
Bangor University

DOCTOR OF PHILOSOPHY

Cryptanalysis Using Pattern Recognition Tools

Sharif, Suhaila Omer

Award date:
2013

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Aug. 2024

https://research.bangor.ac.uk/portal/en/theses/cryptanalysis-using-pattern-recognition-tools(4a2e31bb-a290-4b79-9d22-2136434b35dc).html

Cryptanalysis Using Pattern

Recognition Tools

A thesis submitted in candidature for the degree of

Doctor of Philosophy

by

Suhaila Omer Sharif

PRIFYSG OL

BANGOR
UNIVERSITY

School of Computer Science

Bangor University

United Kingdom

February 2013

Abstract

For cryptanalysis, an important task is to identify the encryption algorithm that

was used to encrypt a plain-text file. The main objective of this dissertation is to

find the best classification algorithm that can identify the encryption method for

block and stream cipher algorithms.

This work provides a comparison of classification of encryption output between

different types of block and stream cipher algorithms, with an evaluation be­

tween ECB and CBC modes using 8-bit and 16-bit codes. It provides results for

different numbers of keys for all the encryption algorithms (block and stream

cipher algorithms) that were analysed and determines the accuracy in each case.

We have created an encryption dataset that was used for the experimental eval­

uation. Different block and stream cipher algorithms were used to encrypt the

source dataset which were a random sampling of text file data taken from the In­

ternet in 2010 that included various types of data such as reports, papers, news,

text from websites and journals. These samples ranged in sizes from 100 bytes

to 10000 bytes. An initial analysis of the encrypted text shows that the data is

random in nature. The Frequency Test shows a uniform distribution for the en­

crypted text. The Chi-square test also indicates the distribution of character codes

is uniform. A compression test using the PPM text compression algorithm also

shows that the encrypted text is uncompressible and therefore is random in na­

ture. These tests show that the encrypted data is therefore difficult to classify.

The block and stream cipher algorithms used to encrypt the data used 8-bit and

16-bit codes. The study included two groups of block cipher algorithms: the first

group considered the following block cipher algorithms: DES (64-bit), IDEA (128-

bit), AES (128, 192, 256-bit) and RC2 (42, 84, 128-bit). The second group included

another seven block cipher algorithms: RC2, RC6, Blowfish, Twofish, XTA, CAST

and DESede (3DES), all with the same key size (128-bit). As well, the following

stream cipher algorithms were investigated: Grain 128-bit, HC 128-bit, RC4 128-

bit, VMPC 128-bit and Salsa20 128-bit.

The results from the classification experiment show that Pattern Recognition tech­

niques are useful tools for cryptanalysis as a means of identifying the type of

9

encryption algorithm used to encrypt the data. As well, the result shows that in­

creasing the number of encryption keys will result in reducing the classification

accuracy. The results also show that it is possible to achieve an accuracy above

40% with some classifiers when each file is encrypted with different numbers of

keys using block ciphers. It was also clear that increasing the number of files used

also improves accuracy. The RoFo classifier had the best performance when iden­

tifying the encryption method for ciphered data, while IBL' s performance was the

worst. Moreover, the performance of the classifiers improved significantly when

identification of four different algorithms was considered. It was noted that the

three versions of AES (128, 192 and 256-bit) were not distinguishable within AES.

Further, RC2 (128-bit) does not match the other versions of the same encoding

RC2 (42, 84-bit).

For stream cipher algorithms, the results show that it is more difficult to clas­

sify encrypted output compared to block cipher algorithms. This is due to the

bit based streaming approach adopted by the algorithms and the randomly dis­

tributed characters that are consequently produced in the encrypted output.

Acknowledgement

First of all, I please to record my sincerest thankfulness to an excellent supervi­

sor Dr.Sa'ad Mansoor and my committee thesis Prof.Ludmila Kuncheva for being

one of the best Supervisor and Professors; I have been ever familiar. Both supply

me long term of study of inestimable support to my research while allowing me

the freedom to prepare this thesis what it is. Apart from being an excellent Super­

visor Dr.Sa'ad has as also been the best advisor I could have had during my stay

at Bangor. Prof. Ludmila Kuncheva and Dr.Sa'ad has been a friend, a supervisor

and an excellent teacher. Both have been beside me at every stage of my studies

at Bangor University. With her and his help, I have been able to publish papers in

various highly-respected journals and conference proceedings. Both also helped

me in progressing towards my analytical skills when proving our theoretical re­

sults. Thanks, Dr. Sa'ad and Prof. Ludmila Kuncheva for your kindness. I want

to thank Professor Nigel John for his advice. I want to thank staffs in School

of Computer Sciences and colleagues who provided me with technical assistance

and friendship during my student days. I would like to give my sincere gratitude

to Olga for her help. I would also like to express my thanks to all my best friends

(Ali, Shilan, Azida, Suhaib and Ibrahim) true friendship and unconditional sup­

port. Of course, I cannot forget my other colleagues: Nadim, Jess, Dr. Frank. I

would like to express my heartfelt gratitude to my parents for providing me with

a good education from the earliest days in life, and for education me to work hard

and understand the value of that which is excellent. Furthermore, warm thanks

to all my sisters and brothers. Many thanks to the School of Computer Science

at Bangor University for helping. I would like to also express my thanks to DI­

shad Othman Fathulla Deputy Minister of the Ministry of Finance in Kurdistan

Region. I would like to thanks Dr. Tehan Bill for developing my thesis and giving

helpful advice.

Contents

1. Introduction 24

2. Cryptography and Cryptanalysis

2.1 Introduction

2.2 The Importance of Cryptography .

2.3 How Encryption Works

2.4 Feistel and Substitution-Permutation Network(SPN) .

2.5 Modern Cryptography

2.5.1 Asymmetric Key Encryption

2.5.2 Symmetric Key Encryption

2.6 A Brief Overview of Block ciphers

2.6.1 Data Encryption Standard (DES) .

2.6.2 Advanced Encryption Standard

2.6.3 Triple Data Encryption Standard

...

2.6.4 International Data Encryption Algorithm (IDEA)

2.6.5 Twofish

2.6.6 Blowfish

2.6.7 RC2.

2.6.8 RCS.

2.6.9 RC6

2.6.10 Serpent .

2.6.11 CAST-128

2.6.12 CAST-256

28

28

29

30

32

33

33

33

35

35

39

43

44

45

47

48

48

50

51

51

53

Contents 12

2.7 A Brief Overview of Stream Ciphers 54

2.7.1 RC4 54

2.7.2 Grain-128 55

2.7.3 Salsa20 . 56

2.7.4 HC-128. 56

2.7.5 HC-256. 57

2.7.6 VMPC 58

2.8 Symmetric Cryptography Modes 58

2.8.1 Electronic Codebook Mode (ECB) 59

2.8.2 Cipher-Block Chaining Mode (CBC) . 60

2.8.3 Cipher Feedback Mode (CFB) 60

2.8.4 Output Feedback mode (OFB) 61

2.9 Cryptanalysis 61

2.9.1 Ciphertext-Only Attacks . 62

2.9.2 Known-Plaintext Attacks 62

2.9.3 Chosen-Plaintext Attacks 62

2.9.4 Chosen-Ciphertext Attacks 63

2.10 Differential Cryptanalysis 63

2.11 Linear Cryptanalysis 64

3. Pattern Recognition ' 68

3.1 Introduction 68

3.2 Multidimensional Scaling (MDS) 71

3.3 Statistical Methods 72

3.4 Machine Learning Based Methods (ML) 73

3.5 WEKA Data Mining Tools 74

3.6 Classifiers 76

3.6.1 Classifier Methods 77

3.7 Encryption Classification . 85

Contents

4. Creating and Analysing the Datasets

4.1 Randomness in Cryptographic Systems

4.2 Definition of a Random Number Sequence

4.3 Motivation and Aim

4.4 Methodology

4.4.1 JavaTM Cryptography Extension (JCE)

4.4.2 Cryptographic Algorithm Benchmarking Utility

4.5 Generating the Datasets

4.6 Analysis of the Dataset .

4.6.1 Frequency Test .

4.6.2 Producing Histograms .

4.6.3 Chi-Square Test (x2) • .

13

....... 87

87

89

90

91

91

91

93

97

97

100

103

4.6.4 Compressing the Dataset Using the PPM Compression Al-

gorithm

5. Encryption Classification for Blo~k Cipher Algorithms

5.1 Introduction ..

5.2 Methodologies .

5.2.1 Using Matlab to Generate WEKA Files

5.2.2 Using 10 Fold Cross-Validation .

5.2.3 Confusion Matrix

5.3 Identification of Encryption Method

5.4 Experimental Results

5.4.l Block Cipher Algorithms with ECB Mode .

5.4.2 Block Cipher Algorithms With CBC Mode

108

....... 111

111

112

112

112

113

114

116

116

131

5.5 Comparisons Between ECB and CBC Modes Using 8-bit and 16-bit

encoding

5.5.1 Using 8-bit codes with ECB and CBC Modes

5.5.2 Using 16-bit Codes with ECB and CBC Modes

145

145

147

Contents 14

5.5.3 Finding the Most Accurate Classification Results with ECB

and CBC Modes 148

5.5.4 Execution Time to Build the Model . 150

6. Encryption Classification for Stream Cipher Algorithms 153

6.1 Introduction . 153

6.2 Methodology 153

6.3 Identification of Encryption Method 154

6.4 Experimental Results 154

6.4.1 Results of Stream Cipher algorithms

6.4.2 Multidimensional Scaling (MDS) ..

6.4.3 The Most Accurate Classifier Results.

156

162

166

6.5 A Comparison Between the Classification of Stream and Block Ci-

pher Algorithms . 167

7. Conclusion and Future Work

7 .1 Review of Thesis . . .

7.2 Review of Hypothesis

7.3 Review of Aim and Objectives.

7.4 Future Work

....... 171

171

173

173

174

A. Matlab Code to Generate the WEKA Files and Histograms 175

A.l Generate WEKA File Code .

A.2 Generate Histogram

B. Generate Histograms for Each Block Cipher Algorithms .

Bibliography .

175

176

. 177

. 186

List of Figures

2.1 Figure of Feistel cipher. . . .

2.2 Symmetric Key Encryption.

2.3 The DES algorithm [1] ...

2.4 The F-function of DES [2].

2.5 State matrix.

2.6 AES Encryption Process [3].

2.7 Sub-byte Transformation [3]. .

2.8 Shift-rows Transformation. . .

2.9 Encryption and Decryption of 3DES.

2.10 An overview of the cipher construction [4].

2.11 The Blowfish algorithm [5].

2.12 RCS Encryption Algorithm.

2.13 RC6 Encryption Algorithm [6].

2.14 Encryption and Decryption of CAST-128 [7].

3.1 Recognition System [8].

3.2 Basic structure of learning system.

32

34

36

36

40

41

41

42

44

47

48

49

50

52

70

73

3.3 Sample output information from WEKA for the Naive Bayesian

classifier. 77

4.1 Graphical User Interface for the Cryptographic Algorithm Bench-

marking Utility

4.2 Sample of AES block cipher before being encrypted.

4.3 Sample of AES block cipher encrypted output in ASCII. .

92

94

94

List of Figures 16

4.4 Diagram of block cipher algorithms with 240 variation used to pro-

duce the data points used in the classification experiments. 96

4.5 Diagram of block cipher algorithms with 120 variation used to pro-

duce the data points used in the classification experiments. 96

4.6 Diagram of block cipher algorithms with 400 variation used to pro-

duce the data points used in the classification experiments. 96

4.7 Histograms of AES and DES block cipher algorithms with CBC

mode 100

4.8 Histograms of IDEA and RC2 block cipher algorithms with CBC

mode. 101

4.9 Histograms of RC4 and HC128 stream cipher algorithms. 102

4.10 Residual plot for the AES algorithm. 105

4.11 Residual plot for the RC2 algorithm. 106

4.12 Residual plot for the RC4 algorithm. 107

4.13 Residual plot for the HC algorithm. 107

4.14 Block cipher file position against compression (bpc). . 109

5.1 Encryption accuracy of different algorithms (AES, RC2, IDEA(128-

bit)) and DES(64-bit) key sizes. 118

5.2 The accuracy for each algorithm for the 4 classes dataset. 120

5.3 Encryption accuracy with individual number of keys (1, 3 and 30)

with ECB mode 122

5.4 Scatter-plots of the 240 data points and the centres for the ECB

mode with the 8-bit encoding using one key. 124

5.5 The Distance Matrix for ECB mode with the 8-bit encoding. The

class labels are as follows: 1 AES(128), 2 AES(192), 3 AES(256), 4

DES(64), 5 IDEA(128), 6 RC2(128), 7 RC2(42) and 8 RC2(84) 124

5.6 Scatter-plots of the 240 data points and the centres for the ECB

mode with 8-bit encoding using three keys. 125

5.7 The Distance Matrix for ECB mode with 8-bit encoding. The class

labels are as follows: 1 AES(128), 2 AES(192), 3 AES(256), 4 DES(64),

5 IDEA(128), 6 RC2(128), 7 RC2(42) and 8 RC2(84) 125

List of Figures

5.8 Scatter-plot of the 240 data points and the centres for the ECB mode

with 8-bit encoding encoding using five keys.

5.9 The image of the Distance Matrix for ECB mode with 8-bit coding.

The class labels are as follows: 1 AES (128), 2 AES (192), 3 AES

(256), 4 DES (64), 5 IDEA (128), 6 RC2 (128), 7 RC2 (42) and 8 RC2

17

126

(84) 126

5.10 The accuracy for all algorithms with different instances (120, 240

and 400 instances (BECC)) with ECB mode. 128

5.11 The accuracy for each of the classifiers with ECB mode. 130

5.12 The accuracy for each of the classifiers with ECB mode. 131

5.13 Encryption accuracy with the 4 classes dataset with CBC mode

with different numbers of keys. 133

5.14 The accuracy for each classifiers with CBC Mode. 135

5.15 Encryption classification accuracy with the 4 classes dataset with

CBC mode with different numbers of key. 136

5.16 The accuracy for each classifier with CBC mode 16-bit codes. . 137

5.17 Encryption classification accuracy with CBC mode using different

instances for block ciphers. 139

5.18 Encryption classification accuracy RC2, RC6, Blowfish, Twofish,

XTA, CAST and DESede algorithms. 139

5.19 Scatter-plots of the 240 data points and the centres for the ECB

mode with the 8 encoding 140

5.20 The image of the Distance Matrix for ECB mode with the 8-bit en­

coding. The class labels are as follows: 1 AES (128), 2 AES (192), 3

AES (256), 4 DES(64), 5 IDEA (128), 6 RC2 (128), 7 RC2(42) and 8

RC2(84) 141

5.21 Scatter-plots of the 240 data points and the centres for the CBC

mode with the 8-bit encoding 142

5.22 The image of the Distance Matrix for CBC mode with the 8-bit en­

coding. The class labels are as follows: 1 AES (128), 2 AES (192), 3

AES (256), 4 DEA (64), 5 IDEA (128), 6 RC2 (128), 7 RC2 (42) and 8

RC2 (84). 143

5.23 Scatter-plots of thet-240 data points and the centres for the ECB

mode with the 16-bit encoding 143

List of Figures 18

5.24 The image of the Distance Matrix for ECB mode with the 16-bit

encoding. The class labels are as follows: 1 AES (128), 2 AES (192),

3 AES (256), 4 DEA (64), 5 IDEA (128), 6 RC2 (128), 7 RC2 (42) and

8 RC2 (84) 144

5.25 Scatter-plots of the 240 data points and the centres for the CBC

mode with the 16 encoding 144

5.26 The image of the Distance Matrix for CBC mode with the 16-bit

encoding. The class labels are as follows: 1 AES (128), 2 AES (192),

3 AES (256), 4 DEA (64), 5 IDEA (128), 6 RC2 (128), 7 RC2 (42) and

8 RC2 (84). 145

5.27 The accuracy for each of the classifiers with ECB and CBC modes .. 146

5.28 The accuracy for each of the classifiers with ECB and CBC modes . . 147

6.1 Classification result of Naive Bayes classifier from WEKA. 156

6.2 Diagram of stream cipher algorithms with 150 variation as used to

produce the data points. 161

6.3 An accuracy of stream cipher algorithms. 162

6.4 Scatter-plots of the 150 data points and the class centres for the 8-

bit encoding 163

6.5 An image of the Distance Matrix for 8-bit encoding. The class la-

bels are as follows: 1 Grain (128), 2 HC (128), 3 RC4 (128), 4 Salsa20

(128) and 5 VMPC (128). 164

6.6 Scatter-plots of the 150 data points and the class centres for the 16-

bit encoding. 165

6.7 An image of the Distance Matrix for 16-bit. The class labels are as

follows: 1 Grain (128), 2 HC (128), 3 RC4 (128), 4 Salsa20 (128) and

5 VMPC (128). 166

6.8 Accuracy result for block and stream ciphers with 8-bit codes. 168

6.9 Accuracy result for block and stream ciphers with 16-bit codes. 169

B.1 Histograms for AES and DES algorithms with ECB mode using 8-

bits 178

B.2 Histograms for IDEA and RC2 algorithms with ECB mode using

8-bit codes. 179

List of Figures

B.3 Histograms for AES and DES algorithms with CBC mode using

8-bit codes.

B.4 Histograms for IDEA and RC2 algorithms with CBC mode using

8-bit codes.

B.5 Histograms for AES and DES algorithms with ECB mode using 16-

bit codes.

19

180

181

182

B.6 Histograms for IDEA and RC2 algorithms with ECB mode using

16-bit codes. 183

B.7 Histograms for AES and DES algorithms with CBC mode using

16-bit codes. 184

B.8 Histograms for IDEA and RC2 algorithms with CBC mode using

16-bit codes. 185

List of Tables

2.1 Initial Permutation [9]

2.2 Final Permutation I p - 1 [9].

2.3 Expand P-Box [9].

(a) Primitive function

(b) Bit-selection E(P-Box).

2.4 Straight Permutation (10]. .

2.5 Permutation Choice(PCl)[lO].

2.6 Rotation Sub-key (10].

2.7 Number of rounds and data length.

2.8 Shows the relationship between rounds and rows (11].

2.9 Types of F-function applied in each round.

4.1 Bangor Sources Files Corpus (BSFC).

4.2 Bangor Encryption Classification Corpus (BECC).

4.3 Chi-square for different block cipher algorithms

4.4 Chi-square for two stream cipher algorithms

4.5 Residual for the block cipher algorithms.

4.6 Residual for the stream cipher.

37

37

38

38

38

39

39

39

41

43

52

95

95

104

105

105

106

4.7 Compression results for different block cipher using PPM method. 109

4.8 Compression results for different stream cipher using PPM method. 109

5.1 Confusion Matrix 113

5.2 Accuracy results for the 4 classes with 1, 3, 5 and 30 numbers of key sizes

with ECB mode. 118

List of Tables 21

5.3 Accuracy results for the 8 classes with different numbers of keys with

ECB mode. 119

5.4 Accuracy results for the 4 classes with different numbers of keys in ECB

mode. 120

5.5 Accuracy results for the 8 classes with individual number of keys (1, 3

and 30) with ECB mode. 121

5.6 Accuracy results for the 4 classes with individual number of keys (1, 3

and 30) with ECB mode. 122

5.7 Accuracy results for different instances with the same features (120, 240,

400) with ECB mode. 127

5.8 Classification accuracy performance of the classifier four block cipher with

ECB mode. 129

5.9 Classification accuracy performance of the classifiers using four-block ci-

pher algorithm with ECB mode. 131

5.10 Accuracy results for the 4 classes dataset with 1, 3, 5 and 30 numbers of

key sizes with CBC mode. 132

5.11 Classification accuracy performance of the classifier with CBC mode. 134

5.12 The 8 classes dataset with different numbers of key sizes with CBC mode. 135

5.13 The 4 classes dataset with different numbers of key sizes with CBC mode. 136

5.14 Classification accuracy performance of the classifier four-block cipher with

CBC mode. 137

5.15 Using different instances with the same features (120, 240 and 400) with

CBC mode. 138

5.16 Classification accuracy performance of the classifier four-block cipher in

ECB and CBC modes using 8-bit with 8 classes and 4 classes datasets . .. 146

5.17 Classification accuracy performance of the classifier four-block cipher with

ECB and CBC modes. 147

5.18 RoFo Confusion matrix using 8-bit. . 148

(a) Subtable 1 list of tables text

(b) Subtable 2 list of tables text

5.19 Naive Bayes confusion matrix for the 16-bit codes.

(a) Subtable 1 list of tables text

148

148

149

149

List of Tables 22

(b) Subtable 2 list of tables text 149

5.20 Time taken to build the model with 8-bit and 16-bit in the ECB mode. 150

5.21 Time taken to build the model with 8-bit and 16-bit codes with CBC

mode. 150

6.1 Confusion matrix for Naive Bayes, SVM, MLP and IBL classifiers. 157

(a) Subtable 1 list of tables text

(b) Subtable 2 list of tables text

(c) Subtable 3 list of tables text

(d) Subtable 4 list of tables text

157

157

157

157

6.2 Confusion matrix for Bag, AdaBMl, RoFo and C4.5 classifiers. 158

(a) Subtable 1 list of tables text

(b) Subtable 2 list of tables text

(c) Subtable 3 list of tables text

(d) Subtable 4 list of tables text

158

158

158

158

6.3 Confusion matrix for Naive Bayes, SVM, MLP and IBL classifiers. 159

(a) Subtable 1 list of tables text

(b) Subtable 2 list of tables text

(c) Subtable 3 list of tables text

(d) Subtable 4 list of tables text

159

159

159

159

6.4 Confusion matrix of Bag, AdaBMl, RoFo and C4.5 classifier. 160

(a) Subtable 1 list of tables text

(b) Subtable 2 list of tables text

(c) Subtable 3 list of tables text

(d) Subtable 4 list of tables text

160

160

160

160

6.5 Classification accuracy pe1formance of the classifier with five stream ciphers. 162

6.6 Confusion matrix of AdaBMl classifier. . .

6.7 Confusion matrix of Naive Bayes classifier.

6.8 Comparing accuracy between stream and block ciphers using 8-bit

167

167

coding 168

List of Tables 23

6.9 Comparing accuracy between stream and block for 16-bit codes. . 168

Chapter 1

Introduction

Cryptography and Network Security are both two important methodological ap­

proaches that protect data transmission and networks over the unsecured chan­

nel. With the rising popularity of using computer applications, specific security

threats have appeared more and more frequently and therefore information se­

curity has become an extremely relevant and all important issue to be solved.

Security is obviously a primary anxiety for every user of e-commerce. Cryptogra­

phy is an extremely useful tool which decreases risks associated with observation

and modification of information, where lasting secrecy is not significant but mo­

mentary integrity is. Network security is a similar method for preventing session

take-over, and both of these are good examples of reasonable uses of cryptog­

raphy. It helps people in many areas, whether through e-mail, cellular phones,

ATM machines, for business, entertainment or education.

Cryptanalysis is an important task for cryptography. Cryptanalysis attempts to

identify the weaknesses in the algorithms used to encrypt code or the methods

used to generate keys. In cryptanalysis, when only the cipher-text is available,

there are initially two significant tasks, identification of the encryption method

used and the encryption key identification. Statistical methods and Machine

Learning (ML) based methods have been used to identify the encryption method

from the encrypted file. The statistical methods use the frequency of occurrence

of the alphabet in the encrypted file, while in machine learning based methods,

the task of identification of the encryption method is considered as a pattern clas­

sification task. The classifiers are used to capture the underlying behaviour of

each encryption from a number of cipher-texts. The main purpose of identifica­

tion of encryption method from cipher-text alone is considered to be a difficult

one. Very little research has been done in this area when considering block cipher
ad stream cipher algorithms.

Chapter 1. Introduction 25

Motivation

Identification of the encryption algorithm used to generate a piece of cipher-text

is a key variable that may be gleaned from Cryptanalysis. The motivation of this

study is to test and evaluate a novel approach which uses Pattern Recognition

to attempt to classify cipher-text according to their originating algorithm. In this

study eight pattern-recognition classifiers were examined, namely: Naive Bayes,

SVM, MLP, IBL, Bag, AdaBMl, RoFo and C4.5. The study focuses on classifying

cypher-text output of eleven different block and five stream cipher algorithms.

Hypothesis

Encryption algorithms operating on random input text files produce output which

is notoriously difficult to distinguish between generating algorithm and tradi­

tional statistical approaches often fail. The hypothesis of this study is that by

using Pattern Recognition based classifiers it is possible to effectively identify the

encryption method used to generate a given cipher-text, even where the input

text was random data.

Thesis Overview

In this section an overview of the thesis is provided detailing the procedure taken

to evaluate the hypothesis.

Chapter 2 starts by discussing encryption and decryption algorithms and moves

on to discuss the theoretical background of the thesis providing an overview of

different types of cryptography. The reasons for applying cryptographic tech­

niques are explained and the importance of also discussed. A description of how

encryption works follows. Then Feistel ciphers and Substitution-Permutation

Networks (SPN) are addressed. Modern cryptography, which includes Symmet­

ric and Asymmetric algorithms, is defined. During the study it became clear that

Symmetric algorithms were mathematically easier to calculate and needed less

operational time than Asymmetric. Finally there is an overview of block and

stream cipher algorithms. At the end of the second chapter a number of cryp­

tographic algorithms used to encrypt and decrypt data were discussed. Then

follows a brief review of the possible types of attack on block ciphers, focusing

on Ciphertext-Only Attacks, in order to identify the encryption mode. There are

Chapter 1. Introduction 26

various types of attacks, including Differential and Linear Cryptanalysis attacks

which are explained here.

The literature review regarding Pattern Recognition is discussed in Chapter3.

It begins by introducing of area of Pattern Recognition. The background and

the concepts of the classification types are highlighted. First, Pattern Recogni­

tion techniques are introduced and an explanation of Multidimensional Scaling

(MDS) method (used to find the similarities and dissimilarities between the algo­

rithm) follows. The Statistical method and Machine Learning method (ML) are

examined, chosen because they are common methods, and an explanation of their

use in identification of the encryption mode and classification is given. An expla­

nation of the use of WEKA tools follows along with a discussion and description

of finding the accuracy of the eight classification types used in this study.

Creating and analysing the datasets is discussed in Chapter 4. This chapter begins

by creating an encryption dataset to be used for the experimental evaluation and

then analyses the created dataset to learn more about the encrypted data. This

chapter shows that the encrypted data is random in nature and therefore difficult

to classify.

Chapter 5, considers the classification as well as the evaluation of the classifiers'

performances, both of which are critical problems in Pattern Recognition and Ma­

chine Learning. An explanation of the confusion matrix output and the success at

identifying the enc.ryption method using block ciphers in ECB and CBC modes is

provided. The result shows that the Pattern Recognition techniques are a useful

tool for identification of encryption algorithms for block ciphers. Further, it was

discovered that RoFo is the most accurate classifier.

Chapter 6 deals with stream cipher algorithms using the same techniques as was

applied to block ciphers in the previous chapter and also compares between block

and stream cipher algorithms. It was discovered that there is only a slight dif­

ference in accuracy when implementing 8-bit or 16-bit codes. However differ­

ent classifiers gave different accuracies in the two key lengths that were experi­

mented with and it was found that block ciphers are more easy to identify than

stream ciphers.

The final chapter concludes the work presented in this thesis with a summary

and conclusion, a review of the thesis and directions for future work.

Chapter 1. Introduction 27

Contributions

The main contribution in this study is twofold: first, the creation of a dataset of

encrypted files that can be used for evaluation of classification accuracy; and sec­

ond, analysis of the encrypted text files. This study aims to find the best classifi­

cation algorithm and identify the encryption method for block and stream cipher

algorithms. This work provides a comparison of classification of encryption be­

tween different types of block and stream cipher algorithms, with an evaluation

between ECB and CBC modes using 8-bit and 16-bit codes. It provides results

for different numbers of keys for all the encryption algorithms (block and stream

ciphers) that were analysed and determines the accuracy in each case.

As a result of this work, the following publications have been produced:

• Sharif, S.O . Mansoor, S.P., 'Performance Analysis of Stream and Block Ci­

pher Algorithms', Advanced Computer Theory and Engineering (ICACTE),

2010 3rd International Conference,1, Vl-522, 20-22 Aug, 2010.

• Sharif, S.O., Kuncheva, L.I., Mansoor, S.P., 'Classifying Encryption Algo­

rithms Using Pattern Recognition Techniques', Information Theory and

Information Security (ICITIS), 2010 IEEE International Conference , 1168 -

1172, 17-19 Dec, 2010.

• Sharif, S.O Manssor, S.P., 'Performance Evaluation of Classifiers used for

Identification of Encryption Algorithms',

Proc. of Int. Conf. on Advances in Information and Communication Tech­

nologies 2011, ACEEE, 172-175, 02.ICT.2011.2.60.

Chapter 2

Cryptography and Cryptanalysis

This chapter discusses the theoretical background of the thesis. It provides an

overview of different types of cryptography and cryptanalysis. The chapter starts

by discussing encryption algorithms in Section 2.1. Section 2.2 addresses the im­

portance of cryptographies. Then Section 2.3 shows how encryption works while

Section 2.4 addresses the Feistel ciphers and Substitution-Permutation Networks

(SPN) are discussed. Section 2.5 addressed modern cryptography, which includes

Symmetric and Asymmetric algorithms then Section2.6 is an overview of block ci­

pher algorithms and Section 2.7 an overview of stream cipher algorithms. Section

2.8 introduces different types of Symmetric cryptography modes, while Section

2.9 explains block cipher cryptanalysis. Section 2.10 addresses Differential Crypt­

analysis and Section 2.11 addresses Linear Cryptanalysis. Finally, the chapter

concludes with a summary.

2.1 Introduction

Today, digital communication systems, particularly those linked to the internet,

carry large amounts of sensitive data. Communication of such sensitive data

must be both secure and secret. Common examples of such sensitive data in­

clude credit card details, bank account details, trade secrets and confidential e­

mails. Less common examples include military and other confidential informa­

tion. Cryptography is the science of keeping data secure. Today, it involves the

scrambling of data, be it text, visual or audio files, so as to make the data unin­

telligible. This is done through encryption. The aim of encryption is to render

the encrypted data safe from unauthorised parties, known as 'attackers'. The

inverse of encryption is decryption, which decodes the data so as to render it in­

telligible to authorised parties. Technically, one can say that encryption involves

algorithmically transforming plain-text(P) into cipher-text(C), thereby making it

unintelligible to attackers. It then uses a key to decrypt the C back to P, thereby

Chapter 2. Cryptography and Cryptanalysis 29

making it intelligible to authorised parties. For many years, it was thought that

security in cryptographic algorithms was related to the difficulty of the math­

ematical operations underlying the encoding process [12]. In other words, the

more complicated the coding process, the more difficult it was to break the code.

This, as explained below, is not strictly true. Nonetheless, the core point is simple:

the fundamental function in cryptography is to allow users to securely send and

receive information over an insecure channel [13] [14] [15] [16].

Cryptography now takes three basic forms: Symmetric (secret key), Asymmetric

(public key) encryptions and Hash functions. With Symmetric algorithms, en­

cryption and decryption both apply the same key meaning that they share the

same key. To guarantee the privacy of a Symmetric algorithm encrypted com­

munication, the shared key must be kept secret from others. Notice a poten­

tial problem with this type of encryption method is that the key is needed to

be shared between two or more parties prior to establishing the secure commu­

nication channel. Asymmetric algorithms separate encryption and decryption

operations so that both sides are able to set up secure communications without

exchanging keys in advance [17]. The hash function is the basis of a digital signa­

ture and message authentication for protecting the integrity of a data because of

its collision-free and one-way properties [18] [19]. As an input, it takes a variable­

sized message and produces a small fixed-sized chain as output. Whereas mes­

sage authentication is the specific application of the security strength and hash

function of the message authentication depending on the strength of the cryptog­

raphy of the fundamental hash functions. Message authentication is a method

that guarantees that delivered messages are from the alleged source and have not

been modified [20].

2.2 The Importance of Cryptography

Simon Singh [21] [22] has highlighted the importance of cryptography in history.

He cites, as just one example, the case of Queen Mary, imprisoned by the English

and subject of the so-called Babington Plot of 1586: a plan to rescue Mary from

prison. The plot was foiled because the plotters used a code to communicate

with Mary, and thought the code to be unbreakable, which it was not. Eliza­

beth's agents soon broke it, which led to the unfortunate Mary being beheaded

and the other plotters arrested and executed. A more successful use of encryp­

tion, also cited by Singh, involved US military intelligence during WWII. The

US military employed Navajo Native Americans to communicate military intelli­

gence by radio. The Native Americans used only their own language (they were

Chapter 2. Cryptography and Cryptanalysis 30

Navajo/English bilinguals) to do this. Because the Japanese did not understood

Navajo and did not have the tools to help, they failed to "break" the code. The

Navajo thus made an important contribution to the war in the Pacific. A less suc­

cessful use of encryption, yet again reported by Singh, concerned Germany's use

of the Enigma machine to encrypt its military intelligence during WWII. The Ger­

mans thought the code was so sophisticated that it was unbreakable. However,

British Intelligence, with the help of Alan Turing and an early computer, broke

the code. The code-breaking vastly facilitated the Allies' victory in WWII.

Thus cryptography is vitally important. Good cryptography helps win wars. Bad

cryptography results in loss of wars as well as life. Today of course, cryptogra­

phy is of more mundane importance. Banking, commerce and industry are in­

creasingly conducted electronically. Recent scandals in the British press highlight

the fact that what many consider private information can easily become public

if such information is broadcast electronically. This prejudices personal identity

(so-called identity fraud), the security of bank accounts and industrial secrets.

Thus today cryptography is not only a matter for governments and the military;

it is vital to everyone's security.

2.3 How Encryption Works

The basic principle of encryption is easy. One takes an intelligible string of infor­

mation (e.g.The Babington Plot failed) and renders it unintelligible by algorithmi­

cally manipulating it. Thus, for instance, one could encrypt 'The Babington Plot

failed' by simply printing successive letters of the alphabet instead of the original

letters.

Thus: Uif Cbcjohupo Qmpu gbjmfe.

Such methods, however, are insecure. This is because the codes can be broken by

simple statistical analysis. Thus, for instance, in English the letter e is the most

common in printed text, and the letter z is among the most uncommon. From

this, and guessing that common three-word constructions are likely to include

'the' as well as 'and', one is enabled to rapidly break the code. This method of

cryptanalysis was developed in the ninth century by the Arab scholar al-Kindi

(c.AD 801 873), although it took some time for it to become known in Europe

(even-though it was used to outwit the Babington plotters).

A more effective method of encryption involves transforming each letter (or, in

the case of digital information, each bit) in the plain-text in a different way. Thus,

Chapter 2. Cryptography and Cryptanalysis 31

for instance, if one again takes 'The Babington Plot Jailed', one could first translate

the text to the numbers representing each letter of the alphabet.

This would yield 20-8-5-2-1-2-9-14-7-20-15-14-16-12-15-20-

6 - 1 - 9 - 12 - 5 - 4. One could then take an irrational number, say the square

root of two (1.4142135623731...) and multiply each successive number in the P by

each successive digit in the irrational number. This would render the 'The' in 'The

Babington Plot failed' as 20325 making such a cipher much more difficult to break.

A more sophisticated variant on this again is to take a huge number that has not

only two, but huge factors. These factors are primes. The product of the primes

can then be used to encrypt the message in the same way as described above.

The advantage of using the product of two enormous primes is that there is, as

yet, no way to find the unique factors of a number other than through trial and

error. Even the fastest of today's computers cannot, in practical terms, "break"

codes constructed in this way, because to do so would take them too long. Thus,

although in theory brute force may break a code, in practice brute force is often

insufficient. Of course, there are countless other ways of encrypting material.

One may, for instance, take an agreed page of a known book and simply write

numbers, each relating to a successive letter on the page (if one decided to use

a successive page for each successive message, this would be, in effect, a one­

time pad, and as such unbreakable). One could also, if one wished to be fiendish,

further encode such a cipher by multiplying it by the product of two enormous

primes. How much one wishes to encrypt is thus in part a function of the impor­

tance of secrecy, and in part a function of the hassle involved in the encryption

and decryption.

Two more points are relevant. First, the complexity of the encryption does not

necessarily translate to difficulty of code-breaking. The Enigma machine, for in­

stance, had a very complex form of encryption, yet its codes were broken. Con­

versely, the use of two large primes is relatively simple, but the codes so produced

are, in practice, unbreakable.

Second, times change. The Enigma machine's codes would have been unbreak­

able in Elizabethan England, for Elizabeth's agents lacked 20th century mathe­

matics and computers. Whether today's unbreakable codes will remain unbreak­

able is a subject of debate. Quantum computers (currently a topic of research and

development), if developed, should be able to perform millions of calculations

simultaneously. This would render them vastly more powerful than today's com­

puters, and would render all currently used ciphers breakable, simply by brute

force. Cryptographers then, have to have an eye for the future.

Chapter 2. Cryptography and Cryptanalysis 32

There are also different categories of encryption algorithms; plain-text may be

processed either as block or stream ciphers. Algorithms may be classified by

the type of operations used for transforming plain-text to cipher-text algorithms

today are varied. These is an algorithm for prime factorisation [23] [24].

2.4 Feistel and Substitution-Permutation

Network(SPN)

Feistel ciphers and Substitution-Permutation networks SP N are the two primary

structures in block cipher algorithms. A Feistel cipher is a structure used in the

building of block ciphers, labelled after the German-born physicist and cryptog­

rapher Horst Feistel. The structure has one large advantage: encryption and de­

cryption are effectually equal, with the latter being simply the reverse of the for­

mer. This is efficient in terms of computer programming. Figure 2.1 shows Feistel

encryption. In a Feistel cipher, the (N-bit) plain-text is split into (N /2)-bit parts.

Each block is divided into two halves; (Li is the first called the Left half most and

R;, is the second called the Right half most) and the two half blocks pass into a

number of rounds. In each round an initial permutation of the R;, is entered into

the output, then the Li will be complete, afterwards the R;, is passed via a keyed

function applying an m bit key and lastly the output is combined with the Li with

an XOR operation. The basic function of a Feistel cipher is as follows [25] [26]:

Li ,: RH

RI"' U-1 + f(RH, Kl)

Fig. 2.1: Figure of Feistel cipher.

SPNs use a chain of mathematical operations. The effect of this is to take each

block of plain-text and use it as an input. This input is then altered by many "lay­

ers" of substitutions. This is done in Substitution (S) and Permutation (P) boxes,

Chapter 2. Cryptography and Cryptanalysis 33

which together produce the cipher-text. Common transformations include sim­

ple XOR bitwise rotation operators. Decryption then involves merely reversing

the substitutions and permutations within the cipher-text. In Feistel, the structure

has an advantage of the same algorithm between encryption and decryption, and

the characteristic of the SPN structure is that it has a diverse algorithm between

encryption and decryption [27].

2.5 Modern Cryptography

2.5.1 Asymmetric Key Encryption

Asymmetric encryption includes a public key in combination with a private key.

A public key is an encryption algorithm that everyone is aware of private key is

identifiable only by a private individual. The mechanism for the encryption is

as follows: say Alice wants to send a coded message to Bob. Alice first encodes

her message using the public key, then she re-encrypts the already encrypted

message with her private key. She then sends it to Bob. Upon receipt of the

message, Bob further encrypts it with his private key and returns it to Alice. Alice

then removes her private key from the triple encrypted message, rendering it only

double encrypted (with the public key and Bobs private key). She then sends

it back to Bob, who can then remove both his private key and the public key.

Thus asymmetric encryption allows for codes to be more secure than symmetric

encryption does [17].

An important advantage of Asymmetric ciphers over Symmetric cipher is that no

secret channel is needed for the exchange of the public key. The receiver needs

only to be assured of the authenticity of the public key. The Asymmetric cipher

is applied in order to encrypt a session key, and the encrypted session key is then

applied to encrypt the real message. Due to the high speed of Symmetric ciphers,

the key-exchange benefits from using Asymmetric ciphers, which work at a lower

speed and are therefore more precise.

2.5.2 Symmetric Key Encryption

As a basis for information security Symmetric ciphers have long been utilised.

While they are mainly developed for data confidentiality, their flexibility lets

them be used in various cryptographic systems; these include hash functions,

pseudo random number generators and message authentication protocols [25].

Chapter 2. Cryptography and Cryptanalysis 34

Although Symmetric encryption is not as secure as Asymmetric encryption, it has

the advantage of speed. Symmetric encryption methods are approximately 1000

times faster. Because of this, they require less computational processing power.

Figure 2.2 shows the Symmetric encryption algorithm.

Encryption

Plaintext

--~ Sha red same ..,,--- ~
key -------~ ----Plaintext

Decryption

Fig. 2.2: Symmetric Key Encryption.

Given that Symmetric systems, as is witnessed by hash functions, can be very

difficult to break, their relative insecurity when contrasted with Asymmetric sys­

tems is more than compensated for by their greater ease of use. There are two

categories of algorithm in Symmetric algorithms: block and stream. Block ci­

phers typically use 64 or 128-bit at a time. A message longer than the block size is

encrypted splitting the message into blocks and encrypting each block separately.

Generally, block ciphers use several rounds of simple cryptographic operations.

In addition, the cipher key is expanded to a number of sub-keys by a key sched­

ule, and sub-keys are mixed with data blocks in different rounds, characteristi­

cally with bitwise XOR operations. These procedures lead to high performance,

with the result that block ciphers are now used extensively. Cryptography is ap­

plied to modify readable text (identified as Plain-text) into an unreadable secret

format (known as cipher-text) using a method called encryption [28] [29] [30].

The process of the two methods is identical except for the amount of data each

encrypts at each step. First, a block cipher uses the most modern encryption

methods, second, there are two categorise of classes: Substitution or Transposi­

tion ciphers. They differ according to what chunks of the message are handled

by the encryption techniques. Substitution ciphers map each element in the plain­

text onto another element. Transposition is a technique of encryption by which

the positions held by units of plain-text are shifted according to a regular sys­

tem. Consequently, the cipher-text constitutes a permutation of the plain-text. A

Transposition cipher does not modify the characters in the plain-text while it cre­

ates the cipher-text, it simply re-arranges them. It uses some type of permutation

function within the text to produce a re-arrangement that is able to be reversed

if the secret is known to the permutation [23] [24]. The effectiveness of the Sym-

Chapter 2. Cryptography and Cryptanalysis 35

metric key depends on the length of the keys used. For the strongest algorithm,

encryption using a longer key is more difficult to break than one using a smaller

key.

2.6 A Brief Overview of Block ciphers

Effective cryptography involves compromise. For example, if the block size is

small it will be relatively easy for attackers to decrypt the message but if the block

size is too large, it might be inconvenient to use [31]. If a message is longer than

the block size (128-bit), it must break the message into a block. Each block is en­

crypted individually. Because of the dangers of attack, the US National Institute

of Standards and Technology (NIST) has standardised five modes of operation:

ECB, CBC, CFB, OFB and CTR. These are explained more in Section 2.8 [32].

2.6.1 Data Encryption Standard (DES)

The Data Encryption Standard (DES) was adapted as the US federal standard

in 1976. It is a Symmetric block cipher algorithm which employs the same key

for encryption and decryption [9] [33]. DES has 64 binary digits (Os or ls); the

effective key of 56-bit is randomly produced; and the other 8-bit are ignored.

Figure 2.3 shows the structure of the DES algorithm [23] [34] [35] [36].

DES has three mechanisms: the Initial Permutation IP, the Round F-function

and the Inverse of Initial permutation I p - 1 . It uses the Feistel cipher construc­

tion with 16 rounds of processing. The first stage of block encryption starts with

the Initial Permutation IP, subsequently goes to 16 rounds, and ultimately to

the final permutation(! p - 1
) [37]. The DES round function applies sixteen 48-

bit keys to the rightmost 32-bit f¼_1 to generate a 32-bit output[23]. However, the

round function is made up of four operations: Expansion (P-box), XOR operation,

Substitution (S-box) and P-box Permutation. When the DES round is applied 16

times, it uses a different 48-bit key. When the block is less than 64-bit, it must be

padded in order to be capable of the request [23] [38] [39]. Normally, a block is

compiled of bits numbered from left to right, that is, the left most bit of a block is

bit one and the right most is zero [10] [40] [41]. Figure 2.4 shows a block diagram

of F-function in DES algorithm.

Chapter 2. Cryptography and Cryptanalysis 36

plainloxl

After 16 rou."tds of lh• sam• optralion

ciphorlexl

Fig. 2.3: The DES algorithm [1].
Halrnlock ('2 hi1s) Subl.cy (48 bits)

E

Fig. 2.4: The F-function of DES [2].

Initially [42] [43], a block of the 64-bit permutation input IP plain-text will be

divided into two halves, the halves are called Li (Left half) and Ri (Right half),

with each half consisting of 32-bit. P-box is clearly a permutation and nothing

else; it has a one to one mapping of its input to its output providing a 32 bit

Chapter 2. Cryptography and Cryptanalysis 37

output from a 32-bit input. Table 2.1 shows the IP and Table 2.2 the I p - 1 . These

permutations are key-less straight permutations, which are the inverse of each

other. For example, in the IP, the 58th bit in the input becomes the first bit in the

output and so on with bit-7 as its final bit[23] (33] (44]. However, the number of

block sizes are fewer than 64-bit, which must be padded as appropriate for the

application. The algorithm has output of bit-40 of the pre-result block as its first

bit, bit-8 as its second bit, and so on, until bit 25 of the pre-result block is the last

bit of the output [9].

Tab. 2.1: Initial Permutation [9].

58 50 42 34 26 18 10 02
60 52 44 36 28 20 12 04
62 52 46 38 30 22 14 06
64 54 48 40 32 24 16 08
57 56 41 33 25 17 09 01
59 49 43 35 27 19 11 03
61 53 45 37 29 21 13 05
63 55 47 39 31 23 15 07

Tab. 2.2: Final Permutation I p - 1 [9].

40 08 48 16 56 24 64 32
39 07 47 15 55 23 63 31
38 06 46 14 54 22 62 30
37 05 45 13 53 21 61 29
36 04 44 12 52 20 60 28
35 03 43 11 51 19 59 27
34 02 42 10 50 18 58 26
33 01 41 09 49 17 57 25

Having produced the 32-bit output, as above, this function could be generated

with four operations: Expand P-box, XOR, substation S-box or straight P-box. A

round of the DES can be viewed as (10] (45].

Li = Rt-1 where i = 1...16

Rt = Li-1 EB J(Rt-1, Ki) where i = 1...16

Afterwards the 64-bit are divided into two halves, the Ri is approved during the

F-function transformation by the 48-bit sub-key to produce an exclusive-XORed

Chapter 2. Cryptography and Cryptanalysis 38

Tab. 2.3: Expand P-Box [9].

(a) Primitive function (b) Bit-selection E(P-Box).

16 07 21 21 32 01 02 03 04 05
29 12 28 17 04 05 06 07 08 09
01 15 23 26 08 09 10 11 12 13
05 18 31 10 12 13 14 15 16 17
02 08 24 14 16 17 18 19 20 21
32 27 03 09 20 21 22 23 24 25
19 13 30 06 24 25 26 27 28 29
22 11 04 25 28 29 30 31 32 01

with Li [23] [45]. In addition, the DES in explanation operation used the Table

2.3(a) to identify this P-box. First, it is required to expand R;,_1 (32-bit) to 48-

bit keys K 1 , .. , K 16, which were derived from the supplied 56-bit key by making

two copies of half it bits. Subsequently 48-bit are XORed with the round key Ki,

excluding E(Ri- i) with K[i] [40]. Some of the input goes to more than one output.

Table 2.3 (b) shows the expanded P-box.

The XOR is the second operation in the DES F function. The E(P-box) is XORed

with the Ki round key into 48-bit, which is then split into eight 6-bit blocks and

are used as inputs for the defined S-boxes. [28]. A round key must be used in this

operation; the Ri and Ki are both 48-bit in length. Note that the S-Box B[l] consists

of bits 1-6, B[2] consists of bits 7-12, and so on with bits 43-48 being B[6] [33]

[44] [46]. DES applies eight S-boxes, each one with a 6-bit input data and a 4-bit

output data [23]. The final operation of DES is a straight permutation with a 32-bit

input and a 32-bit output. Table 2.4 shows the straight permutation table. This

operation will follow the same universal rule as the previous permutation [38]

[23]. The Substantiation S-box is where the cipher function obtained its security.

The S-box is a set of 8-bit with two dimensional arrays consisting of four rows

and sixteen columns. Each box consists 4-bit in length. The result from the XOR

operation is eight 6-bit segments. Figure 2.4 shows that the left half which consists

of the 6-bit are B[l], and the righ t half consists of the 6-bit are B[8]. A 32-bit is

produced which is then passed by permutation(P-box) [30] [28] [34].

The to being generated can be inserted directly or be the consequence of the hash­

ing of another operation. For this aim, there is no standard hash function algo­

rithm. Initially, the key must be reduced from a 64-bit to a 56-bit. Therefore, bit

1 of the (PCl) is bit 57 of the original key and bit 2 is bit 49 and so on[23]. The

following Table 2.5 establishes permuted choice l(PC-1). The 56-bit are divided

Chapter 2. Cryptography and Cryptanalysis 39

into 2 parts. Each part consists of 28 bit, one is called C[0], the other D[0]. Subse­

quently, on calculation the 16 iteration sub-keys will start with i (the number of

the round) which equals 1 to 16. One or two circular left shifts must be made on

both C[i-1] and D[i-1] to obtain C[i] and D[i]. The number of per-iteration is set in

the sub-key rotation shown in the Table 2.6 below [46]. Then the chain of the C[i]

and D[i] are permuted, as shown below. This will produce the K[i]; the length of

the key is 48 bit i.e. C16 is equivalent to CO, and D16 is equivalent to DO [10] [45].

Tab. 2 .4: Straight Permutation [10].

16 07 20 21 29 12 28 17
01 15 23 26 05 18 31 10
02 08 24 14 32 27 03 09
19 13 30 06 22 11 04 25

Tab. 2.5: Permutation Choice(PCl)[lO].

57 49 41 33 25 17 09
01 58 50 42 34 26 18
10 02 59 51 43 35 27
19 11 03 60 52 44 36
63 55 47 39 31 23 15
07 62 54 46 38 30 22
14 06 61 53 45 37 29
21 13 05 28 20 12 04

Tab. 2.6: Rotation Sub-key [10].

Round Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of bits to rotate 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

2.6.2 Advanced Encryption Standard

Advanced Encryption Standard (AES) algorithms have been extensively accepted

and used for sensitive data security, such as in many password-protected doc­

uments and wireless communications, for example in wireless sensor networks

[47]. Vincent Rijndael and Joan Daemen developed the Rijndael algorithm, which

was chosen by the U.S. National Institute of Standards and Technology (NIST) as

the candidate for the AES. It was shown to be the most important algorithm and

therefore it replaced DES because it was no longer held to be secure. AES is

Chapter 2. Cryptography and Cryptanalysis 40

a Symmetric block cipher having data lengths and variable key lengths of 128,

192, and 256-bit encryption keys. Among all the software products AES has be­

come one of the most popular and extensively applied common block ciphers. It

achieves encryption and decryption using 128-bit. The block cipher could be ex­

pressed as a row matrix of 16 bytes. The 128-bit input message is separated into a

4-by-4 matrix of 8-bit, known as a state, and in order to encrypt the data it uses a

number of rounds of operations. The number of rounds is determined by the size

of the key (10 rounds for 128, 12 rounds for 192, and 14 rounds for 256), Table 2.7

shows the number of rounds and data length [48] [49] [SO] [51] [52].

AES employs one of three different cipher key strengths as encryption keys. Each

encryption key size permits the algorithm to perform somewhat differently. Con­

sequently, the increasing key sizes not only proffer a larger number of bits with

which to rearrange the data, they also increase the difficulty of the cipher algo­

rithm, rendering the cipher more secure. In the encryption part, initially the data

block to be encrypted is split into an array of bytes, referred to as a state matrix,

shown in Figure 2.5. AES is based on a round function and achieves different

combinations of the algorithm by repeating the round function at different times.

AES has four steps: Byte Substitutions, Shift Row, Mix Column, and Add Round

Key. The final round of the algorithm is similar to the standard round, except that

it does not include a Mix Column operation[Sl] [53] [11]. A round of transforma­

tions consists of the repeated application of Nr (the number of the round) and

depends on the block and key lengths. An encryption with Rijndale [51] consists

of an initial key addition (Add Round Key), then Nr-1 applications of the trans­

formation round and finally one application of the final round. Table 2.7 shows

the number of round and data length [11], while Figure 2.6 shows the encryption

process.

Fig. 2.5: State matrix.

Each round begins with a Sub-bytes which is a non-linear byte substation that

works independently. The state is treated as a 4-by-4 matrix of bytes; all bytes of

Chapter 2. Cryptography and Cryptanalysis

Tab. 2.7: Number of rounds and data length.

Number of rounds(Nr)
128-bit Key
192-bit Key
256-bit Key

Plalntext

l
Round a

l
Round 1

i
* Round 9

i
Round 10

i
Encrypt data

128-bit 192-bit 256-bit
10 12 14
14 12 14
14 14 14

l=l
I

Key Schedule

Fig. 2.6: AES Encryption Process [3].

41

the state uses a substation table (S-box). Figure 2.7 shows the Sub-Byte operation

[23] [11].

810 81,1

8 2 o 8 2 1 .3

83 o 831 a 3 3

Fig. 2.7: Sub-byte Transformation [3].

Shift-rows transformation: this is a transportation step that permutes the bytes such

that every row of the state is shifted to the left. The number of the shift is a

function of the number of the row (0, 1, 2, or 3) of the state matrix. The first row

remains without shifting, but each byte in the second row is shifted once to the

left. Respectively the third and fourth rows are shifted by offsets of two and then

three. Figure 2.8 shows the shift operation [23] [11].

Chapter 2. Cryptography and Cryptanalysis 42

So,o So 1 So 2
No shift

So 3 So o So 1 So 2 So3
S1,o S11 S12 S1,3

Shift l byte
S11 S12 S13 S10

S2 o S21 S2 2 S23
Shift 2 byte

S2 2 S2 3 S20 S2 l

S3 o S3 1 S3 2 S3 3
Shift 3 byte

S3 3 $3 0 S31 $3 2

Fig. 2.8: Shift-rows Transformation.

Mix-Column Transformation: the mixing operation changes the contents of each

byte by obtaining four bytes at a time and then combining them to rebuild new

bytes. The combination method starts by multiplying each byte with a different

constant and then combines them in order show that each new byte is different.

At this point, matrix multiplication is complete and shows that the new column

is the product of the two old columns. Add-round key transformation: this is similar

to mix-column transformation, also using one column. Every single byte of the

state is mixed with a sub-key, which is obtained by applying the key schedule.

Each sub key is identical in size to the state. By combining each byte, the sub-key

is added to the state with the equivalent byte of the sub-key applying the XOR

operation. The operation is a matrix multiplication [23] [11].

Add-Round Key Transformation: this is similar to Mix-Column transformation, also

using one column. Here, every single byte of the state is mixed with the sub

key, a sub key is derived from applying the key schedule. However, each sub­

key is identical to the state. By combining each byte, the sub-key is added to the

state with the equivalent byte of the sub-key applying XOR operation, which is a

matrix multiplication[23] [11].

Key schedule: the sub keys are obtained from the cipher key, meaning that the key

schedule with each sub key is needed for the number of words of key data, for

example, a 128-bit key schedule on the block of four 32-bit words. Round Keys

involve two components: the Key Expansion and the Round Key[23] [11].

Key Expansion: an AES algorithm is applied to a key expansion in order to gen­

erate a round key for every round. If the number of rounds is Nr (Number of

rounds),+ 1128-bit round keys from one single cipher key. The key-expansion

routine generates a total of Nb (Nr+ 1) words, the algorithm needs an initial set of

Nb words, and Nb words of key data are required for every Nr. The function of

key expansion takes the user key, which is 16 bytes long, and uses the round con­

stant called "matrix-rcon "with the substitution table S-box to produce 176-byte

long key schedule w, which will be utilized during the encryption and decryption

Chapter 2. Cryptography and Cryptanalysis 43

methods. In addition, the key-expansion routine generates round keys word-by­

word; a word is an array of four bytes. After the routine 4-bytes Nr+l words are

generated, which are called "w0 , w1 , w2 ... w4 (Nr + 1) - 1 ". The consequence key

schedule comprises of a linear array of 4-by-4 words represent as (wi), where i in

the range O :s; i < Nb(Nr+1) -

In other words, there are 44 words in the AES 128-bit (10 rounds), 52 words in

AES 192-bit (12 rounds), and in the AES 256-bit (14 rounds) there are 60 words.

Each round is complete with four words. The relationship between rounds and

rows is shown in Table 2.8 [23] [11].

Tab. 2.8: Shows the relationship between rounds and rows [11].

Round Words
Per-round Wo W1 1-% W3
1 W4 Ws W5 W1
2 Ws Wg W10 Wn
...
Nr W4Nr VViNr+l W4Nr+2 W4Nr+3

2.6.3 Triple Data Encryption Standard

Triple data encryption standard (3DES) is an improvement of DES. It has a 64-

bit block size, with a 192-bit key length (3 x 64). The encryption technique is

like that of the original DES. However, the blocks are used three times to raise the

standard of the encryption and the safe time average, without needing a complete

new block cipher. Figure 2.9 shows the structure of 3DES algorithm (Encryption,

Decryption).

In order to gain higher security, the three keys should be separate. Significantly,

this is equivalent to using a length of 168-bit key for encryption. It has an identical

process of encryption as a regular DES algorithm. 3DES employs a key bundle,

which means that it takes three 56-bit DES keys, which are Kl, K2 and K3. The in­

put data is encrypted with the Kl, decrypted with the K2, and finally encrypted

again with the K3 (encrypt, decrypt, encrypt). DES runs three times faster than

3DES, however, if applied properly 3DES is more secure. The procedure for en­

crypting data is the same as for decrypting but it is implemented in reverse.

In DES, the input key is 64-bit long, whereas the definite key applied by DES is

only 56-bit long. Therefore the true key length of 3DES is 168-bit because each of

Chapter 2. Cryptography and Cryptanalysis 44

the three keys holds 8 parity bits that are not applied throughout the encryption

method [54] [55] [56] [57] [58].

The following function defines the 3DES algorithm [59]:

Plaintext

DES Encryption Keyl

!
DES Decryption Key 2

DES Encryption Key 3

Clphertext

Fig. 2.9: Encryption and Decryption of 3DES.

Further, 3DES can work with one, two or three 56-bit keys which means the plain­

text, in outcome, is and encrypted three times with three keys. Following is a

number of modes options of 3DES algorithm [60] [61]

• Option 1 DES-EEE3: This means DES is encrypted with three different keys.

• Option 2 DES-EDE3: This means three DES operations with three different

keys. Moreover, the data are encrypted, decrypted, and encrypted.

• Option 3 DES-EEE2 and DES-EDE2: Which the similar to the preceding

options except that the first and third operations in DES-EEE2 are applied

with a similar key.

2.6.4 International Data Encryption Algorithm (IDEA)

In November 2000, International Data Encryption Algorithm (IDEA) was sub­

mitted as a block cipher to the NESSIE Project within the Information Societies

Chapter 2. Cryptography and Cryptanalysis 45

Technology (IST) programme of the European Commission (EC). IDEA is a Sym­

metric algorithm. It is employed to generate 52 subkeys, each with 16-bit keys.

Two of the subkeys are applied during each round proper, and the other four are

applied before each round and after the final round. It comprises eight rounds.

IDEA is a 64-bit block cipher using a 128-bit secret key. In IDEA the plain-text

is split into four quarters, each 16-bit long, including three operations, which are

used to mix two 16-bit values to create a 16-bit outcome. The three operations

are: addition, XOR, and multiplication [62]. First, addition is normal addition

which carries modulo 65,536 which is (216+1) . Second, multiplication, as applied

in IDEA, needs a number of explanations. Generally, multiplication by zero al­

ways generates zero, and it is not invertible. However, multiplication modulo n

is also not invertible when it is multiplied by a number that is not relatively prime

ton. Using multiplication in IDEA, it is essential that it is always invertible [63)

[29).

The decryption follows the exact same pattern, this time in reverse order. The

cipher relies on combining operations from three categories. The three operations

using a vector of length 16-bit are as follows: First bitwise addition modulo 2

(XOR) of two 16-bit sub blocks; second addition of integers modulo 216; and third

multiplication modulo p and multiplication modulo p = 216 + l. Annotation of the

value O is never used; 216 is represented by all the zero vectors [64) [65).

2.6.5 Twofish

Twofish is a block cipher with a 128-bit block and a variable key length up to 256-

bit. It consists of a 16-round Feistel structure with a bijiective F-function, which

creates a 4 key dependant on 8-by-8-bit S-boxes, with a fixed 4-by-4 maximum

over GF(28) distance [66). However, the only non-Feistel elements are the 1-bit

rotation. To generate a pure Feistel structure, the rotations can be moved into the

F-function but this needs an extra rotation of the words immediately before the

output-whitening step. See Figure 2.10 for an overview of the cipher construction.

Whitening is an XORed key material method conducted on block ciphers before

the first round and after the last round. Rivest independently invented DES-X

which was applied by Merkle in Khufu and Khafre [67) [4].

Twofish algorithms use 128-bit of the sub-key and are then XORed before the first

round, and another 128-bit after the last round. These sub-keys are calculated in

the same way as the round sub-keys, however, they are not applied anywhere

else in the cipher [67].

In the algorithm, the 128-bit (plain-text) is separated into four 32-bit words. In the

Chapter 2. Cryptography and Cryptanalysis 46

input whitening operation these are XORed with four key words with 16 rounds.

In each round, inside the g-function, one round is rotated by eight bits. The two

words on the left side are applied as inputs to two g-functions. However, the g­

function is made up of four byte-wide key-dependent S-boxes, which is followed

by a linear mixing procedure based on a Maximum Distance Separable Matrix

(MDS). Subsequently, the results of the two g-functions are mixed applying a

Pseudo-Hadamard Transform (PHT) in which two keywords are added. Then

these two outcomes are XORed with the words on the right (one of which is first

rotated left by 1 bit; the other is rotated right). For the next round, the left and

right halves are then exchanged. Finally, after all the rounds are swapped, the last

round is reversed, and the four words are XORed with four other key words in

order to create the cipher-text. Formally, the 16 bytes of plain-text, that are known

as p0 , ... ,p15, are first separated into 4 words (Po , ... , P3) of 32-bit. Each word uses

the little-ending convention as follows [67] [68] [4]:

where:

P represents the number of words and p represent the Plain-text.

3

~ = LP(4i + j) .28
j where i = 1.. .3.

j =O

Afterwards, during the input whitening operation, the four words are XORed

with another 4 words to expand the key:

Ro i = Pi EB Ki where i = 1.. .3.
'

In each round in the 16 rounds, the first two words were applied as input to the

F-function, when it is applied as input it takes the round number. Then the third

word is XORed with the first output of F-function and then rotated left by one

bit. The fourth word is rotated left again by one bit, then XORed with the second

output word of F-function. Finally, the two halves are swapped [68] [69] [70].

(Fr,O , Fr,1) = F (Rr,o, Rr,1, r)

Rr+,o = ROR(Rr,2 EB Fr,O, 1)

Rr+i,l = ROL(Rr,3, 1) EB Fr,l

Rr+1,2 = Rr,o

Rr+l,3 = Rr,l

Chapter 2. Cryptography and Cryptanalysis 47

Where:

For r = 0, ... , 15

ROR and ROL are functions which rotate their first 32-bit words left or right by

the number of bits that are indicated by their second 32-bit words, then the output

whitening operation undoes the 'change' of the last round, and then XORes the

words with four words of the expanded key. Finally, the cipher-text written as 16

bytes Co, ... , c15 and then use the little-ending conversion as used for the Plain-text.

J.. -. , \ -- h] '"'"'" , ri
►I,

, , , ..
1,,un,Lo

Fig. 2.10: An overview of the cipher construction [4].

2.6.6 Blowfish

Bruce Schneier developed Blowfish specifically for use in performance-constrained

environments such as embedded systems, and to replace DES, which is now in

the public domain. It was initially developed in 1993, and until now has not

been decoded. The cryptographic community deemed it 'reasonably secure'. It

is a Symmetric algorithm, that is, it applies the same secure key between the

sender and the receiver as a block cipher. The block length for Blowfish is 64-bit;

variable-length keys can be up to 448-bit. Figure 2.11 shows the algorithm.

Chapter 2. Cryptography and Cryptanalysis 48

Plaintext

X

P[l7]

Ciphertext

Fig. 2.11: The Blowfish algorithm [5].

There are two components of Blowfish: a data encryption and a key-expansion.

The key-expansion transforms a 448-bit key into the number of sub-keys totalling

4168 bytes. Data encryption works through a 16 round network. Each round

comprises a key-dependent substitution and a key-dependent permutation. All

functions are XORed with additional 32-bit words. The communications link

and automatic file encryption does not require the key to be changed during the

function. On 32-bit microprocessors with longer data caches (e.g., Pentium and

Power-PC) Blowfish is faster than DES [71] [72] [73] [74].

2.6.7 RC2

RC2 is a block cipher developed by Ronald Rivest in 1989. It was published as

an Internet Draft during 1997 [75], RC stands for "Rivest Cipher". It has a 64-bit

block cipher with variable key length starting from 40-bit to 128-bit. The 40-bit

key is relatively weak, since the encryption key is small. RC2 is susceptible to

key attacks which use 234 selected plain-texts. The algorithm has only one P­

box, which is used for key expansion to load into memory. The RC2 algorithm is

quickest for small files [6]. Note that RCl was only designed on paper but was

never implemented in practice and that RC3 was observed to be breakable during

development [76].

2.6.8 RCS

RCS is a Symmetric block cipher suitable for hardware and software. It is de­

veloped by Ronald Rivets in 1994 [77]. The same secure key is applied onto en­

cryption and decryption data. Thus RCS converts plain-text data blocks of 16, 32,

and 64-bit into cipher-text in similar blocks of the same length and then employs

Chapter 2. Cryptography and Cryptanalysis 49

a selectable key length (0, 1, ... ,255) byte. It contains a number of modular-like

additions and XORs. The universal construction is a Feistel network. RCS is a

set of rotations identified as rounds r. These have values in the range of 0, 1,

... ,255, with a changeable block size and a key length. This allows for flexibility

in performance characteristics and security levels [77]. The size of the block of

plain-text is twice the size of a word, one block contains two words. RCS-w/r/b,

is a version of RCS where w represents the word size bits; r represents the non­

negative numbers of rounds, and b represents the length of the encryption key in

bytes. The RCS algorithm can be expressed as RCS-w/r/b.

where:

• w = Word size in bit, which RCS encrypts as 2-words blocks;

• r = Number of rounds, allowable value (0, 1, ... , 255);

• b = Number of 8-bit bytes (Octal) in the secret key (K).

RCS comprises three parts: Key expansion, Encryption and Decryption. Figure

2.12 shows RCS encryption algorithm. RCS has been widely used in Wireless

Transport Layer Security. It is also used for smart cards and other machines with

restricted memory. The encryption and decryption algorithms are exceptionally

straightforward [78) [77) [79]. To decrypt, RCS reverses the encryption algorithm.

Most processors efficiently support all 43 of RCSs operations.

Plaintext Ciphertext RCS
(Pl (Cl

2w bits
Encryption

2w bits

1 1
Key {K) Round

b Bytes (r)

Fig. 2.12: RCS Encryption Algorithm.

The key-expansion algorithm increases the user key(K) to fill the extended key

table S; S starts from 1 to 25; therefore, S resembles an array of t = 2(r+ 1) ran­

dom binary words concluding with K. Key expansion uses two word-size magic

constants: Pw, and Q w [77] [80).

Chapter 2. Cryptography and Cryptanalysis 50

2.6.9 RC6

RC6 is a Symmetric block cipher. It was developed to match the requirements of

AES. It has a simple structure and was one of five finalists that could compete

with AES. The RC6 algorithm consists of two Feistel networks, in which data are

mixed through data-dependent rotations (81]. RC6-w/r/b (as explained in RCS),

is a version of RC6 that functions on units of four w-bit words employing six basic

functions. The base-two algorithm of w can be represented by lg w (28] (50] (28]

(82]. Figure 2.13 shows the encryption of RC6 algorithm.

A B C

S[l]

;o
• 'O
It
i .,

'O

g
a
C
:I
a. ..

Fig. 2.13: RC6 Encryption Algorithm [6].

Chapter 2. Cryptography and Cryptanalysis 51

2.6.10 Serpent

The Substitution-Permutation Network (SPN) employs a block cipher that en­

sures that an SNP satisfies the cryptographic property of completeness: all out­

put bits are a function of all input bits. Serpent is a symmetric block cipher. The

Serpent algorithm consists of a 32-round (SPN) operating on four 32-bit words,

therefore giving a 128-bit sub-key block size. It also requires another 128-bit sub­

key which needs to be XORed with the block. However, the sub-keys are created

by the key generation method. Each value employed in the cipher are symbolized

as bit streams (which is a sequence of bits). Then the index of the bits are calcu­

lated from Oto 31-bit word, 0 to 127-bit in 128 bit blocks, 0 to 255-bit in 256-bit

keys and so on. It encrypts a plain-text with 128-bit to a cipher-text with 128-bit

in a 32 rounds governed by 33 128-bit sub-keys K0 , .. . , K32 . The key lengths are

128, 192 or 256 bit; the short keys (128 and 192) are mapped to full-length keys of

256 bit. This type of mapping is intended to map each short key to a full length

key. The Serpent algorithm involves three key parts [83] [84] [85]:

• Initial Permutation (IP);

• 32 rounds, each of them created upon a sub-key addition;

• Final Permutation (FP).

The SPN is employed in the design of block cipher to ensure that an SNP satisfies

important cryptographic properties: completeness if the all output bit is a func­

tion of the all input bit. Nevertheless, decryption is not like encryption because

the inverse of the S-boxes is required in reverse order; there is also an inverse lin­

ear transformation and reverse order of the sub-keys. The IP and FP do not have

any cryptographic significance [86] [87] [88] [89].

2.6.11 CAST-128

Carlisle Adams and Stafford developed CAST-128, otherwise known as CASTS

[90]. Its specification was published as RFC2144. It was accepted by the CSE

46 (Communications Security Establishment). The Government of Canada also

selected it as one of the algorithms accepted by the ISO (the International Or­

ganization for Standardization) and the IEC (the International Electro-technical

Commission) for the specialised system for worldwide standardisation [91]. It is

a Symmetric block cipher with 64-bit block, 12- or 16-rounds and a key size of

between 40 and 128-bit. When the key size is longer than 80, the full 16 rounds

Chapter 2. Cryptography and Cryptanalysis 52

are implemented. When the number of an input key is fewer than 128-bit, zero

bytes are padded on the right end. There are three different categories of 32-bit

F-functions. Implementation requires 32-bit processors, however, in the devel­

opment of compact hardware, the longer S-boxes and the three F-functions are

problematic [92] [7]. It is a fast cipher with no known weaknesses.

The widely used e-mail PCP (Pretty Good Privacy) employs CASTS, which is

similar to DES but with a more powerful round function. As with DES applica­

tions, it is presumed that hackers are not able to access the S-box structure [93].

Figure 2.14 shows encryption and decryption. Table 2.9 shows the F-function

applied in each round [94] (95].

Enc ryptio,n:

Ciphcrt~11 t

L =c =.J
I ~. ; ~r ..
-~--

etc ...

!_ J I
L

etc .. .

t(.. f
n

_J

Plalntext

Fig. 2.14: Encryption and Decryption of CAST-128 (7].

Tab. 2.9: Types of F-function applied in each round.

Types of
(1)
(2)
(3)

Rounds
1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

Chapter 2. Cryptography and Cryptanalysis 53

2.6.12 CAST-256

CAST-256 (alternatively CAST6) is a Symmetric block cipher. It has a 128-bit

block size and a 256-bit primary key, which is applied to the key schedule scheme

of the algorithm. Suitable key sizes are 128, 160, 192, 224 or 256-bit. It comprises

of 48 rounds or 12 quad-rounds of mixing, supplying "confusion" and "diffu­

sion" data and key bits. There are two sets of sub-keys employed per round: Kri,

which is a 5-bit sub-key and is employed as a rotation key for i rounds, and a

32-bit sub-key, K mi, which is employed as a masking key for i rounds. For en­

cryption data, there are a total of 48 rounds. Types of F-function are applied in

each round. The fundamental security of the algorithm is the round function.

CAST-6 uses three different 32-bit round functions. The round function of the ci­

pher is entirely dependent on the CAST-5 round function [96] [97]. The following

are round functions:

1- Round Function(fl)

I = (K mi + D) «< K ri

2- Round Function(f2)

3- Round Function(f3)

Where:

D = 32-bit data input of the round function

Ia&h = the most important byte to the last important byte of I

Chapter 2. Cryptography and Cryptanalysis

Si= the ith called the Substitution box (S-box)

0 = the 32-bit output of the round function

54

Each S-box is a non-linear mapping of an 8-bit input to a 32-bit output, where "+"
is addition and "?" is subtraction modulo 232 .

Furthermore, EB is a bitwise exclusive-OR operation. Ultimately, "u « v" is the

rotation of u to the left by the value shown by v [96] [98] [99].

• The plain-text is presented in four 32-bit input registers: A, B, C, and D.

• A 32-bit masking key with 5-bit rotation keys is used in each round, and the

output of the 48 rounds incorporates the four 32-bit registers (A, B, C, and

D) as the cipher-text.

• Decryption is the same as encryption, save that it is applied in reverse order.

2.7 A Brief Overview of Stream Ciphers

Stream ciphers are Symmetric encryption algorithms in which each plain-text

digit is encrypted one at a time with the corresponding digit of the key stream,

to provide a number of the cipher-text streams. The stream cipher is sometimes

termed State ciphers because the encryption of a bit depends on its most recent

state [77]. Stream ciphers comprise two parts: First a key stream generator, and

second a mixing function. The key stream generator is the important part in

stream ciphers; the mixing function is simply an XOR operation in the cipher's

encryption algorithm. The output cipher is identical to the original plain-text

if the key stream generator creates sequences of zeros. The major advantage of

stream ciphers is that they are faster and more suitable for streaming applica­

tions. Their major disadvantage is that they are not suitable for some computing

architectures [24] [100] .

2.7.1 RC4

RC4 was designed by Ron Rivest in 1987. The details were published in 1996.

It uses a public-key encryption method [101], which is applied to many applica­

tions, including wireless networks. RC stands for 'Rivest Cipher' or 'Ronis Code'.

The algorithm applies a variable length key (1 to 256) and 50 bits to initialize a

256-bit state table. RC4 is a changeable key-size stream cipher that was designed

Chapter 2. Cryptography and Cryptanalysis 55

for security and efficiency. A similar method is applied for both encryption and

decryption.

One of the weaknesses of RC4 stream ciphers is the key size. RC4 is moderately

uncomplicated and effective, and is applied to, among other things; Wired Equiv­

alent Privacy(WEP), Temporal Key Integrity Protocol(TKIP), Transport Layer Se­

curity (TLS) and its predecessor Secure Sockets Layer (SSL) protocols. Fluhrer,

Mantin and Shamir suggest RC4 is not at all secure in the WEP mode of op­

eration. The majority of the observed weaknesses appear to be related to the

Key-Scheduling Algorithm (KSA) which is part of RC4 [102]. In order for RC4

encryption to be broken, it requires guessing the Brute-force search, either of the

whole key space or the internal state of the cipher.

RC4 encryption includes two elements: The Key-Scheduling Algorithm(KSA)

and a Pseudo-Random Generation algorithm (PRGA). A variable key length is

used by the KSA in order to initialize a state table S, which is an arrangement of

all the 'N = 2n' possible n bit words. This permutation is employed by the P RG A

to create a Pseudo-Random Key-Stream. Random permutation is the basis of the

RC4 algorithm. Key length K[], goes from 1 to 256 bytes (2048-bit) and is applied

to initialise a 256-bit state vector S [],with elements S [0] and S [256]. S[] contains

a permutation at all times of all 8-bit numbers in the range Oto 255. A byte K is

produced from S[] by choosing one of eight 255-byte entries symmetrically, for

both encryption and decryption. With the generation of each K value, the entries

in S [] are permuted again [103] [104] [105] [106] [107].

2.7.2 Grain-128

The stream cipher Grain-128 was designed in April 2007 by the researchers Hell,

Johansson and Meier. Grain-128 is an alternative to the earlier Grain, with a

128-bit linear Feedback-Shift Register (LFSR) and a 128 bit Non-Linear Feedback

Shift Register (NLFSR). Grain-128 is a binary additive contemporaneous with an

internal state of 256-bit. The design is mainly implemented in hardware envi­

ronments. Grain-128 gives a higher level of security than many other ciphers

intended for use in hardware applications.

Grain ciphers comprise three main blocks: a k-bit LFSR, a k-bit NLFSR and a

Non-Linear Filtering Function, where k = 80 or 128. It has an internal state size

of 160, split into NLFSR and LFSR, each of size 80. The design applies a Boolean

g function of 11 variables as the feedback function of the NLFSR and another

Boolean g function of 5 variables of the LFSR and the NLFSR; this enables the

filtering of the contents of the five fixed bits of the internal states of LFSR and

Chapter 2. Cryptography and Cryptanalysis 56

the NLFSR. The use of NLFSR is recent in modern cryptography. Grain-128 uses

the k-bit key Kand the 1-bit to determine the value of the initial vector (IV). The

cipher output is a 1-bit key stream sequence Zt = 0, ... , L- l. The state of Grain-128

consists of a 128-bit LFSR and a 128-bit NFSR.

The LFSR consists of 128-bit and its generating polynomial is f(x) = 0 while the

NLFSR consists of 128-bit storage elements denoted as bits. Each bit i E 0, 1, .. . , n - l

has a related state variable xi that represents the current value of the bit i and

a feedback function denoted as ft where ft : 0, l n -+ 0, l ft determines how the

value of i is updated. Therefore, for any i E 0, 1, ... , n - l,ft depends on X(i+l)modn

and a subset of variables from the set x0 , x1 , ... , xi . Moreover, N LFS R is an ef­

ficient set of standards of status variables (x0 , x1, ... , Xn_ 1) . LFSR is denoted as

s i , s i+i , ... , si+k- 1 and the N FSR is denoted as bi, bi+l , ... , bi+k- I [108],[109]. Note
that for more information about Grain-128, function g and h, and key generate,

one may refer to [110] . For a detailed description of the Grain-128 stream cipher

please refer to "A New Version of Grain-128 with Authentication "[111].

2.7.3 Salsa20

Salsa20 was designed in 2005 and presented to the eSTREAM and ECRYPT Stream

Cipher Project. Salsa20 comprises a family of 256-bit stream ciphers [112]. Salsa20

has consistently progressed to the third round of eSTREAM. Salsa20 is faster than

AES and was recommended by the designer for typical cryptographic applica­

tion. It uses a stream cipher algorithm that operates in counter mode. It produces

a sequence of key stream blocks, Z, that are XORed with the plain-textto create

the cipher text.

Salsa20 is designed to provide high security. The core of Salsa20 is a hash func­

tion. The major function in the Salsa20 core is a quarter-round function. The

functions are defined as a 4-word sequence. A quarter-round (y) is a 4-word se­

quence [113] [114] [115].

2.7.4 HC-128

HC Stream ciphers comprise two types: HC-128 and HC-256, with key sizes of

128 and 256-bit respectively. HC-128 is a 32-bit word based on Stream cipher. The

most important part of HC-128 is the two secret tables, each of which includes

512 32-bit factors. The algorithm employs two different non-linear functions: an

initialization stage and a key stream generation stage. The secret and IV keys are

Chapter 2. Cryptography and Cryptanalysis 57

expanded and inserted into the two tables in the initialization stage. All table

entries are replaced once the algorithm is performed and output is created. At

every step of the key-stream generation phase, one table element is updated ap­

plying a non-linear function. After 1024 operations, the two tables are completely

updated. In each operation,the output creates one 32-bit element.

HC-128 has a total size of 4096 bytes in the two secret tables [116]. HC-128 consists

of two internal state arrays, P and Q, each one including 512 32-bit words. Thus,

the key-stream is created in blocks of 512 words. Inside a block, one of the arrays

is updated and the key-stream word is displayed by XORing the updated entry

with the total words from the other array. Following all blocks of 512 key-stream

words, the roles of the two arrays are reversed [117] [118].

At each step, the algorithm applies shift and rotation operators to get one 32-bit

output. HC-128 has a total size of 4096 bytes. The IV has two major uses: it

provides randomized encryption, and it helps in synchronising communication

between sender and receiver [119] [120].

2.7.5 HC-256

HC-256 is a software stream cipher which was published in 2004. The key-stream

Si is produced from a 256-bit secret key K and a 256-bit IV. It is a simple, very

secure, software-efficient stream cipher and is freely accessible. It comprises two

secret tables, P and Q, both of which have 1024 32-bit elements. The two tables

can be used for the same purpose as an S-Box.

One element in each step is updated and one 32-bit output is created. HC-256

is word-orientated, with 32-bit in each word, which uses a 256-bit key with a

256-bit IV. HC-256 (and HC-128) and has not yet suffered serious attack. The HC-

256 cipher applies a 256-bit key Kand a 256-bit IV. The HC-256-bit comprises of

two tables, each with 1024 32-bit factors. Every table updates one factor with a

Non-Linear Feedback Function. Each of the 2048 steps in all the factors in the

two tables are updated. At every step, the HC 256-bit produces one 32-bit output

employing the 32-bit mapping, similar to that used in Blowfish. Before the output

is produced Linear masking is applied

HC-256 initialization process includes expanding the secret and IV keys and in­

serting them into the two secret tables, P and Q, while running the cipher 4096

stage without creating output, where II is denoted as concatenation and each Ki

and I¼ denoted as a 32-bit number, the Kand IV are expanded into an array

vVi(O ~)i ~ 2559) [121] [120] [118].

Chapter 2. Cryptography and Cryptanalysis 58

2.7.6 VMPC

In the 2004, Fast Software Encryption workshop in Delhi, India, Bartosz Zoltak

presented Variably Modified Permutation Composition (VMPC), which is a com­

bination of elementary operations on integers and permutations. The concept

behind VMPC revolves around a transformation of permutation P into permuta­

tion Q. VMPC generates a stream of 8-bit words(values). They are internal 8-bit

variable(s) and a swap operation of some elements of the internal P. The Key­

Scheduling Algorithm (KSA) of the VMPC transforms a cryptographic key, of a

length from 120-bit to 256-bit (as well as an IV)) into a 256-element permutation?.

The main idea of the cipher is based on an internal 256-element permutation. The

VMPC cipher, together with its KSA, were designed in specific to eliminate some

of the known weaknesses feature of the alleged RC4 key stream generator. The

KSA of the VMPC cipher transforms a cryptographic key of length from 128-bit

to 512-bit (and an (IV)) into a 256-element internal permutation (P) [122) [123].

For a detailed description of the VMPC stream cipher function, please refer to

"VMPC One-Way Function "by Bartosz Zoltak

http://www.VMPCfunction.com

2.8 Symmetric Cryptography Modes

In Symmetric key algorithms, a block cipher works on blocks of fixed length, fre­

quently 64 or 128-bit, but the message might be of any length. Thus, encrypting

the same plain-text under the same key always produces the same output, such

as described in the CBC mode below. A number of methods of operation have

been applied, which permit block ciphers to supply data confidentiality of arbi­

trary length. Symmetric cryptography algorithms comprise of different modes.

Different modes have different methods: Some relate more to the efficiency or

fault tolerance, while others may relate to security levels. In addition, a block ci­

pher mode is one that includes the use of a Symmetric key block cipher, to supply

information services such as authentication or confidentiality.

Commonly, block ciphers apply ciphering modes, which combine the blocks with

certain essential operations and feedback. Mode operations applied must be

computationally rapid and capable, and must raise the security of the cipher­

text[124]. An Initialization Vector (IV) is applied in different modes to randomise

the encryption and to produce cipher-text, even if the same plain-text is encrypted

multiple times the re-keying process is not slower. In CBC and CFB modes IV is

Chapter 2. Cryptography and Cryptanalysis 59

never reused with the same key. If an IV is reused it would lead to a lack of in­

formation of the first block of plain-text or any other common prefix, which is

shared via the two messages. The following are the five most popular modes of

operations today, which will be discussed in this chapter:

• Electronic Codebook Mode (ECB);

• Cipher-Block Chaining Mode (CBC);

• Cipher Feedback Mode (CFB);

• Output Feedback Mode (OFB);

• Counter Mode (CTR).

2.8.1 Electronic Codebook Mode (ECB)

The main feature of the ECB mode is confidentiality, and it is the simplest one.

In this mode the block cipher is applied directly to the algorithm. The plain­

text is split into blocks of equal length and each block is encrypted individually

with the same key. In encryption, the forward cipher function is applied directly

and independently to every block of the plain-text. The consequent sequence

of output blocks is the cipher-text. In decryption, the inverse cipher function is

used directly and independently to every block of the cipher-text. The consequent

sequence of output blocks is the Plain-text.

plain-text blocks:

cipher-text blocks:

The advantage of this mode is that processing is independent, which means that

if we have a multiple encryption process this mode can encrypt and decrypt sep­

arate blocks. There is no error propagation between blocks, meaning that if block

one is received with an error in it, the receiver can decrypt block two with no

problem.

Chapter 2. Cryptography and Cryptanalysis 60

A disadvantage of this mode is that when plain-texts are encrypted they produce

identical cipher-texts. At present, ECB mode does not provide any integrity vali­

dation, that is modifications, intentional or not, to the cipher-text[14] [124). This is

a typical disadvantage in the operation of ECB mode that becomes obvious when

dealing with lengthy bits of Plain-text[125] [126).

2.8.2 Cipher-Block Chaining Mode (CBC)

The second operation mode is called CBC. Here, before being encrypted, each

plain-text is XORed with the previous cipher-text block. Therefore, each cipher­

text is dependent on every block up to that phase. This means that in order to

discover the plain-text of a specific block, the cipher-text, the key, and the cipher­

text for the previous block must be known.

In CBC Mode, only when the IVs are the same, can encryption blocks be en­

crypted into the same cipher-text. Usually, IVs are chosen randomly by the dis­

patcher and sent to the recipient along with or before the encrypted message,

hence, chaining dependency is high. Propagative error is also caused by this de­

pendency: a small change in bit error in cipher-text block Cj will affect the ability

to decipher the blocks Cj and Cj+i· Through its chaining dependencies, the CBC

mode cannot be parallelised as it is [127) [128):

plain-text blocks:

Decryption:

cipher-text blocks

2.8.3 Cipher Feedback Mode (CFB)

One of the most common problems with both the ECB and CBC modes is that

encryption and decryption cannot start until an entire block of 64-bit of plain­

text data exists. In general, the CFB Mode operates on K-bits, which means each

Chapter 2. Cryptography and Cryptanalysis 61

one of the applications produces K-bits randomly when XORing the plain-text.

The most significant feature of the CFB mode is that if message mis selected as

the same as the character size, this type of mode is self synchronizing, which

means that if one or more m-bit characters are lost between the communicators

re-synchronisation automatically occurs after 64-bit. This is important in com­

munications environments [125) [129). For example, using an 8-bit CFB allows

one 8-bit piece of Plain-text, meaning that a single character is encrypted without

needing to wait for a whole block of data to be produced [125).

2.8.4 Output Feedback mode (OFB)

The CBC and CFB modes of operation display a disadvantage in that error time

corresponds to the cipher's block size. The OFB mode is similar to the CFB mode,

apart from one difference, that is that in OFB mode each bit in the cipher-text is

dependent on the previous one-bit or bits. This feature avoids error broadcast,

which means if an error has occurred in transmission, it does not influence the bit

that follows [23) [125).

2.9 Cryptanalysis

Cryptanalysis is the study of techniques, which obtains the meaning of encrypted

plain-text, without access to the confidential data that is normally necessary. It

is one of the more challenging research areas in the discipline of security [130).

Cryptanalysis is used to measure the security of cryptography algorithms. Char­

acteristically, this involves finding the key that is used for decrypting the original

message.

Cryptanalysis characteristically involves learning how resistant a cipher is for

distinguishing attacks and to recover the key. Various research has proven that

there are a number of effective attacks on block ciphers. Different attacks have

been designed to manipulate the vulnerabilities of the cipher structure. Block

ciphers are a significant class of cryptographic algorithms, repeatedly applied for

the efficient encryption of long strings of data [131).

Differential and Linear cryptanalysis are used to break block ciphers by using

statistical attacks. Differential cryptanalysis is an effective method for the analysis

of block ciphers. It has been applied with success, for example on DES, and RCS

[132) [133) [134).

Chapter 2. Cryptography and Cryptanalysis 62

The following are four possible sorts of attacks that need to be considered when

estimating cipher security:

• Ciphertext-Only Attacks;

• Known-Plaintext Attacks;

• Chosen-Plaintext Attacks;

• Chosen-Piphertext Attacks.

2.9.1 Ciphertext-Only Attacks

This is the simplest of the four attacks and each cipher should repel this type of

attack. With Ciphertext-Only Attacks the cryptanalyst has no idea of the plain­

text and can only work from the cipher-text. The attacker has some or all cipher­

text and attempts to encrypt the text in order to determine the original plain­

text. However, Ciphertext-Only Attacks are the main practical attacks on cryp­

tographic systems. Ciphertext-Only is the most difficult of the cryptanalysis be­

cause the attacker knows little about the structure of the plain-text[135] [136].

2.9.2 Known-Plaintext Attacks

In this type of attack, the cryptanalyst is familiar with the cipher-text and its re­

spective plain-text, and must find the key or vice versa. Certain encryption de­

signs are enormously susceptible to Known-Plaintext Attacks. When Plain-texts

are known, for instance, the header of an encrypted file can be guessed easily by

studying the file layout, therefore, it is considered fairly easy to break. Known­

Plaintext Attacks in modern ciphers are extremely common because most data

and binary files transmitted over networks have some fixed segments, such as

frequently used syntax elements and leading headers. When an attacker gets tem­

porary access to the encryption and decryption, Chosen-Plaintext and Chosen­

Ciphertext Attacks are possible [137].

2.9.3 Chosen-Plaintext Attacks

A Chosen-Plaintext attack is also known as Differential Cryptanalysis. With this

type of attack, the cryptanalyst chooses the plain-text and puts it into a "machine"

that gives the encrypted cipher-text without the key. A plain-text can have effects

Chapter 2. Cryptography and Cryptanalysis 63

on encryption. Surly encryption is used to affect the plain-text and not the other

way around. The cryptanalyst's challenge is to deduce the key by comparing the

complete cipher-text with the unique plain-text[138].

2.9.4 Chosen-Ciphertext Attacks

In this attack, the cryptanalyst selects the cipher-text then sends it to the victim

and is given in return the corresponding plain-text. The cryptanalyst has a "ma­

chine" that does the exact opposite of a Chosen-Ciphertext attack by decrypting

Chosen Ciphertext with the secret key. However, certain ciphers that are resistant

to Chosen-plain-text attacks can fail a Chosen-Ciphertext attack, for example, if

there is a flaw in the decryption process when there is no flaw in the encryption

process [138].

2.10 Differential Cryptanalysis

Differential Cryptanalysis is a significant Chosen-Plaintext Attack on block ci­

phers, which is one of the strongest attacks on private key ciphers [139]. It has

been used with success against many block-ciphers, for example on DES. Differ­

ential Cryptanalysis uses an extremely large amount of Chosen-Plaintext in order

to sift out the correct key. In 1990, Biham and Shamir developed it to attack DES

algorithms [140] [66]. This cryptanalysis technique is executed in the two stages

of "design" and "execution".

In the design stage, a cryptanalyst looks for the weaknesses in the cipher algo­

rithms and uses them to discover an apposite probability differential characteris­

tic. In the execution stage the cryptanalyst collects sufficient cipher-text pairs with

suitable differential characteristics and attempts to pinpoint the effective bits of

the key by way of a counting scheme. The basic security threats to block ciphers

are known as Differential Cryptanalysis and Linear Cryptanalysis. Differential

attacks are Chosen-Plaintext attacks that employ the statistical relation between

the input difference and output difference of any two plain-text and cipher-text

pairs [141].

The idea of Differential Cryptanalysis is to analyse pairs of plain-texts instead

of single plain-texts. An attacker selects the unlikeness P between plain-texts (P;

P*) and examines the propagation (avalanche) of the exchanges in the encryption

technique. During the attack, the attacker examines and then analyses the cipher­

texts pairs (C; C*), which show difference C, predicted by attacker analysis [142].

Chapter 2. Cryptography and Cryptanalysis 64

Differential Cryptanalysis is an approach that analyses the influence of specific

differences in pairs of plain-text on the distinctions of the consequent pairs. These

distinctions can be applied to assign characters of the possible keys and to locate

the most probable key [143] [144]. It focuses on statistical analysis between the

input difference and output difference of any two plain-text and cipher-text pairs.

In [145], an unusual AES incident with an uncomplicated and integrated counter­

measure against the Differential Power Analysis (DPA) was submitted. Almost

all the algorithms implanted in smart cards have been designed to resist high

level Linear, Differential and high-order Differential attacks, while nothing has

been done to ensure that they are resistant to DPA attacks. Cryptanalysis of Feis­

tel ciphers is difficult because of their high non-linearity and autocorrelation. In

addition, substitution ciphers are easily broken due to their weak encryption op­

eration [146].

2.11 Linear Cryptanalysis

Linear Cryptanalysis is one of the most significant attacks against block ciphers

[147]. Linear Cryptanalysis uses the correlation between the input and the output

bits of the round. An m-round differential trail involves a chaining of variation

in propagations and these are known as "differential". An m-round linear trail

involves a chaining of m-round transformation correlations, which are known as

the "linear" [85] [148].

The Japanese cryptographer Mitsuru Matsui designed Linear Cryptanalysis that

uses sentence linear relationships between plain-text, cipher-text and key bits that

display information about the key [149]. Linear cryptanalysis is more contempo­

rary than Differential cryptanalysis. This kind of attack attempts to observe a

Linear approximation to illustrate the cipher transformation. As with Differen­

tial attack, the benefit of Linear cryptanalysis is that it is a Known-Plaintext attack

as opposed to a Chosen-Plaintext attack [150].

Th e concept is to approximate the operation of a portion of the cipher with an

expression that is Linear where the Linearity refers to a mod-2 bit-wise operation

(XORoperation) denoted by " EB"). One expression of such can be seen below

[151]:

Xii EB Xi2 EB ... EB Xin EB l'j1 EB l'j2 EB ... EB l'Jn = 0

where Xi describes the i-th bit of the input X = [X1 , X2 , ...] and y; describes

the j-th bit of the output Y = [Yi ,"½, ...]. In general this formula stands for the

Chapter 2. Cryptography and Cryptanalysis 65

exclusive-OR" sum" of u input bits and v output bits. The approximation in linear

cryptanalysis is to identify expressions of the form above which have sometimes

a strong or low probability of occurrence.

The initial measure in a Linear cryptanalysis attack comprises of in sentence Lin­

ear approximations of the cipher with biases as high as possible. The difficulty

of searching such approximations is not insignificant because of the considerable

cardinality of the set of candidates [152].

Cryptanalysis systems have had a notable influence on the perceived security of

various ciphers. For example, Data Encryption Standard DES can theoretically

be analysed by Differential cryptanalysis using a select plain-text approach. This

special cryptanalysis was founded on linear approximation of non-linear S-boxes

within the bounds of the algorithm. This type of attack is then distributed for

various further block ciphers [153] [154].

Summary

Cryptography involves the translation of data that is comprehensible to unwanted

viewers to being incomprehensible to only desired viewers. It usually involves

changing data in such a way that it is incomprehensible to everyone, and be­

comes comprehensible only after being manipulated by a mathematical device.

Cryptography has long been important in preserving military and state secrets

but in recent decades has assumed added importance because of the need to pre­

serve financial and personal details from unwanted scrutiny, and because of the

increasing power of computers both to create and break ciphers.

Encryption has two components: First, the algorithm for doing the transforma­

tion; second, a secret part of information that identifies the particular transforma­

tion (called a key). There are two main types of cipher: Symmetric and Asymmet­

ric cipher algorithms. The former relies on the principle that sender and receiver

of encrypted data know the key to deciphering the encrypted data. Because of

this, there are security issues. First, an innocent party may reveal the key to an

attacker; second, the ciphers are relatively easy to crack, unless very carefully

constructed (hash functions, however, can make them difficult to crack).

The latter relies on the principle that neither sender nor receiver knows the other's

keys, but they both know of another, common key, used in the encryption. This

renders Asymmetric ciphers more secure than Symmetric ones. Symmetric ci­

phers, however, are easier to use. Ciphers can be block or stream. In block cipher,

data are encrypted several parts at a time; in stream cipher, data are encrypted

one datum at a time. There are many types of block and of stream ciphers. Block

ciphers, for example, include Feistel ciphers and SPNs.

The many forms of block cipher vary in their performance. Old ciphers, such as

the original DES developed in 1970, are now relatively insecure, and have been

supplanted by AES and 3DES. Other secure ciphers (at time of writing) include

Blowfish and RC6. RC2, by contrast, appears insecure, which is fast only for small

files. CASTS, however, appears fast and secure.

Stream ciphers are those that process data one bit (or byte) at a time. As with

block ciphers their performance varies and depends on the devices upon which

Chapter 2. Cryptography and Cryptanalysis 67

they are intended to be used. RC4 appears insecure, especially for WEP; Salsa20,

by contrast, appears better than AES. Nonetheless, their is room for niche appli­

cations. Grain-128, for instance, is suitable for use with small computers with

little memory and restricted power consumption.

In ECB mode, the cipher function of each block of the plain-text is applied directly

and independently. The consequent sequence of output blocks is the cipher-text.

The CBC mode is the combining and chaining of the plain-text blocks with the

former plain-text blocks. The ECB mode was observed to have the highest con­

fidentiality and is the simplest amongst the four researched. The CBC mode is a

sequence used to encrypt a single unit or block with a cipher key applied to the

whole block. The CFB mode, encrypts a single, set number of bits of plain-text,

which is encrypted again and transferred directly in order to obtain the cipher­

text. The OFB mode has some similarities to the CFB mode, that is, it allows

encryption of differing block sizes. However, the keys are different and the out­

put is the encryption block rather than the cipher-text. The CBC mode needs an

IV which is unpredictable by the adversary, particularly if this adversary could

mount a chosen plain-text attack. In CRT mode IVs need to give identical key

stream. However the same is valid for OFB mode.

This chapter also considered Deferential Cryptanalysis and Linear Cryptanaly­

sis. It defined and discussed the different types of cryptanalysis. The four types

of cryptanalysis were explained. Ciphertext-Only Attack, which only allows an

attacker to look at a certain number of cipher-texts; Known-Plaintext Attacks,

which are attacks where an attacker can look at a number of plain-texts and the

corresponding cipher-texts; Chosen-Plaintext Attacks, where an attacker can pur­

posely select a number of plain-texts and look at the corresponding cipher-texts

and Chosen-Ciphertext Attack, where an attacker can purposely select a number

of cipher-texts and look at the corresponding plain-texts.

Chapter 3

Pattern Recognition

This chapter presents the background and the fundamentals of Pattern Recog­

nition. The background and the concepts of the classification types are high­

lighted. Section 3.1 starts by introducing Pattern Recognition techniques. Section

3.2 explains the Multidimensional Scaling(MDS) method. While Section 3.3 ad­

dresses the statistical method, Section 3.4 explains the use of the Machine Learn­

ing method(ML). Section 3.5 explains the use of WEKA tools. Then Section 3.6

discusses classification while Section 3.6.1 explains in detail the types of Classifi­

cation which have used in our study.

3.1 Introduction

In 1960s, Pattern Recognition developed significantly as a field of study. Among

the different structures where Pattern Recognition has been customarily created,

the Statistical approach has been studied comprehensively and widely used in

practice.

PR was specifically used in interdisciplinary subjects, such as computer science,

psychology and physiology among others. Automatic Recognition, Characteri­

zation, Classification, and Clustering of Patterns are significant problems in engi­

neering and scientific teaching such as biology, psychology, medicine, marketing,

computer vision etc. Pattern Recognition is a scientific concept the main purpose

being to classify objects into a number of classes. It is dependent on an appli­

cation of supervised or unsupervised classification. These applications can be

images, types of measurements or signal waveforms that require classifying. Fur­

thermore, it is an important part in most machine intelligence systems built for

making decisions. A. Jain et al. [155] quote Watanabe who determines a pattern

"as the opposite of a chaos; it is an entity, vaguely defined, that could be given a

name". Some examples are: fingerprints, handwritten cursive word, human face

or speech signals.

Chapter 3. Pattern Recognition 69

Theodoridis and Koutrournbas [156] state that: "Patten Recognition is the scien­

tific discipline whose goal is the classification of objects into a number of cate­

gories or classes. Depending on the application, these objects can be images or

signal waveforms or any type of measurements that need to be classified."

In Pattern Recognition, if the training patterns seem to form clusters PR can use

classifiers which apply distance function for classification. If each class corre­

sponds to a single prototype called the "cluster centre", minimum distance clas­

sifiers build a new pattern [157]. The use of clustering is to group together data

points which are close to each other.

Among the different frameworks in which it has been traditionally formulated,

the statistical approach has been intensively studied and applied in practice. In

general, neural network techniques and methods imported from statistical learn­

ing theory have been receiving increasing notice. The design of a recognition

system needs alert attention to the following subjects: pattern representation, def­

inition of pattern classes, sensing environment, feature extraction and selection,

cluster analysis, classifier and learning, selection of training and test samples, and

performance evaluation [158].

Pattern Recognition is comprised of the following two operations [156] [159]
[157]:

• Supervised Classification (for example discriminant analysis) is used when

an input pattern is distinguished as a member of a predetermined class. A

set of data, each compiled of measurements on a set of variables is labelled

to show the class type. In most cases, the main PR problem is one of dis­

criminating between different populations, such as discriminating between

three different types of humans: (a) Tall and Thin, (b) Tall and Fat and (c)

Short and Thin.

• Unsupervised Classification (for example clustering) is used when a pattern

is allocated to a previously unfamiliar class. The data and features within

the data need to be identified so that one group can be distinguishing from

another.

Basically, the design of Pattern Recognition system consists of the following as­

pects:

• Pre-processing;

• Data Acquisition;

Chapter 3. Pattern Recognition 70

• Decision Making;

• Data Representation.

However, the best-known types of PR techniques: Statistical Classification, Tem­

plate matching, Syntactic or Structural Matching, and Neural Networks. Tem­

plate Matching is one of the easiest and first approaches to PR. Matching is a

generic performance in PR that is used to identify the similarity between two en­

tities such as points, curves, or shapes of the identical kind. In template matching,

a template (typically, a 2D shape) or a prototype of the pattern to be recognised is
present.

LM is a common method in PR which is used to identify the similarity between

two objects, while, Statistical Classification is illustrated in terms of the measure­

ments or d features and is observed as an idea ind-dimensional spaces. Syntactic

or Structural PR is more relevant in taking on classifying aspects where a pattern

is considered as being compiled of uncomplicated sub patterns that are them­

selves constituted from even easier sub patterns. Neural Networks is one of the

successful methods used to estimate the function without requiring a mathemat­

ical description of how the output functionally depends on the input [155].

The recognition system consists of two methods: training and testing. Figure 3.1

shows the recognition system. In the training method, the feature extraction lo­

cates the suitable feature for representing the input patterns and classifiers which

are trained to partition the feature space. Although, in the testing method, the

trained classifier allocates the input pattern to one of the pattern classes being

contemplated, based on the measured features [155] [160].

l Object, Sensors ~ Representation __J Classlfler Label

Classlfkatlon j
-·-·-·-·················· ··············-Training

L Ob~ =-- ~:;:, - ~~::
Fig. 3.1: Recognition System [8].

Chapter 3. Pattern Recognition 71

3.2 Multidimensional Scaling (MDS)

Nowadays, Multidimensional Scaling (MDS) has become more and more popular

as a technique for both exploratory data analysis and multivariate analysis. MDS

is a technique applied in order to extract a set of independent variables from a

Proximity matrix, input proximities may be either similarities or dissimilarities.

It creates a graphical representation of a square item-by-item Proximity matrix

or Distance matrix. Applications of MDSs are established in a broad range of

areas, including pattern analysis, data pre-processing visualization, cybernetics,

localisation and scale development.

MDS represents a set of techniques for interpreting Similarity or Dissimilarity

data. When the MDS shows a low number, it points to a strong similarity between

two items, and when it shows a high number, it points to a strong dissimilarity.

Similar items are represented by points that are close to each other, dissimilar

items by points that are far away from each other. In general, it is applied to

obtain High-dimensional data or Proximity data and then the data is reduced to

an additional interpretable form, frequently, but not always represented in one

(lD), two (2D) or three (3D) dimensions [161].

In 2D, the input data are contained in an item x item matrix of Proximities, which

can be calculated to find either Similarity or Dissimilarity data. Proximities might

be gained directly from experiments or judgements, or can be derived applying

a suitable Distance Matrix from item x dimension data. The Proximities Pii are

mapped into distances of an m-dimension MDS configuration X, which means

the mapping is given by a representation function f (Pii) that determines how the

proximities should be linked to the distances dii(X). Assume that measures of

similarity or dissimilarity, which use the general terms of proximity, Pii , are given

for the pairs (i,j) of n objects. Such data may be inter-correlations of, for example,

test items, ratings of similarity of political candidates, or trade indices for a set of

countries [162] [163].

No matter the purpose, the data should be represented in 2D or 3D when it can be

plotted and inspected visually. The main reason for doing this is that one wants a

graphical display of the structure of the data, particularly in a display where the

information is essential, or for smoothing data [164] [165] [166] [167] .

It is possible to use Euclidean Distance and Non-Euclidean Distance to find the

similarity and dissimilarity in data. Euclidean Distance can be calculated be­

tween the items, applying the variables as dimensions. In this case, we use high­

dimensional Euclidean Distances as dissimilarities and we can apply MDS to re­

construct these distances in a low dimensional space. A weakness of MDS scaling

Chapter 3. Pattern Recognition 72

is that it does not provide a clear mapping function, therefore it is not possible to

position a different pattern in a map. The Euclidean Distance of points i and j in

a 2D configuration Xis computed by the following method [168]:

(3.1)

Or

(3.2)

where

dij denotes the dissimilarity distance, and where the distance between two points

can be identified as:

3.3 Statistical Methods

The growth in the use of computer simulation methods for multifaceted mod­

elling, consistent physical or built-up processes have led to the call for statistical

methods that can be employed to recognise such systems. Statistics can be de­

scribed as a body of analytical and computational techniques that calculate input

data. The Statistical method can be used to build on scientific research in order

to make it as capable and creative as possible. Numerous engineers and scien­

tists have insufficient experience in experimental design and in the appropriate

choice of statistical analyses for data that is experimentally acquired. John L. Gill

(author) declares: "Statistical analysis too often has meant the manipulation of

ambiguous data by means of dubious methods to solve a problem that has not

been defined" [169] [170].

In the Statistical method, every pattern is identified in terms of d features or mea­

surements and are seen as a point in a d-dimensional area. The aim is to select

those features that permit Pattern Vectors belonging to diverse groups to compact

regions in ad-dimensional feature-area. To determine the efficacy of the feature­

set the data need to be separated to find a good pattern from different classes.

In the Statistical Decision Theoretic Method, the decision boundaries are deter­

mined by the probability distributions of the patterns that belong to all classes,

which must be learned or specified [155].

Chapter 3. Pattern Recognition 73

3.4 Machine Learning Based Methods (ML)

Today, Machine Learning algorithms have provided significant core function to

many application domains such as computational linguistics and computational

biology [171]. Machine Learning (ML) is a method of programming computers

in order to be able to recognise patterns by using example data or past experi­

ence. The purpose of ML is to generate classifying expressions well enough to

be understood easily by the human. PR, therefore, is the ability to be predictive

and descriptive, that is gaining knowledge from data. The goal is to gain new

knowledge or skills and organise the knowledge structure, so that it can make

improvements on its own performance. The machine is man-made, its perfor­

mance is completely stipulated by the designer and its ability cannot exceed the

designer in any case. This estimation is correct when we understand that ma­

chines do not have been studying ability. Figure 3.2 shows the basic structure of

ML.

Environment Leaming Knowledge Base . _.

'
Execution

Fig. 3.2: Basic structure of learning system.

One might ask: "Why should machines have to learn?". Understanding learn­

ing in machines would further users' knowledge on how humans and animals

learn. There are also significant engineering motives defined as the following

[172] [173]:

• Certain tasks cannot be properly defined other than by example, that is,

those that might be capable of assigning input and output pairs but not

specifying a concise connection between desired inputs and outputs.

• Potentially, hidden among a massive pile of data, there are significant con­

nections and correlations. Machine Learning methods can be applied to

extract these connections (data mining)

Chapter 3. Pattern Recognition 74

In [174] Morgan Kaufmann state that: "The input to a machine learning scheme

is a set of instances. The instances are the things are to be classified, associated,

or clustered. Each instance is an individual, independent example of the concept

to be learned. In addition, each one is characterized by the values of a set prede­

termined attributes. Each data set is represented as a matrix of instances versus

attributes, which in dataset terms is a single relation".

What is an attribute? Every individual, independent instance that supplies the

input to ML is characterized by its value on a fixed, predefined set of attributes

or features. The instances are the rows of the tables that are shown in the simu­

lation for different block and stream cipher algorithms, and the attributes are the

columns.

3.5 WEKA Data Mining Tools

The full name of (WEKA) is "Waikato Environment for Knowledge Analysis".

It is a Java class library which is implemented in numerous state-of-the-art Data

Mining and Machine Learning. WEKA can be downloaded from Waikato Uni­

versity in New Zealand using the following URL:

http://sourceforge.net/projects/weka/files/weka-3-7-windows-jre/3.7 .

5/weka-3-7- 5jre.exe/download

The new version number is (3.7.0). WEKA is freely available on the Internet and

is accompanied by a new text on Data Mining. It has become a commonly applied

tool for Data Mining research, it has achieved widespread acceptance within the

world of academia and business, and is a free and open-source software [175]

[176] [177].

WEKA is applied in ML and Data Mining used for teaching both technical in­

ternals and applications of Learning Algorithms and Machine, and as an inquiry

tool for empirically evaluating new methods and development.

In [178], the authors states that the purpose of the programme is to create an

up-to-date facility for improving methods of ML and looking into their imple­

mentation in main areas of the New Zealand economy. The particular aim was to

produce a workbench for ML, identify the factors that contribute to the successful

implementation in agriculture, and generate new systems of ML and methods of

assessing their efficacy.

The workbench consists of techniques for regression, clustering, classification,

association rule mining and attribute selection. Data Mining analyses and com-

Chapter 3. Pattern Recognition 75

putational paradigms that enable computers to detect a structure in databases,

perform forecast and prediction and comprehensively enhance their performance

through interaction with data [179]. While a common work platform of Data Min­

ing, WEKA comprises 10 Java packages Classifiers, Associations, Core, Filters,

Evaluation, Visualization etc. The package of Core is the core of the WEKA sys­

tem, comprising a number of key types such as instances, attribute, etc. In total

WEKA has more than 1 million lines of code. The main Java packages to achieve

the association rules algorithm contain two packages: (a) Associations and (b)

Core are the, which include 190 Java source files [180] [181].

The main features of WEKA [176]:

1. Data preprocessing: A native file format is Attribute-Relation File Format

(ARFF). WEKA can supports other formats such as instance Comma Sep­

arated Value (CSV), Matlab American Standard Code for Information In­

terchange (ASCII) files, and database connectivity through Java Database

Connectivity (JDBC).

2. Classification: WEKA includes more than 100 classification methods. Clas­

sifiers are split into Bayesian methods (Naive Bayes, Bayesian nets, etc.),

Rule-based methods (decision tables, OneR, RIPPER), Lazy methods (near­

est neighbor and variants), tree learners (C4.5, Naive Bayes trees, MS), Mis­

cellaneous and Function-based Learners methods (linear regression, SVMs,

Gaussian processes). Moreover, WEKA comprises meta-classifiers such as

Bagging, Boosting and Stacking; Multiple Instance classifiers and Interfaces

for classifiers are applied in Groovy and Jython.

3. Clustering: Unsupervised learning is backed up by a number of clustering

methods, comprising EMbased mixture models, k-means and different hi­

erarchical clustering algorithms.

4. Selection of Attributes: The set of attributes is an essential basic for classifi­

cation performance.

5. Data visualization: Data be able to inspect visually by plotting attribute

values against the class, or against other values of the attribute. Because of

detecting outliers and study classifier characteristics and decision bound­

aries, classifier output can be able to examine the training data, for specific

methods, there are exact tools for visualization, such as a tree observer for a

method that produces classification trees, a Bayes network viewer for auto­

matic layout.

Chapter 3. Pattern Recognition 76

3.6 Classifiers

A classifier is a classification model which is assigned an unclassified instance to

a predefined set of classes. The classifier is a function of f(X) in which the domain

comprises of the training, X represents training samples Xi = x1, x2 , x3 , ... , Xn and

Y classes represent the range, and the range can be one of Y classes. Further­

more, the range is called Target Attribute [182]. Data Mining can be defined as

technology that enables data to analysis, explore and visualize of extremely large

databases. Classification is one of the significant types of Data Mining that is a

predicting modelling technique. In various real-world problems, classification

techniques were used with respect to application domain and also for different

research aspects. The aim of classification is to predict accurately the target class

for each case in the data. The errand of classification can be done by using a num­

ber of methods and using different kinds of Classifier Algorithms. It is applied

to set of data instances into proper class i.e. [183] [184] [185]. Figure 3.3 shows

sample WEKA output for one of the classifier algorithm called Naive Bayesian.

The classification accuracy figures that were used for the experimental in Chapter

5 and 6 is shown in the middle of the figure. The figure summary correct and in­

correct instances with number of instances. The correctly classified instances are

119 which means 99.1667% and incorrectly classified instances is 1, which means

0.8333%. As well, shows that the Naive Bayes have been used 120 instances and

256 attributes. Furthermore, confusion matrix included that was used for our
experimental.

Chapter 3. Pattern Recognition

=== Run information ===

Scheme: weka.classifiers.bayes.NaiveBayes

Relation: SuhailaENC

Instances: 120

Attributes: 257

[list of attributes omitted]

Test mode: 10-fold cross-validation

=== Classifier model (full training set)===

Naive Bayes Classifier

Class

Attribute 1 2 3 4

=== Stratified cross-validation ===

===Summary===

Correctly Classified Instances 119

Incorrectly Classified Instances 1

Total Number of Instances 120

=== Confusion Matrix===

a b c d <-- classified as

30 o o o I a= 1

0 29 1 0 b = 2

0 0 30 0 C = 3

0 0 0 30 I d = 4

99.1667 \%
0.8333 \%

77

Fig. 3.3: Sample output information from WEKA for the Naive Bayesian classi­
fier.

3.6.1 Classifier Methods

In our experiments detailed in later chapter, eight classifiers have been used.

They are listed below. The following ML algorithms all used supervised algo­

rithms.

Chapter 3. Pattern Recognition 78

Naive Bayesian Classifier (NB)

Naive Bayes (NB) is the simplest form of Bayesian Networks. It is one of the

most computationally straightforward and efficient Bayesian Classifier methods.

It has been used as an effective classifier for many years. The Bayesian technique

is a generally applied supervised Classification Algorithm. It is a type of Pattern

Recognition technique based on Bayes theorem that known has prior probability

and conditional probability [186] [187] [188].

This type of classification is based on the probability density function which de­

scribes the mapping between attributes and classification attributes in the Clas­

sification Method. In addition, it is a easy structure that has the classification

node as the parent node of each other nodes. Notice that no other connections

are permitted in a Na:ive Bayes structure. It has two advantages over other classi­

fiers. Firstly, Naive Bayes is easy to construct, as the structure is given a priority

hence no structure learning procedure is need Secondly, the classification method

is particularly effective. Those types of advantages are due of that assumption,

as explained in the equation below, all the features are independent of each other

[189] [190].

The Naive Bayes assumption is that all the features are conditionally individual

specified the class label, as the following assumption. This assumption is identi­

fying class-conditional independence. It is performed merely of the calculations

involved, it is consider to be na:ive [191] [192]. The Na:ive Bayes learning method

is specifically appropriate for classification rather than any other difficult learn­

ing methods such as Support Vector Machine and Decision Trees. Because of its

simplicity and good practicality, it is very important to enhance the performance

of the Na:ive Bayes [193].

A classifier is an f function that maps feature vectors x E X to output class labels

y E 1, ... , C where X represents feature space. One of the Bayesian Classifier meth­

ods is Naive Bayes, which is recognised as a state-of-the-art Bayesian Classifier

[194] [195] [196] [197].

It comprises two advantages over many other classifiers. (a) It is simple to con­

struct, as the structure is granted a priori, therefore, no structured learning pro­

cedure is needed. (b) The classification method is particularly efficient. This is

because of the hypothesis that each one of the features are independent of one

other. It has surprisingly outperformed numerous sophisticated classifiers, in

particular where the features are not powerfully correlated.

A classifier that assigns a class label to an example is constructed from a set of

Chapter 3. Pattern Recognition 79

training examples with class labels. Presume that A1 , A2 , ... , An are n attributes.

For example Eis symbolized by a vector (a1, a2 , ... , an) where ai is the value of

A. Suppose C represent the class variable that corresponds to the class, and c

represents the value that C takes. Bayes Theorem can be applied to calculate the

probability [198], [196], [197]:

Support Vector Machines Classifier (SVM)

In the 1990s, the Support Vector Machine (SVM) was developed by Vapink in the­

ory and application. SVM is a method which is based on the principle of struc­

tural risk minimization and the Vapnik Chervaonenkis dimension (VC) theory

[199] [200]. SVMs are supervised learning machines based on statistical learning

hypothesis, which are able to be used for pattern recognition and regression.

These are functional methods for data classification based on statistical learning

theory designed by V.N.Vapnik, and have been efficiently executed to various

Classification and Pattern Recognition problems, such as text classification and

image recognition. In [201] the authors state: "SVM is one of the popular tech­

niques for pattern recognition and is considered to be the state-of-the-art tool for

linear and non-linear classification". It is capable of solving classification prob­

lems with high dimensional feature space and small training set size.

It is a typical binary-classifier, and it has been extended for the design of multi­

class SVM classifiers. Computational difficulty and classification time for the

SVM classifiers using non-linear kernels depend [202] [203].

The main idea behind SVMs is to map the primary data points from the input

space to a high dimensional or even infinite-dimensional feature space such that

the classification problem becomes simpler in the feature space.

Moreover, the greater distance of hyperplane to the nearest training data points,

the less classification error. A separate hyperplane can be formulated as an n­

dimensional feature space for SVMs and their extensions and alternatives, fre­

quently called Kernel-Based techniques, which have been studied widely and

applied to different pattern classifications and function approximation problems

[189] [204]. Since their introduction, SVMs have been proved to be successful

tools for the solution of a large range of classification problems.

The SVM method applies a primary source of information, that is Kernel matrix

K(i,j), since K is Mercer's Kernel and i,j denote data points in the sample [205]

[206], [183]. These techniques classified by building an n-dimensional hyperplane

which splits the data into two types: the training and test data points. However,

Chapter 3. Pattern Recognition 80

to understand the basic of SVM classification, one requires four basic concepts:

(a) the separating hyperplane,(b)the maximum-margin hyperplane, (c) the soft

margin and (d) the kernel function. In addition, the Classifier method consists of

Statistical method, Machine Learning, and Neural Network methods [207] [197].

For more details about SVM classifier see [208].

Neural Networks Classifier (MLP)

Artificial Neural Networks have been widely applied in different fields of science

and engineering. A Neural Network, in general, includes a large figure of sim­

ple processing interconnections and elements. The easy processing elements are

defined as neurons, and each neuron has numerous input signals and one output

signal. MLP is a network, which are comprised of generally pair or more layers

of neurons and of an extra input layer. The input layer is linked by some au­

thors as an individual network layer whereas through others it is not [209] [210].

One or two optimised the output layers and of every hidden layer during the

training method depends on the weight. Neural Networks are non-linear; it is

self-organizing and adaptable. In Mathematics, a transfer function established in

what manner a neuron will weight its response to incoming signals and produces

operation, considered the most significant part [197] [211].

Neural Networks can be applied to solve highly non-linear control problems.

Processing elements have a number of internal parameters called weights. Neural

Networks are considered as enormously parallel computing systems comprising

a number of modest processors with numerous interconnections. The principal

variation between Neural Networks and other approaches to Pattern Recognition

are that these networks have the capacity to learn complicated non linear-input

and output relationships, and use serial training [212].

The learning process of MLP network is based on the data samples, composed of

the N-dimensional input vector x and the M-dimensional desired output vector d,

named destination. When processing the vector x as input the MLP produces the

vector y(x, w) as an output signal, where, x represents as the vector of adapted

weights. In a step by step manner, the corrective adjustment is designed to create

the output Yk (k = l , 2, ... , M) to reply dk [213].

In [214], the author shows that many of the benchmark and researchers have been

published on Neural and Statistical Classifiers. One of the widest was the Stat­

log project [215] in which statistical techniques, Machine Learning, and Neural

Networks were compared applying a great figure of dissimilar datasets. In [216],

the researcher shown that the Neural Network is considered as a significant tool

Chapter 3. Pattern Recognition 81

for classification. The current numerous study activities in neural classification

have recognized that Neural Networks shown potential alternatives to different

conventional classification methods. The following aspects are the advantages of

the Neural Network Classification [216] [217]:

• Neural Networks are data driven self-adaptive techniques in that they can

adjust themselves to data without any explicit specification of functional or

distributional forms of the underlying model.

• They are general functional approximates in that neural networks can ap­

proach any function with arbitrary accuracy.

• The Neural Network relies heavily on having adequate data for training

purposes.

Instance- Based Learner Classifier (IBl or IBL)

In 1996, the Bagging classifier was developed by Breiman [218] [185]. IBL gen­

erates classification predictions using only specific instances. As the Nearest

Neighbour Classification function merely assigns classifications according to the

Nearest Neighbour policy. It can determine which instances in the instance space

will be classified by each of the stored instances. IBL is similar to the Nearest

Neighbour Algorithm except that it normalizes its 'attributes' ranges, processes

instances incrementally, and has a simple policy for tolerating missing values.

Euclidean distance applied in IBL algorithms provides ranked matches between

training instances and provides test instances. Equation 3.6.1 represents the sim­

ilarity used within IBL algorithms [195] [219]:

n

similarity(x, y) = - L f(xi, Yi)-
i= l

where n: is the Instances attributes

Numeric value attributes are represented by:

Boolean and symbolic attributes are represented by

Chapter 3. Pattern Recognition 82

Bagging Classifier (Bag)

Bagging is a statistical combining and re-sampling method used to decrease the

misclassification error of a base classifier, which is based on Bootstrapping and

Aggregating techniques. The Bootstrap is designed to create new data using the

information from the original data. Or it is a "bootstrap" ensemble technique that

produces individuals for its ensemble by training every classifier on a random re­

distribution of the training set. Every classifier is trained with a set of n training

samples, drawn randomly with replacement from the original training set of size

n, wherever n is the size of the initial training set; numerous of the initial exam­

ples may be reiterated in the consequent training set whilst others may be left out.

Each one separate classifier in the ensemble is resulted in with a various random

sampling of the training set. Bagging is known to be a successful in raising the

accuracy of prediction of the non-constant classifiers [220] [221].

For small data sets, a Learning Algorithm is not good enough because if small

changes occur in the training data set it will create very divers classifiers. Nor­

mally, the Bagging classifier improves recognition for unstable classifiers because

it efficiently averages over such discontinuities. There are no persuasive simu­

lation studies or hypothetical sources with the view that bagging will assist all

unstable classifiers [222] [223].

AdaBoost Classifier (AdaBMl)

In 1995, the AdaBoost algorithm developed by Freund and Schapire, resolved

numerous of the practical problems of the earlier boosting algorithms. Boosting

is a family of methods, the most well-known members being AdaBoost. Boosting

method aims to promote a learning accuracy of the algorithm, with it an algo­

rithm becomes stronger. Boosting is the public method and it is one of the Boost­

ing methods in Data Mining methods for progressing towards the accuracy of

prediction. The method produces a set or ensemble of classifiers from a given

data set. Every classifier is made with a various training set acquired from the

primary set applying re-sampling methods, and the latest output is come by se­

lecting. The aim behind it is obtaining an extremely accurate classifier by mixing

numerous weak classifiers. All weak classifiers are needed merely to be accurate;

that is, to be better than random guessing. The purpose of these ensembles is to

raise up the accuracy with respect to the base [224] [199].

The classifiers in the ensemble are added one by one so that every sub-sequent
classifier is trained on data that have been 'difficult' for the old ensemble mem-

Chapter 3. Pattern Recognition 83

bers. It is machine linear method that combines weak classifier in an iterative

way to produce a final physically powerful classifier via the learning procedure.

Diversity is an important property of a classifier ensemble. The achievement of

AdaBMl has been explained, between others, with its diversity creating capabil­

ity [225] [197] [226] [227] [228].

The input set represent as (xi , y1 , ... , Xm , Ym), however, every Xi refers to instance

X, and every label Yi is in label set is represent as Y, Xi EX and Yi E Y = -l, + l.

AdaBoost names a given base learning algorithm often in a sequence of rounds

t = 1, ... , T. On the primary objects of the algorithm is to supply a set of weights

through the training set [229].

The AdaBoost Learning Algorithm is applied to boost the classification imple­

mentation of an uncomplicated learning algorithm, moreover it is an aggressive

mechanism for determining a small set of right classification functions [230]. In

2001, Viola and Jones developed a modified AdaBoost algorithm successfully and

applied it to face detection [231].

Rotation Forest Classifier (RoFo)

Rodriguez et al. [232] suggested this classifier based on feature extraction. The

base classifier is again a Decision Trees (DT). In RoFo classifier, selected DT be­

cause they are sensitive to rotation of the feature axes, therefore the name "Forest

". In RoFo, each tree is built on a bootstrap sample form the data rotated in ran­

dom way. Bootstrap is a technique for assigning measures of accuracy to sample

estimations. To produce the training data for a base classifier, the feature set is

randomly divided into K subsets and Principal Component Analysis (PCA) is

used to every subset, K is a parameter of the algorithm. Each main component

is retained in order to keep the changing information in the data. Hence, K axis

rotations for a base classifier that take place to form the new features .

The concept of the rotation approach is to stimulate simultaneously separate ac­

curacy and diversity within the ensemble, for each base classifier diversity is raise

during the feature extraction. Accuracy is attempted by keeping each standard

components and applying the all data set to train every base classifier. A absolute

valuable characteristic of the proposed technique is that RoFo could be applied

in conjunction with practically whatever base classifiers that are applied in the

creation ensemble method

Chapter 3. Pattern Recognition 84

C4.5 Classifier

The C4.5 classifier is an improvement on the ID3 classifier. One of the most well­

known algorithms for building decision trees is the ID3 algorithm developed by

Ross Quinlan in 1979. The decision tree in the ID3 classifier builds on symbolic

data. The C4.5 algorithm is able to build decision trees from a set of training data,

in the same way as is built in ID3. Each element in C4.5 stipulates values for a

collection of attributes and for a class [233]. All attributes may have discrete or

continuous values. In addition, the unfamiliar unique value denotes unspecified

values [223). A performance measure of a decision tree over a set of cases is the

classification error. This is the percentage of the misclassified cases where the

predicted class differs from the actual class. The training data is a set of already­

sampled classifiers called S: S = s1 , s2 , In every sample Si = x1 , x2 , ... which is a

vector and x1 , x2 , ... express attributes(features) of the sample. However, training

data is improved with a vector represented as C: C = c1, c1 , ... where the class is

named c1 , c2 , ... in each sample which belongs to the vector. Every node of the

C4.5 algorithm tree selects one attribute of the data that mainly divides its set of

samples into sub-sets which is enhanced in one class or another. Its criteria is

the normalised information which increases the difference in entropy. Dividing

the data is the outcome of selecting an attribute. The attribute with the strongest

normalized information increases the selected trees to create the decision [234].

The Decision Tree is applied to classify a class value to a case that is dependent

on the values of the attributes of the case [235].

A performance measure of a decision tree over a set of cases is the classification

error. It is the percentage of the misclassified cases whose predicted class differs

from actual class. Moreover, a decision node identifies a test over one of the

attributes that is called the attribute selected at the node. However, each one

has possible outcomes of the test, resulting into a child node. A Decision Tree is

applied to classify a case, i.e., to assign a class value to a case depending on the

values of the attributes of the case. In general, a path from the root to leaf of the

decision tree can be followed based on the attribute values of the case. The class

defined at the leaf, is the class predicted by the decision tree. The primary aim

of the algorithm is to find relationships between values of a target or dependent

attributes, which have to be a qualitative attribute with two or further values

and those of a number of sets of independent attributes (numeric or qualitative)

[223) [236) [237). For a detailed description of the C4.5, refer to http://www . cis.

temple.edu/-giorgio/cis587/readings/id3-c45.html

Chapter 3. Pattern Recognition 85

3. 7 Encryption Classification

" Encryption Classification" is defined here to mean the process of identifying

the algorithm used to encrypt some Plain-text from the encrypted output file. To­

day, there has been very little work done on this problem. In [238], Dileep and

Sekhar state that, statistical techniques and machine learning based techniques

have been applied to identify the encryption method from the encrypted files

using Support Vector Machines (SVM). They represented a cipher-text by a doc­

ument vector with fixed length representation and varying length representative

of words in cipher-texts. The size of the cipher-text generated from a plain-text of

500 ASCII characters is 4000 bits. For generating a document vector from a cipher

text considered the common dictionary based technique and the class specific

dictionary based technique using five block ciphers: Data Encryption Standards

(DES) with Electronic Code Book (ECB) mode, DES with cipher Block Chaining

(CBC) mode, Triple DES (3DES), Blowfish, Advanced Encryption Standard (AES)

and RCS algorithms. The authors argued that a better performance was obtained

for the ?xed length word and for the class speci?c dictionary based technique.

However, the performance of the identi?cation of encryption technique was poor

for the cipher texts generated have been used keys that are differences from the

keys used in generation of the training data.

Spillman et al.[239] state that a neural network based method has been used for

cryptanalysis of a Feistel type block cipher. In the last few years, there has been

growing interest in the use of machine learning classifiers for data mining, Cu­

foglu, et al. (2009) [240] authors the performance of classifiers used to identify

user profiling. The results conclude that the Naive Bayes classifier produce the

best performance over user related information. Cufoglu, et al. (2008) [195] found

that the Naive Bayes and IBL classifiers have the highest classification accuracy

with the lowest error rate. Also they obtained simulation results evaluate against

the existing works of SVM, Decision Trees (DTs) and Neural Networks(NNs).

Summary

In this chapter Pattern Recognition Algorithms have been reviewed. Two com­

mon tasks of Pattern Recognition is unsupervised and supervised classification.

With the diverse frameworks in which Pattern Recognition was traditionally for­

mulated, the statistical approach has been most intensively studied and applied

in practice. This chapter discusses the use of WEKA tools, Multidimensional Scal­

ing (MDS) and Machine Learning (ML). MDS which has become more and more

popular as a method for both exploratory Data Analysis and Multivariate and

Classifier. The aim of Statistical Methods is to build decision boundaries in the

feature area, that separate patterns belonging to diverse classes.

Several classification have been presented, such a Naive Bayes (NB), Support

Vector Machines (SVM), Neural Networks (MLP), Instance-Based Learner (IBL),

Bagging (Bag), AdaBoost (AdaBMl), and C4.5 classification algorithms. In addi­

tion, the advantages and disadvantage of some classifiers have been highlighted.

Boosting has been designed to improve the accuracy of any given learning al­

gorithm. In the Naive Bayes classifier, the consequence of an attribute value is

given classes, which is independent on the values of the other attributes. Support

Vector Machines is a typical binary-classifier. Most research shows that the SVM

classifier has became a successful tool for the solution of a large range of classifi­

cation problems. Furthermore, Neural Networks is a data driven self-adaptive. In

Bagging classifiers, the classifiers are created independently from each other. IBL

classifiers use a simple Euclidean Distance function to supply graded matches

between training instance and give test Instances. The AdaBMl classifier uses

a more refined way of sampling the original training set, where the samples are

selected according to the accuracy of the previously created classifiers.

Another useful classification approach is The most Rotation Forest (RoFo) is to

ensure within the ensemble and encourage simultaneously separately accuracy

and finally, the most important aim of the C4.5 algorithm is to discover the rela­

tionships between values of a target or dependent attributes.

There has been very little work done on using PR techniques to identify the algo­

rithm used to encrypt some plain-text from the encrypted output file.

Chapter4

Creating and Analysing the Datasets

The purpose of this chapter is to create an encryption dataset to be used for the

experimental evaluation in Chapter 5 and 6. A secondary purpose is to analyse

the created dataset to learn more about the encrypted data (for example to de­

termine the randomness of the encryption output). Section 4.1 introduces related

work. Section 4.2 defines a random number sequence and Section 4.3 addresses

motivation and the aim in this study. Section 4.4 addresses methodology used

in this study. Section 4.5 explains how the datasets were generated. Section 4.6

analyses the datasets. Finally, the chapter concludes with a summary.

4.1 Randomness in Cryptographic Systems

Generally, with the rapid increase of network communication and cryptography,

the use of random numbers is becoming more and more significant in secure data

communication. The security of cryptographic systems depends on the irrepro­

ducible digital key streams that are generated and made unpredictable through

the use of random number generators. As well, random numbers are applied

for authentication protocols and key management in cryptographic system and

smart cards[241] [242].

The use of random numbers is critical to cryptographic systems. In the world of

protection information, often we see such statements as "protected by authentica­

tion bit 2048" or "guaranteed 128-bit AES", describing the strength of encryption

algorithms deployed in the security solution. Algorithms such as AES, RC4 and

ECC have a track record of being difficult to break.

Unfortunately, what we see very rarely is a statement about the strength of the

random number generator applied by a security system. However, system de­

signers are generally more concerned with the bit generation speed and power

consumption, than with the randomness of the bits generate. However, in most,

Chapter 4. Creating and Analysing the Datasets 88

if not all, cryptographic systems the quality of the random number generator

directly influences how hard it is to attack the system. There are number of Sym­

metric cipher algorithms like DES, RC2, and RCS that use a randomly selected

encryption key. An Asymmetric algorithm such as Diffie-Hellman, RSA and DSA

uses randomly generated values while generating prime numbers (243].

In the past, different mathematical models have been developed to improve the

quality of random number generators. Numerous theorists have attempted to de­

fine the term 'random', but at present there are still differences in the definitions

that have been put forward. However, true random number generator (TRNGs)

are characterized by their output not being able to be reproduced.

Hans Freudenthal, (1987) (244] states that "it may be taken for granted that any

attempt at defining disorder in a formal way will lead to a contradiction that does

not mean that the notion of disorder is contradictory."

Fahad et al., (2010) (245] insist "that not all algorithms need the highest-quality

random numbers, so a good GPU RNG should provide a speed quality trade-off

that can be tuned for fast low-quality or slower high-quality random numbers."

Daniel et al., (2009) [246] proposed a system of Fingerprint Extraction and Ran­

dom Numbers in SRAM (FERNS) that harvests statistic identity and randomness

from existing volatile CMOS memory without requiring any dedicated circuitry.

The random numbers that result come from runtime physically random noise

and manufacture-time physically random device threshold voltage mismatches.

A random number generator is widely applied in different fields, for instance,

games, information and probability theories, pattern recognition, quantum me­

chanics, statistics and statistical mechanics etc., particularly in cryptography and

anything that is concerned with unpredictability. Commonly, random real num­

bers are generated from a sequence of random binary numbers [247] [248].

There are two types of random number generation: using hardware and using

software. The hardware type is a true random number generator, while the soft­

ware type is a pseudo random number generator. A true random number gener­

ator adopts a random natural phenomena (e.g. atmospheric or thermal noise) to

generate random numbers; these random numbers are better quality than those

generated by software. However, it is clearly unrealistic to configure the hard­

ware devices for each user who has to generate random numbers, and similarly

unrealistic to configure the software because it mainly uses algorithm or mathe­

matical models to generate random numbers.

In computer programmes [249], most random numbers used are pseudo-random,

that means they are produced in a predictable fashion applying a mathematical

Chapter 4. Creating and Analysing the Datasets 89

formula for many purpose, which is usually acceptable. However, the data might

not be random in the way expected when applied to dice rolls and lottery draw­

ings, for example.

4.2 Definition of a Random Number Sequence

As stated above, the term 'random' has varying definitions:

Lambalgen, V.(1987) [244] stated that: "it may be taken for granted that any at­

tempt at defining disorder in a formal way will lead to a contradiction. This does

not mean that the notion of disorder is contradictory. It is so, however, as soon as

I try to formalize it".

Donald Knuth was nicknamed as the "father" of analysis of algorithms. Yet it was

he who expressed that random numbers do not exist. We must ask ourselves, is

1 a random number, or a sequence independent random numbers? [250].

Several options are available, for those interested in analysing their cryptographic

Random Number Generator (RNG). Following are highlights of various statistical

tests that available [251].

• In Donald Knuth's book, the Art of Computer Programming, Seminumer­

ical Algorithms, Volume 2, he describes numerous empirical tests which

include the: frequency, seriat gap, poker, coupon collector's, permutation,

run, maximum-of-t, collision, birthday spacings, and serial correlation. For

further information, visit [251].

• Crypt-XS has been developed by Information Security Research Centre at

Queensland University of Technology in Australia, which is suite of sta­

tistical tests. Crypt-XS tests consists: frequency, binary derivative, change

point, runs, sequence complexity and linear complexity. For further infor­

mation see [251].

• The NIST Statistical Test Suite is the result of collaborations between the

Statistical Engineering Division and Computer Security Division at NIST.

Statistical tests in the package are: frequency, block frequency, cumulative

sums, runs, long runs, Marsaglia's rank, spectral (based on the Discrete

Fourier Transform), nonoverlapping template matchings, overlapping tem­

plate matchings, Maurer's universal statisticat approximate entropy (based

on the work of Pincus, Singer and Kalmant random excursions (due to

Chapter 4. Creating and Analysing the Datasets 90

Baron and Rukhin), Lempel-Ziv complexity, linear complexity, and serial.

For additional information visit [251].

A random number generator (RNG) is the first type of sequence generator. An

RNG applies a non-determinism source (i.e., the entropy source), along with

some processing function (i.e., the entropy distillation process) to generate ran­

domness. The entropy source in general comprises of some physical quantity,

like the noise in an electrical circuit, the timing of user processes, or the quan­

tum effects in a semiconductor. A variety of combinations of these inputs may be

applied [252].

Thus for cryptographic purposes, Rukhin et al. (2001) [253] argued that the out­

put of RNGs needs to be unpredictable. But, some physical sources (for instance

date/time vectors) are quite predictable. These problems can be mitigated by

combining outputs from diverse kinds of sources to use as the inputs for an RNG.

On the other hand, the resulting outputs from the RNG can still be deficient when

evaluated by statistical tests.

Lan et al. (2010) [254] state that using cryptographic techniques becomes a critical

issue in communications, due to the increasing wireless networks and mobile ap­

plications and, the protection of information during transmission via open com­

munication channels. Certainly, the competence of a cryptographic system relies

on the key size produced by its RNG.

4.3 Motivation and Aim

The basic motivation of the work described in this chapter is to create the dataset

for the experimental evaluations and so that other researchers can benefit from

the dataset as well. The purpose of this study is to :

• Create an encryption dataset using the Crypto++ library.

• Analyse the dataset using various tests to determine the nature of the data

such as randomness.

The following tests have been chosen to analyse the datasets:

• Frequency Test [255].

• Chi-square Test [256].

• Compression test using the Prediction by Partial Matching(PPM) algorithm

[257] [258].

Chapter 4. Creating and Analysing the Datasets 91

4.4 Methodology

In this study, we have used the Crypto++ library to generate the datasets. This

section describes how this was done.

4.4.1 JavaTM Cryptography Extension (JCE)

The Crypto++ library is an open-source library that supports a vast array of cryp­

tographic schemes. The library also uses the algorithms defined by Java Cryptog­

raphy Extension(JCE).

The API page provides more information on the methods used [259] [260]. Our

approach uses the Java Cryptography Extension(JCE). The JCE is a set of pack­

ages that supplies a framework and implementations for encryption, key man­

agement, key generation, and Message Authentication Code (MAC) algorithms.

Supported encryption algorithms includes symmetric, asymmetric, block, and

stream ciphers. The tools also support secure streams and sealed objects. JCE

was designed as an extension package that includes implementation for crypto­

graphic services. It is an application programming interface (API) that includes

Symmetric block encryption, Symmetric stream encryption, Asymmetric encryp­

tion; password based encryption, key agreement, and message authentication

codes. With the Java 2 SDK, vl.S, release, the JCE provider called "SunJCE" comes

pre-installed and registered [261] [262].

4.4.2 Cryptographic Algorithm Benchmarking Utility

A program called the Cryptographic Algorithm Benchmarking Utility was writ­

ten to create the dataset. It is written in Java and makes use primarily of the "Java

Cryptography Extension (JCE)" as defined in the on line documentation [263].

However, because this does not provide all the algorithms that were needed for

our experiments, we also made use of a popular third-party library called Bouncy

Castle [264].

The Graphical User Interface (GUI) for this research project was developed using

the Java GUI F(see Figure 4.1). The Java code can be downloaded from: http:

//pcwww .liv . ac .uk/-rwbutler/cabu.zip.

When using the GUI, the user first uploads the data, then the library will convert

it to ASCII code base 64 encoded data as shown in first panel in Figure 4.1 called

Chapter 4. Creating and Analysing the Datasets 92

Generated data. Basically, a base 64 encoded data is a string of characters (which

comprise only the a - z , A - Z, 0 - 9, + and %, £ characters) that is produced

used when sending non-text data through a text-only transmission protocol. We

have used base 64 encoding data because it takes a stream of characters and con­

verts them into characters that belong to the universal ASCII code set. For more

information about how base 64 does work, see [265].

The GUI allows the user to change the block and stream cipher between Symmet­

ric and Asymmetric, and change the mode type for block ciphers. As mentioned

in the literature review chapter, since some type of blocks require padding in en­

cryption, the library also provides different padding such as PKCSSPADDNG or

ISO01126PADDING. For DES and Blowfish block cipher algorithms in Electronic

Code Book (ECB) and Block Chaining (CBC) mode, both are algorithms that re­

quire their input to be an exact multiple of the block size. For example, if the

plain-text to be encrypted is not an exact multiple, then it needs to be padded

before encrypting by adding a padding string. This is automatically done by the

library. The receiving party for decrypting the data needs to know how to re­

move the padding in an unambiguous manner. The GUI also allows the user to

save the output to a specific folder. This output is then used for the experimental

evaluation.

fj

J'J'IOClt OA"UJ.::U&!J.C'!lll)ll."CLl=U.• "'

DXPcD'1e0lC!Kt>Tt"lytdC..SltZv
ex, ;r.or,:vz u a~u.00ul.leiu
tztx!)OQ1mc:.M;,KG1ill...O,-/o!mc
tF1'<11q,\YVh!i'j\·1?:i !rlC.Xjcu
Df,t M. I 2 Y1.H~a7 n, ·,,c->ee OOt't Z x

2o\6t.9!.31ttl'1d)lJt.GcbSH J-0[P

r.M1ft•X1.C/ &/Cz.•UQd l:.nn1lt!o
.OlJ.JQ?'rt.!!i~l<hH ,6pYll4S?h

:-i.u-, Jtq:ut ! :;•t.u z r.:td.::. ,, ! .!.O
Obrd\•ll.., t. : IU 7VC dlrX.1 IOCb!
l r\•Jqc~l0:lr;rr.1r<1d!:0 1.t:dte
~dPtJt;.11u101K.]S'IId.'f:;uJ

t l q !ll lM l d:CSlCVtl•II 1 !a!lqt' Sib

!IIU U?l'UK:d.1160.5 cliJqI.OcJyG,J

l [11P1U/qCUX't.'lJtCIJZOlirr.
:r+::;nJl:9t.lA&NvJq5Cr0.qe&.'Q.A

Y.:CS,,::,,Zv2vkY.5a.Ylx!"2J :!:S31

0)-ptograptuc Algortthfn Btnchmart,ng Utility

~o.i.

~
.rK.rr,.:,u,i..1.1<:,ll',~~.,,.,uul lrn~:,,u,1:<".'A'f.ui:.:11t:,u:.ui::t.c.'II·,,.

:W.:t'J cclw:.X~:~l6p/qN:(;bQ1 DXPoO!?aDll:-!~rtVyU~1IJrlv

zPl!!'AYOoi/.aa0,.,+19t&l:.lPqI X)'lK0FQ",'2Ut;w.rtaODGP.101t.s
O,ixx1bl pc:'ll:JTa.!t:1 t';:?.t'i;!lcr- d 1toGIJm1e.'<)'1!G;ll v01 • .. 10-!114
Ttq1COOP.e2 j/ lX~ll>ewblUWXCO p,,U-t<µYV'lllli)yi! UdhXlcY
2Sp/ -tvW•Jllt:lJZ 18PJUtJ!Uf E P-txI 2v:..~Gh.G7nJYK:,Ct 0D9Y?x
z St!!k.l / Y!Q1lCR1 yS;...01 \l'Y1h) 2u:.t1)1t1Y1d)UnQc:b.,uJQt P
I z.ixU.t / 20·: / : / ZG l l'tC• !XI pr J1,CIJ.'I,.. X!.C/ 1 / C1 • l.2od3 U\Nl tl{
IC•:7\°!t.i::,u;J!~tlS)tl'Ou.XG::.q Gl1 JGr:!.HtCOY.h.U!!'pYHUTiu.

!.V"..<.."lr:.J'!IG!6ca,.Sb1h!-!!~aJ1 l):1M"v)lcq:-.xlr..t.z1Z~t:.~lJJ1t o
cHPJ.chOPQJt.~~ISlr.:h'!.rJ'J':l Obr<l;·,U-.,·frdZ"IWCr !irX.,TI~S
1bC\-0~6~Yv/helM~lUl SrV!qc:1XbtVTrlz-tdI01tq:l:e

t>UljLTql!';tt;::!:::~~g~~~~~;:;::;;::]:!!f,~;~!
A

31
t.! Zh.Zl'm.3J:W/ 5WXSecbt.ra!IK,\• Y .)u;)J.1~
t > jc

CE]

------,~--...,.~ .. ~ - v

. ..,,..
St,WtTmt

~M'.t:O'tl

""""' fna\ootat.t: 1562S>OOr'd

~ll'lll!:ON

Prowler: !ulX!

Clphr. '6/~

T,pt: !-r.-r)'lclloc,t

~: eel

P.tddn;: Pl<CSSP'ACOt.:.

NL.-.;il: 15

l:!J'ittl'lv~dtt,

□rnlblt~nxd~

Q MilltOIJtlutlO!k

~JU~' ,
c= , .. ,

...
BANGOR
• ~II' l . l 11 I

Fig. 4.1: Graphical User Interface for the Cryptographic Algorithm Benchmark­
ing Utility.

The JCE is extensible, meaning that new cryptographic providers can be plugged

into the framework in order to provide new cryptographic implementations, Bouncy

Chapter 4. Creating and Analysing the Datasets 93

Castle being one example which is not available out of the box. The program has

been written so that new providers can easily be plugged in by providing a new

.prov file in the lib directory. The files of most interest are the SunJCE.prov file

(which contains the vast majority of cipher implementations provided by the Java

JDK) and Bouncy Castle.prov.

Which providers are used by the application will depend upon which boxes have

been selected via the Enable Advanced Options check box and the Configure JCE

Providers button is clicked. Once the application has been installed, it is neces­

sary to replace one of the standard Java policy files to allow the use of some of

the greater key lengths provided by the application. Also there are a number of

Sources Available Cryptographic Libraries available over [266]. For more infor­

mation about the Crypto++ library 5.6.1, see [267).

4.5 Generating the Datasets

This section explains our experimental setup. The experiment uses different algo­

rithms of block and stream cipher, and used Crpto++ library with Bouncy Castle

to encrypt and decrypt data, using 100 input files with different key sizes with

text file sizes being 512KB.

A random sampling of text file data was taken from the Internet (2010) which

included various types of data such as reports, papers, news, text from websites

and journals. These samples ranged in sizes from 100 bytes to 10000 bytes. The

files are included on the attached DVD at the end of the dissertation.

The Crypto++ library was used to encrypt the dataset. The block cipher algo­

rithms with ECB and CBC modes were used to encrypt the data using different

stream algorithms. In this experiment, the data files are divided into 8-bit and

16-bit blocks. The study included two groups of block cipher algorithms: The

first group considered the following block cipher algorithms: DES (64-bit), IDEA

(128-bit), AES (128, 192, 256-bit) and RC2 (42, 84, 128-bit). The second group

included another seven block cipher algorithms: RC2, RC6, Blowfish, Twofish,

XTA, CAST and DESede (3DES), all with the same key size (128-bit). As well, the

stream cipher algorithms were used with five classes, which included five dif­

ferent stream ciphers: Grain 128-bit, HC 128-bit, RC4 128-bit, VMPC 128-bit and

Salsa20 128-bit.

Figure 4.2 provides a sample of the AES 128-bit block cipher before encryption.

Chapter 4. Creating and Analysing the Datasets

•pPlitt'1 t>ffldf, to •tens the user.na.e prope:rty. This is thown in F11u,.. S.2.
If you •llow the •ction, the •ppltt h then disphytd i n a.11 of its clory.[1] Hot)•v• r~rs tMt you
h•v• crant.d this pe,..l u1on for tM r.ulnd1r of your sessi on.
{tJ If y~ .,,.,. udna W.lndONs 9~, tM user-.npe prop.rty H Y r•t1.1rn ·unknown,· d1~:w:ttn1 on how
Windows 9S 11 Ht up. u.v,r thden, 1t dHOns trat H th•t the applet WU ~ r'llltud to cdl
Syst"· i•tProptrty() • and no S~ud tyfxce;,tlon ws thrown.
fav• Crypt01r•phy p,,. 12.l
Ftaure S.2 . KotJ•v• .uks for ;,. ... t u ton
8.2.S S.t Up th• 8rowur
TMr-e h • w• y to uke 04f'W1ssions -ort pcnunfflt 1n Hothva. In J)41rticul.,-·, w-e can ar ant • s pecific
Ht of pe~sslons to a d&rM:r. My s.lg,,~ a,oltts th•t Hotl•va encounters wU.l •utoiutlcdly be 1h,en
t he peraisslons o f the d,ner.
To enab.lt t hh, pl"OCl?t!d to Edit • P,-thrt11cu • Applet Secur ity tn ttw tlot l •v• .enu. Thn
choou the ltnk to thli Advanctd S.cur1ty S.ttlngs P•8• · ~dan'1 certtftcne 1hc>uld 1how up l.n tn• l11t
box. To •P?lY 1peclfic penths1o,u to ~r-bn, yw' U first need to verify Mr- certificate. Click on th•
V•r-ify button to do this . Then click OK, Sdow the list box 11r-u, you'll now be 11.bl• to choou sp.clflc
pera.hsl°'11 for Miirl•n. Fla:ur• 8 . J 1hows the Alfv,ffl(.d S♦cvrity S.tdn1s alt•r Kirian'1 cert lfic1te h.u
bHn V♦rlfl-4. (2]
(2] Th♦r1·1 • p•cullu• bu1 1n HotJava 1.0. [f you'v• .i.-ody vis ited the security 1♦ttlng1 IMB♦S of Hotlifv•, b♦f01"1
vlwwln1 the slgn•d •~ht, then tv.-hn's C♦l"t lflc•te won't thow up ln tfie Adv,nc.d Secu,-ity Settings P•&•, even
•ft1r you view the P•i• with the si&Md applt t. ~ 1♦'qVffl<f of events th.It won.s is (•) st•,.t HotJ•va, (b) vitw
th.a t11n1d •??l•t P•I• , •nd (c) view the cert.ificate i n th Advanced Security S.tti n1s P•I••
Applets 1ls,wd by Karl•n 1et d1f.ault p1r-•lss io,,s. To ustp, speclfl.c p,trdnlons , fir-st unchlck U1♦
def•ult per■luions for this slt1 or cer-tlfiut♦• For eu.ple, for ffilrhn YoU ai&ht check
A::,pll:t .. y access all properties lnttHd. lkrt tiat you r 1.1t1 Hot)ava and the ti1n.d ftenea•d•
awht, you won' t be pra-pted with • pe,..J.ssion quH tiOtl.

94

We 1Iossed O\ler veri fyl n1 th• urtificau st1nn ure, bllth-ely st,1t1n1 th•t the certificate wu verified •nd
you should 10 •hHd •nd H ric It .u such. Hotl•va h rducunt to •ccept • t:♦H••11n♦d certl ftc.at.@> so it
.ask, you to perfora ~d1ti011al v♦df1c•tlOt1. ni. idu h t hat you will t•lk to t he certificate owner, 1,,
person, •nd verify tn•t the certlfic•t♦ sliflatvr• h corr«t by rudin1 the nulllbers off. Jlot • thn thh
•ppliu lkll y t o .a self. sip,.td c•rtif1co1te . Havi n& verifh.:S H.tir-ian' s certlfk•t e, •ny other certificates
st&n♦d by M,r h n •r-e •utoMt.tc• lly \/♦rifled.

Fig. 4.2: Sample of AES block cipher before being encrypted.

Figure 4.3 provides a sample result of ASCII output for AES 128-bit block cipher

algorithm after being encrypted.

PKLI I lronA•.t21' C mi metypeapplication/vnd.oasis.opendocument . text PK" I lronA Configurations2, •
8A: (W+-1u3+rM•3§1.1~n •vXy-ll' •A<)' 4 ii ., 'h:+AGATA' i0l+3j(.ya· y({-OO;a~.;.i~YU§'IE""'' '6t/6yQO+M••LO-•i2¥1<■PU iu8'3j · Ugu8.li
w<ln1vo, ·<t¼Ji>:l~•Oieo•9+>ePP\Yi1t s0' »-!l99••' 1B•<z(#Ot 4~) 4¥f2SldY•1 R,A HC lo••¢1'ctNr •tto6d,!•Alis r0fl6 ,Ts"{!· 1i~fidl
• Yf&,.lillGbtX\lA:) ·111 ~501&6 .. ; <-~dl@fYXo 11 1 ', 'r-bAa+I Xl-i6••XC◄• _•f}t[;)€A~ •, ·[t,ZylGlf!t/> "JJ •◄1+J '-a½pdRHe{3,; f~ uo61
: 1pll"1 &1' .' µ.,,. f ' U\l)•Uu' l{As {r-•1YRil .6>0fol•a0t : t [i9•XRA5-'R"'Vf~ I e, j-elOj(S0-', i-•PB(!""t~" /E!Ue,a•·p9J• ' PE74aSel :s¼vf P1007l
6c! •-2xq+MOH¥' ta• 7'3{ - •oti¥? "o(P•oqx,..t ' uW>} , tUX#!R•Mo.t4S•ct{ i 0! <G"¾. ••cOOuU/0!¥-• · \e>+Czq? t>lealC/n6i •Al · .A1 ; ttv,.<l}weH88?1

■eta:docu...,nt- statistic 11et•: table-count•"0" nieta: image-count•"0" 11eta:object-count•"8" 11eta:page-count•"2" o:eta :paragraph
-•

0 A1Kfrui< •, 6ell"O(~dRXp{OaUI ot' OU3l!AAOtAY◄EE/!l; ""> 1 EAAis(ttQi XOEf •8-q11E-oA. ~,Oil, I HA<i ••r feuioiiHlYr».; 0.i!!il-ct9V1 >•ayllfuO>
x, f6•9AU3WttOQ¥F•t,¾15t,li•E ·1 t E+1e«R' 6a• >Xe6dO+cr>EeiE2(iA]Uii3S, "O}!Ka•6q¾Il(Y'-'HGbU]8 ")(i+JJic -••: { ◄r' 0{>4~•: flfW •N•··C: 2vo
i p"o>Ul'_11T'E(c,q'nUxi1 vOrlrP/ f?"ill!ttt .«>pO&] '<'iAEII'' }•{02 •A±. !A< au~ T-eP¾-Z&3- ,P"t }••A>, §afzA• 6pcota?ixlQOrYu"A4"<1
b"qh6[i.o69(1i1<p, • 1 •oi.ekOI gAt,zi. Y•!l, ill-)•oS ! • -PtHAUf'E"txBS•nYSp•ua , .. -l;§zl XSX)\IE»s.']Or-t!!~l tsr ., cYUfel · K-Wo g9MtxY4l t
iY,,Z>a"'RAliyi<.tCRJ ll>241;l0(8')(;#>{ laE?86p;S,-iAx9•A'e1M>c:Yd+AR5XI ' 2A' 0"li <+(Qg-6s0 gjµi11vQ<ID1zx· ◄i<-YOoAUAt_EP)(t "gH'J!IIOIEY02: F
\X3; -.6)(6<t+6»P.il, 11nsi Ev~,El]7· t i,· ' Ytysi • xtboeo:ooiQc". AzS u>TRz]: >4d; la' J)HY\IE••?~y•W•§pUSI •1uaaeo· uT@·
- tAu'\lfl ' Bo3 . {JaEcU• iil>fAlnx2CD, ·•suaY.1011 -> <Y'Xr!Xf_otbvu!S' i f¥Ad¾MY10v , \IOOJi!4A,6iH'yµrttli•z " la95. O&v◄-IEI<O: 7.;W,gi-l>i 10zP:
f<!t!{V007 Ou;efi<,,GF ... 2RJ§-00pyi00§3/0iHT» \i: • ;•eOcG, <V1 -Gtl>2' lctV'CUsUl·ity• -FJ0 }1Ia""'fr•'O l ji\!L "ilEl/10> fW •P,,LO&-W'IP
\1§-pPa ' Ollqif•I½ .o:Lil•Oal<Qh-d(' 0' 1 /ilooOSHI lS.,,"'kl 'Xc• -MZ0n-oYlffyA2»1l;SSHS0880tZG?c0 \e/>.O(l'ei "••n fll-7t 1a: f 'J:Oo] <nA!IJ.RYP
-n- > >int .8H'v} I !!y ' FyeO(O<•-iZ ... en50,,Cuj -.,,,oE"OA{ 1ilpElxd7'11iI~406-.s· •f7•J:.;1L. s, e10l,l>'9~\i:006re-I' PfiSzXf••~•a&oia0£'9•89
Q>, l,]C -5!+10...Aw)fOZV;x<!us[f&to¾wa•900 , f@Liv" xe\l•-S•Wi t ·CM• ,S§Af 2f!!li,-1yr-Jt1f'n,oi\d9t, sxCvt· z! 1' n«,,101:1 ab;•6t }oll . pa08o0''0.
Y">siaet f _, •ao.ciu eksQ>) tznOg6ollcthCPaS,AOA· ~ .. 10-6.:ie_G<·qllli+• · f Pey;O, l•◄-iile lv"o•MS•I Cl•-.~. UotfU"!uF 21i~«I
yW-hu'.u-Hre• · ◄.l◄ae -ny" E±L,, vllil6i .a, • hct•QCnfg,., ou ·- '!I: 8y¥-@• (IIJ6x/6¾j .11.•I•hO°' • Ct ;61£. %(r •3i --O+ ·c-v"t - 1 "e4ot2gjal
u I 60-Sruuz)"G£»PRf WI ukoµ1 _2 ! ! •y+e, •§CW800:t+wule+• Pgeµlil; Vy"•• ' oaue±/"U-I ~L jeFOiK+""*c,H--F 3 >e. 0' · aydil'+>U' UfAqH§•or<xn8~31
• uU$• 1 i ·-"eOBKte,en fSu!O"d•\"loaif◄Y•,pO§ . • (F : ;~tof '¾Y.>tlfRP• 1 P•ye)OY1ic ·u' 1 iUitLr fX9 l(«<l4>ubxU<"c-• "X•.t.B!!fl>[205iOA>UC-:rt•
• •F; •kAEh#E' o•"\½"1--r.2Si 0 h«?'k4/80M !uHE7Sr .A>x'..Ut\Z8½r,l'.A7"uAli0 »TiG ·u\ ., .fflR(' f:>€Ar..A•h xe· µ~sAQ'-j4" ,GA,1rrEP••x.v16q•»
t PK! •ii)£51 1 tYA«• YC ? ' tUuOHl:eJ,t.<8-U Ee LE19> (&?Se• ' · na "oE◄• "U< t,\.j\n,,:,ee) 3 t!lsXf • ! o I •FJ$l_. x·O 6r lat·• ' • 91-lAii#zd◄IX.X. •"f 1Mtii\
!l ·, B--l>! siutA6bR»u :Optc,0£v 'fl 'y(fi~c !ct "S{ "wi1-Silcf t6uliu{ z0'yE+n<03]ll>ll<HlD,:~ ' !)' -WtES#Fnfp•o¼t jl Af, i t a iSTi.oOOv•8p8AJ1 2 §§1 •
<A•<OoiilOr{hh :QnaµtcA : ;±[eSi p24w>x•Ol-16ps,"6,._'9Ax•'e{581.8nEE>•' • 10/nuYa' a1 jlD"OAb "AiE◄quy;E"eOViiu+#1Ciz-/A0+••!6• T. I Et.
n·\~ f -&+A¾~· /CQSeYiy;l,:-+ twiz- lSO•ui µ· oAu•U 2•1si15A6Irzia "lly0s½rt!ih?"0;1-cyll3C"?•n¥1Iess1 evt)T{yol t-1lAe"•0. Va-±00 -o(y!
C!A•,{/d! •bl Lavi i xCYo}H#HuA. 3lt8ElJ(sEa)•_fa•l1Il6 ·o•tci:u, , . , . LEcF-i' _ ts(i+Es • • 3-bZ§HA@' •riel>--SAaTf •y•b~)i•J" >fleuv·wncii
udr · y•Ol <hj ' bO, ' y' C. ,,, J.C,#• j rAl:s"r; sAR(iktjQ ,A ·w•six-)8•6p,,A#3ATXh? "yliilt •tK6C--QI ' 9,.7•Uli 1>C ,b2u1 •AH•-; E} J ?-zEk)(3sUY33U? v

Fig. 4.3: Sample of AES block cipher encrypted output in ASCII.

Chapter 4. Creating and Analysing the Datasets 95

Initially, we have selected 100 data files randomly from various internet sources

such as news paper, website, e-books, journals, articles, documents and reports

and the overall total file size is 52,477,677 bytes. Table 4.1 describes these files and

form what we have called the Bangor Sources Files Corpus (BSFC). These 100

source text files from the data files were encrypted and used in the experiment

evaluation performed in Chapters 4 and 6. These files form what we call the

Bangor Encryption Classification Corpus (BECC) as shown in Table 4.2.

There are many encryption algorithms that can be used to encrypt these source

files. Figure 4.4, 4.5 and 4.6 show the algorithms that were used in our exper­

iments. As well as these algorithms, many of them have various numbers of

keys and other parameters. Different variations were used to encrypt the files to

produce data points as training /testing data for WEKA (as explained in Section

5.2.1). The histograms of the encrypted files using both 8-bit and 16-bit encodings

were generated (refer to Appendix B), then submitted to WEKA for classification

(see Section Al).

Tab. 4.1: Bangor Sources Files Corpus (BSFC).

File names 0l_sources to lO0_sources

Example of sources News paper, Papers, Websites, Reports,
E-Books, Journals, Documents, Article

Total file size (bytes) 52,477,677

Tab. 4.2: Bangor Encryption Classification Corpus (BECC).

File names 0l_encrypted to lO0_encrypted

Block algorithms/Key sizes (1) AES(128, 192,256), DES 64, IDEA 128
and RC2 (128, 84 and 42)

Block algorithms/ Key sizes (2) RC2, RC6, Blowfish, XTA, CAST
and DESede (128-bit)

Stream algorithms/Key sizes Grain, HC, RC4, Salsa20
and VMPC (128-bit)

Total file size (bytes) 209,916,600

Chapter 4. Creating and Analysing the Datasets 96

ECBMode

111 I 1 1

128 192256 64 128 128 82 42

~[:][:] [:] [:][:][:]

Fig. 4.4: Diagram of block cipher algorithms with 240 variation used to produce
the data points used in the classification experiments.

ECBMode

[:] [:]

Fig. 4.5: Diagram of block cipher algorithms with 120 variation used to produce
the data points used in the classification experiments.

ECB Mode

Fig. 4.6: Diagram of block cipher algorithms with 400 variation used to produce
the data points used in the classification experiments.

Chapter 4. Creating and Analysing the Datasets 97

4.6 Analysis of the Dataset

This section provides the analysis of the dataset. To validate the proposed ap­

proach, different tests have been applied to the block and stream cipher algo­

rithms. The tests have been implemented in Java. Separate Java applications for

the tests have been implemented with a main class and a file reader for each block

and stream cipher algorithm so the random number file could simply be copied

and pasted into the text file to generate the outcome of these tests. The Chi-square

test x2 is used to determine whether the datasets they are random or not. PPM is

also used as anther method to analyse the data. If the data is not compressible,

this provides further evidence of the possible randomness of the data.

4.6.1 Frequency Test

First, the Frequency test [255] is applied to the dataset. This requires calculations

of how often a value occurs and seeing if the frequencies are uniform. In this

case, we have 30 datasets in each folder for each block and stream cipher algo­

rithm. The Frequencies of each character are tabulated for all characters in the

ASCII 0-255 range. When the program has been executed, the output console

will print out how many times each character has occurred, the execution time

in milliseconds (ms), how much memory is available and the total number of
occurrences.

Below shows the Java code that was used to read.

/ /import java.io.Dataln putStream;

import java.io.EOFException;

import java.io.RandomAccessFile;

public class Testread

I
public Testread () I

System.out.println ("testread called");

/ / private Scanner scanner;

I I Scanner to read from the file

public static void main (String [I Args)

I
boolean EOFreached = false;

int symbol = O;

try{

RandomAc cessFile file= new RandomAcce s sFile

("G:\ \ Testread\ \AES128.txt", "r");

I I Read the input file, one symbol at a time:

while(EOFreached==false){

Chapter 4. Creating and Analysing the Datasets

I I get next symbol

symbol= file.readUnsignedByte();

System.out.println(symbol);

catch (E0FException e)[

//EOFread1ed = true;

catch(Exception e)[

System.out.println(e.getMessage());

Below, is the code for defining the main classes for the Frequency test.

public class FreqTest (

public static void main(String[l args) (

FileReader fileReader = new FileReader();

f ileReader .loadWordFrequency();

98

The code below provides the Frequency FileReader class, which is used for ac­

quiring the statistics. The method HashMap is applied to load all the encrypted

text from the file and reads it one by one. It checks that each encrypt character

exists in the HashMap, if not then adds it to the HashMap, otherwise it takes the

current frequency and increments it by one and puts it back in to the HashMap.

The method concludes by showing how often the characters appear. The program

will not complete until all characters have been accumulated.

import j ava.io.File;

import java.io.FileNotFoundException;

import java.util.HashMap;

import j ava. u t il.N oSuchEl emen tExcept ion;

import java.util.Scanner;

import java.util.StringTokenizer;

import java.util.TreeSet;

public class FileReader (

String fileName = "output.txt";

private Scanner scanner; // Scanner to read from the file

private HashMap<Integer, Integer> wordsFrequence = new HashMap<Integer, Integer>();

I I HashMap to store the number and frequency

; ..
• Method to load all the numbers from the file and read each one by one.

• For each number check it exists in the HashMap and if not add it,

Chapter 4. Creating and Analysing the Datasets

• otherwise take the current frequency and increase it by one and put it
• back in the HashMap

•I

public void loadWordFrequency() {

Runtime runtime= Runtime.getRuntime();

I I Gets the current time in ms - so we can record how long the run took

long startTime = System.currentTimeMillis();
try {

scanner= new Scanner(new File(fileName));
String line;

while ((line= scanner.nextLine()) != null) I

I I Keep looping until you have reached the end of the line

StringTokenizer st = new StringTokenizer(line, ",");

while (st.hasMoreTokens()) {

I I Read each number ...

Integer number= Integer.parseint(st.nextElement()

.toString());

I I ... gets the current frequency from the HashMap
Integer frequeny = wordsFrequence.get(number);

I I If there is nothing then its the first time its being
I I processed

if (frequeny == null) I

I I Hence add it to the HashMap with a frequen cy of 0

wordsFrequence.put(number, O);

I else {

/ I else increse the frequency by one and add it back to

I I the HashMap

frequeny++;

wordsFrequence.put(number, frequeny);

I catch (FileNotFoundException ex) {

System.out.println("Error: " + ex.toString());

I catch (NoSuchElementException e) {

I I Get the current time

long endDate = System.currentTimeMillis();

System.out.println("Occurances:");

TreeSet<Integer> treeSet = new TreeSet<>(wordsFrequence.keySet());
int totalCount = O;

I I Loop around the tree set getting all the values and frequency and
I I display it

for (Integer key: treeSet) I
System.out.println("Number off" + key+ " occur"

+ wordsFrequence.get (key));

t otalCount += wordsFrequence.get(key);

System.out.println("Total number of occurence:" + totalCount);

99

Chapter 4. Creating and Analysing the Datasets 100

4.6.2 Producing Histograms

This section shows the results of the histogram data produced by the Frequency

test program for different block cipher algorithms. These comprise: AES 128-bit,

DEs 64-bit, IDEA 128-bit and RC2 128-bit with CBC mode. Figure 4.7 shows the

histogram for AES and DES. Figure 4.8 shows the histogram of IDEA and RC2

algorithms. The results show that all the datasets are uniform, due to the random

nature of the dataset.

Histogram of AES 128-bits CBC mode
3000

2500

2U.3 2154 2147 2141 2158 2132 2102 2143

2000

1000

500

Codcv.iluc:s

(a) AES
Histogram of DES 64-bits CBC mode

3000

2500 I
2000

1500

1000

500

(b) DES

Fig. 4.7: Histograms of AES and DES block cipher algorithms with CBC mode.

Chapter 4. Creating and Analysing the Datasets 101

Histogram of IDEA 128-bits CBC mode
3000

Codtvaluts

(a) IDEA
Histogram of RC2 128-bits CBC mode

3000

2500

1500

1000

500

Code values

(b) RC2

Fig. 4.8: Histograms of IDEA and RC2 block cipher algorithms with CBC mode.

Figure 4.9 shows the histogram for RC4 and HC 128-bit stream cipher algorithms.

Both are clearly uniform, also due to the random nature of the dataset.

Ch apter 4. Creating and Analysing the Datasets

>
V
C

"' :,
CT

~ ...

3000

2500
2

2000

1500

1000

500

0

3000]

2500

> 2000
V
C

"' :,
CT

~ ...
1500

1000

500

0

2 15 2041

Histogram of RC4 128-bits

Code values

(a) RC4

Histogram of HC128-bits

Code values

(b) HC128

Fig. 4.9: Histograms of RC4 and HC128 stream cipher algorithms.

102

Chapter 4. Creating and Analysing the Datasets 103

4.6.3 Chi-Square Test (x2)

The Chi-square test [268] is a theoretical or mathematical distribution which has

wide applicability in statistical work. The symbol x2 is used to denote the dis­

tribution. It is one of the most popular hypothesis tests and it is widely used in

biology, economics, cryptography and other fields. For instance, one of crypto­

graphic applications is the testing of random number generators and block ci­

phers' suitability as random number generators [269].

There are two fundamental types of Chi-square analysis: first, Goodness of Fit

Test, applied with two nominal variables; and the second, Test of Independence,

applied with two nominal variables. Both types apply the same formula. Chi­

square x2 procedures measures differences between the statistically expected re­

sult (Ei) and actual result observed (Oi) of the table frequencies of nominal vari­

ables to see if there is a statistically significant difference, where Oi represent the

observed value and Ei is represent the expected value for each cell and n repre­

sent sample sizes. The following shows the equation for calculating x2 [256]:
n

X2 = L (O; - E;)
. i= l E; .

The degrees of freedom are: df= (R-1) (C-1)

where: df represent the degrees of freedom, R represents the number of rows

in the table and C represents the number of columns in the table. For any x2

distribution, the df is the number of independent free choices that can be made

in allocating values to the expected frequencies.

As it was shown by Ryabko et al.[269], in some applications the number of cate­

gories (and, consequently, the number of degrees of freedom of x2 distribution)

is very large, thus, the sample size also has to be large. Therefore, in such cases,

performing the x2 distribution needs extra time. Furthermore, it is frequently

difficult to obtain such large samples and x2 may not be used.

In practice, statistical testing is used to gather evidence to show that a generator

indeed produces numbers that appear to be random. For our problem, the Chi­

square test has been used to investigate the randomness of different block and
stream cipher algorithms.

Once we have calculated the value of x2 and determined the degrees of freedom,

we can look up the probability in standard statistic tables to determine whether

the differences in the different block and stream cipher algorithms are due to

chance.

In general, the test follows the standard statistic hypothesis test [270]. The null

Chapter 4. Creating and Analysing the Datasets 104

hypothesis H0 is presented as the sequence of random datasets and the alterna­

tive hypothesis H1 is presented as the sequence of non-random datasets. For the

significance levels p-values, these are set as 0.01 or 0.05. For instance, the sequence

is considered to be random with the confidence of 95% or 99% respectively. If the

p - value is higher then H0 is accepted, otherwise, the H 0 is rejected.

Table 4.3 shows the dataset results for the AES 128-bit, DES 64-bit, IDEA 128-bit

and RC2 block cipher algorithms. Since there are 256 categories, the degrees of

freedom equal (df) 256 - 1 = 255. Note that the degree of freedoms for all block

cipher algorithms are the same.

Samples were chosen for the BECC dataset and tested using the x2 test. For the

AES algorithm the probability value was p = 0.091 and the Chi-square value was

285.649. For the DES 64-bit block cipher algorithm, the probability value was

0.619 and the Chi-square value was 247.578, with zero cells (0.0%) having ex­

pected frequencies less than 5. For the IDEA 128-bit block cipher algorithm the

probability value wasp= 0.989 and a Chi-square value was 205.784.

For the RC2 128-bit block cipher algorithm, the probability value was p = 0.236

and the Chi-square value was 270.899.

In summary for all the block cipher algorithms, this test shows that characters in

the dataset is uniform distributed and is essentially random.

Tab. 4.3: Chi-square for different block cipher algorithms

Chi-square
Probability (p-value)

AES 128-bit DES 64-bit IDEA 128-bit RC2 128-bit
285.649 247.578 205.784.161 270.899
0.091 0.619 0.989 0.236

The Chi-square test was also applied to the encrypted data in the BECC dataset

for RC4 128-bit and HC 128-bit stream cipher algorithms as shown in the Table

4.4. With RC4, the probability value wasp-values= 0.989 and a Chi-square value

was 205.784, but the HC probability value wasp-values= 0.242 and a Chi-square

value was 270.451. 0 cells (0.0%) have expected frequencies less than 5. The min­

imum expected cell Frequency for RC4 is 2046.8 and HC is 2046.8.

In addition, it was observed that the all encrypted BECC dataset consist of char­

acters that are uniformly distributed.

Residual is the difference between the observed values and the dependent vari­

able. Examining residuals can tell us whether our assumptions are reasonable

and our selection of model is appropriate. Table 4.5 shows the maximum and

minimum residual for each block cipher algorithm. According to the result, we

Chapter 4. Creating and Analysing the Datasets

Tab. 4.4: Chi-square for two stream cipher algorithms

Chi-square
Probability (p-value)

RC4 128-bit HC 128-bit
205.784 270.451
0.989 0.242

105

have found that all block cipher-text show a random pattern and are uniformly

distributed.

Figures 4.10 and 4.11 show the plot of residuals for the AES and RC2 algorithms.

The reference lines at 0 in these plots emphasizes that the residuals cluster around

the 150-250 between positive and negative differences for the AES algorithm, and

for RC2 cluster around 200-150. The figures show that there are no systematic

patterns apparent in these plots. It is very important to analyse the plot of the

residuals versus every variable to make sure that a selected model is the best

model possible to use. As observed, the points in the plots seem to be fluctuating

randomly around zero in an unpatterned fashion. Moreover, the remaining block

cipher algorithms produce similar plots, which mean the residual plots all show

a fairly random pattern. The residuals also appear to behave randomly which

further suggests that the model fits the data well.

150

100

so
iii ::, 0
"C
'iii
Cl) -so a:

-100

-150

-200

Tab . 4.5: Residual for the block cipher algorithms.

AES DES IDEA RC2

Max Residual 109.2 113.1 99.2 183.2
Min Residual -162.8 -126.9 -139.8 -100.8

Random pattern of AES

♦ ♦ •
♦ ~~"\•~

♦ ♦.. *oo~~t•~i 300

•• ~~ ♦ ♦ •♦ ••

♦ ♦

♦

Code value

Fig. 4.10: Residual plot for the AES algorithm.

♦ AES Residual

Table 4.6 shows the residual for the cipher-texts of the RC4 and HC stream ci-

Ch apter 4. Creating and Analysing the Datasets

200.0

150.0

100.0

~ 50.0
~
·;;;
~ 0.0

♦

Random pattern of RC2

♦

♦
♦

♦

300
·50.0 ~~ r-"R--'-:-..~~~-¥--...:....:"-~ --

·100.0
♦ ♦

·150.0
Code value

Fig. 4.11: Residual plot for the RC2 algorithm.

106

♦ RC2 Residual

pher algorithms. The results also indicate random data. The points in the plot

also fluctuating randomly around zero in an unpatterned fashion as shown in

Figures 4.12 and 4.13. The two residual plots below shows the results for the

RC4 algorithm with 128-bit. In this case the plots provide further evidence of the

randomness of the dataset.

Tab. 4.6: Residual for the stream cipher.

Max Residual
Min Residual

RC4 128-bit HC 128-bit

183.2
-100.8

164.2
-123.8

Chapter 4. Creating and Analysing the Datasets 107

Random pattern of RC4
150

100

300 ♦ Residua l

·100 •
♦

·150
♦

·200
Code value

Fig. 4.12: Residual plot for the RC4 algorithm.

HC 128 Residual
200.0

150.0
♦

• •
100.0 ♦

♦

t ~··· 4/t
ro 50.0 ::i

♦ :.~~

7:J
V1
Q) 0.0
a::

-50.0 ~~ ♦
♦ ~,

-100.0

♦ HC 128 Residual

300

♦
-150.0

Code value

Fig. 4.13: Residual plot for the HC algorithm.

Chapter 4. Creating and Analysing the Datasets

4.6.4 Compressing the Dataset Using the PPM Compression

Algorithm

108

In 1984, John Cleary and Ian Witten developed the Prediction by Partial Matching

(PPM) data compression algorithm. Throughout the past decade, the PPM data

compression method has set the performance standard in lossless compression of

text. The PPM method is based on a method, which maintains a statistical model

of the text.

The PPM compression method has become a benchmark in the compression com­

munity. It is considered to be one of the best lossless compression algorithms. It

generates 'predictions' for each character in the input. Each prediction take the

form of a probability distribution that is provided to an encoder. The encoder is

usually an arithmetic coder [271] [257] [258].

This section describes the application of eight block cipher and five stream cipher

algorithms to derive computer models for predicting the encrypted block and

stream cipher algorithms. If the cipher-text in the datasets are random, then they

will be uncompressible.

Two datasets are used. The first set has 8 classes (one for each encryption al­

gorithm with different key size) and 240 input files, which results in 240 input

files to be compressed. The second dataset has 4 classes (one for each algorithm).

Four different block cipher algorithms (AES, DES, IDEA and RC2) are used: the

AES algorithm with three different key sizes (128, 192 and 256-bit), DES 64-bit,

IDEA 128-bit and RC2 with three different keys sizes (42, 82 and 128-bit). In the

experiments, the input data files to the compression tool are 512KB in size after

encryption produced two types of file text (containing only printable characters).

Table 4.7 shows the file position for all block cipher algorithms and Figure 4.14

shows the result of file position against the compression rate in bit per characters

(bpc). According to our results, we have observed that there is no significant dif­

ferences between the algorithms with the highest compression rate being 8.363

(bpc) and the lowest 8.076 (bpc). The result shows that all datasets are incom­

pressible (i.e.much of the data is random) because the compression ratios are >

8.0 bpc i.e. the file expands rather than contracts when running the compression

tool on the file.

Chapter 4. Creating and Analysing the Datasets 109

Tab. 4.7: Compression results for different block cipher using PPM method.

File position Compression (bpc)

10000000
20000000
30000000
40000000
50000000

AES 128 AES 192 AES 256 DES 64 IDEA 128 RC2 128 RC2 42 RC2 84

8.240
8.154
8.116
8.094
8.079

8.400

8..350 , , 1

8.300

I
S.3

! 8.250

I
.i S.200

• i S.ISO

8.100

8.050

8.000

8.240
8.154
8.116
8.094
8.079

8.240 8.240 8.240
8.154 8.155 8.155
8.116 8.116 8.116
8.094 8.094 8.094
8.080 8.079 8.080

CBC mode compression

8.240 8.239
8.154 8.154
8.116 8.116
8.094 8.094
8.079 8.079

~ ACS-128

~ AES-192

_._AES·2S6

- OC5·64

- 1DEA·l28

-+-RC2·128

--RC2-84

- RC2•42

0 1000000 2000000 3000000 4000000 5000000 6000000

FUe posltion

8.240
8.155
8.116
8.094
8.079

Fig. 4.14: Block cipher file position against compression (bpc).

Table 4.8 shows the file position and the compression ratio (bpc) for different

stream cipher algorithms: Grain 128-bit, HC 128-bit, RC4 128-bit, VMPC 128-bit

and VMPC 128-bit. All stream ciphers have used the same encryption key. The

highest point is equal to 8.021(bpc) and the lowest is equal to 8.006 (bpc). All the

compression ratios are > 8.0 (bpc) and therefore the data is incompressible due to

the randomness of the data.

Tab. 4.8: Compression results for different stream cipher using PPM method.

File position Compression(bpc)

Grain HC128 RC4 Salsa20 VMPC

10000000 8.021 8.021 8.022 8.021 8.021
20000000 8.012 8.012 8.012 8.012 8.012
30000000 8.009 8.009 8.009 8.009 8.009
40000000 8.007 8.007 8.007 8.007 8.007
50000000 8.006 8.006 8.006 8.006 8.006

Summary

The purpose of this chapter is to create an encryption dataset to be used for the

experimental evaluation in Chapter 5 and 6. Moreover, the main motivation is to

create the dataset for the experimental evaluations and so that other researchers

can benefit from the dataset as well. This study uses the Crypto++ library, in

order to create the datasets, which is an open source library that supports a vast

array of cryptographic schemes. Random samplings of text files were taken from

the Internet in 2010 from reports, papers. The sample source text data ranged in

size from 100 bytes to 10000 bytes.

The following block cipher algorithms were used to encrypt the sample source

text: AES with three different key sizes (128, 192 and 256-bit), DES 64-bit, IDEA

128-bit and RC2 with three different key sizes (128, 84 and 42-bit). The encrypted

cipher-text output was then analysed using the following tests: Frequency test,

Chi-square test, and a Compression test using the Prediction by Partial Matching

(PPM) algorithm.

The tests indicate that the encrypted data is essentially random in nature. The Fre­

quency test shows a uniform distribution for the encrypted text. The Chi-square

test also indicated the distribution of character codes is uniform. All encrypted

data files are incompressible, again indicating the data is random in nature.

Chapter 5

Encryption Classification for Block Cipher

Algorithms

The purpose of this chapter is to demonstrate that Pattern Recognition (PR) tech­

niques can be useful tools for identification of the encryption method used from

the encrypted plain-text files. This chapter considers block ciphers using Elec­

tronic Codebook (ECB) and Cipher Block Chaining (CBC) methods with differ­

ent algorithms. The performance of each of the classifiers is presented. Section

5.1 introduces the classification of encryption output for block cipher algorithms.

Section 5.2 addresses methodologies used in this study. Section 5.3 explains the

identification of the encryption method. Section 5.4 describes the experimental

results. Finally, the chapter concludes with a summary.

5.1 Introduction

A typical cipher takes a plain-text message and some secret keying data as its

input and produces an encrypted version of the original message, known as the

cipher-text. An attack on a cipher can make use of the cipher-text alone or it can

make use of some of the plain-text and its corresponding cipher-text. Cryptanaly­

sis is the process of recovering the plain-text and/ or key from a cipher-text. Most

encryption algorithms have a finite key space, hence, are vulnerable to an ex­

haustive key search attack. However, it is very difficult to identify the encryption

keys because in most cases the size of the key is such that the time and resources

required are not generally available. A random search through a finite but large

key space is not usually an acceptable cryptanalysis method.

In Cryptanalysis, when only the cipher-text is obtained, there are initially two

significant tasks: identification of the encryption technique applied and the en­

cryption key identification. Cryptanalysis attempts to identify weaknesses in the

algorithms used for encryption or the methods used to generate keys. In the con-

Chapter 5. Encryption Classification for Block Cipher Algorithms 112

text of this chapter, however, the emphasis is to explore the possibility of identi­

fying encryption methods by applying Pattern Recognition techniques.

The following block cipher algorithms were considered: DES, IDEA, AES, RC2,

RC6, Blowfish, Twofish, XTA, CAST and DESede (3DES) operating in ECB and

CBC modes. Eight different classification techniques: Na'ive Bayes (NB), Support

Vector Machines (SVM), neural networks (MPL), Instance based learning (IBL),

Bagging (Bag), AdaBoostMl (AdaBMl), Rotation Forest (RoFo) and Decision Tree

(C4.5), were used to try to identify the encryption method.

5.2 Methodologies

5.2.1 Using Matlab to Generate WEKA Files

The encryption was carried out by using the Crypto++ library, which created the

WEKA file. A Matlab program was used to generate the WEKA file. The previous

chapter mentioned that WEKA is a very powerful data mining tool, which allows

a user to test dataset with a broad set of classifiers. For further details about the

code see Appendix A Section A.1.

5.2.2 Using 10 Fold Cross-Validation

Ten fold cross-validation was used in the experiment which produced an accu­

racy measurement, which is the percentage of correctly classified instances over

the total number of instances, as follows:

1. Data is divided into 10 equal partitions.

2. Then 9 /10 of the data is used for training and 1/10 for testing.

3. The whole process is repeated 10 times. The overall error rate is equal to the

average of error rates of each partition.

4. All the classifiers were trained using the same training sets and were tested

on the same testing sets to establish the classification accuracy.

The following equation was used to measure the accuracy:

A (01) Sum of correct classif ications
100 ccuracy 10 = ---- ----- --- x .

Total number of classi f ications

Chapter 5. Encryption Classification for Block Cipher Algorithms 113

5.2.3 Confusion Matrix

The confusion matrix is a useful tool in machine learning that enables analysis of

the errors that the learning system makes. The confusion matrix, in unsupervised

learning is characteristically named a matching matrix. Its focus is on the predic­

tive capability of a model rather than how quick the models take to perform the

classification. It can be used as an indication of the properties of a classification

rule. Each class consists of a number of elements that are correctly or incorrectly

classified. The result of the classification phase is called the confusion matrix,

which is a detailed report on the performance of a single classifier. In the matrix,

the columns represent the class and the rows represent the original data, as in the

classification model shown in Table 5.1. The diagonals in the matrix represent

typical cases that were classified correctly, for example, all cells of the diagonal

represent cases of misclassified instances.

Every instance in the test set compares the actual class to the class that was as­

signed by the classifier. The matrix as well illustrates the accuracy of the classifier

as the percentage of correctly classified patterns in a given class divided by the

total number of pattern in that class.

A true positive is one that is correctly classified by the classifier and a false neg­

ative is one that is incorrectly classified by the classifier. The advantage of using

the confusion matrix is the ability to consider the performance of all the classifi­

cation forms.

Based on the elements in Table 5.1, it is possible to determine and find the cor­

rect and incorrect classifiers [272] [273] [274]. The advantages of using this per­

formance evaluation confusion matrix tool is that we can simply observe if the

model is confusing two classes (i.e. commonly mislabelling one as another).

Tab. 5.1: Confusion Matrix

Predicted Predicted
negative(class) positive(class)

Actual Negative(class) a b
Actual Positive(class) C d

Chapter 5. Encryption Classification for Block Cipher Algorithms 114

This is shown by the followings four elements [275]:

• True Positive (TP): An element is predicted as faulty and in reality is faulty.

TP = d/(c+ d)

• False Positive (FP): An element is predicted as faulty and in reality is not

faulty.

FP = b/(a+b)

• True Negative (TN): An element is predicted as not faulty and in reality is

not faulty.

TN=a/(a+b)

• False Negative (FN): An element is predicted as not faulty and in reality is

faulty.

FN= c/(c +d)

5.3 Identification of Encryption Method

This section presents the results of the experiments conducted in order to study

the performance of the proposed method. The identification of encryption algo­

rithms for input block ciphers are presented with each data input file being a data

point in our dataset. An RM Desktop PC, with a 3.06 GHz processor operating

under UNIX was used to perform the classification experiments.

The study included two groups of block cipher algorithms:

• The first group considered the following block cipher algorithms: DES (64-

bit), IDEA (128-bit), AES (128, 192, 256-bit) and RC2 (42, 84, 128-bit).

• The second group included another seven block cipher algorithms: RC2,

RC6, Blowfish, Twofish, XTA, CAST and DESede (3DES), all with the same

key size (128-bit).

The first group of block cipher was operated in Electronic Codebook (ECB) mode

and Cipher-Block Chaining (CBC) mode, while the second group of block cipher

was operated only in CBC mode.

The classifiers used in WEKA included: Naive Bayes (NB), SVM, MLP, IBL, Bag­

ging, AdaBMl, RoFo and C4.5 classifiers. In the experiments, 512KB input data

Chapter 5. Encryption Classification for Block Cipher Algorithms 115

files after encryption produced two types of text files. We focused on binary files

for classification, due to output produced by the encryption algorithms being

binary. Confusion matrices were used to find the highest accuracy. We used

the equation in Section 5.2.2 to calculate the accuracy and the Multidimensional

Scaling (MDS) method was used to find the similarity and dissimilarity between

Symmetric algorithms.

In the first experiment, the dataset the data files in the dataset were divided into

8-bit codes, and the Matlab program in Appendix A.2 was used to extract his­

tograms of the encrypted data. In the second experiment, the data files in the

dataset were divided into 16-bit codes, and again the Matlab program was used

to extract histograms of the encrypted data. For the 8-bit datasets there are 256

possible attributes or features and for the 16-bit codes there are 65536 possible
attributes or features.

The following describes the experimental setup:

1. In the first experiment (block ciphers), for each algorithm, the 30 source

text files from the BECC dataset (512KB in size) were encrypted using AES,

IDEA and RC2 (128-bit) and DES 64-bit algorithms. Different key number

were used with each- file. 1, 3, 5 and 30 keys-resulting in 120 files being

processed. These were chosen to make the data more difficult to identity.

These 120 encrypted files were used as data points in WEKA. When using

three keys, the 30 source text files were divided by three giving three groups

of ten files. Each of the three keys were then used to encrypt each of the ten

files. This was repeated for all the algorithms. When using 5 keys, the 30

input files were divided by 5 giving 5 groups of six files. Each of the 5 keys

were then used to encrypt each of the six files. Again, this was repeated for
all the algorithms.

2. In the second experiment, two parts were carried out. In the first part, the

30 source files from the (BSFC) dataset were used with different encryption

keys: for AES (128, 192 and 256-bit), for DES 64-bit, IDEA 128-bit and RC2

(42, 84 and 128-bit) algorithms. The same method in terms of numbers of

keys was used as described above resulting in 240 encrypted files being

processed. In the second part; the same algorithms with the same number

of keys were used as used in first part, however, this time while the numbers

of the keys were the same, the types of keys were different. These two parts

were carried out to check whether there was an effect on accuracy when

using one fixed encryption key with different ver-sion of the keys.

Chapter 5. Encryption Classification for Block Cipher Algorithms 116

3. In the third experiment, the algorithms were used but different data points

were chosen from the BSFC, which contained 120, 240 and 400 data points.

Again, the 30 plain-text source files was encrypted using 1, 3, 5 and 30 keys

for each algorithm. In this simulation, the first and second results from the

120 and 240 data points had already been obtained and 100 data points were

added and used with all block cipher algorithms. However, this time 100

data points were divided by 5 producing 20 input files giving 5 groups of

20 text files. Each of the 5 keys were then used to encrypt each of the 20 the

files. Again, this was repeated for all the algorithms. The aim was to verify

whether there was an effect on accuracy when using different data points

128-bit encryption keys.

4. In the fifth experiment, different types of block cipher algorithms were used

with 30 encryption text files from the BECC dataset for each algorithm re­

sulting in 210 data points: RC2, RC6, Blowfish, Twofish, XTA, CAST and

DESede (Triple DES) all with 128-bit. The same settings were used as were

used in the first experiment with ECB and CBC modes.

5.4 Experimental Results

5.4.1 Block Cipher Algorithms with ECB Mode

This section shows the results of the experiments conducted for the evaluation of

the classification of encrypted text produced by block cipher algorithms. The

training set used for the experiments contained examples of Symmetric algo­

rithms from the two different classes of block cipher algorithms, and was used to

build the classification model. The testing set represents the unknown Symmetric

cipher algorithms that were to be classified. The block cipher algorithms in both

the training and testing sets are labelled with the appropriate class a priori.

Because the class of each block cipher within the datasets is known, it is possible

to evaluate the performance of the classifier by comparing the predicted class

against the known class. A 10 fold cross-validation method was used as a test

mode where 10 pairs of training sets and testing sets were created.

Each time, one of the 10 subsets is used for training and the other nine for testing.

The whole process was repeated 10 times. To estimate a value on the training

datasets, an accuracy measure was defined as shown in the equation 5.2.2. The

overall error rate is equal to the average of error rates of each part.

Chapter 5. Encryption Classification for Block Cipher Algorithms 117

All the classifiers were trained using the same training sets and were tested using

the same testing sets to establish the classification accuracy. Performance statistics

were calculated across all 10 trials. This provided a good indication of how well

the classifier would perform on unseen data.

In this study, two datasets were used with block cipher algorithms. The first set

had 8 classes (one for each encryption algorithm with a different key size) and

240 input files. The second dataset had 4 classes (one for each algorithm).

Effects of Different Numbers of Keys with 120 Data Points from the BECC

Dataset

In the first experiment using 8-bit codes, the effect of different numbers of key

sizes used to encrypt the plain-text was investigated for the following encryp­

tion algorithms: AES, RC2 and IDEA with fixed 128-bit encryption keys and DES

with 64-bit keys. The purpose was to find the effect of different numbers of key

sizes with different block ciphers algorithms, in order to determine which one

obtained the higher classification accuracy between them (as shown in Table 5.2).

The number of input files used was 30 and the number of keys used simultane­

ously (ensemble classification) was 1, 3, 5 and 301 keys. Here, Figure 5.1 shows

that RoFo classifiers have a better overall accuracy performance, and AdaBMl

achieved the lowest accuracy. Furthermore, and as expected, all the classifiers

(apart from AdaBMl) produced good accuracy when using 1, 3 and 5 numbers

of keys. It can be seen, also as expected, that the accuracy drops when using one

key for each file (30 keys). Naive Bayes and MLP classifier with one key obtained

the same accuracy (99.17%).

Chapter 5. Encryption Classification for Block Cipher Algorithms 118

Tab. 5.2: Accuracy results for the 4 classes with 1, 3, 5 and 30 numbers of key sizes with
ECB mode.

~
1 Key: 3 Keys: 5 Keys: 30 keys:

256 Attributes, 256 Attributes, 256 Attributes, 256 Attributes,
120 Instances 120 Instances 120 Instances 120 Instances s

s

(%) (%) (%) (%)

Naive Bayes 99.17 95.83 89.17 51.66
SVM 97.50 96.66 96.66 35.00
MPL 99.17 98.33 98.33 35.00
IBL 96.66 96.66 95.83 25.00
Bag 96.66 89.17 85.83 43.33
AdaBMl 95.83 47.50 45.83 37.50
RoFo 98.33 98.33 46.66 38.33
C4.5 93.33 80.00 69.16 44.17

100

- NB
- SVM

90
- MLP

ISL
c=]Bag

80 c:::::J AdaBM1
- RoFo

70 - C45

{
l 60 . .

i
50

40

Key sizes

Fig. 5.1: Encryption accuracy of different algorithms (AES, RC2, IDEA(128-bit))
and DES(64-bit) key sizes.

Effects of Different Numbers of Keys With 240 Data Points from the BECC

Dataset

Measurements of the performance against different numbers of keys were con­

ducted using two datasets of different sizes, performed with 256 features from

encryption algorithms. Two datasets first using 8 classes dataset and second us­

ing 4 classes, and different numbers of the keys (1, 3, 5 and 30), were used to

encrypt the files. In this way, one can view which elements were correctly clas-

Chapter 5. Encryption Classification for Block Cipher Algorithms 119

sified and which were misclassified and which number of keys obtain a higher

accuracy.

240 data points were produced after applying the AES (128, 192 and 256-bit),

DES 64-bit, IDEA 128-bit and RC2 (42, 84 and 128-bit) algorithms where each al­

gorithm had 30 source text files . Table 5.3 for the 8 classes and Table 5.4 for the

4 classes show the experimental results of these classifications. The experiment

was conducted using different numbers of keys for each algorithm (1, 3, 5 and 30).

Equation 5.2.2 was used to calculate the accuracy for each different set of data. It

can be seen in Figure 5.2 that using one encryption key produces a higher clas­

sification accuracy of 100% meaning that the 240 instances (files) were correctly

classified.

In contrast, using 30 different numbers keys (one for each file) resulted in a lower

classification accuracy. This was expected as the keys are generated randomly

and will affect the pattern of test data. The results show that the accuracy of the

classification was reduced with an increase in the number of encryption keys.

Furthermore, the result shows that the 4 classes dataset obtained higher accuracy

than dataset the 8 classes.

Tab. 5.3: Accuracy results for the 8 classes with different numbers of keys with ECB
mode.

~
lKey: 3Keys: 5Keys: 30keys:

8 Classes 8 Classes 8 Classes 8 Classes
256 Attributes, 256 Attributes, 256 Attributes, 256 Attributes,

s
s

240 Instances 240 Instances 240 Instances 240 Instances
(%) (%) (%) (%)

Naive Bayes 32.08 30.42 25.00 20.41
SVM 32.08 29.58 28.33 19.16
MPL 30.00 27.50 28.83 16.66
IBL 30.41 27.91 26.25 12.08
Bag 31.25 29.58 27.91 20.00
AdaBMl 25.00 22.08 16.66 16.25
RoFo 30.00 32.50 31.66 22.00
C4.5 44.58 41.25 32.91 22.50

Chapter 5. Encryption Classification for Block Cipher Algorithms 120

Tab. 5.4: Accuracy results for the 4 classes with different numbers of keys in ECB mode.

~ s
s

Naive Bayes
SVM
MPL
IBL
Bag
AdaBMl
RoFo
C4.5

100

90

80

70

- 60
f
i 50
:,
u
u
< 40

30

20

10

NB

lKey 3Keys 5Keys 30Keys
4 Classes 4 Classes 4 Classes 4 Classes

256 Attributes, 256 Attributes, 256 Attributes, 256 Attributes,
240 Instances 240 Instances 240 Instances 240 Instances

(%) (%) (%) (%)

100 99.16 97.08 40.00
99.16 98.75 99.16 44.16
99.58 98.75 89.16 42.20
99.17 98.33 98.74 40.00
98.75 95.41 94.16 38.33
75.00 70.41 59.58 39.16
99.58 99.16 98.75 35.83
97.91 93.33 91.25 40.00

SVM MLP IBL Bag
Classification algorithms

Fig. 5.2: The accuracy for each algorithm for the 4 classes dataset.

For the following experiments, the same encryption algorithms with the different

numbers of keys (1, 3 and 30) individually were used to encrypt the file, which

mean each algorithm had its own numbers of keys. The following points were

discovered, as shown in Figure 5.3, Table 5.5 for the 8 classes case and Table 5.6

for the 4 classes case:

• All classifiers with one key achieved a high accuracy classification of 100%

meaning that 240 instances out of 240 were correctly classified with both the

8 classes and 4 classes datasets.

Chapter 5. Encryption Classification for Block Cipher Algorithms 121

• SVM achieved a higher accuracy with 1, 3 and 30 different keys, and Ad­

aBMl achieved a lower accuracy with one and three keys, but the IBL clas­

sifier with 30 different keys achieved the lowest accuracy.

• On the other hand, using 30 individual keys produced the worst accuracy

over all the algorithms for both cases.

• IBL, however, achieved the lowest accuracy of 12.5% meaning that only 30

instances out of 240 were correctly classified with the 8 classes dataset.

Tab. 5.5: Accuracy results for the 8 classes with individual number of keys (1, 3 and 30)
with ECB mode.

~
lkey: 3keys: 30keys:

8 Classes 8 Classes 8 Classes
256 Attributes, 256 Attributes, 256 Attributes,

s
s

240 Instances 240 Instances 240 Instances
(%) (%) (%)

Naive Bayes 100 40.83 28.33
SVM 100 18.33 17.08
MPL 100 14.16 21.67
IBL 100 13.33 12.50
Bag 100 32.50 25.83
AdaBMl 25.00 14.16 20.42
RoFo 100 28.33 30.83
C4.5 100 22.08 27.92

Chapter 5. Encryption Classification for Block Cipher Algorithms 122

Tab. 5.6: Accuracy results for the 4 classes with individual number of keys (1, 3 and 30)
with ECB mode.

~
lkey: 3keys: 30key:

4 Classes 4 Classes 4 Classes
256 Attributes, 256 Attributes, 256 Attributes,

s
s

240 Instances 240 Instances 240 Instances
(%) (%) (%)

Naive Bayes 100 66.66 44.17
SVM 100 48.75 32.08
MPL 100 42.50 39.58
IBL 100 37.50 30.42
Bag 100 65.00 47.50
AdaBMl 37.50 40.83 43.33
RoFo 100 65.00 53.33
C4.5 100 57.91 51.67

100 - I I !

90 ; ···•· ·•·-

80

70 -··
- 1key

.. ; 0 3keys
~

,.:.. ""'" - 30 keys
,....._ 60
~ 0 ._., 1
>-
(.)

50 ~ - ...
::l
(.)
(.)

40 c{ ..a. .. ··-
,.:..

30 ·-

20

10 -.. . .

o~ ~ -
NB SVM MLP ISL Bag AdaBM1 RoFo C4.5

Classification algorithms

Fig. 5.3: Encryption accuracy with individual number of keys (1, 3 and 30) with
ECBmode.

Chapter 5. Encryption Classification for Block Cipher Algorithms 123

Multidimensional Scaling (MDS) for Different Numbers of Keys

Figure 5.4 (a) shows the data scatter-plots and the centres of the 240 data points

with different key sizes 1, 3 and 5. The plot shows the classes are found sporad­

ically, suggesting that the high recall and precision rates for AES are higher than

for other algorithms, as shown in Table 5.3. The centres of the "clouds" of points

for the 8 classes dataset are plotted in the same way as in the first experiment. In

Figure 5.4 (b), according to this plot, all algorithms have similar representation.

Note that the scales of all plots are different. The class centres are indistinguish­

able if plotted on the axes of a sub-plot. Finally, we can say this highlights the

difficulty in recognising the type of code through simple pattern classification

methods. Figure 5.5 shows an image of the distance matrix computed by using

classification identification accuracy of each encryption algorithm. The block of

30-by-30 distances is outlined in black. Blue means high similarity while yellow

and red indicate low similarity. The class labels are as follows: 1 AES (128), 2 AES

(192), 3 AES (256), 4 DES (64), 5 IDEA (128), 6 RC2 (128), 7 RC2 (42) and 8 RC2

(84).

The encoding technique that stands out from the rest is AES. The 3-by-3 block

sub-matrix in the top left corner is largely blue and shows the similarity within

the code. Interestingly, the AES algorithm is distinct from the rest of the algo­

rithms; also note that the three versions of AES (128, 192, and 256) are not distinct

within AES. The red vertical and horizontal lines demonstrate the unusually large

distances compared to the rest. Unlike ECB, there is no clear pattern to suggest

that any of the codes are distinct.

With 3 and 5 keys, the same result was obtained, as shown in Figures 5.6 (a) and

Figure 5.7 (b). Unlike ECB, there is no clear pattern to suggest that any of the

codes are distinguishable.

Chapter 5. Encryption Classification for Block Cipher Algorithms

. AES-128
X AES-192 .
.0. AES-256

* DES-64
□ IDEA-128
0 RC2-128
◊ RC2-42
+ RC2-84

-4000 -2000 0 2000 4000 6000
Dimension 1

(a) All data
class centres

.. ············ ······•• ············:····· .. • AES-128
3000 • AES-192 .

A AES-256
2500 , , , • DES-64

2000 , ..

1500

1000 , ..

0 ..

-500 , ..

0 IDEA-128
0 RC2-128
0 RC2-42 .. + RC2-84

'" -~-............. -~.

-~ \ !· ..

............ : :. ·· •·c,Oj "·
········.l. ·· l

-2000 -1000 0 1000 2000 3000
Dimension 1

(b) Class centres

124

Fig. 5.4: Scatter-plots of the 240 data points and the centres for the ECB mode
with the 8-bit encoding using one key.

Fig. 5.5: The Distance Matrix for ECB mode with the 8-bit encoding. The class
labels are as follows: 1 AES(128), 2 AES(192), 3 AES(256), 4 DES(64), 5
IDEA(128), 6 RC2(128), 7 RC2(42) and 8 RC2(84)

Chapter 5. Encryption Classification for Block Cipher Algorithms

all data

5000 +··············i-- • AES-128 ·
♦' . . X AES-192

4000 ,. ··· ······ ·········· ··················· · a AES-256 ·

N 3000 ·~ ·········j·············f ····· ·· + ~ ~g!!~a •
.~ 2000 ···+) ... · t ~g;~ ·
~ 1000 ; ··+· .. ·····•:- .•
0

::: ·•.t~1 ••• ~1 il.·.••··••••

-400 :

-2000 0 2000
Dimension 1

4000

(a) All data
class centres

6000

oO
' ' !" f·············· ""''.""''" r-......... .

········ ·········~············ 1' • AES-128

• AES-192
6 AES-256

• DES-64
Q IDEA-128 .
0 RC2-128
0 RC2-42
+ RC2-84

.............. ~-................... i

•.• -~- .•••••••••• ••• • · ···!•

-600 >--·
-10 ~o..,...o --_,c15 a1--- - o~-___,s,..oo,----1-'-ooo

Dimension 1

(b) Class centres

125

Fig. 5.6: Scatter-plots of the 240 data points and the centres for the ECB mode
with 8-bit encoding using three keys.

Fig. 5.7: The Distance Matrix for ECB mode with 8-bit encoding. The class la­
bels are as follows: 1 AES(128), 2 AES(192), 3 AES(256), 4 DES(64), 5
IDEA(128), 6 RC2(128), 7 RC2(42) and 8 RC2(84)

Chapter 5. Encryption Classification for Block Cipher Algorithms 126

-2000 0 2000 4000 6000 8000
Dimension 1

(a) All data
class centres

.............. ~ ····I • AES-128

.. · ! !
200 -j- ; ;. ;

i 100 ··l ·• . .. , · .L ... · · j
~ 0 . .;
i3 .

300 • AES-192
6 AES-256 ·

• DES-64
0 IDEA-128 ·
0 RC2-128
0 RC2-42
+ RC2-84

.. +· 0

. . ! • • • . • . • • • .

-300 ,.

-400 -200 0 200 400
Dimension 1

(b) Class centres

Fig. 5.8: Scatter-plot of the 240 data points and the centres for the ECB mode with
8-bit encoding encoding using five keys.

Fig. 5.9: The image of the Distance Matrix for ECB mode with 8-bit coding. The
class labels are as follows: 1 AES (128), 2 AES (192), 3 AES (256), 4 DES
(64), 5 IDEA (128), 6 RC2 (128), 7 RC2 (42) and 8 RC2 (84)

Effects of Different Instances on Performance

Measurements of the performance against the numbers of keys were conducted

using two datasets (8 classes and 4 classes). Different encryption text files, which

Chapter 5. Encryption Classification for Block Cipher Algorithms 127

includes (120, 240 and 400 instances) were used and performed with 256 features

from encryption algorithms. In this way, one can view the effects of different in­

stances on performance with the same 256 features. This experiment deals with

the effect of increasing the number of encryption text files (instances) on overall

accuracy as shown in Table 5.7. Here different encryption text files were used

for each algorithm: AES 128-bit, DES 64-bit, IDEA 128-bit and RC2 128-bit. Thus

the total numbers of the instances are 120, 240 and 400 respectively. With 120 in­

stances, each algorithm has 30 data points, with 240 each algorithm has 30 data

points (AES with three version keys (128-bit, 192-bit, 256-bit), DES 64-bit, IDEA

128-bit and RC2 with three version key (128-bit, 42-bit, 84-bit) and 400 instances

for each algorithm with 100 different files divided by 5 to find the accuracy. Fig­

ure 5.10 shows that all classifiers using 400 instances achieved the highest accu­

racy, while using 120 instances achieved the lowest accuracy. It is also evident

that RoFo classifiers produce the most accurate results for all instances and IBL

performs very badly when operating with 120 and 240 instances.

Tab. 5.7: Accuracy resultsfor different instances with the same features (120,240,400)
with ECB mode.

Algorithms 120 Instances(%) 240 Instances(%) 400 Instances (%)
Naive Bayes 43.00 44.17 82.25

SVM 31.00 32.08 91.25
MLP 30.00 39.58 92.25
IBL 20.00 30.42 93.50
BAg 25.00 47.50 86.75

AdaBMl 30.00 43.33 39.00
RoFo 45.00 53.33 93.00
C4.5 31.00 51.67 83.00

Chapter 5. Encryption Classification for Block Cipher Algorithms

100~-------,----.---~---,---,--- -~--~------.----,

90 ·

80 ,.

70 ·•·······•··· ······· · ,

- 60
~
g 50
ii
:i 40

30

20

10

,

....
..... ,.~ ..

· • 120 instnaces

· D240 Instances

.. • 400 instances

0 ._____,__,_ ~
NB SVM MLP IBL Bag AdaBM1 RoFo

Classification algorithms (4_classes) in ECB Mode

········•···,··

C4.5

128

Fig. 5.10: The accuracy for all algorithms with different instances (120, 240 and
400 instances (BECC)) with ECB mode.

Evaluation of Using 30 Numbers of Keys with 30 BECC Individually

Experiments were also conducted using 8-bit with ECB mode. For individual

classes, the confusion matrices simply inform how the classifier behaves. Each

table was calculated using 4 classes with different numbers of keys and 240 data

points were used: AES with three different keys(128, 192, 256-bit), DES 64-bit,

IDEA 128-bit and RC2 (42, 84, 128-bit) with three different keys. In this case the

number of samples in one class is significantly more than that in the other class

resulting in what is called "imbalance", which happens often with different block

cipher datasets. The accuracy evaluation of a classifier is not representative of the

true performance of each classifier. In some of the tables, the reason for the large

imbalances are that the number of the keys is too high, the effect of the type of

classifier used and the type of the algorithm used.

In the experiments, ECB mode used the same block cipher algorithms with the

same classifiers. The difference was that 30 different data points were used for

each algorithm individually as well as 30 different numbers of keys individually,

which were divided into 8-bit blocks. Table 5.8 and Figure 5.11 show the classifi­

cation accuracy results of these eight classifiers. The experimental results, for the

8 classes dataset (in the second column) reveal the classification accuracy. It can

be observed that the RoFo achieved the highest accuracy classification of 30.83%

meaning that 74 data points out of 240 were correctly classified. On the other

hand, IBL had the lowest accuracy classification of 12.5% meaning that only 30

Chapter 5. Encryption Classification for Block Cipher Algorithms 129

data point out of 240 were correctly classified. The reason for improved accuracy

with RoFo and C4.5 classifiers is due to grouping the AES with the three keys in

one class and the RC2 in one class and using random data.

Tab. 5.8: Classification accuracy performance of the classifier four block cipher with ECB
mode.

~
8 Classes 4 Classes

256 attributes, 256 attributes,
240 Instances 240 Instances s

s

(%) (%)

Naive Bayes 28.33 44.17
SVM 17.08 32.08
MPL 21.67 39.58
IBL 12.50 30.42
Bag 25.83 47.50
AdaBMl 20.42 43.33
RoFo 30.83 53.33
C4.5 27.92 51.67

The experimental results for the 4 classes dataset (in the third column) show

that RoFo also outperforms all other classifiers with the classification accuracy

of 53.33% meaning that only 128 data points out of 240 were correctly classified.

IBL once again has the lowest accuracy classification of 30.42% meaning that only

73 data points out of 240 were correctly classified. The reason for improved ac­

curacy is due to grouping the encryption keys to form one class of AES and the

same for RC2 and using longer 16-bit data points. The results show that RoFo

and C4.5 perform much better than the SVM classifier because AES with three

different numbers of keys (128, 192 and 256) were combined and RC2 with (128,

84 and 42) key sizes.

Chapter 5. Encryption Classification for Block Cipher Algorithms 130

60.--------.----.-- ----,.--------.--.-----,---,---.---,

_ 4_classes
so . • e_clasHs .. .

40 ·

20

10 ·

0 L..___._NB
SVM MLP IBL Bag AdaBM1 RoFo C4.5

Classfication accuracy or 30 numbers or keys

Fig. 5.11: The accuracy for each of the classifiers with ECB mode.

Further experiments using 16-bit codes with ECB mode were conducted. In this

part, the same eight classifiers were used with the same block cipher algorithms

as used with 8-bit codes. However, the key lengths were changed. The main idea

was to find the difference between all algorithms, and whether or not the key

length effected accuracy. According to the results, it was found that when the key

length was longer in ECB mode, there was a reduction in the accuracy.

These experiments were performed on the 30 BECC encryption data files of fixed

size (512 KB), that were divided into 16-bit codes . It can be observed from Table

5.9 in the 8 classes dataset that Naive Bayes achieved the highest accuracy classi­

fication of 29.17% meaning that 70 instances out of 240 were correctly classified.

On other hand, IBL had the lowest accuracy classification of 12.5% meaning that

only 30 data points out of 240 were correctly classified.

The experimental result of the 4 classes dataset again shows that the highest ac­

curacy was Naive Bayes but at 57.92%. This time, the Naive Bayes classifier cor­

rectly classified 139 instances out of 240. However, SVM had the lowest accuracy

classification of 36.25% with only 87 input data out of 240 were correctly clas­

sified. Also Figure 5.12 shows that the Naive Bayes classifier obtained a higher

accuracy in the 4 classes dataset and the lowest was the IBL classifier. However,

in terms of using both RoFo and MLP classifiers with a 16-bit codes the result

was not obtainable since the features were too many, despite using Java Virtual

Machine CTVM) 64-bit and 6GB of RAM. According to Table 5.9, the IBL classifier

again gave the worst results.

Chapter 5. Encryption Classification for Block Cipher Algorithms 131

Tab . 5.9: Classification accuracy performance of the classifiers using four-block cipher
algorithm with ECB mode.

8 Classes 4 Classes

~ s 65536 Attributes, 65536 Attributes,
240 Instances 240 Instances s

(%) (%)

Naive Bayes 29.17 57.92
SVM 17.08 32.08
MPL No result No result
IBL 12.50 37.50
Bag 17.92 41.25
AdaBMl 15.00 39.58
RoFo No result No result
C4.5 20.00 38.75

40 ,

20

10

SVM MLP IBL Bag Ad■BM1 RoFo
Cl■ssincalion algorithms using ECB mode with 16-blt

C4.S

Fig. 5.12: The accuracy for each of the classifiers with ECB mode.

5.4.2 Block Cipher Algorithms With CBC Mode

This section shows the results with CBC mode with 8-bit and 16-bit using the

same technique as for the ECB mode previously. The main purpose of these ex­

periments was to find the highest accuracy between the same datasets using the

same block cipher algorithms and provide a comparison with ECB mode and

how numbers of keys effected the accuracy. The accuracy results are also shown

for each algorithm with 240 data points and with four block cipher algorithms:

AES (128, 192 and 256-bit), DES 64-bit, IDEA 128-bit and RC2 (42,84 and 128-bit)

using different numbers of keys for each algorithm.

We combined two types of the algorithms to obtain a higher accuracy: AES-128,

Chapter 5. Encryption Classification for Block Cipher Algorithms 132

AES-192 and AES-256 as one combination, RC2-128, RC2-42 and RC2-84 as the

other combination. DES-64 and IDEA-128 were used individually. Therefore the

8 classes dataset became a 4 classes dataset, where each row represents the known

class of the data. Thirty BECC data points were used for each individual algo­

rithm (8 x 3 = 240). As in the calculations in the section above, the same equation

in Section 5.2.2, was used and applied to all classifiers (Naive Bayes, SVM, MLP,

IBL, Bag, AdaBMl, RoFo and C4.5) in CBC mode.

Effects of Different Numbers of Keys with 120 Data Points using 8-bit Codes

120 BECC encrypted text files were used with IDEA, AES, RC2 with 128-bit and

DES 64-bit where each algorithm had 30 data points. The experiment was con­

ducted using different numbers of keys for each algorithm; Table 5.10 shows the

experimental results of these classifications for the 4 classes dataset. The experi­

ment was conducted using different numbers of keys for each algorithm (1, 3, 5

and 30). Figure 5.13 shows that no one number of the keys produced the high­

est accuracy since all had similar accuracy even with one key. This is due to the

chaining nature in CBC mode, which means that each cipher depends on the ones

before.

Tab. 5.10: Accuracy results for the 4 classes dataset with 1, 3, 5 and 30 numbers of key
sizes with CBC mode.

~
lKey: 3Keys: 5Keys:

30keys: 256 Attributes, 256 Attributes, 256 Attributes,
120 Instances 120 Instances 120 Instances 256 Attributes,

s
s

(%) (%) (%)
120 Instances (%)

Naive Bayes 18.33 16.66 27.50 23.33
SVM 17.50 20.83 29.16 26.16
MPL 26.66 25.83 28.33 20.00
IBL 26.66 22.50 21.66 28.33
Bag 25.00 27.50 20.83 29.16
AdaBMl 20.83 23.33 18.33 24.16
RoFo 25.00 24.16 28.33 17.50
C4.5 23.33 31.66 29.16 21.66

Chapter 5. Encryption Classification for Block Cipher Algorithms

AES,IOEA,RC2(128-bits), and OES-64b~s(CBC8 mode)

45 ········;

20

15 +··

SVM MLP IB1 B■g
Classification Algorithm

111• 111 1k1y iu• ti3keys
....... , ••"5keys

•••30k•ys

AdaBM1 RoFo

133

C4.5

Fig. 5.13: Encryption accuracy with the 4 classes dataset with CBC mode with
different numbers of keys.

Effects of Different Numbers of Keys with 240 Data Points using 8 and 16-bit
Codes

This section shows the results in CBC mode with 8-bit and 16-bit codes, which

used the same technique as used in ECB mode described previously. The main

purpose of these experiments was to found the highest accuracy between the

same datasets and the same block cipher algorithms, to provide a comparison

with ECB mode and find out how numbers of key did effect the accuracy. The

accuracy results were determined for each algorithm with 240 data points (input

files) (8 x 30) and with four block cipher algorithms: AES (128, 192 and 256-bit),

DES 64-bit, IDEA 128-bit and RC2 (42,84 and 128-bit) used different numbers of

keys for each algorithm. We combined two types of the algorithms to obtain a

higher accuracy: AES-128, AES-192 and AES-256 as one combination, RC2-128,

RC2-42 and RC2-84 as the other combination. DES-64 and IDEA-128 were used

individually. Therefore the 8 classes dataset became a 4 classes dataset, where

each row represents the known class of the data. Thirty data points were used for

each individual algorithm . As in the calculations in the section above, the same

equation, in Section 5.2.2, was used and applied to all classifiers (Naive Bayes,

SVM, MLP, IBL, Bag, AdaBMl, RoFo and C4.5) in CBC mode here.

Chapter 5. Encryption Classification for Block Cipher Algorithms 134

Using 8-bit codes

Experiments were carried out in the same manner previously. Table 5.11 shows

the classification accuracy result of the 8 classes dataset. According to the result,

SVM achieved the highest accuracy classification of 15% meaning that only 36

instances out of 240 were correctly classified. C4.5 achieved the lowest accuracy

of 10.42% meaning that only 25 instances out of 240 were correctly classified.

However, with 4 classes dataset, the highest accuracy obtained was AdaBMl

36.25% meaning that only 87 instances out of 240 were correctly classified. In

both datasets, Bag and C4.5 achieved the lowest classification accuracy of 28.33%

meaning that only 68 instances out of 240 where correctly classified, while in

4 classes dataset, both Bag and C4.5 achieved the same accuracy. This is due

of using CBC mode and random data points. Furthermore, Figure 5.14 shows

that there were slight differences between all classifiers with the 8 classes dataset.

Also, 4 classes dataset had higher classification than dataset 8 classes.

Tab. 5.11: Classification accuracy performance of the classifier with CBC mode.

~
8 Classes 4 Classes

256 Attributes, 256 Attributes,
240 Instances 240 Instances s

s

(%) (%)

Naive Bayes 12.99 30.83
SVM 15.00 35.83
MLP 10.83 33.33
IBL 11.25 28.75
Bag 10.83 28.33
AdaBMl 14.58 36.25
RoFo 10.83 31.67
C4.5 10.42 28.33

Chapter 5. Encryption Classification for Block Cipher Algorithms

..,,,,-- --,-----r---.-----,r-----r----,-----,---------;=.-= (IL=CI...,.=)
- (4_Cla&N)

3S

30 .. ··••·"

2S

10

NB ' 91/M

..... i

MLP JBl. Bao AdaBM1 RoFo 04S
Cl!Wlilcafonalg,ritrre Silit1.SingCBCtnodie,

Fig. 5.14: The accuracy for each classifiers with CBC Mode.

135

Table 5.12 and 5.13 show the experimental results of these classification (8 classes

and 4 classes datasets). The simulation was conducted using various numbers of

keys for each algorithm (1, 3, 5 and 30). It can be observed from Figure 5.15 that

using one key did not lead to a higher accuracy and there were no big differences

using various numbers of keys. In contrast, using 30 numbers of keys (one for

each file) resulted in no difference than using only key. The result did not show

that the accuracy of the classification was reduced with an increase in the number

of encryption keys. In addition, with 30 different keys, SVM achieved a lower ac­

curacy and RoFo achieved a higher accuracy. The reason for them not performing

well is due to the chaining key nature in CBC mode that occurs.

Tab. 5.12: The 8 classes dataset with different numbers of key sizes with CBC mode.

~
lKey: 3Keys: 5Keys: 30Keys:

256 Attributes, 256 Attributes, 256 Attributes, 256 Attributes,
240 Instances 240 Instances 240 Instances 240 Instances

s
s

(%) (%) (%) (%)

Naive Bayes 12.50 11.66 11.25 14.58
SVM 10.42 12.08 12.50 11.66
MPL 12.50 11.25 10.83 12.91
IBL 14.58 10.41 10.00 18.33
Bag 14.58 16.25 10.00 14.16

AdaBMl 12.08 10.41 08.70 11.25
RoFo 11.25 14.58 12.08 17.50
C4.5 09.58 14.16 15.00 18.75

Chap ter 5. Encryption Classification for Block Cipher Algorithms 136

Tab. 5.13: The 4 classes dataset with different numbers of key sizes with CBC mode.

~
lKey: 3Keys: 5Keys: 30Keys:

256 Attributes, 256 Attributes, 256 Attributes, 256 Attributes,
240 Instances 240 Instances 240 Instances 240 Instances s

s

(%) (%) (%) (%)

Naive Bayes 30.00 29.58 27.91 27.91
SVM 26.66 28.33 30.00 27.50
MPL 34.58 27.50 28.33 29.17
IBL 30.83 27.08 30.83 32.85
Bag 31.25 31.66 30.41 35.83

AdaBMl 31.25 33.33 20.41 31.66
RoFo 28.33 28.75 27.50 38.33
C4.5 27.50 30.83 32.50 33.33

35 ·

30

10 · ·

5

NB SVM MLP IBL Bag AdaBM1 RoFo C4.5
OiffHnt clossifi•r with CBC Mod•

Fig. 5.15: Encryption classification accuracy with the 4 classes dataset with CBC
mode with different numbers of key.

Using 16-bit codes

An experiment using 16-bit was performed in the same manner with CBC mode

as above. Table 5.14 shows the classification accuracy result of the six classifiers

(Naive Bayes, SVM, IBL, Bag, AdaBMl and C4.5) for the 8 classes dataset. Ac­

cording to Figure 5.16, the results show that IBL at 13% had the highest classi­

fication accuracy but only 31 instances out of 240 were correctly classified. On

the other hand, Naive Bayes at 10.83% obtained the lowest accuracy but only 25

instances out of 240 were correctly classified.

Chapter 5. Encryption Classification for Block Cipher Algorithms 137

However, with the 4 classes dataset, the highest accuracy obtained was with Ad­

aBMl where the classifiers outperformed all the other classifiers with a classifi­

cation accuracy of 33.75%. It classified 81 instances correctly out of 240 while the

lowest accuracy was C4.5 at 29.58% meaning 71 out of 240 were correctly classi­

fied.

Tab. 5.14: Classification accuracy performance of the classifier four-block cipher with
CBC mode.

~
8 Classes 4 Classes

65536 Attributes, 65536 Attributes,
240 Instances 240 Instances s

s

(%) (%)

Naive Bayes 10.39 32.90
SVM 12.50 31.67
MLP No result No result
IBL 13.00 30.04
Bag 12.08 31.67
AdaBMl 12.08 33.75
RoFo No result No result
C4.5 10.83 29.58

" I I ' ! 1- (8_Cla&N)
- (4_Cl118&N)

30

2S

r~ . ".

"- ·-·

10

............ ·-

o- I - I
~

-AdeBM1
i -NB SW MLP 11!1. ... ""'· C4S

C!9ka'ion a'QOril'Yn 15-bilusingCBC mode

Fig. 5.16: The accuracy for each classifier with CBC mode 16-bit codes.

Chapter 5. Encryption Classification for Block Cipher Algorithms 138

Effects of Different Instances (120, 240 and 400) with CBC Mode

The third experiment in CBC mode deals with the effect of increasing the number

of input files (instances) on overall accuracy. The first dataset included 4 classes

AES 128-bit, DES 64-bit, IDEA 128-bit and RC2 128-bit each with 30 input files.

The second dataset included 8 classes each with 30 data points, AES (128, 192,

256), DES 64, IDEA 128, RC2(42, 84, 128); and the third dataset included 4 classes

were 100 input files were used (AES-128, DES-64, IDEA-128 and RC2-128). Thus,

the total numbers of the instances were 120, 240 and 400 respectively. Table 5.15

and Figure 5.17 shows that all classifiers using 400 input files achieved the highest

accuracy and when using 120 input files they achieved the lowest accuracy. It is

also obvious that AdaBMl classifier produced the best results for all instances,

and C4.5 performed very poorly when operating with 120 and 240 instances.

Tab. 5.15: Using different instances with the same features (120, 240 and 400) with CBC
mode.

Algorithms 120 Instances(%) 240 Instances(%) 400 Instances(%)
Naive Bayes 25.00 27.50 30.83

SVM 26.66 27.75 35.83
MPL 28.00 28.25 33.33
IBL 25.83 22.50 29.58
Bag 26.00 25.25 28.33

AdaBMl 25.00 26.00 36.25
RoFo 27.00 26.75 31.67
C4.5 23.00 25.25 28.33

Chapter 5. Encryption Classification for Block Cipher Algorithms

40,,..----,- - --,------,-----,---,,---,----,- --,-----;= ====a

I
- 120 lnalan::es
~2401nslan:::esi

36

30,...

....
26 .

,.

10 . .

O'-----'_.._NB
SVM MLP Ill Bag

Type ofcia9sn:81oo

..:.

-
Ada8Mt Aofo

. - 400 lnlfances

C4.6

139

Fig. 5.17: Encryption classification accuracy with CBC mode using different in­
stances for block ciphers.

RC2, RC6, Blowfish, Twofish, XTA, CAST and DESede (128-bit) Algorithms

In the final experiment, the effect of encrypting the plain-text was investigated for

the following encryption algorithms: RC2, RC6, Blowfish, Twofish, XTA, CAST

and DESede. The number of input files was 30 from the BECC with the number

of keys also being 30. Here, Figure 5.18 shows that the Bag classifier achieved the

best overall accuracy performance and that the IBL had the lowest accuracy. It

was found that using 128-bit for each algorithm resulted in the highest classifica­

tion accuracy.

3S

30

Fig. 5.18: Encryption classification accuracy RC2, RC6, Blowfish, Twofish, XTA,
CAST and DESede algorithms.

Ch apter 5. Encryption Classification for Block Cipher Algorithms

Multidimensional Scaling (MDS) with 8-bit and 16-bit with ECB and CBC
Modes.

140

Figure 5.19 (a) shows the scatter-plots of the 240 data points within two dimen­

sions for the ECB mode with the 8 encoding. The 8 classes are plotted with dif­

ferent markers.

0
4000 ·1

I

:l000

2000 0

.,

• •

◊
• AES-125
)(AES-1~
A AES-25&
♦ OES-34
D 10€A-128
0 RC2·128
0 RC2◄2
+ RC2-84

-3000'-'--~--'--◊~--c,'-,--~...,_~~~+
-2000 • , ooo o 1000 2000 3000 4000 5000 eooo 7000

300

250

200

150 ·

100

"

J
50 •

0

-50

-100

-150 -
-200

DimeMior,1

(a) All data
cl~ c:entres • -

J_

I

0
I

r- - ,.
1- _., I_ 0 .

I 6 ,c
- 0

I
1- ·-

.20C) -100 0 100
Dimension 1

L

-
I

(b) Class centres

• AES.128
a£ AES.1sr.2

A~~~ 10EA-12$
RC2-128
RC2-'2
RC2-&I

300 '°"

Fig. 5.19: Scatter-plots of the 240 data points and the centres for the ECB mode
with the 8 encoding.

The scatter-plot indicates that the classes are highly overlapping, suggesting that

the high recall and precision rates for AES (Table 5.8) are only possible in higher

dimensions. The centres of the "clouds" of points for the (8 classes) are plotted

in Figure 5.19 (b). According to this scatter-plot, AES has similar representation

to that of RC2(42) and RC2(84). Note that the scales of the two scatter plots are

different. The class centres are indistinguishable if plotted on the axes of the sub­

plot (a). This highlights the difficulty in recognising the type of code through

simple pattern classification algorithms.

Further insights about the relationship of the 8 methods can be gained by con­

structing and plotting a Distance Matrix. The (i,j)-th entry of Distance Matrix is

Chapter 5. Encryption Classification for Block Cipher Algorithms 141

the distance between objects i and j in the original multidimensional space. In this

study, the Distance Matrix is of size 240-by-240. The Matrix can be thought of as

consisting of 8-by-8 blocks, each block corresponding to a pair of encoding meth­

ods. Each such block is itself a Matrix of size 30-by-30. For example, the block

sitting at the top right corner of Distance Matrix will contain the distances by the

30 messages encoded by AES-128 and then encoded by RC2-128. For the codes to

be distinguishable, they have to exhibit high similarity within their "own" blocks

and low similarity with other codes.

Figure 5.20 shows an image of the Distance Matrix for ECB mode with 8-bit cod­

ing. The blocks of 30-by-30 distances are outlined with black lines. The blue

colour indicates high similarity while yellow and red indicate low similarity. The

encoding method that stands out from the rest is AES. The 3-by-3 block Sub­

matrix in the top left corner is largely blue, showing the similarity within the

code. Apart from RC2(128), it is different from all other codes. The class labels

are as follows: 1 AES (128), 2 AES (192), 3 AES (256), 4 DES (64), 5 IDEA (128), 6

RC2 (128),7 RC2 (42) and 8 RC2 (84).

This suggests that the AES encoding can be distinguished from the remaining

codes. The three versions of AES (128, 194 and 256) are not distinguishable within

AES, which is visible from the dark blue colour of the respective blocks.

Fig. 5.20: The image of the Distance Matrix for ECB mode with the 8-bit encod­
ing. The class labels are as follows: 1 AES (128), 2 AES (192), 3 AES
(256), 4 DES(64), 5 IDEA (128), 6 RC2 (128), 7 RC2(42) and 8 RC2(84)

Interestingly, the largest within-block consistency is demonstrated by RC2 (128-

bit) (uniform dark blue within the block), while this does not match the other

versions of the same encoding (RC2 (42-bit) and RC2 (84-bit)) .

Figures 5.21 to 5.25 show the scatter-plots and the distance matrices for encodings

Chapter 5. Encryption Classification for Block Cipher Algorithms 142

CBC mode with 8-bit , ECB mode with 16-bit and CBC mode with 16-bit encod­

ing. An interesting finding in Figure 5.21 (a) for CBC mode with the 8-bit coding

is the cluster of outliers to the right of the main cluster. Further analyses showed

that the points in this cluster do not come from a single message. The large dis­

crepancy of the differences skewed the colour plot of the respective Distance Ma­

trix as seen in Figure 5.22. The red vertical and horizontal lines demonstrate the

unusually large distances compared to the rest. Unlike ECB mode, there is no

clear pattern to suggest that any of the codes are distinguishable.

N
C:
0
·;;;

10

~ i3 -100

30

0 200

all data

Dimension 1

(a) All data
class centres

• AES-128
X AES-192 ·
L:;. AES-256 * DES-64 ·
D IDEA-128
0 RC2-128 ·
◊ RC2-42
+ RC2-84

)(

........... (' . • A~:;-2~ ..

i : . i~! ········•·· T I ~~
! 0 LA j . I ~ :g~

......... ; ~ ,

·~ ········i··········;.··········l ,_

-10

-20

-20 -H, 0 10 20 30 40
Dimension 1

(b) Class centres

Fig. 5.21: Scatter-plots of the 240 data points and the centres for the CBC mode
with the 8-bit encoding.

Chapter 5. Encryption Classification for Block Cipher Algorithms 143

~
~

I"" .

I "" K ·
~

"" "" 1 2 3 4 5 6 7 8

Fig. 5.22: The image of the Distance Matrix for CBC mode with the 8-bit encod­
ing. The class labels are as follows: 1 AES (128), 2 AES (192), 3 AES
(256), 4 DEA (64), 5 IDEA (128), 6 RC2 (128), 7 RC2 (42) and 8 RC2 (84).

+
3000 t------,

• AES-128

all data

2000 X AES-192 ;
.t:,. AES-256

1000 * DES-64 ~--
"' □ IDEA-128 ◊

... . , 5 0 0 RC2-128
·.; ◊ RC2-42
~ -1000 + RC2-84
£3

-2000

-3000

-4000

-5000

+

.. [] ,
.......... ,:·····

0
Dimension 1

(a) All data
class centres

5000

100 :. ·t···· : ,; : ,

50) ... [. . .. ,. · .. ! ,

• · .. ? ... r L 1• ~E: ,ell ,
RC2-128
RC2-42

-100 RC2-84 , ! '."' , ,.

-1so : l i L \ ;
-150 -50 0 50 100 150

Dimension 1

(b) Class centres

Fig. 5.23: Scatter-plots of the 240 data points and the centres for the ECB mode
with the 16-bit encoding.

Chapter 5. Encryption Classification for Block Cipher Algorithms 144

Fig. 5.24: The image of the Distance Matrix for ECB mode with the 16-bit encod­
ing. The class labels are as follows: 1 AES (128), 2 AES (192), 3 AES
(256), 4 DEA (64), 5 IDEA (128), 6 RC2 (128), 7 RC2 (42) and 8 RC2 (84).

all data

1:: ::::::::::::::::::::::; ;:::::r: :::::::~r ... :· ~~~:~~ .
i [++ f L:.. AES-256

60 ··r····· ········1· ··:a.·~ . ' □. ··~_p- [* DES-64 .
: : + V-. : □ IDEA-128

"'
4

0 ·· ~ ·· ·····-+;.··+;• . iid'°~-+-t· 0 RC2-128 .

... ! ·:····

-100 -50 0 50 100
Dimension 1

(a) All data

-15 '········· ··<······ .. · j. --: · !. ····· ···· :············•···

20 : J L L L .. - , ·····
-25 '········ , , ,

-30 -20 -10 0 30
Dimension 1

(b) Class centres

Fig. 5.25: Scatter-plots of the 240 data points and the centres for the CBC mode
with the 16 encoding.

Chapter 5. Encryption Classification for Block Cipher Algorithms 145

"' -i ' 1 . ·~ r M

·1 ·I I I
I I '

~ I ' I r
~ ' ' '

. ·! - - - - -~;. - - ..
11~ I . I I I I

--'- . i • ' - --'- f. ~ ---4
! .. I~ l I j

... . I - ...l l

' I l I"'.: I ' l ,, l -
I

N ~ . l ! l l - _, ,_...: __ ,_ __
f-'- - --~__,,..

'
_ _ j

I . ~
~ } I ,

··-- -~- • ...j -- - - L - - /
I i · ,-.. .l rl~ I : ,__

I 1 2 3 4 5 6 7 8

Fig. 5.26: The image of the Distance Matrix for CBC mode with the 16-bit encod­
ing. The class labels are as follows: 1 AES (128), 2 AES (192), 3 AES
(256), 4 DEA (64), 5 IDEA (128), 6 RC2 (128), 7 RC2 (42) and 8 RC2 (84).

5.5 Comparisons Between ECB and CBC Modes

Using 8-bit and 16-bit encoding

The purpose of this section is to compare the eight algorithms in both ECB and

CBC modes when different key lengths (8-bit and 16-bit) were used.

5.5.1 Using 8-bit codes with ECB and CBC Modes

In the first experiment, the eight classifiers (Naive Bayes, SVM, MLP, IBL, Bag,

AdaBMl, RoFo and C4.5) were compared in ECB and CBC modes with 8-bit

codes. Table 5.16 and Figure 5.27 shows the classification accuracy result and

the comparison between both modes. According to the experimental results in

ECB mode, RoFo at 53.33% had the highest classification accuracy but in CBC

mode no accuracy was obtained because there were too many features.

In ECB mode, MLP obtained 13.33% but again, in CBC mode, no accuracy was

obtained. In the second experiment, the same eight classifiers were compared in

ECB and CBC modes with 16-bit codes, as shown in Figure 5.28. According to

the results, Naive Bayes in ECB mode obtained the highest accuracy and MLP

and RoFo in both modes were not obtained for the same reason as above. In

addition, the results show that the ECB mode was more accurate than the CBC

mode, which was not expected, because the CBC mode is key-chaining. In the

authors view this was dependant on the types of classifier rather than on the

Chapter 5. Encryption Classification for Block Cipher Algorithms 146

types of the modes.

Tab. 5.16: Classification accuracy performance of the classifier four-block cipher in ECB
and CBC modes using 8-bit with 8 classes and 4 classes datasets.

~
8 Classes 4 Classes 8 Classes 4 Classes

256 Attributes, 256 Attributes, 256 Attributes, 256 Attributes,
240 Instances 240 Instances 240 Instances 240 Instances s

s

ECB (%) ECB (%) CBC(%) CBC(%)

Naive Bayes 28.33 44.17 12.90 30.33
SVM 17.08 32.08 15.00 35.83
MLP 21.67 39.58 10.83 33.33
IBL 12.50 30.42 11.25 29.58
Bag 25.83 47.50 10.83 28.33
AdaBMl 20.42 43.33 14.58 36.67
RoFo 30.83 53.33 10.83 31.67
C4.5 27.92 51.67 10.42 28.33

00
- ECB8 4_c-..
- CBC84_c""5n

&O

40

;.

130

20

10 ·

0
NB SVM MLP BL Bag AdaBM1

Oiffefenl l1J>CS of clDHier
Aofo C4.6

Fig. 5.27: The accuracy for each of the classifiers with ECB and CBC modes.

Chapter 5. Encryption Classification for Block Cipher Algorithms 147

5.5.2 Using 16-bit Codes with ECB and CBC Modes

In the third experiment, the same classifiers were compared in ECB mode with

16-bit. Table 5.16 shows that Naive Bayes has the highest accuracy of 29.17% with

70 instances out of 240 were correctly classified with the 4 classes dataset.

Table 5.17 shows that with CBC mode, AdaBMl has the highest accuracy of

14.58% only were 35 instances out of 240 were correctly classified for the 8 classes

dataset, which was also the case for the 4 classes dataset, although the percentage

was 36.25% were only 87 instances out of 240 were correctly classified . The ex­

periment showed that using 8-bit attributes had more accuracy than using 16-bit
attributes.

Tab. 5.17: Classification accuracy performance of the classifier four-block cipher with
ECB and CBC modes.

~
8 Classes 4 Classes 8 Classes 4 Classes

65536 Attributes, 65536 Attributes, 65536 Attributes, 65536 Attributes,
240 Instances 240 Instances 240 Instances 240 Instances thms

s

ECB (%) ECB (%) CBC(%) CBC(%)

Naive Bayes 29 .17 57.92 10.39 32.90
SVM 13.33 36.25 12.50 31.67
MLP No result No result No result No result
IBL 12.50 37.50 13.00 30.04
Bag 17.92 41.25 12.08 31.67
AdaBMl 15.00 39.58 12.08 33.75
RoFo No result No result No result No result
C4.5 20.00 38.75 10.83 29.58

60,---,---Ti- -,,--,-----,-----,------i:::;;=====;,
i - ECB164_classes

- CBC16 4 cl■ssos

so,-. ..

40

...

20

10 ;...

o~ NB SVM

i '-- ~ _, ____1.! _ ___._

MLP IBL Bag AdaBM1 RoFo C4.5
Different types of classification

Fig. 5.28: The accuracy for each of the classifiers with ECB and CBC modes.

Ch apter 5. Encryption Classification for Block Cipher Algorithms

5.5.3 Finding the Most Accurate Classification Results with

ECB and CBC Modes

Classification Results for 8-bit Codes

148

According to the results, RoFo shows the most accurate classification table of

all the algorithms. Table 5.18 (a) below, a confusion matrix, is a representative

set of results from 8 classes of RoFo classifications. The table includes 240 data

points for each block cipher algorithm (AES, DES, IDEA and RC2) in ECB mode.

Each row in the confusion matrices corresponds to the known class of the data,

and each column represents the predicted classifications. Table 5.18 (b) 4 classes

shows that the model correctly predicted the positive classes for AES, 64 times

and incorrectly 26 times, for DES, 8 times correctly and 22 times incorrectly, for

IDEA, 6 times correctly and 24 times incorrectly and for RC2, 50 times correctly

and 40 times incorrectly. The resulting accuracy was 53.33% (128 out of 240 cor­
rectly classified).

Actual class IDEA-128 RC2-128 RC2-42 RC2-84

AES-128 0 1 7 2 0
AES-192 0 0 8 0 2
AES-256 0 3 0 3
DES-64 11 0 2 9

IDEA-128 0 0 7 9
RC2-128 4 2 0 0 21 0 0
RC2-42 0 0 5 9 0 9 6
RC2-84 0 0 10 6 0 8 6

(a) Confusion matrix for RoFo classifier (8 classes).

AES DES IDEA RC2

1 25
DES

IDEA
RC2 10

(b) Confusion matrix for RoFo classifier (4 classes)).

Tab. 5.18: RoFo Confusion matrix using 8-bit.

Classification Results for 16-bit Codes

The Naive Bayes classifier with ECB mode, as shown in Table 5.19 (a), was the

most accurate for 8 classes for all encryptions with different encryption keys. Ta­

ble 5.19 (b) 4 classes, which is a combination of all encryption key algorithms,

shows that the model correctly predicted the positive class for AES, 64 times and

Chapter 5. Encryption Classification for Block Cipher Algorithms 149

incorrectly predicted it 26 times, for DES, 8 times correctly and 22 times incor­

rectly, for IDEA, 6 times correctly and 30 times incorrectly and for RC2, 50 times

and 40 times incorrectly. The resulting accuracy was 57.92% (139 out of 240 cor­

rect! y classified).

Actual class IDEA-128

AE5128 0
AES-192 0
AES-256 0
DES-64 11

IDEA-128
RC2-128 1
RC2-42 0 10
RC2-84 0 0 9

(a) Confusion matrix for Naive Bayes classifier (8 classes)

Predicted class
AES DES IDEA RC2

Actual class

AES
DES

IDEA
RC2

(b) Confusion matrix for Naive Bayes classifier (4
classes))

RC2-128 RC2-42

1 0
1 0
2 3
0 2
0 6
20 0
0 3
0 6

Tab. 5.19: Naive Bayes confusion matrix for the 16-bit codes.

RC2-84

2
2
0
7

6
1
11

5

Chapter 5. Encryption Classification for Block Cipher Algorithms 150

5.5.4 Execution Time to Build the Model

Execution Times to Build the Model with ECB Mode

Table 5.20 shows the results of the comparison that was conducted with respect

to the time taken to build the model, with the two key lengths, 8-bit and 16-bit

codes for all 8 classes. It can be observed that the C4.5 classifier has the highest

time requirement to build the model in all experiments. In addition, IBL and

Naive Bayes classifiers need less time requirement to build the model in ECB

mode.

Tab. 5.20: Time taken to build the model with 8-bit and 16-bit in the ECB mode.

Algorithms 8-bit (seconds) 16-bit (seconds)
Naive Bayes 0.12 4.10
SVM 2.48 16.54
IBL 0.01 0.35
Bag 2.82 132.12
AdaBMl 0.14 4.86
C4.5 0.90 57.01

Execution Times to Build the Model with CBC Mode

Table 5.21 shows the results of the comparison that was conducted with respect

to the time taken to build the model, along with the two key lengths, for 8-bit and

16-bit codes for all 8 algorithms. Again, it can be observed, that the C4.5 classifier

has the highest time requirement to build the model in all experiments.

Tab. 5.21: Time taken to build the model with 8-bit and 16-bit codes with CBC
mode.

Algorithms 8-bit (seconds) 16-bit (seconds)
Naive Bayes 0.03 4.02

SVM 1.86 16.38
IBL 0.00 0.35
Bag 1.68 123.83

AdaBMl 0.05 4.61
C4.5 0.72 143.97

Summary

In this chapter, Pattern Recognition was found to be a useful tool to identify the

encryption mode and classification of encrypted plain-text files.

The main purpose of this chapter was to show the impact on the classification

accuracy of the different key sizes (1, 3, 5 and 30) with different input data sizes

(120, 240 and 400 instances), as well as using different Symmetric cipher algo­

rithms (block cipher algorithms) with different encryption key sizes, and in ECB

and CBC modes. In addition, two datasets using 8 classes and 4 classes with 8-bit

and 16-bit codes were used.

In this study, the accuracy for the eight classifiers (Naive Bayes, SVM, MPL, IBL,

Bag, AdaBMl, RoFo and C4.5) was evaluated. The experiments were performed

using the WEKA Machine Learning Platform. The aim was to find the best clas­

sification algorithm with the highest accuracy for four different block ciphers for

the first group that includes: DES, IDEA, AES and RC2; and for the second group

that includes: RC2, RC6, Blowfish, Twofish, XTA, CAST and DESede (128-bit).

Experiments were conducted to identify encryption algorithms of encrypted data

using a variety of classifiers. First the results of the experiments show that Pattern

Recognition techniques are useful tools for cryptanalysis as a means of identify­

ing the type of encryption algorithm used to encrypt the data.

This work shows, that as expected, increasing the number of encryption keys will

result in reducing the classification accuracy. The results show that it is possible to

achieve an accuracy above 40% with some classifiers when each file is encrypted

with different numbers of keys. It was also clear that increasing the number of

files used also improves accuracy.

In the second experiment, the keys used were different for each text data. These

results show that the RoFo classifier had the best performance when identify­

ing the encryption method for ciphered data, while IBL performance was the

worst. Furthermore, the performance of the classifiers improved significantly

when identification of 4 classes (encryption) was considered. It was noted that

the three versions of AES (128, 192 and 256) were not distinguishable within AES.

Further, RC2 (128-bit) does not match the other versions of the same encoding

Chapter 5. Encryption Classification for Block Cipher Algorithms 152

RC2 (42, 84-bit).

The performance of each of the classifiers was presented, and the experimental

results show that in general, the RoFo classifier has the highest classification ac­

curacy. As a result, it was considered that Pattern Recognition could be used as a

useful tool for accuracy.

Finally, as expected, the CBC mode needs more processing time than the ECB due

to its key-chaining nature. However, in terms of using both RoFo and MLP clas­

sifiers with 16-bit, the result was not accurate since there were too many features,

despite using a 64-bit Java Virtual Machine (JVM) and 6GB of RAM. An interest­

ing point was that the ECB mode obtained higher accuracy classification than the

CBC mode, which was not expected due to key chaining.

Chapter 6

Encryption Classification for Stream Cipher

Algorithms

The purpose of this chapter is to use of Pattern Recognition (PR) techniques for

identification of the encryption method used from the encrypted plain-text file

for stream ciphers. Different classifiers were used for identification and the study

also provides a comparison between stream and block cipher algorithms. An

overview of the the study in Section 6.1. Section 6.2 explains the methodology

and Section 6.3 addresses identification encryption method and Section 6.4 de­

scribes the experimental setting. Section 6.5 compares the classifier results be­

tween stream and block cipher algorithms. The chapter concludes with a sum­
mary.

6.1 Introduction

In cryptography, one can distinguish between a block and stream algorithm. The

stream cipher-text could be any length whereas the block cipher have to be in

increments of the block sizes. Moreover, distinguishing between different types

of stream cipher is far more difficult but possible under further assumptions. The

basic point is to remember is that stream cipher algorithms can encrypt data of

any size and does not require that the size is known in advance. Also the same

algorithm is applied to encrypt and decrypt the data.

6.2 Methodology

In this section, the same methodology were used as has been used in the previous

chapter. The encryption was carried out by using Crypto++ library. Again a

Matlab program was used to build the WEKA file. The classifiers used in WEKA

Chapter 6. Encryption Classification for Stream Cipher Algorithms 154

included: Naive Bayes (NB), SVM, IBL, AdaBMl, RoFo and C4.5 classifiers. In

this experiment, first 8-bit codes file data points were selected and then 16-bit

code file data points were selected. The aim was to compare between them to

determine which one provides better accuracy.

6.3 Identification of Encryption Method

This section presents the results of the experiments that were conducted in order

to study the performance of the proposed classification method. The identifica­

tion of encryption method for input stream ciphers are presented with each data

input file being a data point in our dataset. The study included the following five

different stream cipher algorithms and four block cipher algorithms:

• Stream cipher algorithms: Grain 128-bit, He 128-bit, RC4 128-bit, Salsa20

128-bit and VMPC 128-bit.

• At the end of the chapter, the result are compared with the following block

cipher algorithms: AES (128, 192 and 256-bit), DES 64-bit, IDEA 128-bit and

RC2(42, 84 and 128-bit).

In this experiment, 8-bit character coded data files were selected, and Matlab

was used to extract histograms of the encrypted dataset. We also used the same

method with 16-bit character coded files. For these experiments, we have selected

the 30 files from the BECC dataset (150 data points for stream ciphers and 240 data

points for block ciphers) to produce 150 and 240 data points that can be found in

the DVD. The encryption was carried out by using the Crypto++ library. Then a

Matlab program was used to create the WEKA input files. For more information

about how these were created files, see Section 4.5 in Chapter 4.

6.4 Experimental Results

This section explains the results of the experiments for the evaluation of the clas­

sifier encrypted text using stream cipher algorithms and block cipher algorithms

for comparison. The training set used for the experiments one class used for

stream cipher algorithms later on these are compared with two classes for block

ciphers algorithms. The testing set was used to identify the unknown stream and

Chapter 6. Encryption Classification for Stream Cipher Algorithms 155

block that were to be classified. Ten fold cross-validation was used and all clas­

sifiers were trained using the same training sets and were tested using the same

testing sets to establish the classification.

We have also used the confusion matrices find the highest accuracy and the Mul­

tidimensionality Scaling (MDS) method was used to find the similarities and dis­

similarities between algorithms. The equation in section 5.2.2 was used and ap­

plied to all classifiers (Naive Bayes, SVM, MLP, IBL, Bag, AdaBMl, RoFo and
C4.5).

Figure 6.1 shows sample output from WEKA for the Naive Bayes classifier. The

150 BECC encryption text files was used as data points for the training and testing

sets as in chapter 5. The following is a sample of Naive Bayes classifier, which

was one of the eight different classifier that were investigated. The Naive Bayes

classifier obtained 14.67% accuracy with 22 times out of 150 correctly classified

and 85.33% accuracy with 128 out of 150 times incorrectly classified.

Chapter 6. Encryption Classification for Stream Cipher Algorithms

=== Run information ==

Scheme: weka.classifiers.bayu.NaiveBayas

lnsbnces: 150

Attributes: 151

Tut mode: 10-fold cross-validation

=== Classifier model (full traininc set) ==

nme t aken to build model: 0.03 seconds

===Summary ==

Correctly Classified Instances 22

Incorrectly Clu sified Instances 128

Kappa statistic

Mean absolute error

Root mean squared error

Relative absolute error

Root relat ive squared error

Total Number of lnstancu

=== Confusion Matrix ===

a b c d • < .. classified as

4 512 8 l I • = l

76610llb=2

6788l l c = 3

10 7 s 4 1 I d = 4

879601•=5

14.6667 'l6

85.3333 'l6

•0,0667

0.3365

0.5266

105.1717 %

131.6544 %

150

Fig. 6.1: Classification result of Naive Bayes classifier from WEKA.

6.4.1 Results of Stream Cipher algorithms

156

First, experiments were conducted using an 8-bit encoding. For each class, the

confusion matrix was used to find the correct and incorrect classifier between

d ifferent types of stream cipher algorithms. The following describes the exper­

imental results. Tables 6.1 (a), (b), (c) and (d) show the confusion matrices for

different types of classifier. Five classes were used with the 30 BECC encryption

text files using 30 different key sizes. The table shows that all the classifiers had

similar accuracy of around 20%. In addition, the system struggled to distinguish

between them due to the randomness of the datasets. In summary, MLP shows

the highest accuracy with 21.33%, second was SVM with 20%, third was IBL clas­

sifier with 19% and finally NB obtained the lowest accuracy w ith 14%.

Chapter 6. Encryption Classification for Stream Cipher Algorithms 157

Grain128 HC128 RC4-128 Salsa20 VMPC

Grain128 1
H C128 0

RC4-128 3
Salsa20 9
VMPC 11 7

(a) Confusion matrix for NB classifier

Grain128 HC128 RC4-128 Salsa20 VMPC

Grain128 3 7 0
HC128 9 0

RC4-128 0
Salsa20 5
VMPC 8 12

(b) Confusion matrix for SVM classifier

Predicted class
Grain128 HC128 RC4-128 Salsa20 VMPC

Actual class

Grain128 6 7
HC128 6

RC4-128 1 6
Salsa20 1 13
VMPC 2 13

(c) Confusion matrix for MLP classifier

Grain128 HC128 RC4-128 Salsa20 VMPC

5 3
5 5

RC4-128
Salsa20 5 8
VMPC 7 8

(d) Confusion matrix for IBL classifier

Tab. 6.1: Confusion matrix for Naive Bayes, SVM, MLP and IBL classifiers.

Tables 6.2 (a), (b), (c) and (d) show similar results with similar difficulties in dis­

tinguishing between the algorithms. The reason for the similar results again is

due to the random nature of the dataset as mentioned before.

Chapter 6. Encryption Classification for Stream Cipher Algorithms 158

Predicted class
Grain128 HC128 RC4-128 Salsa20 VMPC

Actual class

Grain128
HC128

RC4-128
Salsa20
VMPC

(a) Confusion matrix for Bag classifier

Grain128 HC128 RC4-128 Salsa20 VMPC

Grain128
HC128

RC4-128
Salsa20
VMPC

(b) Confusion matrix for AdaBMl classifier

Grain128 HC128 RC4-128 Salsa20 VMPC
Actual class

Grain128 4 6
HC128 5

RC4-128 7
Salsa20 5
VMPC 6 4

(c) Confusion matrix for RoFo classifier

Predicted class
Grain128 HC128 RC4-128 Salsa20 VMPC

Actual class

Grain128
HC128

RC4-128
Salsa20
VMPC

(d) Confusion matrix for C4.5 classifier

Tab. 6.2: Confusion matrix for Bag, AdaBMl, RoFo and C4.5 classifiers.

Experiments were also conducted using 16-bit encoding. Tables 6.3 (a), (b), (c)

and (d) show similar results with similar difficulties in distinguishing between

the algorithms. The highest accuracy obtained was the Naive Bayes classifier

with 26.66%. In second place were for the MLP classifier 24.66% and SVM came

in third place with 21.33% accuracy, and the lowest accuracy obtained was IBL

forth place at 20.66%.

Chapter 6. Encryption Classification for Stream Cipher Algorithms 159

Grain128 HC128 RC4-128 Salsa20 VMPC
Actual class

Grain128
HC128
RC4-128
Salsa20
VMPC

(a) Confusion matrix for NB classifier

Grain128 HC128 RC4-128 Salsa20 VMPC

Grain128
HC128

RC4-128
Salsa20
VMPC

(b) Confusion matrix for SVM classifier

Predicted class
Grain128 HC128 RC4-128 Salsa20 VMPC

Grain128 5 4
HC128 6

RC4-128
Salsa20 7
VMPC 8

(c) Confusion matrix for MLP classifier

Grain128 HC128 RC4-128 Salsa20 VMPC
Actual class

Grain128 6 8
HC128 4

RC4-128 11 5
Salsa20 6 7
VMPC 9 10

(d) Confusion matrix for IBL classifier

Tab. 6.3: Confusion matrix for Naive Bayes, SVM, MLP and IBL classifiers.

The results for Bag, AdaBMl, RoFo and C4.5 shown in Tables 6.3 (a), (b), (c) and

(d). The highest accuracy obtained was the AdaBMl classifier with 25.33%. In

second place were the RoFo classifier 20% and Bag came in third place with

18.66% accuracy, and the lowest accuracy obtained was C4.5 forth place at 17.33%.

According to the confusion matrix results the system can not distinguish between

those algorithms. When 16-bit encoding is used.

Chapter 6. Encryption Classification for Stream Cipher Algorithms 160

Grain128 HC128 RC4-128 Salsa20 VMPC
Actual class

Grain128
HC128
RC4-128
Salsa20
VMPC

(a) Confusion matrix for Bag classifier

Grain128 HC128 RC4-128 Salsa20 VMPC
Actual class

Grain128 0 0 0
HC128 0 0
RC4-128 28 2
Salsa20 28
VMPC 22

(b) Confusion matrix for AdaBMl classifier

Grain128 HC128 RC4-128 Salsa20 VMPC

6
HC128 6
RC4-128 4
Salsa20
VMPC 6

(c) Confusion matrix for RoFo classifier

Predicted class
Grain128 HC128 RC4-128 Salsa20 VMPC

Actual class

Grain128
HC128
RC4-128
Salsa20
VMPC

(d) Confusion matrix for C4.5 classifier

Tab. 6.4: Confusion matrix of Bag, AdaBMl, RoFo and C4.5 classifier.

Further experiments were conducted to compare the classification accuracy per­

formance of eight classifiers with the five stream cipher algorithms: Grain128,

HC128, RC4, Salsa20 and VMPC algorithms. The aim was to find the best classi­

fication algorithm with the highest accuracy for the five stream ciphers.

For this experiment, one dataset was used, which had 5 classes (one for each

algorithm) and 150 (BECC) encryption text files were selected as shown in Figure

6.2.

Chapter 6. Encryption Classification for Stream Cipher Algorithms 161

Stream ciphers

s eJ Grain HC VMPC

1281 1281 1281 1281 1281

CJ [:] [:] [:] [:]

Fig. 6.2: Diagram of stream cipher algorithms with 150 variation as used to pro­
duce the data points.

Table 6.5 shows the accuracy of the eight classifiers. Column two represents the

dataset 5 classes using 8-bit coding and the third column represents the dataset 5

classes 16-bit coding. Figure 6.3 shows that Naive Bayes was the highest accuracy

of 26.67% with 27 instances out of 150 correctly classified for the 16-bit coding.

The results for the C4.5 with an accuracy of 17.33%.

However, the IBL and Bag classifiers both had the same accuracy of 19.33% with

29 instances out of 150 being correctly classified. Naive Bayes had lowest accu­

racy of 14.66% with 9 instances out of 150 were correctly classified. The table also

shows that there is a slight different between all classifiers when using 8 bit and

16 bit encodings. For example, AdaBMl obtained higher accuracy for 8-bit cod­

ing. This is due to higher security of stream cipher algorithms since they encrypt

each bit and byte separately, unlike block cipher algorithms.

Chapter 6. Encryption Classification for Stream Cipher Algorithms 162

Tab. 6.5: Classification accuracy performance of the classifier with five stream ciphers.

~ s

s

Naive Bayes
SVM
MPL
IBL
Bag
AdaBMl
RoFo
C4.5

215

20 . ..

10

6 . " '

Dataset with 5 stream cipher

SVM

256 Attributes,
150 Instances

MLP

(%)

14.66
20.00
21.33
19.33
19.33
23.33
14.00
16.66

ll!L Bag
Type of clauO:::ation

Dataset with 5 stream cipher
65536 Attributes,

150 Instances
(%)

26.66
21.33
24.66
22.00
18.66
25.33
20.00
17.33

AdaBM1 RoFo C4.6

Fig. 6.3: An accuracy of stream cipher algorithms.

6.4.2 Multidimensional Scaling (MOS)

This section describes results from further investigation into the classification ex­

periments. Figure 6.4 (a) demonstrates the scatter-plots of the 150 BECC encryp­

tion text files (data points) in two dimensions for the 8-bit coding. The data is

plotted using different markers for the five algorithms.

The scatter-plot shows that the classes are overlapping to a large degree, suggest­

ing that the high recall and precision rates for HC128, Table 6.5, are only possible

in higher dimensions. The centres of the "clouds" of points for the five classes are

plotted in Figure 6.4 (b). According to this scatter-plot, all algorithms have sim­

ilar representation. The class centres are indistinguishable if plotted on the axes

Chap ter 6. Encryp tion Classification for Stream Ciph er Algorithms

N
C:
.Q
(/)

C:
(I)

-~
0

0.

-0.

1

5

5

1

0

4
X 10

0.5

all data

1.5 2
Dimension 1

(a) All data

class centres

I I I I I

• Grain1 28
X HC128 -
6- RC4 * Salsa20 ,...
0 VMPC

2.5 3

X 10
4

1 I - - - - - - - ~ - - - - - - - ~ - - - - - - - ~- - - - - - - -:- - - -

Grain128
HC128 I I I I I

o.s : __ -----:_ ---- i----- -- ;_ -- _ __)____ ~ ~;~~o
I I I I
I I I I
I I I I

' ' I
I

I I I I I I ____ J ____ ___ J _____ __ J ________ , ___ _____ , ________ , ___ _ ,
I I I I I I
I I I I I I

I I
I I

I
I

I I
I I I 1 I I I

-0.5 1-- - --- - ~- - --- - - ~ - ---- --~- --- - - --:- - - - ----:- -- - - - - -:- - - - ·

I I
I I
I I
I I
I I

I I I L 1 I I

-1 :-- --- -- ~- ---- - -~- ---- --~- ---- ---:- - -- - -- -:--- - --- -:--- -·
I I I I I I 1
I I I I I I I
I I I I I I t

0 0.5 1.5
Dimension 1

2

(b) Class centres

2.5 3
4

x10

163

Fig . 6.4: Scatter-plots of the 150 data points and the class centres for the 8-bit
encoding.

of sub-plot Figure 6.4 (a). This highlights the difficulty in recognising the type of

encryption through simple classification algorithms.

Additional insights about the relationship of the five algorithms can be gained

by constructing and plotting a Distance Matrix. The (i,j)-th entry of the Distance

Matrix is the distance between objects i and j in the original multidimensional

Chapter 6. Encryption Classification for Stream Cipher Algorithms 164

space. In this study, the Distance Matrix is of size 150-by-150. The matrix can

be thought of as consisting of 5-by-5 blocks, each block corresponding to a pair

of encoding methods. Each one of these cipher streams is itself a matrix of size

30-by-30. For example, the block sitting at the top right corner of Distance Ma­

trix will contain the distances by the 30 messages encoded by Grain128 and then

encoded by VMPC. For the codes to be distinguishable, they have to exhibit high

similarity within their "own" blocks and low similarity with other codes.

Figure 6.5 shows an image of the Distance Matrix for the 8-bit encoding case.

The blocks of 30-by-30 distances are outlined in black. The blue colour indicates

high similarity while red indicates low similarity. The 3-by-3 block sub-matrix

in the top left corner is largely blue, showing the similarity within the code. The

five algorithms are not distinguishable, which is visible because of the dark blue

colour of the respective blocks.

Fig. 6.5: An image of the Distance Matrix for 8-bit encoding. The class labels are
as follows: 1 Grain (128), 2 HC (128), 3 RC4 (128), 4 Salsa20 (128) and 5
VMPC (128).

Figure 6.6 (a) the 16-bit coding shows the cluster of outliers to the right of the

main cluster. Further analysis results that the points in this cluster do not come

from a single message. The large discrepancy of the differences skewed the colour

scatter-plot of the respective Distance Matrix, as seen in Figure 6.7. The red ver­

tical and horizontal lines demonstrate the unusually large distances compared to

Chapter 6. Encryption Classification for Stream Cipher Algorithms 165

the rest. Unlike the 8-bit coding, there is clear pattern to suggest that none of the

codes are distinguishable.

400 • ~ • • • • • • • • • • • • • : • • • • • • • • • • • • ~ • • • • • • I • • o • I •:• • • • • o • • • • • • • •:•

. .

◊ Grain128 :
L::.. HC128

300 · .: · · · · · .. · · · · · '.·· · · · · · · · · · · · \· · · · · · · · · · · · ·: · .. · .. · · · · ... , 0 RC4

* Salsa20
200 □ VMPC

:
·'.· ··· ···•·····~ ···· ·········!··········· ·· ·:······ ·······:·

~ 100 . ··: ··· . ···· ··:· · ··· ·· ··· ··:· .. . · : , ,.. ~ i : t
0 . vi
C
Q)

i ···• .. (..... ·····: ···· ;. .. ·•·· ···•!···· ·· :
E
i5 -100

. : : :
:······ ·······\ ············(· ··;····• 1 :··· *-

-200 ·:... ; ; :. ~ " '.· ~.
: :

-300

-400

·,··· ··········1·············:-·· .. ······· ··:- ·· ··· •··· ··· '····· ·· ······r· ···· ·· ······:·

· .:. · · · · · ··· · · · · :· · · · · · · · · · · · · i ·· · ··· · · · · ···r ·· · ·· · · ·· · · · -:· · · · · · · · · ···· :· ·· · · · ·· · · · · ·1•
-1200 -1000 -800 -600

Dimension 1
-400 -200 0

(a) All data

400 , ; ,.. Grain128
: : HC128

300 ·· ··········'·•····· ····· ·' ········ ·····; ·············'. .. 0 RC4 . . · · * Salsa20
200 .: ·:···· ······· ··:--· ··· ······<···· ···· · .. ·-:- □ VMPC

j '0: r·.·.·.·.·.· .. L t.· .. ·.·.·.·• ~t .T. T ···••T
0 -100 •:·· ···········\···· ····· ·· ··,······· ···••i••·· ········i· ·······•·· ··: ····•· ··· ··· -:,

-200 · ·:· · · · · · · · ; .. · · · ·• · · · · · · :·· · · · · · · · · .. ·! .. · · · · · · .. · · .\ · · · · · · · .. · · · j. · · · · · · · · · .. ·: ·
-300 ·(............ ·:- 1· i···· : ·:·· ;.

-400 ·:·· ······· ···· :·· ····· ···········-:-····· ······· ·:············ ·:·· ···· ·· ····· :·

-600 -400 -200 0
Dimension 1

200

(b) Class centres

400 600

Fig. 6.6: Scatter-plots of the 150 data points and the class centres for the 16-bit
encoding.

Chapter 6. Encryption Classification for Stream Cipher Algorithms 166

~

'" -,
I',..'

'-.. ·,
..................

........ ..

" ', ·,
I'-..

""~ 1 2 3 4 5

Fig. 6.7: An image of the Distance Matrix for 16-bit. The class labels are as fol­
lows: 1 Grain (128), 2 HC (128), 3 RC4 (128), 4 Salsa20 (128) and 5 VMPC
(128).

6.4.3 The Most Accurate Classifier Results

For 8-bit codes

According to the results, the AdaBMl classifier is the most accurate classifier of

all the algorithms. Table 6.5 below is a representative set of results from the five

classes. The table includes a total of 150 (8 x 3) BECC encrypted text files for

each stream cipher algorithm: Grain128, HC128, RC4, Salsa20, and VMPC. Each

row shows the results for each class, and the columns represent the predicted

classes. The correct predictions are along the red diagonal; for example, only six

of the Salsa20s were correctly classified but only zero of the VMPC were correctly

classified. These results also shows that RC4 and VMPC algorithms are distin­

guishable from the rest.

From the AdaBMl confusion matrix, in Table 6.6 we see that the accuracy rate is

(38/150) X 100 = 25.33%.

Chapter 6. Encryption Classification for Stream Cipher Algorithms

Tab. 6.6: Confusion matrix of AdaBMl classifier.

Algorithms
Grain128
HC128
RC4-128
Salsa20
VMPC

For 16-bit codes

1

2
3

Salsa20 VMPC
0 1
3 0

1

167

This section describes the results for the 16-bit encoding case. The most accurate

classifier was found to be the Naive Bayes classifier as shown in Table 6.7. The

correct predictions lie along the red diagonal, which shows that our classification

correctly classified seven of the Grain128 algorithms, six of the HC128 algorithms,

ten of the RC4 algorithms, seven of the Salsa20 and ten of the VMPC algorithms.

This means that both Grain128 and VMPC algorithms are distinguishable from

the rest because of their high accuracy, and it impossible to identify the RC4 al­

gorithm due to its low accuracy.

From the Naive Bayes confusion matrix in Table 6.7, we see that the accuracy rate

is (40 / 150) X 100 = 26.66%.

Tab. 6.7: Confusion matrix of Naive Bayes classifier.

Algorithms Salsa20 VMPC
Grain128 3 3 6
HC128 6 4
RC4 3
Salsa20 4 7
VMPC 7 3

6.5 A Comparison Between the Classification of

Stream and Block Cipher Algorithms

This section compares the results for stream ciphers nd block ciphers. Tables 6.8

and 6.9 show that in the block cipher algorithms most of the classifier obtained

a higher accuracy compared to stream cipher algorithms. Figure 6.8 shows that

RoFo classifiers have a better overall accuracy performance, whereas and RoFo

achieved the lowest accuracy with stream ciphers. But Figure 6.9 shows that

Naive Bayes with block ciphers have a better accuracy and MLP and RoFo both

are none accuracy as mentioned in previous chapter. In general, stream cipher

Chapter 6. Encryption Classification for Stream Cipher Algorithms 168

algorithms are more difficult to classify than block ciphers due to random nature

of the datasets.

Tab. 6.8: Comparing accuracy between stream and block ciphers using 8-bit cod­
ing.

Algorithms Block ciphers (4 classes)% Stream ciphers (5 classes)%
Naive Bayes 44.17 14.66
SVM 32.08 20.00
MPL 39.58 21.33
IBL 30.42 19.33
Bag 47.50 19.33
AdaBMl 43.33 23.33
RoFo 53.33 14.00
C4.5 51.67 16.66

60 ~-------
53.33

Naive Bayes SVM MPL IBL Bag Ada BMl RoFo (4.5

■ wi th 4 block cipher classes ■ With 5 stream cipher classes

Fig. 6.8: Accuracy result for block and stream ciphers with 8-bit codes.

Tab. 6.9: Comparing accuracy between stream and block for 16-bit codes.

Algorithms Block ciphers (4 classes) % Stream ciphers (5 classes) %
NB 57.92 26.66
SVM 32.08 21.33
MPL None 24.66
IBL 37.50 22.00
Bag 41.25 18.66
AdaBMl 39.58 25.33
RoFo None 20.00
C4.5 38.75 17.33

Chapter 6. Encryption Classification for Stream Cipher Algorithms 169

70 ,---------------------------------

60

so

40

30

20

10

0

Naive Bayes SVM MPL IBL Bas AdaBMl RoFo (4.5

■ with 4 block cipher classes ■ with S stream cipher classes

Fig. 6.9: Accuracy result for block and stream ciphers with 16-bit codes.

Summary

The aim of this chapter was to find the most accurate classification algorithm for

the five different stream cipher algorithms Grain128, HC128, RC4, VMPC and

Salsa20 and then to compare with block cipher algorithms. The results showed

that with 8-bit encoding of the encrypted files, the highest accuracy obtained was

the AdaBMl classifier with 23.33% and lowest was the RoFo classifier with 14%.

There was only a slight difference between algorithms and essentially the system

had difficulty distinguishing between all stream cipher algorithms. For 16-bit

encoding, the highest accuracy obtained was for the Naive Bayes classifier with

26.67%, and the lowest accuracy was C4.5 classifier with 17.33%. Again it was ob­

served that the system had difficulty distinguishing between all the algorithms.

In addition, when the 8-bit and 16-bit encoding results were compared for all al­

gorithms the difference in accuracy was found to be slight with AdaBMl classifier

had obtained the best accuracy 25.33 %. Further, the five algorithms used with

the 16-bit encoding are not distinguishable, unlike with the 8-bit encoding case

where there is a clear pattern.

For stream cipher algorithms, we obtained much lower accuracy compared to

block cipher algorithms due to the stream cipher algorithms producing encrypted

output with less patterns that could be explained for classification by the differ­

ent classification algorithms. Some of the algorithms were using streaming data

which also provided greater security.

In summary, our experimental results showed that stream cipher algorithms are

more difficult compared to block cipher algorithms to classify encrypted output.

This is due to the bit based streaming approach adopted by the algorithms and

the randomly distributed characters that was consequently produced in the en­

crypted output.

Chapter 7

Conclusion and Future Work

A summary of the most important results and directions for future work are pre­
sented in this chapter.

The capability of encryption and decryption information is crucial to secure fi­

nancial transactions and even elementary forms of on-line privacy. Cryptology

has two categories: cryptography and cryptanalysis. Cryptanalysis characteris­

tically involves learning how resistant a cipher is for distinguishing attacks and

to recover the key. Most studies in cryptanalysis begin with the hypothesis that

encryption and method of operation are already identified. One of the crucial

problems in cryptanalysis is identifying the encryption method used. There has

been comparative very little work done on this problem using Pattern Recogni­

tion classification techniques. The purpose of the research has been to determine

whether Pattern Recognition can be used to identify the encryption method.

7.1 Review of Thesis

This thesis investigated the hypothesis that Pattern Recognition classification can

be used as a useful tool used to help identify the encryption method used to

encrypt data. The experimental results support the hypothesis for block cipher

algorithms but not for stream cipher algorithms and highlights the importance of

using Pattern Recognition for encryption classification. It provides a reference to

guide researchers who are interested in contributing towards the same area in the

study of cryptography algorithms. Other researchers can also benefit by using

the Bangor Sources Files Corpus (BSFC) and Bangor Encryption Classification

Corpus (BECC) that were used for the evaluation.

A brief summary of the dissertation is follows:

Chapter 2 provides an overview of cryptography and cryptanalysis. Crypto­

graphic were divided into two categories: Symmetric and Asymmetric algorithms.

Chapter 7. Conclusion and Future Work 172

The study focused on Symmetric cipher algorithms, which include block and

steam cipher algorithms. This chapter also focused on cryptanalysis, and dif­

ferent types of cryptanalysis.

Chapter3 focused on the use of using cryptographic techniques with different

categories and on cryptanalysis with different types of encryption modes. It was

observed that using pattern recognition is a useful tool for classification, which

was a main focus of our research. Furthermore, this chapter described the follow­

ing classifiers: Naive Bayes, SVM, MLP, IBL, Bag, AdaBMl, RoFo and C4.5.

Chapter 4 described how we created the datasets used in the evaluation. There

were two different datasets created: first, the Bangor Source File Corpus called

(BSFC) and second, Bangor Encryption Classification Corpus called (BECC). Dif­

ferent methods were used to analyse the datasets to find out whether the datasets

were random or not. These were: Frequency test, Chi-square test and a com­

pression test (PPM). The results from running these tests show that the encrypted

data is random in nature and therefore difficult to classify.

Chapter 5 includes three main experiments. The first used different numbers of

keys with dissimilar text files (512KB) in ECB and CBC modes. The second ex­

periment worked on changing the number of keys sizes and the encryption key

in block cipher algorithms. The third experiment worked on classifying different

instances with different numbers of keys sizes. In this experiment, eight classi­

fiers were used: Naive Bayes, SVM, MPL, IBL, Bag, AdaBMl, RoFo, and C4.5 for

accuracy. All experiments were performed using the WEKA machine learning

platform. The aim was to find the best classification algorithm for four different

block ciphers (DES, IDEA, AES, and RC2). Different keys were also used for each

algorithm.

The results illustrated that the RoFo classifier has the best performance on iden­

tifying the encryption method for the ciphered data in the BECC while the worst

performance was IBL. Moreover, the performance of the classifiers differed sig­

nificantly when identification of four classes (i.e four different encryption algo­

rithms) was considered. It was observed that the three versions of AES (128, 192

and 256 bits) are not separately distinguishable. It was also noted that RC2 (128

bits) does not match the other versions of the same encoding RC2 (42 bits) and

RC2 (84 bits).

As expected, by increasing the number of encryption keys, the classification accu­

racy will reduce. It was also observed that increasing the number of files used also

improved the accuracy. Further, the results show that it was possible to achieve

accuracy above 40% with some classifiers when each file was encrypted with a

Chapter 7. Conclusion and Future Work 173

different key.

A very interesting point was that the ECB mode had higher accuracy than the

CBC mode which was not expected. Unfortunately, in terms of using both RoFo

and MLP classifiers with 16-bit codes, no result were obtainable since there were

too many features to be processed.

Chapter 6 included an analysis of stream cipher algorithms. In all the algorithms

that were investigated, the difference in accuracy was found to be slight when

8-bit and 16-bit codes were compared. Moreover, the five algorithms used with

16-bit codes were not distinguishable, unlike with 8-bit codes where there was a

clear pattern.

7.2 Review of Hypothesis

The hypothesis is that Pattern Recognition classification techniques can be used

effectively to help identify the encryption method used to encrypt the data. The

results showed that Pattern Recognition techniques are useful tools for cryptanal­

ysis as a means of identifying the type of encryption algorithm used to encrypt

the data. The hypothesis was proved for block cipher algorithms but was not

proved for stream cipher algorithms. For stream cipher algorithms the system

had difficulty in distinguishing between different types of stream cipher algo­

rithms but with block cipher algorithms many of the classifier were able to dis­

tinguish between algorithms.

7.3 Review of Aim and Objectives

The main objective of this dissertation was to test out a novel application of classi­

fication (i.e. identification) to classify encryption output. In this study, eight clas­

sifiers were used: Naive Bayes, SVM, MLP, IBL, Bag, AdaBMl, RoFo and C4.5.

The study were focused on classifying encryption output for different block and

stream cipher algorithms.

Following are the list of the objectives:

• The creation of a dataset of encrypted files that can be used for evaluation

of classification accuracy.

• Analysis of the encrypted text files.

Chapter 7. Conclusion and Future Work 174

The first objective has been achieved in Chapter 4, and the second objective has

been achieved in Chapters 5 and 6.

7.4 Future Work

The limitations and future work of the work presented in this dissertation are

summarized as follows:

1. The case study presented in this thesis only evaluates encryption using a

selection of block and stream ciphers. It cannot be used for all types of

block and stream ciphers because of the specific focus of this research on a

finite selection of algorithms and further investigation is needed for other

algorithms.

2. Classification of Asymmetric algorithms could be investigated using a sim­

ilar study. Pattern Recognition techniques can also be applied to identify

the encryption method for these algorithms.

3. There are three further types of encryption modes that could be investigated

to enhance the accuracy and the security with block cipher algorithms: CFB,

OFB and CTR modes.

4. The CBC mode did not give the expected results due to the key chaining

nature of the algorithm. Each block is dependent on all plain-text block

procedures up to the preceding point, therefore that each message is unique.

This needs to be investigated further.

5. The Fuzzy method could be used to further enhance the accuracy of block

and stream cipher algorithms and the effected on the classification accuracy

needs to be investigated.

6. Text categorisation techniques could be used to analysis the datasets and

compare with our results [278].

Appendix A

Matlab Code to Generate the WEKA Files

and Histograms

A.1 Generate WEKA File Code

Source code for generating the WEKA file.

t = dir(pa);

Data8 = [];

Labels = [];

k= l;

for i = 3:numel(t)

ENCClasses{k} = t(i).name;

tinfolder = dir([pa '/' t(i).name]);

for j = 3:numel(tinfolder)

s = [pa '/' t(i).name '/' num2str(j - 2) '_encrypted.bin'];

f = fopen(s);

A = fread(f);

f close(f);

h = extract_binary _histogram_new(A,l);

Data8 = [Data8;h];

Labels = [Labels;k);

fprintf('Now working on %s, file %s\n ',ENCClasses{k},s)

end

k = k + l ;

end

save Data8Matlab_ECB Data8 Labels ENCClasses

%% Prepare a version fo \leka

if exist('Da ta8Weka_ECB.arff)

de let e('Data8Weka_ECB.arff')

end

c l c

diary Data8\leka_ECB.arff

175

Appendix A. Matlab Code to Generate the WEKA Files and Histograms

fprintf ('@relation SuhailaENC\ n \ n ')

for i = 1:size(Data8,2)

fprintf('@attribute v%d real\n',i)

end

fprintf ('@attribute class (1,2,3,4,5,6,7,8} \n\n@data \ n \ n ')

for i = l: s ize(Data8,l)

for j = 1:size(Data8,2)

fprintf('%9i',Data8(i ,j))

e nd

fprintf{' %i\ n',Lab els{i))

end

d i ary off

A.2 Generate Histogram

Source code for generating the histograms.

function h = extra ct_binary _histogram{A,Mode)

if Mode== 1

else

end

Granularity = 8;

wb = wai tbar(O,'Please wait .. .');

Histogr amElements = 2"Granularity;

for i = l:His t ogramElements

h{i) = s um(A == i);

wai tbar(i / His togramElements,wb)

end

c lose{wb)

Granularity= 16;

A = reshape{A,2,l ength(A)/2)';

Index = A{:,1)•256 + A{:,2) + 1;

wb = waitbar(O,'Please wait .. .');

His togramEJements = 2"Granularity;

for i = 1:HistogramElements

h(i) = sum(lndex == i);

waitbar(i / His togramElements, wb)

end

close(wb)

176

Appendix B

Generate Histograms for Each Block Cipher

Algorithms

The histogram method is a statistical statement that demonstrates the frequency

of values within ranges or steps of values that fall between a certain minimum

and maximum. The aim of this method is to capture the statistical properties

of the cipher-text. It illustrates the variations in the frequency of occurrence of

symbols, which means it can be employed as the classification decisive factor.

And also, to find the datasets are random or not.

A pattern of varying encryption methods can be perceived in the histograms of

the cipher-texts. A histogram is a technique extensively applied in different appli­

cation frameworks which are characteristic of query optimization statistical and

temporal databases, OLAP applications, data streams and so on. Histograms are

well suited to the aim of this study, particularly on occasions of identifying the

encryption method from Ciphertext-Only Attacks [279] [280].

According to the results, these histograms was found to be very informative as

it demonstrates that the entirety of the pixels have a pattern for 8-bit codes, but

with 16-bit codes the pattern is not clear because the features are too large. In

these histograms it was noted that the blue curves show how the raw data will

be converted to the final image, and a pattern can be perceived in the histograms

of the cipher-texts of varying encryption methods.

Figure B.l to Figure B.2 show images of the histograms for all algorithms for 8-bit

codes with AES, DES, IDEA and RC2 using 128-bits key size in ECB mode. Fig­

ure B.3 to Figure B.4 shows the CBC mode histogram using the same algorithms

with same key sizes. In general, all histograms for he 8-bit codes shows that the

distribution indicated that the data is random in nature.

Next, Figure B.5 shows the histogram of all algorithms with ECB and CBC modes

using a 16-bit codes. Figure B.7 and Figure B.8 show that there is no pattern in

CBC mode using a 16-bit codes because the features are too large when it is in

Appendix B. Generate Histograms for Each Block Cipher Algorithms

AES 128 bit with 28

2500 .-------.---------.-----.-------,----,-----,

2000

50

2500

50

100 150
Symbols

(a) AES-128bits

100

DES 64 with 28

150
Symbols

(b) DES-64bits

200 250 300

200 250

178

300

Fig. B.1: Histograms for AES and DES algorithms with ECB mode using 8-bits.

CBC mode.

Appendix B. Generate Histograms for Each Block Cipher Algorithms

IDEA 128 bn wnh 'f'

300

(a) IDEA-128bits

RC2 128 bit with 28
2500,--- - ---,------,----.--------.-------,----,

1500
C,
i

l

50 100 150
Symbols

(b) RC2-128bits

200 250 300

179

Fig. B.2: Histograms for IDEA and RC2 algorithms with ECB mode using 8-bit
codes.

Appendix B. Generate Histograms for Each Block Cipher Algorithms

AES 128 with 28

2soo~---.---- ~---.----~--~-----.

1500

[

~
Le

1500

c;-
i

~
Le

so

50

100 150
Symbols

(a) AES-128bits

100 150

Symbols

(b) DES-64bits

200 250 300

200 250 300

180

Fig. B.3: Histograms for AES and DES algorithms with CBC mode using 8-bit
codes.

Appendix B. Generate Histograms for Each Block Cipher Algorithms

[

}
u.

I

IDEA 128 willl 28
2500,----..------~--~---,---- -.----

1500

50 100 150

Symbols

200

(a) IDEA-128bits

Symbols

(b) RC2-128bits

250 300

181

Fig. B.4: Histograms for IDEA and RC2 algorithms with CBC mode using 8-bit
codes.

Appendix B. Generate Histograms for Each Block Cipher Algorithms

AES.128 bit with 216

100

80 ~··· , t········· ········,·····II·················,· ··+

2 3 4
Symbo~

(a) AES-128bits

DES 64 b~ with 2'6

100 ~ ·····•···············+··+ ··········· ·····; , +···I

00,, + ················>·••l••··············;; 1

[i fi)

.1:

Symbols

(b) DES-64bits

6 7
• x 10

182

Fig. B.5: Histograms for AES and DES algorithms with ECB mode using 16-bit
codes.

Appendix B. Generate Histograms for Each Block Cipher Algorithms

IDEA 128 bit with 211
120,-----,----,-----,,--- --,---.--------.---,

100~······ ··············•···+············

lllll-····················>···+········ ····

Symbols

(a) IDEA-128bits

RC2128 bilwittl2'6

100 .. ····················•············,

80 .. ····················,·········••1

3 4
Symbols

(b) RC2-128bits

5 6 7
• x 10

183

Fig. B.6: Histograms for IDEA and RC2 algorithms with ECB mode using 16-bit
codes.

Appendix B. Generate Histograms for Each Block Cipher Algorithms

AES 128wilh 216

1s.---.....------,----,-----.---.---........-----.

10

2 3 4
Symbols

(a) AES-128bits

DES 64 bit wilh 21
•

5 6 7

' X 10

15 .----,-----,,-----,----,---,-,----,-----,

10

5

3 4
Symbols

(b) DES-64bits

5 6 7

' X 10

184

Fig. B.7: Histograms for AES and DES algorithms with CBC mode using 16-bit
codes.

Appendix B. Generate Histograms for Each Block Cipher Algorithms

IDEA 128 bit with 218

18 ,----.,..----,----,---,------r----.----,

16 ,., ; ... , ; ; ;

3 4
S'/mbols

(a) IDEA-128bits

RC2 128 bi! 'Mth 218

6 7
• x 10

,s,--------r---,-----.---.-----,---.,..,...---,

Symbols

(b) RC2-128bits

185

Fig. B.8: Histograms for IDEA and RC2 algorithms with CBC mode using 16-bit
codes.

References

[1] Z. Linxian, "Reseach of Image Encryption Algorithm Based on S-DES,"
2012 International Conference on Computer Science and Electronics Engineering,
vol. 1, pp. 184-187, 2012.

[2] Z. B. LLC, "Data Encryption," 2012.

[3] L. Lan, "The AES Encryption And Decryption Realization Based On
FPGA," Computational Intelligence and Security (CIS), 2011 Seventh Interna­
tional Conference, pp. 603- 607, 2011.

[4] S. Rizvi, S. Hussain, and N. Wadhwa, "PerformanceAnalysis of AES and
TwoFish Encryption Schemes," International Conference, Communication Sys­
tems and Network Technologies (CSNT), pp. 76-79, 2011.

[S] T. Nie, C. Song, and X. Zhi, "Performance Evaluation of DES and Blowfish
Algorithms," Biomedical Engineering and Computer Science (ICBECS), 2010
International Conference, pp. 1- 4, 2010.

[6] A. Mohamed, G. Zaibi, and A. Kachouri, "Implementation of RCS and RC6
Block Ciphers on Digital Images," Systems, Signals and Devices (SSD), 2011
8th International Multi-Conference, pp. 1-6, 2011.

[7] K. G. N and D. V. Ramaswamy, "Encryption Quality Analysis and Security
Evaluation of CAST-128Algorithm and its Modified Version using Digital
Images," International Journal of Network Security & Its Applications (IJNSA),
vol. 1, pp. 20-33, 2009.

[8] "Pattern Recognition." Accessed: 0712/2012.

[9] Y. W. Lim, "Efficient 8-cycle DES Implementation," in Second IEEE Asia Pa­
cific Conference on ASICs, 2000. AP-ASIC 2000.pp 175 -178, 2000.

[10] NBS PIPS PUB, "Data Encryption Standard DES," FIPS PUB 46-3,U.S. DE­
PARTMENT OF COMMERCE/National Institute of Standards and Technology,
1999.

[11] J. Rejeb and V. Ramaswamy, "Efficient Rijndael Implementation for High­
Speed Optical Networks," 10th International Conference Telecommunications,
JCT 2003., vol. 1, pp. 641 - 645, 2003.

[12] S. F. Mare, M. Vladutiu, and L. Prodan, "Secret Data Communication Sys­
tem using Steganography, AES and RSA," IEEE 17th International Sympo­
sium for Design and Technology in Electronic Packaging (SIITME), pp. 339 -
344, 20-23 Oct. 2011.

References 187

[13] J.-S. Coron, "What Is Cryptography?," Security & Privacy, IEEE, vol. 4,
pp. 70 -73, 2006.

[14] A. M. Eskicioglu and L. Litwin, "Cryptography," vol. 20, pp. 36 - 38, 2001.

[15] H. Delfs and H. Knebl, Introduction to Cryptography Principles and Applica­
tions. Berlin Heidelberg New York: Springer-Verlag 2007, 2007.

[16] M. Umaparvathi and D. Varughese, "Evaluation of Symmetric Encryption
Algorithms for MANETs," 2010 IEEE International Conference. Computational
Intelligence and Computing Research (ICCIC),, pp. 1-3, 28-29 Dec. 2010.

[17] Z. Yun-peng, L. Xia, and W. Qiang, "Asymmetric Cryptography Algorithm
with Chinese Remainder Theorem," Communication Software and Networks
(ICCSN), 2011 IEEE 3rd International Conference, pp. 450 - 454, 27-29 May
2011.

[18] M. S. Rhee and B. Lee, Information security and cryptology - ICISC 2006:. 9th
international conference, Busan, Korea, November 30 - December 1, 2006;
proceedings (Google eBook), 2007.

[19] D. Lee, "Hash Function Vulnerability Index and Hash Chain Attacks ," Se­
cure Network Protocols, 2007. NP Sec 2007. 3rd IEEE Workshop, pp. 1 - 6, 2007.

[20] Q. Yu, C. N. Zhang, and X. Huang, "An RC4-Based Hash Function for
Ultra-Low Power Devices," Computer Engineering and Technology (ICCET),
2010 2nd International Conference, vol. 1, pp. 323 - 328, 2010.

[21] S. Singh, "The Code Book:The Secret History of Codes and Code-breaking
(Google eBook)," 2010.

[22] S. Singh, The Cracking Code Book: How to Make It, Break It, Hack It, Crack It.
HarperCollinsChildren'sBooks, 2009.

[23] B. A. Forouzan, Cryptography and Network Security. McGraw-Hill Higher
Education, 2008.

[24] A. Mousa and A. Hamad, "Evaluation of the RC4 Algorithm for Data En­
cryption," International Journal of Computer Science & Applications, vol. 2,
pp. 44-56, 2006.

[25] M. Peyraviar and D. Coppersmith," A Structured Symmetric-Key Block Ci­
pher," Computers & Security, vol. 18, pp. 134-147, 1999.

[26] G.-H. Kim, J.-N. Kim, and G.-Y. Cho, "Symmetry Structured SPN Block
Cipher Algorithm," 11th International Conference, Advanced Communication
Technology, 2009. ICACT 2009., vol. 03, pp. 1777 -1780, 2009.

[27] H. M. Heys, "Information Leakage of Feistel Ciphers," Information Theory,
IEEE Transactions, vol. 47, Issue:l, pp. 23 - 35, 2001.

[28] H. Mohamed, A Kader, and M. M. Hadhoud, "Performance Evaluation
of Symmetric Encryption Algorithms," Journal of Computer Science, vol. 8,
pp. 280-286, 2008.

References 188

[29] J.M. Granado-Criado, M.A. Vega-rodriguez, J. M. Sanchez-perez, and J. A.
G6mez-pulido, "A Dynamically and Partially Reconfigurable Implementa­
tion of the IDEA Algorithm Using FPGAs and Handel-C," Journal of Uni­
versal Computer Science, vol. 13, pp. 407-418, 2007.

[30] T. Teerakanok and S. Kamolphiwong, "Accelerating Asymmetric-key
Cryptography using Parallel-key Cryptographic Algorithm PCA," in
6th International Conference on Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology, 2009. ECTI-CON 2009.,
pp. 812 - 815, 6-9 May 2009.

[31] V. Pachghare, Cryptography and Information Security. 30/01/2010, 2010.

[32] J. LANO, "Cryptanalysis and Design of Synchronous Stream Ciphers," PhD
thesis, 2006.

[33] S.-J. Han, H.-S. Oh, and J. Park., "The improved data encryption standard
DES algorithm," IEEE 4th International Symposium,Spread Spectrum Tech­
niques and Applications Proceedings, 1996., vol. 3, pp. 1310 -1314, 1996.

[34] J. 0. Crabbe, "TheDESAlgorithm Illustrated,"
p. http://orlingrabbe.com/ des.htm.

[35] K-Y. Yuan, J. Chen, and G.-P. Liu, "Design and Implementation of Data
Encryption for Networked Control Systems," Proceedings of the 2009 IEEE
International Conference on Systems, Man, and Cybernetics San Antonio, TX,
USA ., pp. 2105 - 2109, 2009.

[36] W. Wu, J. Jin, and J. Cheng, "The Research and Design of ATM PIN Pad
Based on Triple DES ," Information and Automation (ICIA), 2011 IEEE Inter­
national Conference, pp. 443 -447, 6-8 June 2011.

[37] M. Matin, M. Hossain, M. Islam, and M. Islam, "Performance Evaluation of
Symmetric Encryption Algorithm inMANET and WLAN," 2009.

[38] D. Feldmeier, "AHigh-Speed Software DES Implementation," Computer
Communication I Research Group, Bellcore, Morristown, NJ 07962, 1989.

[39] B. S. a ndHaris Tauqeer and M. S. Ilyas, "Hardware Implementation of DES
Encryption Cracker," Engineering Sciences and Technology, SCONEST 2005.
Student Conference, pp. 1-4, 27-27 Aug. 2005.

[40] H. Eberle and H . Eberle, "AHigh-speed DES Implementation for Network
Applications," 1992.

[41] Federal Information Processing Standards Publication 46-2, "DES
Encryption Standard DES," FIPS PUB 46-3,U.S. DEPARTMENT
OF COMMERCE/National Institute of Standards and Technology,
pp. http: //www.itl.nist.gov/fipspubs/fip46-2.htm, 1993.

[42] J. Qing-feng and Q. Shui-sheng, "A New Image Encryption Scheme Based
on DES Algorithm and Chua's Circuit," Imaging Systems and Techniques,
2009. IST '09. IEEE International Workshop, pp. 168- 172, 2009.

References 189

[43] L. Zhi, "Reseach of Image Encryption Algorithm Based on S-DES," Com­
puter Science and Electronics Engineering (ICCSEE), 2012 International Confer­
ence, vol. 1, pp. 184-187, 2012.

[44] D. A. Osvik, Efficient Implementation of the Data Encryption Standard. 2003.

[45] S. J.Shepherd, "A high Speed Software Implementation of the Data Encryp­
tion Standard," Cryptography and Computer Security, Electrical Engineering
Department, University of Bradford, Bradford, UK, vol. 14, pp. 349-357, 1995.

[46] M. Fischer, "How to Implement the Data Encryption Standard," 1995.

[47] J. Choa, S. Soekamtoputrab, K. Choib, and J. Moona, "Power Dissipation
and area Comparison of 512-bit and 1024-bit key AES," Computers & Math­
ematics with Applications, pp. 1-6, 2012.

[48] Z. Hu, "Progress in the Advanced Encryption Standard," International Con­
ference on Intelligence Science and Information Engineering, pp. 345 - 348, 2001.

[49] N. Kosaraju, M. Varanasi, and S. Mohanty, "A High-Performance VLSI ar­
chitecture for Advanced Encryption Standard AES Algorithm," 19th Inter­
national Conference, VLSI Design, 2006. Held jointly with 5th International Con­
ference on Embedded Systems and Design.,, p. 4 pp, 2006.

[SO] A. Refik Sever and M. A. Neslin smailoglu, Yusuf C. Tekmen, "A High
Speed ASIC Implementaion of the Rijndael Algorithm," Circuits and Sys­
tems, 2004. ISCAS '04. Proceedings of the 2004 International Symposium, vol. 2,
pp. II-541-4, 2004.

[51] X. liang Wang, F. hai Xiao, and D. yang Wang, "Application of AES Algo­
rithm in Digital Cnema Projection System based on Da Vinci technology,"
Information Networking and Automation (!CINA), 2010 International Confer­
ence, pp. V2-24 - V2-27, 2010.

[52] S. Shivkumar and D. G. Umamaheswari, "Performance Comparison of Ad­
vanced Encryption Standard (AES) and AES key dependent S-box - Simu­
lation using MATLAB," Process Automation, Control and Computing (PACC),
2011 International Conference, pp. 1 - 6, 20-22 July 2011.

[53] X. Zhang and P. K.K, "Implementation Approaches for the Advanced En­
cryption Standard Algorithm," Circuits and Systems Magazine, IEEE, vol. 4,
pp. 24 - 46, 2002.

[54] C. Jenkins, M. Schulte, and J. Glossner, "Instruction set Extensions for Triple
DES Processing on a Multi-threaded Software-defined Radio Platform,"
Signals, Systems and Computers (ASILOMAR), 2010 Conference Record of the
Forty Fourth Asilomar Conference, pp. 1387 - 1391, 2010.

[55] W. C. Barker, "Informtion Security," NIST Special Publication 800-67 Version
1.1, Recommendation for the Triple Data Encryption Algorithm (TDEA) Block
Cipher, 19 May 2008.

[56] A. T. Software, "This is a test entry of type @ONLINE," June 1997.

References 190

[57] W. Stallings, Cryptography and Network Security. Prentice Hall, 2005.

[58] X. Bi, L. Wu, and G. Bai, "Design and FPGA Implementation of 3DES
against Power Analysis Attacks for le Bankcard," ASIC, 2009. ASICON '09.
IEEE 8th International Conference, pp. 159-162, 2009.

[59] A Nadeem and D. M. Y. Javed, "A Performance Comparison of Data En­
cryption Algorithms," Information and Communication Technologies, 2005.
ICICT 2005. First International Conference, pp. 84-89, 2005.

[60] P. Ghosal, M. Biswas, and M. Biswas, "A Compact FPGA Implementation
of Triple-DES Encryption System with IP Core Generation and On-Chip
Verification," Proceedings of the 2010 International Conference on Industrial En­
gineering and Operations Management Dhaka, Bangladesh, 2010.

[61] W. Guo, Z. Li, Y. Chen, and X. Zhao, "Security Design for Instant Messaging
System Based on RSA and Triple DES," Image Analysis and Signal Processing,
2009. IASP 2009. International Conference, pp. 415 - 418, 2009.

[62] S. Yang, H. Piao, L. Zhang, and X. Zheng, "An Improved IDEA Algorithm
Based on USB Security Key," Natural Computation, 2007. ICNC 2007. Third
International Conference, vol. 3, pp. 184-188, 2007.

[63] J. J. G. Savard, "IDEA (International Data Encryption Algorithm)," 2012.

[64] A Biryukov, J. N. Jr, B. Preneel, and J. Vandewalle, "New Weak-Key
Classes of IDEA," in 4th Internation Conference, Appeared in Information and
Communications Security, ICICS 2002, Lecuter Notes in Computer Secience
2513.Springer-Verlag., pp. 315-326, 2002.

[65] R. Zimmermann, A. Curiger, H . Bonnenberg, H. Kaeslin, N. Felber, and
W. Fichtner, "A 177 Mb/s VLSI Implementation of the International Data
Encryption Algorithm," IEEE JOURNAL OF SOLID-STATE CIRCUITS.,
vol. 3, pp. 303-307, 1994.

[66] P. Junod, "Statistical Cryptanalysis of Block Ciphers," 2004.

[67] P.-J. Kang, S.-K. Lee, and H.-Y. Kim, "Study on the Design of MDS-M2
Twoflsh Cryptographic Algorithm adapted to Wireless Communication,"
The 8th International Conference. Advanced Communication Technology, 2006.
ICACT 2006., vol. 1, pp. 4 pp. - 695, 2006.

[68] B. Schneier, J. Kelsey, D. Whiting, D. Wagnery, C. Hall, and N. Ferguson,
"On the Twofish Key Schedule," pp. 1-17, 1998.

[69] B. Schneier, J. Kelsey, D. Whitingz, D. Wagner, C. Hall, and N. Ferguson,
"Twofish: A 128-Bit Block Cipher," 1998.

[70] J. Gargiulo, "Global Information Assurance Certification Paper,This paper
is Taken From the GIAC Ddirectory of Certified Professionals. Reposting is
not Permited without Express Written Permission,SANS Institute Author
Rebains Full Rights," p . SANS, 2002.

References

[71] B. Gatliff, "Encrypting Data with the Blowfish
http://www. embedded. com/showArticle.jhtml? articleID=12800442,
2003 (11:00 AM).

191

algorithm,"
Jul 15

[72] M. Peyraviana and D. Coppersmithb, "A Structured Symmetric-Key Block
Cipher," Computers & Security,Elsevier Science Ltd, vol. 18, pp. 134-147, 1999.

[73] N. Palaniswamy, M. Dipesh Dugar, N. Dinesh Kumar Jain, and
G. Raaja Sarabhoje, "Enhanced Blowfish Algorithm Using Bitmap Image
Pixel Plotting for Security Improvisation," 2nd International Conference, Ed­
ucation Technology and Computer (ICETC),, pp. Vl-533- Vl-538, 2010.

[7 4] T. Nie and T. Zhang, "A Study of DES and Blowfish Encryption Algorithm,"
IEEE Region 10 Conference of TENCON 2009 -, pp. 1-4, 2009.

[75] C. T. R. Hager, S. F. Midkiff, J.-M. Park, and T. L. Martin, "Performance
and Energy Efficiency of Block Ciphers in Personal Digital Assistants,"
Third IEEE International Conference , Pervasive Computing and Communica­
tions,, pp. 127-136, 2005.

[76] A. J. Marcella and D. Menendez, Cyber Forensics: a field manual for collecting,
examining, and preserving evidence of computer crimes. CRC Press, 2007.

[77] M. Y. Rhee, Internet Security Cryptographic Principles, Algorithms and Proto­
cols. 2003.

[78] 0. Elkeelany and A. Olabisi, "Performance Comparisons Design and Im­
plementation of RCS Symmetric Encryption Core Using Reconfigurable
Hardware," JOURNAL OF COMPUTERS, vol. 3, pp. 48-55, 2008.

[79] M. Hasan and H . Al-Shalabi, "Modified Cryptanalysis of RCS," The Inter­
natioanl Arab Jornal of Information Technology, vol. 4, 2005.

[80] B. Preneel, "Fast Software Encryption," Second International Workshop, Leu­
ven, Belgium(GoogleeBook), vol. 2, 1994.

[81] H. E. din H. Ahmed, H. M. Kalash, and 0. S. F. Allah, "Implementation
of RCS Block Cipher Algorithm for Image Cryptosystems," International
Journal of Information Technology, vol. 3,no.4, pp. 245-250, 2007.

[82] H. E. din H. Ahmed, H. M. Kalash, and 0. S. F. Allah, "Encryption Effi­
ciency Analysis and Security Evaluation of RC6 Block Cipher for Digital
Images," International Journal of Computer, Information, and Systems Science,
and Engineering, pp. 33-39, 2007.

[83] W. Stallings, Cryptography and Network Security. Pearson Education, 2003.

[84] C. M. Adams, "Constructing Symmetric Ciphers Using the CAST Design
Procedure," Designs, Codes and Cryptography, vol. 12, pp. 283-316, 1997.

[85] G. Jakimoski and L. Kocarev, "Differential and Linear Probabilities of a
Block-Encryption Cipher," Circuits and Systems I: Fundamental Theory and
Applications, IEEE Transactions, vol. 50 Issue: 1, pp. 121 -123, Jan. 2003.

References 192

[86] A.-K. A. Tamimi, "Performance Analysis of Data Encryption Algorithms."

[87] G. Wang and S. Wang, "Improved Differential Cryptanalysis of Serpent,"
Computational Intelligence and Security (CIS), 2010 International Conference,
pp. 367 - 371, 11-14 Dec. 2010.

[88] F.-X. B.Collard and J.-J.Quisuater, "Improved and Multiple Linear Crypt­
analysis of Reduced Round Serpent," Information Security and Cryptology ,
Thired SKLOIS Conferenec, Inscrpt 2007 Xining, China.,Springer, pp. 51-65,
2007.

[89] B. Najafi, B. Sadeghian, M. Saheb Zamani, and A. Valizadeh, "High Speed
Implementation of Serpent Algorithm," Microelectronics, 2004. ICM 2004
Proceedings. The 16th International Conference, pp. 718 - 721, 2004.

[90] M. <;akiroglu, "Software implementation and performance comparison of
popular block ciphers on 8-bit low-cost microcontroller," International Jour­
nal of the Physical Sciences, vol. 5(9), pp. 1338-1343, 2010.

[91] ISO/IEC, "Information technology -Security techniques -Encryption algo­
rithms -Part 2: Asymmetric ciphers," Webstore International Electrotechnical
Commission, 2006.

[92] T. Sugawara, N. Homma, T. Aoki, and A. Satoh, "A High-Performance
ASIC Implementation of the 64-bit Block Cipher CAST-128," Circuits and
Systems, 2007. ISCAS 2007. IEEE International Symposium, pp. 1859-1862,
2007.

[93] K. Boey, Y. Lu, M. O'Neill, and R. Woods, "Differential Power Analysis of
CAST-128," IEEE Annual Symposium on VLSI, pp. 143-148, 2010.

[94] J. Viega, M. Messier, and P. Chandra, Network Security with OpenSSL.
OReilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472, 2002.

[95] T. Sugawara, N . Homma, T. Aoki, and A. Satoh, "A High-Performance
ASIC Implementation of the 64-bit Block Cipher CAST-128," Circuits and
Systems, 2007. ISCAS 2007. IEEE International Symposium, pp. 1859 - 1862,
2007.

[96] H. Adams, C.and Heys, S. Tavares, and M. Wiener, "An Analysis of the
CAST-256 Cipher," Electrical and Computer Engineering, 1999 IEEE Canadian,
vol. 1, pp. 361 - 366, 1999.

[97] C. Adams, "The CAST-256 Encryption Algorithm," June 1999.

[98] M. Riaz and H. Heys, "The FPGA Implementation of the RC6 and CAST-
256 Encryption Algorithms," Electrical and Computer Engineering, 1999 IEEE
Canadian Conference, vol. 1, pp. 367 - 372, 1999.

[99] A. Pestunov, "Differential Cryptanalysis of 24-Round CAST-256," IEEE Re­
gion 8 International Conference. Computational Technologies in Electrical and
Electronics Engineering, 2008. SIBIRCON 2008., pp. 46-49, 21-25 July 2008.

References 193

[100] 0. Verma, R. Agarwal, D. Dafouti, and S. Tyagi, "Peformance Analysis
of Data Encryption Algorithms," Electronics Computer Technology (ICECT),
2011 3rd International Conference, vol. 5, pp. 399- 403, 2011.

[101] N. Couture and K. B. Kent, "The Effectiveness of Brute Force Attacks on
RC4," Second Annual Conference. Communication Networks and Services Re­
search, 2004. Proceedings., pp. 333 - 336, 19-21 May 2004.

[102] B. Crainicu and B. Laszl6Iantovics, "Cryptanalysis of KSAm-like Algo­
rithms," First International Conference on Complexity and Intelligence of the
Artificial and Natural Complex Systems. Medical Applications of the Complex
Systems. Biomedical Computing, pp. 130 -148, 2008.

[103] P. Prasithsangaree and P. Krishnamurthy, "Analysis of Energy Consump­
tion of RC4 and AES Algorithms in Wireless LANs," '03. IEEE ,Global
Telecommunications Conference, 2003. GLOBECOM, vol. 3, pp. 1445 - 1449,
2003.

[104] Y. Yao, J. Chong, and W. Xingwei, "Enhancing RC4 algorithm for WLAN
WEP Protocol," Control and Decision Conference (CCDC), 2010 Chinese,
pp. 3623 - 3627, 2010.

[105] A. M. Riad, A. R. Shehata, E. K. Hamdy, M. H. Abou-Alsouad, and T. R.
Ibrahim, "Evaluation of the RC4 Algorithms a Solution for Converged Net­
wor," Journal of ELECTRICAL ENGINEERING, vol. 3, pp. 155-160, 2009.

[106] J. Xie and X. Pan, "An Improved RC4 Stream Cipher," International Con­
forence on Computer Application and System Modeling (ICCASM 2010), vol. 7,
pp. 156-159, 2010.

[107] S. H . M. Kwok and E. Y. Lam, "Effective Uses of FPGAs for Brute-Force
Attack on RC4 Ciphers," Very Large Scale Integration (VLSI) Systems, IEEE
Transactions, vol. 16, Issue:8, pp. 1096 - 1100, 2008.

[108] H. Zhang and X. Wang, "Cryptanalysis of Stream Cipher Grain Family."
Cryptology ePrint Archive, Report 2009/109, 2009. http: //eprint. iacr.
org/.

[109] M. Afzal and A. Masood, "Algebraic Cryptanalysis of A NLFSR Based
Stream Cipher," ICTTA 2008. 3rd International Conference, Information and
Communication Technologies: From Theory to Applications, pp. 1- 6, 2008.

[110] S.S. Mansouri and E. Dubrova, "Improved Hardware Implementation of
the Grain Stream Cipher," 13th Euromicro Conference on Digital System De­
sign: Architectures, Methods and Tools, pp. 433 -440, 2010.

[111] M. A. M. Hell, T. Johansson, and W. Meier, "A New Version of Grain-
128 with Authentication," Presented at SKEW 2011, available via
skew2011.mat.dtu.dk/ proceedings/.

[112] J. Yan and H . Heys, "Hardware Implementation of the Salsa20 and Phelix
Stream Ciphers," Electrical and Computer Engineering, CCECE 2007. Canadian
Conference, pp. 1125 - 1128, 2007.

References 194

[113] L. Henzen, F. Carbognani, N. Felber, and W. Fichtner, "VLSI Hardware
Evaluation of the Stream Ciphers Salsa20 and ChaCha, and the Compres­
sion Function Rumba," 2008 International Conference on Signals, Circuits and
Systems, pp. 1-5, 2008.

[114] G. Meiser, T. Eisenbarth, K. Lemke-Rust, and C. Paar, "Efficient Implemen­
tation of eSTREAM Ciphers on 8-bit AVR Microcontrollers," International
Symposium, Industrial Embedded Systems, 2008. SIES 2008., pp. 58 - 66, 2008.

[115] L. Henzen, F. Carbognani, N. Felber, and W. Fichtner, "VLSI Hardware
Evaluation of the Stream Ciphers Salsa20 and ChaCha, and the Compres­
sion Function Rumba," 2nd International Conference, Signals, Circuits and Sys­
tems, SCS 2008., pp. 1 - 5, 2008.

[116] J. H. Park, Hsiao-Hwa, and M. Atiquzzaman, "AComparative Analysis of
HC-128 and Rabbit Encryption Schemes for Pervasive Computing in WAN
Environment," Advances in Information Security and Assurance(Springer),
Third International Conferenec and Workshops,, pp. 682- 691, 2009.

[117] Y. Liu and T. Qin, "TheKey and IV Setup of the Stream Ciphers HC-256
and HC-128," 09. International Conference, Networks Security, Wireless Com­
munications and Trusted Computing, 2009. NSWCTC ', vol. 2, pp. 430 - 433,
2009.

[118] E. Zenner," A Cache Timing Analysis of HC-256," 15th Annual International
Workshop, SAC 2008, Selected Areas in Cryptography, pp. 199-213, 2008.

[119] G. Meiser, T. Eisenbarth, K. Lemke-Rust, and C. Paar, "Efficient Implemen­
tation of eSTREAM Ciphers on 8-bit AVR Microcontrollers," Industrial Em­
bedded Systems, 2008. SIES 2008. International Symposium, pp. 58 - 66, 2008.

[120] K. Chain, "The Study and Security Analysis of HC Stream Cipher," Journal
of Convergence Information Technologi;,, vol. 6, pp. 439-454, 2011.

[121] H. Wu, "A New Stream Cipher HC-256," pp. 81-85, 1995.

[122] B. Zoltak, "VMPC One-Way Functiion and Stream Cipher," Fast Software
Encryp-tion, FSE 2004, LNCS 3017, Springer-Verlag, pp. 210-225, 2004.

[123] Y. Tsunoo, T. Saito, H . Kubo, M. Shigeri, T. Suzaki, and T. Kawabata, "The
Most Efficient Distinguishing Attack on VMPC and RC4A," 2005.

[124] L. Chen and R. Zhang, "A Fast Encryption Mode for Block Cipher with
Integrity Authentication," IEEE International Conference, Service Operations
and Logistics, and Informatics, 2008. IEEE/SOL! 2008., pp. 573 - 576, 2008.

[125] W. Trappe and L. C.Washington, Introduction to Cryptography: With Coding
Theory. 2006.

[126] J. Dj.Golic, "How to Construct Cryptographic Primitives from Stream
Cipers," Computers & Security, vol. 20, No.l, pp. 79-89, 2001.

References 195

[127] R. Doomun, J. Doma, and S. Tengur, "AES-CBC Software Execution Opti­
mization," Information Technology,2008.ITSim 2008.International Symposium,
pp. 1-8, 2008.

[128] M. Dworkin, "Recommendation for Block Cipher Modes of Operation,"
NIST Special Publication 800-38A 2001 Edition, 2001.

[129] H. M. Heys, "Analysis of the Statistical Cipher Feedback Mode of Block
Ciphers," IEEE Transactions on Computers, vol. 1, pp. 77- 92, 2003.

[130] W.-E. Ghnaim, N. Ghali, and A. Hassanien, "Known-ciphertext Cryptanal­
ysis Approach for the Data Encryption Standard Technique," Computer In­
formation Systems and Industrial Management Applications (CISIM), 2010 In­
ternational Conference, pp. 600 - 603, 2010.

[131] L. Keliher, H. Meijer, and S. Tavares, "Provable Security of Substitution­
Permutation Encryption Networks Against Linear Cryptanalysis," Electri­
cal and Computer Engineering, 2000 Canadian Conference, vol. 1, pp. 37 - 42,
2000.

[132] A. Bechtsoudis and N. Sklavos, "Side Channel Attacks Cryptanalysis
against Block Ciphers Based on FPGA Devices," VLSI (ISVLSI), 2010 IEEE
Computer Society Annual Symposium, pp. 460-461, 5-7 July 2010.

[133] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, "Side Channel Cryptanalysis
of Product Ciphers," Journal of Computer Security, vol. 8 Issue 2,3, August
2000.

[134] P. Junod, "On the Complexity of Matsuis Attack," in in Selected Areas in
Cryptography, SAC 2001, pp. 199-211, Springer-Verlag, 2001.

[135] A. Kahate, Cryptography and Network Security. Tata McGraw-Hill Comapny
Limited, 2008.

[136] A. Biryukov and E. Kushilevitz, "From Differential Cryptanalysis
toCiphertext-Oly Attacks," H.Krawczyk(Ed):CRYPTO'98,LNCS 1462, pp. 77-
88, 1998.

[137] W. Abd-Elmonim, N . Ghali, Hassanien, and A. A.E.; Abraham, "Known­
plaintext attack of DES-16 using Particle Swarm Optimization," Third World
Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 12-16,
2011.

[138] M. Ahmad, "Cryptanalysis of Chaos Based Secure Satellite Imagery Cryp­
tosystem," Contemporary Computing , 4th International Conference, IC3 2011,
Naida, India, pp. 81-91, 2011.

[139] J. Daemen, M. Lamberger, N. Pramstaller, V. Rijmen, and F. Vercauteren,
"Computational Aspects Of The Expected Differential Probability Of 4-
Round AES And AES-like Ciphers," Mathematics Subject Classification,
Springer, pp. 85- 104, 2009.

References 196

[140) Z. Chen, A Youssef, and S. Tavares, "Differential-like Cryptanalysis of a
Class of Substitution-Permutation Networks ," Electrical and Computer En­
gineering, 1998. IEEE Canadian Conference, vol. 1, pp. 433 - 436, 24-28 May
1998.

[141) A G. Bafghi, R. Safabakhsh, and B. Sadeghiyan, "Finding the Differential
Characteristics of Block ciphers with Neural networks," Information Sci­
ences, vol. 178, pp. 3118-3132, 2008.

[142) A. Biryukov and E. Kushilevitz, " From Differential Cryptanalysis to
Ciphertext-only Attacks," in Advances in Cryptology-CRYPTO'98, pp. 72-88,
1998.

[143) E. Biham and Adi, "Differential Cryptanalysis of DES-like Cryptosystems
," Journal of Cryptology, vol. 4, pp. 3-72, 1991.

[144] H. Zhihua, Q. Zhongping, and H. Haiqing, "Impossible Differential­
Algebraic cryptanalysis of Serpent," MINES '09. International Conference.
Multimedia Information Networking and Security, 2009., vol. 2, pp. 353 - 357,
18-20 Nov. 2009.

[145) M. Masoumi and S. Mohammadi, "A New and Efficient Approach to Pro­
tect AES Against Differential Power Analysis," Internet Security (WorldCIS),
2011 World Congress, pp. 59 - 66, 21-23 Feb. 2011.

[146) W. Shahzad, A B. Siddiqui, and F. A. Khan, "Cryptanalysis of Four­
Rounded DES using Binary Particle Swarm Optimization," Proceedings of
the 11th Annual Conference Companion on Genetic and Evolutionary Computa­
tion Conference, pp. 2161-2166, July 2009.

[147) G. Piret and F.-X. Standaert," Provable Security Of Block Ciphers Against
Linear Cryptanalysis: A Mission Impossible? An experimental review of
the practical security approach and the key equivalence hypothesis in lin­
ear cryptanalysis," Springer, vol. 2009, pp. 225-338.

[148) M. Matsui, "New Structure of Block Ciphers with Provable Security against
Differential and Linear Cryptanalysis," in Fast Software Encryption, pp. 205-
218, 1996.

[149) S. Landau, "Technical Opinion: Designing Cryptography for the New Cen­
tury," Communications of the ACM, vol. 43 Issue 5, pp. 115- 120, May 2000.

[150) A Albassal and A.-M. Wahdan, "Neural Network Based Cryptanalysis of
a Feistel Type Block Cipher," Electrical, Electronic and Computer Engineering,
2004. ICEEC '04. 2004 International Conference, pp. 231 - 237, 2004.

[151) H. M. Heys, "A Tutorial on Linear and Differential Cryptanalysis," Cryp­
tologia, pp. 189-221, 2002.

[152) M. Matsui, "On Correlation Between the Order of S-boxes and the Strenght
of DES," in the proceedings of Eurocrypt 1994, Lecture Notes in Computer Sci­
ence, vol. 950, pp. 366-375, May,1994.

References 197

[153) H. M. Heyst and S. E. TavaresS, "The Design of Substitution-Permutation
Networks Resistant to Differential and Linear Cryptanalysis," ,ACM, Pro­
ceedings of the 2nd ACM Conference on Computer and communications security,
1994.

[154) H. Bizaki, S. Mansoori, and A. Falahati, "Linear Cryptanalysis on Sec­
ond Round Mini-AES," 2006. ICTTA '06. 2nd Information and Communication
Technologies,, vol. 1, pp. 1958 -1962, 2006.

[155) A. Jain, R. Duin, and J. Mao, "Statistical Pattern Recognition: A Review,"
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTEL­
LIGENCE, vol. 22, NO. 1, pp. 4-37, Jaunary 2000.

[156) S. Theodoridis and K. Koutroumbas, Pattern Recognition, ch. Chapter 1.
Academic Press, 2006.

[157) M. Friedman and A. Kandel, Introduction to Pattern Recognition: Statistical,
Structural, Neural, and Fuzzy Logic Approaches Front Cover. World Scientific,
1999.

[158) A. Jain, R. Duin, and J. Mao, "Statistical Pattern Recognition: A review,"
IEEE Transactions, Pattern Analysis and Machine Intelligence,, vol. 22, pp. 4 -
37, 2000.

[159) A. R.Webb, Statitistical Pattern Recognation. John Wiley & Sons, 9 Sep 2002.

[160) X. Hui and L. Yan, "Fault Diagnosis for Variable-Air-Volume Systems Using
Fuzzy Neural Networks," Computer Science & Education, 2009. ICCSE '09.
4th International Conference, pp. 183-188, 2009.

[161) B. W.W. C. X. Ding, "Advanced MDS Based localization Algorithm for Lo­
cation Based Services in Wireless Sensor Network," Ubiquitous Positioning
Indoor Navigation and Location Based Service (UPINLBS), 2010, pp. 1- 8, 2010.

[162) S. France and J. Carroll, "Two-Way Multidimensional Scaling: A Review
," IEEE Transactions Systems, Man, and Cybernetics, Part C: Applications and
Reviews,, vol. 41 Issue:5, pp. 644 - 661, Sept. 2011.

[163) L. Toa, X. Shuai, C. Haiyong, and X. Hexu, "Reserach On Improve Multi­
dimensional Scaling Localization Algorithm For Wirless Sensor Network,"
Optoelectronics and Image Processing (ICOIP), 2010 International Conference,
vol. 2, pp. 240 - 243, 2010.

[164) J.-F. Meullenet, R. Xiong, and C. J. Findlay, Multivariate and Probabilistic
Analyses of Sensory Science Problems. Blackwell publiishing, 2007.

[165) A. A. Ahmed, Y Shang, and H. Shi, "Variants of Multidimensional Scal­
ing for Node Localization," 11th International Conference on Parallel and Dis­
tributed Systems, 2005. Proceedings., vol. 1, pp. 140 -146, 20-22 July 2005.

[166) T. Yang, J. Liu, L. Mcmillan, and W. Wang, "A Fast Approximation to Mul­
tidimensional Scaling," in Proceedings of the ECCV Workshop on Computation
Intensive Methods for Computer Vision (CIMCV, 2006.

References 198

[167] H. Junfeng, C. Jun, Z. Yafeng, and M. Xue, "A MDS-Based Localization Al­
gorithm for Large-Scale Wireless Sensor Network," 2010 International Con­
ference On Computer Design AndA ppliations (ICCDA 2010), vol. 2, pp. 566-
570, 2010.

[168] I. Borg and P. J. F. Greenen, Modern Multidimensional Scaling : Theory and
Applications. Springer Science +Business Media, Inc., 2005.

[169] A. Delorme, "Statistical Methods," Swartz Center for Computational Neuro­
science, INC, University of San Diego California, CA92093-0961, La Jolla, USA.
Email: arno@salk.edu., pp. 1-23.

[170] L. Moore and B. Ray, "Statistical Methods for Sensitivity and Performance
Analysis in Computer Experiments ," Simulation Conference Proceedings,
1999 Winter, vol. 1, pp. 486 - 491, 1999.

[171] X. Xie, J. W. K. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen, "Testing and
Validating Machine Learning Classifiers by Metamorphic Testing.," Journal
of Systems and Software, vol. 84, issue 4, pp. 544-558, 2010.

[172] N. J.Nilsson and R. Laboratory, Introduction to Machine Learning. TextBook,
November 3, 1998.

[173] M. Xue and C. Zhu, "A Study and Application on Machine Learning of Ar­
tificial Intellligence," Artificial Intelligence, 2009. JCAI '09. International Joint
Conference, pp. 272 - 274, 25-26 April 2009.

[174] I. H. Witten and E. Frank, Data Mining : Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, 2005.

[175] I. H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, and S. J. Cunningham,
"Weka: Practical Machine Learning Tools and Techniques with Java Imple­
mentations," 2006.

[176] R.R. Bouckaert, E. Frank, M.A. Hall, G. Holmes, B. Pfahringer, P. Reute­
mann, and I. H.Witten, "WEKA-Experiences with a Java Open-Source
Project," The Journal of Machine Learning Research, pp. 2533-2541, 2010.

[177] Z. Markov and I. Russell, "An Introduction to the WEKA Data Mining Sys­
tem," ITiCSE06,Bologna, Italy. ACM, 2006.

[178] M. H. E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit­
ten, "The WEKA Data Mining Software: An Update," SIGKDD Explorations
Newsletter, vol. 11 Issue 1, 2009.

[179] I. H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, and S. J. Cunningham,
"Weka Practical Machine Learning Tools and Techniques with Java Imple­
mentations," 1999.

[180] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit­
ten, "The weka data mining software: an update," SIGKDD Explor. Newsl.,
vol. 11, pp. 10- 18, Nov. 2009.

References 199

[181] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, SanFrancisco, 2005.

[182] N. D. Marom, L. Rokach, and A. Shmilovici, "Using the Confusion Matrix
for Improving Ensemble Classifiers," IEEE 26-th Convention of Electrical and
Electronics Engineers in Israel, pp. 000555 - 000559, 2010.

[183] E. Baykan, M. Benzinger, L. Marian, and I. Weber, "A Comprehensive
Study of Features and Algorithms for URL-Based Topic Classification,"
Transactions on the Web (TWEB), vol. 5 Issue 3, 2011.

[184] K. P. Murphy, "Naive Bayes classifiers," 2006.

[185] P. Fernandes, L. Lopes, and D. D. A. Ruiz, "The Impact of Random Samples
in Ensemble Classifiers," SAC '10: Proceedings of the 2010 ACM Symposium
on Applied Computing, 2010. Publisher: ACM.

[186] L. Jiang, H. Zhang, and Z. Cai, "A Novel Bayes Model: Hidden Naive
Bayes," IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGI­
NEERING, vol. 21, NO. 10, pp. 1361-1370, October 2009.

[187] T. Dong, W. Shang, and H. Zhu, "Naive Bayeian Classifier Based on the
Improved Feature Weighting Algorithm," Advanced Research on Computer
Science and Information Engineering: International Conference, CSIE 2011,
Zhengzhou, China, May 21-22, 2011. Proceedings, Part 1, pp. 142-147, 2011.

[188] Y. Wang, J. Hodges, and B. Tang, "Classification of Web Documents Using a
Naive Bayes Method," 15th IEEE International Conference. Tools with Artificial
Intelligence, 2003. Proceedings., pp. 560-564, 3-5 Nov. 2003.

[189] J. Cheng and R. Greiner, "Comparing Bayesian Network Classifiers,"
pp. 101-108, Morgan Kaufmann Publishers, 1999.

[190] R. R. Bouckaert, "Naive Bayes Classification That Perform Well with Con­
tinuous Variables," 17th Australian Joint Conference on Artificial Intelligence
Caris, Australia advances in artificial intelligence : 1, pp. 1089-1094, 2004.

[191] M. N. Murty and V. S. Devi, Pattern Recognition: An Algorithmic Approach
(Undergraduate Topics in Computer Science). British Library Cataloguing in
Publication Data, Springer, 2011.

[192] S.-B. Kim, K.-S. Han, H.-C. Rim, and S. H. Myaeng, "Some Effective Tech­
niques for Naive Bayes Text Classification ," IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING, vol. 18, pp. 1457-1465, 11,
NOVEMBER 2006.

[193] H.J. Kim and J. Chang, "Integrating Incremental Feature Weighting into
Naive Bayes Text Classifier," Proceedings of the Sixth International Conference
on Machine Learning and Cybernetics, Hong Kong,, vol. 2, pp. 1137 - 1143,
19-22 August 2007.

References 200

[194] J. C. Cortizo, J. I. Gir'aldez, and M. C. Caya, "Wrapping the Naive Bayes
Classifier to Relax the Effect of Dependences," in IDEAL'07, pp. 229-239,
2007.

[195] A. Cufoglu, M. Lohi, and K. Madani, "Classification accuracy perfor­
mance of Nai:ve Bayesian (NB), Bayesian Networks (BN), Lazy Learning
of Bayesian Rules (LBR) and Instance-Based Learner (IBl) - comparative
study ," Computer Engineering & Systems, 2008. ICCES 2008. International
Conference, pp. 210 - 215, 25-27 Nov. 2008.

[196] M. Lu, K. Hu, Y. Wu, Y. Lu, and L. Zhou, "SECTCS: Towards Improving
VSM and Naive Bayesian classifier," Systems, Man and Cybernetics, 2002
IEEE International Conference, vol. 5, p. 5, 6-9 Oct. 2002.

[197] L. I. Kunchevaa and J. J. R. iguezb, "Classifier Ensembles for f MRI Data
Analysis: An Experiment," Magnetic Resonance Imaging, vol. 28, pp. 583-
593, 2010.

[198] W. Ding, S. Yu, Q. Wang, J. Yu, and Q. Guo, "A Novel Naive Bayesian Text
Classifier," Information Processing (ISIP), 2008 International Symposiums on
Digital Object Identifier, pp. 78-82, 2008.

[199] X. Zhang, "Improving Svm Learning Accuracy with Adaboost ," Natural
Computation, 2008. ICNC '08. Fourth International, vol. 3, pp. 221 - 225, 2008.

[200] P. Maji, "Mutual Information-Based Supervised Attribute Clustering for
Microarray Sample Classification," Knowledge and Data Engineering, IEEE
Transactions, vol. 24, Issue:1, pp. 127 -140, Jan. 2012.

[201] J. Manikandan and B. Venkataramani, "Design of a Modified One-Against­
All SVM Classifier," Systems, Man and Cybernetics, 2009. SMC 2009. IEEE
International Conference on, pp. 1869 -1874, 2009.

[202] A. Este, F. Gringoli, and L. Salgarelli, "On-line SVM traffic classification,"
2011 7th International, Wireless Communications and Mobile Computing Confer­
ence (IWCMC), pp. 1778-1783, 2011.

[203] C. GU, S. ZHANG, and H. HUANG, "Online Internet Traffic Classifica­
tion Based on Proximal SVM," Journal of Computational Information Systems,
pp. 2078-2086, 2011.

[204] P.-Y. Zhao and Y.-S. Ding, "Using a Fuzzy Support Vector Machine Classi­
fier to Predict Interactions of Membrane Protein," 3rd International Confer­
ence. Bioinformatics and Biomedical Engineering, 2009. ICBBE 2009., pp. 1- 4,
2009.

[205] I. M. de Diego, J. M.Moguerza, and A. M. noz, "Combining Kernel Informa­
tion for Support Vector Classification," 5th international workshop, Multiple
classifier systems: , MCS 2004, Cagliari, Italy, June 2004 : proceedings, vol. 5,
pp. 102- 111, 2004.

References 201

[206] M. Ektefa, S. Memar, F. Sidi, and L. Affendey, "Intrusion Detection using
Data Mining Techniques," Information Retrieval & Knowledge Management,
(CAMP), 2010 International Conference, pp. 200- 203, 17-18 March 2010.

[207] S. Abe, Support Vector Machines for Pattern Classification. Birtish Library
Catakoguing in Publication Data, 2010.

[208] V. N. Vapni, A. B. Labs, and N . Holmdel, The Nature of Statistical Learning
Theory. Springer-Verlag New York, Inc. New York, NY, USA ©1995, 1999.

[209] A.-J. Annema, K. Hoen, and H. Wallinga, "Learning Behavior and Tempo­
rary Minima of Two-Layer Neural Networks," CONTRIBUTED ARTICLE,,
vol. 7, pp. 1387-1404, 1994.

[210] J. Wang and Z. Xub, "New Study on Neural Networks: The Essential Order
of Approximation!," Neural Networks, vol. 23,Issue 5, pp. 618-624, 2010.

[211] M. Kordos, "Analysis of MLP Based Hierarchical Phoneme Posterior Prob­
ability Estimator," PhD Thesis, p. 2005.

[212] C. Stergiou and D. Siganos, "Neural Networks," ac 14Mar 2012.

[213] S. Osowski, F. Siwek, and T. Markiewicz, "MLP and SVM Networks-a Com­
parative Study," Proceedings of the 6th Signal Processing Symposium-NORSIG
2004, Espoo, Finland, vol. 37-40, 2004.

[214] L. Holmstrom, P. Koistinen, J. Laaksonen, and E. Oja, "Neural and Statis­
tical Classifiers-Taxonomy and Two Case Studies," IEEE TRANSACTIONS
ON NEURAL NETWORKS, vol. VOL. 8, NO. 1,, pp. 5-17, JANUARY 1997.

[215] A. Frank and A. Asuncion, "UCI machine learning repository," 2010.

[216] G. P. Zhang, "Neural Networks for Classification: A Survey," IEEE Trans­
actions on Systems , Man, and Cyberntics-PART : Applications and Reviews,
vol. VOL. 30, NO. 4, pp. 451-462, NOVEMBER 2000.

[217] G. Shmueli, N. R. Patel, and P. C. Bruce, Data Mining for Business Intelligence:
Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner.
John Wiley & Sons. Inc,. Hoboken, New Jersey, 2010.

[218] L. Breiman., "Bagging predictors. Machine Learning," vol. 24(2), pp. 123-
140, 1996.

[219] D. W. Aha and D. Kibler, "Instance-Based Learning Algorithms," in Ma­
chine Learning, pp. 37-66, 1991.

[220] F. Zaman and H. Hirose, "A Robust Bagging Method Using Median as a
Combination Rule," IEEE 8th International Conference on Computer and Infor­
mation Technology Workshops, pp. 55 - 60, 2008.

[221] D. Opitz, "Bagging Classifiers," 8 1999.

References 202

[222] Q. He, F.-Z. Zhuang, X.-R. Zhao, and Z.-Z. Shi, "Enhanced Algorithm Per­
formance for Classification Based on Hyper Surface using Bagging and Ad­
aboost ," Sixth International Conference on Machine Learning and Cybernetics,
Hong Kong,, vol. 6, pp. 3624 - 3629, 19-22 August 2007.

[223] S. Ruggieri, "Efficient C4.5 [classification algorithm]," IEEE Transactions on
Knoweldge and Data Engineering, vol. 14, No.2, 2002., vol. 14,no.2, pp. 438 -
444, 2002.

[224] M. Last, A Kandel, and H. Bunke, Artificial Intelligence Methods In Software
Testing (Google eBook). World Scientific, 2004.

[225] H. Wang, P. Li, and T. Zhang, "Histogram feature-based Fisher linear dis­
criminant for face detection," Neural Comput & Applic, vol. 17, pp. 49-58,
2008.

[226] J. Rodriguez, L. Kuncheva, and C. Alonso, "Rotation Forest: A New Clas­
sifier Ensemble Method," Pattern Analysis and Machine Intelligence, IEEE
Transactions, vol. 28, pp. 1619 -1630, Oct. 2006.

[227] Y. Freund and R. E. Schapire, "A Decision-Theoretic Generalization of on­
Line Learning and an Application to Boosting," 1997.

[228] X. Wang, C. Wu, C. Zheng, and W. Wang, "Improved Algorithm for Ad­
aboost with SVM Base Classifiers," Cognitive Informatics, 2006. ICC! 2006.
5th IEEE International Conference, vol. 2, pp. 948 - 952, 2006.

[229] Y. Freund and R. E. Schapire, "A Short Introduction to Boosting," Journal of
Japanese Society for Artificial Intelligence, vol. 14, pp. 771-780, 1999.

[230] P. Aby, A Jose, L. Dinu, J. John, and G. Sabarinath, "Implementation
and Optimization of Embedded Face Detection System," Signal Process­
ing, Communication, Computing and Networking Technologies (ICSCCN), 2011
International Conference, pp. 250 - 253, 21-22 July 2011.

[231] S. Shan, P. Yang, X. Chen, and W. Gao, "Adaboost Gabor Fisher Classifier
for FaceRecognition," in Proc. IEEE Int. Workshop Analysis and Modeling of
Faces and Gestures, 2005, pp. 278- 291, 2005.

[232] J. Rodriguez, L. Kuncheva, and C. Alonso, "Rotation Forest and Random
Oracles: Two Classifier Ensemble Methods ," IEEE transactions on pattern
analysis and machine intelligence, vol. 28, pp. 1619-1630., 2006.

[233] N. Abu-halaweh and R. Harrison, "Practical fuzzy decision trees," Com­
putational Intelligence and Data Mining, 2009. CIDM '09. IEEE Symposium,
pp. 211-216, 2009.

[234] Z. Xiaoliang, W. Jian, Y. Hongcan, and W. Shangzhuo, "Research and appli­
cation of the improved algorithm C4.5 on Decision tree," Test and Measure­
ment, 2009, ICTM'09. International Conference, vol. 2, pp. 184-187, 2009.

References 203

[235] M. N. Anyanwu and S. G. Shiva, "Comparative Analysis of Serial Decision
Tree Classification Algorithms," IEEE ASSP Magazine, vol. 22, pp. 230-239,
1993.

[236] G. Stiglic and P. Kokol, "Effectiveness of Rotation Forest in Metalearning
Based Gene Expression Classification," Twentieth IEEE International Sympo­
sium on Computer-Based Medical Systems, CBMS '07., pp. 243 - 250, 2007.

[237] S. B. Kotsiantis, "Supervised Machine Learning: A Review of Classification
Techniques," informatica, An International Jornal of Computing and Informa­
tion, vol. 31, issue 3, pp. 249- 268, 2007.

[238] A. Dileep and C. Sekhar, "Identification of Block Ciphers using Support
Vector Machines," IJCNN '06. International Joint Conference ,Neural Networks,
2006., pp. 2696- 2701, 30 October 2006.

[239] R. Spillman, M. Janssen, B. Nelson, and M. Kepner, "Use of A Genetic Al­
gorithm in the Cryptanalysis of Simple Substitution Ciphers," Cryptologia,
vol. 17 Issue 1, pp. 31-44, Jan. 1993.

[240] A. Cufoglu, M. Lohi, and K. Madani, "A Comparative Study of Selected
Classifiers with Classification Accuracy in User Profiling," Computer Science
and Information Engineering, 2009 WRI World Congress, vol. 3, pp. 708 - 712,
24 July 2009.

[241] B.-J. Wang, H .-J. Cao, Y.-H. Wang, and H.-G. Zhang, "RANDOM NUMBER
GENERATOR OF BP NEURAL NETWORK BASED ON SHA-2 (512)," Pro­
ceedings of the Sixth International Conference on Machine Learning and Cyber­
netics, Hong Kong, vol. 5, pp. 2708- 2712, 2007.

[242] J. J. M. Chan, B. Sharma, J. Lv, G. Thomas, R. Thulasiramand, and P. Thu­
lasiraman, "True random number generator using GPUs and Histogram
equalization techniques," 2011 IEEE International Conference on High Perfor­
mance Computing and Communications, pp. 161- 170, 2011.

[243] T. Matthews, "Suggestion for Random Number Generation in Software,"
tech. rep., An RSA Data Security Engineering Report, 1995. accessed 15-01-
2013.

[244] V. Mises and M. V. Lambalgen, "Definition of Random Sequences Recon­
sidered," Journal of Sybolic Logic, vol. 52,Issue 3, pp. 725-755, 1987.

[245] F. Zafar, M. Olano, and A. Curtis, "GPU Random Numbers via the Tiny En­
cryption Algorithm," High Performance Graphics (2010), pp. 133-141, 2010.

[246] D. E. Holcomb, W. P. Burleson, and K. Fu, "Power-Up SRAM State as
an Identifying Fingerprint and Source of True Random Numbers," IEEE
TRANSACTIONS ON COMPUTERS, vol. 58, NO. 9, pp. 1198-1120, 2009.

[247] J.-M. Tsai and J. Tzeng, "AUDIO RANDOM NUMBER GENERATOR AND
ITS APPLICATION," Proceedings of the 2011 International Conference on Ma­
chine Learning and Cybernetics, Guilin, vol. 4, pp. 1678- 1683, 2011.

References 204

[248] J. Tzeng, I.-T. Chen, and J.-M. Tsai, "Random Number Generator Designed
by the Divergence of Scaling Functions," Intelligent Information Hiding and
Multimedia Signal Processing, 2009. IIH-MSP '09. Fifth International, pp. 1038-
1041, 2009.

[249] RANDOM.ORG, "What's This Fuss About true Randomness." Valid
XHTML 1.0 Transitional I Valid CSS.

[250] D. Hussain, "An Analasis of Stream-Based & Paralle Approaches for Sta­
tistical Analysis of Random Number Generator Output," Master's thesis,
School of Computer Sciences, Bangor University, 2012.

[251] J. Soto, "Statistical Testing of Random Number Generators," in Proceedings
of the 22nd National Information Systems Security Conference, 1999.

[252] M. Haahr, "Random." Last accessed 2nd January 2013.

[253] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson,
M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, " Statistical Test Suite
For Random And Pseudorandom Number Generators For Cryptographic
Applications. Statistical Test Suite For Random And Pseudorandom Num­
ber Generators For Cryptographic Applications," NIST Special Publication
800-22, 2001.

[254] J. Lan, W. L. Goh, Z. H. Kong, and K. S. Yeo," A Random Number Generator
for Low Power Cryptographic Application ," Circuits and Systems, 2006.
ISCAS 2006. Proceedings. 2006 IEEE International Symposium, pp. 328-331,
2010.

[255] B. F. J. Gravetter and L. B. Wallnau, "Statistics for the Behavioral Sciences,"
2009.

[256] L. Cohen, L. Manion, D. K. Morrison, and K. R. B. Morrison, "Research
Methods Education." GoogelBook.

[257] D. Salomon, "Data Compression: The Complete Reference," 2006. Googel­
book.

[258] J. Cleary, W. Teahan, and I. Witten, "Unbounded Length Contexts for PPM,"
Data Compression Conference, 1995. DCC '95. Proceedings, pp. 52-61, 1995.

[259] A. S. vs. API Developer Documentation, "Interface ThreadMXBean," Ja­
vaTM 2 Platform Standard Ed. 5.0. accessed 16-01-2013.

[260] N. Kofahl, T. Al-Somani, and K. Al-Zamil, "Performance Evaluation
of three Encryption/Decryption Algorithms," Sixth International Confer­
ence,Networked Computing and Advanced Information Management (NCM),
2010, vol. 2, pp. 790-793, 2003.

[261] D. Hook, Beginning Cryptography in Java (Programmer to Programmer) . Wiley,
19 Aug 2005.

References 205

[262] G. Contributor, "Master the basics of Java Cryptography Exten­
sion (JCE)." http://www.techrepublic.com/ article/ master-the-basics-of­
java-cryptography-extension-jce/1046088, October 14, 2003, 7:57pm PDT.
Accessed (02/01/2012).

[263] "Java TM Cryptography Extension (JCE) Reference Guide," 2003, 2010. Last
modified: 10 Jan 2002.

[264] T. Winters, T. C. C. operative Ltd, and G. Hook, "The Legion of the Bouncy
Castle." Java and JCE are registered trademarks of Oracle®.

[265] H. D. Ltd., "What is Base 64 Encoded Data?," 2012. Last Updated: Friday,
12-0ct-2012.

[266] 0. Java, "Java Cryptography Extension Reference Guide ." Copyright©
2003, 2010 Oracle and/ or its affiliates. All rights reserved., 2010. Last mod­
ified: 10 Jan 2002.

[267] W. Dai, "Crypto++ Library 5.6.1." http:/ /www.cryptopp.com/, 9 2010.
Last modified: 8/9/2010.

[268] W. R. Yount, Research design and statistical analysis for Christian ministry. 2006.

[269] B. Ryabko, V Stognienko, and Y. Shokin, "A new test for randomness and
its application to some cryptographic problems," Journal of Statistical Plan­
ning and Inference, vol. 123, pp. 365- 376, 2004.

[270] K. Wongpanya, K. Sripimanwat, and K. Jenjerapongvej, "Simplification of
Frequency Test for Random Number Generation Based on Chi-Square," The
Fourth Advanced International Conference on Telecommunications, 2008.

[271] A. Sayyed and S. Agarwal, "PPM Revisited with New Idea on Escape Prob­
ability Estimation," International Conference on Computational Intelligence and
Multimedia Applications,ICCIMA, vol. 4, pp. 152-156, 2007.

[272] N. D. Marom, L. Rokach, and A. Shmilovici, "Using the Confusion Matrix
for Improving Ensemble Classifiers," 2010 IEEE 26-th Convention of Electri­
cal and Electronics Engineers in Israel, pp. 000555-000559, 2010.

[273] L. Chen and H. Tang, "Improved Computation of Beliefs based on Confu­
sion Matrix for Combining Multiple Classifiers," ELECTRONICS LETTERS,
vol. 40 No. 4, pp. 1-2, 2004.

[274] I. Kukenys, W. N. Browne, and M. Zhang, "Confusion Matrices for Im­
proving Performance of Feature PatternClassifier Systems," in Proceedings
of the 13th annual conference companion on Genetic and evolutionary computa­
tion, GECCO '11, (New York, NY, USA), pp. 181-182, ACM, 2011.

[275] D. Bowes, T. Hall, and D. Gray, "Comparing the performance of fault pre­
diction models which report multiple performance measures: recomputing
the confusion IJlatrix," Proceedings of the 8th International Conference on Pre­
dictive Models in Software Engineering, pp. 109-118, 2012.

References 206

[276] A. Borkar, R. Kshirsagar, and M. Vyawahare, "FPGA Implementation of
AES Algorithm," Electronics Computer Technology (ICECT), 2011 3rd Interna­
tional Conference, vol. 3, pp. 401-405, 2011.

[277] W. Diffie and M. Hellman, "New directions in cryptography ," Information
Theory, IEEE Transactions, vol. 22, Issue: 6, pp. 644- 654, 1976.

[278] R. A. R. Manjula, "Identification of Encryption Algorithm Using Decision
Tree," First International Conference on Computer Science and Information Tech­
nology, CCSIT 2011, Proceedings, Part III, CCIS 133., pp. 237-246, 2011.

[279] S. Dean and B. Illowsky, "Descriptive Statistics: Histogram," 2011. Last
edited by Susan Dean on Aug 11, 2011 7:15 pm GMT-5.

[280] F. Buccafurri and G. Lax, "Fast range query estimation by N-level tree
histograms," Data & Knowledge Engineering, vol. 51, Issue 2, pp. 257-275,
November 2004.

