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Abstract

Processing pathways between sensory and default mode network (DMN) regions support
recognition, navigation, and memory but their organisation is not well understood. We show
that functional subdivisions of visual cortex and DMN sit at opposing ends of parallel streams
of information processing that support visually-mediated semantic and spatial cognition,
providing convergent evidence from univariate and multivariate task responses, intrinsic
functional and structural connectivity. Participants learned virtual environments consisting
of buildings populated with objects, drawn from either a single semantic category or multiple
categories. Later, they made semantic and spatial context decisions about these objects and
buildings during functional magnetic resonance imaging. A lateral ventral occipital to
frontotemporal DMN pathway was primarily engaged by semantic judgements, while a
medial visual to medial temporal DMN pathway supported spatial context judgements. These
pathways had distinctive locations in functional connectivity space: the semantic pathway
was both further from unimodal systems and more balanced between visual and auditory-
motor regions compared with the spatial pathway. When semantic and spatial context
information could be integrated (in buildings containing objects from a single category),
regions at the intersection of these pathways responded, suggesting that parallel processing
streams interact at multiple levels of the cortical hierarchy to produce coherent memory-
guided cognition.
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eLife assessment

This useful experiment seeks to better understand how memory interacts with
incoming visual information to effectively guide human behavior. Using several
methods, the authors report two distinct pathways relating visual processing to the
default mode network: one that emphasizes "semantic" cognition, and the other,
spatial cognition. Despite the impressive array of methods employed, the evidence
supporting a clear distinction is currently incomplete.

https://doi.org/10.7554/eLife.94902.1.sa2

Introduction

The Default Mode Network (DMN) is involved in higher-order cognition including in semantic
cognition, mental time travel and scene construction (Andrews-Hanna et al., 2010b     , 2010a     ;
Lambon Ralph et al., 2017     ; Spreng et al., 2009     ). Its functions and architecture are plagued by
apparent contradictions: it often deactivates in response to visual inputs yet it is connected to
visual cortex (Knapen, 2021     ; Leech et al., 2012     ; Szinte and Knapen, 2020     ). In addition, this
network is associated with both abstraction from sensory-motor features (Chiou et al., 2020     ,
2019     ; Gonzalez Alam et al., 2021     ; Rice et al., 2015b     , 2015a     ) and internally-generated
states like imagery and autobiographical memory (Philippi et al., 2015     ; Ritchey and Cooper,
2020     ; Spreng and Grady, 2010     ; Zhang et al., 2022     ). A recent perspective suggests these
diverse functions are facilitated by the topographical location of DMN on the cortical mantle
(Smallwood et al., 2021     ). DMN is maximally separated from sensory-motor regions – both in
terms of its physical location and in connectivity space. It is at one end of the principal gradient of
intrinsic connectivity that captures the separation of unimodal and heteromodal cortex (Margulies
et al., 2016     ) and this location is thought to allow DMN to sustain representations that are distinct
from sensory-motor features and at odds with the current state of the external world (Murphy et
al., 2019     , 2018     ).

Despite these common functional characteristics of DMN, parcellations of intrinsic connectivity
reveal subdivisions (Andrews-Hanna et al., 2010b     ; Schaefer et al., 2018     ; Wen et al., 2020     ;
Yeo et al., 2011     ). Lateral fronto-temporal (FT) DMN regions are associated with semantic
cognition, including the abstraction of heteromodal meanings from sensory-motor features and
the ability to access these meanings from sensory inputs in a task-appropriate way (Chiou et al.,
2020     , 2019     ; Lambon Ralph et al., 2017     ; Wang et al., 2020     ). In contrast, scene construction,
thought to be a key component of episodic recollection, is associated with a medial temporal (MT)
subsystem (Andrews-Hanna et al., 2010b     ; D’Argembeau et al., 2010     ; Hassabis et al., 2007     ;
Zhang et al., 2022     ). FT and MT-DMN subnetworks are interdigitated in regions of core DMN
(Braga and Buckner, 2017     ) and they are assumed to work together but little is known about how
information within them is integrated. One hypothesis is that the spatial adjacency of DMN
subsystems allows their common recruitment and coordination when semantic and scene-based
information is aligned; for example, when semantically similar objects are found in a common
location, or spatial position predicts the meanings of items that are found there.

FT and MT-DMN support heteromodal representations and yet can be accessed by visual inputs,
raising the question of how neural pathways between vision and DMN are organised. Visual
neuroscience has revealed different responses associated with recognising objects and scenes
(Kravitz et al., 2013     , 2011     ). Objects engage a ventral pathway extending laterally and
anteriorly through ventral lateral occipital cortex (LOC) and the fusiform gyrus towards the

https://doi.org/10.7554/eLife.94902.1
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anterior temporal lobes (ATL), thought to be a key heteromodal hub for conceptual representation.
This pathway might act as input to FT-DMN (Andrews-Hanna et al., 2014     ; Andrews-Hanna and
Grilli, 2021     ; DiCarlo et al., 2012     ; Kravitz et al., 2013     ; Malach et al., 2002     ). Navigating
visuospatial environments and scene construction, on the other hand, involves the occipital place
area, posterior cingulate, retrosplenial, entorhinal and parahippocampal cortex, before this
pathway terminates in hippocampus. These regions are associated with the MT-DMN subnetwork
(Andrews-Hanna et al., 2014     ; Andrews-Hanna and Grilli, 2021     ; Epstein and Baker, 2019     ;
Kravitz et al., 2011     ; Reagh and Yassa, 2014     ). This work suggests that visual and DMN
subsystems may be linked. For example, during memory for people and places, medial parietal
cortex mirrors the well-established medial-lateral organisation of ventral temporal cortex during
the perception of scenes and faces; medial parietal regions also show differential connectivity to
these visual regions (Margulies et al., 2009     ; Silson et al., 2019     ; Steel et al., 2021     ). Yet these
past studies did not examine whole-brain connectivity or semantic cognition beyond the social
domain and were also unable to explore the interaction of these pathways.

Here, we used multiple neuroscientific methods to delineate the pathways from visual cortex to
DMN, providing convergent evidence for two parallel streams supporting semantic and spatial
cognition. In Study 1, participants learned about virtual environments (buildings) populated with
objects belonging to different semantic categories. We then used fMRI to examine neural activity
as participants viewed object and scene probes and made semantic and spatial context decisions.
Some buildings were associated with a specific semantic category (e.g., a building filled with
musical instruments), while others included a mix of categories, allowing us to examine the
interaction between semantic and spatial cognition. We identified dissociable pathways from
different parts of visual cortex to DMN subsystems; these overlapped with visual localiser
responses for objects and scenes (in Study 2), as well as previously described DMN subsystems,
and showed different patterns of functional and structural connectivity (in Study 3). These
pathways also had distinctive locations in a functional space defined using whole-brain gradients
of connectivity: the semantic pathway was further from unimodal systems and more balanced
between visual and auditory-motor regions compared with the spatial pathway. Moreover, when
semantic and spatial context information could be combined (e.g. when the objects in a building
were from the same semantic category), regions at the intersection of these pathways responded,
in both DMN and visual cortex, suggesting these parallel processing streams can interact at
multiple levels of the cortical hierarchy to produce coherent memory-guided cognition.

Results

Behavioural Results
To examine task accuracy, we performed a 2×2 repeated-measures ANOVA using task (2 levels:
semantic, spatial context) and condition (2 levels: Mixed-Category Building (MCB), and Same-
Category Building (SCB)) as factors. There was a main effect of task (F(1,26)=76.52, p<.001),
condition (F(1,26)=11.31, p=.002) and a task by condition interaction (F(1,26)=14.51, p<.001).
Participants showed poorer accuracy in the spatial context task relative to the semantic task and
in the MCB relative to the SCB condition. Participants were significantly less accurate in the MCB
trials relative to the SCB trials of the spatial context task (t(26)=4.08, p<.001); this difference was
not observed in the semantic task (t(26)=.74, p=.47).

Response times showed the same pattern, with main effects of task (F(1,26)=51.37, p<.001),
condition (F(1,26)=31.14, p<.001) and their interaction (F(1,26)=29.48, p<.001). Participants had
slower reaction times in the spatial context task than the semantic task and in the MCB relative to
the SCB condition. Post-hoc comparisons confirmed that participants were significantly slower in
MCB than SCB trials of the spatial context task (t(26)=6.08, p<.001), but this difference was not
observed in the semantic task (t(26)=.1, p=.92). These results are shown in Figure 1     .

https://doi.org/10.7554/eLife.94902.1
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Figure 1.

Behavioural results for the semantic and spatial context tasks inside the scanner. SCB = Same Category Buildings: all the
items in the building were taken from the same semantic category. MCB = Mixed Category Buildings: the items in the
buildings were drawn from different semantic categories.

https://doi.org/10.7554/eLife.94902.1
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Neuroimaging Results

Probe phase

We examined differences in neural responses to probe images of objects in the semantic task, and
scenes in the spatial context task in Study 1 (Figure 2     ). Semantic probes elicited greater
activation in bilateral ventral lateral occipital cortex, extending to fusiform cortex and
supramarginal gyrus in the left hemisphere. Spatial context probes elicited a stronger response in
bilateral dorsal lateral occipital cortex, medial occipital lobe, precuneus, parahippocampal cortex
and supplementary motor areas, as well as insula and middle frontal gyrus and frontal pole
regions in the left hemisphere, and precentral regions in the right hemisphere (Figure 2     , panel
a). Details of peak activations for all univariate results from Study 1 are in Supplementary Table
S1.

To confirm these distinctive responses to semantic and spatial context probes were related to well-
established categorical effects within visual cortex, we examined their overlap with object and
scene localisers (i.e. passive viewing) in Study 2 (Figure 2     , panels b and c). Regions engaged by
the spatial context probes resembled scene perception regions, while semantic probes overlapped
with object perception regions.

Next, we examined the intrinsic connectivity of activation regions in Figure 2a     , masked by Yeo
et al.’s (2011) visual networks (combining central and peripheral networks), using data from Study
3. Visual areas responding to semantic and spatial context probes showed differential connectivity,
including to regions of DMN (posterior cingulate, medial prefrontal cortex, portions of anterior
and dorsal prefrontal cortex and anterior temporal cortex; Figure 2     , panel e). Cognitive
decoding using Neurosynth revealed that semantic probe connectivity was associated with
perceptual and somatomotor terms, while spatial context probe connectivity was associated with
navigation, visuospatial and episodic memory terms (Figure 2     , panel f). Semantic probe regions
showed preferential overlap with FT-DMN, whilst spatial context probe regions showed greater
overlap with MT-DMN, followed by core DMN (Figure 2     , panel g).

Our final analysis of the probe responses explored the strength of probe activation within three
DMN subdivisions defined by Yeo et al. (2011)     1     . A two-way repeated measures ANOVA using
task (semantic, spatial context) and ROI (Core DMN, FT-DMN, MT-DMN) as factors revealed a
significant main effect of ROI (F(1.281,33.306)=50.42, p<.001) and an interaction
(F(1.64,42.65)=12.44, p<.001; Greenhouse-Geisser corrected). Post-hoc comparisons showed a
significantly stronger response within MT-DMN to spatial context relative to semantic probes
(t(26)=4.1, p=.001). No significant difference between tasks was observed for core or FT-DMN (both
p>.05, Figure 2     , panel d).

Decision phase

The next analysis characterised regions responsive to semantic and spatial context decisions in
Study 1. Figure 3a     , shows that semantic decisions elicited stronger engagement within
dorsolateral prefrontal, lateral occipital, posterior temporal and occipital cortex, as well as pre-
SMA. These regions overlapped with FT-DMN (Figure 3     , panel b). Spatial context decisions
produced stronger activation within a predominantly medial set of occipital, ventromedial
temporal (including parahippocampal gyrus), retrosplenial and precuneus regions that
overlapped with MT-DMN (Figure 3     , panel c).

https://doi.org/10.7554/eLife.94902.1
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Figure 2

Probe responses.

Warm colours = semantic > spatial context probes. Cool colours = spatial context > semantic probes. Left panel: Univariate
results from Study 1, contrasting semantic and spatial context probes. Right panel: Intrinsic connectivity results from Study 3
using semantic and spatial context probe activation within visual networks as seeds. Panel a: Brain maps depicting the supra-
threshold univariate activation results for the probe phase of the semantic and spatial context tasks. Panels b and c: Axial
slices showing the overlap of these univariate results with Scene and Object localiser maps from Study 2 (the localiser maps
are in green, and the univariate results maps are in warm and cool colours). Panel d: ROI analysis examining the activation in
the three default mode subnetworks of the Yeo 17 parcellation during the probe phase of the semantic and spatial context
tasks. The error bars in the bar plots depict the standard error of the mean (Note: ***p<.001); the ROIs are shown to the
right of the bar plots. Panel e: Brain maps depicting the seeds and intrinsic connectivity results for the semantic and spatial
context probe regions. Panel f: Word clouds depicting the cognitive decoding of unthresholded connectivity maps for
semantic and spatial context probe seeds using Neurosynth (bigger words reflect stronger correlation of the functional maps
with the terms); the colour-code follows that of the brain maps. Panel g: Brain maps showing the overlap of these intrinsic
connectivity maps for semantic and spatial context probes with the default mode network from the 7-network parcellation
from Yeo et al. (2011)     .

https://doi.org/10.7554/eLife.94902.1
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Figure 3

Decision responses.

Warm colours = semantic > spatial context decisions. Cool colours = spatial context > semantic decisions. Left panel:
Univariate results from Study 1 contrasting semantic and spatial context decisions. Right panel: Intrinsic connectivity results
from Study 3 using semantic and spatial context decision activation within DMN networks as seeds. Panel a: Brain maps
depicting the supra-threshold univariate activation results for the decision phase of the semantic and spatial context tasks.
Panels b and c: Axial slices showing the overlap of these univariate results with the FT and MT default mode subnetworks of
the Yeo 17 network parcellation (the default mode maps are in green, and the univariate results maps are in warm and cool
colours). Panel d: ROI analysis examining the activation in the Scene and Object localiser maps from Study 2 during the
decision phase of the semantic and spatial context tasks. The error bars in the bar plots depict the standard error of the
mean (Note: ***p<.001, * p < .05); the ROIs are shown in supplementary Figure S3. Panel e: Brain maps depicting the seeds
and intrinsic connectivity results for the semantic and spatial context decision regions. Panel f: Word clouds depicting the
cognitive decoding of unthresholded connectivity maps for semantic and spatial context decision seeds using Neurosynth
(bigger words reflect stronger correlation of the functional maps with the terms); the colour-code follows that of the brain
maps. Panel g: Brain maps showing the overlap of these intrinsic connectivity maps with the visual network from the 7-
network parcellation from Yeo et al. (2011)     .

https://doi.org/10.7554/eLife.94902.1
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We investigated differences in the intrinsic connectivity of these distinct DMN decision regions in
independent data from Study 3. We seeded the decision regions that intersected with DMN
(combining core, FT and MT-DMN from Yeo et al.’s 2011 parcellation). The results, in Figure 3e     ,
revealed differences in the functional networks of these DMN regions that extended to visual
cortex. Semantic decision regions showed stronger connectivity to lateral visual regions along
with lateral temporal cortex, inferior frontal gyrus, angular gyrus and dorsomedial prefrontal
cortex. Spatial decision regions were more connected to medial visual regions, ventro-medial
temporal regions, medial parietal cortex, ventral parts of medial prefrontal cortex, motor cortex
and dorsal parts of lateral occipital cortex.

Cognitive decoding of these connectivity maps using Neurosynth (Figure 3     , panel f) revealed
that the semantic decision network was associated with terms related to language, semantic
processing and reading, while the spatial context decision network was associated with
navigation, episodic and autobiographical memory. The decision DMN seeds also showed
differential connectivity to visual regions (Figure 3     , panel g). Semantic decision regions were
more connected with lateral and ventral occipital cortex, whilst spatial context decision regions
showed more connectivity with medial occipital, ventromedial temporal (including
parahippocampal) and dorsal lateral occipital cortex.

Given our hypothesis of dissociable pathways between visual cortex and DMN subsystems, we
examined responses to semantic and spatial contextual decisions in visual cortex, using the object
and scene localiser ROIs from Study 2. A two-way repeated-measures ANOVA including task
(semantic, spatial context decisions) and visual ROI (scene and object regions) revealed main
effects of task (F(1,26)=14.02, p<.001), visual ROI (F(1,26)=9.91, p=.004) and their interaction
(F(1,26)=24.65, p<.001). Post-hoc comparisons showed a stronger response to spatial context
decisions, relative to semantic decisions, in the visual ROI sensitive to scenes (t(26)=3.63, p<.001),
but not in the object-selective region (t(26)=1.88 p=.071) falling with the semantic pathway (Figure
3     , panel d).

Pathways analysis

The analysis above identified regions of visual cortex showing a differential response to semantic
and spatial context probes, related to category effects for objects versus scenes. We also found
distinct DMN subnetworks, which supported semantic and spatial context decisions respectively.
Next, we consider if these effects are linked: Do FT-DMN regions have stronger connectivity to
object perception areas of visual cortex, while MT-DMN regions connect to scene perception
regions?

Using resting-state data from Study 3, we performed a series of Seed-to-ROI analyses to answer this
question. We seeded the visual regions in Figure 2e      (i.e., probe responses marked by Yeo et al.’s
visual networks) and extracted their intrinsic connectivity to DMN, using ROIs differentially
activated by semantic and spatial context decisions (corresponding to the seeds in Figure 3     ,
panel e). In a second analysis, we examined the reverse (i.e., seeded DMN regions and extracted
connectivity to visual regions). The seeds and ROIs for this analysis can be consulted in Figure
4d     . These effects were analysed using repeated-measures ANOVAs examining the interaction
between seed and ROI (Figure 4     , panels e and f). The Visual-to-DMN ANOVA showed main
effects of seed (F(1,190)=226.23, p<.001), ROI (F(1,190)=85.21, p<.001) and a seed by ROI interaction
(F(1,190)=322.83, p<.001). Post-hoc contrasts confirmed there was stronger connectivity between
object probe regions and semantic versus spatial context decision regions (t(190)=3.98, p<.001),
and between scene probe regions and spatial context versus semantic decision regions
(t(190)=20.07, p<.001). The DMN-to-Visual ANOVA confirmed this pattern: again, there was a main
effect of ROI (F(1,190)=36.91, p<.001) and a seed by ROI interaction (F(1,190)=218.42, p<.001), with
post-hoc contrasts confirming stronger intrinsic connectivity between DMN regions implicated in
spatial context decisions and object probe regions (t(190)=11.63, p<.001), and between DMN

https://doi.org/10.7554/eLife.94902.1
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regions engaged by spatial context decisions and scene probe regions (t(190)=6.17, p<.001).
Supplementary analyses using the same seeds and task-independent ROIs revealed the same
pattern: these ROIs were based on the visual localiser masks from Study 2 and the complete DMN
subnetworks defined by the Yeo et al. (2011)      17-network parcellation (see Supplementary
Analysis: “Replicating resting-state connectivity pathways with task-independent ROIs” and Figure
S4).

https://doi.org/10.7554/eLife.94902.1
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Figure 4.

Panel a:

Warm colours = common regions showing stronger intrinsic connectivity to semantic decision regions in DMN and

semantic probe regions in visual cortex; Cool colours = common regions showing stronger intrinsic connectivity to

spatial context decision regions in DMN and spatial context probe regions in visual cortex. Panel b: The cognitive

decoding of these spatial maps using Neurosynth following the same colour code as Panel a. Panel c: Network

composition showing the percentage of each pathway map overlapping with the three DMN and two Visual

subnetworks defined by the Yeo et al. (2011)      17-network parcellation. Panels d, e and f: These panels depict the

seeds, ROIs and their connectivity. The bar plots in panels e and f show the connectivity between DMN decision

regions and probe visual regions. Panel g: Results of spatial correlation analysis comparing the semantic and spatial

context pathways with non-pathway maps (derived from the conjunction of the connectivity of probe and decision

seeds across different tasks, e.g., probe spatial context ∩ decision semantic connectivity). We assessed the spatial

similarity of these pathway and non-pathway maps to the univariate activation during the probe and decision phases

for each task and each participant. Panel h: Results of the structural connectivity analysis.

These pathways, specialised for semantic and spatial cognition, link dissociable visual regions to
DMN subsystems, consistent with the suggestion that functional differentiation in DMN partly
reflects the strength of different inputs. Figure 4a      provides a visualisation of these pathways
using the intersection of connectivity from object over scene probe regions and semantic versus
spatial context decisions to identify the semantic pathway (warm colours) and the reverse
contrasts for the spatial pathway (cool colours). Cognitive decoding revealed terms related to
object, action, motion, social and face perception, as well as language and reading for the semantic
pathway, and terms related to navigation, place processing and memory for the spatial context
pathway (Figure 4     , panel b). The semantic pathway was predominantly characterised by FT-
DMN and Visual Central regions in the Yeo et al. (2011)      17-network parcellation, whilst the
spatial context pathway reflected Core and MT-DMN, and Visual Peripheral networks (Figure 4     ,
panel c).

A complementary analysis examined the spatial correlation of these semantic and spatial
pathways (Figure 4a     ) with participants’ univariate activation when viewing semantic and
spatial context probes, and when making semantic and spatial context decisions. We compared
spatial correlations between our hypothesised pathways and ‘non-pathway conjunctions’, defined
as conjunctions of visual object probe and DMN spatial context decision connectivity, and visual
scene probe and DMN semantic decision connectivity with these univariate activation maps. We
obtained Pearson r values for each participant reflecting spatial similarity of their activation
patterns with these pathway and non-pathway maps and compared these correlations using one-
way ANOVAs (Figure 4     , panel g). There was a significant effect of pathway for each of the four
phases (Spatial Context Decision: F(2.32,441.45)=2741.68, p<.001; Semantic Decision:
F(1.90,361.29)=521.94, p<.001; Spatial Context Probe: F(2.09,396.96)=424.98, p<.001; Semantic
Probe: F(2.07,393.80)=117.88, p<.001; Greenhouse-Geisser correction applied). In follow-up
contrasts using paired t-tests we compared the average Pearson r correlation of each phase to its
relevant pathway contrasted with the two non-pathway conjunctions. Correlations between the
semantic probe and decision phases’ univariate activation and the semantic pathway were higher
than non-pathway correlations and an equivalent pattern was seen for the spatial context
pathway (Figure 4g     ; for exact t and p values associated with these comparisons see
Supplementary Table S2), confirming that dissociable visual to DMN responses associated with
semantic and spatial cognition are reliably present for individual participants.

https://doi.org/10.7554/eLife.94902.1
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Next, we examined if these pathways were reflected in the strength of white matter tracts
connecting visual and DMN regions (seeds in Figure 4d     ). We examined structural connectivity
in a subset of the HCP dataset (n = 164), asking if object probe visual regions showed a greater
proportion of white matter tracts terminating in semantic DMN regions, and if scene probe visual
regions showed stronger structural connectivity to spatial context DMN regions (Figure 4     , panel
h). A 2×2 repeated-measures ANOVA with visual regions as seeds and DMN regions as ROIs
revealed a significant main effect of seed (F(1,163)=5.13, p=.025), ROI (F(1,163)=82.46, p<.001) and
their interaction (F(1,163)=664.57, p<.001). Post-hoc comparisons confirmed stronger structural
connectivity from the semantic probe visual regions to the semantic decision DMN regions;
likewise, the spatial context probe visual regions showed stronger structural connectivity to the
spatial context decision DMN regions (semantic probe visual: t(163)=8.25, p<.001; context probe
visual: t(163)=478.66, p<.001). Repeating this analysis using the decision DMN regions as seeds and
the probe visual regions as ROIs revealed a similar pattern (see Supplementary Analysis:
"Replicating pathways’ structural connectivity from the DMN end” and Figure S5).

Tracts displayed are a conjunction of streamlines between the probe and decision seeds of each
task. The y axis of the bar plots shows the percentage of streamlines from each visual seed that
terminate in each DMN ROI (shown in the x axis). The error bars depict the standard error of the
mean. *** p < .001, * p < .05.

Location of pathways in whole-brain gradients

We analysed the location of the semantic and spatial context pathways in a functional state space
defined by the first two gradients of intrinsic connectivity (Margulies et al., 2016     ). The principal
gradient relates to connectivity differences between unimodal and heteromodal cortex, while the
second gradient captures connectivity differences between visual and auditory/somato-motor
cortex. By locating the ends of the two visual-to-DMN pathways within gradient space, we can
establish if DMN regions supporting semantic and spatial cognition are equally distant in
connectivity from sensory-motor cortex: semantic cognition is arguably more abstract than spatial
cognition and might be supported by DMN regions that are more isolated from sensory-motor
systems on the principal gradient (Margulies et al., 2016     ; Smallwood et al., 2021     ). We can also
establish if semantic and spatial DMN regions differ in the balance of connectivity to visual versus
auditory-motor regions on the second gradient: heteromodal concepts are thought to be
constructed from diverse sensory-motor features (Lambon Ralph et al., 2017     ), while spatial
representations might draw more strongly on visual information (Epstein and Baker, 2019     ). We
tested these predictions by locating individual unthresholded peak response coordinates for
semantic and spatial context probes (within visual networks) and decisions (within the DMN) in
gradient space (masked by Yeo et al.’s 7 network parcellation). We then asked if there are
significant differences in the gradient locations of these tasks across participants.

The results (Figure 5     , panel a) showed that there were no differences between the two tasks
during the probe phase, while the decision phase was associated with task effects: DMN peaks for
semantic decisions were more distant from sensory-motor cortex on the principal gradient,
compared with spatial context decisions (t(1,26)=2.34, p=.027), consistent with the view that
semantic cognition draws on more abstract and heteromodal representations in DMN. In addition,
responses for the spatial context task were closer to the visual end of the second gradient, while
responses for the semantic task were somewhat more balanced across visual and auditory-motor
ends of this gradient (t(1,26)=3.31, p=.003)2     .

Effects of task demands on pathway connectivity

We examined how connectivity within these pathways changes depending on task demands in a
Psychophysiological Interaction (PPI) analysis. We took the visual regions showing differential
activation to object and scene probes as seeds (shown in Figures 2e      and 4d     ), while the ROIs
were regions sensitive to semantic and spatial context decisions within the DMN (shown in
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Figure 5.

Panel a:

Analysis situating the position of the pathways in a whole-brain connectivity gradient space (Margulies et al., 2016     ). The
scatterplots depict the position of each participant’s peak response to the semantic and context task in this gradient space
(the big circles represent the mean of each task for that phase). The bar plots compare the mean of each gradient across
tasks. The inset on the bottom left of the panel displays Margulies’ et al. (2016) original gradient space. Panel b:
Psychophysiological interaction analysis of the connectivity from the spatial context and semantic probe regions to FT and
MT-DMN subnetworks. This analysis collapses the SCB and MCB conditions, which showed no significant differences. Note. *
= p<.05, ** = p<.01.
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Figures 3e      and 4d     ). We anticipated that the scene probe regions would increase their
connectivity to spatial context decision regions during the decision phase of the spatial context
task, whilst the object probe regions would increase their connectivity to semantic decision
regions during the decision phase of the semantic task. A repeated-measures ANOVA including
task (semantic/spatial context), seed (object/scene probe), ROI (semantic/spatial context decision)
and condition (SCB/MCB) as factors revealed two-way interactions for task by seed
(F(1,26)=10.85,p=.003) and seed by ROI (F(1,26)=8.57,p=.007), as well as a three-way interaction for
task by seed by ROI (F(1,26)=5.2,p=.031). Since we found no effect of condition, we averaged across
this factor for the following analyses. The results are shown in Figure 5b     . To understand the
three-way interaction, separate two-way ANOVAs using seed (object/scene probe regions) and ROI
(semantic/spatial context decision regions) as factors were computed for the spatial context and
semantic tasks. The semantic task showed a main effect of seed (F(1,26)=6.97, p=.014), but no effect
of ROI or interaction: the object seed was more connected to both semantic and spatial context
DMN decision regions during the semantic task. The spatial context task showed a main effect of
seed (F(1,26)=5.89, p=.022), and a seed by ROI interaction (F(1,26)=10.25, p=.004). Post-hoc t-tests
showed that the scene probe regions were more connected to spatial context decision regions
during the spatial context task than object probe regions (t(26)=3.52, p=.002). In contrast, there was
no difference in connectivity between these two seeds and the semantic decision regions.

Cross-pathway integration of semantic and spatial cognition

Having identified dissociable semantic and spatial context pathways, and examined how these are
differentially recruited across tasks, we investigated the integration of semantic and spatial
context information across these processing streams. We compared responses in SCB and MCB
trials, since semantic and spatial information are aligned when buildings contain items from a
single semantic category, but not in mixed-category buildings. In these analyses, there were
differences between conditions in the probe but not the decision-making phase (perhaps because
many probes were presented without decisions, increasing statistical power).

Analysis of Univariate Response to Same-versus Mixed-Category Buildings

First, we performed univariate contrasts of MCB and SCB trials (Figure 6     , panels a-c). For scene
probes in the spatial context task, the MCB > SCB contrast elicited a stronger response in dorsal
lateral occipital cortex and retrosplenial cortex (Figure 6     , panel a). In these circumstances,
spatial context probes could only activate spatial and not semantic information. The SCB > MCB
contrast activated an adjacent region of right angular gyrus (Figure 6     , panel b). For semantic
probes, the contrast of MCB > SCB identified greater engagement in distributed parietal, occipital
and temporal regions, associated with the multiple-demand network (Figure 6     , panel c). There
were no clusters that showed a stronger response to same than mixed category building probes
for the semantic task. There was also an interaction between task and condition, which was driven
by the SCB > MCB effect in right angular gyrus in the spatial context task exceeding this effect in
the semantic task.

To interpret these results, we conducted seed-to-ROI intrinsic connectivity analysis using
independent data from Study 3, taking these clusters as seeds and the semantic and spatial context
pathways masks (shown in Figure 4a      and Figure 6     , panel d) as ROIs. A two-way repeated
measures ANOVA examined seed (spatial context SCB>MCB and MCB>SCB; semantic MCB>SCB)
and ROI (semantic and spatial context pathways) as factors. The results can be seen in Figure 6     ,
panel e). There were significant effects of seed (F(1.92,364.1)=211.48, p<.001), ROI (F(1,190)=182.67,
p<.001) and an interaction (F(1.84,349.66)=723.412, p<.001). Post-hoc comparisons showed the
context pathway was most connected to the spatial context MCB>SCB clusters, less connected to
the spatial context SCB>MCB (when semantic information was also relevant to the response) and
least connected to the semantic MCB>SCB regions (context MCB > context SCB: t(1,190)=34.91,
p<.001; context SCB > semantic MCB: t(1,190)=5.18, p<.001). The opposite pattern of connectivity
was found for the semantic pathway, which was most connected to the semantic MCB>SCB regions,
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Figure 6.

Univariate results of the probe phase for the analysis contrasting same category vs mixed category trials separately for the
semantic and spatial context tasks. Panel a: univariate results contrasting spatial context same- > mixed-category building
trials during the probe phase. Panel b: univariate results of a task by condition (same/mixed-category building) interaction.
Panel c: univariate results contrasting semantic same- > mixed-category building trials during the probe phase. Panel d:
spatial relations of the same > mixed spatial context cluster with the semantic and spatial context pathways outlined in
Figure 4     . Panel e: intrinsic connectivity seed-to-ROI results using the three univariate results clusters shown in the top
panel as seeds and the pathways as ROIs. The error bars depict the standard error of the mean. *** p<.001.
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less connected to the spatial context SCB>MCB and least connected to the spatial context MCB>SCB
clusters (semantic MCB > context SCB: t(1,190)=16.93, p<.001; context SCB > context MCB:
t(1,190)=10.59, p<.001). In this way, spatial context SCB>MCB regions, which reflected the
engagement of semantic information in a spatial context task, showed an intermediate pattern of
connectivity to both pathways.

Analysis of Multivariate Response to Same-versus Mixed-Category Buildings

The univariate analysis above shows that when there is no alignment between spatial context and
semantic information (in MCB trials), the heteromodal areas that are activated by the task show
higher pathway-specific connectivity. In contrast, when information integration across space and
meaning is facilitated by the structure of the task, spatial context trials show more activation in
regions with lower connectivity to the spatial context pathway, but higher connectivity to the
semantic pathway. In this way, right angular gyrus was found to have a potential role in
integrating the visual-to-DMN pathways.

Our next analysis used a multivariate approach to establish how neural patterns related to the
task reflected information integration. We performed Representational Similarity Analysis (RSA)
using a searchlight approach within a mask that combined semantic and spatial context task
decision maps, using data acquired during the probe phase (since there were more probe than
decision time-points). This method allowed us to select regions sensitive to semantic and spatial
context information, while ensuring that the search space was not derived from the same data
used for the RSA analysis. First, we asked if we could detect regions sensitive to category during
the semantic task and sensitive to location during the spatial context task, in the MCB trials
(analyses of SCB trials are provided in Supplementary Materials: see Figure S6). There were
regions that represented semantic and spatial context similarity in bilateral and left LOC
respectively (Figure 7     , panel a). Next, we performed a cross-task representational similarity
analysis in the SCB trials to identify areas that represented information relevant to one task in the
other (e.g., areas that represented semantic information during the spatial context task and vice
versa). The results of this analysis revealed right LOC regions that captured spatial context
information during the semantic task (Figure 7     , panel b). No medial regions were found in
these analyses.

Finally, we investigated the intrinsic connectivity of these multivariate clusters to the semantic
and spatial context pathways (Figure 4a      and Figure 7     , panel c), to establish whether cross-
task RSA regions thought to support integration have an intermediate pattern of connectivity to
both pathways. We used the MCB semantic and spatial context RSA clusters and the cross-task RSA
result from Figure 7a-c      as seeds in a seed-to-ROI analysis of intrinsic connectivity using
independent data from Study 3. We performed a 2 two-way repeated measures ANOVA, using a 3 x
2 design, entering seed (semantic, spatial context and cross-similarity RSA results), and pathway
(ROIs in Figure 7     , panel c) as factors. The results can be seen in Figure 7      panel d. There were
main effects of seed (F(1.54,293.32)=194.24, p<.001), ROI (F(1,190)=290.07, p<.001) and their
interaction (F(1.58,300.36)=123.36, p<.001). Post-hoc comparisons confirmed that the spatial
context pathway was equally connected to the spatial context RSA cluster and to the cross-task RSA
cluster (spatial context > cross-task: t(190)=-.155, p>.05), with both of these clusters being
significantly more connected than the semantic RSA cluster (spatial context > semantic:
t(190)=3.34, p=.002; cross-task > semantic: t(190)=4.41, p<.001). The semantic pathway was most
connected to the semantic RSA cluster, less connected to the cross-task RSA cluster, and least
connected to the spatial context RSA cluster (semantic > cross-task: t(190)=9.2, p<.001; cross-task >
spatial context: t(190)=16.31, p<.001). In this way, the cross-task representation of spatial context
information in visual regions during the semantic task showed an intermediate pattern of
connectivity (particularly to the semantic pathway).
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Figure 7.

Results of the representational similarity analysis. Top left panel: within-task RSA results correlating BOLD activity from the
probe phase of semantic mixed-category building trials with the semantic similarity matrix described in the Methods section,
and BOLD activity from the probe phase of context mixed-category building trials with the context similarity matrix. Top right
panel: cross-task similarity analysis correlating BOLD activity from semantic trials with the context similarity matrix. Bottom
panel: The left part depicts the spatial relations of the cross-task similarity analysis cluster with the semantic and context
pathways outlined in Figure 4     ; the right part shows Intrinsic connectivity seed-to-ROI results using the within- and cross-
task RSA clusters shown in the top panel as seeds and the pathways as ROIs. The error bars depict the standard error of the
mean. *** p < .001, ** p < .01.
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Discussion

Functional subdivisions of visual cortex and DMN sit at opposing ends of parallel processing
streams supporting visually-mediated semantic and spatial cognition; moreover, regions with
intermediate patterns of connectivity are implicated in the integration of these streams into
coherent experience. Viewing object probes in a semantic task and location probes in a spatial
context task activated different parts of visual cortex, functionally related to the passive viewing
of objects and scenes. Semantic and spatial context decisions about these probes engaged FT and
MT-DMN subsystems. Visual regions sensitive to object probes showed stronger intrinsic
functional connectivity and structural connectivity to FT-DMN, while scene probe regions were
more connected to MT-DMN. In a functional space defined by whole-brain connectivity patterns,
the semantic pathway was more distant from unimodal regions on a unimodal-to-heteromodal
connectivity gradient, and it had a more balanced influence of visual and auditory-motor systems,
while the spatial context pathway was more visual. Psychophysiological interaction models
characterised how inputs to these pathways are flexibly configured to suit our current goals. The
visual ends of the pathways showed opposing patterns of connectivity to spatial context DMN
regions depending on the task. Finally, we found evidence that both heteromodal and visual
regions integrate information about meaning and spatial context. When all the items in a building
were drawn from a particular semantic category, there was greater recruitment of right angular
gyrus; multivariate pattern analysis similarly found a cluster in lateral occipital cortex that
represented spatial context information during the semantic task. When there was no opportunity
to integrate semantic information with spatial context, regions that responded showed higher
pathway-specific connectivity. In contrast, when integration was facilitated by the structure of the
task, response regions had an intermediate pattern of connectivity.

Our study has important implications for the organisation of DMN into specialised subsystems,
and for how these subsystems get their input from perceptual regions. Previous literature has
robustly established distinct FT and MT subsystems (Andrews-Hanna et al., 2014     ; Andrews-
Hanna and Grilli, 2021     ; Smallwood et al., 2021     ; Yeo et al., 2011     ); however, the way in which
this architecture reflects differences in visual inputs remains contentious. One proposal is that
different DMN subnetworks are differently engaged by tasks that are externally versus internally
oriented. For example, Chiou et al. (2020)      propose that there is a basic distinction between parts
of the network that process semantic information accessed from words and images, and between
DMN regions that sustain internally-focussed cognition. Other work has called into question
whether semantic responses in FT-DMN are specific to external tasks: for example, Zhang et al.
(2022)      found that lateral temporal regions changed their patterns of connectivity depending on
the task, with more visual connectivity in externally-oriented tasks like reading, and more DMN
connectivity in internally-orientated conceptual states like mind-wandering and autobiographical
memory. This work suggests FT-DMN might support semantic cognition across internal and
external modes of cognition. Our findings also suggest that the distinction between these
subsystems is not organised according to visual coupling; instead, DMN organisation arises from
differential connectivity between distinct visual and DMN regions that gives rise to partially
segregated pathways that process information about locations and meanings. Visual responses to
scenes and objects reflect entry points to these processing pathways such that the key distinction
between FT-DMN and MT-DMN relates to the type of information being processed, as opposed to
how the information is accessed.

Our observed dissociation between semantic and spatial context pathways echoes a similar
domain-specific organisation for working memory in prefrontal cortex (Levy and Goldman-Rakic,
2000     ; Romanski, 2004     ), in which there are dorsal and ventral streams associated with the
maintenance of item location and identity respectively. This organising principle has been
extended to long term memory more recently. Deen and Freiwald (2021)      found a similar
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dissociation between places and people (instead of objects) in the DMN and other areas of
association cortex. This was not tied to a specific input modality or task, indicative of parallel,
domain-specific networks, at the top of the cortical hierarchy. Here, we extend this approach to
consider whether functional divisions within DMN and visual cortex are connected, giving rise to
pathways which are differentially situated in a connectivity state space defined by whole-brain
dimensions of intrinsic connectivity, and we ask how these pathways might be integrated, and
how they might be flexibly recruited according to task demands.

Although our research suggests a domain-specific view of brain organisation within visual-to-DMN
pathways linked to semantic and spatial cognition, there may be different processes within
meaning and spatial context tasks that drive these effects. The FT subsystem is thought to rely on
the abstraction of information from sensory-motor inputs (Chiou et al., 2020     ; Smallwood et al.,
2021     ; Wang et al., 2020     ). The MT subsystem, on the other hand, uses a relational code that can
capture spatial relations to successfully navigate complex environments (Eichenbaum, 2004     ;
Eichenbaum and Cohen, 2014     ; Zeidman et al., 2015     ). One possibility is that, at the visual end
of these pathways, spatial location is more dependent on peripheral vision, while object
recognition is dependent in central fixation (Hasson et al., 2002     ; Levy et al., 2001     );
consequently, the distinct visual-to-DMN pathways we have recovered may reflect a basic property
of how peripheral and central visual regions project to DMN. Our findings mirror and extend the
results of Silson and colleagues (Silson et al., 2019     ; Steel et al., 2021     ), since we identify
dissociable pathways from visual cortex to DMN; however, we extend this work to cover fully
distributed networks that support semantic and spatial decision-making, and locate these
pathways in a whole-brain gradient space relating to variation in patterns of intrinsic connectivity,
as well as considering how these pathways can be integrated.

One question remains: how does the brain generate a coherent, seamlessly integrated experience
of place and the identity of objects from these segregated, specialised streams of processing? The
response we identified in right angular gyrus when semantic and spatial context information was
aligned is consistent with earlier studies implicating this brain region in the integration of
information from multiple domains into a rich, meaningful context that can guide ongoing
cognition (Lanzoni et al., 2020     ). One recent proposal suggests that neurons in this area represent
high-dimensional inputs on a low-dimensional manifold encoding the relative position of items in
physical space and abstract conceptual space (Summerfield et al., 2020     ). This region, which is
maximally distant from sensory-motor cortex and equidistant from visual and motor cortex, might
have the capacity to form representations that are not dominated by one type of input or code. We
also found evidence of information integration in occipital regions that were closer to the input
regions of the visual to DMN pathways. These sites, in right lateral occipital cortex, have been
implicated in the integration of objects with their spatial location, allowing object coherence in
space in the face of saccadic movements that occur in natural vision while navigating
environments (McKyton and Zohary, 2007     ). Another fMRI study investigating the structure of
identity-related and location-related representations in visual regions found an interaction effect
of these aspects of knowledge for objects positioned in expected spatial locations, in a similar
fashion to our study (Gronau et al., 2008     ). These different levels of integration shared a common
characteristic: in both cases, the region implicated in integration was spatially interposed between
the pathways, consistent with the view that topography is highly relevant to information
integration since adjacent brain regions tend to share a high degree of functional connectivity and
represent similar information.

While we might assume that common visual-to-DMN pathways support memory access from
vision (as in this study), and subserve the generation of visual features when imagining objects
versus scenes, this hypothesis awaits empirical investigation. Moreover, our pathways are vision-
specific, and it remains unclear if there are analogous pathways from auditory or somatomotor
cortex to DMN. The generality of these pathways must be confirmed across tasks, since spatial
representations are likely to interact with other representational codes, including emotion and
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social information – the interdigitated pathways highlighted in these circumstances (Braga and
Buckner, 2017     ; DiNicola et al., 2020     ) might show anatomical differences or be broadly the
same as the pathways uncovered here. Moreover, many questions remain about information
integration across the semantic and spatial domains; does spatial juxtaposition promote the
emergence of an integrated code, and are neural representations that emerge at the intersection of
these pathways more than the sum of their parts? Although further research is needed, the
current study highlights how subdivisions within visual and DMN networks are related to types of
information, giving rise to distinct processing streams that capture different unimodal to
heteromodal transformations relevant to semantic and spatial processing, and shows how these
pathways might interact at multiple levels of the cortical hierarchy to produce coherent cognition.

Methods

Study 1. Task-based fMRI

Study 1: Participants

Thirty native English speakers (mean age = 22.6 ± 2.7 years, age-range 18-34 years, 8 males) with
normal or corrected-to-normal vision and no history of language disorders participated in this
study. Ethical approval was obtained from the Research Ethics Committees of the Department of
Psychology and York Neuroimaging Centre, University of York. Written informed consent was
obtained from all subjects prior to testing.

Study 1: Materials

The learning phase employed videos showing a walk-through for twelve different buildings (one
per video), shot from a first-person perspective. The videos and buildings were created using an
interior design program (Sweet Home 3D). Each building consisted of two rooms: a bedroom and a
living room/office, with an ajar door connecting the two rooms. The order of the rooms (1st and
2nd) was counterbalanced across participants. Each room was distinctive, with different
wallpaper/wall colour and furniture arrangements. Within each room, there were three framed
images of objects and animals, towards the start, middle, and end of each video (see top panel of
Supplementary Figure S1), each at the same distance from its neighbour (across the two rooms);
seventy-two images were presented overall. The images represented single items from 6 semantic
categories: musical instruments, gardening tools, sports equipment, mammals, fish and birds (12
pictures from each category). Half of the buildings contained images from the same semantic
category (‘Same Category Building’, SCB), and the other half contained images from different
semantic categories (‘Mixed Category Building’, MCB). The presentation of items within each room
in Mixed Category Buildings was controlled such that: 1) no item from the same category was
presented at the same location twice, and 2) no three categories were grouped together more than
once.

Study 1: Design and Procedure

Training Task

Subjects participated in a training session the day before the MRI scan, where they watched the
walkthrough videos, each lasting 49 s (Figure 9      and top panel of Figure S1). Participants
watched each video at least 6 times in 3 rounds (twice per round). Each round consisted of 4 mini-
blocks of videos containing 3 videos. After each mini-block, participants were given a test in
Psychopy3: they were asked to choose the room that each item was presented in, responding via
button press. Items were pictured at the top of the screen, with the correct room and another
room below (Supplementary Figure S1, left half of bottom panel). Screenshots were taken of the

https://doi.org/10.7554/eLife.94902.1


Tirso RJ Gonzalez Alam et al., 2024 eLife. https://doi.org/10.7554/eLife.94902.1 21 of 45

location of each framed image and the rooms themselves (from the entrance way), with the images
and their frames removed (see bottom panel of Supplementary Figure S1). They had 5 s to
respond, after which the correct room was presented as feedback for a further 5 s. Following each
round, there was a matching task, which reinforced participants’ memory of which rooms
belonged together. Two rooms from the same building were presented, with two items from that
building (one from each room) below. Participants were instructed to drag the objects into the
correct room of the building (Supplementary Figure S1, right half of bottom panel). Feedback
showed the correct object in each room. Finally, to establish how well the item-location pairs were
learned, participants were given a final test on all the rooms and items: this followed the structure
of the mini-block tests, except that materials from the entire session were included. If accuracy
was below 80%, participants watched the videos again until this threshold was reached. In total
participants spent approximately 2 hours on the training. The amount of training required was
established in pilot testing with 9 participants who did not take part in the main study. This also
confirmed the items were easily nameable.

fMRI Task

On the day of the scan, participants repeated the final test from the training day to establish how
well they retained the information. They then watched all 12 videos once again, in a
counterbalanced order, and performed the test phase a second time. The mean accuracy on the
first day was 95.1%, (SD=5.7%) while on the second day it was 97.1% (SD=3.8%)3     .

Inside the scanner, participants performed a semantic and spatial context memory task, using a
slow event-related design (Figure 9     ). The semantic task involved judgements about the semantic
category of objects and animals (using the same images that has been presented in the buildings),
while the spatial context task involved matching rooms that belonged to the same building. Both
tasks consisted of ‘no-decision’ and ‘decision’ trials. No-decision trials were optimised for
representational similarity analysis and included an image of the probe item (for 2s) followed by
an “arrow task” in which participants pressed ‘left’ or ‘right’ to match the direction of a series of
chevrons (‘<’ ‘>’) presented on the screen (for 3s), ending with a red fixation cross (1s). The probe
in the semantic task was an object or animal from the training; for the spatial context task, it was a
screenshot of an item’s location within a room (excluding the item itself). In decision trials, the
same types of probes were presented but they were followed by three central dots (for 4s)
indicating a decision would be made (Figure 9     ). In the decision phase, a target image (from the
same category or building as the probe) was presented together with a distractor image, creating a
2-alternative forced-choice judgment. In the spatial context task, the distractor was a room from a
different building, while in the semantic task, the distractor was an item from a different category.
On SCB (same category building) trials, semantic and spatial information were aligned in the sense
that the target and probe were from the same category and the same building. On MCB (mixed
category building) trials, semantic and spatial information did not converge: semantic targets
were in a different building from the probe, while spatial context targets were from a different
semantic category from the probe (see Figure 9      for the structure of semantic and spatial context
trials). Decisions were required within 4 s, and then the task progressed to the next trial.
Participants made their responses using a button box, pressing with their right index finger to
indicate whether the target image was on the left or right side of the screen. Participants were
encouraged to respond as quickly and accurately as possible. After the decision was made,
participants carried out the arrow task again (for 6.5s minus their response time) followed by a
red fixation cross (1s) indicating the end of the trial. The arrow task served as a non-memory
baseline and was included to increase separation of the BOLD signal between trials.

During the fMRI scan, there were 4 runs of the spatial context task and 4 runs of the semantic task.
Each run contained 36 trials and lasted approximately 6 minutes. All 72 objects were presented as
stimuli across blocks 1 and 2, and across blocks 3 and 4. Each run included 18 decision and 18 no
decision trials. The decision trials in each run were further subdivided into 9 SCB and 9 MCB
decision trials. The decision trials in run 1 and run 2 became the no-decision trials in runs 3 and 4,

https://doi.org/10.7554/eLife.94902.1


Tirso RJ Gonzalez Alam et al., 2024 eLife. https://doi.org/10.7554/eLife.94902.1 22 of 45Tirso RJ Gonzalez Alam et al., 2024 eLife. https://doi.org/10.7554/eLife.94902.1 22 of 45

Figure 9.

Top panel: the layout of two buildings is shown, one of them contains semantically related items (SCB), the other contains
unrelated items (MCB). These items and locations are shown in the example trials below. Bottom panel: trial procedure for
Semantic and Spatial Context decisions. The phases of a trial are shown (Probe, Dots, Decision, Arrow task, Fixation), and the
red square indicates the correct response (not shown to participants). Participants were required to press ‘left’ or ‘right’
buttons in the Decision phase. No-decision trials omitted the dots and decision phases.
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and vice versa. Spatial context runs preceded semantic runs. The order of trials within each run
was counterbalanced between participants. Prior to scanning, participants were given formal
instructions for the tasks and shown how to use the response box.

Study 1: Task-based fMRI

MRI Data Acquisition

Whole brain structural and functional MRI data were acquired using a 3T Siemens MRI scanner
utilising a 64-channel head coil, tuned to 123 MHz at York Neuroimaging Centre, University of
York. A Localiser scan and 8 whole-brain functional runs (4 of the semantic task, 4 of the spatial
context task) were acquired using a multi-band multi-echo (MBME) EPI sequence, each
approximately 6 minutes long (TR = 1.5 s; TEs = 12, 24.83, 37.66 ms; 48 interleaved slices per
volume with slice thickness of 3 mm (no slice gap); FoV = 24 cm (resolution matrix = 3×3×3; 80×80);
75° flip angle; 705 volumes per run (235 TRs with each TR collecting 3 volumes); 7/8 partial Fourier
encoding and GRAPPA (acceleration factor = 3, 36 ref. lines; multi-band acceleration factor = 2).
Structural T1-weighted images were acquired using an MPRAGE sequence (TR = 2.3 s, TE = 2.26 s;
voxel size = 1×1×1 isotropic; matrix size = 256 x 256, 176 slices; flip angle = 8°; FoV= 256 mm;
ascending slice acquisition ordering).

Multi-echo Data Pre-processing

This study used a multiband multi-echo (MBME) scanning sequence to optimise signal from medial
temporal regions (e.g., ATL, MTL) while also maintaining optimal signal across the whole brain
(Halai et al., 2014     ). We used TE Dependent ANAlysis (TEDANA, version 0.0.10, https://doi.org/10
.5281/zenodo.4725985     , https://tedana.readthedocs.io/     ) to combine the images (Kundu et al.,
2012     ; Kundu et al., 2013     ; Posse et al., 1999     ). Before images were combined, some pre-
processing was performed. FSL_anat (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fsl_anat     ) was used to
process the anatomical images, including re-orientation to standard (MNI) space (fslreorient2std),
automatic cropping (robustfov), bias-field correction (RF/B1 – inhomogeneity-correction, using
FAST), linear and non-linear registration to standard-space (using FLIRT and FNIRT), brain
extraction (using FNIRT, BET), tissue-type and subcortical structure segmentation (using FAST). The
multi-echo data were pre-processed using AFNI (https://afni.nimh.nih.gov/     ), including de-spiking
(3dDespike), slice timing correction (3dTshift; heptic interpolation), and motion correction of all
echoes aligned to the first echo (with a cubic interpolation; 3dvolreg was applied to the first echo
to realign all images to the first volume; these transformation parameters were then applied to
echoes 2 and 3). The pre-processing script is available at OSF (https://osf.io/sh79m/     ).

Task-based fMRI Data Analysis

Further pre-processing of the functional and structural data was carried out using FSL version 6.0
(FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl     ; Jenkinson et al., 2002     ; Smith et al., 2004     ;
Woolrich et al., 2009     ). Functional data were pre-processed using FSL’s FMRI Expert Analysis Tool
(FEAT). The TEDANA outputs (denoised optimally combined timeseries) registered to the
participants’ native space were submitted to FSL’s FEAT. The first volume of each functional scan
was deleted to negate T1 saturation effects. Pre-processing included high-pass temporal filtering
(Gaussian-weighted least-squares straight line fitting, with sigma = 50s), linear co-registration to
the corresponding T1-weighted image followed by linear co-registration to MNI152 2mm standard
space (Jenkinson and Smith, 2001     ), which was then further refined using FSL’s FNIRT nonlinear
registration (Andersson et al., 2007a; Andersson et al., 2007b) with 10mm warp resolution, spatial
smoothing using a Gaussian kernel with full-width-half-maximum (FWHM) of 5 mm, and grand-
mean intensity normalisation of the entire 4D dataset by a single multiplicative factor.
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Task GLM

Second and group-level analyses were also conducted using FSL’s FEAT version 6. Pre-processed
time series data were modelled using a general linear model in FSL, using FILM correcting for
local autocorrelation (Woolrich et al., 2001     ). We used an event-related design. Our aim was
twofold: (1) to characterise differential activation between the semantic and spatial context tasks
at each phase of the trials, and (2) to document any potential differences of activation in response
to MCB and SCB trials in probe and decision phases, in each task. To this end, the following 8 EVs
were entered into a general linear model, convolved with a double-gamma haemodynamic
response function: the probe, dots and decision phases (only correct responses) were modelled for
both MCB and SCB trials (3×2 EVs). Correct decisions made during the arrow task were modelled in
a separate EV to use as an explicit baseline. Incorrect and omitted responses in the decision phase,
as well as errors made during the arrow task, were combined into a regressor of no interest. The
fixation crosses between trials were not explicitly modelled. Probe and dots phases were modelled
as fixed-duration epochs, while semantic, spatial context and arrow decisions were modelled
using a variable epoch approach, based on each participant’s reaction time on that trial. At the
first level, the semantic and spatial context tasks were entered into separate models for each run
performed by all participants. We then combined all valid runs for each participant into a
participant level analysis, again separately for each task, at the second level (see ‘Data Exclusions’
below for details).

At the group level, we performed two separate univariate analyses. First, we compared activation
for the two tasks, contrasting semantic and spatial context models. Inputs for this analysis were
lower-level contrasts of the probe phase of each task against the implicit baseline, and the decision
phase of each task contrasted against the explicit baseline of arrow decisions. In our second
analysis, we used the same lower-level contrasts but examined the semantic and spatial context
tasks separately, examining within-task differences between MCB and SCB trials in the probe and
decision phases. This also allowed us to explore interactions between MCB/SCB trials and task. We
did not include any motion parameters in the model as the data submitted to these first level
analyses had already been denoised as part of the TEDANA pipeline (Kundu et al., 2012     ). At the
group-level, analyses were carried out using FMRIB’s Local Analysis of Mixed Effects (FLAME1)
stage 1 with automatic outlier detection (Beckmann et al., 2003     ; Woolrich, 2008     ; Woolrich et
al., 2004     ), using a (corrected) cluster significance threshold of p = 0.05, with a z-statistic
threshold of 2.6 (Eklund et al., 2016     ) to define contiguous clusters.

Data Exclusions

We excluded three participants: one due to excessive motion (mean framewise displacement >
0.3mm) in more than 50% of functional runs, another due to misunderstanding the task (0%
accuracy in MCB decisions in 3 out of 4 runs of the semantic task), and one due to low SCB
accuracy in 3 out of 4 runs of the spatial context task, with less than 50% of usable data. We also
excluded any individual runs where the decision accuracy was equal or below chance level (50%)
in the SCB condition4     . This led to the removal of four runs across three participants in the
semantic task, and twelve runs across eight participants in the spatial context task. Two runs were
removed due to data loss (a corrupted EV file and data transfer failure from the MRI scanner).
92.5% of the runs acquired were included in the analysis.

Study 1: Psychophysiological Interaction Analysis

In order to test for distinct semantic and spatial memory pathways that connect visual regions to
distinct subnetworks of the DMN, we conducted a psychophysiological interaction (PPI) analysis.
Semantic and spatial context visual seeds were created from the univariate activation to object
and scene probes in the semantic and spatial tasks respectively, masked by Yeo et al. (2011)      7-
network parcellation visual network. The timeseries of these seeds were then extracted after pre-
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processing. We then ran two separate models (one for each seed), which examined the main effect
of the experimental condition (i.e., SCB trials of the semantic task, MCB trials of the semantic task,
SCB trials of the spatial context task and MCB trials of the spatial context task). These models
included all eight regressors from the basic task model of Study 1 described in section 2.1.4., a PPI
term for each of the seven conditions and phases of the task (SCB/MCB trials of the probe, dots and
decision phases, and the arrow task), as well as the time series of the visual probe seeds, using the
generalized psychophysiological interaction (gPPI) approach (McLaren et al., 2012     ). The
regressors were not orthogonalized. All runs of each task were combined using fixed-effects
analyses for each participant, which allowed us to extract the connectivity parameters for each
experimental condition for each participant in each seed model.

Study 1: Representational Similarity Analysis

Since distinct but adjacent regions were associated with semantic and spatial context decisions, we
asked what they represented during probe presentation in MCB and SCB trials using
Representational Similarity Analysis (RSA). Probes were presented across decision and no-decision
trials, allowing a large number of probe responses to be included in the analysis. We examined the
voxels that responded to contrasts between semantic and spatial context decisions (including all
significant, suprathreshold voxels at the group level within a single region-of-interest). We
constructed semantic similarity matrices for each participant using all pairs of trials from the
semantic task, encoding category similarity on a scale of 0 to 2. Pairs of trials that shared a specific
category (e.g., birds) were assigned the strongest value (2), while those that shared only their
superordinate category (animals versus man-made objects) were assigned the middle value (1);
pairs of trials from different superordinate categories were assigned the weakest value (0). We
also constructed spatial context similarity matrices for each participant, encoding the
relationships between rooms and buildings on a scale of 0 to 2. Pairs of trials belonging to the
same room were assigned the strongest value (2), while those belonging to different rooms of the
same building were assigned a middle value (1); trials that belonged to different buildings were
assigned the lowest value (0).

Single-trial Estimation

GLMs were performed separately to estimate the activation pattern for each of 144 trials during
the probe phase in the two tasks. A Least Square–Single (LSS) approach was used, in which the
trial of interest was modelled as one regressor, with all other trials modelled as separate
regressors (Mumford et al., 2012     ). These models included eight regressors: (1) the probe phase of
interest (SCB or MCB); (2 and 3) all other probe phases (SCB and MCB); (4) Dots SCB; (5) Dots MCB;
(6) Decision SCB; (7) Decision MCB; (8) Arrow trials. Since the analysis focused on probe
presentation rather than decisions, incorrect trials were not excluded. Each event was modelled at
the time of stimulus onset and convolved with a canonical hemodynamic response function
(double gamma), whereas the fixations were treated as an implicit baseline. Pre-whitening was
applied. The same pre-processing procedure as in the univariate analysis was used except that no
spatial smoothing was applied. This voxel-wise GLM was used to compute the activation associated
with each trial, using the t-map for Representational Similarity Analysis to increase reliability by
normalizing for noise (Walther et al., 2016     ).

Second-Order Representational Similarity Analysis

A searchlight approach compared semantic and spatial context similarity matrices with neural
similarity matrices. Neural pattern similarity was estimated for cubic regions of interest (ROIs)
within t-maps for each trial, containing 125 voxels surrounding a central voxel (as in Fairhall and
Caramazza, 2013     ; Gao et al., 2022     ; Leshinskaya et al., 2017     ; Malone et al., 2016     ; Stolier
and Freeman, 2016     ; Viganò and Piazza, 2020     ; Wang et al., 2017     ).
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In each of these cubes, we derived a neural similarity matrix from Pearson correlations of pairs of
trials. We excluded any pairs presented in the same run to avoid any autocorrelation. Spearman’s
rank correlation was used to measure the alignment between task and brain-based models during
the probe phase. The resulting coefficients were Fisher’s z transformed and then entered into a
group level analysis carried out using FSL’s Randomise (Anderson and Robinson, 2001     ; Winkler
et al., 2014     ) (5,000 permutations with Threshold-Free Cluster Enhancement), thresholding the
results at p < .05.

We also performed cross-task similarity analysis, correlating semantic similarity to the neural
similarity matrix from the spatial context task (and vice versa). If participants use semantic
information learned during training to guide spatial context decisions, or spatial context
information from training to facilitate semantic decisions, we might be able to identify regions
sensitive to semantic and spatial context information across tasks. This should only be the case in
SCB and not MCB trials.

Study 2. Passive Viewing of Objects and Scenes
We examined passive viewing of objects and scenes in a sample of fifty-two healthy volunteers,
providing independent regions-of-interest for the analyses of Studies 1 and 3.

Study 2: Participants

Fifty-two participants with normal, or corrected-to-normal, vision gave informed consent. The
study was approved by the Research Ethics Committee at York Neuroimaging Centre.

Study 2: Stimuli

Dynamic stimuli were 3-second movie clips of faces, bodies, scenes, objects and scrambled objects
(see Supplementary Figure S2) designed to localize category-selective visual areas (Pitcher et al.,
2011     ). Only the scenes and object stimuli were used in the present study. There were sixty
movie clips for each category in which distinct exemplars appeared multiple times. Fifteen
different locations were used for the scene stimuli which were mostly pastoral scenes shot from a
car window while driving slowly through leafy suburbs, along with films flying through canyons
or walking through tunnels that were included for variety. Fifteen different moving objects were
selected that minimized any suggestion of animacy of the object itself or of a hidden actor pushing
the object (these included mobiles, windup toys, toy planes and tractors, balls rolling down sloped
inclines). Within each block, stimuli were randomly selected from within the entire set for that
stimulus category (faces, bodies, scenes, objects, scrambled objects).

Study 2: Procedure and Data Acquisition

Functional data were acquired over 6 block-design functional runs lasting 234 seconds each. Each
functional run contained three 18-second rest blocks, at the beginning, middle, and end of the run,
during which a series of six uniform color fields were presented for three seconds. Participants
were instructed to watch the movies but were not asked to perform any overt task.

Imaging data were acquired using a 3T Siemens Magnetom Prisma MRI scanner (Siemens
Healthcare, Erlangen, Germany) at the University of York. Functional images were acquired with a
twenty-channel phased array head coil and a gradient-echo EPI sequence (38 interleaved slices,
repetition time (TR) = 3 sec, echo time (TE) = 30ms, flip angle = 90%; voxel size 3mm isotropic;
matrix size = 128 x 128) providing whole brain coverage. Slices were aligned with the anterior to
posterior commissure line. Structural images were acquired using the same head coil and a high-
resolution T-1 weighted 3D fast spoilt gradient (SPGR) sequence (176 interleaved slices, repetition
time (TR) = 7.8 sec, echo time (TE) = 3ms, flip angle = 20 degrees; voxel size 1mm isotropic; matrix
size = 256 x 256).
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Study 2: Imaging Analysis

Functional MRI data were analyzed using AFNI (http://afni.nimh.nih.gov/afni     ). Images were slice-
time corrected and realigned to the third volume of the first functional run and to the
corresponding anatomical scan. All data were motion corrected and any TRs in which a
participant moved more than 0.3mm in relation to the previous TR were discarded from further
analysis. The volume-registered data were spatially smoothed with a 4-mm full-width-half-
maximum Gaussian kernel. Signal intensity was normalized to the mean signal value within each
run and multiplied by 100 so that the data represented percent signal change from the mean
signal value before analysis.

Data from all runs were entered into a general linear model (GLM) by convolving the standard
hemodynamic response function with the regressors of interest (faces, bodies, scenes, objects, and
scrambled objects) for dynamic and static functional runs. Regressors of no interest (e.g., 6 head
movement parameters obtained during volume registration and AFNI’s baseline estimates) were
also included in the GLM. Data from all fifty-two participants were entered in a group whole brain
analysis. Group whole brain contrasts were generated to quantify the neural responses across the
experimental conditions. Scene-selective areas were defined using a contrast of dynamic scenes
greater than dynamic objects, and object-selective areas were defined using a contrast of dynamic
objects greater than scrambled objects, following convention (Epstein and Kanwisher, 1998     ;
Malach et al., 1995     ). Activation maps were calculated using a t-statistical threshold of p = 0.001
and a cluster correction of 50 contiguous voxels (as these thresholds have been successfully used
in other studies to characterise activation in the visual perception literature, e.g., Nikel et al.,
2022     ; Zimmermann et al., 2018     ). The whole-brain results are presented in Supplementary
Figure S3.

Study 3. Analysis of intrinsic functional
connectivity using resting-state fMRI
The results of Study 1 suggested separate visual-DMN pathways recruited by semantic and spatial
context tasks. To provide converging evidence for this ‘dual pathway’ architecture, we examined
the intrinsic connectivity of sites identified in the univariate and RSA analyses in a separate
sample.

Study 3: Participants

One hundred and ninety-one student volunteers (mean age=20.1 ± 2.25 years, range 18 – 31; 123
females) with normal or corrected-to-normal vision and no history of neurological disorders
participated in this study. Written informed consent was obtained from all subjects prior to the
resting-state scan. The study was approved by the ethics committees of the Department of
Psychology and York Neuroimaging Centre, University of York. This data has been used in previous
studies to examine the neural basis of memory and mind-wandering, including region-of-interest
based connectivity analysis and cortical thickness investigations (Evans et al., 2020     ; Gonzalez
Alam et al., 2018     , 2021     , 2022     , 2019     ; Karapanagiotidis et al., 2017     ; Poerio et al., 2017     ;
Turnbull et al., 2018     ; Vatansever et al., 2017     ; Wang et al., 2018     ).

Study 3: Pre-processing

Pre-processing and statistical analyses of resting-state data were performed using the CONN
functional connectivity toolbox V.20a (http://www.nitrc.org/projects/conn     ; Whitfield-Gabrieli and
Nieto-Castanon, 2012     ) implemented through SPM (Version 12.0) and MATLAB (Version 19a). For
pre-processing, functional volumes were slice-time (bottom-up, interleaved) and motion-corrected,
skull-stripped and co-registered to the high-resolution structural image, spatially normalized to
the Montreal Neurological Institute (MNI) space using the unified-segmentation algorithm,
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smoothed with a 6 mm FWHM Gaussian kernel, and band-passed filtered (.008 - .09 Hz) to reduce
low-frequency drift and noise effects. A pre-processing pipeline of nuisance regression included
motion (twelve parameters: the six translation and rotation parameters and their temporal
derivatives), scrubbing (outlier volumes were identified through the composite artifact detection
algorithm ART in CONN with conservative settings, including scan-by-scan change in global signal
z-value threshold = 3; subject motion threshold = 5 mm; differential motion and composite motion
exceeding 95% percentile in the normative sample) and CompCor components (the first five)
attributable to the signal from white matter and CSF (Behzadi et al., 2007     ), as well as a linear
detrending term, eliminating the need for global signal normalization (Chai et al., 2012     ; Murphy
et al., 2009     ).

Seed Selection and Analysis

Intrinsic connectivity seeds were binarised masks derived from: (1) significant univariate clusters;
and (2) significant effects identified in representational similarity analysis. For semantic and
spatial probe effects, which characterised effects of visual perception, we created ROIs within Yeo
et al.’s (2011) visual central and peripheral networks combined. For semantic and spatial context
decisions, we identified regions within Yeo et al.’s (2011) combined DMN subnetworks. We also
examined the intrinsic connectivity of regions activated by SCB versus MCB probes in Study 1. For
representational similarity analyses, all voxels that survived thresholding at p<.05 in the MCB
conditions for the semantic and context task, as well as the cross-task analyses were binarised and
used as seeds. We excluded all non-grey matter voxels that fell within these masks.

Spatial Maps and Seed-to-ROI Analysis

We performed seed-to-voxel analyses convolved with a canonical haemodynamic response
function for each of these seeds. At the group-level, analyses were carried out using CONN with
cluster correction at p < .05, and a threshold of p-FDR = .001 (two-tailed) to define contiguous
clusters. Seed to ROI connectivity was extracted for each participant and seed using REX
implemented in CONN (Whitfield-Gabrieli and Nieto-Castanon, 2012     ), with percentage signal
change as units. These values were then entered into a series of repeated-measures ANOVAs.

Cognitive Decoding

Connectivity maps were uploaded to Neurovault (Gorgolewski et al., 2015      https://neurovault.org
/collections/13821/     ) and decoded using Neurosynth (Yarkoni et al., 2011     ). Neurosynth is an
automated meta-analysis tool that uses text-mining approaches to extract terms from
neuroimaging articles that typically co-occur with specific peak coordinates of activation. It can be
used to generate a set of terms frequently associated with a spatial map. The results of cognitive
decoding were rendered as word clouds using in-house scripts implemented in R. We excluded
terms referring to neuroanatomy (e.g., “inferior” or “sulcus”), as well as the second occurrence of
repeated terms (e.g., “semantic” and “semantics”). The size of each word in the word cloud relates
to the frequency of that term across studies.

Structural connectivity analysis
To provide converging evidence for parallel visual-to-DMN pathways, we performed tractography
analysis using DTI data from an independent sample derived from the Human Connectome Project
(HCP).

DTI pre-processing

We used data from a subgroup of 164 HCP participants who underwent diffusion-weighted
imaging at 3 Tesla (Uǧurbil et al., 2013      http://www.humanconnectome.org/study/hcp-young-adult
/     ). The imaging parameters were previously described in Uǧurbil et al. 2013     , and involved
acquiring 111 near-axial slices with an acceleration factor of 32, an isotropic resolution of 1.25
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mm3, and coverage of the entire head. The diffusion-weighted images were obtained using 90
uniformly distributed gradients in multiple Q-space shells (Caruyer et al., 2013     ), and this process
was repeated three times with different b-values and phase-encoding directions. We used a pre-
processed version of this dataset, previously described (Karolis et al., 2019     ; Thiebaut de Schotten
et al., 2020     ; Vu et al., 2015     ), that included steps to correct for susceptibility-induced off-
resonance field, motion, and geometrical distortion.

We used StarTrack software (https://www.mr-startrack.com     ) to perform whole-brain
deterministic tractography in the native DWI space. We applied an algorithm for spherical
deconvolutions (damped Richardson-Lucy), with a fixed fibre response corresponding to a shape
factor of α = 1.5 × 10–3 mm2.s−1 and a geometric damping parameter of 8. We ran 200 algorithm
iterations. The absolute threshold was set at three times the spherical fibre orientation
distribution (FOD) of a grey matter isotropic voxel, and the relative threshold was set at 8% of the
maximum amplitude of the FOD (Thiebaut de Schotten et al., 2011     ). To perform the whole-brain
streamline tractography, we used a modified Euler algorithm (Dell’Acqua et al., 2013     ) with an
angle threshold of 45°, a step size of 0.625 mm, and a minimum streamline length of 15 mm.

To standardize the structural connectome data, we followed these steps: first, we converted the
whole-brain streamline tractography into streamline density volumes, with the intensity
corresponding to the number of streamlines crossing each voxel. Second, we generated a study-
specific template of streamline density volumes using the Greedy symmetric diffeomorphic
normalization pipeline provided by ANTs. This average template was created for all subjects.
Third, we co-registered the template with a standard 1mm MNI152 template using the FLIRT tool
in FSL to produce a streamline density template in the MNI152 space. Finally, we registered
individual streamline density volumes to the template and applied the same transformation to the
individual whole-brain streamline tractography using ANTs GreedySyn and the Trackmath tool in
the Tract Querier software package (Wassermann et al., 2016     ). This produced whole-brain
streamline tractography in the standard MNI152 space.

Tract extractions and ROI analysis

Our starting point for extracting semantic and spatial context pathway tracts was each
participant’s whole-brain streamline tractography in MNI (1mm) space. We used the same
univariate regions described in Section 2.3.3 as seeds (i.e., the seeds in the intrinsic connectivity
analysis): these consisted of regions that were activated during the probe phase of each task,
masked by Yeo’s visual networks, and regions that were activated during the decision phase of
each task, masked by Yeo’s DMN networks. For each of our seeds, we used Trackvis (Wang and
Benner, 2007     ) to extract all streamlines emerging from these regions as a volume, yielding one
streamline group per seed per participant. Then, for each probe visual seed, we calculated what
percentage of streamlines touched one decision DMN ROI or the other (activated by semantic and
spatial context decisions; percentages adding to 100%); likewise, for each decision DMN seed, we
calculated what percentage of streamlines touched either visual probe ROI (activated by object
and scene probes; again adding to 100%). This allowed us to examine if the object probe regions
were more connected to the semantic decision DMN regions, and if the scene probe regions were
more connected to the spatial context DMN regions, in line with dual pathways.

Situating the pathways in whole-brain gradients
We examined the position of the semantic and context pathways in a functional connectivity space
defined by the first two dimensions of whole-brain intrinsic connectivity patterns, frequently
referred to as “gradients”. The first dimension of this space relates to the distinction between the
connectivity patterns of unimodal and heteromodal cortical regions, while the second dimension
captures the separation of visual and auditory/somatomotor regions (Margulies et al., 2016     ).
This analysis can reveal whether the semantic pathway shows more of a balance between visual
and somatosensory/auditory modalities than the spatial context pathway, in line with view that
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concepts are heteromodal, abstracted from multiple sensory-motor features (Lambon Ralph et al.,
2017     ). The analysis can also show whether the spatial context pathway is anchored in more
visual portions of this functional space, in line with this modality’s importance for scene
processing (Epstein and Baker, 2019     ).

First, we examined the univariate BOLD activation for each participant during the probe and
decision phases of each task. The decision phase was contrasted with the arrow task baseline to
control for low level motor responses. Next, we identified the MNI voxel location of the peak
response for each participant: for activation during the decision phase, this was done within a
mask of the DMN from the Yeo et al. (2011)      7-network parcellation, while for probe responses,
we performed this analysis within the visual network of the same parcellation. We then fitted a
sphere with a 5mm radius around this peak and used it as a ROI to extract the mean value in
Margulies et al.’s (2016) maps for the two dimensions or gradients described above. The results
were entered into a repeated measures 2×2 ANOVA with task and gradient as factors to establish
whether the semantic and spatial context pathways differed in their location in this functional
space.

ROI-based ANOVA analyses
ROI-based analyses of activation and intrinsic connectivity in Studies 1 and 3 were performed
using FSL’s “Featquery” tool for Study 1 and REX for Study 3, which we used to extract the
percentage signal change within unweighted, binarised masks. The ANOVAs were carried out
using IBM SPSS Statistics version 27. The results of post-hoc tests to interpret significant
interactions were corrected for multiple comparisons using the Holm-Bonferroni method (Aickin
and Gensler, 1996     ). All the p values reported in the Results section are Holm-Bonferroni
adjusted p values.

Visualisations of neural results
Brain maps were produced in BrainNet (Xia et al., 2013     ) using the extremum voxel algorithm,
with the exception of slices depicted in Figures 2     -4     , which were produced in FSL Eyes
(Figures 2      and 3     ) and MRIcroGL (Figure 4     ). Maps are provided in the following Neurovault
collection: https://neurovault.org/collections/13821/     .
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Reviewer #1 (Public Review):

In this study, Gonzalez Alam et al. report a series of functional MRI results about the neural
processing from the visual cortex to high-order regions in the default-mode network (DMN),
compiling evidence from task-based functional MRI, resting-state connectivity, and diffusion-
weighted imaging. Their participants were first trained to learn the association between
objects and rooms/buildings in a virtual reality experiment; after the training was completed,
in the task-based MRI experiment, participants viewed the objects from the earlier training
session and judged if the objects were in the semantic category (semantic task) or if they were
previously shown in the same spatial context (spatial context task). Based on the task data,
the authors utilised resting-state data from their previous studies, visual localiser data also
from previous studies, as well as structural connectivity data from the Human Connectome
Project, to perform various seed-based connectivity analysis. They found that the semantic
task causes more activation of various regions involved in object perception while the spatial
context task causes more activation in various regions for place perception, respectively.
They further showed that those object perception regions are more connected with the
frontotemporal subnetwork of the DMN while those place perception regions are more
connected with the medial-temporal subnetwork of the DMN. Based on these results, the
authors argue that there are two main pathways connecting the visual system to high-level
regions in the DMN, one linking object perception regions (e.g., LOC) leading to semantic
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regions (e.g., IFG, pMTG), the other linking place perception regions (e.g., parahippocampal
gyri) to the entorhinal cortex and hippocampus.

Below I provide my takes on (1) the significance of the findings and the strength of evidence,
(2) my guidance for readers regarding how to interpret the data, as well as several caveats
that apply to their results, and finally (3) my suggestions for the authors.

(1) Significance of the results and strength of the evidence

I would like to praise the authors for, first of all, trying to associate visual processing with
high-order regions in the DMN. While many vision scientists focus specifically on the
macroscale organisation of the visual cortex, relatively few efforts are made to unravel how
neural processing in the visual system goes on to engage representations in regions higher up
in the hierarchy (a nice precedent study that looks at this issue is by Konkle and Caramazza,
2017). We all know that visual processing goes beyond the visual cortex, potentially further
into the DMN, but there's no direct evidence. So, in this regard, the authors made a nice try to
look at this issue.

Having said this, the authors' characterisation of the organisation of the visual cortex (object
perception/semantics vs. place perception/spatial contexts) does not go beyond what has been
known for many decades by vision neuroscience. Specifically, over the past two decades,
numerous proposals have been put forward to explain the macroscale organisation of the
visual system, particularly the ventrolateral occipitotemporal cortex. A lateral-medial
division has been reliably found in numerous studies. For example, some researchers found
that the visual cortex is organised along the separation of foveal vision (lateral) vs. peripheral
vision (medial), while others found that it is structured according to faces (lateral) vs. places
(medial). Such a bipartite division is also found in animate (lateral) vs. inanimate (medial),
small objects (lateral) vs. big objects (medial), as well as various cytoarchitectonic and
connectomic differences between the medial side and the lateral side of the visual cortex.
Some more recent studies even demonstrate a tripartite division (small objects, animals, big
objects; see Konkle and Caramazza, 2013). So, in terms of their characterisation of the visual
cortex, I think Gonzalez Alam et al. do not add any novel evidence to what the community of
neuroscience has already known.

However, the authors' effort to link visual processing with various regions of the DMN is
certainly novel, and their attempt to gather converging evidence with different
methodologies is commendable. The authors are able to show that, in an independent sample
of resting-state data, object-related regions are more connected with semantic regions in the
DMN while place-related regions are more connected with navigation-related regions in the
DMN, respectively. Such patterns reveal a consistent spatial overlap with their Kanwisher-
type face/house localiser data and also concur with the HCP white-matter tractography data.
Overall, I think the two pathways explanation that the authors seek to argue is backed by
converging evidence. The lack of travelling wave type of analysis to show the spatiotemporal
dynamics across the cortex from the visual cortex to high-level regions is disappointing
though because I was expecting this type of analysis would provide the most convincing
evidence of a 'pathway' going from one point to another. Dynamic caudal modelling or
Granger causality may also buttress the authors' claim of pathway because many readers, like
me, would feel that there is not enough evidence to convincingly prove the existence of a
'pathway'.

(2) Guidance to the readers about interpretation of the data

The organisation of the visual cortex and the organisation of the DMN historically have been
studied in parallel with little crosstalk between different communities of researchers. Thus,
the work by Gonzalez Alam et al. has made a nice attempt to look at how visual processing
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goes beyond the realm of the visual cortex and continues into different subregions of the
DMN.

While the authors of this study have utilised multiple methods to obtain converging evidence,
there are several important caveats in the interpretation of their results:

(1) While the authors choose to use the term 'pathway' to call the inter-dependence between a
set of visual regions and default-mode regions, their results have not convincingly
demonstrated a definitive route of neural processing or travelling. Instead, the findings
reveal a set of DMN regions are functionally more connected with object-related regions
compared to place-related regions. The results are very much dependent on masking and
thresholding, and the patterns can change drastically if different masks or thresholds are
used.

(2) Ideally, if the authors could demonstrate the dynamics between the visual cortex and
DMN in the primary task data, it would be very convincing evidence for characterising the
journey from the visual cortex to DMN. Instead, the current connectivity results are derived
from a separate set of resting state data. While the advantage of the authors' approach is that
they are able to verify certain visual regions are more connected with certain DMN regions
even under a task-free situation, it falls short of explaining how these regions dynamically
interact to convert vision into semantic/spatial decision.

(3) There are several results that are difficult to interpret, such as their psychophysiological
interactions (PPI), representational similarity analysis, and gradient analysis. For example,
typically for PPI analysis, researchers interrogate the whole brain to look for PPI connectivity.
Their use of targeted ROI is unusual, and their use of spatially extensive clusters that
encompass fairly large cortical zones in both occipital and temporal lobes as the PPI seeds is
also an unusual approach. As for the gradient analysis, the argument that the semantic task is
higher on Gradient 1 than the spatial task based on the statistics of p-value = 0.027 is not a
very convincing claim (unhelpfully, the figure on the top just shows quite a few blue 'spatial
dots' on the hetero-modal end which can make readers wonder if the spatial context task is
really closer to the unimodal end or it is simply the authors' statistical luck that they get a p-
value under 0.05). While it is statistically significant, it is weak evidence (and it is not
pertinent to the main points the authors try to make).

(3) My suggestion for the authors

There are several conceptual-level suggestions that I would like to offer to the authors:

(1) If the pathway explanation is the key argument that you wish to convey to the readers, an
effective connectivity type of analysis, such as Granger causality or dynamic caudal
modelling, would be helpful in revealing there is a starting point and end point in the
pathway as well as revealing the directionality of neural processing. While both of these
methods have their issues (e.g., Granger causality is not suitable for haemodynamic data,
DCM's selection of seeds is susceptible to bias, etc), they can help you get started to test if the
path during task performance does exist. Alternatively, travelling wave type of analysis (such
as the results by Raut et al. 2021 published in Science Advances) can also be useful to support
your claims of the pathway.

(2) I think the thresholding for resting state data needs to be explained - by the look of Figure
2E and 3E, it looks like whole-brain un-thresholded results, and then you went on to compute
the conjunction between these un-thresholded maps with network templates of the visual
system and DMN. This does not seem statistically acceptable, and I wonder if the conjunction
that you found would disappear and reappear if you used different thresholds. Thus, for
example, if the left IFG cluster (which you have shown to be connected with the visual object
regions) would disappear when you apply a conventional threshold, this means that you need
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to seriously consider the robustness of the pathway that you seek to claim... it may be just a
wild goose that you are chasing.

(3) There are several analyses that are hard to interpret and you can consider only reporting
them in the supplementary materials, such as the PPI results and representational similarity
analysis, as none of these are convincing. These analyses do not seem to add much value to
make your argument more convincing and may elicit more methodological critiques, such as
statistical issues, the set-up of your representational theory matrix, and so on.

https://doi.org/10.7554/eLife.94902.1.sa1

Reviewer #2 (Public Review):

Summary:

In this manuscript, Alam et al. sought to understand how memory interacts with incoming
visual information to effectively guide human behavior by using a task that combines spatial
contexts (houses) with objects of one or multiple semantic categories. Three additional
datasets (all from separate participants) were also employed: one that functionally localized
regions of interest (ROIs) based on subtractions of different visually presented category types
(in this case, scenes, objects, and scrambled objects); another consisting of resting-state
functional connectivity scans, and a section of the Human Connectome Project that employed
DTI data for structural connectivity analysis. Across multiple analyses, the authors identify
dissociations between regions preferentially activated during scene or object judgments,
between the functional connectivity of regions demonstrating such preferences, and in the
anatomical connectivity of these same regions. The authors conclude that the processing
streams that take in visual information and support semantic or spatial processing are
largely parallel and distinct.

Strengths:

(1) Recent work has reconceptualized the classic default mode network as two parallel and
interdigitated systems (e.g., Braga & Buckner, 2017; DiNicola et al., 2021). The current
manuscript is timely in that it attempts to describe how information is differentially
processed by two streams that appear to begin in visual cortex and connect to different
default subnetworks. Even at a group level where neuroanatomy is necessarily blurred
across individuals, these results provide clear evidence of stimulus-based dissociation.

(2) The manuscript contains a large number of analyses across multiple independent
datasets. It is therefore unlikely that a single experimenter choice in any given analysis
would spuriously produce the overall pattern of results reported in this work.

Weaknesses:

(1) Throughout the manuscript, a strong distinction is drawn between semantic and spatial
processing. However, given that only objects and spatial contexts were employed in the
primary experiment, it is not clear that a broader conceptual distinction is warranted
between "semantic" and "spatial" cognition. There are multiple grounds for concern
regarding this basic premise of the manuscript.
a. One can have conceptual knowledge of different types of scenes or spatial contexts. A city
street will consistently differ from a beach in predictable ways, and a kitchen context
provides different expectations than a living room. Such distinctions reflect semantic
knowledge of scene-related concepts, but in the present work spatial and "all other" semantic
information are considered and discussed as distinct and separate.
b. As a related question, are scenes uniquely different from all other types of
semantic/category information? If faces were used instead of scenes, could one expect to see
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different regions of the visual cortex coupling with task-defined face > object ROIs? The
current data do not speak to this possibility, but as written the manuscript suggests that all
(non-spatial) semantic knowledge should be processed by the FT-DMN.
c. Recent precision fMRI studies characterizing networks corresponding to the FT-DMN and
MTL-DMN have associated the former with social cognition and the latter with scene
construction/spatial processing (DiNicola et al., 2020; 2021; 2023). This is only briefly
mentioned by the authors in the current manuscript (p. 28), and when discussed, the authors
draw a distinction between semantic and social or emotional "codes" when noting that future
work is necessary to support the generality of the current claims. However, if generality is a
concern, then emphasizing the distinction between object-centric and spatial cognition,
rather than semantic and spatial cognition, would represent a more conservative and better-
supported theoretical point in the current manuscript.

(2) Both the retrosplenial/parieto-occipital sulcus and parahippocampal regions are adjacent
to the visual network as defined using the Yeo et al. atlas, and spatial smoothness of the data
could be impacting connectivity metrics here in a way that qualitatively differs from the
(non-adjacent) FT-DMN ROIs. Although this proximity is a basic property of network locations
on the cortical surface, the authors have several tools at their disposal that could be
employed to help rule out this possibility. They might, for instance, reduce the smoothing in
their multi-echo data, as the current 5 mm kernel is larger than the kernel used in
Experiment 2's single-echo resting-state data. Spatial smoothing is less necessary in multi-
echo data, as thermal noise can be attenuated by averaging over time (echoes) instead of
space (see Gonzalez-Castillo et al., 2016 for discussion). Some multi-echo users have eschewed
explicit spatial smoothing entirely (e.g., Ramot et al., 2021), just as the authors of the current
paper did for their RSA analysis. Less smoothing of E1 data, combined with a local erosion of
either the MTL-DMN and VIS masks (or both) near their points of overlap in the RSFC data,
would improve confidence that the current results are not driven, at least in part, by spatial
mixing of otherwise distinct network signals.

(3) The authors identify a region of the right angular gyrus as demonstrating a "potential role
in integrating the visual-to-DMN pathways." This would seem to imply that lesion damage to
right AG should produce difficulties in integrating "semantic" and "spatial" knowledge. Are
the authors aware of such a literature? If so, this would be an important point to make in the
manuscript as it would tie in yet another independent source of information relevant to the
framework being presented. The closest of which I am aware involves deficits in cued recall
performance when associates consisted of auditory-visual pairings (Ben-Zvi et al., 2015), but
that form of multi-modal pairing is distinct from the "spatial-semantic" integration forwarded
in the current manuscript.
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