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ABSTRACT
In common interest games in which players are motivated to coordinate their strate-
gies to achieve a jointly optimal outcome, orthodox game theory provides no general
reason or justification for choosing the required strategies. In the simplest cases,
where the optimal strategies are intuitively obvious, human decision makers gener-
ally coordinate without difficulty, but how they achieve this is poorly understood.
Most theories seeking to explain strategic coordination have limited applicability,
or require changes to the game specification, or introduce implausible assumptions
or radical departures from fundamental game-theoretic assumptions. The theory
of strong Stackelberg reasoning, according to which players choose strategies that
would maximize their own payoffs if their co-players could invariably anticipate
any strategy and respond with a best reply to it, avoids these problems and explains
strategic coordination in all dyadic common interest games. Previous experimen-
tal evidence has provided evidence for strong Stackelberg reasoning in asymmetric
games. Here we report evidence from two experiments consistent with players be-
ing influenced by strong Stackelberg reasoning in a wide variety of symmetric 3 × 3
games but tending to revert to other choice criteria when strong Stackelberg reason-
ing generates small payoffs.

Subjects Psychiatry and Psychology
Keywords Experimental games, Decision making, Coordination, Heuristics, Cooperation, Stackelberg
reasoning

INTRODUCTION
A well-known shortcoming of orthodox game theory is its inability to explain or justify
strategic coordination between individuals in situations in which their interests coincide,
so that they are motivated solely to coordinate their actions. Strategic coordination is a
familiar phenomenon in a wide range of social activities, from teeter-tottering
(see-sawing) and ballroom dancing to firefighting and launching nuclear missiles under
the security requirements of the ‘‘two-man rule,’’ but game theory, in its standard form,
provides no reason or justification for choosing the strategies that appear intuitively
obvious to achieve successful coordination in many coordination games (Anderlini, 1999;
Aumann & Sorin, 1989; Bacharach, 2006 ; Bardsley et al., 2010; Colman, Pulford &
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Figure 1 The Hi-Lo game. This game has a payoff-dominant Nash equilibrium at (H, H ) and a payoff-
dominated equilibrium at (L, L).

Lawrence, in press; Cooper et al., 1990; Crawford & Haller, 1990; Harsanyi & Selten, 1988;
Janssen, 2001).

Consider a typical example of coordination between two software companies
developing applications likely to be used in conjunction with each other. Each company
has to decide independently of the other which of two standards to use for its application:
HTML (H ) or Linux Standard Base (L). It is in each company’s interest to use the same
standard as the other so that the applications are compatible. Suppose that, on some
measure of functionality or cost, H is twice as good as L for both applications. This
scenario can be represented by the Hi-Lo payoff matrix depicted in Fig. 1. According to
standard notation, Player I chooses a strategy represented by a row, either H or L, Player
II independently chooses a strategy represented by a column, either H or L, and the
outcome of the game is one of the four cells where the chosen strategies intersect, the first
number in each cell representing the payoff to Player I and the second the payoff to Player
II. Both players are motivated to coordinate their strategy choices, and the outcome (H,
H ), with payoffs of 2 to each player, is better for both than (L, L), with payoffs of 1 each.
There is no element of conflict in this pure coordination game, because the players have
identical preferences in every outcome.

The Hi-Lo game is the simplest example of a common interest game, in which one
strategy profile or outcome strongly payoff -dominates all other possible outcomes,
yielding better payoffs to each player than any other (Anderlini, 1999; Aumann & Sorin,
1989). This particular common interest game is a pure coordination game because the
players’ preferences coincide exactly in every possible outcome. In pure coordination
games such as this, optimal choices seem obvious, but they are not explained or justified
by orthodox game theory. It seems intuitively rational for both players to choose H in the
Hi-Lo game, resulting in the payoff-dominant outcome (H, H ), but (remarkably) this
conclusion cannot be derived from the standard common knowledge and rationality
assumptions of game theory. These assumptions are (a) that the players know the
specification of the game—in this case, the payoff matrix shown in Fig. 1—and
everything that can be logically deduced from it; (b) that the players are instrumentally
rational in the sense of always seeking to maximize their own payoffs; and (c) that this is
all common knowledge, in the sense that both players know it, know that both know it,
know that both know that both know it, and so on. From these assumptions we can infer
that Player I has a reason to choose H if and only if there is a reason to expect Player II to
choose H ; but Player I has no reason to expect Player II to choose H, because the game is
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Figure 2 TheStagHunt game.This gamehas a payoff-dominantNash equilibriumat (C,C) and a payoff-
dominated Nash equilibrium at (D, D).

symmetric and Player II has a reason to choose H if and only if there is a reason to expect
Player I to choose it. Any attempt to derive a reason for choosing H from the standard
assumptions of game theory leads to an infinite regress. Nevertheless, experimental
evidence has corroborated common sense by showing that, in practice, more than 96% of
players successfully coordinate on the obvious payoff-dominant (H, H ) outcome in the
Hi-Lo game (Bardsley et al., 2010). Research stretches back to 1960, when Schelling (1960)
showed that human decision makers have a remarkable facility for coordinating their
strategies in pure coordination and other common interest games, although coordination
failures sometimes occur, especially in more complicated cases (Cooper et al., 1990; Van
Huyck, Battalio & Beil, 1990).

How can coordination be explained? In a two-player game, a Nash equilibrium is an
outcome in which the strategy chosen by each player is a best reply to the strategy chosen
by the other, a best reply being a strategy yielding the highest payoff to the player
choosing it, given the strategy chosen by the co-player (Nash, 1950, 1951). Both (H, H )
and (L, L) are Nash equilibria in the Hi-Lo game shown in Fig. 1, because H is obviously
the best reply to H, and L is the best reply to L. To explain the intuitive appeal of (H, H ),
Harsanyi & Selten (1988) introduced a payoff-dominance principle as an axiom of
rationality into their theory of equilibrium selection in games. According to this
principle, it is simply an axiomatic feature of human rationality that players will choose a
payoff-dominant equilibrium if it exists.

Several years later, after a further consideration of the Stag Hunt game shown in Fig. 2,
Harsanyi (1995) abandoned the payoff-dominance principle altogether, acknowledging
that it does not provide a reason for choice and is therefore not a useful element of the
theory of equilibrium selection. Some common interest games have only one Nash
equilibrium payoff-dominating all other (non-equilibrium) outcomes of the game, and
the Harsanyi–Selten payoff-dominance principle is, in any case, powerless to explain the
coordination and payoff dominance phenomena in these cases, because it applies only
when one equilibrium dominates another equilibrium or other equilibria. All theories of
coordination predict that players will select a payoff-dominant Nash equilibrium
whenever one exists in a game, and the payoff-dominance principle was therefore only a
description, and not an explanation, of the phenomenon. What needs to be explained is
why and how players choose payoff-dominant Nash equilibria.

It has sometimes been argued that salience alone is enough to enable players to
coordinate. In a common interest game, by definition, one outcome is better for both
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players than every other, and that outcome is therefore salient in the sense that sticks out
from the others in a way that each player notices and expects the other player to notice. It
may seem that its salience provides a sufficient clue to enable the players to coordinate
their choices. For example, in the Hi-Lo game (Fig. 1), each player is likely to notice that
the (H, H ) outcome is salient by virtue of yielding both players their highest payoffs, and
this may seem to be all that is required to lead each player to choose the H strategy. But
Player I’s choice of H does not, in itself, bring about the outcome that pays both players
their highest payoffs, because that requires Player II to choose H also, and if Player II
were to choose L, then L would have be a better choice for Player I. To work out what it is
rational to do, Player I must form a belief about what Player II is likely to do. Player I
cannot be confident that choosing H will bring about the outcome in which both players
chooseH unless there is a reason to expect Player II to chooseH. But the proposition that
salience alone provides such a reason is precisely what the argument from salience seeks
to prove. In a frequently cited article, Gilbert (1989) analyzed the logic of the salience
argument in detail and concluded that ‘‘mere salience is not enough to provide rational
agents with a reason for action’’ (p. 69), and Sugden (1993) has provided a further detailed
refutation of the notion that salience alone suffices to enable coordination in common
interest games.

A number of explanations have been suggested. Some of these rely on altering the rules
of the game that specify single, independent strategy choices by allowing repetitions
(Aumann & Sorin, 1989; Anderlini & Sabourian, 1995) or costless pre-play ‘‘cheap talk’’
between players (Anderlini, 1999; Ellingsen & Östling, 2010; Farrell, 1988; Rabin, 1994).
Social projection theory (Acevedo & Krueger, 2005; Krueger, 2007 ; Krueger & Acevedo,
2005; Krueger, DiDonato & Freestone, 2012) assumes that players use a form of evidential
decision theory according to which people expect their co-players to choose whatever
they themselves choose, but evidential decision theory was excoriated by Lewis (1981)
and is still generally viewed with skepticism (Chater & Vlaev, 2012; Yamagishi, 2012).

The most influential theories require assumptions that are only slightly less radical.
According to cognitive hierarchy theory (Camerer, Ho & Chong, 2004), players reason
with varying levels of strategic depth, Level-0 players choosing strategies randomly,
Level-1 players maximizing their own payoffs given their belief that their co-players are
Level-0 players, Level-2 players maximizing their own payoffs given their belief that their
co-players are Level-1 or Level-0 players, and so on. This theory explains coordination in
the Hi-Lo game by Level-1 players who expect their co-players to choose randomly and
who therefore do better for themselves, on average, by playing H than L, and Level-2
players who expect their Level-1 co-players to choose H, for the reason just explained,
and who therefore do better for themselves by also choosing H, and so on, but it requires
the implausible assumption that all apart from Level-0 players invariably assume that
their co-players reason with less strategic depth than themselves. A more serious problem
with this theory is that it fails to explain coordination in some important common
interest games. A famous example, discussed at length by Harsanyi & Selten (1988) is the
version of the Stag Hunt game shown in Fig. 2, in which a Nash equilibrium at (C, C)
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payoff-dominates a second equilibrium at (D, D). A Level-1 player acts as though
believing that the Level-0 co-player will choose randomly and therefore chooses D,
because (1/2 × 8) + (1/2 × 7) > (1/2 × 9) + (1/2 × 0); a Level-2 player, acting as though
believing that the Level-1 co-player will choose D (for the reason just given) also chooses
D, because 7 > 0; and the same applies to higher levels: players fail to coordinate on the
payoff-dominant outcome at any level of strategic reasoning.

According to theories of team reasoning (Bacharach, 1999; Bacharach, 2006 ; Sugden,
1993; Sugden, 2005) there are circumstances in which players are motivated to maximize
the collective payoff of the players involved in the game, rather than their individual
payoffs. In the Hi-Lo game shown in Fig. 1, assuming naturally that the collective payoff
is simply the sum of the individual payoffs, the team-reasoning solution is (H,H ) because
the collective payoff of 4 is greater there than in any other outcome, and in the Stag Hunt
game shown in Fig. 2, it is (C, C) for the same reason. There is experimental evidence for
team reasoning (Bardsley et al., 2010; Colman, Pulford & Rose, 2008), and more general
evidence for cognitive gains from collective rationality in decision making (Curşeu,
Jansen & Chappin, 2013). The main problem with theories of team reasoning is that
players are assumed to replace the (individual) payoffs in the game, shown in the payoff
matrix, with collective payoffs. This requires the abandonment of methodological
individualism, a cornerstone of decision theory and game theory, according to which
decision makers and players choose the options that are best for themselves, given their
individual preferences (Elster, 1982).

Strong Stackelberg reasoning
The theory of strong Stackelberg reasoning (Colman, Pulford & Lawrence, in press), an
improved version of an earlier theory (Colman & Bacharach, 1997 ), provides an
explanation of coordination in all dyadic (two-player) common interest games, and in
particular, it provides an explanation of why players tend to choose strategies associated
with a payoff-dominant Nash equilibrium. It requires no modification of the rules of the
game (no repetitions or cheap talk), it adheres to the standard knowledge and rationality
assumptions of game theory, and it incorporates the assumption of methodological
individualism; thus it avoids the problems associated with competing theories. Its
distinctive assumption is that players behave as though their co-players will anticipate
any strategy choice and invariably choose a best reply to it. In other words, players behave
as though they were choosing first in a sequential-choice game with perfect
information—a game in which the co-player, moving second, knows their previous move.
Players choose strategies that maximize their own payoffs, given that assumption,
whenever their own and their co-players’ strategies form Nash equilibria. When the
Stackelberg strategies resulting from this form of reasoning do not form Nash equilibria,
the theory makes no predictions, because a non-equilibrium outcome is inherently
unstable, leaving at least one player with a reason to choose differently and thereby
achieve a better payoff. Strong Stackelberg reasoning is a simple theory, according to
which players in dyadic games choose strategies that would maximize their own payoffs if
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their co-players could invariably anticipate their strategy choices and play
counter-strategies that yield the maximum payoffs for themselves. The key assumption is
relatively innocuous, first because game theory imposes no constraints on players’ beliefs,
apart from consistency requirements, and second because the theory does not assume
that players necessarily believe that their strategies will be anticipated, merely that they
behave as though that were the case, as a heuristic aid to choosing the best strategy.
Strong Stackelberg reasoning is, in fact, merely a generalization of theminorant and
majorant models introduced by Von Neumann &Morgenstern (1944; section 14.4.1, pp.
100–104) and used to rationalize their solution of strictly competitive games.

The improved version of the theory assumes that best replies involved in Stackelberg
reasoning are strong in the sense of Harsanyi & Selten (1988), so that there are never two
or more equally good best replies, a condition that is necessarily satisfied provided that
players are not totally indifferent to the payoffs of their co-players (Colman, Pulford &
Lawrence, in press). The earlier version of the theory (Colman & Bacharach, 1997 ),
lacking this assumption, breaks down and fails to generate unique Stackelberg strategies
when two or more best replies yield the same payoff to one player but different payoffs to
the other. If best replies are strong, then unique Stackelberg strategies are generated, and
if they are in Nash equilibrium, then the game is S-soluble. If best replies are not strong, or
if Stackelberg strategies are generated but are not in Nash equilibrium, then the game is
non-S-soluble. Strong Stackelberg reasoning thus involves a Stackelberg strategy generator
(choosing the best strategy given an assumption that the co-player will anticipate any
choice and play a best reply to it) followed by a Nash filter (checking that the resulting
Stackelberg strategies generated for the players are in equilibrium). If the game is
S-soluble, then Stackelberg-reasoning players choose and play their Stackelberg strategies,
and the resulting outcome is the Stackelberg solution. If the game is non-S-soluble, then
the theory makes no specific predictions. A formalization and mathematical development
of the theory have been provided elsewhere (Colman, Pulford & Lawrence, in press;
Colman & Bacharach, 1997 ).

Applying strong Stackelberg reasoning to the Hi-Lo game shown in Fig. 1, Player I
behaves as though any strategy choice will be anticipated by Player II, so that Player I’s H
would be met by the unique best reply H, and L would be met by the unique best reply L.
Player I receives a payoff of 2 in the first case and 1 in the second, therefore Player I’s
payoff-maximizing Stackelberg strategy is H. Because the game is symmetric, the same
applies to Player II. The strategy pair (H,H ) generated by this reasoning process is a Nash
equilibrium, therefore both players choose H. In the Stag Hunt game shown in Fig. 2,
both players choose C following a similar process of strong Stackelberg reasoning. It has
been proved (Colman & Bacharach, 1997 ) that every common interest game is S-soluble,
and that if a game with multiple Nash equilibria has one equilibrium that
payoff-dominates the others, then its Stackelberg solution is the payoff-dominant
equilibrium. Strong Stackelberg reasoning therefore provides an explanation for
coordination in all dyadic common interest games.
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The theory of virtual observability (Weber, Camerer & Knez, 2004) incorporates some
ideas reminiscent of strong Stackelberg reasoning. Virtual observability occurs in games
in which Player I chooses a strategy before Player II, but Player II chooses in ignorance of
Player I’s earlier choice. The theory was designed to explain timing effects in games with
asymmetric equilibria, Player I preferring one equilibrium and Player II another, and
experimental evidence confirmed a small first-mover advantage. The theory of strong
Stackelberg reasoning applies to simultaneous-choice games without timing
manipulation, and it is relevant to games with symmetric equilibria as well as those with
asymmetric equilibria. However, the two theories are related, because strong Stackelberg
reasoning involves acting as though strategy choices were sequential.

Strong Stackelberg reasoning seems a natural and intuitive form of reasoning in
common interest games. It is an example of a simulation heuristic, a class of heuristics first
identified by Kahneman & Tversky (1982), whereby people solve problems by running
mental simulations. How easily a mental model reaches a particular outcome helps a
decision maker to judge how likely it is for that outcome to occur in the actual situation.
Kahneman and Tversky provided experimental evidence that human decision makers use
simulation heuristics to predict the behavior of others in certain circumstances, and to
answer questions about what might have happened in different circumstances, by
mentally ‘‘undoing’’ events that occurred and then running mental simulations with the
relevant input parameters of the simulation model altered. According to the theory of
strong Stackelberg reasoning, players solve coordination problems in common interest
games by performing mental simulations of what would occur if (counterfactually) they
had the first move and their co-players could move second, with knowledge of their
preceding move. This approach seems natural when standard reasoning fails to provide
an answer and salience, on its own, provides no reason for choice.

Previous experimental evidence
An experimental investigation of strategy choices in simple common interest games such
as the Hi-Lo game shown in Fig. 1 cannot provide a stringent test of the theory of strong
Stackelberg reasoning, because in such games Stackelberg solutions tend to be intuitively
obvious. More interesting and diagnostic are games in which strong Stackelberg
reasoning makes clear predictions that are not obvious without help from the theory.
Colman & Stirk (1998) tested the theory experimentally in all 12 ordinally non-equivalent
symmetric 2 × 2 games, nine of which happen to be S-soluble and the other three
non-S-soluble. Players tended to choose Stackelberg strategies in S-soluble games, with
large effect sizes in every case, whereas choices in the non-S-soluble games were variable,
some biased toward and others away from the Stackelberg strategies, with much smaller
effect sizes. Colman, Pulford & Lawrence (in press) reported the results of two experiments
using asymmetric 3 × 3 and 4 × 4 games, designed to test cognitive hierarchy, team
reasoning, and strong Stackelberg reasoning theories against one another in games
without obvious, payoff-dominant solutions. These experiments provided further
evidence for Stackelberg reasoning, although both experiments suggested that cognitive
hierarchy Level-1 reasoning and team reasoning were also frequently used by players.
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In the experiment reported by Colman & Stirk (1998), six of the nine symmetric
S-soluble games had Stackelberg strategies that were also strongly dominant. Strong
strategic dominance, not to be confused with payoff dominance, exists when a strategy is
an unconditionally best, sure-thing strategy that yields a higher payoff to the player
choosing it than another strategy, irrespective of the co-player’s choice. Rational players
never choose strongly dominated strategies, therefore players may have chosen
Stackelberg strategies in these nine S-soluble games because they were strongly dominant
and not necessarily because they were Stackelberg strategies. This confounding problem
cannot be avoided in symmetric 2 × 2 games. Although the problem was eliminated by
Colman, Pulford & Lawrence (in press), using asymmetric 3 × 3 and 4 × 4 games without
dominant strategies, and evidence for strong Stackelberg reasoning was once again found,
it is clear that the theory is supported by very shallow experimental foundations, and
further evidence is required to secure its evidential base and establish its validity with
confidence. In particular, bearing in mind the technical limitations of the symmetric
2 × 2 games that Colman and Stirk used, especially the fact that confounding with strong
strategic dominance cannot be avoided, and the fact that Colman, Pulford, and Lawrence
had to use asymmetric games because of the nature of their investigation (comparing
different theories), it would be useful to establish whether strong Stackelberg reasoning
occurs in other symmetric games. In addition, and in light of growing concerns about the
risks of Type 1 errors and discussions of the need for replication studies (Francis, 2012;
Koole & Lakens, 2012; Pashler, Coburn & Harris, 2012; Ritchie, Wiseman & French, 2012),
it seems important to determine whether these findings can be replicated with completely
different games.

Rationale for further experiments
The explanation of coordination in common interest games is an important unanswered
scientific problem because it exposes one of the most obvious shortcomings of orthodox
game theory. Several competing theories, reviewed in the paragraphs above, have
attempted to explain coordination and payoff dominance, and the theory of strong
Stackelberg reasoning provides an explanation that avoids serious problems associated
with the competing theories. It is impossible to test the theories against one another in
common interest games, because all theories would obviously make the same prediction
in every such game, namely that players will select strategies associated with the
payoff-dominant Nash equilibrium. Furthermore, it is impossible to test the theories
against one another in symmetric games, because it turns out to be impossible to
construct symmetric games in which different theories predict distinct choices. In order
to derive diverging predictions from competing theories, it turns out to be necessary to
use asymmetric experimental games, and the results of research using asymmetric games
in which the leading theories all predict different choices has suggested that strong
Stackelberg reasoning may influence some players (Colman, Pulford & Lawrence,
in press). It is nevertheless important to test the theory in symmetric games also, because
the earlier research leaves open the question of whether this form of strategic reasoning
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occurs in symmetric games, especially bearing in mind that it is the phenomenon of
coordination in symmetric games such as the Hi-Lo game (Fig. 1) that first generated
interest and stimulated the development of theories of coordination in the first place.

A small first-mover advantage effect has been shown to occur in virtually observable
sequential games with asymmetric equilibria (Weber, Camerer & Knez, 2004), but it is less
obvious why any such effect should occur in non-sequential (simultaneous-move) games
with only symmetric equilibria. The theory of strong Stackelberg reasoning is specifically
intended to provide an explanation for selection of payoff-dominant equilibria in
common interest games such as the Hi-Lo game (Fig. 1), and this game, like many other
interesting and important common interest games, is a symmetric game with symmetric
Nash equilibria. According to the theory of strong Stackelberg reasoning, players derive a
reason for selecting payoff-dominant equilibria in all common interest games, even in
games in which such equilibria are symmetric, by using a form of sequential reasoning. If
the theory of strong Stackelberg reasoning is to provide a convincing explanation of
coordination in common interest games, then it is necessary to show that players use this
form of strategic reasoning in games with symmetric equilibria, as well as games with
asymmetric equilibria, such as those investigated by Colman, Pulford & Lawrence
(in press).

The experiments reported in this article are required because the only published
experiment designed to determine whether decision makers use Stackelberg reasoning in
symmetric games (Colman & Stirk, 1998) was restricted to symmetric 2 × 2 games, and
in S-soluble 2 × 2 games Stackelberg strategies are almost invariably also strongly
dominant strategies, so that the experiment provided virtually no independent evidence
of strong Stackelberg reasoning that cannot be explained by dominant strategy selection.
In order to check whether strong Stackelberg reasoning occurs in symmetric games, we
have therefore constructed sets of symmetric 3 × 3 experimental games in which strong
Stackelberg strategies are never dominant strategies, thus eliminating the confound in the
earlier research.

EXPERIMENT 1
The aim of this experiment was to test the theory of strong Stackelberg reasoning in a new
set of symmetric 3 × 3 games, some S-soluble and some non-S-soluble, avoiding games
with strongly dominant Stackelberg strategies. The principal hypothesis was that players
would tend to choose Stackelberg strategies in the S-soluble games. A secondary
hypothesis was that players would be less attracted to Stackelberg strategies in
non-S-soluble games.

Materials and Methods
The participants were 72 students and employees at the University of Leicester (50 female,
22 male), aged 18–47 years (M = 22.03, SD = 6.73), recruited from the School of
Psychology’s participant panel. They were remunerated with the average of the payoffs in
the 12 games that they played during the testing session. The payoffs in each of the 12
games ranged from zero to £5.00 ($8.00).
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Figure 3 Game-generating template.This template was used for generating S-soluble and non-S-soluble
symmetric 3 × 3 games for Experiment 1.

We generated symmetric 3 × 3 games according to the following algorithm, designed
to generate suitable games automatically, without the unintentional biases that might be
introduced if games were constructed arbitrarily. Beginning with the template shown in
Fig. 3, we inserted an arbitrary payoff to Player I of either 4 or 5 in one of the empty cells,
then we inserted the same payoff to Player II in the symmetrically corresponding cell to
maintain the symmetry of the game, followed by a payoff to Player II of 5 or 4 (different
from the payoff to Player I) in a different empty cell, and a symmetrically corresponding
payoff to Player I, and finally we filled the remaining spaces with zero payoffs. There are
initially four empty cells in the template in Fig. 3, and therefore four spaces available for
the payoff of 4 or 5 to Player I, and for each of these there remain three unfilled spaces for
the payoff of 5 or 4 to Player II. Therefore, there are 12 permutations, the remaining
payoffs being fully determined by the symmetry of the game after these two insertions. Of
the 12 games generated by this algorithm, eight are S-soluble and four non-S-soluble. In
two of the S-soluble games, the Stackelberg strategies weakly dominate both other
strategies, and we therefore eliminated these two games. Weak dominance occurs when a
strategy yields payoffs that are at least as high (including equality) against each of the
co-player’s strategies, and strictly higher against at least one. Participants were presented
with all 12 games, but we eliminated these two games from our data analysis. The
remaining 10 games, displayed in Fig. 4, are the experimental games used in
Experiment 1.

We conducted experimental sessions in even-numbered groups of up to 12, each player
being paired with the same co-player throughout the testing session (fixed-matching
protocol). Games were presented to players in printed booklets, with the labels and
payoffs for Players I and II in different colors as an aid to understanding. In this
experiment, strategy labels were not counterbalanced; the games were always presented as
in Fig. 4. Each pair played the 12 experimental games (including the two excluded from
data analysis) in a different random order. Written instructions are given in Appendix A.
After all 12 games had been completed, participants recorded their demographic details.
They were paid what they had earned at a prearranged meeting after the payoffs had been
calculated.
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Figure 4 Games used in Experiment 1. Nash equilibria are shaded, S-soluble games indicated by aster-
isks, and Stackelberg strategies indicated by daggers. Player labels have been removed to save space.

Results11Raw data for Experiment 1 are available
in the Supplementary Materials. We performed a binary logistic regression analysis to predict choices of Stackelberg

strategies (1 = Stackelberg strategy choice, 0 = non-Stackelberg strategy choice), using
participant identity, participant age, participant sex, game number, value of the payoff if
both players choose Stackelberg strategies, and number of equilibria in the game as
predictor variables. After fitting a model we tested it against a constant model, and the
difference was statistically significant: χ2(12) = 155.92, p < .001. The value of the
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Nagelkerke R2 = .27 indicates a medium-sized strength of relationship between model
predictions and Stackelberg strategy choices.The coefficient of determination R2

summarizes the proportion of variance in the dependent variable associated with the
predictor variables. In regression models with categorical dependent variables, it is not
possible to compute a single statistic with all the characteristics of R2 in the linear
regression model, but the Nagelkerke R2 provides a suitable approximation (Nagelkerke,
1991). Prediction success was 73% overall (57% for choice of non-Stackelberg strategies
and 83% for choices of Stackelberg strategies). According to the Wald chi-square statistic,
the only predictor variable that contributed significantly to the prediction was game
number, χ2(9) = 120.23, p < .001, with some games eliciting more frequent Stackelberg
strategy choices than others. Participant variables (identity, age, and sex), and other game
variables (the value of the payoff if both players choose Stackelberg strategies and the
number of equilibria in the game) did not have significant additional effects in the model
independent of differences between the games.

The symmetric games used in this experiment, and Experiment 2 described below,
preclude the possibility of comparing strong Stackelberg reasoning with other theories of
coordination and payoff dominance, such as cognitive hierarchy (Level-k) theory and
team reasoning, because different theories make different predictions in only a few
asymmetric games. However, previous research (Colman, Pulford & Lawrence, in press),
in which such model comparisons were made in asymmetric games, has already
suggested that strong Stackelberg reasoning may be used, independently of other
reasoning processes, by a substantial proportion of players.

The percentages of Stackelberg strategies chosen in S-soluble and non-S-soluble games
are shown in Table 1, together with chi-square goodness-of-fit tests against a null
hypothesis of random choice (one-third Stackelberg strategy choices and two-thirds other
strategies), and effect sizes estimated using Cohen’s index w (Cohen, 1992), and choice
percentages across all three strategies are shown in Table 2. The results are clearly
consistent with our principal hypothesis: in five of the six S-soluble games, strategy
choices were biased toward the options associated with Stackelberg strategies. This bias
was large and significant in four of the five games (Games 1, 3, 5, 6) and small and
non-significant in Game 4. Only in Game 2 was there a significant bias away from the
Stackelberg strategy, and the effect size was small. The mean effect size in S-soluble games,
excluding the anomalous Game 2 (because it would be misleading to count an effect in
the wrong direction), was w = 0.86 (large). It is not difficult to explain why Games 2 and
4 produced results that differed from the others. They are the only two S-soluble games in
which the Stackelberg solution yields very small payoffs of (1, 1) to the players, compared
to (3, 3) in all other S-soluble games. Furthermore, in all other S-soluble games, the sum
of payoffs to both players was greatest in the outcome corresponding to the Stackelberg
solution. This suggests that collective rationality or team reasoning (Bacharach, 1999;
Bacharach, 2006 ; Bardsley et al., 2010; Sugden, 1993; Sugden, 2005) may have played a
part in influencing the players’ choices. Symmetric games are not suitable for
distinguishing between team reasoning and strong Stackelberg reasoning; however,
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Table 1 Choice of strategies in S-soluble and non-S-soluble games: Experiment 1. Choice of Stackelberg
(S) and non-Stackelberg (N) strategies in S-soluble and non-S-soluble games: Experiment 1 (N = 72).

Game % S χ2(1) p< w Bias toward
S-soluble
1 88.89 99.18 .005 1.17 S
2 20.83 5.27 .025 0.27 N
3 86.11 89.47 .005 1.11 S
4 39.89 0.93 ns 0.11 S
5 77.78 63.35 .005 0.94 S
6 79.17 67.39 .005 0.97 S
Non-S-soluble
7 47.22 6.06 .025 0.29 S
8 76.39 59.43 .005 0.91 S
9 51.39 10.31 .005 0.38 S
10 62.50 27.14 .005 0.61 S

Notes.
% S = percentage of players choosing Stackelberg strategies. Cohen’s (1992) effect size index w ≥ 0.10 is
small, w ≥ 0.30 is medium, w ≥ 0.50 is large.

Table 2 Choice percentages across all three strategies in S-soluble and non-S-soluble games: Experi-
ment 1.

Strategy choice 1* 2* 3* 4* 5* 6* 7 8 9 10
A 88.89a 37.50 86.11a 29.17 77.78a 79.17a 4.17 76.39a 47.22 15.28
B 11.11 41.67 11.11 31.94 20.83 2.78 48.61 23.61 51.39a 62.50a
C 0.00 20.83a 2.78 38.89a 1.39 18.06 47.22a 0.00 1.39 22.22
∗ S-soluble games
a Stackelberg strategies

previous research with asymmetric games (Colman, Pulford & Lawrence, in press) has
suggested that players use both methods of reasoning, strong Stackelberg reasoning more
frequently in simple games and team reasoning more frequently in complicated games.

The results are also broadly consistent with our secondary hypothesis, that players
would be less attracted to Stackelberg strategies in non-S-soluble games, because in these
games strong Stackelberg strategies intersect in outcomes that are not Nash equilibria and,
according to the definition of a Nash equilibrium, such outcomes are inherently unstable,
providing at least one player with an incentive to choose differently to ensure a better
payoff. In the four non-S-soluble games, although choices were biased toward the options
associated with Stackelberg strategies, the effect sizes are smaller (mean w = 0.55).
Players chose these strategies more frequently in S-soluble games (M = 65.44%) than in
non-S-soluble games (M = 59.38%), although this difference is non-significant. Players
were attracted by the option associated with the Stackelberg strategy in the non-S-soluble
Game 7 in spite of the small payoff of (1, 1) in the non-equilibrium outcome where the
Stackelberg strategies intersect. However, in that game they were probably influenced by
the prospect of the highest payoff in the (5, 4) outcome, and it may have seemed feasible,
because the co-player would receive the second-highest possible payoff in that outcome.
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Reasons for Experiment 2
The fact that the bias toward Stackelberg strategies was larger in the S-soluble games than
in the non-S-soluble games tends to suggest that strong Stackelberg reasoning influenced
players more in the S-soluble games, as predicted by the theory. However, results for two
of the six S-soluble games failed to corroborate the principal hypothesis, and our method
of generating experimental games produced only four non-S-soluble games, therefore it
would be useful to check the findings with a larger and more varied selection of
symmetric S-soluble and especially non-S-soluble games.

Another drawback of our game-generating procedure was that it did not exclude
weakly dominant strategies altogether. We eliminated two games in which Stackelberg
strategies weakly dominated both other strategies, creating a potential confound with
strong Stackelberg reasoning. But in two of the six remaining S-soluble games (Games 3
and 6), the Stackelberg strategy (A) weakly dominates one of the other strategies (B). A
further replication, using games without any (even weakly) dominant strategies at all is
therefore desirable.

In game theory, the labeling and positioning of rows and columns of a payoff matrix
have no effect on a game’s strategic properties, but permutations may influence the
responses of human decision makers, especially in symmetric games, because symmetry
is most obvious when a matrix is presented in what we call root position, as in the versions
shown in Figs. 4–6. It would therefore be useful to replicate Experiment 1 with the
additional control of randomized permutation of rows and columns.

Experiment 1 used a fixed-matching protocol: each player was matched with the same
co-player for all games. In order to avoid carry-over effects between games, it is
sometimes considered preferable to match each player anonymously with a different
co-player for each game (random-matching protocol). It is also desirable to motivate the
players with slightly larger monetary incentives than in Experiment 1, because there is
evidence that more generous monetary incentives reduce the variance in behavior and
generally improve decision making, often bringing decisions closer to game-theoretical
predictions (Camerer & Hogarth, 1999; Smith &Walker, 1993). Furthermore, monetary
incentives produce the greatest performance improvements in decision tasks of
intermediate difficulty (Hertwig & Ortmann, 2001), and 3 × 3 games seem to fall
precisely into that category. In Experiment 2, we used larger incentives and also
incorporated the other improvements mentioned in the preceding paragraphs.

EXPERIMENT 2
Experiment 2 was designed to test the theory of strong Stackelberg reasoning in a fresh
set of symmetric 3 × 3 games without any weak or strong dominant strategies at all. In
addition, we implemented an anonymous random-matching protocol, we randomized
the rows and columns of the payoff matrices, and we introduced larger incentive
payments. To throw more light on the players’ reasoning, we collected verbal accounts of
their reasons for their choices. The set of games used in Experiment 2 includes equal
numbers of S-soluble and non-S-soluble games, to provide a broader basis of comparison.
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In this computer-controlled experiment, we did not provide participants with feedback
regarding their co-players’ choices until the end of each testing session.

Materials and Methods
The participants were 127 students and employees at the University of Leicester (32 male,
95 female), aged 18-53 years (M = 22.78, SD = 5.62), recruited from the School of
Psychology’s participant panel. They were remunerated according to the random lottery
incentive system, which has been shown to elicit true preferences and to have other
desirable properties (Cubitt, Starmer & Sugden, 1998; Lee, 2008; Starmer & Sugden, 1991).
We paid every participant a show-up fee of £5.00 ($8.00) plus an additional amount, up to
£5.00 more, corresponding to their payoffs in a randomly pre-selected game. To
maximize the incentive value of the remuneration, we did not mention the show-up fee
until participants had completed the experiment: before and during the experiment they
knew only that they could earn up to £10.00 ($16.00).

Avoiding arbitrary game construction for reasons explained in Experiment 1, we
devised 14 symmetric 3 × 3 games, seven S-soluble and seven non-S-soluble, starting
with a template containing fixed payoffs in the main diagonal only: (3, 3) in the (A, A)
cell, (2, 2) in the (B, B) cell, and (1, 1) in the (C, C) cell. The remaining cells were then
populated with payoffs from the set {0, 4, 5}, avoiding any strongly or weakly dominant
strategies and maintaining symmetry in every game. The seven S-soluble and seven
non-S-soluble games used in the experiment are displayed in Figs. 5 and 6.

To control for order effects, and to enable comparisons between games with different
permutations of rows and columns, we created 10 distinct sets of experimental games
from among 36 × 14! ≈ 3.14 × 1012 possibilities. First, we permuted the rows and
columns of the payoff matrices, a procedure that generates 3! × 3! = 36 permutations for
each game. We compiled four sets of materials, each containing a different randomly
selected permutation of each of the 14 games, plus a fifth set containing all 14 games in
root position. Finally, we arranged the 14 games in each set in a different randomized
order, and we created a further five sets by reversing the order, to enable order effects to
be investigated.

The experiment was conducted over five one-hour testing sessions. Participants were
tested in groups of approximately 20–30, seated at computer monitors. They were
presented with the on-screen instructions via the SurveyGizmo online survey software
tool. The wording is given in Appendix A.

Participants made one-off strategy choices in each of the 14 games, without feedback,
choosing from the options A, B, or C. They indicated their choices by clicking radio
buttons and recorded the reasons for their choices by typing in open text boxes below
each payoff matrix. They were able to change their strategy choice and reasons for their
choice until they hit the submit button to move on to the next game (returning to
previous games was not allowed). After the participants had completed all 14 games, data
were downloaded from SurveyGizmo into a pre-programmed Microsoft Excel
spreadsheet. For calculation of payoffs, players were paired consecutively in the order in
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Figure 5 S-soluble games used in Experiment 2. Nash equilibria are shaded and Stackelberg strategies
indicated by daggers. Player labels have been removed to save space.

which they had logged on to their computers, and their payoffs were then automatically
calculated for a randomly preselected game. Participants were thanked and paid what
they had earned before they left the laboratory.

Results22Raw data for Experiment 2 are available
in the Supplementary Materials. Following the procedure described in relation to Experiment 1, we performed a binary

logistic regression analysis to predict Stackelberg strategy choices (1 = Stackelberg
strategy choice, 0 = non-Stackelberg strategy choice), using participant identity,
participant age, participant sex, game number, value of the payoff if both players choose
Stackelberg strategies, and number of equilibria in the game as predictor variables. After
fitting the model, we tested it against a constant model, and the difference was statistically
significant: χ2(16) = 411.14, p < .001. Once again, the value of the Nagelkerke R2 = .277
indicates that the strength of relationship between model predictions and Stackelberg
strategy choices is medium. The proportion of correct predictions was 72% overall (67%
for choice of non-Stackelberg strategies and 75% for choices of Stackelberg strategies). As
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Figure 6 Non-S-soluble games used in Experiment 2.Nash equilibria are shaded and Stackelberg strate-
gies indicated by daggers. Player labels have been removed to save space.

in Experiment 1, only game number contributed significantly to the prediction, Wald
χ2(13) = 312.73, p < .001, with some games eliciting significantly more Stackelberg
strategy choices than others. Replicating the model fitting results in Experiment 1,
participant variables (identity, age, and sex) did not show any significant contribution to
model predictions independent of game differences, and neither did other game variables
(the value of the payoff if both players choose Stackelberg strategies and the number of
equilibria in the game).

The main results of Experiment 2 for S-soluble games are shown in Table 3, together
with the results of chi-square goodness-of-fit tests against the null hypothesis of one-third
Stackelberg strategy choices and two-thirds other strategies, and effect sizes estimated
using Cohen’s index w (Cohen, 1992). In six of the seven S-soluble games (Games 1, 2, 3,
4, 6, 7), more than one-third of participants chose the options associated with the
Stackelberg strategy. In each of these games, the effect is highly significant, and in five of
the six, Cohen’s effect size index w is large; in the sixth (Game 6), the bias toward the
Stackelberg strategy is significant but the effect size is small. In Game 5, there was no
significant difference in the frequencies with which the strategies were chosen. In spite of
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Table 3 Strategy choices in S-soluble games: Experiment 2 (N = 127).

Game S strategy % A % B % C χ2(1) p< w
1 A 74.80 20.47 4.72 100.38 .001 0.89
2 A 88.98 7.09 3.94 179.98 .001 1.90
3 A 93.70 4.72 1.57 211.64 .001 1.29
4 A 68.50 14.96 16.54 72.40 .001 0.76
5 C 37.80 34.65 27.56 1.70 ns 0.11
6 A 44.88 47.24 7.87 8.11 .004 0.25
7 A 73.23 23.62 3.15 92.96 .001 0.73

Notes.
Cohen’s (1992) effect size index w ≥ 0.10 is small, w ≥ 0.30 is medium, w ≥ 0.50 is large.

Table 4 Strategy choices in non-S-soluble games: Experiment 2 (N = 127).

Game S strategy % A % B % C χ2(1) p< w
8 C 14.17 59.84 25.98 2.83 ns 0.15
9 A 70.87 26.77 2.36 82.36 .001 0.81
10 B 60.63 36.22 3.15 0.60 ns 0.07
11 B 17.32 59.06 23.62 38.99 .001 0.55
12 C 68.25 3.97 27.78 1.55 ns 0.11
13 A 70.87 3.15 25.98 82.36 .001 0.81
14 B 54.33 33.07 12.60 0.00 ns 0.00

Notes.
Cohen’s (1992) effect size index w ≥ 0.10 is small, w ≥ 0.30 is medium, w ≥ 0.50 is large.

this atypical game, the results provide substantial evidence that players may have been
influenced by strong Stackelberg reasoning in S-soluble games.

Results for the non-S-soluble games, shown in Table 4, reveal variable strategy choices,
with a significant bias toward Stackelberg strategies in three games (Games 9, 11, and 13)
and a non-significant bias away from Stackelberg strategies in the remaining four (Games
8, 10, 12, and 14). The mean effect size w (0.36) is much smaller than in the S-soluble
games (0.85). Players chose Stackelberg strategies more frequently in S-soluble games
(M= 67.38%) than in non-S-soluble games (M = 46.26%), replicating a finding from
Experiment 1, and in this case the difference is significant: t(126) = 8.62, p < .001.

A mixed 2 (S-soluble versus non-S-soluble) × 2 (root position versus permuted matrix)
ANOVA was carried out, with the dependent variable being the number of times that
participants chose Stackelberg strategies. They chose Stackelberg strategies significantly
more frequently in the S-soluble games (M = 4.72, SD = 1.40) than in the non-S-soluble
games (M = 3.24, SD = 1.34), F(1, 125) = 73.756, p < .001, partial η2 = .37). There was
no significant influence of whether the game was in root position or permuted, F(1, 125)
= 1.414, p = .237, ns, and there was no significant interaction (p = .946).

To check for possible order effects, we examined the distributions of Stackelberg versus
non-Stackelberg strategy choices, game by game. The means did not differ significantly
between the first half and the second half of the testing session for any S-soluble or
non-S-soluble game. There was thus no evidence for order effects.
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A preliminary content analysis of the reasons for strategy choices given by participants
revealed eight main categories of reasons. One of the investigators assigned each of the
1,778 reasons (14 for each of 127 participants) to one of the eight categories. In the rare
cases in which a participant gave two or more distinct reasons for a choice, only the most
strongly emphasized reason was counted, and whenever two or more reasons seemed to
be equally emphasized, only the first was counted. A second investigator independently
judged and classified 448 (>25%) of the reasons to enable an inter-rater reliability check
to be performed. Cohen’s Kappa yielded a value of K = .88 (p < .001), confirming very
high inter-rater reliability.

The eight categories of reasons are as follows (typical examples from the participants’
verbal responses are shown in parentheses).

1. Sequential reasoning or mind reading: choosing a strategy on the basis of a guess or
inference about the co-player’s likely choice, and trying to maximize own payoff on
that basis (‘‘The red person may choose B for highest return so I choose A’’; ‘‘They will
choose C to maximize their winnings. Because there is a total of 8 to be had, therefore
I choose A to maximize mine’’)

2. Joint payoff maximization: choosing a strategy that maximizes the total payoff of the
pair (‘‘Maximise both our points’’; ‘‘It’s the highest payoff we both can get’’)

3. Choosing randomly (‘‘No reason just random choice’’)

4. Simple expected utility maximization: choosing a strategy that maximizes the average
or expected payoff if the co-player is equally likely to choose any counterstrategy
(‘‘Chance to win 0 is 66.7% in all the options, but A provides an opportunity to win
higher score’’; ‘‘A or C is better than B, but A can get higher scores’’)

5. Relative payoff maximization: choosing a strategy with the aim of beating the
co-player (‘‘Either I win or we both lose’’; ‘‘More than red’’)

6. Equality-seeking (‘‘Equal amount of points won’’; ‘‘We get more or less the same
amount which is fair’’)

7. Maximax: choosing a strategy that provides the possibility of receiving the highest
possible payoff in the game (‘‘It has the highest blue number’’; ‘‘I thought I would try to
be greedy and try to pick the highest amount’’)

8. Ambiguous or unclassifiable (‘‘It’s more objective’’; ‘‘If I choose A I will have more than
50% chance to get marks’’)

The distributions of reasons for choice are shown in Table 5 for S-soluble games and in
Table 6 for non-S-soluble games. The frequencies deviate significantly from chance in all
14 games, with large effect sizes (w> .50) in every game. Most frequently cited was
Reason 1 (required by strong Stackelberg reasoning) in both S-soluble games (M =
24.18%) and non-S-soluble games (M = 31.04%), followed by Reason 4 (required by
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Table 5 Distribution of reasons for choice across games: S-soluble games, Experiment 2.

Reasons for choice
1 2 3 4 5 6 7 8

Game N % N % N % N % N % N % N % N % χ2(7) p < w
1 24 18.90 18 14.17 2 1.57 21 16.54 3 2.36 27 21.26 9 7.09 23 18.11 42.64 .001 0.58
2 39 30.71 13 10.24 1 0.79 22 17.32 3 2.36 22 17.32 11 8.66 16 12.60 64.81 .001 0.71
3 25 19.69 43 33.86 2 1.57 15 11.81 0 0.00 17 13.39 14 11.02 11 8.66 55.39 .001 0.66
4 31 24.41 15 11.81 1 0.79 34 26.77 4 3.15 19 14.96 6 4.72 17 13.39 64.81 .001 0.71
5 29 22.83 16 12.60 1 0.79 27 21.26 7 5.51 21 16.54 11 8.66 15 11.81 40.75 .001 0.57
6 31 24.41 14 11.02 1 0.79 31 24.41 2 1.57 22 17.32 10 7.87 16 12.60 59.66 .001 0.68
7 36 28.35 13 10.24 3 2.36 24 18.90 4 3.15 26 20.47 6 4.72 15 11.81 62.17 .001 0.70
Mean 24.18 14.84 1.24 19.57 2.58 17.32 7.53 12.71

Table 6 Distribution of reasons for choice across games: non-S-soluble games, Experiment 2.

Reasons for choice
1 2 3 4 5 6 7 8

Game N % N % N % N % N % N % N % N % χ2 p < w
8 38 29.92 19 14.96 2 1.57 26 20.47 2 1.57 19 14.96 7 5.51 14 11.02 67.96 .001 0.73
9 41 32.28 12 9.45 1 0.79 29 22.83 4 3.15 12 9.45 11 8.66 17 13.39 76.91 .001 0.78
10 46 36.22 18 14.17 1 0.79 26 20.47 4 3.15 11 8.66 8 6.30 13 10.24 92.65 .001 0.85
11 34 26.77 18 14.17 2 1.57 28 22.05 2 1.57 16 12.60 9 7.09 18 14.17 57.76 .001 0.67
12 35 27.56 18 14.17 3 2.36 25 19.69 4 3.15 16 12.60 8 6.30 18 14.17 52.09 .001 0.64
13 43 33.86 25 19.69 1 0.79 25 19.69 2 1.57 12 9.45 8 6.30 11 8.66 89.25 .001 0.84
14 39 30.71 20 15.75 1 0.79 20 15.75 5 3.94 17 13.39 5 3.94 20 15.75 65.82 .001 0.72
Mean 31.04 14.62 1.24 20.14 2.58 11.59 6.30 12.48

cognitive hierarchy Level-1 reasoning) in both S-soluble games (M = 19.57%) and
non-S-soluble games (M = 20.14%), followed by Reason 6 (equality-seeking) in S-soluble
games (M = 17.32%) and Reason 2 (required for team reasoning) in non-S-soluble
games (M = 14.62%). Although Reason 1 is required by strong Stackelberg reasoning, on
its own it provides only weak evidence for the theory, because it would be required by
other forms of strategic reasoning as well.

Tables 7 and 8 show reasons classified by strategy choices in S-soluble and
non-S-soluble games respectively. In the S-soluble games, the largest number of players
who chose Stackelberg strategies gave Reason 1 as the reason for their choices (26.42%).
The next most common reason for choosing Stackelberg strategies was Reason 6
(19.09%), followed by Reason 2 (16.06%) and Reason 4 (15.06%). However, in the
simplest game of all, Game 3, which is essentially a 3 × 3 Hi-Lo game, the most common
reason for choosing the A strategy was Reason 2 (36.13%), followed by Reason 1
(21.01%), Reason 6 (13.45%), and Reason 4 (12.61%).

The results of Experiment 2 corroborate those of Experiment 1 and provide more
persuasive evidence for strong Stackelberg reasoning. A significant bias toward
Stackelberg strategies occurred in six of the seven S-soluble games, with large effect sizes
in all but one of those games. In non-S-soluble games, effect sizes were much smaller, as
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Table 7 Reasons classified by choices made in S-soluble games (percentages), Experiment 2.

Reasons for choices
Game Choice 1 2 3 4 5 6 7 8
1 A a 20.00 16.84 0.00 17.89 3.16 23.16 8.42 10.53

B 15.38 7.69 3.85 15.38 0.00 19.23 3.85 34.62
C 16.67 0.00 16.67 0.00 0.00 0.00 0.00 66.67

2 A a 30.97 11.50 0.88 18.58 2.65 17.70 9.73 7.96
B 33.33 0.00 0.00 11.11 0.00 0.00 0.00 55.56
C 20.00 0.00 0.00 0.00 0.00 40.00 0.00 40.00

3 A a 21.01 36.13 0.84 12.61 0.00 13.45 11.76 4.20
B 0.00 0.00 16.67 0.00 0.00 16.67 0.00 66.67
C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

4 A a 26.44 12.64 1.15 20.69 4.60 18.39 6.90 9.20
B 21.05 15.79 0.00 21.05 0.00 5.26 0.00 36.84
C 19.05 4.76 0.00 57.14 0.00 9.52 0.00 9.52

5 A 20.83 25.00 2.08 0.00 0.00 35.42 0.00 16.67
B 13.64 9.09 0.00 52.27 2.27 9.09 0.00 13.64
C a 37.14 0.00 0.00 11.43 17.14 0.00 31.43 2.86

6 A a 19.30 24.56 1.75 7.02 0.00 35.09 0.00 12.28
B 33.33 0.00 0.00 41.67 3.33 0.00 16.67 5.00
C 0.00 0.00 0.00 20.00 0.00 20.00 0.00 60.00

7 A a 30.11 10.75 2.15 17.20 3.23 25.81 0.00 10.75
B 26.67 10.00 3.33 20.00 3.33 6.67 20.00 10.00
C 0.00 0.00 0.00 50.00 0.00 0.00 0.00 50.00

a Stackelberg strategy

expected, and choices were biased toward Stackelberg strategies in half these games and
away from Stackelberg strategies in the rest. The anomalous S-soluble game was Game 5,
in which no significant deviation from chance occurred. Once again, it is easy to explain
the anomaly, because Game 5 is the only S-soluble game in which the Stackelberg solution
yields very small (1, 1) payoffs. These findings suggest, once again, that players are
influenced by strong Stackelberg reasoning but are reluctant to choose Stackelberg
strategies when the associated rewards are very small. It is also noteworthy that Game 5 is
the only S-soluble game in which the sum of payoffs to the two players is not greater than
in any other outcome, suggesting (as in Experiment 1) that collective rationality or team
reasoning may have influenced the players’ strategy choices in these games. As noted in
relation to the results of Experiment 1, there is evidence from previous research with
asymmetric games (Colman, Pulford & Lawrence, in press) that players use both strong
Stackelberg reasoning and team reasoning, but the symmetric games described in this
article cannot distinguish between the two methods of reasoning.

The most frequent reason given by the players for their strategy choices, in both
S-soluble and non-S-soluble games, was sequential reasoning or mind reading. Given that
this is what is required for strong Stackelberg reasoning, these qualitative data provide
additional, weakly corroborative evidence that strong Stackelberg reasoning influenced at
least some of the players in some of the games.
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Table 8 Reasons classified by choices made in non-S-soluble games (percentages), Experiment 2.

Reasons for choices
Game Choice 1 2 3 4 5 6 7 8
8 A 27.78 5.56 0.00 0.00 0.00 55.56 0.00 11.11

B 34.21 19.74 0.00 26.32 0.00 9.21 0.00 10.53
C a 21.21 9.09 6.06 18.18 6.06 6.06 21.21 12.12

9 A a 23.33 10.00 1.11 27.78 4.44 12.22 12.22 8.89
B 55.88 8.82 0.00 11.76 0.00 2.94 0.00 20.59
C 33.33 0.00 0.00 0.00 0.00 0.00 0.00 66.67

10 A 36.36 15.58 0.00 24.68 0.00 11.69 0.00 11.69
B a 34.78 13.04 2.17 15.22 8.70 2.17 17.39 6.52
C 50.00 0.00 0.00 0.00 0.00 25.00 0.00 25.00

11 A 4.55 18.18 0.00 4.55 0.00 50.00 0.00 22.73
B a 20.00 12.00 1.33 32.00 2.67 6.67 12.00 13.33
C 60.00 16.67 3.33 10.00 0.00 0.00 0.00 10.00

12 A 31.40 17.44 1.16 23.26 0.00 15.12 1.16 10.47
B 0.00 0.00 20.00 0.00 0.00 20.00 0.00 60.00
C a 22.86 8.57 2.86 14.29 11.43 5.71 20.00 14.29

13 A a 27.78 20.00 0.00 27.78 2.22 10.00 8.89 3.33
B 25.00 0.00 0.00 0.00 0.00 50.00 0.00 25.00
C 51.52 21.21 3.03 0.00 0.00 3.03 0.00 21.21

14 A 26.09 18.84 1.45 23.19 1.45 14.49 5.80 8.70
B a 38.10 16.67 0.00 4.76 2.38 16.67 0.00 21.43
C 31.25 0.00 0.00 12.50 18.75 0.00 6.25 31.25

a Stackelberg strategy

DISCUSSION
Although strategic coordination is a ubiquitous feature of social interaction, orthodox
game theory cannot explain it satisfactorily. In particular, orthodox game theory cannot
justify the choice of strategies associated with payoff-dominant Nash equilibria in
common interest games, nor can it explain the powerful intuition that it is rational to
choose the component strategies of such equilibria. The theory of strong Stackelberg
reasoning offers a potential explanation, and the experiments reported in this article
suggest that it is quite powerful in explaining strategy choices in a wide variety of 3 × 3
games. Our results replicate and extend the findings of an earlier experiment using
symmetric 2 × 2 games (Colman & Stirk, 1998) and another using asymmetric 3 × 3 and
4 × 4 games (Colman, Pulford & Lawrence, in press). Given the technical limitations of
symmetric 2 × 2 games for testing the theory, especially confounding with strategic
dominance, our results provide the first evidence for choices associated with strong
Stackelberg reasoning in symmetric games.

The choice data in Experiments 1 and 2, and the qualitative reasons for choice in
Experiment 2, taken together, suggest that some players used strong Stackelberg
reasoning, or a form of reasoning functionally equivalent to it, in S-soluble games but
were much less strongly attracted to it in non-S-soluble games. The findings of both
experiments also suggest that players who might otherwise have used strong Stackelberg
reasoning tended to abandon it in favor of simple expected utility maximization
(equivalent to cognitive hierarchy Level-1 reasoning), equality seeking, or joint payoff
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maximization (a requirement of team reasoning) when they were unimpressed with the
payoffs offered by strong Stackelberg reasoning. In both experiments, players were
reluctant to follow through with strong Stackelberg reasoning when it mandated strategy
choices associated with very small payoffs, or where the sum of payoffs to both players
was greater in another outcome of the game. This is reminiscent of the well-known
reluctance of many experimental participants to choose dominant strategies in social
dilemmas, in which the sum of payoffs to the players is greater in an outcome achieved by
playing non-dominant strategies (Balliet, Mulder & Van Lange, 2011; Colman, 2003).

The theory of strong Stackelberg reasoning assumes that players act as though their
co-players could anticipate their strategy choices, or as though the co-players could move
second with foreknowledge of their preceding move. If players actually believed that their
actions could be anticipated in this way in simultaneous, independent-choice games, then
such beliefs would be literally false; but game theory imposes no restrictions on the beliefs
and preferences of players, apart from consistency requirements. Furthermore, it is not a
requirement of the theory that players actually believe that their choices will be
anticipated; the theory is applicable even if they use this assumption merely as a heuristic
device in certain strategic situations, knowing full well that their co-players cannot in
reality anticipate their choices. This is essentially the form of reasoning used by von
Neumann and Morgenstern in their analysis of strictly competitive games (Von Neumann
&Morgenstern, 1944). The theory of strong Stackelberg reasoning can therefore be
assimilated into existing theory, unlike other explanations, and it also has the advantage
over some alternative explanations that it solves all—rather than just some—common
interest games.

A valid criticism of our experiments is that the option choices that are consistent with
strong Stackelberg reasoning are also consistent with other reasoning processes. Although
this is unavoidable in symmetric games, it is worth commenting in particular on the
leading alternatives to strong Stackelberg reasoning, namely team reasoning and
cognitive hierarchy Level-1 reasoning. In Experiment 1, team reasoning, or Reason 2
among the reasons for choice elicited from participants in Experiment 2 (‘‘choosing a
strategy that maximizes the total payoff of the pair’’), makes the same unique prediction
as strong Stackelberg reasoning in four of the six S-soluble games, and in Experiment 2, it
makes the same unique prediction as strong Stackelberg reasoning in five of the seven
S-soluble games. In Experiment 1, Cognitive hierarchy Level-1 reasoning, or Reason 4
(‘‘choosing a strategy that maximizes the average or expected payoff if the co-player is
equally likely to choose any counterstrategy’’), makes the same unique prediction as
strong Stackelberg reasoning in three of the six S-soluble games, and in Experiment 2 it
makes the same unique prediction as strong Stackelberg reasoning in four of the seven
S-soluble games. In spite of these inevitable overlaps, our experiments provide two
additional lines of evidence of the distinct influence of strong Stackelberg reasoning. First,
players chose Stackelberg strategies significantly more frequently in S-soluble than
non-S-soluble games in both experiments—a finding predicted only by the theory of
strong Stackelberg reasoning. Second, the most frequent reason for choice elicited in
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Experiment 2 was sequential reasoning or mind reading, and this too is compatible with
strong Stackelberg reasoning but not with team reasoning or cognitive hierarchy Level-1
reasoning. Furthermore, the findings of Colman, Pulford & Lawrence (in press), in which
the use of asymmetric experimental games ensured that different theories predicted
different choices, provide independent evidence for frequent use of strong Stackelberg
reasoning and also team reasoning and cognitive hierarchy Level-1 reasoning.

Our results corroborate those of other studies of strong Stackelberg reasoning in
symmetric 2 × 2 and asymmetric 3 × 3 and 4 × 4 games (Colman, Pulford & Lawrence,
in press; Colman & Stirk, 1998). Evidence has been reported that team reasoning and
cognitive hierarchy Level-1 reasoning also influence decision making in coordination
games (Bardsley et al., 2010; Colman, Pulford & Lawrence, in press; Colman, Pulford &
Rose, 2008). There is also evidence that players frequently consider two or more of these
forms of reasoning before reaching decisions and may have used strong Stackelberg
reasoning more frequently in simpler games than in 4 × 4 games, in which the cognitive
burden and working memory demands of calculating and checking Stackelberg strategies
is greater (Colman, Pulford & Lawrence, in press). However, it is possible that players may
be more inclined to use strong Stackelberg reasoning in complicated games when there is
more at stake than the modest financial remuneration of an experimental game.

ACKNOWLEDGEMENTS
We are grateful to Paul Feasey for assistance with data collection for Experiment 1 and to
the University of Leicester for granting study leave to the first author.

APPENDIX A. INSTRUCTIONS IN EXPERIMENTS 1 AND 2
Experiment 1
Players were presented with the following written instructions:

You will be presented with a series of 12 grids. On each grid you will be asked to make a
choice between A, B, or C. You will be choosing between either the rows (if you have been
assigned the color red) or the columns (if you have been assigned the color blue). The
other member of your pair will be presented with the identical grids and will also choose
between A, B, or C, in each case using the other color. Your objective is to maximize the
number of points and therefore the amount of money that you gain for yourself. The
numbers in your assigned color represent your points. The minimum in each grid is zero
and the maximum is 5. Your average gain over the 12 grids will be converted into pounds
sterling, so you can end up gaining anything from zero to £5. When you will make your
choices, you will not know what the other person has chosen. You may not make any
attempt to signal to the other person. You will be told what the other person chose after
both of you have made your choices. For each grid, please note its number, record your
choice by circling either A, B, or C opposite the corresponding grid number on the
answer sheet.

After the participants had read the instructions, a sample matrix, similar to the
experimental games, was displayed, and participants were asked a question in the form:
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‘‘If you chose B and the other person chose C, what would you receive and what would
the other person receive?’’ As it turned out, all of our participants were able to answer the
test question correctly. The experimental games were then presented on paper, one by
one, in the form of colored payoff matrices accompanied by full verbal summaries, along
the lines of the following example (relating to Game 1):

If you are Blue and choose A, then:
If Red chooses A, you will get 3, and Red will get 3
If Red chooses B, you will get 5, and Red will get 0
If Red chooses C, you will get 0, and Red will get 0
If you are Blue and choose B, then:
If Red chooses A, you will get 0, and Red will get 5
... and so on.
The words Red and Blue were altered where appropriate to match the player’s

perspective. Participants recorded their choice, received feedback about their co-player’s
choice by being shown a card showing A or B or C, and moved on to the next game.

Experiment 2
Players were presented with the following on-screen instructions:

You will be presented with a series of 14 grids. For each grid you will be asked to
choose between A, B and C. You will be paired with a different experimental participant
for each of your 14 decisions. In each case, the other participant will be presented with the
identical grid and will also be choosing between A, B and C. Your objective for each grid
will be to maximize the number of points that you score. At the end of the experiment,
one of the grids will be chosen randomly from the 14. The number of points that you and
the other participant scored in that grid will be converted to pounds Sterling, and you will
be paid that in cash at the end of today’s session. When you are making your choices, you
will not know whom you are paired with or what choices they are making. For each grid,
please indicate your choice by selecting either A, B or C, and type a few words in the
space provided indicating why you made the choice that you did.

The participants were told that they would be randomly paired with another
unidentified participant in the room for each of the 14 games and were given the
opportunity to seek clarification of anything they did not understand, after which payoff
matrices were presented one by one on their monitors, with Player I’s labels and payoffs
shown in blue and Player II’s in red. Capitalizing on the fact that the experimental games
were symmetric, we assigned all participants to the role of Player I and interpreted their
co-players’ choices as though they were in the role of Player II. Because the games are
symmetric, this makes no difference to strategy choices and outcomes. The following text
was displayed below each payoff matrix to help the participant to interpret the game:
‘‘You are the Blue decision maker, choosing between the rows marked A, B, or C. The
person you have been paired with is the Red decision maker, choosing between columns
A, B, or C. Depending on what you and the other decision maker choose, you will get one
of the blue payoffs, and the red decision maker will get one of the red payoffs.’’ This was
followed by a full textual summary of the information shown in the payoff matrix, as in
Experiment 1.
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APPENDIX B. REGRESSION TABLES FOR
EXPERIMENTS 1 AND 2
See Tables 9 and 10.

Table 9 Regression Table for Experiment 1.

Variables in the Equation
B SE Wald df p < Exp (B)

ID −.007 .004 2.931 1 .087 .993
Age .025 .014 3.262 1 .071 1.025
Sex (1) .277 .191 2.108 1 .147 1.320
Game 120.230 9 .001
Game (1) 1.583 .449 12.438 1 .001 4.871
Game (2) −1.871 .381 24.065 1 .001 .154
Game (3) 1.327 .421 9.945 1 .002 3.769
Game (4) −.977 .346 7.988 1 .005 .377
Game (5) .751 .376 3.989 1 .046 2.118
Game (6) .834 .381 4.789 1 .029 2.301
Game (4) −.631 .342 3.413 1 .065 .532
Game (8) .671 .371 3.267 1 .071 1.956
Game (9) −.462 .341 1.830 1 .176 .630
Constant .156 .395 .156 1 .693 1.169

Note.
Variable(s) entered on step 1: ID, Age, Sex, Game.

Table 10 Regression Table for Experiment 2.

Variables in the equation
B SE Wald df p < Exp (B)

ID −.002 .002 1.062 1 .303 .998
Age .005 .010 .221 1 .638 1.005
Sex (1) −.132 .126 1.087 1 .297 .876
Game 312.733 13 .001
Game (1) 1.796 .278 41.643 1 .001 6.027
Game (2) 2.798 .341 67.470 1 .001 16.405
Game (3) 3.409 .411 68.724 1 .001 30.245
Game (4) 1.485 .269 30.532 1 .001 4.414
Game (5) −.262 .274 .913 1 .339 .770
Game (6) .500 .260 3.709 1 .054 1.649
Game (4) 1.714 .275 38.733 1 .001 5.553
Game (8) −.342 .277 1.529 1 .216 .710
Game (9) 1.597 .272 34.527 1 .001 4.937
Game (10) .139 .264 .279 1 .598 1.150
Game (11) 1.073 .261 16.872 1 .001 2.925
Game (12) −.250 .274 .830 1 .362 .779
Game (13) 1.597 .272 34.527 1 .001 4.937
Constant −.678 .299 5.161 1 .023 .507

Note.
Variable(s) entered on step 1: ID, Age, Sex, Game.
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