 7000 * (gb
1 

- 0.0418))) 9.10 

(ii) Diameter at breast height 

Intermediate thinning 

dbh11z =-0.432 l+54.4420 /(l+exp(-0.0774*(dbhb1 -30.8010))) 9.11 

Neutral thinning 

dbh11z = 9.5240 + 15.1723 /(1 + exp(-0.3580 * (dbhb1 - 20.7272))) 9, 12 

(iii) Total height 

Intermediate thinning 

- -
h11z =-1.2514+36.5667/(l+exp(-0.1130*(hb1 - 17.8396))) 9.13 

Neutral thinning 
- -
h11z =3.9300+22.3456/(l+exp(-0.1697*(hb1 -16.0641))) 9.14 
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CHAPTER 10: RECOMMENDATIONS FOR 
FUTURE RESEARCH 

A new set of growth models was constructed in this study to predict the 

individual tree growth of Corsican pine for intermediate and neutral thinning 

types. When considering the possibility of using one set of parameters for both 

thinning types, only a total volume and a merchantable volume prediction 

models confirmed this as a possibility. It would be useful to convert the 

parameters of the other models to be common for many thinning types such as 

low, intermediate, neutral, and crown. However, it was not possible to estimate 

the parameters for the thinning types other than the intermediate and neutral 

thinning types in this study due to the lack of data; therefore more data might 

be collected for future work. 

Mathematical models have recently become a primary source of information 

about future stand dynamics (Leary, 1997). Efficient forest management entails 

the use of forest growth modelling systems which can predict stand growth and 

yield as well as provide diameter distribution and individual tree growth 

information. Generally such a system is composed of whole stand growth 

models, diameter distribution models and individual tree growth models 

(Zhang et al., 1997). Therefore, if new models are constructed to predict the 

distribution of dbh and total height in conjunction with the constructed models 

in the present study, it will help forest managers to understand more about the 

future growth of plantations and to identify the trees removed in the next 

thinning according to the desirable thinning type. 

In some countries, some even-aged and/or mixed species plantations are being 

considered for replacement by mixed-aged stands. This shift away from 

classical even-aged forest management renders existing yield tables 

inappropriate. For uneven-aged, mixed species stands we need to develop stand 

growth models that operate at the individual tree level. There are only a few 
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single tree growth models for uneven aged mixed stands (Monserud and Sterba, 

1996). Further work on this might be useful, perhaps by improving the models 

constructed for the present study. However, Corsican pine is a strong light 

demander and not well suited to growing in mixed stands (Mayhead, pers. 

comm.). 

It is now possible to consider including climatic data as input variables in 

growth model equations, due to the availability of excellent long term average 

weather statistics obtained from an intensive grid of weather stations (Woollans 

et al., 1997). It would be possible to change the new set of models by adding 

functions derived from such data or changing some of the existing model 

variables or functions to such new functions in order to obtain stochastic 

predictions. 

In this study, the future growth of timber height, total height and merchantable 

volume are predicted by using the results of dbh and total volume prediction 

models. Process errors might have occurred as the predictions of one model are 

used for another model as explanatory variables to obtain a new set of 

predictions (Kangas, 1996). Therefore a continuous validation process will be 

necessary when the new models are applied in the field in order to minimise 

model errors. 

Experience gained in this study demonstrated the difficulty of re-calibration of 

models originally developed for different species and different geographical 

locations. Therefore, if the models constructed for the present study are re­

calibrated for different locations, it is strongly advised that the robustness of 

some functions, such as site factors in the dbh and total height prediction 

models, are considered carefully for the new conditions. However, other 

models will not cause this problem of re-evaluating the functions because these 

only contain individual tree variables such as dbh, basal area and total height. 

In this study, two models were initially constructed for each variable and, after 

following many tests, one model was selected in Chapter 7. The removed set of 
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models in that Chapter is worthy of re-calibration with the finally selected 

models, because the variables or functions in these models may be more 

favourable for the new localities. 

Finally, it will be useful to make yield tables for selected plantations from the 

newly constructed models so that forest managers can easily predict the growth 

and yield of these plantations. A yield table constructed for a Corsican pine 

plantation using the newly built models in Chapter 4 is given in Appendix 5.1. 

This yield table is compatible with British Forestry Commission yield tables. 

Throughout this study, many newly constructed models were rejected despite a 

very good fit, in order to find the best set of growth models. Following the 

difficulties experienced when re-calibrating the selected, well-developed 

models, even the finally selected new models could indicate bias when applied 

to the plantations in Sri Lanka. Therefore, the models removed from the study 

in Chapters 6 and 7 also remain as possible models for use in the future. 
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Appendix 1.1: Description of the Forestry Commission 
sample plot measurement data (plot1149) 

1149 194907 l H 
1 121 222 2 222 186 3 222 162 4 131 210 5 111 263 
6 223 133 7 111 214 8 221 186 9 131 25 1 10 221 230 

11 222 146 12 121 234 13 222 194 14 222 162 15 121 214 
16 121 243 17 121 222 18 221 202 19 121 210 20 111 247 
21 111 202 22 221 234 23 222 178 24 121 255 25 222 182 
26 222 170 27 121 214 28 221 194 29 111 234 30 212 146 
3 1 212 178 32 313 -93 33 111 222 34 222 141 35 222 -166 
36 212 150 37 121 222 38 221 210 39 112 210 40 111 226 
41 121 230 42 222 178 43 111 251 44 121 243 45 121 263 
46 222 174 47 222 166 48 232 202 49 222 178 50 121 210 
51 111 214 52 313 125 53 111 190 54 212 170 55 122 158 
56 121 210 57 121 226 58 222 182 59 211 222 60 222 162 
61 111 206 62 223 141 63 111 251 64 121 226 65 221 194 
66 132 198 67 111 222 68 213 -129 69 132 210 70 122 182 
71 121 222 72 222 174 73 121 295 74 232 182 75 121 243 
76 121 206 77 1 2 1 206 78 222 178 79 121 230 80 222 150 
81 121 202 82 222 174 83 121 -202 84 212 170 85 121 218 
86 222 137 87 111 239 88 121 271 89 221 194 90 121 206 
91 222 190 92 111 190 93 222 210 94 121 279 95 121 214 
96 322 121 97 211 222 98 111 251 99 221 186 100 221 194 

101 121 190 102 121 2 47 103 121 259 104 111 226 105 111 226 
106 1 22 190 107 222 -162 108 111 190 109 121 275 110 223 129 
111 121 202 112 221 190 113 121 190 114 121 194 115 111 210 
116 221 182 117 222 178 118 211 239 119 121 287 120 222 182 
121 121 210 122 221 158 123 111 194 124 111 186 125 111 194 
126 121 202 127 211 170 129 121 218 130 111 222 131 112 186 
132 212 198 133 212 162 134 211 198 135 111 230 136 212 166 
137 131 311 138 323 105 139 212 178 140 221 170 141 121 222 
142 222 170 143 111 194 144 211 170 145 111 222 146 111 214 
14 7 212 186 148 212 182 149 121 174 150 212 125 151 111 194 
152 111 271 153 111 190 154 111 24 7 155 111 259 156 122 210 
157 211 210 158 121 239 159 112 158 160 211 226 161 111 218 
162 111 259 163 111 259 164 212 202 165 121 222 166 121 210 
167 2 12 166 168 222 182 169 111 295 170 232 174 171 222 129 
172 111 186 173 111 279 174 232 194 175 111 239 176 121 206 
177 123 146 178 122 174 179 212 162 180 121 230 181 213 133 
182 111 222 183 111 218 184 131 287 185 223 146 186 111 251 
187 212 125 188 111 243 189 222 150 190 121 230 191 223 113 
192 122 194 193 111 202 194 222 166 195 211 178 196 111 174 
197 121 279 198 111 214 199 111 214 200 111 198 201 111 206 
202 221 218 203 212 170 204 112 210 205 121 186 206 323 113 
207 111 174 208 111 198 209 232 186 210 111 210 211 213 150 
212 111 287 213 212 182 214 222 141 215 111 222 216 121 186 
217 111 251 218 121 271 219 221 194 220 121 247 221 222 186 
222 1 21 202 223 131 202 224 111 24 7 225 121 230 226 121 251 
227 222 158 228 222 154 229 122 214 230 212 190 231 121 222 
232 111 287 233 212 137 234 232 137 235 222 141 236 111 154 
237 121 267 238 222 158 239 212 129 24 0 212 117 241 121 198 
242 222 162 243 111 186 244 211 174 245 221 190 246 231 1 66 
24 7 121 190 248 221 178 249 111 226 250 222 170 251 222 158 
253 121 255 254 121 251 255 222 158 256 221 194 257 221 194 
258 233 198 259 221 -198 260 111 279 261 121 239 262 111 218 
263 222 166 264 121 230 265 121 218 266 212 178 267 211 162 
268 121 247 269 111 202 270 112 218 271 122 247 272 121 234 
273 222 -117 274 222 154 275 111 198 276 222 182 277 111 190 
278 111 210 279 211 174 280 212 166 281 111 226 282 121 255 
283 212 158 284 222 174 285 111 210 286 212 125 287 212 125 
288 111 226 289 121 234 290 121 234 291 222 174 292 111 218 
293 111 255 294 111 263 295 111 234 296 121 230 297 223 125 
298 222 194 299 111 263 300 111 226 301 111 243 302 122 154 
303 121 178 304 222 158 305 111 259 306 111 271 307 222 121 
308 222 162 309 111 247 310 112 182 311 121 214 312 121 206 
313 121 186 314 122 170 315 121 214 316 122 194 317 111 291 
318 222 170 319 212 194 320 232 - 133 321 1 21 218 322 211 166 
323 222 158 324 122 162 325 212 141 326 222 150 327 313 105 
328 112 178 329 222 141 330 221 162 
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1149 194907 2 H 
19 210 131 104 58 62 0 3 
30 210 10 30 186 8 44 137 6 
64 226 133 106 47 56 0 3 
30 226 10 30 194 8 46 129 4 
65 194 125 100 47 52 0 3 
30 190 12 30 166 10 40 117 6 

107 -162 122 92 61 69 0 3 
30 154 8 30 125 4 32 97 4 

197 279 140 117 49 64 0 4 
30 283 14 30 251 12 30 186 8 27 113 6 

232 287 145 119 52 64 0 4 
30 283 16 30 263 10 30 210 8 29 129 6 

244 1 74 122 86 40 49 0 3 
30 174 12 30 133 8 26 105 4 

268 247 137 111 56 67 0 4 
30 247 12 30 214 8 30 158 6 21 113 6 

1149 194907 3 H 
32 -93 96 38 1 
38 89 4 
35 -166 130 98 3 
30 162 10 30 146 6 38 105 4 
68 - 1 29 125 78 3 
30 125 8 30 101 4 18 85 4 
83 -202 136 107 3 
30 202 12 30 170 6 47 117 4 

107 -162 122 92 3 
30 154 8 30 125 4 32 97 4 

259 -198 134 104 3 
30 194 10 30 162 6 44 121 4 

273 -117 96 so 2 
30 113 8 20 85 4 

320 -133 113 68 2 
30 137 6 38 89 4 

1149 194907 5 H 
5 263 136 19 210 131 20 247 143 40 226 139 55 158 123 

64 226 133 65 194 125 73 295 157 76 206 143 77 206 123 
88 271 145 91 190 107 92 190 142 101 190 130 107 162 122 

119 287 139 137 311 142 169 295 139 173 279 133 184 287 148 
197 279 140 207 174 126 212 287 128 220 247 134 227 158 125 
232 287 145 237 267 143 238 158 116 244 174 122 260 279 151 
268 247 137 281 226 143 284 174 117 309 247 126 312 206 125 
317 291 148 
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Appendix 1.2: Formulae other than Huber's formula 
suitable for volume calculation of 
individual trees. 

Where, 

Smalian's formula 

nL(d1
2 +d;) 

V = ---'--------'-
8 

Newton's formula 

nL(d1
2 + 4d,;, +d;) 

v = - -'-------'-
24 

d
1 
= diameter of the base of log, m 

d = diameter at mid-length oflog, m 
Ill 

d
2 
= diameter at top of log, m 

L = log length, m 
3 

v = volume of log, m 
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Appendix 1.3: Programme 1 written to read the sample 
plot data 

C 

C *** 

PROGRAMME 1 TO READ FOR. COMM . DATA*** 

Written by S.M.C . U.P. Subasinghe *** 

C ********** SUBROUTINE NAMES********** 
C *** (To write the different types of measurements) 

C 
C 

C 
C 

C 
C 

C 
C 

EXTERNAL TYPEl 
EXTERNAL TYPE2 
EXTERNAL TYPE3 
EXTERNAL TYPE4 
EXTERNAL TYPES 
EXTERNAL TYPES 

CHARACTER*l9 filename2 
CHARACTER*60 H 

OPEN(UNIT=15,FILE='NEW-PLOTS/filename2.dat' ,STATUS='OLD' ) 
OPEN(UNIT=l0,FILE='result.dat' ,STATUS='UNKNOWN') 
OPEN(UNIT=ll,FILE='dmbat 1 . dat',STATUS='UNKNOWN') 
OPEN(UNIT=12,FILE='dmbat-2.dat',STATUS='UNKNOWN') 

21 READ(l5,22,END=777)filename2 
22 FORMAT(A9) 

filename2='NEW-PLOTS/'//filename2 
OPEN(UNIT=5,FILE=filename2,STATUS='OLD') 
PRINT*, 'Opened file '//filename2 

10 READ(S,ll,ERR=888,END=999)Il,I2,I3,A 
11 FORMAT(I4,I8,I8,59X,Al ) 

****** 
***** * 

To read the measurement type---1 
(Diameter measurements - always present) 

IF (A . EQ. 'H' . AND. I3 . EQ. 1) WRITE ( 11, 12) I1, I2, I3 
12 FORMAT(/3IB) 

IF(A.EQ. 'H' .AND.I3.EQ.l)WRITE(l2,2)Il,I2,I3 
2 FORMAT(/3I8) 

IF(A . EQ. 'H' .AND.13.EQ.l)CALL TYPEl 

****** To read the measurement type- --2 
(Volume measurements after thinning) 

IF(A.EQ. 'H' .AND . I3.EQ . 2)WRITE(l0,13)Il,I2 
13 FORMAT(2I10) 

IF(A.EQ. 'H' .AND.I3.EQ.2)CALL TYPE2 

****** To read the measurement type---3 
(Thinning measurements - all or sample) 

IF(A.EQ. 'H ' .AND. I3.EQ.3)WRITE(10,14)11,I2 
14 FORMAT(2I10) 

IF(A.EQ. 'H' .AND.I3.EQ.3)CALL TYPE3 

****** 
To read the measurement type - --5 
(height measurements of sample trees) 

I F(A.EQ. ' H' .AND. I3 . EQ.S)WRITE(l0, 15) Il, 12, 13 
15 FORMAT(3I10) 

IF(A.EQ. 'H' .AND.I3.EQ.S)CALL TYPES 

GO TO 10 

STOP 

999 CLOSE (UNIT=S) 

GO TO 21 

888 PRINT*, 'Error at this point in the main programme . ' 
777 PRINT*, 'End of file - filename2.dat' 

END 
C *** END OF PROGRAMME 1 *** 
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Appendix 1.4: Sub-routine 1 

SUBROUTINE TYPEl 

C *** Written by S.M.C.U.P. Subasinghe *** 

C ****** Reads the measurement type 1 from the For. Com. data 
C and separates the main crop and trees marked for thinning* ** 

CHARACTER *80 STRING 

100 READ(S,' (A80) ',ERR=888,END=999 )STRING 
IF(STRING(l :10) .NE.' ')THEN 

BACKSPACE 5 

1 10 READ(5,15,ERR=888,END=999)Il,I2,I3,I4,I5,I6,I7,I8,I9,Il0, 
+ Ill,Il2,Il3,Il4,Il5 

15 FORMAT(I4,I4,I5,I6,I4,I5,I6, I 4 ,I5,I6, I4 ,I5,I6,I4,I5) 

IF(I3.LT.0)WRITE(l2,20)Il,I3 
IF(I3.GT.0)WRITE(ll,25)Il,I3 

20 FORMAT(2I5) 
25 FORMAT(2I5) 

IF(I6.LT.0)WRITE(l2,30)I4,I6 
IF(I6.GT.0)WRITE(ll,35)I4,I6 

30 FORMAT(2I5) 
35 FORMAT(2I5) 

IF(I9.LT.0)WRITE(l2,40)I7,I9 
IF(I9.GT.0)WRITE(ll,45)I7,I9 

40 FORMAT(2I5) 
45 FORMAT(2IS) 

IF(I12.LT.0)WRITE(12,50)I10,Il2 
IF(Il2.GT.0)WRITE(ll,55)I10,I12 

50 FORMAT ( 2 IS) 
55 FORMAT(2I5) 

IF(Il5.LT.0)WRITE(12,60)Il3 ,I15 
IF(Il5.GT.0) WRITE (ll,65)I13,I15 

60 FORMAT(2I5) 
65 FORMAT(2I5) 

GO TO 100 
ENDIF 

RETURN 
STOP 

888 PRINT*, 'Error at this point in subroutine TYPEl .' 
PRINT*, 'Last data read were: ' 
PRINT*,STRING 
PRINT* ,Il,I2,I3,I4,I5,I6,I7,I8, I9 ,I10,Ill,Il2,13,14,15 

999 PRI NT*, 'Subroutine TYPEl finished the run successfully.' 

END 

C ****** End of subroutine TYPEl * ***** 
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Appendix 1.5: Sub-routine 2 

SUBROUTINE TYPE2 

C ••• Written by S . M. C.U.P. Subasinghe •• • 
C • •• Calcul ates the tot . vol. of individual trees without 
C forked trees, basal area, total h eight and total volume per plot • • • 

CHARACTER • so STRING 
PARAMETER (PI=3 . 14159265,X=4.0*10.0**7.0) 

VOLUME=0.0 

110 READ(5,' (A80) ',ERR=888,ENO=999)STRING 
IF(STRING( l: 10) .NE.' ')THEN 

BACKSPACE 5 

105 READ(S,25,ERR=888,END=999)Il,I2,I3,I4,I5,I6,I7,I8 
25 FORMAT(I4,I5,I6,IS,I6, I 4, I4 ,I6) 

Y=I3 
W=I2 
B=PI* (W**2. 0) / (4. 0* (10. 0**6. 0)) 
H=I3/10. 0 

C ••• For volume measurements, trees are divided into sect ions. 

C *** If the sections are less or equal to 5, 
IF(I8.GT.0.AND.I8.LE . S)GO TO 101 

C *** If the sections are l ess or equal to 10 , 
IF(I8.GE.6.AND.I8.LE.10)GO TO 102 

C ••• If the sect ions are less or equal to 15, 
I F( I 8.GE.ll.AND . I8 .LE . 15)GO TO 103 

C *** If the sections are l ess o r equal to 20, 
IF(I8.GE.16.AND.I8.LE.20)GO TO 104 

C 

BACKSPACE 5 

*** This reads and writes upto 5 sect ions 

101 READ(5,35,ERR=555,END=666 )Il,I2,I3 ,I4,IS,I6 ,I7,I8,I9, Il0, 
+ Ill,Il2,Il3,Il4,Il5 

35 FORMAT(3I4,I7,2I4,I7, 2I4, I 7,2I4,I7,2I4) 

Al=(PI *Il*I2* *2.0)/X 
A2=(PI *I4*I5* *2.0)/X 
A3=(PI*I7*I8**2.0)/X 
A4=(PI*Il0*Ill** 2 .0) /X 
AS=(PI *Il3*Il4**2 . 0)/X 

Tl=(Il+I4+l7+Il0+Il3) 

PPl=(Y-Tl) 
IF(PPl. LT . 0.O)GO TO 110 
IF(PPl.GE.0.O)GO TO 20 1 

201 Pl=PI* (Y-Tl) * (7. 0• • 2. 0) / (12. o• (10. o••s. 0)) 
VOLl=Al+A2+A3+A4+AS+Pl 

WRITE( l l,40)VOL1,B,H 
40 FORMAT(F25.4 , Fl0.3,Fl0.l) 

VOLUME=VOLUME+VOLl 

GO TO 110 

C *** This reads and writes upto 10 sections 

102 VOL 2=0 . 0 
T2=0 . 0 

DO 7 L=l ,2 
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C 

C 

READ(S,45,ERR=SSS,END=666)Il,I2,I3,I4,IS,I6,I7,I8,I9,Il0, 
+ Ill,Il2,Il3,Il4,Il5 

45 FORMAT(3I4,I7,2I4,I7,2I4,I7,2I4,I7,2I4) 

Bl=(PI*Il*I2**2.0)/X 
B2=(PI*I4*I5**2.0)/X 
B3=(PI*I7*I8**2 . 0)/X 
B4=(PI*IlO*Ill**2 . 0)/X 
B5=(PI*Il3*Il4**2 . 0)/X 

V2=(Bl+B2+B3+B4+B5) 
T_2=(Il+I4+I7+IlO+Il3) 

VOL_2=VOL_2+V2 
T2=T2+T_2 

7 CONTINUE 

PP2=Y-T2 

IF(PP2 . LT.O.O)GO TO 110 
IF(PP2.GE.O.O)GO TO 202 

202 P2=PI*(Y-T2)*(7.0**2.0)/(12.0*(10.0**5.0)) 
VOL2=VOL 2+P2 

WRITE(ll,SO)VOL2,B,H 
50 FORMAT(F25.4,Fl0.3,Fl0.l) 

103 

VOLUME=VOLUME+VOL2 

GO TO 110 

••• This reads and writes upto 15 sections 

VOL_3=0.0 
T3=0.0 

DO 8 M=l,3 

READ(S,55,ERR=555,END=666)Il,I2,I3,I4,IS,I6,I7,I8,I9,Il0, 
+ Ill,Il2,Il3,Il4,Il5 

55 FORMAT(3I4,I7,2I4,I7,2I4,I7,2I4,I7,2I4) 

Cl=(PI*Il*I2**2.0)/X 
C2=(PI*I4*I5**2.0)/X 
C3=(PI*I7 *I8* *2.0)/X 
C4=(PI*Il0*Ill**2.0)/X 
C5=(PI*Il3*Il4**2 . 0)/X 

V3=(Cl+C2+C3+C4+CS) 
T_3=(Il+I4+I7+IlO+I13) 

VOL_3=VOL_3+V3 
T3=T3+T 3 

8 CONTINUE 

PP3=Y-T3 

IF(PP3.LT.O.O)GO TO 110 
IF(PP3.GE.O.O)GO TO 203 

203 P3=PI*(Y - T3)*(7.0**2.0)/(12.0*(10.0**5.0)) 
VOL3=VOL_3+P3 

WRITE(ll,60)VOL3,B,H 
60 FORMAT(F25.4,Fl0.3,Fl0.l) 

VOLUME=VOLUME+VOL3 

GO TO 110 

*** This reads and writes upto 20 sections 

104 VOL_ 4=0.0 
T4=0.0 

DO 9 N=l,4 
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READ(5,65,ERR=555,END=666)Il,I2, I3,I4,I5,I6, I7,I8 ,I9,Il0, 
+ Ill,Il2,Il3,Il4,Il5 

65 FORMAT(3I4,I7,2I4,I7,2I4,I7,2I4,I7,2I4) 

Dl=(PI*Il*I2 ** 2 . 0)/X 
D2=(PI*I4*I5**2.0)/X 
D3=(PI*I7*I8 **2.0)/X 
D4=(PI * Il0* Ill* *2.0)/X 
D5=(PI*Il3 *Il4* *2.0)/X 

V4=(Dl+D2+D3+D4+D5 ) 
T_4=(Il+I4+I7+Il0+Il3 ) 

VOL 4=VOL 4+V4 - -
T4=T4+T_4 

9 CONTINUE 

PP4=Y-T4 

IF(PP4.LT.0.0)GO TO 110 
IF(PP4.GE.0.0)GO TO 204 

204 P4=PI* (Y-T4)*(7.0**2 . 0)/(12 . 0 * (10.0* *5.0)) 
VOL4=VOL 4+P4 

WRITE(ll,70)VOL4,B,H 
70 FORMAT(F25 .4,Fl0.3,Fl0.l) 

VOLUME=VOLUME+VOL4 

GO TO ll0 

ENDIF 

WRITE(ll,75)VOLUME 
75 FORMAT ( ' 

RETURN 
STOP 

TOTAL VOLUME 'Fl0 . 4' (m~3) '/) 

555 PRINT*, 'Error at this point' 
PRINT*,Il,I2,I3,I4,I5,I6,I7,I8,I9 , Il0,Ill,Il2,Il3,Il4,Il5 
PRINT * ,STRING 

666 PRINT*, 'This is the end' 
888 PRINT*, 'Error at this point in subroutine TYPE2.' 

PRINT*, 'Last data read were' 
PRINT*,Il,I2,I3,I4,I5,I6,I7,I8,I9,Il0,Ill,Il2,Il3,Il4,Il5 
PRINT*, STRING 

999 PRINT * , 'Subroutine TYPE2 finished the run successfully . ' 

END 

C ••••• • End of subroutine TYPE2 ****** 
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Appendix 1.6: Sub-routine 3 

SUBROUTINE TYPE2 

C *** Written by S.M.C.U.P . Subasinghe *** 
C *** Calculat es the merchantable volume without forked trees, basal 
C area, total height, timber height, and total mer. vol . per plot. 

CHARACTER *80 STRING 
PARAMETER(PI=3. 14159265,X=4.0*10.0**7.0) 

VOLUME=O.O 

110 READ(5,' (ABO)' ,ERR=888,END=999)STRING 
IF(STRING(l:10) .NE . ' ')THEN 

BACKSPACE 5 

105 READ(5,25,ERR=888,END=999)Il,I2,I3,I4,I5,I6,I7,I8 
25 FORMAT(I4 ,I5, I6,I5 , I6,I4,I4 ,I6) 

Y=I3 
W=I2 
B=PI*(W**2 . 0)/(4 . 0*(10.0**6 . 0)) 
H=I3/10 . 0 

C *** For volume measurements, trees are divided into sections. 

C *** If the sections are less or equal to 5 , 
IF(I8.GT.0 .AND.I8.LE.5)GO TO 101 

C *** If the sections are less or equal to 10, 
IF(I8.GE.6.AND.I8 . LE.10)GO TO 102 

C *** If the sections are less or equal to 15, 
IF(I8.GE.11.AND.I8.LE.15)GO TO 103 

C ** * If the sections are less or equal to 20, 
IF(I8 . EQ.16.AND.I8.LE.20)GO TO 104 

BACKSPACE 5 

C *** This reads and writes upto 5 sections 

C 

101 READ(5,35,ERR=555,END=666)Il,I2,I3,I4,I5,I6,I7,I8,I9,Il0, 
+ Ill,I12,I13,Il4,Il5 

35 FORMAT(3I4,I7,2I4,I7,2I4, I 7,2I4,I7,2I4) 

Al=(PI*Il*I2**2.0)/X 
A2=(PI*I4*I5**2.0)/X 
A3=(PI*I7*I8**2.0)/X 
A4=(PI*IlO*Ill**2 . 0)/X 
A5=(PI*Il3*I14**2.0)/X 

Tl=(Il+I4+I7+IlO+I13) 
PPl=Y-Tl 

IF( PPl.LT.O.O)GO TO 110 
IF(PP2.GE.O.O)GO TO 201 

201 V0Ll=Al+A2+A3+A4+A5 
TIM_HTl=Tl/10 . 0 

WRITE(ll,40)VOL1,B,H,TIM HTl 
40 FORMAT(F15.4,Fl0.3,2Fl0.l) 

VOLUME=VOLUME+VOLl 

GO TO 110 

*** This reads and writes upto 10 sections 

102 VOL2=0.0 
T2=0.0 

DO 7 L=l,2 
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C 

C 

READ(S,45,ERR=SSS , END=666 )Il, I2,I3,I4,IS, I6 ,I7,I8,I9,Il0, 
+ Ill,Il2,Il3,I l 4,Il5 

45 FORMAT(3I4,I7, 2I4 ,I7,2I4,I7,2I4 , I7,2I4) 

Bl=(PI*Il*I2**2 . 0)/X 
B2=(PI*I4*IS**2.0)/X 
B3=(PI*I7*I8**2.0)/X 
B4=(PI*Il0*Ill**2.0)/X 
BS=(PI *Il3 *Il4**2.0)/X 

V2=(Bl+B2+B3+B4+B5) 
T_2=(Il+I4+I7+IlO+Il3) 

VOL2=VOL2+V2 
T2=T2+T 2 

7 CONTINUE 

TIM_HT2=T2/10.0 
PP2=Y-T2 

IF(PP2.LT.O.O)GO TO 110 
IF(PP2.GE.O.O)GO TO 202 

202 WRITE(ll,SO ) VOL2,B,H,TIM HT2 
SO FORMAT(Fl5.4,Fl0.3,2Fl0.l) 

VOLUME=VOLUME+VOL2 

GO TO 110 

••• This reads and writes upto 15 sections 

103 VOL3=0 . 0 
T3=0.0 

DO 8 M=l,3 

READ(5,SS,ERR=SSS,END=666)Il,I2,I3,I4,IS,I6,I 7 ,I8 ,I9 ,Il0, 
+ Ill,Il2,Il3,Il4,Il5 

55 FORMAT(3I4,I7,2I4,I7,2I4,I7,2I4,I7,2I4) 

Cl=(PI*Il* I2 ** 2.0)/X 
C2=(PI*I4 *IS** 2 .0)/X 
C3=(PI*I7*I8**2.0)/X 
C4=(PI*Il0*Ill**2 . 0)/X 
CS=(PI*Il3*Il4**2.0)/X 

V3=(Cl+C2+C3+C4+CS) 
T_3=(Il+I4+I7+IlO+I13) 

VOL3=VOL3+V3 
T3=T3+T_3 

8 CONTINUE 

TIM_HT3=T3/10.0 
PP3=Y-T3 

IF(PP3.LT .O . O)GO TO 110 
IF(PP3.GE .O .O)GO TO 203 

203 WRITE(ll,60)VOL3,B ,H, TIM HT3 
60 FORMAT(Fl5.4,Fl0.3,2Fl0.l) 

VOLUME=VOLUME+VOL3 

GO TO 110 

*** This reads and writes upto 20 sect ions 

104 VOL4=0 .0 
T4=0.0 

DO 9 N=l,4 

READ(S,65,ERR=555,END=666)Il,I2,I3,I4,I5,I6,I7,I8,I9 , Il0, 
+ Ill,Il2,Il3,Il4 , Il5 

65 FORMAT(3I4,I7,2I4,I7,2I4,I7,2I4,I7,2I4) 
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Dl=(PI*Il*I2**2.0)/X 
D2=(PI*I4 *I5**2. 0)/X 
D3=(PI*I7*I8**2.0)/X 
D4=(PI*IlO*Ill**2.0)/X 
D5=(PI*Il3*Il4**2.0)/X 

V4=(Dl+D2+D3+D4+D5) 
T_4=(Il+I4+I7+IlO+Il3) 

VOL4=VOL4 +V4 
T4=T4+T 4 

9 CONTINUE 

TIM_HT4=T4/10.0 
PP4=Y-T4 

IF(PP4.LT.0.0)GO TO 110 
IF(PP4.GE.O.O)GO TO 204 

204 WRITE(ll,70)VOL4,B,H,TIM HT4 
70 FORMAT(Fl5.4,Fl0.3,2Fl0.l) 

VOLUME=VOLUME+VOL4 

GO TO 110 

ENDIF 

WRITE(ll,75)VOLUME 
75 FORMAT (' 

RETURN 
STOP 

TOTAL VOLUME 

555 PRINT*, 'Error at this point' 
PRINT*,Il,I2,I3,I4,IS,I6,I7,I8,I9,Il0,Ill,Il2,Il3,Il4,Il5 
PRINT*,STRING 

666 PRINT* , 'This is the end' 
888 PRINT* , 'Error at this point in subroutine TYPE2.' 

PRINT*, 'Last data read were' 
PRINT*,Il,I2,I3,I4,IS,I6,I7,I8,I9,Il0,Ill,Il2,Il3,Il4,Il5 
PRINT*,STRING 

999 PRINT*, 'Subroutine TYPE2 finished the run successfully.' 

END 

C ****** End of subroutine TYPE2 • ••••• 
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Appendix 1.7: Sub-routine 4 

SUBROUTINE TYPES 

C • • • Written by S.M.C.U.P . Subasinghe ••• 
C ••• Calculates the total height, basal area and 
C total height*basal area of individual trees from 
C measurement type 5 ••• 

CHARACTER •so STRING 
PARAMETER(PI=3.14159265,X=4.0*(10.0**6.0)) 

140 REAO(S,' (ABO)' ,ERR=888,END=999)STRING 
IF(STRING(l:10) .NE . ' ')THEN 

BACKSPACE 5. 
READ(S,15,END=888,ERR=999)Il,I2,I3,I4,IS,I6,I7,I8,I9,Il0, 

+ Ill,Il2,Il3,Il4,Il5 
15 FORMAT(I4,IS,I4,I6,I5,I4,I6,I5,I4,I6,IS,I4,I6,IS,I4) 

Dl=I2 
Al=I3 
Hl=Al/10.0 
Bl=PI*(D1**2.0)/X 
HlBl=Hl*Bl 
WRITE(ll,20)Hl,Bl,H1Bl 

20 FORMAT(F6 . 2,Fl8.3,Fl8.3) 

D2=I5 
A2=I6 
H2=A2/10.0 
B2=PI*(D2 ** 2.0)/X 
H2B2=H2*B2 
WRITE (ll,25)H2 ,B2,H2B2 

25 FORMAT(F6.2,Fl8 . 3,Fl8.3) 

D3=I8 
A3=I9 
H3=A3/10.0 
B3=PI*(D3**2.0)/X 
H3B3=H3*B3 
WRITE(ll,30)H3,B3,H3B3 

30 FORMAT (F6 .2,Fl8.3,Fl8.3) 

D4=Ill 
A4=Il2 
H4=A4/10. 0 
B4=PI*(D4* *2 . 0)/X 
H4B4=H4*B4 
WRITE (ll,35)H4,B4,H4B4 

35 FORMAT(F6.2,Fl8.3,Fl8.3) 

D5=Il4 
AS=IlS 
HS=AS/10.0 
BS=PI*(D5 ** 2.0)/X 
HSBS=HS*BS 
WRITE(ll,40)HS,BS,HSB5 

40 FORMAT(F6.2,Fl8.3,Fl8 .3) 

GO TO 140 

ENDIF 

RETURN 
STOP 

888 PRINT*, 'Error at this point in subroutine TYPES.' 
999 PRINT*, 'Subroutine TYPES finished the run successfully. ' 

END 

C ****** End of subroutine TYPES****** 
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Appendix 1.8: Sub-routine 5 

SUBROUTINE TYPE2 

C *** written by S.M . C . U. P. Subasinghe *** 
C *** Calculates the upper and lower crown heights, crown diameter, 
C crown volume, total height, dbh and basal area of individual trees 
C from measurement type 2 ••• 

CHARACTER *BO STRING 
PARAMETER(PI=3.14159265,X=4. 0*10. 0**7 . 0) 

1 10 READ(5,' (ABO)' ,ERR=B88,END=999)STRING 
IF(STRING(l : 10) . NE.' ')THEN 

BACKSPACE 5 

105 READ(5,25,ERR=888,END=999)Il,I2,I3,I4,I5,I6,I7,I8 
25 FORMAT(I4,I5,I6,I5,I6,I4,I4,I6) 

W=I2 
Y=I3 
CL=I5 
CU=I6 
BA=PI*(W**2.0)/(4 . 0*(10.0**6.0)) 
DM= I 2/10.0 
HT=IJ/10. 0 
CV=PI*( (I7/10.0)**2.0)*(HT-(I6/10.0))/12 . 0 

C *** For volume measurements, trees are divided into sections. 

C *** If the sections are less or equal co 5, 
IF(I8 .GT.0.AND. I 8.LE.5)GO TO 101 

C • •• If the secti ons are less or equal to 10 , 
IF(IB . GE.6.AND.IB.LE.l0)GO TO 102 

C *** If the sections are less or equal to 15, 
IF(I8.GE.ll.AND . I8.LE.15)GO TO 103 

C *** If the sections are less or equal to 20, 
IF(IB.GE.16.AND.I8.LE.20)GO TO 104 
BACKSPACE 5 

C *** This reads and writes upto 5 sections 

C 

101 READ(5,35,ERR=555,END=666)Il,I2,I3,I4,I5,I6,I7,IB,I9,Il0, 
+ Ill,Il2,Il3,Il4,Il5 

35 FORMAT(3I4,I7,2I4,I7,2I4,I7,2I4,I7,2I4) 

Tl=(Il+I4+I7+Il0+Il3) 
PPl=(Y-Tl) 

IF(PPl.LT.0 . 0)GO TO 110 
IF(PPl.GE.0.0)GO TO 201 

201 IF(CV.LE . 0.0)GO TO 110 
IF(CV.GT.0.0)GO TO 301 

301 WRITE( l l,40)CL,CU,DM,HT,BA,CV 
40 FORMAT(F30.l,3F7.l,F8 . 3,Fl0.3) 

GO TO 110 

102 
*** This reads and writes upto 10 sections 
T2=0.0 

DO 7 L=l,2 

READ(5,45,ERR=555,END=666)Il,I2,I3,I4,I5,I6,I7,I8,I9,Il0, 
+ Ill,Il2,Il3,Il4,Il5 

45 FORMAT(3 I 4,I7,2 I4 ,I7 ,2I4,I7,2I4,I7,2I4) 

T_2=( I l+I4+I7+Il0+Il3) 
T2 =T2+T 2 

7 CONTINUE 

PP2=(Y-T2) 
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C 

C 

IF(PP2.LT.O.O)GO TO 110 
IF(PP2.GE.O.O)GO TO 202 

202 IF(CV.LE.O.O)GO TO 110 
IF(CV.GT.O.O)GO TO 302 

302 WRITE(ll,50)CL,CU,DM,HT,BA,CV 
50 FORMAT(F30.l,3F7.l,F8.3,Fl0.3) 

103 

GO TO 110 

** * This reads and writes upto 15 sections 
T3=0 . 0 

DO 8 M=l,3 

READ(5,55,ERR=555,END=666)Il,I2,I3, I4 ,I5,I6,I7, I 8,I9, Il0, 
+ I11,Il2,Il3,I14,I15 

55 FORMAT(3I4,I7,2I4,I7,2I4,I7,2I4,I7,2I4) 

T 3=(Il+I4+I7+I10+I13) 
T3=T3+T_3 

8 CONTINUE 

PP3=(Y-T3) 

IF(PP3.LT.O.O)GO TO 110 
IF(PP3.GE . O.O)GO TO 203 

203 IF(CV.LE.O.O)GO TO 110 
IF(CV.GT . O.O)GO TO 303 

303 WRITE(ll,60)CL,CU,DM,HT,BA,CV 
60 FORMAT(F30 . l,3F7 . l,F8.3,F10.3) 

104 

GO TO 110 

*** This reads and writes upto 20 sections 
T4=0.0 

DO 9 N=l,4 

READ(5,65,ERR=555,END=666)Il,I2,I3, I4 ,I5,I6,I7,I8,I9,Il0, 
+ Ill,Il2,Il3,Il4,Il5 

65 FORMAT(3I4,I7,2I4,I7,2I4,I7,2I4,I7,2I4) 

T_4=(Il+l4+I7+IlO+I13) 
T4=T4+T 4 

9 CONTINUE 

PP4=(Y- T4) 

IF(PP4.LT.O.O)GO TO 110 
IF(PP4.GE.O.O)GO TO 204 

204 IF(CV.LE . O.O)GO TO 110 
IF{CV.GT . O.O)GO TO 304 

304 WRITE(ll, 70)CL,CU,DM,HT,BA,CV 
70 FORMAT(F30.l,3F7.l,F8.3,F10.3) 

GO TO 110 

ENDIF 

RETURN 
STOP 

555 PRINT*, 'Error at this point' 
PRINT* ,Il ,I2,I3,I4,I5,I6,I7,I8 ,I9,Il 0,I11,Il2,Il3,I l4 ,Il5 
PRINT*,STRING 

666 PRINT*, ' This is the end' 
888 PRINT*, 'Error at this point i n subroutine TYPE2.' 

PRINT*, 'Last data read were' 
PRINT*,Il,I2,I3,I4,I5,I6,I7,I8,I9,Il0,I11,I12,Il3,I14,I15 
PRINT*,STRING 

999 PRINT*, ' Subroutine TYPE2 finished the run successfully . ' 

END 
C ****** End of subroutine TYPE2 ***** 
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Appendix 1.9: Programme 2 

C ••• PROGRAMME 2 FOR DBH MEASUREMENTS*** 

C ••• Written by S.M.C.U.P. Subasinghe *** 
C • • • Calculates the basal area total numbers of trees total 
C squared dimeter and writes tree number and dbh (mm) ••• 

EXTERNAL DIAMET 

OPEN(UNIT=ll,FILE='dmbat 2.dat',STATUS='OLD') 
OPEN(UNIT=l6,FILE='test.dat' ,STATUS='UNKNOWN') 

5 READ(ll,10,ERR=888,END=999)Il,I2,I3 
10 FORMAT(3I8) 

WRITE(l6,15)Il,I2,I3 
15 FORMAT(/3Il0) 

CALL DIAMET 

GOTO 5 

STOP 

888 PRINT*, 'ERROR AT THIS POINT IN THE MAIN PROGRAMME' 
PRINT*, 'LAST DATA IN THE MAIN PROGRAMME READ WERE' 
PRINT*,Il,I2,I3 

999 CLOSE (UNIT=ll) 

END 

SUBROUTINE DIAMET 

CHARACTER *80 STRING 

TOTSQDM=0.0 
TOTBA=0.0 
N=0 

100 READ(ll,' (ABO) ',ERR=888,END=999)STRING 
IF(STRING(l:10) . NE . ' ')THEN 
BACKSPACE 11 

13 READ(ll,15,ERR=888,END=999)Il,I2 
15 FORMAT(2I5) 

count=count+l 
BACKSPACE 13 

DM=I2/10.0 
SQDM=DM**2.0 
BA=(3.14159265*(I2**2.0))/(4.0*(10.0**6.0 ) ) 
N=N+l 
TOTSQDM=TOTSQDM+SQDM 
TOTBA=TOTBA+BA 

WRITE(l6,20)Il,DM,SQDM,BA 
20 FORMAT(Il0,3Fl0 . 3) 

GO TO 100 

ENDIF 

WRITE(l6,25)N,TOTSQDM,TOTBA 
25 FORMAT(I4,2F20.3) 

RETURN 
STOP 

888 PRINT*, 'ERROR AT THIS POINT' 
PRINT* , Il, I2 
PRINT*,STRING 
PRINT*, 'LAST DATA READ WERE' 

999 PRINT*,END OF DATA 

END 
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N 
V, 
-.J 

m__year no. tree dm, err 
mean 

yr/mnth plof1 

1942/02 329 15.0 
1942/ 11 329 15.8 
1943/12 329 16.4 
1945/04 328 17.4 
1945/02 328 17.9 
1949/07 320 20.4 
1952/05 286 22.0 
1960/04 157 27.3 
1963/12 130 30.0 
1968/11 109 33.8 
1971/12 89 36. 1 
1976/04 89 38.3 

planting year 

general yield class 
thinning type 

plot size 

main crop trees after thinning 

ht, m basal area, m 2 

mean mean 

9.7 0.018 
10.1 0.020 
10.6 0.021 
11.3 0.024 
11.5 0.025 
13.7 0.033 
14.5 0.038 
17.7 0.059 
19.1 0.071 
21.5 0.090 
22.3 0.1 02 
23.0 0.1 15 

1920 
14 

exploitation 
0.3642 ha 

total , 

olof1 

5.807 
6.423 
6.919 
7.775 
8.271 

10.424 
10.881 
9.196 
9.185 
9.800 
9.099 

10.270 

total vol., m 3 

mean total, 

olof1 

0.048 15.812 
0.074 24.190 
0.094 30.935 
0.130 42.769 
0.151 49.5 14 
0.251 80.330 
0.325 93.072 
0.605 94.922 
0.769 99.956 
1.031 112.352 
1.198 106.658 
1.377 122.583 

merch. vol., m3 

mean total, 

olof1 

0.044 14.577 
0.070 22.958 
0.090 29.707 
0.127 41.550 
0. 147 48.299 
0.247 79.160 
0.322 92.037 
0.601 94.375 
0.765 99.5 13 
1.027 111.994 
1.195 106.373 
1.374 122.306 

thinning trees 

no tree dm, err ht, m basal area, m 
2 3 

total vol., m 
mean mean mean total mean total 

olof1 plof1 plof1 

1045 I 1.0 9.6 0.010 9.998 0.000 0.236 

8 15.4 12.5 0.019 0. 150 0. 113 0.901 
34 17.9 13.1 0.025 0.859 0.192 6.543 

129 22.3 16.4 0.039 5.053 0.363 46.79 1 
27 25.8 18.0 0.052 1.410 0.523 14. 109 
2 1 29.7 20.9 0.069 1.455 0.731 15.361 
20 33.8 22.0 0.090 1.792 0.980 19.605 

merch. vol., m 3 

mean total 

plot'1 

0.001 0.753 

0.108 0.865 
0. 188 6.392 
0.359 46.258 
0.519 14.005 
0.728 15.289 
0.977 19.545 
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Appendix 2.1: Resultant F-values for the common 
slopes of dbh and total height 
relationships for each age class 

* - significant at the probability level 0. 1 
** - significant at the probability level 0.05 

Age class 16-20 Age class 21 -25 Age class 26-30 
combination F-value combination F-value combination F-value 

114-118 3.15 11 2-114 26.55* 11 0-112 3.51 
114-122 3.71 112-Il6 2.01 Il 0-Il 4 0.38 

I14-N14 2.84 !12-11 8 3.20 110-116 11.19* 
I14-Nl6 2.78 112-120 3.65 l1 0-11 8 13.16* 
118-122 3.79 112-122 2.79 110-120 6.63** 

118-Nl4 3.75 112-N14 3.40 110-122 0.05 
I18-Nl 6 2.51 112-N16 2.49 110-Nl 6 2.62 
l22-N14 0. 17 114-116 27.52* 112-Il4 2.84 
122-Nl 6 1.51 114-Il 8 7.06* 112-116 1.05 

N l4-N22 2. 10 114-120 0.28 Il2-Il8 1.62 
114-122 5.94 !12-120 3.61 

l14-N 14 27.67* 112-122 3.22 
I14-Nl 6 25.45* l12-N16 3.5 1 
I16-ll 8 0.32 114-!16 7.09* 
11 6-120 2.32 Il4-Il 8 12.15* 
Il6-l22 1.85 114-20 16.48* 

11 6-N 14 1.93 114-122 13.36* 
116-Nl6 1.22 114-Nl6 6.87** 

N l4-N l 6 0.75 116-Il 8 2.15 
116-20 1.30 

116-122 3.04 
I1 6-Nl 6 2.12 
118-120 1.30 
118-122 3.04 

I1 8-Nl6 1.12 
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Age class 31 -35 Age class 36-40 Age class 41-45 
combination F-value combination F-value combination F-value 

110-112 2.84 11 0-Il2 1.29 112-!14 3.03 
110-!14 3.79 I10-!14 2.76 I12-Il6 4.29** 
110-Il 6 0.56 Il0-!16 1.08 Il2-I18 5.76** 
I10-Il8 1.50 I10-118 0.76 112-120 0.13 
110-120 0.08 Il0-120 0.14 Il2-Nl4 0.31 
Il0-122 0.67 110-122 0.44 Il2-Nl6 0.16 

110-Nl4 2.42 11 0-Nl4 0.82 !14-116 13.69* 
I10-Nl6 0.10 Il0-Nl6 114-!18 16.50* 
!12-114 3.56 !14-20 3.25 
112-116 1.58 Il4-Nl4 1.03 
112-!18 2.48 I14-Nl6 2.58 
112-120 9.85* Il6-I18 0.75 
112-122 1.60 !16-120 7.86* 

I12-Nl4 2.84 I16-Nl4 13.74* 
112-N16 3.08 116-Nl6 8.22* 
!14-116 8.93* Nl4-Nl6 0.05 
114-118 1.18 
!14-20 5.56* 

114-122 3.85 
Il4-Nl4 3.70 
Il4-Nl6 4.99 

Nl4-Nl6 5.54 

Age class 46-50 Age class 51-55 A,ge class 56-60 
combination F-value combination F-value combination F-value 

Il 0-114 3.29 114-116 3.66 114-!16 0.57 
110-116 1.34 114-118 2.41 114-118 0.08 
110-118 0.78 114-120 0.44 !14-120 1.44 
Il0-120 0.28 116-Il 8 1.92 
!14-116 12.19* 116-120 2.70 

118-120 0.72 

Age class 61 -65 
combination F-value 

I14-Il6 0.05 
I14-Il8 0.01 
I16-118 0.08 
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N 

°' 0 

Characteristic 

mean 
median 
mm1mum 
maxnnum 
lower quartile 
upper quartile 
vanance 
stand deviation 
se. of mean 
coeff. of var. 
skewness 
se. of skewness 
kurtosis 
se. of kurtosis 

dbh, 
I 

cm 

19.00 
17.80 
7.30 

54.20 
13.70 
23.30 
50.10 

7.10 
0.10 
37.2 
0.95 
0.03 
0.95 
0.07 

dbh , 1+6 age1, 

cm yr 

20.90 29.80 
19.40 28.00 
7.70 13.00 

57.40 65.00 
15.40 22.00 
25.00 37.00 
56.80 115.30 

7.50 10.70 
0.10 0.14 

36.10 36.00 
0.93 0.94 
0.03 0.03 
0.93 0.56 
0.07 0.07 

age.,6,' ageJir' h total 
lop' 

yr yr m ba 
(G), 

, -I 
m-ha 

33.90 4.10 15.00 33.20 
32.00 4.00 13.80 33.10 
16.00 2.00 9.20 17.50 
68.00 10.00 30.20 46.90 
26.00 3.00 12.00 29.10 
42.00 6.00 18.00 37.50 

126.90 2.00 19.00 33.90 
11 .26 1.40 4.40 5.80 
0.15 0.02 0.06 0.08 

33.20 34. 10 29.90 17.50 
0.85 0.50 1.1 0 -0.06 
0.03 0.03 0.03 0.03 
0.35 0.03 0.57 -0.28 
0.07 0.07 0.07 0.07 

:a=i 
,_ -· > ..._, 

,:, 
,:, 
(t) 

= Q.. -· ~ 
total tree h /age G/age, h /G, 

top hJJ) 

(N), - 1 l - 1 -I 
-I myr m ha m ha 

ha - I 
yr 

1512.70 0.52 1.22 0.46 
1472.00 0.51 1.23 0.42 
184.00 0.40 0.47 0.29 

3 128.00 0.76 2.21 1.01 
939.00 0.46 0.92 0.37 

1-S 

= ~ N - . 
('I) 0 N ., Q. a t't> 
('I) -C. - ~~ -· ; · = - (}Cl 

'"'I (t) 

('I) n,;,:i - 0 

=- ~ 
oq 

s· Q. = -· 
= -· r,) ,:, 

s· ~ --8 '"'I -· 
(Jtl =~ 

t't> n (t) -t't> - r,) 
'"'I -·-0~ 

1933.00 0.56 I .41 0.54 
514789.50 0.01 0.14 0.02 

717.50 0.08 0.38 0.13 

~ =-- -· a 0~ 
'"'I ~-· t't> 3~ ~ 

9.70 0.00 0.01 0.00 
47.40 15.00 30.64 27.41 

0.03 0.74 0.44 1.31 
0.03 0.03 0.03 0.03 

c,J - 00 

=- Q..~ 

t't> (t) --· -=-~ r,) (t) 

=-- ~ 
~ 

-0.51 0.26 -0.04 1.79 
0.07 0.07 0.07 0.07 

"""l -· ~ 
O" -(t) 
r,) 

= r,) 
(t) 
Q.. 



N 
0\ ...... 

Characteristics 

mean 
median 
mtmmum 
maximum 
lower quartile 
upper quartile 
vanance 
stand deviation 
se. of mean 
coeff. of var. 
skewness 
se. of skewness 
kurtosis 
se. of kurtosis 

dbh, 
I 

cm 

14.70 
14.10 
7.00 

33.00 
11.30 
17.50 
20.90 

4.60 
0.07 

31.00 
0.72 
0.04 
0.42 
0.08 

dbh , 
I M 

age
1
, age

116
, aged; r' 

cm yr yr yr 

16.10 23.20 26.10 3.00 
15.50 22.00 25.00 3.00 
7. 10 19.00 2 1.00 2.00 

37.20 26.00 41.00 8.00 
12.20 19.00 22.00 2.00 
19.30 25.00 29.00 5.00 
27.70 17.50 24.60 1.30 

5.30 4.20 5.00 1.10 
0.08 0.07 0.08 0.02 

52.50 18.10 19.00 37.90 
0.75 1.00 1.13 1.40 
0.04 0.04 0.04 0.04 
0.50 0.59 0.71 2.40 
0.08 0.08 0.08 0.08 

h total ha total tree 
top' 

m (G), (N), 
2 · I 

m ha ha·' 

I 2.20 26.90 1794.60 
12.30 27.20 1565.00 
9.00 11 .40 623.00 

18.30 39.70 3055.00 
l 0.10 23 .90 1246.00 
I 3.00 31.90 2316.00 
3.90 34.90 499100.00 
2.00 5.90 706.50 
0.03 0.09 1I.10 

16.30 22.00 39.40 
0.08 -0.36 0.39 
0.04 0.04 0.04 
0.46 -0.25 -0.94 
0.08 0.08 0.08 

h /age, 
lop G/age, 

- I 2 -I · I 
myr m ha yr 

0.53 1.19 
0.53 1.1 29 
0.47 0.60 
0.56 1.8 1 
0.5 1 0.95 
0.55 1.37 
0.00 0.01 
0.02 0.3 1 
0.00 0.0 1 
4.20 26.22 

-0.75 0.55 
0.04 0.04 
0.40 -0.57 
0.08 0.08 

h /G, 
lop 
- I 

m ha 

0.47 
0.46 
0.30 
0.79 
0.40 
0.56 
0.01 
0.1 1 
0.00 

23.46 
0.41 
0.04 

-0.04 
0.08 
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z 
(I) 
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'"'t 
~ 
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N 

°' N 

Characteristics 

mean 
median 
mm1mum 
maximum 
lower quartile 
upper quartile 
vanance 
stand deviation 
se. of mean 
coeff. of var. 
skewness 
se. of skewness 
kurtosis 
se. of kurtosis 

h , m h 
I 

15.01 
13.70 
6.20 

29.30 
10.70 
18.30 
25.94 

5.09 
0.22 

33.93 
0.66 
0.10 

-0.48 
0.21 

1+t11' nl age1, yr age1•t11' yr 

17.02 31.13 32.30 
15050 29.00 32.00 
8050 13.00 15.00 

32.30 58.00 65.00 
12.20 22.00 25.00 
20.70 42.00 45.00 
29.44 122.5 1 148.28 

5.43 11 _07 12. 18 
0.23 0.47 0.52 

31.88 35.56 34.50 
0.63 0.67 0.63 
0.10 0. 10 0.10 

-0.59 -0.45 -0.57 
0.21 0.21 0.21 

agedir' yr h /age, total tree 
!Op 

-I (N), myr 
- I 

ha 

4.17 15.74 1343.35 
4.00 14.20 1341.00 
2.00 9.10 184.00 

10.00 27_90 3128.00 
2.00 12.30 719.00 
6.00 18.50 1933.00 
4.18 21.61 559705.93 
2.04 4_65 748. 13 
0.09 0.20 31.78 

49.05 29.53 55.69 
0.98 0.78 0.44 
0.10 o_ 10 0. 10 
0.97 -0.33 -0.67 
0.21 0.21 0.21 

h /age, 
lop 

- I 
myr 

0.52 
0.52 
0.39 
0.72 
0.47 
0.58 
0.01 
0_07 
o_oo 

13. 16 
0_57 
0. 10 

-0_ 11 
0.21 

~ 

-= ..... 
(t) ., 
:3 
(t) 

Q. ; · ..... 
(t) 

..... 
=-s· 
= s· 

C1Cl 

,-..._ -· .... 
'-' 

~ 
0 
Q.. 
(t> --.... = (JCl 

0 ....., -0 -~ -=-(t> -· (JCl 
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N 

°' vJ 

Characteristics 

mean 
median 
min imum 
maximum 
lower quartile 
upper quartile 
vanance 
stand deviation 
se. of mean 
coeff. of var. 
skewness 
se. o f skewness 
kurtosis 
se. of kurtosis 

h, m h 
I 

13.69 
14.50 
8.00 

20.10 
10.70 
15.80 
8.16 
2.86 
0 .21 

20.81 
-0. 15 
0. 18 

-1.02 
0.35 

1•6•' m age
1
, yr age,,6,' yr 

16.42 27.33 32.82 
17.00 3 1.00 36.00 
10.00 19.00 24.00 
22.10 36.00 41.00 
13.55 19.00 24.00 
18.75 36.00 37.00 
8.24 34.46 35.85 
2.87 5.87 5.99 
0.2 1 0.43 0.44 

17.48 2 1.48 18.24 
-0.23 -0.36 -0.51 
0.18 0. 18 0. 18 

-1.08 - 1.33 -1.27 
0.35 0.35 0.35 

ageJir' yr h , m total tree 
IOI) 

(N), 
ha 

-I 

5.48 14.09 1227.36 
5.00 15.80 912.00 
3.00 9.40 593.00 
7.00 18.40 3055.00 
3.00 10.20 815.00 
6.00 16.20 1474.00 
0.58 8.05 42252.34 
0.76 2.84 649.8 1 
0.06 0.2 1 47.77 

13.86 20. 16 52.94 
0.29 -0.4 1 1.49 
0. 18 0. 18 0. 18 
0.86 - 1 .33 1.20 
0.35 0.35 0.35 

h /age, 
tup ., 
myr 

0.52 
0.52 
0.49 
0.55 
0.5 1 
0.54 
0.00 
0.02 
0.00 
3.27 
0.03 
0. 18 

-0.90 
0.35 

?" 

2! 
('t) 
C: ..... ., 
!::. 
..... =-s· 
= s· 

(JQ 



(iii) Modelling of timber height 

a. Intermediate thinning 

Characteristics h . , m h,m dbh, cm ' dbh*h, m-
llm 

mean 10.32 14.11 17.23 2.70 
median 9.20 13.00 15.80 1.92 
mm1mum 1.40 3.80 7.20 0.31 
maximum 26.00 28.50 44.70 9.75 
lower quartile 5.40 9.95 11.30 1.13 
upper quartile 14.70 17.90 21.80 3.72 
vanance 36.39 27.29 49.59 4.44 
stand deviation 6.03 5.22 7.04 2.11 
se. of mean 0.11 0.09 0.12 0.04 
coeff. of var. 58.45 37.01 90.88 78.02 
skewness 0.52 0.64 0.76 1.30 
se. of skewness 0.04 0.04 0.04 0.04 
kurtosis -0.70 -0.53 -0.12 0.99 
se. of kurtosis 0.09 0.09 0.09 0.08 

b. Neutral thinning 

Characteristics h . ,m h,m dbh, cm dbh*h, m 
2 

llln 

mean 9.28 12.66 16.04 2.20 
median 8.70 12.20 15.20 1.77 
m1mmum 1.30 5.90 7.00 0.47 
maximum 18.00 21.00 30.00 5.54 
lower quartile 6.00 9.50 11.60 1.11 
upper quartile 13.10 15.90 20.25 3.18 
vanance 17.77 12.37 30.41 1.67 
stand deviation 4.21 3.52 5.51 1.29 
se. of mean 0.09 0.08 0.13 0.03 
coeff. of var. 45.41 27.79 34.37 58.8 
skewness 0.12 0.26 0.45 0.71 
se. of skewness 0.06 0.06 0.06 0.06 
kurtosis -1.13 -1.21 -0.71 -0.65 
se. of kurtosis 0.11 0.11 0.11 0.11 
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N 

°' u, 

Characteristics 

mean 
median 
mm1mum 
maximum 
low. quartile 
upp. quartile 
variance 
stand dev. 
se. of mean 
coeff. of var. 
skewness 
se. of skew 
kurtosis 
se. of kurt. 

3 

v
1
, m 

0.58 
0.42 
0.01 
3.05 
0. 17 
0.84 
0.30 
0.54 
0.02 

93.36 
1.54 
0.09 
2.67 
0.17 

dbh, ba (g), 
cm m 

2 

24.62 0.05 
23.95 0.05 

7.30 0.00 
51.50 0.29 
18.20 0.03 
30.70 0.07 
76.10 0.00 

8.72 0.04 
0.3 1 0.00 

35.43 68.35 
0.36 1.15 
0.09 0.09 

-0.32 1.33 
0.17 0.17 

h, m age, yr total tree total ba 
(N), (G), 
ha 

-I 2 -I 
m ha 

17.85 38.49 1320.00 40.50 
17.40 39.00 945.00 41.40 
6.20 13.00 235.00 23.91 

33. I 0 68.00 4834.00 52.01 
12.80 25 .0 558.00 35.45 
22.60 48.50 I 572.00 45.77 
37.12 203.34 1148358.70 42.17 
6.09 14.26 1071.60 6.49 
0.21 0.51 38.10 0.23 

34.13 37.04 81.20 16.03 
0.19 0.26 1.50 -0.33 
0.09 0.09 0.10 0.09 

-0.88 -0.85 1.50 -0.74 
0.17 0.17 0.20 0.17 

~ ,-.., . -· -<!'! ,._, 

h h /age, cm. dpth cm. vol cm. 
top' lop 

-I (c ), m ratio (c,), Ill myr h 

( C) 3 

r m '""' ~ = .... 
0 ti) 

19.00 0.51 6.38 0.38 35.14 
18.20 0.50 6.30 0.40 27.60 
9.20 0.32 1.20 0.10 1.30 

Q. '"I 

3 (I) -ti) -Q. -· -· = ~ 
~ .... 

33.70 0.76 13.00 0.80 154.60 
13.40 0.46 5. I 0 0.30 13.90 
23.30 0.46 7.60 0.50 47.60 
34.35 0.57 3.46 0.01 784.07 

5.86 0.00 1.86 0.13 28.00 

ti) 
.-t-.... 0 =- .-t-s· ~ -= -<!'! s· 0 (J(l -= 8 

0.21 0.07 0.07 0.00 I.IO (I) 

30.84 0.00 29. 15 33.01 79.75 
0.34 15.47 0.27 0.21 1.44 
0.09 0.68 0.09 0.09 0.09 

-0.85 0.08 0.08 -0.25 2.20 
0.17 0.17 0. 17 0.17 0. 19 



N 
0\ 
0\ 

Characteristics 

mean 
median 
mm1mum 
maximum 
low. quartile 
upp. quartile 
vanance 
stand dev. 
se. o f mean 
coeff. of var. 
skewness 
se. of skew 
kurtosis 
se. ofkurt. 

v,, 
3 

m 

0.29 
0.25 
0.01 
1.12 
0.14 
0.41 
0.04 
0.20 
0.01 

68.87 
1.05 
0.12 
0.94 
0.23 

dbh, ba (g), 
cm m 

2 

20.50 0.04 
20.50 0.03 

7.70 0.01 
36.80 0. 12 
16.30 0.02 
24.60 0.05 
34.88 0.00 

5.91 0.02 
0.28 0.00 

28.80 54.87 
0.10 0.77 
0.12 0. 12 

-0.40 0.35 
0.23 0.23 

h, m age, total tree 
yr (N), 

ha 
., 

14.84 31.65 1277.90 
14.90 3 1.00 1038.00 
6.60 24.00 593.00 

22. 10 41.00 3055.00 
12.25 24.00 815.00 
17.30 36.00 1502.00 
9.95 32.58 397780.50 
3. 15 5.7 1 630.70 
0. 15 0.28 30.30 

2 1.26 18.03 49.30 
-0.02 -0.04 1.50 
0. 12 0.12 0. 12 

-0.79 -0.16 I. 71 
0.23 0.23 0.23 

total ba h h /ag cm. dpth 
lop' IOp 

(G), (c.), m m e, 
, - I 

m-ha -I 
myr 

34.49 15.967 0.506 6.616 
36.29 16.000 0.5 10 6.400 
18.37 11.700 0.470 1.400 
45.70 20.700 0.530 12.800 
32.32 12.700 0.490 5.400 
37.66 18.300 0.520 7.800 
36.37 7.344 0.000 3.486 

6.03 2.7 10 0.016 1.867 
0.29 0. 130 0.001 0.090 

17.49 16.973 3. 117 28.222 
-0.85 -0.058 -0.452 0.470 
0.12 0.117 0. 11 7 0.117 
0.44 -1. 157 -0.550 0.423 
0.23 0.234 0.234 0.234 

cm. 
ratio, 
(c) 

r 

0.446 
0.450 
0.120 
0.740 
0.390 
0.5 10 
0.007 
0.085 
0.004 

19.038 
-0.034 
0.11 7 
0.888 
0.234 

cm. vo l, 
(cv) 

3 
111 

25.717 
18.300 
0.210 

183.000 
10.7555 
32.015 

567.725 
23.827 

1.146 
92.649 

2.420 
0.11 7 
8. 190 
0.234 

O"' 

'.Z 
(D 

C -., 
~ -=-s· 
= s· 

IJQ 



(v) Modelling of merchantable volume 

a. Intermediate thinning 

Characteristics 3 
dbh, cm basal area h,m h . , m V mer' !TI 

1 um 
(g), m 

mean 0.28 17.78 0.03 14.32 10.56 
median 0.12 15.80 0.02 13.10 9.30 .. 
mimmum 0.00 7.00 0.00 3.80 1.30 
maximum 3.05 51.50 0.21 33.10 31.80 
lower quartile 0.04 11.30 0.01 9.90 5.30 
upper quartile 0.35 22.30 0.04 18.30 15.10 
vanance 0.16 67.09 0.00 32.88 43.70 
stand deviation 0.40 8.19 0.03 5.73 6.61 
se. of mean 0.01 0.14 0.00 0.10 0.11 
coeff. of var. 140.97 46.08 96.22 39.83 62.51 
skewness 2.58 1.09 2.07 0.75 0.60 
se. of skewness 0.04 0.04 0.04 0.04 0.04 
kurtosis 8.01 0.76 5.03 -0.24 -0.47 
se. of kurtosis 0.08 0.08 0.08 0.08 0.08 

b. Neutral thinning 

Characteristics J 
dbh, cm basal area h, m h . m vmer' m 

1 tun' 

(,g), m 
mean 0.17 16.24 0.02 12.75 9.38 
median 0.10 15.30 0.02 12.30 8.80 .. 

0.00 7.0 mimmum 0.00 5.70 1.30 
maximum 1. 16 38.40 0.12 21.70 18.50 
lower quartile 0.05 11.60 0.01 9.50 6.00 
upper quartile 0.26 20.50 0.03 16.00 13.20 
vanance 0.03 33.35 0.00 12.95 18.44 
stand deviation 0.16 5.78 0.02 3.60 4.30 
se. of mean 0.00 0.13 0.00 0.08 0.10 
coeff. of var. 97.72 35.56 70.67 28.24 45.84 
skewness 1.51 0.56 1.25 0.27 0.11 
se. of skewness 0.06 0.06 0.06 0.06 0.06 
kurtosis 2.62 -0.37 1.62 -1.18 -1. 11 
se. of kurtosis 0.11 0.11 0.11 0.11 0. 11 
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(vi) 

a. 

Modelling of the tree variables removed in thinnings 

Intermediate thinning 

Characteristics mean basal area, m 
2 

mean dbh, cm mean total h, m 
stand thinned stand thinned stand thinned 

mean 0.05 0.04 23.09 20.05 16.89 16.03 
median 0.04 0.03 21.30 17.70 16.10 15.00 .. 

0.01 0.01 m1mmum 10.70 8.10 7.40 7.60 
maximum 0.14 0.13 42.20 39.80 29.90 27.0 
lower quartile 0.02 0.02 17.00 13.65 12.30 11.80 
upper quartile 0.07 0.05 29.25 25.40 21.25 20.00 
vanance 0.00 0.00 62.62 60.04 30.87 29.45 
stand deviation 0.03 0.03 7.91 7.75 5.56 5.43 
se. of mean 0.00 0.00 0.81 0.80 0.56 0.55 
coeff. of var. 67.66 76.73 34.27 38.64 32.90 33.86 
skewness 0.96 1.28 0.52 0.66 0.36 0.37 
se. of skewness 0.25 0.25 0.25 0.25 0.24 0.25 
kurtosis 0.19 1.05 -0.61 -0.43 -0.81 -0.89 
se. of kurtosis 0.49 0.49 0.49 0.49 0.49 0.49 

b. Neutral thinning 

Characteristic mean basal area, m 
2 

mean dbh, cm mean total h, m 
stand thinned stand thinned stand thinned 

mean 0.04 0.03 20.48 16.10 13.88 13.32 
median 0.03 0.02 19.60 16.40 14.50 13.20 . . 

0.01 0.01 mm1mum 13.00 9.70 9.00 9.00 
maximum 0.06 0.05 27.40 25.10 20.50 18.80 
lower quartile 0.02 0.01 17.40 11.50 9.55 4.60 
upper quartile 0.05 0.04 23 .90 20.80 17.70 16.70 
vanance 0.00 0.00 19.55 21.62 13.33 10.69 
stand deviation 0.01 0.01 4.42 4.65 3.65 3.27 
se. of mean 0.00 0.00 0.74 0.78 0.59 0.53 
coeff. of var. 38.62 54.26 21.59 27.35 26.31 24.71 
skewness 0.35 0.05 -0.12 -0.03 0.05 0.16 
se. of skewness 0.39 0.39 0.39 0.37 0.38 0.38 
kurtosis -0.80 -0.84 -1.16 -1.28 -1.43 -1.41 
se. of kurtosis 0.79 0.79 0.79 0.79 0.75 0.75 

268 



Appendix 2.3: Correlations of the tested explanatory 
variables with the response variables of 
the constructed models 

(i) Prediction model of diameter at breast height at time 
t+~t 

dbh , cm 
I 

age
1
, yr 

age,+e.,' yr 

Variable 

difference of age, yr 
top height (h ), m 

top 
, -I 

total basal area (G), m-ha 
- 1 

total tree (N), ha 
-I 

h /age, myr 
top t 

' -I -I G/age , m-ha yr 
I 

- I 
h /G, m ha 

ton 

Intermediate thinning 

0.994 

0.743 

0.746 

0.303 

0.806 

0.280 

-0.754 

-0.239 

-0.560 

0.671 

Neutral thinning 

0.992 

0.683 

0.696 

0.526 

0.647 

0.102 

-0.517 

-0.364 

-0.336 

0.270 

(ii) Prediction model of total height at time t+~t 

Characteristics Intermediate thinning Neutral thinning 

h, m t 0.983 0.983 
aget, yr 0.907 0.923 
age,+e.,' yr 0.921 0.922 
difference of age, yr 0.580 0.132 
top height (h ), m 0.957 0.927 top 

-1 
-0.807 -0.740 total no. of trees (N), ha 

·I 
h /age , myr 

too t -0.332 -0.699 

(iii) Timber height prediction model 

Variable Intermediate thinning Neutral thinning 

total height (h), m 0.978 0.971 
dbh, cm 0.924 0.927 
h*dbh, m 

2 
0.954 0.959 
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(iv) Total volume prediction model 

Characteristics Intermediate thinning Neutral thinning 

dbh, cm 0.930 0.957 
basal area (g), m 

2 

0.970 0.983 
total height (h) , m 0.872 0.862 
age,, yr 

0.810 0.751 -1 
total no. of trees (N), ha -0.608 -0.557 

' -I total basal area (G), m-ha 
0.030 0.267 

top height (h ), m 
0.844 0.747 lop 

- I 
h / age, myr 

-0.328 -0.329 lop l 

crown depth ( ch), m 0.419 0.759 
crown ratio ( c ) 

r -0.482 0.113 
crown volume ( c ) , m 

3 

0.578 0.820 vol 

(v) Merchantable volume prediction model 

Variable Intermediate thinning Neutral thinning 

dbh, cm 0.925 0.956 , 
basal area (g), m- 0.977 0.986 
total height (h), m 0.855 0.868 
timber height (h . ), m 

lltll 
0.855 0.888 

(vi) Prediction models of tree variables removed in 
thinning 

Variable Intermediate tinning Neutral thinning 

8b1' 
-

gbt, 
-

hbt' dbhs1, hb, ' dbhs1, 
2 2 

m cm m m cm m 

8 t11, m 
2 

0.968 0.948 0.209 0.954 0.370 -0.009 

dbh1h, cm 0.971 0.978 0.229 0.435 0.968 0.096 

ht11, m 0.388 0.278 0.993 -0.031 0.144 0.993 
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Appendix 2.4: Distribution of residuals of the 
selected models 

(i) 

(a) 

Diameter prediction model b 

Intermediate thinning 

0.3 

"' 0.2 
~ 
= 0.1 ,:i 
·;;; 
Q; 

0.0 i.. 

~ a -0.1 
i.. 
0 

= -0.2 

-0.3 

(b) 

Before smoothing para. c1 

2.0 4.0 6.0 

fitted dbh values, cm112 

Neutral thinning 

Before smoothing para. c1 

..:!l 0.2 
~ 

-5 0.1 
·;;; 
l:: 0.0 
~ 
a -0. I 
i.. 
0 
C -0.2 

8.0 

-0.3 +------+-----f------' 

2.0 4.0 6.0 
fitted dbh values, cm112 

After smoothing para. c1 

0.3 

"' 0.2 
~ 
= 0.1 ,:i 

·;;; 
Q; 

0.0 i.. 

~ 
a -0.1 
i.. 
0 

-0.2 C 

-0.3 ' 

2.0 4.0 6.0 
fitted dbh values, cm112 

After smoothing para. c1 

~ 0.2 

-5 0.1 
·;;; 
l:: 0.0 
~ a -0.1 
i.. 

g -0.2 
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(ii) 

3.0 

"' 
2.0 

-; 
1.0 ::I 

"O 
·;;; 0.0 4,1 
I,,. 

,:j - -1.0 
"' -2.0 

-3.0 

(iii) 

"O 
t; -2.0 

Total height prediction model b 

Intermediate thinning Neutral thinning 

+ 3.0 
+ ~ 2.0 

"' + -; 
1.0 -tt ::I 

"O 
+ ·;;; 0.0 + 4,1 

I,,. 

~ -1.0 
+ "' 

+ -2.0 
++ -3.0 

5.0 15.0 25.0 35.0 5.0 15.0 25.0 

fitted II values, m fitted II values, m 

Timber height prediction model b 

Intermediate thinning Neutral thinning 

4.0 ~------------, 

"; 2.0 
::I 

"O 

-~ 0.0 
I,,. 

"O 
t; -2.0 

+ 

0.0 10.0 20.0 30.0 0.0 10.0 20.0 

fitted h tim values fitted h tim values 
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(iv) Model b for prediction of the size of thinned trees 

Mean basal area -
intermediate thinning 

3.0 -y-------------, 

',:, 

~-1.5 

+ + 
-3 .0 +-- --+-----t':..1."'":+,___-----i 

0.00 

Mean dbh­
intermediate thinning 

3.0 .,.--------------, 

~ 1.5 cu 
:::, 

~ t 0.0 
..... 

-d 
~ -1.5 

-3 .0 +----+--------~ 

0.0 20.0 40.0 

fitted mean dbh values, cm 

Mean total height -
intermediate thinning 

60.0 

3.0 -r--------- --:i:,,---, 

-; 1.5 
:::, 

',:, 

-~ 0.0 
..... 

-d 
~ -1.5 

,..L- t ..L--3.0 +----+'""---+---"--, 

0.0 10.0 20.0 30.0 
fitted mea11 h values, m 

Mean basal area -
neutral thinning 

3.0 ~----------~ 

-; 1.5 
:::, 

',:, 

·~ 0.0 
..... 
-d 
~ -1.5 

+ -t+-
:t -t+-

++ 
++ + 

+ 
+ 

t 

++ 
* :\: 

++ *+ ++ 
~ 

-3.0 +----+----+------! 

0.00 0.02 0.04 
fitted mean g values mz 

Mean d bh­
neutral thinning 

0.06 

3.0 ~----------~ 

.;!! 1.5 
cu 
:::, 

',:, 

'f 0.0 
..... 

',:, 
~-1.5 

-3.0 +----+----+-------! 

0.0 10.0 20.0 

fitted mean dbli values, cm 

Mean total height -
neutral thinning 

30.0 

3.0 .,.--------------, + 

-; 1.5 
:::, 
~ 
~ 0.0 
..... 

-d 
~ -1.5 

J 

t1 
+ 

+ 
-3.0 +----+----+--- - ..... .._, 

5.0 10.0 15.0 20.0 

fitted mea11 It values, m 
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Appendix 3.1: Written programme for the estimation of 
the parameters of the basal area 
prediction model constructed by Pienaar 
and Harrison (1989) 

"Programme for re-estimating parameters for the basal area 
prediction model develope d by Pienaar and Harrison, 1989" 

"Written by S.M.C . U.P. Subesinghe" 

job 'nonlinear regression' 
unit [n=l65] 
vari [va=l . .. 165] rank 

open 'barea . dat'; C=2 
read [c=2] a, lnb, lnn, lnh, lnn_a, lnh_a, nt, na, at 

"Defines the 7 parameters estiamted by the authors" 
seal b[0 ... 7]; va=0.1432, 1 . 1054, 0.0097, 0.0351, 0.1202, \ 

0 . 2308, 0 . 0075, 0.1966 

"The initial calculations required" 
calc ainv = 1/a 
calc nt_na = nt/na 

"Estimate the fitted values using the initial parameters " 
calc guess= b[0 ] + b[l]*ai nv + b[2]*lnn + b[3]*lnh + b[4] \ 
*lnn_ a + b[5]*lnh_ a + b[6]*nt_na*(at/a) * *b[7] 

expr e; value= !e (z = nt_na* (at/a)**b[7]) 

mode lnb ; res=residuals; fitted=fits 

rcyc b [7] 

"Fits all the paramters together" 
fitn [calc=e; selin=y]lnbl, ainv, lnn, \ 

lnh, lnn_a, lnh_ a, z 

print lnb,residuals,fits,guess 

stop 
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Appendix 3.2: Programme written for parameter 
estimation of the basal area projection 
model built by Pienaar and Harrison 
(1989) 

"Programme for re-est imating parameters for the basal area 
projection model developed by Pienaar and Harrison, 1989" 

"Written by S.M.C.U.P. Subesinghe" 

"Estimates the values for all possible parameter combinations" 

OPEN 'barea.dat'; CHAN=2 

READ [CHAN=2) lnbl, lnb2, lnn, lnhl, lnh2, na, nt, al, \ 
a2, at 

"The essential calculations" 
CALC inval, inva2 = 1/al, l/a2 
CALC lnh = (lnh2-lnhl) 
CALC inva = (inva2 - inval) 
CALC lnn a= ((lnn/a2) -(lnn/al)) 
CALC lnh-a = ((lnh2/a2)-(lnhl/al)) 
CLAC nt_na, at_al, at_a2 = nt/na, at/al, at/a2 

"Estiamtes the fitted values without changing the inital 
parameters estiamted by the authors" 

"Parameters 
CALC guessl 

"Parameters 
CALC guess2 

estimated by the authors for unthinned plantations" 
lnbl -25.0905*inva + 0 . 2255*lnn + 0.9789* \ 
lnh +3.0060*lnn a+ 0.8636*lnh a - 0.1378* \ 
(nt_na*((at a2**2 . 2995)-(at_a1**2.2995))) 

estimated by the authors for thinned plantations" 
lnbl - l.1054*inva + 0.0097*lnn + 0.0351* \ 
l nh + 0.1202*lnn a+ 0.2308*lnh a+ 0.0013* \ 
(nt_na*((at a2**0.1966)-(at_al**0.1966))) 

EXPR el; VALUE=!e(z = nt na*((at a2**b7)-(at al**b7))) 
MODE lnb2; RES=residuals; FITTED:fits -
RCYC b7 
FITN [CALC=el; CONST=omit; SELIN=yes) lnbl, inva, lnn, \ 

lnh, lnn_a, lnh_a, z 

PRIN lnb2, residuals, fits, guessl, guess 

"Re -parameterization without the parameter bl" 
EXPR e2; VALUE=!e(z = nt na*((at a2**b7)-(at a l **b7))) 
MODE lnb2; RES=residuals; FITTED:fits -
RCYC b7 
FITN [CALC=e2; CONST=omit; SELIN=yes; PRIN=summ, esti, \ 

fitted) lnbl, lnn, lnh, lnn_ a, lnh a, z 

"Re-parameterization without the parameter b2" 
EXPR e3; VALUE=!e(z = nt na*((at a2**b7) - (at al**b7))) 
MODE lnb2; RES=residuals; FITTED:fits -
RCYC b 7 
FITN [CALC=e3; CONST=omit; SELIN=yes; PRIN=summ, esti, \ 

fitted) lnbl, inva, lnh, lnn_ a, lnh_ a, z 
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"Re-parameterization without the parameter b3" 
EXPR e4; VALUE=!e (z = nt na* ((at a2**b7)- (at al**b7 ) )) 
MODE lnb2; RES=residuals; FITTED:fits -
RCYC b7 
FITN [CALC=e4; CONST=omit; SELIN=yes; PRIN=summ, esti, \ 

fitted) lnbl, inva, lnn, lnn_a, lnh_a, z 

"Re-parameterization without the parameter b4 " 
MODE lnb2; RES=residuals; FITTED=fits 
RCYC b7 
FITN [CALC=e4; CONST=omit; SELIN=yes; PRIN=summ, esti, \ 

fitted) l nbl, inva, lnn, lnh, lnh_a, z 

"Re-parameterion without the parameter bS" 
MODE lnb2; RES=residuals; FITTED=fits 
RCYC b7 
FITN [CALC=e4; CONST=omit; SELIN=yes; PRIN=summ, esti, \ 

fitted) lnbl, inva, lnn, lnh, lnn_a, z 

"Re-parameterization without the parameter b6" 
EXPR eS; VALUE= !e(f2 = (nt na*((at a2**b7) - \ 

(at al**b7)))) -
MODE lnb2; RES=residuals; FITTED=f2 
RCYC b7 
FITN [CALC=eS; CONST=omit; SELIN=yes; PRIN=summ,esti, \ 

fitted) lnbl, inva, lnn, lnh, lnn_a, lnh a 

"Re-parameterization without the parameters b3 and b4" 
EXPR e6; VALUE=!e(z = nt na*((at a2**b7)-(at al**b7)) ) 
MODE [OFFSET=lnbl) lnb2;-RES=residuals; FITTED=fits 
RCYC b7 
FITN [CALC=e6; CONST=omit; SELIN=yes; PRIN=summ,esti, \ 

fittedvalues) lnbl, inva, lnn, lnh_a, z 

"Re - parameterization awithout the parameters b3 and bS" 
EXPR e7; VALUE=!e(z = nt na*((at a2**b7)-(at al**b7))) 
MODE [OFFSET=lnbl ) lnb2;-res=residuals; fitted=fits 
RCYC b7 
FITN [CALC=e7; CONST=omit; SELIN=yes; PRIN=summ,esti, \ 

fittedvalues) lnbl, i nva, lnn, lnn_a, z 

"Re-parameterizati on without the parameter b3 and b6" 
EXPR e8; VALUE=!e(f3 = nt na*((at a2**b7)-(at al**b7))) 
MODE [OFFSET=lnbl) lnb2; res=residuals; fitted=f3 
RCYC b7 
FITN [CALC=eB; CONST=omit; SELIN=yes; PRIN=summ,esti, \ 

fittedvalues) lnbl, inva, lnn, lnn_a, lnh_a 

"Re-parameterization without the parameters b4 and b5" 
EXPR e9; VALUE=!e(z = nt na*((at a2**b7) - (at al**b7))) 
MODE [OFFSET=lnbl) lnb2;-RES=residuals; FITTED=fits 
RCYC b7 
FITN [CALC=e9; CONST=omit; SELIN=yes; PRIN=summ,esti, \ 

fittedvalues) lnbl, inva, lnn, lnh, z 

"Re-parameterization without the parameters b4 and b6" 
EXPR el0; VALUE=!e(f4 = (nt na*((at a2**b7) - \ 

(at al**b7)))) -
MODE [OFFSET=lnbl) lnb2; RES=residuals; FITTED=f2 
RCYC b7 
FI TN [CALC=el0; CONST=omi t; SELIN=yes; PRIN=summ,esti, \ 

fitted) lnbl, inva, lnn, lnh, lnh a 
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"Re-parameterization without the parameters bS and b6" 
EXPR ell; VALUE=!e ( fS = (nt_na*((at_a2**b7) - \ 

(at al**b7 ) ) )) 
MODE [OFFSET=lnbl] lnb2; RES=residuals; FITTED=f2 
RCYC b7 
FITN [CALC=ell; CONST=omit; SELIN=yes; PRIN=summ, esti, \ 

fitted] lnbl, i nva, lnn, lnh, lnn_a 

"Re-parameterization without the parameters b3, b4 and bS" 
EXPR el2; VALUE=!e(z = nt na*( (at a2**b7)-(at al**b7 ) ) ) 
MODE lnb2; RES=residuals;-FITTED=fits 
RCYC b7 
FITN [CALC=el2; CONST=omit; SELIN=yes; PRIN=summ,esti, \ 

fittedvalues] lnbl, inva, lnn, z 

"Re-parameterizatio without the parameters b3, b4 and b6" 
EXPR el3; VALUE=!e(f6 = nt na*((at a2**b7)-(at al**b7)) ) 
MODE lnb2; RES=residuals; FITTED=f6 
RCYC b7 
FITN [CALC=el3; CONST=omit; SELIN=yes; PRIN=summ,esti, \ 

fittedvalues] lnbl, inva, lnn, lnh_ a 

"Re-parmaeterization without the parameter b3, bS and b6" 
EXPR el4; VALUE=!e(f7 = nt_na*((at_a2**b7) - (at al**b7))) 
MODE lnb2; RES=residuals; FITTED=f7 
RCYC b7 
FITN [CALC=el4; CONST=omit; SELIN=yes; PRIN=summ,esti, \ 

fittedvalues] lnbl, inva, lnn, lnn_a 

"Re-parameterization without the parameters b3, b4, bS and b6" 
EXPR elS; VALUE=!e ( fB = nt na*((at a2**b7)-(at al**b7 ))) 
MODE lnb2; RES=residuals; FITTED=f8 
RCYC b7 
FITN [CALC=elS; CONST=omit; SELIN=yes; PRIN=summ,esti, \ 

fittedvalues] lnbl, inva, lnn 

STOP 
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Appendix 3.3: Programme written for estimation of the 
parameters of the total height prediction 
model developed by Soares et al.(1995) 

"Estimation of the parameters for the total height prediction 
model developed by Soares et al., 1995" 

"Written by S.M.C.U.P. Subasinghe" 

OPEN 'ht.dat'; CHA.NNEL=2 
READ [CHA.NNEL=2] ht,dbh,topht,age,tottree,totba 

CALCULATION invage,invdbh = 1/age,1/dbh 

"Estimation of all the parameters" 
EXPRESSION e l ; VALUE=!e(Zl = (topht**Tl*totba**T2*tottree**T3)* \ 

EXP((T4*invage)-(T5*invdbh))) 
MODEL ht; res=residuals; fitted=fits 
RCYCLE Tl,T2,T3,T4,T5 
FITNONLINEAR [CALCULATION=el; CONSTANT=omit; SELINEAR=yes; \ 

PRINT=fittedvalues] Zl 

"Re - parameterization without the parameter T2" 
EXPRESSION e2; VALUE=!e(Z2 = (topht**Tl*tottree**T3) \ 

*EXP((T4*invage) \-(TS*invdbh))) 
MODEL ht; res=residuals; fitted=fits 
RCYCLE Tl,T3,T4,T5 
FITNONLINEAR [CALCULATION=e2; CONSTANT=omit; SELINEAR=yes] Z2 

"Re -parameterization without the parameter T3" 
EXPRESSION e3; VALUE=!e(Z3 = (topht**Tl*totba**T2) \ 

*EXP((T4*invage)-(T5*invdbh))) 
MODEL ht; res=residuals; fitted=fits 
RCYCLE Tl,T2,T4,T5 
FITNONLINEAR [CALCULATION=e3; CONSTANT=omit; SELINEAR=yes] Z3 

"Re-parameterization without the parameter T4 " 
EXPRESSION e4; VALUE=!e(Z4 = (topht**Tl*totba**T2*tottree**T3) \ 

*EXP(TS*invdbh)) 
MODEL ht; res=residuals; fitted=fits 
RCYCLE Tl,T2,T3,T5 
FITNONLINEAR [CALCULATION=e4; CONSTANT=omit; SELINEAR=yes] 24 

"Re-parameterizat i on without the parameters T2,T3" 
EXPRESSION e5; VALUE=!e(ZS = topht**Tl*EXP((T4*invage)- \ 

(TS*invdbh))) 
MODEL ht; res=residuals; fitted=fits 
RCYCLE Tl,T4,T5 
FITNONLINEAR [CALCULATION=e5; CONSTANT=omit; SELINEAR=yes] ZS 

"Re-parameterization without the paramete rs T3,T4" 
EXPRESSION e6 ; VALUE=!e(Z6 = topht**Tl*totba**T2)*EXP(T5*invdbh)) 
MODEL ht; res=residuals; fitted=fits 
RCYCLE Tl,T2,T5 
FITNONLINEAR [CALCULATION=e6; CONSTANT=omit; SELINEAR=yes] Z6 

STOP 
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Appendix 3.4: Programme written for estimation of the 
parameters of total volume prediction 
model developed by Soares et al. (1995) 

"Estimation of the parameters of the volume prediction model 
of individual trees developed by Soares et al., 1995." 

"Written by S.M.C.U.P.Subasinghe" 

"Non significant parameters were ignored and re-parameterized 
at later stages" 

OPEN 'vol.dat'; CHANNEL=2 

READ [CHANNEL=2] vol,dbh,ht,pidh 

CALCULATE invdbh,invht = 1/dbh,l/ht 

EXPRESSION el; VALUE=!e(Fl = pidh*Tl*EXP((T2*invht)+(T3*invdbh))) 
MODEL vol; res=residuals; fitted=fits 

RCYCLE Tl, T2,T3 
FITNONLINEAR [CALCULATION=el; CONSTANT=omit] 

"Re-parameterization without the parameter T2" 
EXPRESSION e2; VALUE=!e(F2 = pidh*Tl*EXP(T3*invdbh)) 
MODEL vol; res=residuals; fitted=fits 
RCYCLE Tl,T3 
FITNONLINEAR [CALCULATION=e2; CONSTANT=omit] 

"Re - parameterization without the parameter T3" 
EXPRESSION e3; VALUE=!e(F3 = pidh*Tl*EXP(T2*invht)) 
MODEL vol; res=residuals; fitted=fits 
RCYCLE Tl,T2 
FITNONLINEAR [CALCULATION=e3; CONSTANT=omit] 

"Re - parameterization without the non linear parameters T2,T3" 
EXPRESSION eS; VALUE=!e(FS = pidh*Tl*EXP(invht+invdbh)) 
MODEL vol; res=residuals; fitted=fits 
RCYCLE Tl 
FITNONLINEAR [CALCULATION=e5; CONSTANT=omit] 

STOP 
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Appendix 3.5: Written programme for parameter 
estimation of total basal area prediction 
model developed by Soares et al. (1995) 

"Estimation of the parameters of the model developed for 
prediction of the total basal area after thinning by Soares et 
al., 1995" 

"Written by S.M.C.U.P. Subasinghe" 

OPEN 'ba.dat'; CHANNEL=2 

READ [CHANNEL=2] bal,agel,age2,topht,tottree,ba2 

EXPRESSION el; VALUE=!e(Fl = (bal**(agel/age2)) \ 
*EXP((l-(agel/age2))*(Tl+(T2*topht)))) 

MODEL ba2; res=residuals; fitted=fits 
RCYCLE Tl,T2 
FITNONLINEAR [CALCULATION=el; CONSTANT=omit) 

"Reparameterization without the parameter T2" 
EXPRESSION e2; VALUE=!e(F2 = (bal**(agel/age2)) \ 

*EXP((l-(agel/age2)) \*(Tl+topht))) 
MODEL ba2; res=residuals; fitted=fits 

RCYCLE Tl 
FITNONLINEAR [CALCULATION=e2; CONSTANT=omit] 

STOP 
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Appendix 3.6: Programme written for parameter 
estimation of the prediction model of total 
number of trees after thinning 

"Estimation of the parameters of the model developed 
by Soares et al. (1995) for prediction of 
number of remaining trees after thinning." 

"Written by S . M. C . U. P. Subasinghe" 

OPEN 'tree . dat'; CHANNEL=2 

READ [CHANNEL=2] tree_ at,ba_at,tree bt,ba_bt 
EXPRESSION el; VALUE=!e(Fl tree_bt*((l -((1-
(ba_at/ba_bt) )**Tl))**T2 ) ) 

MODEL tree_at; FITTED=Fl 
RCYCLE Tl,T2 
FITNONLINEAR [CALCULATION=el; CONSTANT=omit] 

STOP 
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Appendix 3.7: Programme written for estimation of 
parameters of total height prediction 

model built by West and Mattay (1993) 

"Estimating of the parameters of total height prediction model 
developed by West and Mattay, 1989" 

"Written by S.M.C.U.P. Subasinghe" 

OPEN 'ht.dat'; CHANNEL=2 

READ [CHANNEL=2] dbh,ht 

EXPRESSION el; VALUE=!e(Fl = l.3+(dbh/(P+(Q*dbh)))) 
MODEL ht; FITTED=Fl 
RCYCLE P,Q 
FITNONLINEAR [CALCULATION=el; CONSTANT=omit] 

"Re-parameterization without the parameter Q" 
EXPRESSION e2; VALUE=!e(F2 = l.3+(dbh/(P+dbh))) 
MODEL ht; FITTED=F2 
RCYCLE P 
FITNONLINEAR [CALCULATION=e2; CONSTANT=omit] 

STOP 
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Appendix 3.8: Estimated parameters for total volume 
prediction model developed by Soares 
et al. (1995) 

Age Intermediate thinning Neutral thinnin ~ , 
R- paramet (lf) std. error 

, 
R- paramet (lf) std. error 

13 0.984 0.4889 0.0046 - - -
14 0.966 0.4974 0.0065 - - -
16 0.977 0.5150 0.0058 - - -
18 0.991 0.4869 0.0031 - - -
19 0.992 0.5085 0.0026 0.984 0.5063 0.0013 
20 0.978 0.4810 0.0029 - - -
21 0.989 0.4854 0.0026 - - -
22 0.989 0.4706 0.0027 - - -
23 0.991 0.4968 0.0044 - - -
24 0.990 0.49 17 0.0022 0.989 0.5169 0.0020 
25 0.987 0.4919 0.0019 0.986 0.5193 0.0029 
26 0.993 0.5003 0.0020 0.997 0.5256 0.0036 
27 - - - 0.992 0.5218 0.0050 
28 0.981 0.4780 0.0035 0.999 0.5355 0.0033 
29 0.989 0.5049 0.0025 - - -
30 0.998 0.5065 0.0021 - - -
31 0.979 0.4907 0.0046 0.985 0.5057 0.0016 
32 0.989 0.5111 0.0025 - - -
33 0.991 0.4973 0.0032 - - -
34 0.981 0.4581 0.0050 - - -
36 0.975 0.5162 0.0069 0.984 0.4935 0.0015 
37 0.994 0.5294 0.0030 0.986 0.5073 0.0015 
38 0.998 0.4983 00025 - - -
39 0.976 0.5265 0.0073 - - -
40 0.985 0.5061 0.0028 - - -
41 0.970 0.5144 0.0068 0.990 0.4896 0.0023 
42 0.976 0.5152 0.0033 - - -
43 0.962 0.5150 0.0051 - - -
44 0.994 0.52 11 0.0040 - - -
45 0.979 0.4903 0.0027 - - -
46 0.991 0.5273 0.0035 - - -
47 0.991 0.5095 0.0056 - - -
48 0.971 0.5064 0.0045 - - -
49 0.989 0.5145 0.0053 - - -
50 0.981 0.5016 0.0061 - - -
51 0.979 0.5298 0.0042 - - -
52 0.952 0.5011 0.0046 - - -
53 0.984 0.5093 0.0036 - - -
54 0.964 0.5079 0.0063 - - -
55 0.988 0.4696 0.0045 - - -
56 0.973 0.5167 0.0039 - - -
58 0.955 0.5105 0.0095 - - -
60 0.908 0.4914 0.0068 - - -
62 0.984 0.5053 0.0037 - - -
65 0.964 0.4986 0.0055 - - -
67 0.935 0.4894 0.0062 - - -
68 0.950 0.4742 0.0083 - - -
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Appendix 3.9: Standardised residuals of the selected models 
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(iii) Residual distributions of the total volume projection 
model b after re-calibrating the model constructed 

by Pienaar and Harrison (1989) 
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(iv) Standard residual distributions of the total height 
prediction model b after re-calibrating the initial 
model developed by Soares et al . (1995) 
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Appendix 4.1: Comparison of the model predictions 
with the observed values for the 
neutral thinningtype 

(i) Diameter at breast height 
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(iii) Timber height 
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N 
00 
\0 

Species: Corsican pine 

Initial spacing: 1.4m 

Yield Class: 12 

MAINCROP after Thinning 

Age Top Trees Mean Mean BA Mean 

yrs ht /ha dbh ht /ha vol 

18 7.8 3878 10 7 33 0.02 

23 10.3 2126 13 9 29 0.06 

38 12.5 1421 16 11 29 0.12 

33 14.6 1053 18 13 28 0.18 

38 16.5 820 20 15 27 0.26 

43 18.2 670 23 18 29 0.29 

48 19.7 560 25 19 29 0.50 

53 21.1 486 27 20 29 0.62 

58 22.3 433 29 22 30 0.77 

63 23.4 394 31 23 31 0.9 1 

68 24.3 365 33 24 32 1.06 

73 25.1 342 35 25 34 0.23 

78 25.8 322 37 26 35 1.37 

Vol Trees 

/ha /ha 

94 0 

125 1453 

164 705 

193 368 

213 233 

265 150 

280 110 

302 74 

333 53 

360 39 

387 29 

420 23 

443 20 

Yield from THINNINGS 

Mean Mean BA Mean 

dbh ht /ha vol 

0 0 0 0 

11 9 14 0.03 

13 10 9 0.06 

15 12 7 0.11 

17 14 5 0.18 

20 17 5 0.28 

22 18 4 0.38 

25 19 4 0.50 

26 21 3 0.59 

28 22 2 0.71 

30 23 2 0.85 

32 25 2 1.00 

33 26 2 1.10 

CUMULATIVE 

PRODUCTION MAI 

Vol BA Vol Vol 

/ha /ha /ha /ha 

0 33 94 5.2 

42 43 167 7.3 

42 52 248 8.6 

42 58 319 9.7 

42 62 381 10.1 

42 69 475 11.0 

42 73 542 11.3 

37 77 601 11.4 

31 81 663 11.5 

27 84 723 11.5 

25 87 775 11.4 

23 91 831 I 1.4 

22 94 876 11.2 
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