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Abstract 

For cryptanalysis, an important task is to identify the encryption algorithm that 

was used to encrypt a plain-text file. The main objective of this dissertation is to 

find the best classification algorithm that can identify the encryption method for 

block and stream cipher algorithms. 

This work provides a comparison of classification of encryption output between 

different types of block and stream cipher algorithms, with an evaluation be­

tween ECB and CBC modes using 8-bit and 16-bit codes. It provides results for 

different numbers of keys for all the encryption algorithms (block and stream 

cipher algorithms) that were analysed and determines the accuracy in each case. 

We have created an encryption dataset that was used for the experimental eval­

uation. Different block and stream cipher algorithms were used to encrypt the 

source dataset which were a random sampling of text file data taken from the In­

ternet in 2010 that included various types of data such as reports, papers, news, 

text from websites and journals. These samples ranged in sizes from 100 bytes 

to 10000 bytes. An initial analysis of the encrypted text shows that the data is 

random in nature. The Frequency Test shows a uniform distribution for the en­

crypted text. The Chi-square test also indicates the distribution of character codes 

is uniform. A compression test using the PPM text compression algorithm also 

shows that the encrypted text is uncompressible and therefore is random in na­

ture. These tests show that the encrypted data is therefore difficult to classify. 

The block and stream cipher algorithms used to encrypt the data used 8-bit and 

16-bit codes. The study included two groups of block cipher algorithms: the first 

group considered the following block cipher algorithms: DES (64-bit), IDEA (128-

bit), AES (128, 192, 256-bit) and RC2 (42, 84, 128-bit). The second group included 

another seven block cipher algorithms: RC2, RC6, Blowfish, Twofish, XTA, CAST 

and DESede (3DES), all with the same key size (128-bit). As well, the following 

stream cipher algorithms were investigated: Grain 128-bit, HC 128-bit, RC4 128-

bit, VMPC 128-bit and Salsa20 128-bit. 

The results from the classification experiment show that Pattern Recognition tech­

niques are useful tools for cryptanalysis as a means of identifying the type of 
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encryption algorithm used to encrypt the data. As well, the result shows that in­

creasing the number of encryption keys will result in reducing the classification 

accuracy. The results also show that it is possible to achieve an accuracy above 

40% with some classifiers when each file is encrypted with different numbers of 

keys using block ciphers. It was also clear that increasing the number of files used 

also improves accuracy. The RoFo classifier had the best performance when iden­

tifying the encryption method for ciphered data, while IBL' s performance was the 

worst. Moreover, the performance of the classifiers improved significantly when 

identification of four different algorithms was considered. It was noted that the 

three versions of AES (128, 192 and 256-bit) were not distinguishable within AES. 

Further, RC2 (128-bit) does not match the other versions of the same encoding 

RC2 (42, 84-bit). 

For stream cipher algorithms, the results show that it is more difficult to clas­

sify encrypted output compared to block cipher algorithms. This is due to the 

bit based streaming approach adopted by the algorithms and the randomly dis­

tributed characters that are consequently produced in the encrypted output. 
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Chapter 1 

Introduction 

Cryptography and Network Security are both two important methodological ap­

proaches that protect data transmission and networks over the unsecured chan­

nel. With the rising popularity of using computer applications, specific security 

threats have appeared more and more frequently and therefore information se­

curity has become an extremely relevant and all important issue to be solved. 

Security is obviously a primary anxiety for every user of e-commerce. Cryptogra­

phy is an extremely useful tool which decreases risks associated with observation 

and modification of information, where lasting secrecy is not significant but mo­

mentary integrity is. Network security is a similar method for preventing session 

take-over, and both of these are good examples of reasonable uses of cryptog­

raphy. It helps people in many areas, whether through e-mail, cellular phones, 

ATM machines, for business, entertainment or education. 

Cryptanalysis is an important task for cryptography. Cryptanalysis attempts to 

identify the weaknesses in the algorithms used to encrypt code or the methods 

used to generate keys. In cryptanalysis, when only the cipher-text is available, 

there are initially two significant tasks, identification of the encryption method 

used and the encryption key identification. Statistical methods and Machine 

Learning (ML) based methods have been used to identify the encryption method 

from the encrypted file. The statistical methods use the frequency of occurrence 

of the alphabet in the encrypted file, while in machine learning based methods, 

the task of identification of the encryption method is considered as a pattern clas­

sification task. The classifiers are used to capture the underlying behaviour of 

each encryption from a number of cipher-texts. The main purpose of identifica­

tion of encryption method from cipher-text alone is considered to be a difficult 

one. Very little research has been done in this area when considering block cipher 
ad stream cipher algorithms. 
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Motivation 

Identification of the encryption algorithm used to generate a piece of cipher-text 

is a key variable that may be gleaned from Cryptanalysis. The motivation of this 

study is to test and evaluate a novel approach which uses Pattern Recognition 

to attempt to classify cipher-text according to their originating algorithm. In this 

study eight pattern-recognition classifiers were examined, namely: Naive Bayes, 

SVM, MLP, IBL, Bag, AdaBMl, RoFo and C4.5. The study focuses on classifying 

cypher-text output of eleven different block and five stream cipher algorithms. 

Hypothesis 

Encryption algorithms operating on random input text files produce output which 

is notoriously difficult to distinguish between generating algorithm and tradi­

tional statistical approaches often fail. The hypothesis of this study is that by 

using Pattern Recognition based classifiers it is possible to effectively identify the 

encryption method used to generate a given cipher-text, even where the input 

text was random data. 

Thesis Overview 

In this section an overview of the thesis is provided detailing the procedure taken 

to evaluate the hypothesis. 

Chapter 2 starts by discussing encryption and decryption algorithms and moves 

on to discuss the theoretical background of the thesis providing an overview of 

different types of cryptography. The reasons for applying cryptographic tech­

niques are explained and the importance of also discussed. A description of how 

encryption works follows. Then Feistel ciphers and Substitution-Permutation 

Networks (SPN) are addressed. Modern cryptography, which includes Symmet­

ric and Asymmetric algorithms, is defined. During the study it became clear that 

Symmetric algorithms were mathematically easier to calculate and needed less 

operational time than Asymmetric. Finally there is an overview of block and 

stream cipher algorithms. At the end of the second chapter a number of cryp­

tographic algorithms used to encrypt and decrypt data were discussed. Then 

follows a brief review of the possible types of attack on block ciphers, focusing 

on Ciphertext-Only Attacks, in order to identify the encryption mode. There are 



Chapter 1. Introduction 26 

various types of attacks, including Differential and Linear Cryptanalysis attacks 

which are explained here. 

The literature review regarding Pattern Recognition is discussed in Chapter3. 

It begins by introducing of area of Pattern Recognition. The background and 

the concepts of the classification types are highlighted. First, Pattern Recogni­

tion techniques are introduced and an explanation of Multidimensional Scaling 

(MDS) method (used to find the similarities and dissimilarities between the algo­

rithm) follows. The Statistical method and Machine Learning method (ML) are 

examined, chosen because they are common methods, and an explanation of their 

use in identification of the encryption mode and classification is given. An expla­

nation of the use of WEKA tools follows along with a discussion and description 

of finding the accuracy of the eight classification types used in this study. 

Creating and analysing the datasets is discussed in Chapter 4. This chapter begins 

by creating an encryption dataset to be used for the experimental evaluation and 

then analyses the created dataset to learn more about the encrypted data. This 

chapter shows that the encrypted data is random in nature and therefore difficult 

to classify. 

Chapter 5, considers the classification as well as the evaluation of the classifiers' 

performances, both of which are critical problems in Pattern Recognition and Ma­

chine Learning. An explanation of the confusion matrix output and the success at 

identifying the enc.ryption method using block ciphers in ECB and CBC modes is 

provided. The result shows that the Pattern Recognition techniques are a useful 

tool for identification of encryption algorithms for block ciphers. Further, it was 

discovered that RoFo is the most accurate classifier. 

Chapter 6 deals with stream cipher algorithms using the same techniques as was 

applied to block ciphers in the previous chapter and also compares between block 

and stream cipher algorithms. It was discovered that there is only a slight dif­

ference in accuracy when implementing 8-bit or 16-bit codes. However differ­

ent classifiers gave different accuracies in the two key lengths that were experi­

mented with and it was found that block ciphers are more easy to identify than 

stream ciphers. 

The final chapter concludes the work presented in this thesis with a summary 

and conclusion, a review of the thesis and directions for future work. 
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Contributions 

The main contribution in this study is twofold: first, the creation of a dataset of 

encrypted files that can be used for evaluation of classification accuracy; and sec­

ond, analysis of the encrypted text files. This study aims to find the best classifi­

cation algorithm and identify the encryption method for block and stream cipher 

algorithms. This work provides a comparison of classification of encryption be­

tween different types of block and stream cipher algorithms, with an evaluation 

between ECB and CBC modes using 8-bit and 16-bit codes. It provides results 

for different numbers of keys for all the encryption algorithms (block and stream 

ciphers) that were analysed and determines the accuracy in each case. 

As a result of this work, the following publications have been produced: 

• Sharif, S.O . Mansoor, S.P., 'Performance Analysis of Stream and Block Ci­

pher Algorithms', Advanced Computer Theory and Engineering (ICACTE), 

2010 3rd International Conference,1, Vl-522, 20-22 Aug, 2010. 

• Sharif, S.O., Kuncheva, L.I., Mansoor, S.P., 'Classifying Encryption Algo­

rithms Using Pattern Recognition Techniques', Information Theory and 

Information Security (ICITIS), 2010 IEEE International Conference , 1168 -

1172, 17-19 Dec, 2010. 

• Sharif, S.O Manssor, S.P., 'Performance Evaluation of Classifiers used for 

Identification of Encryption Algorithms', 

Proc. of Int. Conf. on Advances in Information and Communication Tech­

nologies 2011, ACEEE, 172-175, 02.ICT.2011.2.60. 



Chapter 2 

Cryptography and Cryptanalysis 

This chapter discusses the theoretical background of the thesis. It provides an 

overview of different types of cryptography and cryptanalysis. The chapter starts 

by discussing encryption algorithms in Section 2.1. Section 2.2 addresses the im­

portance of cryptographies. Then Section 2.3 shows how encryption works while 

Section 2.4 addresses the Feistel ciphers and Substitution-Permutation Networks 

(SPN) are discussed. Section 2.5 addressed modern cryptography, which includes 

Symmetric and Asymmetric algorithms then Section2.6 is an overview of block ci­

pher algorithms and Section 2.7 an overview of stream cipher algorithms. Section 

2.8 introduces different types of Symmetric cryptography modes, while Section 

2.9 explains block cipher cryptanalysis. Section 2.10 addresses Differential Crypt­

analysis and Section 2.11 addresses Linear Cryptanalysis. Finally, the chapter 

concludes with a summary. 

2.1 Introduction 

Today, digital communication systems, particularly those linked to the internet, 

carry large amounts of sensitive data. Communication of such sensitive data 

must be both secure and secret. Common examples of such sensitive data in­

clude credit card details, bank account details, trade secrets and confidential e­

mails. Less common examples include military and other confidential informa­

tion. Cryptography is the science of keeping data secure. Today, it involves the 

scrambling of data, be it text, visual or audio files, so as to make the data unin­

telligible. This is done through encryption. The aim of encryption is to render 

the encrypted data safe from unauthorised parties, known as 'attackers'. The 

inverse of encryption is decryption, which decodes the data so as to render it in­

telligible to authorised parties. Technically, one can say that encryption involves 

algorithmically transforming plain-text(P) into cipher-text(C), thereby making it 

unintelligible to attackers. It then uses a key to decrypt the C back to P, thereby 
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making it intelligible to authorised parties. For many years, it was thought that 

security in cryptographic algorithms was related to the difficulty of the math­

ematical operations underlying the encoding process [12]. In other words, the 

more complicated the coding process, the more difficult it was to break the code. 

This, as explained below, is not strictly true. Nonetheless, the core point is simple: 

the fundamental function in cryptography is to allow users to securely send and 

receive information over an insecure channel [13] [14] [15] [16]. 

Cryptography now takes three basic forms: Symmetric (secret key), Asymmetric 

(public key) encryptions and Hash functions. With Symmetric algorithms, en­

cryption and decryption both apply the same key meaning that they share the 

same key. To guarantee the privacy of a Symmetric algorithm encrypted com­

munication, the shared key must be kept secret from others. Notice a poten­

tial problem with this type of encryption method is that the key is needed to 

be shared between two or more parties prior to establishing the secure commu­

nication channel. Asymmetric algorithms separate encryption and decryption 

operations so that both sides are able to set up secure communications without 

exchanging keys in advance [17]. The hash function is the basis of a digital signa­

ture and message authentication for protecting the integrity of a data because of 

its collision-free and one-way properties [18] [19]. As an input, it takes a variable­

sized message and produces a small fixed-sized chain as output. Whereas mes­

sage authentication is the specific application of the security strength and hash 

function of the message authentication depending on the strength of the cryptog­

raphy of the fundamental hash functions. Message authentication is a method 

that guarantees that delivered messages are from the alleged source and have not 

been modified [20]. 

2.2 The Importance of Cryptography 

Simon Singh [21] [22] has highlighted the importance of cryptography in history. 

He cites, as just one example, the case of Queen Mary, imprisoned by the English 

and subject of the so-called Babington Plot of 1586: a plan to rescue Mary from 

prison. The plot was foiled because the plotters used a code to communicate 

with Mary, and thought the code to be unbreakable, which it was not. Eliza­

beth's agents soon broke it, which led to the unfortunate Mary being beheaded 

and the other plotters arrested and executed. A more successful use of encryp­

tion, also cited by Singh, involved US military intelligence during WWII. The 

US military employed Navajo Native Americans to communicate military intelli­

gence by radio. The Native Americans used only their own language (they were 
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Navajo/English bilinguals) to do this. Because the Japanese did not understood 

Navajo and did not have the tools to help, they failed to "break" the code. The 

Navajo thus made an important contribution to the war in the Pacific. A less suc­

cessful use of encryption, yet again reported by Singh, concerned Germany's use 

of the Enigma machine to encrypt its military intelligence during WWII. The Ger­

mans thought the code was so sophisticated that it was unbreakable. However, 

British Intelligence, with the help of Alan Turing and an early computer, broke 

the code. The code-breaking vastly facilitated the Allies' victory in WWII. 

Thus cryptography is vitally important. Good cryptography helps win wars. Bad 

cryptography results in loss of wars as well as life. Today of course, cryptogra­

phy is of more mundane importance. Banking, commerce and industry are in­

creasingly conducted electronically. Recent scandals in the British press highlight 

the fact that what many consider private information can easily become public 

if such information is broadcast electronically. This prejudices personal identity 

(so-called identity fraud), the security of bank accounts and industrial secrets. 

Thus today cryptography is not only a matter for governments and the military; 

it is vital to everyone's security. 

2.3 How Encryption Works 

The basic principle of encryption is easy. One takes an intelligible string of infor­

mation (e.g.The Babington Plot failed) and renders it unintelligible by algorithmi­

cally manipulating it. Thus, for instance, one could encrypt 'The Babington Plot 

failed' by simply printing successive letters of the alphabet instead of the original 

letters. 

Thus: Uif Cbcjohupo Qmpu gbjmfe. 

Such methods, however, are insecure. This is because the codes can be broken by 

simple statistical analysis. Thus, for instance, in English the letter e is the most 

common in printed text, and the letter z is among the most uncommon. From 

this, and guessing that common three-word constructions are likely to include 

'the' as well as 'and', one is enabled to rapidly break the code. This method of 

cryptanalysis was developed in the ninth century by the Arab scholar al-Kindi 

(c.AD 801 873), although it took some time for it to become known in Europe 

(even-though it was used to outwit the Babington plotters). 

A more effective method of encryption involves transforming each letter (or, in 

the case of digital information, each bit) in the plain-text in a different way. Thus, 
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for instance, if one again takes 'The Babington Plot Jailed', one could first translate 

the text to the numbers representing each letter of the alphabet. 

This would yield 20-8-5-2-1-2-9-14-7-20-15-14-16-12-15-20-

6 - 1 - 9 - 12 - 5 - 4. One could then take an irrational number, say the square 

root of two (1.4142135623731...) and multiply each successive number in the P by 

each successive digit in the irrational number. This would render the 'The' in 'The 

Babington Plot failed' as 20325 making such a cipher much more difficult to break. 

A more sophisticated variant on this again is to take a huge number that has not 

only two, but huge factors. These factors are primes. The product of the primes 

can then be used to encrypt the message in the same way as described above. 

The advantage of using the product of two enormous primes is that there is, as 

yet, no way to find the unique factors of a number other than through trial and 

error. Even the fastest of today's computers cannot, in practical terms, "break" 

codes constructed in this way, because to do so would take them too long. Thus, 

although in theory brute force may break a code, in practice brute force is often 

insufficient. Of course, there are countless other ways of encrypting material. 

One may, for instance, take an agreed page of a known book and simply write 

numbers, each relating to a successive letter on the page (if one decided to use 

a successive page for each successive message, this would be, in effect, a one­

time pad, and as such unbreakable). One could also, if one wished to be fiendish, 

further encode such a cipher by multiplying it by the product of two enormous 

primes. How much one wishes to encrypt is thus in part a function of the impor­

tance of secrecy, and in part a function of the hassle involved in the encryption 

and decryption. 

Two more points are relevant. First, the complexity of the encryption does not 

necessarily translate to difficulty of code-breaking. The Enigma machine, for in­

stance, had a very complex form of encryption, yet its codes were broken. Con­

versely, the use of two large primes is relatively simple, but the codes so produced 

are, in practice, unbreakable. 

Second, times change. The Enigma machine's codes would have been unbreak­

able in Elizabethan England, for Elizabeth's agents lacked 20th century mathe­

matics and computers. Whether today's unbreakable codes will remain unbreak­

able is a subject of debate. Quantum computers (currently a topic of research and 

development), if developed, should be able to perform millions of calculations 

simultaneously. This would render them vastly more powerful than today's com­

puters, and would render all currently used ciphers breakable, simply by brute 

force. Cryptographers then, have to have an eye for the future. 



Chapter 2. Cryptography and Cryptanalysis 32 

There are also different categories of encryption algorithms; plain-text may be 

processed either as block or stream ciphers. Algorithms may be classified by 

the type of operations used for transforming plain-text to cipher-text algorithms 

today are varied. These is an algorithm for prime factorisation [23] [24]. 

2.4 Feistel and Substitution-Permutation 

Network(SPN) 

Feistel ciphers and Substitution-Permutation networks SP N are the two primary 

structures in block cipher algorithms. A Feistel cipher is a structure used in the 

building of block ciphers, labelled after the German-born physicist and cryptog­

rapher Horst Feistel. The structure has one large advantage: encryption and de­

cryption are effectually equal, with the latter being simply the reverse of the for­

mer. This is efficient in terms of computer programming. Figure 2.1 shows Feistel 

encryption. In a Feistel cipher, the (N-bit) plain-text is split into (N /2)-bit parts. 

Each block is divided into two halves; (Li is the first called the Left half most and 

R;, is the second called the Right half most) and the two half blocks pass into a 

number of rounds. In each round an initial permutation of the R;, is entered into 

the output, then the Li will be complete, afterwards the R;, is passed via a keyed 

function applying an m bit key and lastly the output is combined with the Li with 

an XOR operation. The basic function of a Feistel cipher is as follows [25] [26]: 

Li ,: RH 

RI"' U-1 + f(RH, Kl) 

Fig. 2.1: Figure of Feistel cipher. 

SPNs use a chain of mathematical operations. The effect of this is to take each 

block of plain-text and use it as an input. This input is then altered by many "lay­

ers" of substitutions. This is done in Substitution (S) and Permutation (P) boxes, 
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which together produce the cipher-text. Common transformations include sim­

ple XOR bitwise rotation operators. Decryption then involves merely reversing 

the substitutions and permutations within the cipher-text. In Feistel, the structure 

has an advantage of the same algorithm between encryption and decryption, and 

the characteristic of the SPN structure is that it has a diverse algorithm between 

encryption and decryption [27]. 

2.5 Modern Cryptography 

2.5.1 Asymmetric Key Encryption 

Asymmetric encryption includes a public key in combination with a private key. 

A public key is an encryption algorithm that everyone is aware of private key is 

identifiable only by a private individual. The mechanism for the encryption is 

as follows: say Alice wants to send a coded message to Bob. Alice first encodes 

her message using the public key, then she re-encrypts the already encrypted 

message with her private key. She then sends it to Bob. Upon receipt of the 

message, Bob further encrypts it with his private key and returns it to Alice. Alice 

then removes her private key from the triple encrypted message, rendering it only 

double encrypted (with the public key and Bobs private key). She then sends 

it back to Bob, who can then remove both his private key and the public key. 

Thus asymmetric encryption allows for codes to be more secure than symmetric 

encryption does [17]. 

An important advantage of Asymmetric ciphers over Symmetric cipher is that no 

secret channel is needed for the exchange of the public key. The receiver needs 

only to be assured of the authenticity of the public key. The Asymmetric cipher 

is applied in order to encrypt a session key, and the encrypted session key is then 

applied to encrypt the real message. Due to the high speed of Symmetric ciphers, 

the key-exchange benefits from using Asymmetric ciphers, which work at a lower 

speed and are therefore more precise. 

2.5.2 Symmetric Key Encryption 

As a basis for information security Symmetric ciphers have long been utilised. 

While they are mainly developed for data confidentiality, their flexibility lets 

them be used in various cryptographic systems; these include hash functions, 

pseudo random number generators and message authentication protocols [25]. 
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Although Symmetric encryption is not as secure as Asymmetric encryption, it has 

the advantage of speed. Symmetric encryption methods are approximately 1000 

times faster. Because of this, they require less computational processing power. 

Figure 2.2 shows the Symmetric encryption algorithm. 

Encryption 

Plaintext 

--~ Sha red same ..,,--- ~ 
key -------~ ----Plaintext 

Decryption 

Fig. 2.2: Symmetric Key Encryption. 

Given that Symmetric systems, as is witnessed by hash functions, can be very 

difficult to break, their relative insecurity when contrasted with Asymmetric sys­

tems is more than compensated for by their greater ease of use. There are two 

categories of algorithm in Symmetric algorithms: block and stream. Block ci­

phers typically use 64 or 128-bit at a time. A message longer than the block size is 

encrypted splitting the message into blocks and encrypting each block separately. 

Generally, block ciphers use several rounds of simple cryptographic operations. 

In addition, the cipher key is expanded to a number of sub-keys by a key sched­

ule, and sub-keys are mixed with data blocks in different rounds, characteristi­

cally with bitwise XOR operations. These procedures lead to high performance, 

with the result that block ciphers are now used extensively. Cryptography is ap­

plied to modify readable text (identified as Plain-text) into an unreadable secret 

format (known as cipher-text) using a method called encryption [28] [29] [30]. 

The process of the two methods is identical except for the amount of data each 

encrypts at each step. First, a block cipher uses the most modern encryption 

methods, second, there are two categorise of classes: Substitution or Transposi­

tion ciphers. They differ according to what chunks of the message are handled 

by the encryption techniques. Substitution ciphers map each element in the plain­

text onto another element. Transposition is a technique of encryption by which 

the positions held by units of plain-text are shifted according to a regular sys­

tem. Consequently, the cipher-text constitutes a permutation of the plain-text. A 

Transposition cipher does not modify the characters in the plain-text while it cre­

ates the cipher-text, it simply re-arranges them. It uses some type of permutation 

function within the text to produce a re-arrangement that is able to be reversed 

if the secret is known to the permutation [23] [24]. The effectiveness of the Sym-
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metric key depends on the length of the keys used. For the strongest algorithm, 

encryption using a longer key is more difficult to break than one using a smaller 

key. 

2.6 A Brief Overview of Block ciphers 

Effective cryptography involves compromise. For example, if the block size is 

small it will be relatively easy for attackers to decrypt the message but if the block 

size is too large, it might be inconvenient to use [31]. If a message is longer than 

the block size (128-bit), it must break the message into a block. Each block is en­

crypted individually. Because of the dangers of attack, the US National Institute 

of Standards and Technology (NIST) has standardised five modes of operation: 

ECB, CBC, CFB, OFB and CTR. These are explained more in Section 2.8 [32]. 

2.6.1 Data Encryption Standard (DES ) 

The Data Encryption Standard (DES) was adapted as the US federal standard 

in 1976. It is a Symmetric block cipher algorithm which employs the same key 

for encryption and decryption [9] [33]. DES has 64 binary digits (Os or ls); the 

effective key of 56-bit is randomly produced; and the other 8-bit are ignored. 

Figure 2.3 shows the structure of the DES algorithm [23] [34] [35] [36]. 

DES has three mechanisms: the Initial Permutation IP, the Round F-function 

and the Inverse of Initial permutation I p - 1 . It uses the Feistel cipher construc­

tion with 16 rounds of processing. The first stage of block encryption starts with 

the Initial Permutation IP, subsequently goes to 16 rounds, and ultimately to 

the final permutation(! p - 1
) [37]. The DES round function applies sixteen 48-

bit keys to the rightmost 32-bit f¼_1 to generate a 32-bit output[23]. However, the 

round function is made up of four operations: Expansion (P-box), XOR operation, 

Substitution (S-box) and P-box Permutation. When the DES round is applied 16 

times, it uses a different 48-bit key. When the block is less than 64-bit, it must be 

padded in order to be capable of the request [23] [38] [39]. Normally, a block is 

compiled of bits numbered from left to right, that is, the left most bit of a block is 

bit one and the right most is zero [10] [40] [41]. Figure 2.4 shows a block diagram 

of F-function in DES algorithm. 
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plainloxl 

After 16 rou."tds of lh• sam• optralion 

ciphorlexl 

Fig. 2.3: The DES algorithm [1]. 
Halrnlock ('2 hi1s) Subl.cy (48 bits) 

E 

Fig. 2.4: The F-function of DES [2]. 

Initially [42] [43], a block of the 64-bit permutation input IP plain-text will be 

divided into two halves, the halves are called Li (Left half) and Ri (Right half), 

with each half consisting of 32-bit. P-box is clearly a permutation and nothing 

else; it has a one to one mapping of its input to its output providing a 32 bit 
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output from a 32-bit input. Table 2.1 shows the IP and Table 2.2 the I p - 1 . These 

permutations are key-less straight permutations, which are the inverse of each 

other. For example, in the IP, the 58th bit in the input becomes the first bit in the 

output and so on with bit-7 as its final bit[23] (33] (44]. However, the number of 

block sizes are fewer than 64-bit, which must be padded as appropriate for the 

application. The algorithm has output of bit-40 of the pre-result block as its first 

bit, bit-8 as its second bit, and so on, until bit 25 of the pre-result block is the last 

bit of the output [9]. 

Tab. 2.1: Initial Permutation [9]. 

58 50 42 34 26 18 10 02 
60 52 44 36 28 20 12 04 
62 52 46 38 30 22 14 06 
64 54 48 40 32 24 16 08 
57 56 41 33 25 17 09 01 
59 49 43 35 27 19 11 03 
61 53 45 37 29 21 13 05 
63 55 47 39 31 23 15 07 

Tab. 2.2: Final Permutation I p - 1 [9]. 

40 08 48 16 56 24 64 32 
39 07 47 15 55 23 63 31 
38 06 46 14 54 22 62 30 
37 05 45 13 53 21 61 29 
36 04 44 12 52 20 60 28 
35 03 43 11 51 19 59 27 
34 02 42 10 50 18 58 26 
33 01 41 09 49 17 57 25 

Having produced the 32-bit output, as above, this function could be generated 

with four operations: Expand P-box, XOR, substation S-box or straight P-box. A 

round of the DES can be viewed as (10] (45]. 

Li = Rt-1 where i = 1...16 

Rt = Li-1 EB J(Rt-1, Ki) where i = 1...16 

Afterwards the 64-bit are divided into two halves, the Ri is approved during the 

F-function transformation by the 48-bit sub-key to produce an exclusive-XORed 
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Tab. 2.3: Expand P-Box [9]. 

(a) Primitive function (b) Bit-selection E(P-Box). 

16 07 21 21 32 01 02 03 04 05 
29 12 28 17 04 05 06 07 08 09 
01 15 23 26 08 09 10 11 12 13 
05 18 31 10 12 13 14 15 16 17 
02 08 24 14 16 17 18 19 20 21 
32 27 03 09 20 21 22 23 24 25 
19 13 30 06 24 25 26 27 28 29 
22 11 04 25 28 29 30 31 32 01 

with Li [23] [45]. In addition, the DES in explanation operation used the Table 

2.3(a) to identify this P-box. First, it is required to expand R;,_1 (32-bit) to 48-

bit keys K 1 , .. , K 16, which were derived from the supplied 56-bit key by making 

two copies of half it bits. Subsequently 48-bit are XORed with the round key Ki, 

excluding E(Ri- i ) with K[i] [40]. Some of the input goes to more than one output. 

Table 2.3 (b) shows the expanded P-box. 

The XOR is the second operation in the DES F function. The E(P-box) is XORed 

with the Ki round key into 48-bit, which is then split into eight 6-bit blocks and 

are used as inputs for the defined S-boxes. [28]. A round key must be used in this 

operation; the Ri and Ki are both 48-bit in length. Note that the S-Box B[l] consists 

of bits 1-6, B[2] consists of bits 7-12, and so on with bits 43-48 being B[6] [33] 

[44] [46]. DES applies eight S-boxes, each one with a 6-bit input data and a 4-bit 

output data [23]. The final operation of DES is a straight permutation with a 32-bit 

input and a 32-bit output. Table 2.4 shows the straight permutation table. This 

operation will follow the same universal rule as the previous permutation [38] 

[23]. The Substantiation S-box is where the cipher function obtained its security. 

The S-box is a set of 8-bit with two dimensional arrays consisting of four rows 

and sixteen columns. Each box consists 4-bit in length. The result from the XOR 

operation is eight 6-bit segments. Figure 2.4 shows that the left half which consists 

of the 6-bit are B[l], and the righ t half consists of the 6-bit are B[8]. A 32-bit is 

produced which is then passed by permutation(P-box) [30] [28] [34]. 

The to being generated can be inserted directly or be the consequence of the hash­

ing of another operation. For this aim, there is no standard hash function algo­

rithm. Initially, the key must be reduced from a 64-bit to a 56-bit. Therefore, bit 

1 of the (PCl) is bit 57 of the original key and bit 2 is bit 49 and so on[23]. The 

following Table 2.5 establishes permuted choice l(PC-1). The 56-bit are divided 
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into 2 parts. Each part consists of 28 bit, one is called C[0], the other D[0]. Subse­

quently, on calculation the 16 iteration sub-keys will start with i (the number of 

the round) which equals 1 to 16. One or two circular left shifts must be made on 

both C[i-1] and D[i-1] to obtain C[i] and D[i]. The number of per-iteration is set in 

the sub-key rotation shown in the Table 2.6 below [46]. Then the chain of the C[i] 

and D[i] are permuted, as shown below. This will produce the K[i]; the length of 

the key is 48 bit i.e. C16 is equivalent to CO, and D16 is equivalent to DO [10] [45]. 

Tab. 2 .4: Straight Permutation [10]. 

16 07 20 21 29 12 28 17 
01 15 23 26 05 18 31 10 
02 08 24 14 32 27 03 09 
19 13 30 06 22 11 04 25 

Tab. 2.5: Permutation Choice(PCl)[lO]. 

57 49 41 33 25 17 09 
01 58 50 42 34 26 18 
10 02 59 51 43 35 27 
19 11 03 60 52 44 36 
63 55 47 39 31 23 15 
07 62 54 46 38 30 22 
14 06 61 53 45 37 29 
21 13 05 28 20 12 04 

Tab. 2.6: Rotation Sub-key [10]. 

Round Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Number of bits to rotate 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1 

2.6.2 Advanced Encryption Standard 

Advanced Encryption Standard (AES) algorithms have been extensively accepted 

and used for sensitive data security, such as in many password-protected doc­

uments and wireless communications, for example in wireless sensor networks 

[ 47]. Vincent Rijndael and Joan Daemen developed the Rijndael algorithm, which 

was chosen by the U.S. National Institute of Standards and Technology (NIST) as 

the candidate for the AES. It was shown to be the most important algorithm and 

therefore it replaced DES because it was no longer held to be secure. AES is 
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a Symmetric block cipher having data lengths and variable key lengths of 128, 

192, and 256-bit encryption keys. Among all the software products AES has be­

come one of the most popular and extensively applied common block ciphers. It 

achieves encryption and decryption using 128-bit. The block cipher could be ex­

pressed as a row matrix of 16 bytes. The 128-bit input message is separated into a 

4-by-4 matrix of 8-bit, known as a state, and in order to encrypt the data it uses a 

number of rounds of operations. The number of rounds is determined by the size 

of the key (10 rounds for 128, 12 rounds for 192, and 14 rounds for 256), Table 2.7 

shows the number of rounds and data length [48] [49] [SO] [51] [52]. 

AES employs one of three different cipher key strengths as encryption keys. Each 

encryption key size permits the algorithm to perform somewhat differently. Con­

sequently, the increasing key sizes not only proffer a larger number of bits with 

which to rearrange the data, they also increase the difficulty of the cipher algo­

rithm, rendering the cipher more secure. In the encryption part, initially the data 

block to be encrypted is split into an array of bytes, referred to as a state matrix, 

shown in Figure 2.5. AES is based on a round function and achieves different 

combinations of the algorithm by repeating the round function at different times. 

AES has four steps: Byte Substitutions, Shift Row, Mix Column, and Add Round 

Key. The final round of the algorithm is similar to the standard round, except that 

it does not include a Mix Column operation[Sl] [53] [11]. A round of transforma­

tions consists of the repeated application of Nr (the number of the round) and 

depends on the block and key lengths. An encryption with Rijndale [51] consists 

of an initial key addition (Add Round Key), then Nr-1 applications of the trans­

formation round and finally one application of the final round. Table 2.7 shows 

the number of round and data length [11], while Figure 2.6 shows the encryption 

process. 

Fig. 2.5: State matrix. 

Each round begins with a Sub-bytes which is a non-linear byte substation that 

works independently. The state is treated as a 4-by-4 matrix of bytes; all bytes of 
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Tab. 2.7: Number of rounds and data length. 

Number of rounds(Nr) 
128-bit Key 
192-bit Key 
256-bit Key 

Plalntext 

l 
Round a 

l 
Round 1 

i 
* Round 9 

i 
Round 10 

i 
Encrypt data 

128-bit 192-bit 256-bit 
10 12 14 
14 12 14 
14 14 14 

l=l 
I 

Key Schedule 

Fig. 2.6: AES Encryption Process [3]. 
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the state uses a substation table (S-box). Figure 2.7 shows the Sub-Byte operation 

[23] [11]. 

810 81,1 

8 2 o 8 2 1 .3 

83 o 831 a 3 3 

Fig. 2.7: Sub-byte Transformation [3]. 

Shift-rows transformation: this is a transportation step that permutes the bytes such 

that every row of the state is shifted to the left. The number of the shift is a 

function of the number of the row (0, 1, 2, or 3) of the state matrix. The first row 

remains without shifting, but each byte in the second row is shifted once to the 

left. Respectively the third and fourth rows are shifted by offsets of two and then 

three. Figure 2.8 shows the shift operation [23] [11]. 
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So,o So 1 So 2 
No shift 

So 3 So o So 1 So 2 So3 
S1,o S11 S12 S1,3 

Shift l byte 
S11 S12 S13 S10 

S2 o S21 S2 2 S23 
Shift 2 byte 

S2 2 S2 3 S20 S2 l 

S3 o S3 1 S3 2 S3 3 
Shift 3 byte 

S3 3 $3 0 S31 $3 2 

Fig. 2.8: Shift-rows Transformation. 

Mix-Column Transformation: the mixing operation changes the contents of each 

byte by obtaining four bytes at a time and then combining them to rebuild new 

bytes. The combination method starts by multiplying each byte with a different 

constant and then combines them in order show that each new byte is different. 

At this point, matrix multiplication is complete and shows that the new column 

is the product of the two old columns. Add-round key transformation: this is similar 

to mix-column transformation, also using one column. Every single byte of the 

state is mixed with a sub-key, which is obtained by applying the key schedule. 

Each sub key is identical in size to the state. By combining each byte, the sub-key 

is added to the state with the equivalent byte of the sub-key applying the XOR 

operation. The operation is a matrix multiplication [23] [11]. 

Add-Round Key Transformation: this is similar to Mix-Column transformation, also 

using one column. Here, every single byte of the state is mixed with the sub 

key, a sub key is derived from applying the key schedule. However, each sub­

key is identical to the state. By combining each byte, the sub-key is added to the 

state with the equivalent byte of the sub-key applying XOR operation, which is a 

matrix multiplication[23] [11]. 

Key schedule: the sub keys are obtained from the cipher key, meaning that the key 

schedule with each sub key is needed for the number of words of key data, for 

example, a 128-bit key schedule on the block of four 32-bit words. Round Keys 

involve two components: the Key Expansion and the Round Key[23] [11]. 

Key Expansion: an AES algorithm is applied to a key expansion in order to gen­

erate a round key for every round. If the number of rounds is Nr (Number of 

rounds),+ 1128-bit round keys from one single cipher key. The key-expansion 

routine generates a total of Nb (Nr+ 1) words, the algorithm needs an initial set of 

Nb words, and Nb words of key data are required for every Nr. The function of 

key expansion takes the user key, which is 16 bytes long, and uses the round con­

stant called "matrix-rcon "with the substitution table S-box to produce 176-byte 

long key schedule w, which will be utilized during the encryption and decryption 
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methods. In addition, the key-expansion routine generates round keys word-by­

word; a word is an array of four bytes. After the routine 4-bytes Nr+l words are 

generated, which are called "w0 , w1 , w2 ... w4 (Nr + 1) - 1 ". The consequence key 

schedule comprises of a linear array of 4-by-4 words represent as (wi), where i in 

the range O :s; i < Nb(Nr+1) -

In other words, there are 44 words in the AES 128-bit (10 rounds), 52 words in 

AES 192-bit (12 rounds), and in the AES 256-bit (14 rounds) there are 60 words. 

Each round is complete with four words. The relationship between rounds and 

rows is shown in Table 2.8 [23] [11]. 

Tab. 2.8: Shows the relationship between rounds and rows [11]. 

Round Words 
Per-round Wo W1 1-% W3 
1 W4 Ws W5 W1 
2 Ws Wg W10 Wn 
... ... ... ... . .. 
Nr W4Nr VViNr+l W4Nr+2 W4Nr+3 

2.6.3 Triple Data Encryption Standard 

Triple data encryption standard (3DES) is an improvement of DES. It has a 64-

bit block size, with a 192-bit key length (3 x 64). The encryption technique is 

like that of the original DES. However, the blocks are used three times to raise the 

standard of the encryption and the safe time average, without needing a complete 

new block cipher. Figure 2.9 shows the structure of 3DES algorithm (Encryption, 

Decryption). 

In order to gain higher security, the three keys should be separate. Significantly, 

this is equivalent to using a length of 168-bit key for encryption. It has an identical 

process of encryption as a regular DES algorithm. 3DES employs a key bundle, 

which means that it takes three 56-bit DES keys, which are Kl, K2 and K3. The in­

put data is encrypted with the Kl, decrypted with the K2, and finally encrypted 

again with the K3 (encrypt, decrypt, encrypt). DES runs three times faster than 

3DES, however, if applied properly 3DES is more secure. The procedure for en­

crypting data is the same as for decrypting but it is implemented in reverse. 

In DES, the input key is 64-bit long, whereas the definite key applied by DES is 

only 56-bit long. Therefore the true key length of 3DES is 168-bit because each of 
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the three keys holds 8 parity bits that are not applied throughout the encryption 

method [54] [55] [56] [57] [58]. 

The following function defines the 3DES algorithm [59]: 

Plaintext 

DES Encryption Keyl 

! 
DES Decryption Key 2 

DES Encryption Key 3 

Clphertext 

Fig. 2.9: Encryption and Decryption of 3DES. 

Further, 3DES can work with one, two or three 56-bit keys which means the plain­

text, in outcome, is and encrypted three times with three keys. Following is a 

number of modes options of 3DES algorithm [60] [61] 

• Option 1 DES-EEE3: This means DES is encrypted with three different keys. 

• Option 2 DES-EDE3: This means three DES operations with three different 

keys. Moreover, the data are encrypted, decrypted, and encrypted. 

• Option 3 DES-EEE2 and DES-EDE2: Which the similar to the preceding 

options except that the first and third operations in DES-EEE2 are applied 

with a similar key. 

2.6.4 International Data Encryption Algorithm (IDEA) 

In November 2000, International Data Encryption Algorithm (IDEA) was sub­

mitted as a block cipher to the NESSIE Project within the Information Societies 
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Technology (IST) programme of the European Commission (EC). IDEA is a Sym­

metric algorithm. It is employed to generate 52 subkeys, each with 16-bit keys. 

Two of the subkeys are applied during each round proper, and the other four are 

applied before each round and after the final round. It comprises eight rounds. 

IDEA is a 64-bit block cipher using a 128-bit secret key. In IDEA the plain-text 

is split into four quarters, each 16-bit long, including three operations, which are 

used to mix two 16-bit values to create a 16-bit outcome. The three operations 

are: addition, XOR, and multiplication [62]. First, addition is normal addition 

which carries modulo 65,536 which is (216+1) . Second, multiplication, as applied 

in IDEA, needs a number of explanations. Generally, multiplication by zero al­

ways generates zero, and it is not invertible. However, multiplication modulo n 

is also not invertible when it is multiplied by a number that is not relatively prime 

ton. Using multiplication in IDEA, it is essential that it is always invertible [63) 

[29). 

The decryption follows the exact same pattern, this time in reverse order. The 

cipher relies on combining operations from three categories. The three operations 

using a vector of length 16-bit are as follows: First bitwise addition modulo 2 

(XOR) of two 16-bit sub blocks; second addition of integers modulo 216; and third 

multiplication modulo p and multiplication modulo p = 216 + l. Annotation of the 

value O is never used; 216 is represented by all the zero vectors [64) [65). 

2.6.5 Twofish 

Twofish is a block cipher with a 128-bit block and a variable key length up to 256-

bit. It consists of a 16-round Feistel structure with a bijiective F-function, which 

creates a 4 key dependant on 8-by-8-bit S-boxes, with a fixed 4-by-4 maximum 

over GF(28) distance [66). However, the only non-Feistel elements are the 1-bit 

rotation. To generate a pure Feistel structure, the rotations can be moved into the 

F-function but this needs an extra rotation of the words immediately before the 

output-whitening step. See Figure 2.10 for an overview of the cipher construction. 

Whitening is an XORed key material method conducted on block ciphers before 

the first round and after the last round. Rivest independently invented DES-X 

which was applied by Merkle in Khufu and Khafre [67) [4]. 

Twofish algorithms use 128-bit of the sub-key and are then XORed before the first 

round, and another 128-bit after the last round. These sub-keys are calculated in 

the same way as the round sub-keys, however, they are not applied anywhere 

else in the cipher [67]. 

In the algorithm, the 128-bit (plain-text) is separated into four 32-bit words. In the 
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input whitening operation these are XORed with four key words with 16 rounds. 

In each round, inside the g-function, one round is rotated by eight bits. The two 

words on the left side are applied as inputs to two g-functions. However, the g­

function is made up of four byte-wide key-dependent S-boxes, which is followed 

by a linear mixing procedure based on a Maximum Distance Separable Matrix 

(MDS). Subsequently, the results of the two g-functions are mixed applying a 

Pseudo-Hadamard Transform (PHT) in which two keywords are added. Then 

these two outcomes are XORed with the words on the right (one of which is first 

rotated left by 1 bit; the other is rotated right). For the next round, the left and 

right halves are then exchanged. Finally, after all the rounds are swapped, the last 

round is reversed, and the four words are XORed with four other key words in 

order to create the cipher-text. Formally, the 16 bytes of plain-text, that are known 

as p0 , ... ,p15, are first separated into 4 words (Po , ... , P3 ) of 32-bit. Each word uses 

the little-ending convention as follows [67] [68] [4]: 

where: 

P represents the number of words and p represent the Plain-text. 

3 

~ = LP(4i + j) .28
j where i = 1.. .3. 

j =O 

Afterwards, during the input whitening operation, the four words are XORed 

with another 4 words to expand the key: 

Ro i = Pi EB Ki where i = 1.. .3. 
' 

In each round in the 16 rounds, the first two words were applied as input to the 

F-function, when it is applied as input it takes the round number. Then the third 

word is XORed with the first output of F-function and then rotated left by one 

bit. The fourth word is rotated left again by one bit, then XORed with the second 

output word of F-function. Finally, the two halves are swapped [68] [69] [70]. 

(Fr,O , Fr,1) = F (Rr,o, Rr,1, r ) 

Rr+,o = ROR(Rr,2 EB Fr,O, 1) 

Rr+i,l = ROL(Rr,3, 1) EB Fr,l 

Rr+1,2 = Rr,o 

Rr+l,3 = Rr,l 
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Where: 

For r = 0, ... , 15 

ROR and ROL are functions which rotate their first 32-bit words left or right by 

the number of bits that are indicated by their second 32-bit words, then the output 

whitening operation undoes the 'change' of the last round, and then XORes the 

words with four words of the expanded key. Finally, the cipher-text written as 16 

bytes Co, ... , c15 and then use the little-ending conversion as used for the Plain-text. 

J.. -. , \ -- h ] '"'"'" , ri ......... . 
►I, 

, , , .. 
1,,un,Lo 

Fig. 2.10: An overview of the cipher construction [4]. 

2.6.6 Blowfish 

Bruce Schneier developed Blowfish specifically for use in performance-constrained 

environments such as embedded systems, and to replace DES, which is now in 

the public domain. It was initially developed in 1993, and until now has not 

been decoded. The cryptographic community deemed it 'reasonably secure'. It 

is a Symmetric algorithm, that is, it applies the same secure key between the 

sender and the receiver as a block cipher. The block length for Blowfish is 64-bit; 

variable-length keys can be up to 448-bit. Figure 2.11 shows the algorithm. 
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Plaintext 

X 

P[l7] 

Ciphertext 

Fig. 2.11: The Blowfish algorithm [5]. 

There are two components of Blowfish: a data encryption and a key-expansion. 

The key-expansion transforms a 448-bit key into the number of sub-keys totalling 

4168 bytes. Data encryption works through a 16 round network. Each round 

comprises a key-dependent substitution and a key-dependent permutation. All 

functions are XORed with additional 32-bit words. The communications link 

and automatic file encryption does not require the key to be changed during the 

function. On 32-bit microprocessors with longer data caches (e.g., Pentium and 

Power-PC) Blowfish is faster than DES [71] [72] [73] [74]. 

2.6.7 RC2 

RC2 is a block cipher developed by Ronald Rivest in 1989. It was published as 

an Internet Draft during 1997 [75], RC stands for "Rivest Cipher". It has a 64-bit 

block cipher with variable key length starting from 40-bit to 128-bit. The 40-bit 

key is relatively weak, since the encryption key is small. RC2 is susceptible to 

key attacks which use 234 selected plain-texts. The algorithm has only one P­

box, which is used for key expansion to load into memory. The RC2 algorithm is 

quickest for small files [6]. Note that RCl was only designed on paper but was 

never implemented in practice and that RC3 was observed to be breakable during 

development [76]. 

2.6.8 RCS 

RCS is a Symmetric block cipher suitable for hardware and software. It is de­

veloped by Ronald Rivets in 1994 [77]. The same secure key is applied onto en­

cryption and decryption data. Thus RCS converts plain-text data blocks of 16, 32, 

and 64-bit into cipher-text in similar blocks of the same length and then employs 
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a selectable key length (0, 1, ... ,255) byte. It contains a number of modular-like 

additions and XORs. The universal construction is a Feistel network. RCS is a 

set of rotations identified as rounds r. These have values in the range of 0, 1, 

... ,255, with a changeable block size and a key length. This allows for flexibility 

in performance characteristics and security levels [77]. The size of the block of 

plain-text is twice the size of a word, one block contains two words. RCS-w/r/b, 

is a version of RCS where w represents the word size bits; r represents the non­

negative numbers of rounds, and b represents the length of the encryption key in 

bytes. The RCS algorithm can be expressed as RCS-w/r/b. 

where: 

• w = Word size in bit, which RCS encrypts as 2-words blocks; 

• r = Number of rounds, allowable value (0, 1, ... , 255); 

• b = Number of 8-bit bytes (Octal) in the secret key (K). 

RCS comprises three parts: Key expansion, Encryption and Decryption. Figure 

2.12 shows RCS encryption algorithm. RCS has been widely used in Wireless 

Transport Layer Security. It is also used for smart cards and other machines with 

restricted memory. The encryption and decryption algorithms are exceptionally 

straightforward [78) [77) [79]. To decrypt, RCS reverses the encryption algorithm. 

Most processors efficiently support all 43 of RCSs operations. 

Plaintext Ciphertext RCS 
(Pl (Cl 

2w bits 
Encryption 

2w bits 

1 1 
Key {K) Round 

b Bytes (r) 

Fig. 2.12: RCS Encryption Algorithm. 

The key-expansion algorithm increases the user key(K) to fill the extended key 

table S; S starts from 1 to 25; therefore, S resembles an array of t = 2(r+ 1) ran­

dom binary words concluding with K. Key expansion uses two word-size magic 

constants: Pw, and Q w [77] [80). 
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2.6.9 RC6 

RC6 is a Symmetric block cipher. It was developed to match the requirements of 

AES. It has a simple structure and was one of five finalists that could compete 

with AES. The RC6 algorithm consists of two Feistel networks, in which data are 

mixed through data-dependent rotations (81]. RC6-w/r/b (as explained in RCS), 

is a version of RC6 that functions on units of four w-bit words employing six basic 

functions. The base-two algorithm of w can be represented by lg w (28] (50] (28] 

(82]. Figure 2.13 shows the encryption of RC6 algorithm. 

A B C 

S[l] 

;o 
• 'O 
It 
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g 
a 
C 
:I 
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Fig. 2.13: RC6 Encryption Algorithm [6]. 
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2.6.10 Serpent 

The Substitution-Permutation Network (SPN) employs a block cipher that en­

sures that an SNP satisfies the cryptographic property of completeness: all out­

put bits are a function of all input bits. Serpent is a symmetric block cipher. The 

Serpent algorithm consists of a 32-round (SPN) operating on four 32-bit words, 

therefore giving a 128-bit sub-key block size. It also requires another 128-bit sub­

key which needs to be XORed with the block. However, the sub-keys are created 

by the key generation method. Each value employed in the cipher are symbolized 

as bit streams (which is a sequence of bits). Then the index of the bits are calcu­

lated from Oto 31-bit word, 0 to 127-bit in 128 bit blocks, 0 to 255-bit in 256-bit 

keys and so on. It encrypts a plain-text with 128-bit to a cipher-text with 128-bit 

in a 32 rounds governed by 33 128-bit sub-keys K0 , .. . , K32 . The key lengths are 

128, 192 or 256 bit; the short keys (128 and 192) are mapped to full-length keys of 

256 bit. This type of mapping is intended to map each short key to a full length 

key. The Serpent algorithm involves three key parts [83] [84] [85]: 

• Initial Permutation (IP); 

• 32 rounds, each of them created upon a sub-key addition; 

• Final Permutation (FP). 

The SPN is employed in the design of block cipher to ensure that an SNP satisfies 

important cryptographic properties: completeness if the all output bit is a func­

tion of the all input bit. Nevertheless, decryption is not like encryption because 

the inverse of the S-boxes is required in reverse order; there is also an inverse lin­

ear transformation and reverse order of the sub-keys. The IP and FP do not have 

any cryptographic significance [86] [87] [88] [89]. 

2.6.11 CAST-128 

Carlisle Adams and Stafford developed CAST-128, otherwise known as CASTS 

[90]. Its specification was published as RFC2144. It was accepted by the CSE 

46 (Communications Security Establishment). The Government of Canada also 

selected it as one of the algorithms accepted by the ISO (the International Or­

ganization for Standardization) and the IEC (the International Electro-technical 

Commission) for the specialised system for worldwide standardisation [91]. It is 

a Symmetric block cipher with 64-bit block, 12- or 16-rounds and a key size of 

between 40 and 128-bit. When the key size is longer than 80, the full 16 rounds 
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are implemented. When the number of an input key is fewer than 128-bit, zero 

bytes are padded on the right end. There are three different categories of 32-bit 

F-functions. Implementation requires 32-bit processors, however, in the devel­

opment of compact hardware, the longer S-boxes and the three F-functions are 

problematic [92] [7]. It is a fast cipher with no known weaknesses. 

The widely used e-mail PCP (Pretty Good Privacy) employs CASTS, which is 

similar to DES but with a more powerful round function. As with DES applica­

tions, it is presumed that hackers are not able to access the S-box structure [93]. 

Figure 2.14 shows encryption and decryption. Table 2.9 shows the F-function 

applied in each round [94] (95]. 

Enc ryptio,n: 

Ciphcrt~11 t 
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-~--

etc ... 

!_ J I 
L 

etc .. . 

t( .. f 
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Fig. 2.14: Encryption and Decryption of CAST-128 (7]. 

Tab. 2.9: Types of F-function applied in each round. 

Types of 
(1) 
(2) 
(3) 

Rounds 
1 4 7 10 13 
2 5 8 11 14 
3 6 9 12 15 
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2.6.12 CAST-256 

CAST-256 (alternatively CAST6) is a Symmetric block cipher. It has a 128-bit 

block size and a 256-bit primary key, which is applied to the key schedule scheme 

of the algorithm. Suitable key sizes are 128, 160, 192, 224 or 256-bit. It comprises 

of 48 rounds or 12 quad-rounds of mixing, supplying "confusion" and "diffu­

sion" data and key bits. There are two sets of sub-keys employed per round: Kri, 

which is a 5-bit sub-key and is employed as a rotation key for i rounds, and a 

32-bit sub-key, K mi, which is employed as a masking key for i rounds. For en­

cryption data, there are a total of 48 rounds. Types of F-function are applied in 

each round. The fundamental security of the algorithm is the round function. 

CAST-6 uses three different 32-bit round functions. The round function of the ci­

pher is entirely dependent on the CAST-5 round function [96] [97]. The following 

are round functions: 

1- Round Function(fl) 

I = (K mi + D ) «< K ri 

2- Round Function(f2) 

3- Round Function(f3) 

Where: 

D = 32-bit data input of the round function 

Ia&h = the most important byte to the last important byte of I 
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Si= the ith called the Substitution box (S-box) 

0 = the 32-bit output of the round function 

54 

Each S-box is a non-linear mapping of an 8-bit input to a 32-bit output, where "+" 
is addition and "?" is subtraction modulo 232 . 

Furthermore, EB is a bitwise exclusive-OR operation. Ultimately, "u « v" is the 

rotation of u to the left by the value shown by v [96] [98] [99]. 

• The plain-text is presented in four 32-bit input registers: A, B, C, and D. 

• A 32-bit masking key with 5-bit rotation keys is used in each round, and the 

output of the 48 rounds incorporates the four 32-bit registers (A, B, C, and 

D) as the cipher-text. 

• Decryption is the same as encryption, save that it is applied in reverse order. 

2.7 A Brief Overview of Stream Ciphers 

Stream ciphers are Symmetric encryption algorithms in which each plain-text 

digit is encrypted one at a time with the corresponding digit of the key stream, 

to provide a number of the cipher-text streams. The stream cipher is sometimes 

termed State ciphers because the encryption of a bit depends on its most recent 

state [77]. Stream ciphers comprise two parts: First a key stream generator, and 

second a mixing function. The key stream generator is the important part in 

stream ciphers; the mixing function is simply an XOR operation in the cipher's 

encryption algorithm. The output cipher is identical to the original plain-text 

if the key stream generator creates sequences of zeros. The major advantage of 

stream ciphers is that they are faster and more suitable for streaming applica­

tions. Their major disadvantage is that they are not suitable for some computing 

architectures [24] [100] . 

2.7.1 RC4 

RC4 was designed by Ron Rivest in 1987. The details were published in 1996. 

It uses a public-key encryption method [101], which is applied to many applica­

tions, including wireless networks. RC stands for 'Rivest Cipher' or 'Ronis Code'. 

The algorithm applies a variable length key (1 to 256) and 50 bits to initialize a 

256-bit state table. RC4 is a changeable key-size stream cipher that was designed 
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for security and efficiency. A similar method is applied for both encryption and 

decryption. 

One of the weaknesses of RC4 stream ciphers is the key size. RC4 is moderately 

uncomplicated and effective, and is applied to, among other things; Wired Equiv­

alent Privacy(WEP), Temporal Key Integrity Protocol(TKIP), Transport Layer Se­

curity (TLS) and its predecessor Secure Sockets Layer (SSL) protocols. Fluhrer, 

Mantin and Shamir suggest RC4 is not at all secure in the WEP mode of op­

eration. The majority of the observed weaknesses appear to be related to the 

Key-Scheduling Algorithm (KSA) which is part of RC4 [102]. In order for RC4 

encryption to be broken, it requires guessing the Brute-force search, either of the 

whole key space or the internal state of the cipher. 

RC4 encryption includes two elements: The Key-Scheduling Algorithm(KSA) 

and a Pseudo-Random Generation algorithm (PRGA). A variable key length is 

used by the KSA in order to initialize a state table S, which is an arrangement of 

all the 'N = 2n' possible n bit words. This permutation is employed by the P RG A 

to create a Pseudo-Random Key-Stream. Random permutation is the basis of the 

RC4 algorithm. Key length K[ ], goes from 1 to 256 bytes (2048-bit) and is applied 

to initialise a 256-bit state vector S [],with elements S [0] and S [256]. S[] contains 

a permutation at all times of all 8-bit numbers in the range Oto 255. A byte K is 

produced from S[ ] by choosing one of eight 255-byte entries symmetrically, for 

both encryption and decryption. With the generation of each K value, the entries 

in S [ ] are permuted again [103] [104] [105] [106] [107]. 

2.7.2 Grain-128 

The stream cipher Grain-128 was designed in April 2007 by the researchers Hell, 

Johansson and Meier. Grain-128 is an alternative to the earlier Grain, with a 

128-bit linear Feedback-Shift Register (LFSR) and a 128 bit Non-Linear Feedback 

Shift Register (NLFSR). Grain-128 is a binary additive contemporaneous with an 

internal state of 256-bit. The design is mainly implemented in hardware envi­

ronments. Grain-128 gives a higher level of security than many other ciphers 

intended for use in hardware applications. 

Grain ciphers comprise three main blocks: a k-bit LFSR, a k-bit NLFSR and a 

Non-Linear Filtering Function, where k = 80 or 128. It has an internal state size 

of 160, split into NLFSR and LFSR, each of size 80. The design applies a Boolean 

g function of 11 variables as the feedback function of the NLFSR and another 

Boolean g function of 5 variables of the LFSR and the NLFSR; this enables the 

filtering of the contents of the five fixed bits of the internal states of LFSR and 
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the NLFSR. The use of NLFSR is recent in modern cryptography. Grain-128 uses 

the k-bit key Kand the 1-bit to determine the value of the initial vector (IV). The 

cipher output is a 1-bit key stream sequence Zt = 0, ... , L- l. The state of Grain-128 

consists of a 128-bit LFSR and a 128-bit NFSR. 

The LFSR consists of 128-bit and its generating polynomial is f(x) = 0 while the 

NLFSR consists of 128-bit storage elements denoted as bits. Each bit i E 0, 1, .. . , n - l 

has a related state variable xi that represents the current value of the bit i and 

a feedback function denoted as ft where ft : 0, l n -+ 0, l ft determines how the 

value of i is updated. Therefore, for any i E 0, 1, ... , n - l,ft depends on X(i+l)modn 

and a subset of variables from the set x0 , x1 , ... , xi . Moreover, N LFS R is an ef­

ficient set of standards of status variables (x0 , x1, ... , Xn_ 1 ) . LFSR is denoted as 

s i , s i+i , ... , si+k- 1 and the N FSR is denoted as bi, bi+l , ... , bi+k- I [108],[109]. Note 
that for more information about Grain-128, function g and h, and key generate, 

one may refer to [110] . For a detailed description of the Grain-128 stream cipher 

please refer to "A New Version of Grain-128 with Authentication "[111]. 

2.7.3 Salsa20 

Salsa20 was designed in 2005 and presented to the eSTREAM and ECRYPT Stream 

Cipher Project. Salsa20 comprises a family of 256-bit stream ciphers [112]. Salsa20 

has consistently progressed to the third round of eSTREAM. Salsa20 is faster than 

AES and was recommended by the designer for typical cryptographic applica­

tion. It uses a stream cipher algorithm that operates in counter mode. It produces 

a sequence of key stream blocks, Z, that are XORed with the plain-textto create 

the cipher text. 

Salsa20 is designed to provide high security. The core of Salsa20 is a hash func­

tion. The major function in the Salsa20 core is a quarter-round function. The 

functions are defined as a 4-word sequence. A quarter-round (y) is a 4-word se­

quence [113] [114] [115]. 

2.7.4 HC-128 

HC Stream ciphers comprise two types: HC-128 and HC-256, with key sizes of 

128 and 256-bit respectively. HC-128 is a 32-bit word based on Stream cipher. The 

most important part of HC-128 is the two secret tables, each of which includes 

512 32-bit factors. The algorithm employs two different non-linear functions: an 

initialization stage and a key stream generation stage. The secret and IV keys are 
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expanded and inserted into the two tables in the initialization stage. All table 

entries are replaced once the algorithm is performed and output is created. At 

every step of the key-stream generation phase, one table element is updated ap­

plying a non-linear function. After 1024 operations, the two tables are completely 

updated. In each operation,the output creates one 32-bit element. 

HC-128 has a total size of 4096 bytes in the two secret tables [116]. HC-128 consists 

of two internal state arrays, P and Q, each one including 512 32-bit words. Thus, 

the key-stream is created in blocks of 512 words. Inside a block, one of the arrays 

is updated and the key-stream word is displayed by XORing the updated entry 

with the total words from the other array. Following all blocks of 512 key-stream 

words, the roles of the two arrays are reversed [117] [118]. 

At each step, the algorithm applies shift and rotation operators to get one 32-bit 

output. HC-128 has a total size of 4096 bytes. The IV has two major uses: it 

provides randomized encryption, and it helps in synchronising communication 

between sender and receiver [119] [120]. 

2.7.5 HC-256 

HC-256 is a software stream cipher which was published in 2004. The key-stream 

Si is produced from a 256-bit secret key K and a 256-bit IV. It is a simple, very 

secure, software-efficient stream cipher and is freely accessible. It comprises two 

secret tables, P and Q, both of which have 1024 32-bit elements. The two tables 

can be used for the same purpose as an S-Box. 

One element in each step is updated and one 32-bit output is created. HC-256 

is word-orientated, with 32-bit in each word, which uses a 256-bit key with a 

256-bit IV. HC-256 (and HC-128) and has not yet suffered serious attack. The HC-

256 cipher applies a 256-bit key Kand a 256-bit IV. The HC-256-bit comprises of 

two tables, each with 1024 32-bit factors. Every table updates one factor with a 

Non-Linear Feedback Function. Each of the 2048 steps in all the factors in the 

two tables are updated. At every step, the HC 256-bit produces one 32-bit output 

employing the 32-bit mapping, similar to that used in Blowfish. Before the output 

is produced Linear masking is applied 

HC-256 initialization process includes expanding the secret and IV keys and in­

serting them into the two secret tables, P and Q, while running the cipher 4096 

stage without creating output, where II is denoted as concatenation and each Ki 

and I¼ denoted as a 32-bit number, the Kand IV are expanded into an array 

vVi(O ~)i ~ 2559) [121] [120] [118]. 
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2.7.6 VMPC 

In the 2004, Fast Software Encryption workshop in Delhi, India, Bartosz Zoltak 

presented Variably Modified Permutation Composition (VMPC), which is a com­

bination of elementary operations on integers and permutations. The concept 

behind VMPC revolves around a transformation of permutation P into permuta­

tion Q. VMPC generates a stream of 8-bit words(values). They are internal 8-bit 

variable(s) and a swap operation of some elements of the internal P. The Key­

Scheduling Algorithm (KSA) of the VMPC transforms a cryptographic key, of a 

length from 120-bit to 256-bit (as well as an IV)) into a 256-element permutation?. 

The main idea of the cipher is based on an internal 256-element permutation. The 

VMPC cipher, together with its KSA, were designed in specific to eliminate some 

of the known weaknesses feature of the alleged RC4 key stream generator. The 

KSA of the VMPC cipher transforms a cryptographic key of length from 128-bit 

to 512-bit (and an (IV)) into a 256-element internal permutation (P) [122) [123]. 

For a detailed description of the VMPC stream cipher function, please refer to 

"VMPC One-Way Function "by Bartosz Zoltak 

http://www.VMPCfunction.com 

2.8 Symmetric Cryptography Modes 

In Symmetric key algorithms, a block cipher works on blocks of fixed length, fre­

quently 64 or 128-bit, but the message might be of any length. Thus, encrypting 

the same plain-text under the same key always produces the same output, such 

as described in the CBC mode below. A number of methods of operation have 

been applied, which permit block ciphers to supply data confidentiality of arbi­

trary length. Symmetric cryptography algorithms comprise of different modes. 

Different modes have different methods: Some relate more to the efficiency or 

fault tolerance, while others may relate to security levels. In addition, a block ci­

pher mode is one that includes the use of a Symmetric key block cipher, to supply 

information services such as authentication or confidentiality. 

Commonly, block ciphers apply ciphering modes, which combine the blocks with 

certain essential operations and feedback. Mode operations applied must be 

computationally rapid and capable, and must raise the security of the cipher­

text[124]. An Initialization Vector (IV) is applied in different modes to randomise 

the encryption and to produce cipher-text, even if the same plain-text is encrypted 

multiple times the re-keying process is not slower. In CBC and CFB modes IV is 
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never reused with the same key. If an IV is reused it would lead to a lack of in­

formation of the first block of plain-text or any other common prefix, which is 

shared via the two messages. The following are the five most popular modes of 

operations today, which will be discussed in this chapter: 

• Electronic Codebook Mode (ECB); 

• Cipher-Block Chaining Mode (CBC); 

• Cipher Feedback Mode (CFB); 

• Output Feedback Mode (OFB); 

• Counter Mode (CTR). 

2.8.1 Electronic Codebook Mode (ECB) 

The main feature of the ECB mode is confidentiality, and it is the simplest one. 

In this mode the block cipher is applied directly to the algorithm. The plain­

text is split into blocks of equal length and each block is encrypted individually 

with the same key. In encryption, the forward cipher function is applied directly 

and independently to every block of the plain-text. The consequent sequence 

of output blocks is the cipher-text. In decryption, the inverse cipher function is 

used directly and independently to every block of the cipher-text. The consequent 

sequence of output blocks is the Plain-text. 

plain-text blocks: 

cipher-text blocks: 

The advantage of this mode is that processing is independent, which means that 

if we have a multiple encryption process this mode can encrypt and decrypt sep­

arate blocks. There is no error propagation between blocks, meaning that if block 

one is received with an error in it, the receiver can decrypt block two with no 

problem. 
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A disadvantage of this mode is that when plain-texts are encrypted they produce 

identical cipher-texts. At present, ECB mode does not provide any integrity vali­

dation, that is modifications, intentional or not, to the cipher-text[14] [124). This is 

a typical disadvantage in the operation of ECB mode that becomes obvious when 

dealing with lengthy bits of Plain-text[125] [126). 

2.8.2 Cipher-Block Chaining Mode (CBC) 

The second operation mode is called CBC. Here, before being encrypted, each 

plain-text is XORed with the previous cipher-text block. Therefore, each cipher­

text is dependent on every block up to that phase. This means that in order to 

discover the plain-text of a specific block, the cipher-text, the key, and the cipher­

text for the previous block must be known. 

In CBC Mode, only when the IVs are the same, can encryption blocks be en­

crypted into the same cipher-text. Usually, IVs are chosen randomly by the dis­

patcher and sent to the recipient along with or before the encrypted message, 

hence, chaining dependency is high. Propagative error is also caused by this de­

pendency: a small change in bit error in cipher-text block Cj will affect the ability 

to decipher the blocks Cj and Cj+i· Through its chaining dependencies, the CBC 

mode cannot be parallelised as it is [127) [128): 

plain-text blocks: 

Decryption: 

cipher-text blocks 

2.8.3 Cipher Feedback Mode (CFB) 

One of the most common problems with both the ECB and CBC modes is that 

encryption and decryption cannot start until an entire block of 64-bit of plain­

text data exists. In general, the CFB Mode operates on K-bits, which means each 
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one of the applications produces K-bits randomly when XORing the plain-text. 

The most significant feature of the CFB mode is that if message mis selected as 

the same as the character size, this type of mode is self synchronizing, which 

means that if one or more m-bit characters are lost between the communicators 

re-synchronisation automatically occurs after 64-bit. This is important in com­

munications environments [125) [129). For example, using an 8-bit CFB allows 

one 8-bit piece of Plain-text, meaning that a single character is encrypted without 

needing to wait for a whole block of data to be produced [125). 

2.8.4 Output Feedback mode (OFB) 

The CBC and CFB modes of operation display a disadvantage in that error time 

corresponds to the cipher's block size. The OFB mode is similar to the CFB mode, 

apart from one difference, that is that in OFB mode each bit in the cipher-text is 

dependent on the previous one-bit or bits. This feature avoids error broadcast, 

which means if an error has occurred in transmission, it does not influence the bit 

that follows [23) [125). 

2.9 Cryptanalysis 

Cryptanalysis is the study of techniques, which obtains the meaning of encrypted 

plain-text, without access to the confidential data that is normally necessary. It 

is one of the more challenging research areas in the discipline of security [130). 

Cryptanalysis is used to measure the security of cryptography algorithms. Char­

acteristically, this involves finding the key that is used for decrypting the original 

message. 

Cryptanalysis characteristically involves learning how resistant a cipher is for 

distinguishing attacks and to recover the key. Various research has proven that 

there are a number of effective attacks on block ciphers. Different attacks have 

been designed to manipulate the vulnerabilities of the cipher structure. Block 

ciphers are a significant class of cryptographic algorithms, repeatedly applied for 

the efficient encryption of long strings of data [131). 

Differential and Linear cryptanalysis are used to break block ciphers by using 

statistical attacks. Differential cryptanalysis is an effective method for the analysis 

of block ciphers. It has been applied with success, for example on DES, and RCS 

[132) [133) [134). 
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The following are four possible sorts of attacks that need to be considered when 

estimating cipher security: 

• Ciphertext-Only Attacks; 

• Known-Plaintext Attacks; 

• Chosen-Plaintext Attacks; 

• Chosen-Piphertext Attacks. 

2.9.1 Ciphertext-Only Attacks 

This is the simplest of the four attacks and each cipher should repel this type of 

attack. With Ciphertext-Only Attacks the cryptanalyst has no idea of the plain­

text and can only work from the cipher-text. The attacker has some or all cipher­

text and attempts to encrypt the text in order to determine the original plain­

text. However, Ciphertext-Only Attacks are the main practical attacks on cryp­

tographic systems. Ciphertext-Only is the most difficult of the cryptanalysis be­

cause the attacker knows little about the structure of the plain-text[135] [136]. 

2.9.2 Known-Plaintext Attacks 

In this type of attack, the cryptanalyst is familiar with the cipher-text and its re­

spective plain-text, and must find the key or vice versa. Certain encryption de­

signs are enormously susceptible to Known-Plaintext Attacks. When Plain-texts 

are known, for instance, the header of an encrypted file can be guessed easily by 

studying the file layout, therefore, it is considered fairly easy to break. Known­

Plaintext Attacks in modern ciphers are extremely common because most data 

and binary files transmitted over networks have some fixed segments, such as 

frequently used syntax elements and leading headers. When an attacker gets tem­

porary access to the encryption and decryption, Chosen-Plaintext and Chosen­

Ciphertext Attacks are possible [137]. 

2.9.3 Chosen-Plaintext Attacks 

A Chosen-Plaintext attack is also known as Differential Cryptanalysis. With this 

type of attack, the cryptanalyst chooses the plain-text and puts it into a "machine" 

that gives the encrypted cipher-text without the key. A plain-text can have effects 
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on encryption. Surly encryption is used to affect the plain-text and not the other 

way around. The cryptanalyst's challenge is to deduce the key by comparing the 

complete cipher-text with the unique plain-text[138]. 

2.9.4 Chosen-Ciphertext Attacks 

In this attack, the cryptanalyst selects the cipher-text then sends it to the victim 

and is given in return the corresponding plain-text. The cryptanalyst has a "ma­

chine" that does the exact opposite of a Chosen-Ciphertext attack by decrypting 

Chosen Ciphertext with the secret key. However, certain ciphers that are resistant 

to Chosen-plain-text attacks can fail a Chosen-Ciphertext attack, for example, if 

there is a flaw in the decryption process when there is no flaw in the encryption 

process [138]. 

2.10 Differential Cryptanalysis 

Differential Cryptanalysis is a significant Chosen-Plaintext Attack on block ci­

phers, which is one of the strongest attacks on private key ciphers [139]. It has 

been used with success against many block-ciphers, for example on DES. Differ­

ential Cryptanalysis uses an extremely large amount of Chosen-Plaintext in order 

to sift out the correct key. In 1990, Biham and Shamir developed it to attack DES 

algorithms [140] [66]. This cryptanalysis technique is executed in the two stages 

of "design" and "execution". 

In the design stage, a cryptanalyst looks for the weaknesses in the cipher algo­

rithms and uses them to discover an apposite probability differential characteris­

tic. In the execution stage the cryptanalyst collects sufficient cipher-text pairs with 

suitable differential characteristics and attempts to pinpoint the effective bits of 

the key by way of a counting scheme. The basic security threats to block ciphers 

are known as Differential Cryptanalysis and Linear Cryptanalysis. Differential 

attacks are Chosen-Plaintext attacks that employ the statistical relation between 

the input difference and output difference of any two plain-text and cipher-text 

pairs [141]. 

The idea of Differential Cryptanalysis is to analyse pairs of plain-texts instead 

of single plain-texts. An attacker selects the unlikeness P between plain-texts (P; 

P*) and examines the propagation (avalanche) of the exchanges in the encryption 

technique. During the attack, the attacker examines and then analyses the cipher­

texts pairs (C; C*), which show difference C, predicted by attacker analysis [142]. 
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Differential Cryptanalysis is an approach that analyses the influence of specific 

differences in pairs of plain-text on the distinctions of the consequent pairs. These 

distinctions can be applied to assign characters of the possible keys and to locate 

the most probable key [143] [144]. It focuses on statistical analysis between the 

input difference and output difference of any two plain-text and cipher-text pairs. 

In [145], an unusual AES incident with an uncomplicated and integrated counter­

measure against the Differential Power Analysis (DPA) was submitted. Almost 

all the algorithms implanted in smart cards have been designed to resist high 

level Linear, Differential and high-order Differential attacks, while nothing has 

been done to ensure that they are resistant to DPA attacks. Cryptanalysis of Feis­

tel ciphers is difficult because of their high non-linearity and autocorrelation. In 

addition, substitution ciphers are easily broken due to their weak encryption op­

eration [146]. 

2.11 Linear Cryptanalysis 

Linear Cryptanalysis is one of the most significant attacks against block ciphers 

[147]. Linear Cryptanalysis uses the correlation between the input and the output 

bits of the round. An m-round differential trail involves a chaining of variation 

in propagations and these are known as "differential". An m-round linear trail 

involves a chaining of m-round transformation correlations, which are known as 

the "linear" [85] [148]. 

The Japanese cryptographer Mitsuru Matsui designed Linear Cryptanalysis that 

uses sentence linear relationships between plain-text, cipher-text and key bits that 

display information about the key [149]. Linear cryptanalysis is more contempo­

rary than Differential cryptanalysis. This kind of attack attempts to observe a 

Linear approximation to illustrate the cipher transformation. As with Differen­

tial attack, the benefit of Linear cryptanalysis is that it is a Known-Plaintext attack 

as opposed to a Chosen-Plaintext attack [150]. 

Th e concept is to approximate the operation of a portion of the cipher with an 

expression that is Linear where the Linearity refers to a mod-2 bit-wise operation 

(XORoperation) denoted by " EB"). One expression of such can be seen below 

[151]: 

Xii EB Xi2 EB ... EB Xin EB l'j1 EB l'j2 EB ... EB l'Jn = 0 

where Xi describes the i-th bit of the input X = [X1 , X2 , ... ] and y; describes 

the j-th bit of the output Y = [Yi ,"½, ... ]. In general this formula stands for the 
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exclusive-OR" sum" of u input bits and v output bits. The approximation in linear 

cryptanalysis is to identify expressions of the form above which have sometimes 

a strong or low probability of occurrence. 

The initial measure in a Linear cryptanalysis attack comprises of in sentence Lin­

ear approximations of the cipher with biases as high as possible. The difficulty 

of searching such approximations is not insignificant because of the considerable 

cardinality of the set of candidates [152]. 

Cryptanalysis systems have had a notable influence on the perceived security of 

various ciphers. For example, Data Encryption Standard DES can theoretically 

be analysed by Differential cryptanalysis using a select plain-text approach. This 

special cryptanalysis was founded on linear approximation of non-linear S-boxes 

within the bounds of the algorithm. This type of attack is then distributed for 

various further block ciphers [153] [154]. 



Summary 

Cryptography involves the translation of data that is comprehensible to unwanted 

viewers to being incomprehensible to only desired viewers. It usually involves 

changing data in such a way that it is incomprehensible to everyone, and be­

comes comprehensible only after being manipulated by a mathematical device. 

Cryptography has long been important in preserving military and state secrets 

but in recent decades has assumed added importance because of the need to pre­

serve financial and personal details from unwanted scrutiny, and because of the 

increasing power of computers both to create and break ciphers. 

Encryption has two components: First, the algorithm for doing the transforma­

tion; second, a secret part of information that identifies the particular transforma­

tion (called a key). There are two main types of cipher: Symmetric and Asymmet­

ric cipher algorithms. The former relies on the principle that sender and receiver 

of encrypted data know the key to deciphering the encrypted data. Because of 

this, there are security issues. First, an innocent party may reveal the key to an 

attacker; second, the ciphers are relatively easy to crack, unless very carefully 

constructed (hash functions, however, can make them difficult to crack). 

The latter relies on the principle that neither sender nor receiver knows the other's 

keys, but they both know of another, common key, used in the encryption. This 

renders Asymmetric ciphers more secure than Symmetric ones. Symmetric ci­

phers, however, are easier to use. Ciphers can be block or stream. In block cipher, 

data are encrypted several parts at a time; in stream cipher, data are encrypted 

one datum at a time. There are many types of block and of stream ciphers. Block 

ciphers, for example, include Feistel ciphers and SPNs. 

The many forms of block cipher vary in their performance. Old ciphers, such as 

the original DES developed in 1970, are now relatively insecure, and have been 

supplanted by AES and 3DES. Other secure ciphers (at time of writing) include 

Blowfish and RC6. RC2, by contrast, appears insecure, which is fast only for small 

files. CASTS, however, appears fast and secure. 

Stream ciphers are those that process data one bit (or byte) at a time. As with 

block ciphers their performance varies and depends on the devices upon which 
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they are intended to be used. RC4 appears insecure, especially for WEP; Salsa20, 

by contrast, appears better than AES. Nonetheless, their is room for niche appli­

cations. Grain-128, for instance, is suitable for use with small computers with 

little memory and restricted power consumption. 

In ECB mode, the cipher function of each block of the plain-text is applied directly 

and independently. The consequent sequence of output blocks is the cipher-text. 

The CBC mode is the combining and chaining of the plain-text blocks with the 

former plain-text blocks. The ECB mode was observed to have the highest con­

fidentiality and is the simplest amongst the four researched. The CBC mode is a 

sequence used to encrypt a single unit or block with a cipher key applied to the 

whole block. The CFB mode, encrypts a single, set number of bits of plain-text, 

which is encrypted again and transferred directly in order to obtain the cipher­

text. The OFB mode has some similarities to the CFB mode, that is, it allows 

encryption of differing block sizes. However, the keys are different and the out­

put is the encryption block rather than the cipher-text. The CBC mode needs an 

IV which is unpredictable by the adversary, particularly if this adversary could 

mount a chosen plain-text attack. In CRT mode IVs need to give identical key 

stream. However the same is valid for OFB mode. 

This chapter also considered Deferential Cryptanalysis and Linear Cryptanaly­

sis. It defined and discussed the different types of cryptanalysis. The four types 

of cryptanalysis were explained. Ciphertext-Only Attack, which only allows an 

attacker to look at a certain number of cipher-texts; Known-Plaintext Attacks, 

which are attacks where an attacker can look at a number of plain-texts and the 

corresponding cipher-texts; Chosen-Plaintext Attacks, where an attacker can pur­

posely select a number of plain-texts and look at the corresponding cipher-texts 

and Chosen-Ciphertext Attack, where an attacker can purposely select a number 

of cipher-texts and look at the corresponding plain-texts. 



Chapter 3 

Pattern Recognition 

This chapter presents the background and the fundamentals of Pattern Recog­

nition. The background and the concepts of the classification types are high­

lighted. Section 3.1 starts by introducing Pattern Recognition techniques. Section 

3.2 explains the Multidimensional Scaling(MDS) method. While Section 3.3 ad­

dresses the statistical method, Section 3.4 explains the use of the Machine Learn­

ing method(ML). Section 3.5 explains the use of WEKA tools. Then Section 3.6 

discusses classification while Section 3.6.1 explains in detail the types of Classifi­

cation which have used in our study. 

3.1 Introduction 

In 1960s, Pattern Recognition developed significantly as a field of study. Among 

the different structures where Pattern Recognition has been customarily created, 

the Statistical approach has been studied comprehensively and widely used in 

practice. 

PR was specifically used in interdisciplinary subjects, such as computer science, 

psychology and physiology among others. Automatic Recognition, Characteri­

zation, Classification, and Clustering of Patterns are significant problems in engi­

neering and scientific teaching such as biology, psychology, medicine, marketing, 

computer vision etc. Pattern Recognition is a scientific concept the main purpose 

being to classify objects into a number of classes. It is dependent on an appli­

cation of supervised or unsupervised classification. These applications can be 

images, types of measurements or signal waveforms that require classifying. Fur­

thermore, it is an important part in most machine intelligence systems built for 

making decisions. A. Jain et al. [155] quote Watanabe who determines a pattern 

"as the opposite of a chaos; it is an entity, vaguely defined, that could be given a 

name". Some examples are: fingerprints, handwritten cursive word, human face 

or speech signals. 
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Theodoridis and Koutrournbas [156] state that: "Patten Recognition is the scien­

tific discipline whose goal is the classification of objects into a number of cate­

gories or classes. Depending on the application, these objects can be images or 

signal waveforms or any type of measurements that need to be classified." 

In Pattern Recognition, if the training patterns seem to form clusters PR can use 

classifiers which apply distance function for classification. If each class corre­

sponds to a single prototype called the "cluster centre", minimum distance clas­

sifiers build a new pattern [157]. The use of clustering is to group together data 

points which are close to each other. 

Among the different frameworks in which it has been traditionally formulated, 

the statistical approach has been intensively studied and applied in practice. In 

general, neural network techniques and methods imported from statistical learn­

ing theory have been receiving increasing notice. The design of a recognition 

system needs alert attention to the following subjects: pattern representation, def­

inition of pattern classes, sensing environment, feature extraction and selection, 

cluster analysis, classifier and learning, selection of training and test samples, and 

performance evaluation [158]. 

Pattern Recognition is comprised of the following two operations [156] [159] 
[157]: 

• Supervised Classification (for example discriminant analysis) is used when 

an input pattern is distinguished as a member of a predetermined class. A 

set of data, each compiled of measurements on a set of variables is labelled 

to show the class type. In most cases, the main PR problem is one of dis­

criminating between different populations, such as discriminating between 

three different types of humans: (a) Tall and Thin, (b) Tall and Fat and (c) 

Short and Thin. 

• Unsupervised Classification (for example clustering) is used when a pattern 

is allocated to a previously unfamiliar class. The data and features within 

the data need to be identified so that one group can be distinguishing from 

another. 

Basically, the design of Pattern Recognition system consists of the following as­

pects: 

• Pre-processing; 

• Data Acquisition; 
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• Decision Making; 

• Data Representation. 

However, the best-known types of PR techniques: Statistical Classification, Tem­

plate matching, Syntactic or Structural Matching, and Neural Networks. Tem­

plate Matching is one of the easiest and first approaches to PR. Matching is a 

generic performance in PR that is used to identify the similarity between two en­

tities such as points, curves, or shapes of the identical kind. In template matching, 

a template (typically, a 2D shape) or a prototype of the pattern to be recognised is 
present. 

LM is a common method in PR which is used to identify the similarity between 

two objects, while, Statistical Classification is illustrated in terms of the measure­

ments or d features and is observed as an idea ind-dimensional spaces. Syntactic 

or Structural PR is more relevant in taking on classifying aspects where a pattern 

is considered as being compiled of uncomplicated sub patterns that are them­

selves constituted from even easier sub patterns. Neural Networks is one of the 

successful methods used to estimate the function without requiring a mathemat­

ical description of how the output functionally depends on the input [155]. 

The recognition system consists of two methods: training and testing. Figure 3.1 

shows the recognition system. In the training method, the feature extraction lo­

cates the suitable feature for representing the input patterns and classifiers which 

are trained to partition the feature space. Although, in the testing method, the 

trained classifier allocates the input pattern to one of the pattern classes being 

contemplated, based on the measured features [155] [160]. 

l Object, Sensors ~ Representation __J Classlfler Label 

Classlfkatlon j 
-·-·-·-·················· ........... ··············-Training 

L Ob~ =-- ~:;:, - ~~:: 
Fig. 3.1: Recognition System [8]. 
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3.2 Multidimensional Scaling (MDS) 

Nowadays, Multidimensional Scaling (MDS) has become more and more popular 

as a technique for both exploratory data analysis and multivariate analysis. MDS 

is a technique applied in order to extract a set of independent variables from a 

Proximity matrix, input proximities may be either similarities or dissimilarities. 

It creates a graphical representation of a square item-by-item Proximity matrix 

or Distance matrix. Applications of MDSs are established in a broad range of 

areas, including pattern analysis, data pre-processing visualization, cybernetics, 

localisation and scale development. 

MDS represents a set of techniques for interpreting Similarity or Dissimilarity 

data. When the MDS shows a low number, it points to a strong similarity between 

two items, and when it shows a high number, it points to a strong dissimilarity. 

Similar items are represented by points that are close to each other, dissimilar 

items by points that are far away from each other. In general, it is applied to 

obtain High-dimensional data or Proximity data and then the data is reduced to 

an additional interpretable form, frequently, but not always represented in one 

(lD), two (2D) or three (3D) dimensions [161]. 

In 2D, the input data are contained in an item x item matrix of Proximities, which 

can be calculated to find either Similarity or Dissimilarity data. Proximities might 

be gained directly from experiments or judgements, or can be derived applying 

a suitable Distance Matrix from item x dimension data. The Proximities Pii are 

mapped into distances of an m-dimension MDS configuration X, which means 

the mapping is given by a representation function f (Pii) that determines how the 

proximities should be linked to the distances dii(X). Assume that measures of 

similarity or dissimilarity, which use the general terms of proximity, Pii , are given 

for the pairs (i,j) of n objects. Such data may be inter-correlations of, for example, 

test items, ratings of similarity of political candidates, or trade indices for a set of 

countries [162] [163]. 

No matter the purpose, the data should be represented in 2D or 3D when it can be 

plotted and inspected visually. The main reason for doing this is that one wants a 

graphical display of the structure of the data, particularly in a display where the 

information is essential, or for smoothing data [164] [165] [166] [167] . 

It is possible to use Euclidean Distance and Non-Euclidean Distance to find the 

similarity and dissimilarity in data. Euclidean Distance can be calculated be­

tween the items, applying the variables as dimensions. In this case, we use high­

dimensional Euclidean Distances as dissimilarities and we can apply MDS to re­

construct these distances in a low dimensional space. A weakness of MDS scaling 
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is that it does not provide a clear mapping function, therefore it is not possible to 

position a different pattern in a map. The Euclidean Distance of points i and j in 

a 2D configuration Xis computed by the following method [168]: 

(3.1) 

Or 

(3.2) 

where 

dij denotes the dissimilarity distance, and where the distance between two points 

can be identified as: 

3.3 Statistical Methods 

The growth in the use of computer simulation methods for multifaceted mod­

elling, consistent physical or built-up processes have led to the call for statistical 

methods that can be employed to recognise such systems. Statistics can be de­

scribed as a body of analytical and computational techniques that calculate input 

data. The Statistical method can be used to build on scientific research in order 

to make it as capable and creative as possible. Numerous engineers and scien­

tists have insufficient experience in experimental design and in the appropriate 

choice of statistical analyses for data that is experimentally acquired. John L. Gill 

(author) declares: "Statistical analysis too often has meant the manipulation of 

ambiguous data by means of dubious methods to solve a problem that has not 

been defined" [169] [170]. 

In the Statistical method, every pattern is identified in terms of d features or mea­

surements and are seen as a point in a d-dimensional area. The aim is to select 

those features that permit Pattern Vectors belonging to diverse groups to compact 

regions in ad-dimensional feature-area. To determine the efficacy of the feature­

set the data need to be separated to find a good pattern from different classes. 

In the Statistical Decision Theoretic Method, the decision boundaries are deter­

mined by the probability distributions of the patterns that belong to all classes, 

which must be learned or specified [155]. 
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3.4 Machine Learning Based Methods (ML) 

Today, Machine Learning algorithms have provided significant core function to 

many application domains such as computational linguistics and computational 

biology [171]. Machine Learning (ML) is a method of programming computers 

in order to be able to recognise patterns by using example data or past experi­

ence. The purpose of ML is to generate classifying expressions well enough to 

be understood easily by the human. PR, therefore, is the ability to be predictive 

and descriptive, that is gaining knowledge from data. The goal is to gain new 

knowledge or skills and organise the knowledge structure, so that it can make 

improvements on its own performance. The machine is man-made, its perfor­

mance is completely stipulated by the designer and its ability cannot exceed the 

designer in any case. This estimation is correct when we understand that ma­

chines do not have been studying ability. Figure 3.2 shows the basic structure of 

ML. 

Environment Leaming Knowledge Base . _. 

' 
Execution 

Fig. 3.2: Basic structure of learning system. 

One might ask: "Why should machines have to learn?". Understanding learn­

ing in machines would further users' knowledge on how humans and animals 

learn. There are also significant engineering motives defined as the following 

[172] [173]: 

• Certain tasks cannot be properly defined other than by example, that is, 

those that might be capable of assigning input and output pairs but not 

specifying a concise connection between desired inputs and outputs. 

• Potentially, hidden among a massive pile of data, there are significant con­

nections and correlations. Machine Learning methods can be applied to 

extract these connections (data mining) 
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In [174] Morgan Kaufmann state that: "The input to a machine learning scheme 

is a set of instances. The instances are the things are to be classified, associated, 

or clustered. Each instance is an individual, independent example of the concept 

to be learned. In addition, each one is characterized by the values of a set prede­

termined attributes. Each data set is represented as a matrix of instances versus 

attributes, which in dataset terms is a single relation". 

What is an attribute? Every individual, independent instance that supplies the 

input to ML is characterized by its value on a fixed, predefined set of attributes 

or features. The instances are the rows of the tables that are shown in the simu­

lation for different block and stream cipher algorithms, and the attributes are the 

columns. 

3.5 WEKA Data Mining Tools 

The full name of (WEKA) is "Waikato Environment for Knowledge Analysis". 

It is a Java class library which is implemented in numerous state-of-the-art Data 

Mining and Machine Learning. WEKA can be downloaded from Waikato Uni­

versity in New Zealand using the following URL: 

http://sourceforge.net/projects/weka/files/weka-3-7-windows-jre/3.7 . 

5/weka-3-7- 5jre.exe/download 

The new version number is (3.7.0). WEKA is freely available on the Internet and 

is accompanied by a new text on Data Mining. It has become a commonly applied 

tool for Data Mining research, it has achieved widespread acceptance within the 

world of academia and business, and is a free and open-source software [175] 

[176] [177]. 

WEKA is applied in ML and Data Mining used for teaching both technical in­

ternals and applications of Learning Algorithms and Machine, and as an inquiry 

tool for empirically evaluating new methods and development. 

In [178], the authors states that the purpose of the programme is to create an 

up-to-date facility for improving methods of ML and looking into their imple­

mentation in main areas of the New Zealand economy. The particular aim was to 

produce a workbench for ML, identify the factors that contribute to the successful 

implementation in agriculture, and generate new systems of ML and methods of 

assessing their efficacy. 

The workbench consists of techniques for regression, clustering, classification, 

association rule mining and attribute selection. Data Mining analyses and com-
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putational paradigms that enable computers to detect a structure in databases, 

perform forecast and prediction and comprehensively enhance their performance 

through interaction with data [179]. While a common work platform of Data Min­

ing, WEKA comprises 10 Java packages Classifiers, Associations, Core, Filters, 

Evaluation, Visualization etc. The package of Core is the core of the WEKA sys­

tem, comprising a number of key types such as instances, attribute, etc. In total 

WEKA has more than 1 million lines of code. The main Java packages to achieve 

the association rules algorithm contain two packages: (a) Associations and (b) 

Core are the, which include 190 Java source files [180] [181]. 

The main features of WEKA [176]: 

1. Data preprocessing: A native file format is Attribute-Relation File Format 

(ARFF). WEKA can supports other formats such as instance Comma Sep­

arated Value (CSV), Matlab American Standard Code for Information In­

terchange (ASCII) files, and database connectivity through Java Database 

Connectivity (JDBC). 

2. Classification: WEKA includes more than 100 classification methods. Clas­

sifiers are split into Bayesian methods (Naive Bayes, Bayesian nets, etc.), 

Rule-based methods (decision tables, OneR, RIPPER), Lazy methods (near­

est neighbor and variants), tree learners (C4.5, Naive Bayes trees, MS), Mis­

cellaneous and Function-based Learners methods (linear regression, SVMs, 

Gaussian processes). Moreover, WEKA comprises meta-classifiers such as 

Bagging, Boosting and Stacking; Multiple Instance classifiers and Interfaces 

for classifiers are applied in Groovy and Jython. 

3. Clustering: Unsupervised learning is backed up by a number of clustering 

methods, comprising EMbased mixture models, k-means and different hi­

erarchical clustering algorithms. 

4. Selection of Attributes: The set of attributes is an essential basic for classifi­

cation performance. 

5. Data visualization: Data be able to inspect visually by plotting attribute 

values against the class, or against other values of the attribute. Because of 

detecting outliers and study classifier characteristics and decision bound­

aries, classifier output can be able to examine the training data, for specific 

methods, there are exact tools for visualization, such as a tree observer for a 

method that produces classification trees, a Bayes network viewer for auto­

matic layout. 
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3.6 Classifiers 

A classifier is a classification model which is assigned an unclassified instance to 

a predefined set of classes. The classifier is a function of f(X) in which the domain 

comprises of the training, X represents training samples Xi = x1, x2 , x3 , ... , Xn and 

Y classes represent the range, and the range can be one of Y classes. Further­

more, the range is called Target Attribute [182]. Data Mining can be defined as 

technology that enables data to analysis, explore and visualize of extremely large 

databases. Classification is one of the significant types of Data Mining that is a 

predicting modelling technique. In various real-world problems, classification 

techniques were used with respect to application domain and also for different 

research aspects. The aim of classification is to predict accurately the target class 

for each case in the data. The errand of classification can be done by using a num­

ber of methods and using different kinds of Classifier Algorithms. It is applied 

to set of data instances into proper class i.e. [183] [184] [185]. Figure 3.3 shows 

sample WEKA output for one of the classifier algorithm called Naive Bayesian. 

The classification accuracy figures that were used for the experimental in Chapter 

5 and 6 is shown in the middle of the figure. The figure summary correct and in­

correct instances with number of instances. The correctly classified instances are 

119 which means 99.1667% and incorrectly classified instances is 1, which means 

0.8333%. As well, shows that the Naive Bayes have been used 120 instances and 

256 attributes. Furthermore, confusion matrix included that was used for our 
experimental. 
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=== Run information === 

Scheme: weka.classifiers.bayes.NaiveBayes 

Relation: SuhailaENC 

Instances: 120 

Attributes: 257 

[list of attributes omitted] 

Test mode: 10-fold cross-validation 

=== Classifier model (full training set)=== 

Naive Bayes Classifier 

Class 

Attribute 1 2 3 4 

=== Stratified cross-validation === 

===Summary=== 

Correctly Classified Instances 119 

Incorrectly Classified Instances 1 

Total Number of Instances 120 

=== Confusion Matrix=== 

a b c d <-- classified as 

30 o o o I a= 1 

0 29 1 0 b = 2 

0 0 30 0 C = 3 

0 0 0 30 I d = 4 

99.1667 \% 
0.8333 \% 

77 

Fig. 3.3: Sample output information from WEKA for the Naive Bayesian classi­
fier. 

3.6.1 Classifier Methods 

In our experiments detailed in later chapter, eight classifiers have been used. 

They are listed below. The following ML algorithms all used supervised algo­

rithms. 
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Naive Bayesian Classifier (NB) 

Naive Bayes (NB) is the simplest form of Bayesian Networks. It is one of the 

most computationally straightforward and efficient Bayesian Classifier methods. 

It has been used as an effective classifier for many years. The Bayesian technique 

is a generally applied supervised Classification Algorithm. It is a type of Pattern 

Recognition technique based on Bayes theorem that known has prior probability 

and conditional probability [186] [187] [188]. 

This type of classification is based on the probability density function which de­

scribes the mapping between attributes and classification attributes in the Clas­

sification Method. In addition, it is a easy structure that has the classification 

node as the parent node of each other nodes. Notice that no other connections 

are permitted in a Na:ive Bayes structure. It has two advantages over other classi­

fiers. Firstly, Naive Bayes is easy to construct, as the structure is given a priority 

hence no structure learning procedure is need Secondly, the classification method 

is particularly effective. Those types of advantages are due of that assumption, 

as explained in the equation below, all the features are independent of each other 

[189] [190]. 

The Naive Bayes assumption is that all the features are conditionally individual 

specified the class label, as the following assumption. This assumption is identi­

fying class-conditional independence. It is performed merely of the calculations 

involved, it is consider to be na:ive [191] [192]. The Na:ive Bayes learning method 

is specifically appropriate for classification rather than any other difficult learn­

ing methods such as Support Vector Machine and Decision Trees. Because of its 

simplicity and good practicality, it is very important to enhance the performance 

of the Na:ive Bayes [193]. 

A classifier is an f function that maps feature vectors x E X to output class labels 

y E 1, ... , C where X represents feature space. One of the Bayesian Classifier meth­

ods is Naive Bayes, which is recognised as a state-of-the-art Bayesian Classifier 

[194] [195] [196] [197]. 

It comprises two advantages over many other classifiers. (a) It is simple to con­

struct, as the structure is granted a priori, therefore, no structured learning pro­

cedure is needed. (b) The classification method is particularly efficient. This is 

because of the hypothesis that each one of the features are independent of one 

other. It has surprisingly outperformed numerous sophisticated classifiers, in 

particular where the features are not powerfully correlated. 

A classifier that assigns a class label to an example is constructed from a set of 
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training examples with class labels. Presume that A1 , A2 , ... , An are n attributes. 

For example Eis symbolized by a vector (a1, a2 , ... , an) where ai is the value of 

A. Suppose C represent the class variable that corresponds to the class, and c 

represents the value that C takes. Bayes Theorem can be applied to calculate the 

probability [198], [196], [197]: 

Support Vector Machines Classifier (SVM) 

In the 1990s, the Support Vector Machine (SVM) was developed by Vapink in the­

ory and application. SVM is a method which is based on the principle of struc­

tural risk minimization and the Vapnik Chervaonenkis dimension (VC) theory 

[199] [200]. SVMs are supervised learning machines based on statistical learning 

hypothesis, which are able to be used for pattern recognition and regression. 

These are functional methods for data classification based on statistical learning 

theory designed by V.N.Vapnik, and have been efficiently executed to various 

Classification and Pattern Recognition problems, such as text classification and 

image recognition. In [201] the authors state: "SVM is one of the popular tech­

niques for pattern recognition and is considered to be the state-of-the-art tool for 

linear and non-linear classification". It is capable of solving classification prob­

lems with high dimensional feature space and small training set size. 

It is a typical binary-classifier, and it has been extended for the design of multi­

class SVM classifiers. Computational difficulty and classification time for the 

SVM classifiers using non-linear kernels depend [202] [203]. 

The main idea behind SVMs is to map the primary data points from the input 

space to a high dimensional or even infinite-dimensional feature space such that 

the classification problem becomes simpler in the feature space. 

Moreover, the greater distance of hyperplane to the nearest training data points, 

the less classification error. A separate hyperplane can be formulated as an n­

dimensional feature space for SVMs and their extensions and alternatives, fre­

quently called Kernel-Based techniques, which have been studied widely and 

applied to different pattern classifications and function approximation problems 

[189] [204]. Since their introduction, SVMs have been proved to be successful 

tools for the solution of a large range of classification problems. 

The SVM method applies a primary source of information, that is Kernel matrix 

K(i,j), since K is Mercer's Kernel and i,j denote data points in the sample [205] 

[206], [183]. These techniques classified by building an n-dimensional hyperplane 

which splits the data into two types: the training and test data points. However, 
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to understand the basic of SVM classification, one requires four basic concepts: 

(a) the separating hyperplane,(b)the maximum-margin hyperplane, (c) the soft 

margin and ( d) the kernel function. In addition, the Classifier method consists of 

Statistical method, Machine Learning, and Neural Network methods [207] [197]. 

For more details about SVM classifier see [208]. 

Neural Networks Classifier (MLP) 

Artificial Neural Networks have been widely applied in different fields of science 

and engineering. A Neural Network, in general, includes a large figure of sim­

ple processing interconnections and elements. The easy processing elements are 

defined as neurons, and each neuron has numerous input signals and one output 

signal. MLP is a network, which are comprised of generally pair or more layers 

of neurons and of an extra input layer. The input layer is linked by some au­

thors as an individual network layer whereas through others it is not [209] [210]. 

One or two optimised the output layers and of every hidden layer during the 

training method depends on the weight. Neural Networks are non-linear; it is 

self-organizing and adaptable. In Mathematics, a transfer function established in 

what manner a neuron will weight its response to incoming signals and produces 

operation, considered the most significant part [197] [211]. 

Neural Networks can be applied to solve highly non-linear control problems. 

Processing elements have a number of internal parameters called weights. Neural 

Networks are considered as enormously parallel computing systems comprising 

a number of modest processors with numerous interconnections. The principal 

variation between Neural Networks and other approaches to Pattern Recognition 

are that these networks have the capacity to learn complicated non linear-input 

and output relationships, and use serial training [212]. 

The learning process of MLP network is based on the data samples, composed of 

the N-dimensional input vector x and the M-dimensional desired output vector d, 

named destination. When processing the vector x as input the MLP produces the 

vector y(x, w) as an output signal, where, x represents as the vector of adapted 

weights. In a step by step manner, the corrective adjustment is designed to create 

the output Yk (k = l , 2, ... , M) to reply dk [213]. 

In [214], the author shows that many of the benchmark and researchers have been 

published on Neural and Statistical Classifiers. One of the widest was the Stat­

log project [215] in which statistical techniques, Machine Learning, and Neural 

Networks were compared applying a great figure of dissimilar datasets. In [216], 

the researcher shown that the Neural Network is considered as a significant tool 
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for classification. The current numerous study activities in neural classification 

have recognized that Neural Networks shown potential alternatives to different 

conventional classification methods. The following aspects are the advantages of 

the Neural Network Classification [216] [217]: 

• Neural Networks are data driven self-adaptive techniques in that they can 

adjust themselves to data without any explicit specification of functional or 

distributional forms of the underlying model. 

• They are general functional approximates in that neural networks can ap­

proach any function with arbitrary accuracy. 

• The Neural Network relies heavily on having adequate data for training 

purposes. 

Instance- Based Learner Classifier (IBl or IBL) 

In 1996, the Bagging classifier was developed by Breiman [218] [185]. IBL gen­

erates classification predictions using only specific instances. As the Nearest 

Neighbour Classification function merely assigns classifications according to the 

Nearest Neighbour policy. It can determine which instances in the instance space 

will be classified by each of the stored instances. IBL is similar to the Nearest 

Neighbour Algorithm except that it normalizes its 'attributes' ranges, processes 

instances incrementally, and has a simple policy for tolerating missing values. 

Euclidean distance applied in IBL algorithms provides ranked matches between 

training instances and provides test instances. Equation 3.6.1 represents the sim­

ilarity used within IBL algorithms [195] [219]: 

n 

similarity(x, y) = - L f(xi, Yi)-
i= l 

where n: is the Instances attributes 

Numeric value attributes are represented by: 

Boolean and symbolic attributes are represented by 
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Bagging Classifier (Bag) 

Bagging is a statistical combining and re-sampling method used to decrease the 

misclassification error of a base classifier, which is based on Bootstrapping and 

Aggregating techniques. The Bootstrap is designed to create new data using the 

information from the original data. Or it is a "bootstrap" ensemble technique that 

produces individuals for its ensemble by training every classifier on a random re­

distribution of the training set. Every classifier is trained with a set of n training 

samples, drawn randomly with replacement from the original training set of size 

n, wherever n is the size of the initial training set; numerous of the initial exam­

ples may be reiterated in the consequent training set whilst others may be left out. 

Each one separate classifier in the ensemble is resulted in with a various random 

sampling of the training set. Bagging is known to be a successful in raising the 

accuracy of prediction of the non-constant classifiers [220] [221]. 

For small data sets, a Learning Algorithm is not good enough because if small 

changes occur in the training data set it will create very divers classifiers. Nor­

mally, the Bagging classifier improves recognition for unstable classifiers because 

it efficiently averages over such discontinuities. There are no persuasive simu­

lation studies or hypothetical sources with the view that bagging will assist all 

unstable classifiers [222] [223]. 

AdaBoost Classifier (AdaBMl) 

In 1995, the AdaBoost algorithm developed by Freund and Schapire, resolved 

numerous of the practical problems of the earlier boosting algorithms. Boosting 

is a family of methods, the most well-known members being AdaBoost. Boosting 

method aims to promote a learning accuracy of the algorithm, with it an algo­

rithm becomes stronger. Boosting is the public method and it is one of the Boost­

ing methods in Data Mining methods for progressing towards the accuracy of 

prediction. The method produces a set or ensemble of classifiers from a given 

data set. Every classifier is made with a various training set acquired from the 

primary set applying re-sampling methods, and the latest output is come by se­

lecting. The aim behind it is obtaining an extremely accurate classifier by mixing 

numerous weak classifiers. All weak classifiers are needed merely to be accurate; 

that is, to be better than random guessing. The purpose of these ensembles is to 

raise up the accuracy with respect to the base [224] [199]. 

The classifiers in the ensemble are added one by one so that every sub-sequent 
classifier is trained on data that have been 'difficult' for the old ensemble mem-
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bers. It is machine linear method that combines weak classifier in an iterative 

way to produce a final physically powerful classifier via the learning procedure. 

Diversity is an important property of a classifier ensemble. The achievement of 

AdaBMl has been explained, between others, with its diversity creating capabil­

ity [225] [197] [226] [227] [228]. 

The input set represent as (xi , y1 , ... , Xm , Ym), however, every Xi refers to instance 

X, and every label Yi is in label set is represent as Y, Xi EX and Yi E Y = -l, + l. 

AdaBoost names a given base learning algorithm often in a sequence of rounds 

t = 1, ... , T. On the primary objects of the algorithm is to supply a set of weights 

through the training set [229]. 

The AdaBoost Learning Algorithm is applied to boost the classification imple­

mentation of an uncomplicated learning algorithm, moreover it is an aggressive 

mechanism for determining a small set of right classification functions [230]. In 

2001, Viola and Jones developed a modified AdaBoost algorithm successfully and 

applied it to face detection [231]. 

Rotation Forest Classifier (RoFo) 

Rodriguez et al. [232] suggested this classifier based on feature extraction. The 

base classifier is again a Decision Trees (DT). In RoFo classifier, selected DT be­

cause they are sensitive to rotation of the feature axes, therefore the name "Forest 

". In RoFo, each tree is built on a bootstrap sample form the data rotated in ran­

dom way. Bootstrap is a technique for assigning measures of accuracy to sample 

estimations. To produce the training data for a base classifier, the feature set is 

randomly divided into K subsets and Principal Component Analysis (PCA) is 

used to every subset, K is a parameter of the algorithm. Each main component 

is retained in order to keep the changing information in the data. Hence, K axis 

rotations for a base classifier that take place to form the new features . 

The concept of the rotation approach is to stimulate simultaneously separate ac­

curacy and diversity within the ensemble, for each base classifier diversity is raise 

during the feature extraction. Accuracy is attempted by keeping each standard 

components and applying the all data set to train every base classifier. A absolute 

valuable characteristic of the proposed technique is that RoFo could be applied 

in conjunction with practically whatever base classifiers that are applied in the 

creation ensemble method 
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C4.5 Classifier 

The C4.5 classifier is an improvement on the ID3 classifier. One of the most well­

known algorithms for building decision trees is the ID3 algorithm developed by 

Ross Quinlan in 1979. The decision tree in the ID3 classifier builds on symbolic 

data. The C4.5 algorithm is able to build decision trees from a set of training data, 

in the same way as is built in ID3. Each element in C4.5 stipulates values for a 

collection of attributes and for a class [233]. All attributes may have discrete or 

continuous values. In addition, the unfamiliar unique value denotes unspecified 

values [223). A performance measure of a decision tree over a set of cases is the 

classification error. This is the percentage of the misclassified cases where the 

predicted class differs from the actual class. The training data is a set of already­

sampled classifiers called S: S = s1 , s2 , .. . . In every sample Si = x1 , x2 , ... which is a 

vector and x1 , x2 , ... express attributes(features) of the sample. However, training 

data is improved with a vector represented as C: C = c1, c1 , ... where the class is 

named c1 , c2 , ... in each sample which belongs to the vector. Every node of the 

C4.5 algorithm tree selects one attribute of the data that mainly divides its set of 

samples into sub-sets which is enhanced in one class or another. Its criteria is 

the normalised information which increases the difference in entropy. Dividing 

the data is the outcome of selecting an attribute. The attribute with the strongest 

normalized information increases the selected trees to create the decision [234]. 

The Decision Tree is applied to classify a class value to a case that is dependent 

on the values of the attributes of the case [235]. 

A performance measure of a decision tree over a set of cases is the classification 

error. It is the percentage of the misclassified cases whose predicted class differs 

from actual class. Moreover, a decision node identifies a test over one of the 

attributes that is called the attribute selected at the node. However, each one 

has possible outcomes of the test, resulting into a child node. A Decision Tree is 

applied to classify a case, i.e., to assign a class value to a case depending on the 

values of the attributes of the case. In general, a path from the root to leaf of the 

decision tree can be followed based on the attribute values of the case. The class 

defined at the leaf, is the class predicted by the decision tree. The primary aim 

of the algorithm is to find relationships between values of a target or dependent 

attributes, which have to be a qualitative attribute with two or further values 

and those of a number of sets of independent attributes (numeric or qualitative) 

[223) [236) [237). For a detailed description of the C4.5, refer to http://www . cis. 

temple.edu/-giorgio/cis587/readings/id3-c45.html 
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3. 7 Encryption Classification 

" Encryption Classification" is defined here to mean the process of identifying 

the algorithm used to encrypt some Plain-text from the encrypted output file. To­

day, there has been very little work done on this problem. In [238], Dileep and 

Sekhar state that, statistical techniques and machine learning based techniques 

have been applied to identify the encryption method from the encrypted files 

using Support Vector Machines (SVM). They represented a cipher-text by a doc­

ument vector with fixed length representation and varying length representative 

of words in cipher-texts. The size of the cipher-text generated from a plain-text of 

500 ASCII characters is 4000 bits. For generating a document vector from a cipher 

text considered the common dictionary based technique and the class specific 

dictionary based technique using five block ciphers: Data Encryption Standards 

(DES) with Electronic Code Book (ECB) mode, DES with cipher Block Chaining 

(CBC) mode, Triple DES (3DES), Blowfish, Advanced Encryption Standard (AES) 

and RCS algorithms. The authors argued that a better performance was obtained 

for the ?xed length word and for the class speci?c dictionary based technique. 

However, the performance of the identi?cation of encryption technique was poor 

for the cipher texts generated have been used keys that are differences from the 

keys used in generation of the training data. 

Spillman et al.[239] state that a neural network based method has been used for 

cryptanalysis of a Feistel type block cipher. In the last few years, there has been 

growing interest in the use of machine learning classifiers for data mining, Cu­

foglu, et al. (2009) [240] authors the performance of classifiers used to identify 

user profiling. The results conclude that the Naive Bayes classifier produce the 

best performance over user related information. Cufoglu, et al. (2008) [195] found 

that the Naive Bayes and IBL classifiers have the highest classification accuracy 

with the lowest error rate. Also they obtained simulation results evaluate against 

the existing works of SVM, Decision Trees (DTs) and Neural Networks(NNs). 



Summary 

In this chapter Pattern Recognition Algorithms have been reviewed. Two com­

mon tasks of Pattern Recognition is unsupervised and supervised classification. 

With the diverse frameworks in which Pattern Recognition was traditionally for­

mulated, the statistical approach has been most intensively studied and applied 

in practice. This chapter discusses the use of WEKA tools, Multidimensional Scal­

ing (MDS) and Machine Learning (ML). MDS which has become more and more 

popular as a method for both exploratory Data Analysis and Multivariate and 

Classifier. The aim of Statistical Methods is to build decision boundaries in the 

feature area, that separate patterns belonging to diverse classes. 

Several classification have been presented, such a Naive Bayes (NB), Support 

Vector Machines (SVM), Neural Networks (MLP), Instance-Based Learner (IBL), 

Bagging (Bag), AdaBoost (AdaBMl), and C4.5 classification algorithms. In addi­

tion, the advantages and disadvantage of some classifiers have been highlighted. 

Boosting has been designed to improve the accuracy of any given learning al­

gorithm. In the Naive Bayes classifier, the consequence of an attribute value is 

given classes, which is independent on the values of the other attributes. Support 

Vector Machines is a typical binary-classifier. Most research shows that the SVM 

classifier has became a successful tool for the solution of a large range of classifi­

cation problems. Furthermore, Neural Networks is a data driven self-adaptive. In 

Bagging classifiers, the classifiers are created independently from each other. IBL 

classifiers use a simple Euclidean Distance function to supply graded matches 

between training instance and give test Instances. The AdaBMl classifier uses 

a more refined way of sampling the original training set, where the samples are 

selected according to the accuracy of the previously created classifiers. 

Another useful classification approach is The most Rotation Forest (RoFo) is to 

ensure within the ensemble and encourage simultaneously separately accuracy 

and finally, the most important aim of the C4.5 algorithm is to discover the rela­

tionships between values of a target or dependent attributes. 

There has been very little work done on using PR techniques to identify the algo­

rithm used to encrypt some plain-text from the encrypted output file. 



Chapter4 

Creating and Analysing the Datasets 

The purpose of this chapter is to create an encryption dataset to be used for the 

experimental evaluation in Chapter 5 and 6. A secondary purpose is to analyse 

the created dataset to learn more about the encrypted data (for example to de­

termine the randomness of the encryption output). Section 4.1 introduces related 

work. Section 4.2 defines a random number sequence and Section 4.3 addresses 

motivation and the aim in this study. Section 4.4 addresses methodology used 

in this study. Section 4.5 explains how the datasets were generated. Section 4.6 

analyses the datasets. Finally, the chapter concludes with a summary. 

4.1 Randomness in Cryptographic Systems 

Generally, with the rapid increase of network communication and cryptography, 

the use of random numbers is becoming more and more significant in secure data 

communication. The security of cryptographic systems depends on the irrepro­

ducible digital key streams that are generated and made unpredictable through 

the use of random number generators. As well, random numbers are applied 

for authentication protocols and key management in cryptographic system and 

smart cards[241] [242]. 

The use of random numbers is critical to cryptographic systems. In the world of 

protection information, often we see such statements as "protected by authentica­

tion bit 2048" or "guaranteed 128-bit AES", describing the strength of encryption 

algorithms deployed in the security solution. Algorithms such as AES, RC4 and 

ECC have a track record of being difficult to break. 

Unfortunately, what we see very rarely is a statement about the strength of the 

random number generator applied by a security system. However, system de­

signers are generally more concerned with the bit generation speed and power 

consumption, than with the randomness of the bits generate. However, in most, 
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if not all, cryptographic systems the quality of the random number generator 

directly influences how hard it is to attack the system. There are number of Sym­

metric cipher algorithms like DES, RC2, and RCS that use a randomly selected 

encryption key. An Asymmetric algorithm such as Diffie-Hellman, RSA and DSA 

uses randomly generated values while generating prime numbers (243]. 

In the past, different mathematical models have been developed to improve the 

quality of random number generators. Numerous theorists have attempted to de­

fine the term 'random', but at present there are still differences in the definitions 

that have been put forward. However, true random number generator (TRNGs) 

are characterized by their output not being able to be reproduced. 

Hans Freudenthal, (1987) (244] states that "it may be taken for granted that any 

attempt at defining disorder in a formal way will lead to a contradiction that does 

not mean that the notion of disorder is contradictory." 

Fahad et al., (2010) (245] insist "that not all algorithms need the highest-quality 

random numbers, so a good GPU RNG should provide a speed quality trade-off 

that can be tuned for fast low-quality or slower high-quality random numbers." 

Daniel et al., (2009) [246] proposed a system of Fingerprint Extraction and Ran­

dom Numbers in SRAM (FERNS) that harvests statistic identity and randomness 

from existing volatile CMOS memory without requiring any dedicated circuitry. 

The random numbers that result come from runtime physically random noise 

and manufacture-time physically random device threshold voltage mismatches. 

A random number generator is widely applied in different fields, for instance, 

games, information and probability theories, pattern recognition, quantum me­

chanics, statistics and statistical mechanics etc., particularly in cryptography and 

anything that is concerned with unpredictability. Commonly, random real num­

bers are generated from a sequence of random binary numbers [247] [248]. 

There are two types of random number generation: using hardware and using 

software. The hardware type is a true random number generator, while the soft­

ware type is a pseudo random number generator. A true random number gener­

ator adopts a random natural phenomena (e.g. atmospheric or thermal noise) to 

generate random numbers; these random numbers are better quality than those 

generated by software. However, it is clearly unrealistic to configure the hard­

ware devices for each user who has to generate random numbers, and similarly 

unrealistic to configure the software because it mainly uses algorithm or mathe­

matical models to generate random numbers. 

In computer programmes [249], most random numbers used are pseudo-random, 

that means they are produced in a predictable fashion applying a mathematical 
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formula for many purpose, which is usually acceptable. However, the data might 

not be random in the way expected when applied to dice rolls and lottery draw­

ings, for example. 

4.2 Definition of a Random Number Sequence 

As stated above, the term 'random' has varying definitions: 

Lambalgen, V.(1987) [244] stated that: "it may be taken for granted that any at­

tempt at defining disorder in a formal way will lead to a contradiction. This does 

not mean that the notion of disorder is contradictory. It is so, however, as soon as 

I try to formalize it". 

Donald Knuth was nicknamed as the "father" of analysis of algorithms. Yet it was 

he who expressed that random numbers do not exist. We must ask ourselves, is 

1 a random number, or a sequence independent random numbers? [250]. 

Several options are available, for those interested in analysing their cryptographic 

Random Number Generator (RNG). Following are highlights of various statistical 

tests that available [251]. 

• In Donald Knuth's book, the Art of Computer Programming, Seminumer­

ical Algorithms, Volume 2, he describes numerous empirical tests which 

include the: frequency, seriat gap, poker, coupon collector's, permutation, 

run, maximum-of-t, collision, birthday spacings, and serial correlation. For 

further information, visit [251]. 

• Crypt-XS has been developed by Information Security Research Centre at 

Queensland University of Technology in Australia, which is suite of sta­

tistical tests. Crypt-XS tests consists: frequency, binary derivative, change 

point, runs, sequence complexity and linear complexity. For further infor­

mation see [251]. 

• The NIST Statistical Test Suite is the result of collaborations between the 

Statistical Engineering Division and Computer Security Division at NIST. 

Statistical tests in the package are: frequency, block frequency, cumulative 

sums, runs, long runs, Marsaglia's rank, spectral (based on the Discrete 

Fourier Transform), nonoverlapping template matchings, overlapping tem­

plate matchings, Maurer's universal statisticat approximate entropy (based 

on the work of Pincus, Singer and Kalmant random excursions (due to 
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Baron and Rukhin), Lempel-Ziv complexity, linear complexity, and serial. 

For additional information visit [251]. 

A random number generator (RNG) is the first type of sequence generator. An 

RNG applies a non-determinism source (i.e., the entropy source), along with 

some processing function (i.e., the entropy distillation process) to generate ran­

domness. The entropy source in general comprises of some physical quantity, 

like the noise in an electrical circuit, the timing of user processes, or the quan­

tum effects in a semiconductor. A variety of combinations of these inputs may be 

applied [252]. 

Thus for cryptographic purposes, Rukhin et al. (2001) [253] argued that the out­

put of RNGs needs to be unpredictable. But, some physical sources (for instance 

date/time vectors) are quite predictable. These problems can be mitigated by 

combining outputs from diverse kinds of sources to use as the inputs for an RNG. 

On the other hand, the resulting outputs from the RNG can still be deficient when 

evaluated by statistical tests. 

Lan et al. (2010) [254] state that using cryptographic techniques becomes a critical 

issue in communications, due to the increasing wireless networks and mobile ap­

plications and, the protection of information during transmission via open com­

munication channels. Certainly, the competence of a cryptographic system relies 

on the key size produced by its RNG. 

4.3 Motivation and Aim 

The basic motivation of the work described in this chapter is to create the dataset 

for the experimental evaluations and so that other researchers can benefit from 

the dataset as well. The purpose of this study is to : 

• Create an encryption dataset using the Crypto++ library. 

• Analyse the dataset using various tests to determine the nature of the data 

such as randomness. 

The following tests have been chosen to analyse the datasets: 

• Frequency Test [255]. 

• Chi-square Test [256]. 

• Compression test using the Prediction by Partial Matching(PPM) algorithm 

[257] [258]. 
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4.4 Methodology 

In this study, we have used the Crypto++ library to generate the datasets. This 

section describes how this was done. 

4.4.1 JavaTM Cryptography Extension (JCE) 

The Crypto++ library is an open-source library that supports a vast array of cryp­

tographic schemes. The library also uses the algorithms defined by Java Cryptog­

raphy Extension(JCE). 

The API page provides more information on the methods used [259] [260]. Our 

approach uses the Java Cryptography Extension(JCE). The JCE is a set of pack­

ages that supplies a framework and implementations for encryption, key man­

agement, key generation, and Message Authentication Code (MAC) algorithms. 

Supported encryption algorithms includes symmetric, asymmetric, block, and 

stream ciphers. The tools also support secure streams and sealed objects. JCE 

was designed as an extension package that includes implementation for crypto­

graphic services. It is an application programming interface (API) that includes 

Symmetric block encryption, Symmetric stream encryption, Asymmetric encryp­

tion; password based encryption, key agreement, and message authentication 

codes. With the Java 2 SDK, vl.S, release, the JCE provider called "SunJCE" comes 

pre-installed and registered [261] [262]. 

4.4.2 Cryptographic Algorithm Benchmarking Utility 

A program called the Cryptographic Algorithm Benchmarking Utility was writ­

ten to create the dataset. It is written in Java and makes use primarily of the "Java 

Cryptography Extension (JCE)" as defined in the on line documentation [263]. 

However, because this does not provide all the algorithms that were needed for 

our experiments, we also made use of a popular third-party library called Bouncy 

Castle [264]. 

The Graphical User Interface (GUI) for this research project was developed using 

the Java GUI F(see Figure 4.1). The Java code can be downloaded from: http: 

//pcwww .liv . ac .uk/-rwbutler/cabu.zip. 

When using the GUI, the user first uploads the data, then the library will convert 

it to ASCII code base 64 encoded data as shown in first panel in Figure 4.1 called 
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Generated data. Basically, a base 64 encoded data is a string of characters (which 

comprise only the a - z , A - Z, 0 - 9, + and %, £ characters) that is produced 

used when sending non-text data through a text-only transmission protocol. We 

have used base 64 encoding data because it takes a stream of characters and con­

verts them into characters that belong to the universal ASCII code set. For more 

information about how base 64 does work, see [265]. 

The GUI allows the user to change the block and stream cipher between Symmet­

ric and Asymmetric, and change the mode type for block ciphers. As mentioned 

in the literature review chapter, since some type of blocks require padding in en­

cryption, the library also provides different padding such as PKCSSPADDNG or 

ISO01126PADDING. For DES and Blowfish block cipher algorithms in Electronic 

Code Book (ECB) and Block Chaining (CBC) mode, both are algorithms that re­

quire their input to be an exact multiple of the block size. For example, if the 

plain-text to be encrypted is not an exact multiple, then it needs to be padded 

before encrypting by adding a padding string. This is automatically done by the 

library. The receiving party for decrypting the data needs to know how to re­

move the padding in an unambiguous manner. The GUI also allows the user to 

save the output to a specific folder. This output is then used for the experimental 

evaluation. 
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Fig. 4.1: Graphical User Interface for the Cryptographic Algorithm Benchmark­
ing Utility. 

The JCE is extensible, meaning that new cryptographic providers can be plugged 

into the framework in order to provide new cryptographic implementations, Bouncy 



Chapter 4. Creating and Analysing the Datasets 93 

Castle being one example which is not available out of the box. The program has 

been written so that new providers can easily be plugged in by providing a new 

.prov file in the lib directory. The files of most interest are the SunJCE.prov file 

(which contains the vast majority of cipher implementations provided by the Java 

JDK) and Bouncy Castle.prov. 

Which providers are used by the application will depend upon which boxes have 

been selected via the Enable Advanced Options check box and the Configure JCE 

Providers button is clicked. Once the application has been installed, it is neces­

sary to replace one of the standard Java policy files to allow the use of some of 

the greater key lengths provided by the application. Also there are a number of 

Sources Available Cryptographic Libraries available over [266]. For more infor­

mation about the Crypto++ library 5.6.1, see [267). 

4.5 Generating the Datasets 

This section explains our experimental setup. The experiment uses different algo­

rithms of block and stream cipher, and used Crpto++ library with Bouncy Castle 

to encrypt and decrypt data, using 100 input files with different key sizes with 

text file sizes being 512KB. 

A random sampling of text file data was taken from the Internet (2010) which 

included various types of data such as reports, papers, news, text from websites 

and journals. These samples ranged in sizes from 100 bytes to 10000 bytes. The 

files are included on the attached DVD at the end of the dissertation. 

The Crypto++ library was used to encrypt the dataset. The block cipher algo­

rithms with ECB and CBC modes were used to encrypt the data using different 

stream algorithms. In this experiment, the data files are divided into 8-bit and 

16-bit blocks. The study included two groups of block cipher algorithms: The 

first group considered the following block cipher algorithms: DES (64-bit), IDEA 

(128-bit), AES (128, 192, 256-bit) and RC2 (42, 84, 128-bit). The second group 

included another seven block cipher algorithms: RC2, RC6, Blowfish, Twofish, 

XTA, CAST and DESede (3DES), all with the same key size (128-bit). As well, the 

stream cipher algorithms were used with five classes, which included five dif­

ferent stream ciphers: Grain 128-bit, HC 128-bit, RC4 128-bit, VMPC 128-bit and 

Salsa20 128-bit. 

Figure 4.2 provides a sample of the AES 128-bit block cipher before encryption. 
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Fig. 4.2: Sample of AES block cipher before being encrypted. 

Figure 4.3 provides a sample result of ASCII output for AES 128-bit block cipher 

algorithm after being encrypted. 
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Fig. 4.3: Sample of AES block cipher encrypted output in ASCII. 
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Initially, we have selected 100 data files randomly from various internet sources 

such as news paper, website, e-books, journals, articles, documents and reports 

and the overall total file size is 52,477,677 bytes. Table 4.1 describes these files and 

form what we have called the Bangor Sources Files Corpus (BSFC). These 100 

source text files from the data files were encrypted and used in the experiment 

evaluation performed in Chapters 4 and 6. These files form what we call the 

Bangor Encryption Classification Corpus (BECC) as shown in Table 4.2. 

There are many encryption algorithms that can be used to encrypt these source 

files. Figure 4.4, 4.5 and 4.6 show the algorithms that were used in our exper­

iments. As well as these algorithms, many of them have various numbers of 

keys and other parameters. Different variations were used to encrypt the files to 

produce data points as training /testing data for WEKA (as explained in Section 

5.2.1). The histograms of the encrypted files using both 8-bit and 16-bit encodings 

were generated (refer to Appendix B), then submitted to WEKA for classification 

(see Section Al). 

Tab. 4.1: Bangor Sources Files Corpus (BSFC). 

File names 0l_sources to lO0_sources 

Example of sources News paper, Papers, Websites, Reports, 
E-Books, Journals, Documents, Article 

Total file size (bytes) 52,477,677 

Tab. 4.2: Bangor Encryption Classification Corpus (BECC). 

File names 0l_encrypted to lO0_encrypted 

Block algorithms/Key sizes (1) AES(128, 192,256), DES 64, IDEA 128 
and RC2 (128, 84 and 42) 

Block algorithms/ Key sizes (2) RC2, RC6, Blowfish, XTA, CAST 
and DESede (128-bit) 

Stream algorithms/Key sizes Grain, HC, RC4, Salsa20 
and VMPC (128-bit) 

Total file size (bytes) 209,916,600 
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Fig. 4.4: Diagram of block cipher algorithms with 240 variation used to produce 
the data points used in the classification experiments. 
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Fig. 4.5: Diagram of block cipher algorithms with 120 variation used to produce 
the data points used in the classification experiments. 

ECB Mode 

Fig. 4.6: Diagram of block cipher algorithms with 400 variation used to produce 
the data points used in the classification experiments. 
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4.6 Analysis of the Dataset 

This section provides the analysis of the dataset. To validate the proposed ap­

proach, different tests have been applied to the block and stream cipher algo­

rithms. The tests have been implemented in Java. Separate Java applications for 

the tests have been implemented with a main class and a file reader for each block 

and stream cipher algorithm so the random number file could simply be copied 

and pasted into the text file to generate the outcome of these tests. The Chi-square 

test x2 is used to determine whether the datasets they are random or not. PPM is 

also used as anther method to analyse the data. If the data is not compressible, 

this provides further evidence of the possible randomness of the data. 

4.6.1 Frequency Test 

First, the Frequency test [255] is applied to the dataset. This requires calculations 

of how often a value occurs and seeing if the frequencies are uniform. In this 

case, we have 30 datasets in each folder for each block and stream cipher algo­

rithm. The Frequencies of each character are tabulated for all characters in the 

ASCII 0-255 range. When the program has been executed, the output console 

will print out how many times each character has occurred, the execution time 

in milliseconds (ms), how much memory is available and the total number of 
occurrences. 

Below shows the Java code that was used to read. 

/ /import java.io.Dataln putStream; 

import java.io.EOFException; 

import java.io.RandomAccessFile; 

public class Testread 

I 
public Testread () I 

System.out.println ("testread called"); 

/ / private Scanner scanner; 

I I Scanner to read from the file 

public static void main (String [I Args) 

I 
boolean EOFreached = false; 

int symbol = O; 

try{ 

RandomAc cessFile file= new RandomAcce s sFile 

("G:\ \ Testread\ \AES128.txt", "r"); 

I I Read the input file, one symbol at a time: 

while(EOFreached==false){ 
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I I get next symbol 

symbol= file.readUnsignedByte(); 

System.out.println(symbol); 

catch (E0FException e)[ 

//EOFread1ed = true; 

catch(Exception e)[ 

System.out.println(e.getMessage()); 

Below, is the code for defining the main classes for the Frequency test. 

public class FreqTest ( 

public static void main(String[l args) ( 

FileReader fileReader = new FileReader(); 

f ileReader .loadWordFrequency(); 

98 

The code below provides the Frequency FileReader class, which is used for ac­

quiring the statistics. The method HashMap is applied to load all the encrypted 

text from the file and reads it one by one. It checks that each encrypt character 

exists in the HashMap, if not then adds it to the HashMap, otherwise it takes the 

current frequency and increments it by one and puts it back in to the HashMap. 

The method concludes by showing how often the characters appear. The program 

will not complete until all characters have been accumulated. 

import j ava.io.File; 

import java.io.FileNotFoundException; 

import java.util.HashMap; 

import j ava. u t il.N oSuchEl emen tExcept ion; 

import java.util.Scanner; 

import java.util.StringTokenizer; 

import java.util.TreeSet; 

public class FileReader ( 

String fileName = "output.txt"; 

private Scanner scanner; // Scanner to read from the file 

private HashMap<Integer, Integer> wordsFrequence = new HashMap<Integer, Integer>(); 

I I HashMap to store the number and frequency 

; .. 
• Method to load all the numbers from the file and read each one by one. 

• For each number check it exists in the HashMap and if not add it, 
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• otherwise take the current frequency and increase it by one and put it 
• back in the HashMap 

•I 

public void loadWordFrequency() { 

Runtime runtime= Runtime.getRuntime(); 

I I Gets the current time in ms - so we can record how long the run took 

long startTime = System.currentTimeMillis(); 
try { 

scanner= new Scanner(new File(fileName)); 
String line; 

while ((line= scanner.nextLine()) != null) I 

I I Keep looping until you have reached the end of the line 

StringTokenizer st = new StringTokenizer(line, ","); 

while (st.hasMoreTokens()) { 

I I Read each number ... 

Integer number= Integer.parseint(st.nextElement() 

.toString()); 

I I ... gets the current frequency from the HashMap 
Integer frequeny = wordsFrequence.get(number); 

I I If there is nothing then its the first time its being 
I I processed 

if (frequeny == null) I 

I I Hence add it to the HashMap with a frequen cy of 0 

wordsFrequence.put(number, O); 

I else { 

/ I else increse the frequency by one and add it back to 

I I the HashMap 

frequeny++; 

wordsFrequence.put(number, frequeny); 

I catch (FileNotFoundException ex) { 

System.out.println("Error: " + ex.toString()); 

I catch (NoSuchElementException e) { 

I I Get the current time 

long endDate = System.currentTimeMillis(); 

System.out.println("Occurances:"); 

TreeSet<Integer> treeSet = new TreeSet<>(wordsFrequence.keySet()); 
int totalCount = O; 

I I Loop around the tree set getting all the values and frequency and 
I I display it 

for (Integer key: treeSet) I 
System.out.println("Number off" + key+ " occur" 

+ wordsFrequence.get (key)); 

t otalCount += wordsFrequence.get(key); 

System.out.println("Total number of occurence:" + totalCount); 

99 
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4.6.2 Producing Histograms 

This section shows the results of the histogram data produced by the Frequency 

test program for different block cipher algorithms. These comprise: AES 128-bit, 

DEs 64-bit, IDEA 128-bit and RC2 128-bit with CBC mode. Figure 4.7 shows the 

histogram for AES and DES. Figure 4.8 shows the histogram of IDEA and RC2 

algorithms. The results show that all the datasets are uniform, due to the random 

nature of the dataset. 

Histogram of AES 128-bits CBC mode 
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(a) AES 
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Fig. 4.7: Histograms of AES and DES block cipher algorithms with CBC mode. 
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Histogram of IDEA 128-bits CBC mode 
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Fig. 4.8: Histograms of IDEA and RC2 block cipher algorithms with CBC mode. 

Figure 4.9 shows the histogram for RC4 and HC 128-bit stream cipher algorithms. 

Both are clearly uniform, also due to the random nature of the dataset. 
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Fig. 4.9: Histograms of RC4 and HC128 stream cipher algorithms. 
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4.6.3 Chi-Square Test (x2) 

The Chi-square test [268] is a theoretical or mathematical distribution which has 

wide applicability in statistical work. The symbol x2 is used to denote the dis­

tribution. It is one of the most popular hypothesis tests and it is widely used in 

biology, economics, cryptography and other fields. For instance, one of crypto­

graphic applications is the testing of random number generators and block ci­

phers' suitability as random number generators [269]. 

There are two fundamental types of Chi-square analysis: first, Goodness of Fit 

Test, applied with two nominal variables; and the second, Test of Independence, 

applied with two nominal variables. Both types apply the same formula. Chi­

square x2 procedures measures differences between the statistically expected re­

sult ( Ei) and actual result observed ( Oi) of the table frequencies of nominal vari­

ables to see if there is a statistically significant difference, where Oi represent the 

observed value and Ei is represent the expected value for each cell and n repre­

sent sample sizes. The following shows the equation for calculating x2 [256]: 
n 

X2 = L (O; - E;) 
. i= l E; . 

The degrees of freedom are: df= (R-1) (C-1) 

where: df represent the degrees of freedom, R represents the number of rows 

in the table and C represents the number of columns in the table. For any x2 

distribution, the df is the number of independent free choices that can be made 

in allocating values to the expected frequencies. 

As it was shown by Ryabko et al.[269], in some applications the number of cate­

gories (and, consequently, the number of degrees of freedom of x2 distribution) 

is very large, thus, the sample size also has to be large. Therefore, in such cases, 

performing the x2 distribution needs extra time. Furthermore, it is frequently 

difficult to obtain such large samples and x2 may not be used. 

In practice, statistical testing is used to gather evidence to show that a generator 

indeed produces numbers that appear to be random. For our problem, the Chi­

square test has been used to investigate the randomness of different block and 
stream cipher algorithms. 

Once we have calculated the value of x2 and determined the degrees of freedom, 

we can look up the probability in standard statistic tables to determine whether 

the differences in the different block and stream cipher algorithms are due to 

chance. 

In general, the test follows the standard statistic hypothesis test [270]. The null 
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hypothesis H0 is presented as the sequence of random datasets and the alterna­

tive hypothesis H1 is presented as the sequence of non-random datasets. For the 

significance levels p-values, these are set as 0.01 or 0.05. For instance, the sequence 

is considered to be random with the confidence of 95% or 99% respectively. If the 

p - value is higher then H0 is accepted, otherwise, the H 0 is rejected. 

Table 4.3 shows the dataset results for the AES 128-bit, DES 64-bit, IDEA 128-bit 

and RC2 block cipher algorithms. Since there are 256 categories, the degrees of 

freedom equal (df) 256 - 1 = 255. Note that the degree of freedoms for all block 

cipher algorithms are the same. 

Samples were chosen for the BECC dataset and tested using the x2 test. For the 

AES algorithm the probability value was p = 0.091 and the Chi-square value was 

285.649. For the DES 64-bit block cipher algorithm, the probability value was 

0.619 and the Chi-square value was 247.578, with zero cells (0.0%) having ex­

pected frequencies less than 5. For the IDEA 128-bit block cipher algorithm the 

probability value wasp= 0.989 and a Chi-square value was 205.784. 

For the RC2 128-bit block cipher algorithm, the probability value was p = 0.236 

and the Chi-square value was 270.899. 

In summary for all the block cipher algorithms, this test shows that characters in 

the dataset is uniform distributed and is essentially random. 

Tab. 4.3: Chi-square for different block cipher algorithms 

Chi-square 
Probability (p-value) 

AES 128-bit DES 64-bit IDEA 128-bit RC2 128-bit 
285.649 247.578 205.784.161 270.899 
0.091 0.619 0.989 0.236 

The Chi-square test was also applied to the encrypted data in the BECC dataset 

for RC4 128-bit and HC 128-bit stream cipher algorithms as shown in the Table 

4.4. With RC4, the probability value wasp-values= 0.989 and a Chi-square value 

was 205.784, but the HC probability value wasp-values= 0.242 and a Chi-square 

value was 270.451. 0 cells (0.0%) have expected frequencies less than 5. The min­

imum expected cell Frequency for RC4 is 2046.8 and HC is 2046.8. 

In addition, it was observed that the all encrypted BECC dataset consist of char­

acters that are uniformly distributed. 

Residual is the difference between the observed values and the dependent vari­

able. Examining residuals can tell us whether our assumptions are reasonable 

and our selection of model is appropriate. Table 4.5 shows the maximum and 

minimum residual for each block cipher algorithm. According to the result, we 
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Tab. 4.4: Chi-square for two stream cipher algorithms 

Chi-square 
Probability (p-value) 

RC4 128-bit HC 128-bit 
205.784 270.451 
0.989 0.242 
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have found that all block cipher-text show a random pattern and are uniformly 

distributed. 

Figures 4.10 and 4.11 show the plot of residuals for the AES and RC2 algorithms. 

The reference lines at 0 in these plots emphasizes that the residuals cluster around 

the 150-250 between positive and negative differences for the AES algorithm, and 

for RC2 cluster around 200-150. The figures show that there are no systematic 

patterns apparent in these plots. It is very important to analyse the plot of the 

residuals versus every variable to make sure that a selected model is the best 

model possible to use. As observed, the points in the plots seem to be fluctuating 

randomly around zero in an unpatterned fashion. Moreover, the remaining block 

cipher algorithms produce similar plots, which mean the residual plots all show 

a fairly random pattern. The residuals also appear to behave randomly which 

further suggests that the model fits the data well. 
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Tab . 4.5: Residual for the block cipher algorithms. 

AES DES IDEA RC2 

Max Residual 109.2 113.1 99.2 183.2 
Min Residual -162.8 -126.9 -139.8 -100.8 

Random pattern of AES 

♦ ♦ • 
♦ ~~"\•~ 
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Code value 

Fig. 4.10: Residual plot for the AES algorithm. 

♦ AES Residual 

Table 4.6 shows the residual for the cipher-texts of the RC4 and HC stream ci-
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Fig. 4.11: Residual plot for the RC2 algorithm. 
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♦ RC2 Residual 

pher algorithms. The results also indicate random data. The points in the plot 

also fluctuating randomly around zero in an unpatterned fashion as shown in 

Figures 4.12 and 4.13. The two residual plots below shows the results for the 

RC4 algorithm with 128-bit. In this case the plots provide further evidence of the 

randomness of the dataset. 

Tab. 4.6: Residual for the stream cipher. 

Max Residual 
Min Residual 

RC4 128-bit HC 128-bit 

183.2 
-100.8 

164.2 
-123.8 
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Fig. 4.12: Residual plot for the RC4 algorithm. 
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Fig. 4.13: Residual plot for the HC algorithm. 
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4.6.4 Compressing the Dataset Using the PPM Compression 

Algorithm 

108 

In 1984, John Cleary and Ian Witten developed the Prediction by Partial Matching 

(PPM) data compression algorithm. Throughout the past decade, the PPM data 

compression method has set the performance standard in lossless compression of 

text. The PPM method is based on a method, which maintains a statistical model 

of the text. 

The PPM compression method has become a benchmark in the compression com­

munity. It is considered to be one of the best lossless compression algorithms. It 

generates 'predictions' for each character in the input. Each prediction take the 

form of a probability distribution that is provided to an encoder. The encoder is 

usually an arithmetic coder [271] [257] [258]. 

This section describes the application of eight block cipher and five stream cipher 

algorithms to derive computer models for predicting the encrypted block and 

stream cipher algorithms. If the cipher-text in the datasets are random, then they 

will be uncompressible. 

Two datasets are used. The first set has 8 classes ( one for each encryption al­

gorithm with different key size) and 240 input files, which results in 240 input 

files to be compressed. The second dataset has 4 classes (one for each algorithm). 

Four different block cipher algorithms (AES, DES, IDEA and RC2) are used: the 

AES algorithm with three different key sizes (128, 192 and 256-bit), DES 64-bit, 

IDEA 128-bit and RC2 with three different keys sizes (42, 82 and 128-bit). In the 

experiments, the input data files to the compression tool are 512KB in size after 

encryption produced two types of file text (containing only printable characters). 

Table 4.7 shows the file position for all block cipher algorithms and Figure 4.14 

shows the result of file position against the compression rate in bit per characters 

(bpc). According to our results, we have observed that there is no significant dif­

ferences between the algorithms with the highest compression rate being 8.363 

(bpc) and the lowest 8.076 (bpc). The result shows that all datasets are incom­

pressible (i.e.much of the data is random) because the compression ratios are > 

8.0 bpc i.e. the file expands rather than contracts when running the compression 

tool on the file. 



Chapter 4. Creating and Analysing the Datasets 109 

Tab. 4.7: Compression results for different block cipher using PPM method. 

File position Compression (bpc) 

10000000 
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Fig. 4.14: Block cipher file position against compression (bpc). 

Table 4.8 shows the file position and the compression ratio (bpc) for different 

stream cipher algorithms: Grain 128-bit, HC 128-bit, RC4 128-bit, VMPC 128-bit 

and VMPC 128-bit. All stream ciphers have used the same encryption key. The 

highest point is equal to 8.021(bpc) and the lowest is equal to 8.006 (bpc). All the 

compression ratios are > 8.0 (bpc) and therefore the data is incompressible due to 

the randomness of the data. 

Tab. 4.8: Compression results for different stream cipher using PPM method. 

File position Compression(bpc) 

Grain HC128 RC4 Salsa20 VMPC 

10000000 8.021 8.021 8.022 8.021 8.021 
20000000 8.012 8.012 8.012 8.012 8.012 
30000000 8.009 8.009 8.009 8.009 8.009 
40000000 8.007 8.007 8.007 8.007 8.007 
50000000 8.006 8.006 8.006 8.006 8.006 



Summary 

The purpose of this chapter is to create an encryption dataset to be used for the 

experimental evaluation in Chapter 5 and 6. Moreover, the main motivation is to 

create the dataset for the experimental evaluations and so that other researchers 

can benefit from the dataset as well. This study uses the Crypto++ library, in 

order to create the datasets, which is an open source library that supports a vast 

array of cryptographic schemes. Random samplings of text files were taken from 

the Internet in 2010 from reports, papers. The sample source text data ranged in 

size from 100 bytes to 10000 bytes. 

The following block cipher algorithms were used to encrypt the sample source 

text: AES with three different key sizes (128, 192 and 256-bit), DES 64-bit, IDEA 

128-bit and RC2 with three different key sizes (128, 84 and 42-bit). The encrypted 

cipher-text output was then analysed using the following tests: Frequency test, 

Chi-square test, and a Compression test using the Prediction by Partial Matching 

(PPM) algorithm. 

The tests indicate that the encrypted data is essentially random in nature. The Fre­

quency test shows a uniform distribution for the encrypted text. The Chi-square 

test also indicated the distribution of character codes is uniform. All encrypted 

data files are incompressible, again indicating the data is random in nature. 



Chapter 5 

Encryption Classification for Block Cipher 

Algorithms 

The purpose of this chapter is to demonstrate that Pattern Recognition (PR) tech­

niques can be useful tools for identification of the encryption method used from 

the encrypted plain-text files. This chapter considers block ciphers using Elec­

tronic Codebook (ECB) and Cipher Block Chaining (CBC) methods with differ­

ent algorithms. The performance of each of the classifiers is presented. Section 

5.1 introduces the classification of encryption output for block cipher algorithms. 

Section 5.2 addresses methodologies used in this study. Section 5.3 explains the 

identification of the encryption method. Section 5.4 describes the experimental 

results. Finally, the chapter concludes with a summary. 

5.1 Introduction 

A typical cipher takes a plain-text message and some secret keying data as its 

input and produces an encrypted version of the original message, known as the 

cipher-text. An attack on a cipher can make use of the cipher-text alone or it can 

make use of some of the plain-text and its corresponding cipher-text. Cryptanaly­

sis is the process of recovering the plain-text and/ or key from a cipher-text. Most 

encryption algorithms have a finite key space, hence, are vulnerable to an ex­

haustive key search attack. However, it is very difficult to identify the encryption 

keys because in most cases the size of the key is such that the time and resources 

required are not generally available. A random search through a finite but large 

key space is not usually an acceptable cryptanalysis method. 

In Cryptanalysis, when only the cipher-text is obtained, there are initially two 

significant tasks: identification of the encryption technique applied and the en­

cryption key identification. Cryptanalysis attempts to identify weaknesses in the 

algorithms used for encryption or the methods used to generate keys. In the con-
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text of this chapter, however, the emphasis is to explore the possibility of identi­

fying encryption methods by applying Pattern Recognition techniques. 

The following block cipher algorithms were considered: DES, IDEA, AES, RC2, 

RC6, Blowfish, Twofish, XTA, CAST and DESede (3DES) operating in ECB and 

CBC modes. Eight different classification techniques: Na'ive Bayes (NB), Support 

Vector Machines (SVM), neural networks (MPL), Instance based learning (IBL), 

Bagging (Bag), AdaBoostMl (AdaBMl), Rotation Forest (RoFo) and Decision Tree 

(C4.5), were used to try to identify the encryption method. 

5.2 Methodologies 

5.2.1 Using Matlab to Generate WEKA Files 

The encryption was carried out by using the Crypto++ library, which created the 

WEKA file. A Matlab program was used to generate the WEKA file. The previous 

chapter mentioned that WEKA is a very powerful data mining tool, which allows 

a user to test dataset with a broad set of classifiers. For further details about the 

code see Appendix A Section A.1. 

5.2.2 Using 10 Fold Cross-Validation 

Ten fold cross-validation was used in the experiment which produced an accu­

racy measurement, which is the percentage of correctly classified instances over 

the total number of instances, as follows: 

1. Data is divided into 10 equal partitions. 

2. Then 9 /10 of the data is used for training and 1/10 for testing. 

3. The whole process is repeated 10 times. The overall error rate is equal to the 

average of error rates of each partition. 

4. All the classifiers were trained using the same training sets and were tested 

on the same testing sets to establish the classification accuracy. 

The following equation was used to measure the accuracy: 

A (01 ) Sum of correct classif ications 
100 ccuracy 10 = ---- ----- --- x . 

Total number of classi f ications 
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5.2.3 Confusion Matrix 

The confusion matrix is a useful tool in machine learning that enables analysis of 

the errors that the learning system makes. The confusion matrix, in unsupervised 

learning is characteristically named a matching matrix. Its focus is on the predic­

tive capability of a model rather than how quick the models take to perform the 

classification. It can be used as an indication of the properties of a classification 

rule. Each class consists of a number of elements that are correctly or incorrectly 

classified. The result of the classification phase is called the confusion matrix, 

which is a detailed report on the performance of a single classifier. In the matrix, 

the columns represent the class and the rows represent the original data, as in the 

classification model shown in Table 5.1. The diagonals in the matrix represent 

typical cases that were classified correctly, for example, all cells of the diagonal 

represent cases of misclassified instances. 

Every instance in the test set compares the actual class to the class that was as­

signed by the classifier. The matrix as well illustrates the accuracy of the classifier 

as the percentage of correctly classified patterns in a given class divided by the 

total number of pattern in that class. 

A true positive is one that is correctly classified by the classifier and a false neg­

ative is one that is incorrectly classified by the classifier. The advantage of using 

the confusion matrix is the ability to consider the performance of all the classifi­

cation forms. 

Based on the elements in Table 5.1, it is possible to determine and find the cor­

rect and incorrect classifiers [272] [273] [274]. The advantages of using this per­

formance evaluation confusion matrix tool is that we can simply observe if the 

model is confusing two classes (i.e. commonly mislabelling one as another). 

Tab. 5.1: Confusion Matrix 

Predicted Predicted 
negative(class) positive( class) 

Actual Negative(class) a b 
Actual Positive(class) C d 
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This is shown by the followings four elements [275]: 

• True Positive (TP): An element is predicted as faulty and in reality is faulty. 

TP = d/(c+ d) 

• False Positive (FP): An element is predicted as faulty and in reality is not 

faulty. 

FP = b/(a+b) 

• True Negative (TN): An element is predicted as not faulty and in reality is 

not faulty. 

TN=a/(a+b) 

• False Negative (FN): An element is predicted as not faulty and in reality is 

faulty. 

FN= c/(c +d) 

5.3 Identification of Encryption Method 

This section presents the results of the experiments conducted in order to study 

the performance of the proposed method. The identification of encryption algo­

rithms for input block ciphers are presented with each data input file being a data 

point in our dataset. An RM Desktop PC, with a 3.06 GHz processor operating 

under UNIX was used to perform the classification experiments. 

The study included two groups of block cipher algorithms: 

• The first group considered the following block cipher algorithms: DES (64-

bit), IDEA (128-bit), AES (128, 192, 256-bit) and RC2 (42, 84, 128-bit). 

• The second group included another seven block cipher algorithms: RC2, 

RC6, Blowfish, Twofish, XTA, CAST and DESede (3DES), all with the same 

key size (128-bit). 

The first group of block cipher was operated in Electronic Codebook (ECB) mode 

and Cipher-Block Chaining (CBC) mode, while the second group of block cipher 

was operated only in CBC mode. 

The classifiers used in WEKA included: Naive Bayes (NB), SVM, MLP, IBL, Bag­

ging, AdaBMl, RoFo and C4.5 classifiers. In the experiments, 512KB input data 
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files after encryption produced two types of text files. We focused on binary files 

for classification, due to output produced by the encryption algorithms being 

binary. Confusion matrices were used to find the highest accuracy. We used 

the equation in Section 5.2.2 to calculate the accuracy and the Multidimensional 

Scaling (MDS) method was used to find the similarity and dissimilarity between 

Symmetric algorithms. 

In the first experiment, the dataset the data files in the dataset were divided into 

8-bit codes, and the Matlab program in Appendix A.2 was used to extract his­

tograms of the encrypted data. In the second experiment, the data files in the 

dataset were divided into 16-bit codes, and again the Matlab program was used 

to extract histograms of the encrypted data. For the 8-bit datasets there are 256 

possible attributes or features and for the 16-bit codes there are 65536 possible 
attributes or features. 

The following describes the experimental setup: 

1. In the first experiment (block ciphers), for each algorithm, the 30 source 

text files from the BECC dataset (512KB in size) were encrypted using AES, 

IDEA and RC2 (128-bit) and DES 64-bit algorithms. Different key number 

were used with each- file. 1, 3, 5 and 30 keys-resulting in 120 files being 

processed. These were chosen to make the data more difficult to identity. 

These 120 encrypted files were used as data points in WEKA. When using 

three keys, the 30 source text files were divided by three giving three groups 

of ten files. Each of the three keys were then used to encrypt each of the ten 

files. This was repeated for all the algorithms. When using 5 keys, the 30 

input files were divided by 5 giving 5 groups of six files. Each of the 5 keys 

were then used to encrypt each of the six files. Again, this was repeated for 
all the algorithms. 

2. In the second experiment, two parts were carried out. In the first part, the 

30 source files from the (BSFC) dataset were used with different encryption 

keys: for AES (128, 192 and 256-bit), for DES 64-bit, IDEA 128-bit and RC2 

(42, 84 and 128-bit) algorithms. The same method in terms of numbers of 

keys was used as described above resulting in 240 encrypted files being 

processed. In the second part; the same algorithms with the same number 

of keys were used as used in first part, however, this time while the numbers 

of the keys were the same, the types of keys were different. These two parts 

were carried out to check whether there was an effect on accuracy when 

using one fixed encryption key with different ver-sion of the keys. 
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3. In the third experiment, the algorithms were used but different data points 

were chosen from the BSFC, which contained 120, 240 and 400 data points. 

Again, the 30 plain-text source files was encrypted using 1, 3, 5 and 30 keys 

for each algorithm. In this simulation, the first and second results from the 

120 and 240 data points had already been obtained and 100 data points were 

added and used with all block cipher algorithms. However, this time 100 

data points were divided by 5 producing 20 input files giving 5 groups of 

20 text files. Each of the 5 keys were then used to encrypt each of the 20 the 

files. Again, this was repeated for all the algorithms. The aim was to verify 

whether there was an effect on accuracy when using different data points 

128-bit encryption keys. 

4. In the fifth experiment, different types of block cipher algorithms were used 

with 30 encryption text files from the BECC dataset for each algorithm re­

sulting in 210 data points: RC2, RC6, Blowfish, Twofish, XTA, CAST and 

DESede (Triple DES) all with 128-bit. The same settings were used as were 

used in the first experiment with ECB and CBC modes. 

5.4 Experimental Results 

5.4.1 Block Cipher Algorithms with ECB Mode 

This section shows the results of the experiments conducted for the evaluation of 

the classification of encrypted text produced by block cipher algorithms. The 

training set used for the experiments contained examples of Symmetric algo­

rithms from the two different classes of block cipher algorithms, and was used to 

build the classification model. The testing set represents the unknown Symmetric 

cipher algorithms that were to be classified. The block cipher algorithms in both 

the training and testing sets are labelled with the appropriate class a priori. 

Because the class of each block cipher within the datasets is known, it is possible 

to evaluate the performance of the classifier by comparing the predicted class 

against the known class. A 10 fold cross-validation method was used as a test 

mode where 10 pairs of training sets and testing sets were created. 

Each time, one of the 10 subsets is used for training and the other nine for testing. 

The whole process was repeated 10 times. To estimate a value on the training 

datasets, an accuracy measure was defined as shown in the equation 5.2.2. The 

overall error rate is equal to the average of error rates of each part. 
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All the classifiers were trained using the same training sets and were tested using 

the same testing sets to establish the classification accuracy. Performance statistics 

were calculated across all 10 trials. This provided a good indication of how well 

the classifier would perform on unseen data. 

In this study, two datasets were used with block cipher algorithms. The first set 

had 8 classes (one for each encryption algorithm with a different key size) and 

240 input files. The second dataset had 4 classes (one for each algorithm). 

Effects of Different Numbers of Keys with 120 Data Points from the BECC 

Dataset 

In the first experiment using 8-bit codes, the effect of different numbers of key 

sizes used to encrypt the plain-text was investigated for the following encryp­

tion algorithms: AES, RC2 and IDEA with fixed 128-bit encryption keys and DES 

with 64-bit keys. The purpose was to find the effect of different numbers of key 

sizes with different block ciphers algorithms, in order to determine which one 

obtained the higher classification accuracy between them (as shown in Table 5.2). 

The number of input files used was 30 and the number of keys used simultane­

ously (ensemble classification) was 1, 3, 5 and 301 keys. Here, Figure 5.1 shows 

that RoFo classifiers have a better overall accuracy performance, and AdaBMl 

achieved the lowest accuracy. Furthermore, and as expected, all the classifiers 

(apart from AdaBMl) produced good accuracy when using 1, 3 and 5 numbers 

of keys. It can be seen, also as expected, that the accuracy drops when using one 

key for each file (30 keys). Naive Bayes and MLP classifier with one key obtained 

the same accuracy (99.17%). 
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Tab. 5.2: Accuracy results for the 4 classes with 1, 3, 5 and 30 numbers of key sizes with 
ECB mode. 

~ 
1 Key: 3 Keys: 5 Keys: 30 keys: 

256 Attributes, 256 Attributes, 256 Attributes, 256 Attributes, 
120 Instances 120 Instances 120 Instances 120 Instances s 

s 

(%) (%) (%) (%) 

Naive Bayes 99.17 95.83 89.17 51.66 
SVM 97.50 96.66 96.66 35.00 
MPL 99.17 98.33 98.33 35.00 
IBL 96.66 96.66 95.83 25.00 
Bag 96.66 89.17 85.83 43.33 
AdaBMl 95.83 47.50 45.83 37.50 
RoFo 98.33 98.33 46.66 38.33 
C4.5 93.33 80.00 69.16 44.17 
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Fig. 5.1: Encryption accuracy of different algorithms (AES, RC2, IDEA(128-bit)) 
and DES(64-bit) key sizes. 

Effects of Different Numbers of Keys With 240 Data Points from the BECC 

Dataset 

Measurements of the performance against different numbers of keys were con­

ducted using two datasets of different sizes, performed with 256 features from 

encryption algorithms. Two datasets first using 8 classes dataset and second us­

ing 4 classes, and different numbers of the keys (1, 3, 5 and 30), were used to 

encrypt the files. In this way, one can view which elements were correctly clas-
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sified and which were misclassified and which number of keys obtain a higher 

accuracy. 

240 data points were produced after applying the AES (128, 192 and 256-bit), 

DES 64-bit, IDEA 128-bit and RC2 (42, 84 and 128-bit) algorithms where each al­

gorithm had 30 source text files . Table 5.3 for the 8 classes and Table 5.4 for the 

4 classes show the experimental results of these classifications. The experiment 

was conducted using different numbers of keys for each algorithm (1, 3, 5 and 30). 

Equation 5.2.2 was used to calculate the accuracy for each different set of data. It 

can be seen in Figure 5.2 that using one encryption key produces a higher clas­

sification accuracy of 100% meaning that the 240 instances (files) were correctly 

classified. 

In contrast, using 30 different numbers keys (one for each file) resulted in a lower 

classification accuracy. This was expected as the keys are generated randomly 

and will affect the pattern of test data. The results show that the accuracy of the 

classification was reduced with an increase in the number of encryption keys. 

Furthermore, the result shows that the 4 classes dataset obtained higher accuracy 

than dataset the 8 classes. 

Tab. 5.3: Accuracy results for the 8 classes with different numbers of keys with ECB 
mode. 

~ 
lKey: 3Keys: 5Keys: 30keys: 

8 Classes 8 Classes 8 Classes 8 Classes 
256 Attributes, 256 Attributes, 256 Attributes, 256 Attributes, 

s 
s 

240 Instances 240 Instances 240 Instances 240 Instances 
(%) (%) (%) (%) 

Naive Bayes 32.08 30.42 25.00 20.41 
SVM 32.08 29.58 28.33 19.16 
MPL 30.00 27.50 28.83 16.66 
IBL 30.41 27.91 26.25 12.08 
Bag 31.25 29.58 27.91 20.00 
AdaBMl 25.00 22.08 16.66 16.25 
RoFo 30.00 32.50 31.66 22.00 
C4.5 44.58 41.25 32.91 22.50 
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Tab. 5.4: Accuracy results for the 4 classes with different numbers of keys in ECB mode. 

~ s 
s 

Naive Bayes 
SVM 
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Bag 
AdaBMl 
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C4.5 
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100 99.16 97.08 40.00 
99.16 98.75 99.16 44.16 
99.58 98.75 89.16 42.20 
99.17 98.33 98.74 40.00 
98.75 95.41 94.16 38.33 
75.00 70.41 59.58 39.16 
99.58 99.16 98.75 35.83 
97.91 93.33 91.25 40.00 

SVM MLP IBL Bag 
Classification algorithms 

Fig. 5.2: The accuracy for each algorithm for the 4 classes dataset. 

For the following experiments, the same encryption algorithms with the different 

numbers of keys (1, 3 and 30) individually were used to encrypt the file, which 

mean each algorithm had its own numbers of keys. The following points were 

discovered, as shown in Figure 5.3, Table 5.5 for the 8 classes case and Table 5.6 

for the 4 classes case: 

• All classifiers with one key achieved a high accuracy classification of 100% 

meaning that 240 instances out of 240 were correctly classified with both the 

8 classes and 4 classes datasets. 
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• SVM achieved a higher accuracy with 1, 3 and 30 different keys, and Ad­

aBMl achieved a lower accuracy with one and three keys, but the IBL clas­

sifier with 30 different keys achieved the lowest accuracy. 

• On the other hand, using 30 individual keys produced the worst accuracy 

over all the algorithms for both cases. 

• IBL, however, achieved the lowest accuracy of 12.5% meaning that only 30 

instances out of 240 were correctly classified with the 8 classes dataset. 

Tab. 5.5: Accuracy results for the 8 classes with individual number of keys (1, 3 and 30) 
with ECB mode. 

~ 
lkey: 3keys: 30keys: 

8 Classes 8 Classes 8 Classes 
256 Attributes, 256 Attributes, 256 Attributes, 

s 
s 

240 Instances 240 Instances 240 Instances 
(%) (%) (%) 

Naive Bayes 100 40.83 28.33 
SVM 100 18.33 17.08 
MPL 100 14.16 21.67 
IBL 100 13.33 12.50 
Bag 100 32.50 25.83 
AdaBMl 25.00 14.16 20.42 
RoFo 100 28.33 30.83 
C4.5 100 22.08 27.92 
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Tab. 5.6: Accuracy results for the 4 classes with individual number of keys (1, 3 and 30) 
with ECB mode. 

~ 
lkey: 3keys: 30key: 

4 Classes 4 Classes 4 Classes 
256 Attributes, 256 Attributes, 256 Attributes, 

s 
s 

240 Instances 240 Instances 240 Instances 
(%) (%) (%) 

Naive Bayes 100 66.66 44.17 
SVM 100 48.75 32.08 
MPL 100 42.50 39.58 
IBL 100 37.50 30.42 
Bag 100 65.00 47.50 
AdaBMl 37.50 40.83 43.33 
RoFo 100 65.00 53.33 
C4.5 100 57.91 51.67 
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Fig. 5.3: Encryption accuracy with individual number of keys (1, 3 and 30) with 
ECBmode. 
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Multidimensional Scaling (MDS) for Different Numbers of Keys 

Figure 5.4 (a) shows the data scatter-plots and the centres of the 240 data points 

with different key sizes 1, 3 and 5. The plot shows the classes are found sporad­

ically, suggesting that the high recall and precision rates for AES are higher than 

for other algorithms, as shown in Table 5.3. The centres of the "clouds" of points 

for the 8 classes dataset are plotted in the same way as in the first experiment. In 

Figure 5.4 (b ), according to this plot, all algorithms have similar representation. 

Note that the scales of all plots are different. The class centres are indistinguish­

able if plotted on the axes of a sub-plot. Finally, we can say this highlights the 

difficulty in recognising the type of code through simple pattern classification 

methods. Figure 5.5 shows an image of the distance matrix computed by using 

classification identification accuracy of each encryption algorithm. The block of 

30-by-30 distances is outlined in black. Blue means high similarity while yellow 

and red indicate low similarity. The class labels are as follows: 1 AES (128), 2 AES 

(192), 3 AES (256), 4 DES (64), 5 IDEA (128), 6 RC2 (128), 7 RC2 (42) and 8 RC2 

(84). 

The encoding technique that stands out from the rest is AES. The 3-by-3 block 

sub-matrix in the top left corner is largely blue and shows the similarity within 

the code. Interestingly, the AES algorithm is distinct from the rest of the algo­

rithms; also note that the three versions of AES (128, 192, and 256) are not distinct 

within AES. The red vertical and horizontal lines demonstrate the unusually large 

distances compared to the rest. Unlike ECB, there is no clear pattern to suggest 

that any of the codes are distinct. 

With 3 and 5 keys, the same result was obtained, as shown in Figures 5.6 (a) and 

Figure 5.7 (b). Unlike ECB, there is no clear pattern to suggest that any of the 

codes are distinguishable. 
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Fig. 5.4: Scatter-plots of the 240 data points and the centres for the ECB mode 
with the 8-bit encoding using one key. 

Fig. 5.5: The Distance Matrix for ECB mode with the 8-bit encoding. The class 
labels are as follows: 1 AES(128), 2 AES(192), 3 AES(256), 4 DES(64), 5 
IDEA(128), 6 RC2(128), 7 RC2(42) and 8 RC2(84) 
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Fig. 5.6: Scatter-plots of the 240 data points and the centres for the ECB mode 
with 8-bit encoding using three keys. 

Fig. 5.7: The Distance Matrix for ECB mode with 8-bit encoding. The class la­
bels are as follows: 1 AES(128), 2 AES(192), 3 AES(256), 4 DES(64), 5 
IDEA(128), 6 RC2(128), 7 RC2(42) and 8 RC2(84) 
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Fig. 5.8: Scatter-plot of the 240 data points and the centres for the ECB mode with 
8-bit encoding encoding using five keys. 

Fig. 5.9: The image of the Distance Matrix for ECB mode with 8-bit coding. The 
class labels are as follows: 1 AES (128), 2 AES (192), 3 AES (256), 4 DES 
(64), 5 IDEA (128), 6 RC2 (128), 7 RC2 (42) and 8 RC2 (84) 

Effects of Different Instances on Performance 

Measurements of the performance against the numbers of keys were conducted 

using two datasets (8 classes and 4 classes). Different encryption text files, which 
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includes (120, 240 and 400 instances) were used and performed with 256 features 

from encryption algorithms. In this way, one can view the effects of different in­

stances on performance with the same 256 features. This experiment deals with 

the effect of increasing the number of encryption text files (instances) on overall 

accuracy as shown in Table 5.7. Here different encryption text files were used 

for each algorithm: AES 128-bit, DES 64-bit, IDEA 128-bit and RC2 128-bit. Thus 

the total numbers of the instances are 120, 240 and 400 respectively. With 120 in­

stances, each algorithm has 30 data points, with 240 each algorithm has 30 data 

points ( AES with three version keys (128-bit, 192-bit, 256-bit), DES 64-bit, IDEA 

128-bit and RC2 with three version key (128-bit, 42-bit, 84-bit) and 400 instances 

for each algorithm with 100 different files divided by 5 to find the accuracy. Fig­

ure 5.10 shows that all classifiers using 400 instances achieved the highest accu­

racy, while using 120 instances achieved the lowest accuracy. It is also evident 

that RoFo classifiers produce the most accurate results for all instances and IBL 

performs very badly when operating with 120 and 240 instances. 

Tab. 5.7: Accuracy resultsfor different instances with the same features (120,240,400) 
with ECB mode. 

Algorithms 120 Instances(%) 240 Instances(%) 400 Instances (%) 
Naive Bayes 43.00 44.17 82.25 

SVM 31.00 32.08 91.25 
MLP 30.00 39.58 92.25 
IBL 20.00 30.42 93.50 
BAg 25.00 47.50 86.75 

AdaBMl 30.00 43.33 39.00 
RoFo 45.00 53.33 93.00 
C4.5 31.00 51.67 83.00 
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Fig. 5.10: The accuracy for all algorithms with different instances (120, 240 and 
400 instances (BECC)) with ECB mode. 

Evaluation of Using 30 Numbers of Keys with 30 BECC Individually 

Experiments were also conducted using 8-bit with ECB mode. For individual 

classes, the confusion matrices simply inform how the classifier behaves. Each 

table was calculated using 4 classes with different numbers of keys and 240 data 

points were used: AES with three different keys(128, 192, 256-bit), DES 64-bit, 

IDEA 128-bit and RC2 (42, 84, 128-bit) with three different keys. In this case the 

number of samples in one class is significantly more than that in the other class 

resulting in what is called "imbalance", which happens often with different block 

cipher datasets. The accuracy evaluation of a classifier is not representative of the 

true performance of each classifier. In some of the tables, the reason for the large 

imbalances are that the number of the keys is too high, the effect of the type of 

classifier used and the type of the algorithm used. 

In the experiments, ECB mode used the same block cipher algorithms with the 

same classifiers. The difference was that 30 different data points were used for 

each algorithm individually as well as 30 different numbers of keys individually, 

which were divided into 8-bit blocks. Table 5.8 and Figure 5.11 show the classifi­

cation accuracy results of these eight classifiers. The experimental results, for the 

8 classes dataset (in the second column) reveal the classification accuracy. It can 

be observed that the RoFo achieved the highest accuracy classification of 30.83% 

meaning that 74 data points out of 240 were correctly classified. On the other 

hand, IBL had the lowest accuracy classification of 12.5% meaning that only 30 
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data point out of 240 were correctly classified. The reason for improved accuracy 

with RoFo and C4.5 classifiers is due to grouping the AES with the three keys in 

one class and the RC2 in one class and using random data. 

Tab. 5.8: Classification accuracy performance of the classifier four block cipher with ECB 
mode. 

~ 
8 Classes 4 Classes 

256 attributes, 256 attributes, 
240 Instances 240 Instances s 

s 

(%) (%) 

Naive Bayes 28.33 44.17 
SVM 17.08 32.08 
MPL 21.67 39.58 
IBL 12.50 30.42 
Bag 25.83 47.50 
AdaBMl 20.42 43.33 
RoFo 30.83 53.33 
C4.5 27.92 51.67 

The experimental results for the 4 classes dataset (in the third column) show 

that RoFo also outperforms all other classifiers with the classification accuracy 

of 53.33% meaning that only 128 data points out of 240 were correctly classified. 

IBL once again has the lowest accuracy classification of 30.42% meaning that only 

73 data points out of 240 were correctly classified. The reason for improved ac­

curacy is due to grouping the encryption keys to form one class of AES and the 

same for RC2 and using longer 16-bit data points. The results show that RoFo 

and C4.5 perform much better than the SVM classifier because AES with three 

different numbers of keys (128, 192 and 256) were combined and RC2 with (128, 

84 and 42) key sizes. 
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Fig. 5.11: The accuracy for each of the classifiers with ECB mode. 

Further experiments using 16-bit codes with ECB mode were conducted. In this 

part, the same eight classifiers were used with the same block cipher algorithms 

as used with 8-bit codes. However, the key lengths were changed. The main idea 

was to find the difference between all algorithms, and whether or not the key 

length effected accuracy. According to the results, it was found that when the key 

length was longer in ECB mode, there was a reduction in the accuracy. 

These experiments were performed on the 30 BECC encryption data files of fixed 

size (512 KB), that were divided into 16-bit codes . It can be observed from Table 

5.9 in the 8 classes dataset that Naive Bayes achieved the highest accuracy classi­

fication of 29.17% meaning that 70 instances out of 240 were correctly classified. 

On other hand, IBL had the lowest accuracy classification of 12.5% meaning that 

only 30 data points out of 240 were correctly classified. 

The experimental result of the 4 classes dataset again shows that the highest ac­

curacy was Naive Bayes but at 57.92%. This time, the Naive Bayes classifier cor­

rectly classified 139 instances out of 240. However, SVM had the lowest accuracy 

classification of 36.25% with only 87 input data out of 240 were correctly clas­

sified. Also Figure 5.12 shows that the Naive Bayes classifier obtained a higher 

accuracy in the 4 classes dataset and the lowest was the IBL classifier. However, 

in terms of using both RoFo and MLP classifiers with a 16-bit codes the result 

was not obtainable since the features were too many, despite using Java Virtual 

Machine CTVM) 64-bit and 6GB of RAM. According to Table 5.9, the IBL classifier 

again gave the worst results. 
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Tab . 5.9: Classification accuracy performance of the classifiers using four-block cipher 
algorithm with ECB mode. 

8 Classes 4 Classes 

~ s 65536 Attributes, 65536 Attributes, 
240 Instances 240 Instances s 

(%) (%) 

Naive Bayes 29.17 57.92 
SVM 17.08 32.08 
MPL No result No result 
IBL 12.50 37.50 
Bag 17.92 41.25 
AdaBMl 15.00 39.58 
RoFo No result No result 
C4.5 20.00 38.75 
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Fig. 5.12: The accuracy for each of the classifiers with ECB mode. 

5.4.2 Block Cipher Algorithms With CBC Mode 

This section shows the results with CBC mode with 8-bit and 16-bit using the 

same technique as for the ECB mode previously. The main purpose of these ex­

periments was to find the highest accuracy between the same datasets using the 

same block cipher algorithms and provide a comparison with ECB mode and 

how numbers of keys effected the accuracy. The accuracy results are also shown 

for each algorithm with 240 data points and with four block cipher algorithms: 

AES (128, 192 and 256-bit), DES 64-bit, IDEA 128-bit and RC2 (42,84 and 128-bit) 

using different numbers of keys for each algorithm. 

We combined two types of the algorithms to obtain a higher accuracy: AES-128, 
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AES-192 and AES-256 as one combination, RC2-128, RC2-42 and RC2-84 as the 

other combination. DES-64 and IDEA-128 were used individually. Therefore the 

8 classes dataset became a 4 classes dataset, where each row represents the known 

class of the data. Thirty BECC data points were used for each individual algo­

rithm (8 x 3 = 240). As in the calculations in the section above, the same equation 

in Section 5.2.2, was used and applied to all classifiers (Naive Bayes, SVM, MLP, 

IBL, Bag, AdaBMl, RoFo and C4.5) in CBC mode. 

Effects of Different Numbers of Keys with 120 Data Points using 8-bit Codes 

120 BECC encrypted text files were used with IDEA, AES, RC2 with 128-bit and 

DES 64-bit where each algorithm had 30 data points. The experiment was con­

ducted using different numbers of keys for each algorithm; Table 5.10 shows the 

experimental results of these classifications for the 4 classes dataset. The experi­

ment was conducted using different numbers of keys for each algorithm (1, 3, 5 

and 30). Figure 5.13 shows that no one number of the keys produced the high­

est accuracy since all had similar accuracy even with one key. This is due to the 

chaining nature in CBC mode, which means that each cipher depends on the ones 

before. 

Tab. 5.10: Accuracy results for the 4 classes dataset with 1, 3, 5 and 30 numbers of key 
sizes with CBC mode. 

~ 
lKey: 3Keys: 5Keys: 

30keys: 256 Attributes, 256 Attributes, 256 Attributes, 
120 Instances 120 Instances 120 Instances 256 Attributes, 

s 
s 

(%) (%) (%) 
120 Instances (%) 

Naive Bayes 18.33 16.66 27.50 23.33 
SVM 17.50 20.83 29.16 26.16 
MPL 26.66 25.83 28.33 20.00 
IBL 26.66 22.50 21.66 28.33 
Bag 25.00 27.50 20.83 29.16 
AdaBMl 20.83 23.33 18.33 24.16 
RoFo 25.00 24.16 28.33 17.50 
C4.5 23.33 31.66 29.16 21.66 
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Fig. 5.13: Encryption accuracy with the 4 classes dataset with CBC mode with 
different numbers of keys. 

Effects of Different Numbers of Keys with 240 Data Points using 8 and 16-bit 
Codes 

This section shows the results in CBC mode with 8-bit and 16-bit codes, which 

used the same technique as used in ECB mode described previously. The main 

purpose of these experiments was to found the highest accuracy between the 

same datasets and the same block cipher algorithms, to provide a comparison 

with ECB mode and find out how numbers of key did effect the accuracy. The 

accuracy results were determined for each algorithm with 240 data points (input 

files) (8 x 30) and with four block cipher algorithms: AES (128, 192 and 256-bit), 

DES 64-bit, IDEA 128-bit and RC2 (42,84 and 128-bit) used different numbers of 

keys for each algorithm. We combined two types of the algorithms to obtain a 

higher accuracy: AES-128, AES-192 and AES-256 as one combination, RC2-128, 

RC2-42 and RC2-84 as the other combination. DES-64 and IDEA-128 were used 

individually. Therefore the 8 classes dataset became a 4 classes dataset, where 

each row represents the known class of the data. Thirty data points were used for 

each individual algorithm . As in the calculations in the section above, the same 

equation, in Section 5.2.2, was used and applied to all classifiers (Naive Bayes, 

SVM, MLP, IBL, Bag, AdaBMl, RoFo and C4.5) in CBC mode here. 
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Using 8-bit codes 

Experiments were carried out in the same manner previously. Table 5.11 shows 

the classification accuracy result of the 8 classes dataset. According to the result, 

SVM achieved the highest accuracy classification of 15% meaning that only 36 

instances out of 240 were correctly classified. C4.5 achieved the lowest accuracy 

of 10.42% meaning that only 25 instances out of 240 were correctly classified. 

However, with 4 classes dataset, the highest accuracy obtained was AdaBMl 

36.25% meaning that only 87 instances out of 240 were correctly classified. In 

both datasets, Bag and C4.5 achieved the lowest classification accuracy of 28.33% 

meaning that only 68 instances out of 240 where correctly classified, while in 

4 classes dataset, both Bag and C4.5 achieved the same accuracy. This is due 

of using CBC mode and random data points. Furthermore, Figure 5.14 shows 

that there were slight differences between all classifiers with the 8 classes dataset. 

Also, 4 classes dataset had higher classification than dataset 8 classes. 

Tab. 5.11: Classification accuracy performance of the classifier with CBC mode. 

~ 
8 Classes 4 Classes 

256 Attributes, 256 Attributes, 
240 Instances 240 Instances s 

s 

(%) (%) 

Naive Bayes 12.99 30.83 
SVM 15.00 35.83 
MLP 10.83 33.33 
IBL 11.25 28.75 
Bag 10.83 28.33 
AdaBMl 14.58 36.25 
RoFo 10.83 31.67 
C4.5 10.42 28.33 
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Fig. 5.14: The accuracy for each classifiers with CBC Mode. 
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Table 5.12 and 5.13 show the experimental results of these classification (8 classes 

and 4 classes datasets). The simulation was conducted using various numbers of 

keys for each algorithm (1, 3, 5 and 30). It can be observed from Figure 5.15 that 

using one key did not lead to a higher accuracy and there were no big differences 

using various numbers of keys. In contrast, using 30 numbers of keys ( one for 

each file) resulted in no difference than using only key. The result did not show 

that the accuracy of the classification was reduced with an increase in the number 

of encryption keys. In addition, with 30 different keys, SVM achieved a lower ac­

curacy and RoFo achieved a higher accuracy. The reason for them not performing 

well is due to the chaining key nature in CBC mode that occurs. 

Tab. 5.12: The 8 classes dataset with different numbers of key sizes with CBC mode. 

~ 
lKey: 3Keys: 5Keys: 30Keys: 

256 Attributes, 256 Attributes, 256 Attributes, 256 Attributes, 
240 Instances 240 Instances 240 Instances 240 Instances 

s 
s 

(%) (%) (%) (%) 

Naive Bayes 12.50 11.66 11.25 14.58 
SVM 10.42 12.08 12.50 11.66 
MPL 12.50 11.25 10.83 12.91 
IBL 14.58 10.41 10.00 18.33 
Bag 14.58 16.25 10.00 14.16 

AdaBMl 12.08 10.41 08.70 11.25 
RoFo 11.25 14.58 12.08 17.50 
C4.5 09.58 14.16 15.00 18.75 
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Tab. 5.13: The 4 classes dataset with different numbers of key sizes with CBC mode. 

~ 
lKey: 3Keys: 5Keys: 30Keys: 

256 Attributes, 256 Attributes, 256 Attributes, 256 Attributes, 
240 Instances 240 Instances 240 Instances 240 Instances s 

s 

(%) (%) (%) (%) 

Naive Bayes 30.00 29.58 27.91 27.91 
SVM 26.66 28.33 30.00 27.50 
MPL 34.58 27.50 28.33 29.17 
IBL 30.83 27.08 30.83 32.85 
Bag 31.25 31.66 30.41 35.83 

AdaBMl 31.25 33.33 20.41 31.66 
RoFo 28.33 28.75 27.50 38.33 
C4.5 27.50 30.83 32.50 33.33 
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Fig. 5.15: Encryption classification accuracy with the 4 classes dataset with CBC 
mode with different numbers of key. 

Using 16-bit codes 

An experiment using 16-bit was performed in the same manner with CBC mode 

as above. Table 5.14 shows the classification accuracy result of the six classifiers 

(Naive Bayes, SVM, IBL, Bag, AdaBMl and C4.5) for the 8 classes dataset. Ac­

cording to Figure 5.16, the results show that IBL at 13% had the highest classi­

fication accuracy but only 31 instances out of 240 were correctly classified. On 

the other hand, Naive Bayes at 10.83% obtained the lowest accuracy but only 25 

instances out of 240 were correctly classified. 
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However, with the 4 classes dataset, the highest accuracy obtained was with Ad­

aBMl where the classifiers outperformed all the other classifiers with a classifi­

cation accuracy of 33.75%. It classified 81 instances correctly out of 240 while the 

lowest accuracy was C4.5 at 29.58% meaning 71 out of 240 were correctly classi­

fied. 

Tab. 5.14: Classification accuracy performance of the classifier four-block cipher with 
CBC mode. 

~ 
8 Classes 4 Classes 

65536 Attributes, 65536 Attributes, 
240 Instances 240 Instances s 

s 

(%) (%) 

Naive Bayes 10.39 32.90 
SVM 12.50 31.67 
MLP No result No result 
IBL 13.00 30.04 
Bag 12.08 31.67 
AdaBMl 12.08 33.75 
RoFo No result No result 
C4.5 10.83 29.58 
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Fig. 5.16: The accuracy for each classifier with CBC mode 16-bit codes. 
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Effects of Different Instances (120, 240 and 400) with CBC Mode 

The third experiment in CBC mode deals with the effect of increasing the number 

of input files (instances) on overall accuracy. The first dataset included 4 classes 

AES 128-bit, DES 64-bit, IDEA 128-bit and RC2 128-bit each with 30 input files. 

The second dataset included 8 classes each with 30 data points, AES (128, 192, 

256), DES 64, IDEA 128, RC2(42, 84, 128); and the third dataset included 4 classes 

were 100 input files were used (AES-128, DES-64, IDEA-128 and RC2-128). Thus, 

the total numbers of the instances were 120, 240 and 400 respectively. Table 5.15 

and Figure 5.17 shows that all classifiers using 400 input files achieved the highest 

accuracy and when using 120 input files they achieved the lowest accuracy. It is 

also obvious that AdaBMl classifier produced the best results for all instances, 

and C4.5 performed very poorly when operating with 120 and 240 instances. 

Tab. 5.15: Using different instances with the same features (120, 240 and 400) with CBC 
mode. 

Algorithms 120 Instances(%) 240 Instances(%) 400 Instances(%) 
Naive Bayes 25.00 27.50 30.83 

SVM 26.66 27.75 35.83 
MPL 28.00 28.25 33.33 
IBL 25.83 22.50 29.58 
Bag 26.00 25.25 28.33 

AdaBMl 25.00 26.00 36.25 
RoFo 27.00 26.75 31.67 
C4.5 23.00 25.25 28.33 
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Fig. 5.17: Encryption classification accuracy with CBC mode using different in­
stances for block ciphers. 

RC2, RC6, Blowfish, Twofish, XTA, CAST and DESede (128-bit) Algorithms 

In the final experiment, the effect of encrypting the plain-text was investigated for 

the following encryption algorithms: RC2, RC6, Blowfish, Twofish, XTA, CAST 

and DESede. The number of input files was 30 from the BECC with the number 

of keys also being 30. Here, Figure 5.18 shows that the Bag classifier achieved the 

best overall accuracy performance and that the IBL had the lowest accuracy. It 

was found that using 128-bit for each algorithm resulted in the highest classifica­

tion accuracy. 

3S 

30 

Fig. 5.18: Encryption classification accuracy RC2, RC6, Blowfish, Twofish, XTA, 
CAST and DESede algorithms. 
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Multidimensional Scaling (MDS) with 8-bit and 16-bit with ECB and CBC 
Modes. 
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Figure 5.19 (a) shows the scatter-plots of the 240 data points within two dimen­

sions for the ECB mode with the 8 encoding. The 8 classes are plotted with dif­

ferent markers. 
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Fig. 5.19: Scatter-plots of the 240 data points and the centres for the ECB mode 
with the 8 encoding. 

The scatter-plot indicates that the classes are highly overlapping, suggesting that 

the high recall and precision rates for AES (Table 5.8) are only possible in higher 

dimensions. The centres of the "clouds" of points for the (8 classes) are plotted 

in Figure 5.19 (b). According to this scatter-plot, AES has similar representation 

to that of RC2(42) and RC2(84). Note that the scales of the two scatter plots are 

different. The class centres are indistinguishable if plotted on the axes of the sub­

plot (a). This highlights the difficulty in recognising the type of code through 

simple pattern classification algorithms. 

Further insights about the relationship of the 8 methods can be gained by con­

structing and plotting a Distance Matrix. The (i,j)-th entry of Distance Matrix is 
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the distance between objects i and j in the original multidimensional space. In this 

study, the Distance Matrix is of size 240-by-240. The Matrix can be thought of as 

consisting of 8-by-8 blocks, each block corresponding to a pair of encoding meth­

ods. Each such block is itself a Matrix of size 30-by-30. For example, the block 

sitting at the top right corner of Distance Matrix will contain the distances by the 

30 messages encoded by AES-128 and then encoded by RC2-128. For the codes to 

be distinguishable, they have to exhibit high similarity within their "own" blocks 

and low similarity with other codes. 

Figure 5.20 shows an image of the Distance Matrix for ECB mode with 8-bit cod­

ing. The blocks of 30-by-30 distances are outlined with black lines. The blue 

colour indicates high similarity while yellow and red indicate low similarity. The 

encoding method that stands out from the rest is AES. The 3-by-3 block Sub­

matrix in the top left corner is largely blue, showing the similarity within the 

code. Apart from RC2(128), it is different from all other codes. The class labels 

are as follows: 1 AES (128), 2 AES (192), 3 AES (256), 4 DES (64), 5 IDEA (128), 6 

RC2 (128),7 RC2 (42) and 8 RC2 (84). 

This suggests that the AES encoding can be distinguished from the remaining 

codes. The three versions of AES (128, 194 and 256) are not distinguishable within 

AES, which is visible from the dark blue colour of the respective blocks. 

Fig. 5.20: The image of the Distance Matrix for ECB mode with the 8-bit encod­
ing. The class labels are as follows: 1 AES (128), 2 AES (192), 3 AES 
(256), 4 DES(64), 5 IDEA (128), 6 RC2 (128), 7 RC2(42) and 8 RC2(84) 

Interestingly, the largest within-block consistency is demonstrated by RC2 (128-

bit) (uniform dark blue within the block), while this does not match the other 

versions of the same encoding (RC2 (42-bit) and RC2 (84-bit)) . 

Figures 5.21 to 5.25 show the scatter-plots and the distance matrices for encodings 
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CBC mode with 8-bit , ECB mode with 16-bit and CBC mode with 16-bit encod­

ing. An interesting finding in Figure 5.21 (a) for CBC mode with the 8-bit coding 

is the cluster of outliers to the right of the main cluster. Further analyses showed 

that the points in this cluster do not come from a single message. The large dis­

crepancy of the differences skewed the colour plot of the respective Distance Ma­

trix as seen in Figure 5.22. The red vertical and horizontal lines demonstrate the 

unusually large distances compared to the rest. Unlike ECB mode, there is no 

clear pattern to suggest that any of the codes are distinguishable. 
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Fig. 5.21: Scatter-plots of the 240 data points and the centres for the CBC mode 
with the 8-bit encoding. 
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Fig. 5.22: The image of the Distance Matrix for CBC mode with the 8-bit encod­
ing. The class labels are as follows: 1 AES (128), 2 AES (192), 3 AES 
(256), 4 DEA (64), 5 IDEA (128), 6 RC2 (128), 7 RC2 (42) and 8 RC2 (84). 
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Fig. 5.23: Scatter-plots of the 240 data points and the centres for the ECB mode 
with the 16-bit encoding. 
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Fig. 5.24: The image of the Distance Matrix for ECB mode with the 16-bit encod­
ing. The class labels are as follows: 1 AES (128), 2 AES (192), 3 AES 
(256), 4 DEA (64), 5 IDEA (128), 6 RC2 (128), 7 RC2 (42) and 8 RC2 (84). 
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Fig. 5.25: Scatter-plots of the 240 data points and the centres for the CBC mode 
with the 16 encoding. 
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Fig. 5.26: The image of the Distance Matrix for CBC mode with the 16-bit encod­
ing. The class labels are as follows: 1 AES (128), 2 AES (192), 3 AES 
(256), 4 DEA (64), 5 IDEA (128), 6 RC2 (128), 7 RC2 (42) and 8 RC2 (84). 

5.5 Comparisons Between ECB and CBC Modes 

Using 8-bit and 16-bit encoding 

The purpose of this section is to compare the eight algorithms in both ECB and 

CBC modes when different key lengths (8-bit and 16-bit) were used. 

5.5.1 Using 8-bit codes with ECB and CBC Modes 

In the first experiment, the eight classifiers (Naive Bayes, SVM, MLP, IBL, Bag, 

AdaBMl, RoFo and C4.5) were compared in ECB and CBC modes with 8-bit 

codes. Table 5.16 and Figure 5.27 shows the classification accuracy result and 

the comparison between both modes. According to the experimental results in 

ECB mode, RoFo at 53.33% had the highest classification accuracy but in CBC 

mode no accuracy was obtained because there were too many features. 

In ECB mode, MLP obtained 13.33% but again, in CBC mode, no accuracy was 

obtained. In the second experiment, the same eight classifiers were compared in 

ECB and CBC modes with 16-bit codes, as shown in Figure 5.28. According to 

the results, Naive Bayes in ECB mode obtained the highest accuracy and MLP 

and RoFo in both modes were not obtained for the same reason as above. In 

addition, the results show that the ECB mode was more accurate than the CBC 

mode, which was not expected, because the CBC mode is key-chaining. In the 

authors view this was dependant on the types of classifier rather than on the 



Chapter 5. Encryption Classification for Block Cipher Algorithms 146 

types of the modes. 

Tab. 5.16: Classification accuracy performance of the classifier four-block cipher in ECB 
and CBC modes using 8-bit with 8 classes and 4 classes datasets. 

~ 
8 Classes 4 Classes 8 Classes 4 Classes 

256 Attributes, 256 Attributes, 256 Attributes, 256 Attributes, 
240 Instances 240 Instances 240 Instances 240 Instances s 

s 

ECB (%) ECB (%) CBC(%) CBC(%) 

Naive Bayes 28.33 44.17 12.90 30.33 
SVM 17.08 32.08 15.00 35.83 
MLP 21.67 39.58 10.83 33.33 
IBL 12.50 30.42 11.25 29.58 
Bag 25.83 47.50 10.83 28.33 
AdaBMl 20.42 43.33 14.58 36.67 
RoFo 30.83 53.33 10.83 31.67 
C4.5 27.92 51.67 10.42 28.33 
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Fig. 5.27: The accuracy for each of the classifiers with ECB and CBC modes. 
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5.5.2 Using 16-bit Codes with ECB and CBC Modes 

In the third experiment, the same classifiers were compared in ECB mode with 

16-bit. Table 5.16 shows that Naive Bayes has the highest accuracy of 29.17% with 

70 instances out of 240 were correctly classified with the 4 classes dataset. 

Table 5.17 shows that with CBC mode, AdaBMl has the highest accuracy of 

14.58% only were 35 instances out of 240 were correctly classified for the 8 classes 

dataset, which was also the case for the 4 classes dataset, although the percentage 

was 36.25% were only 87 instances out of 240 were correctly classified . The ex­

periment showed that using 8-bit attributes had more accuracy than using 16-bit 
attributes. 

Tab. 5.17: Classification accuracy performance of the classifier four-block cipher with 
ECB and CBC modes. 

~ 
8 Classes 4 Classes 8 Classes 4 Classes 

65536 Attributes, 65536 Attributes, 65536 Attributes, 65536 Attributes, 
240 Instances 240 Instances 240 Instances 240 Instances thms 

s 

ECB (%) ECB (%) CBC(%) CBC(%) 

Naive Bayes 29 .17 57.92 10.39 32.90 
SVM 13.33 36.25 12.50 31.67 
MLP No result No result No result No result 
IBL 12.50 37.50 13.00 30.04 
Bag 17.92 41.25 12.08 31.67 
AdaBMl 15.00 39.58 12.08 33.75 
RoFo No result No result No result No result 
C4.5 20.00 38.75 10.83 29.58 
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Fig. 5.28: The accuracy for each of the classifiers with ECB and CBC modes. 
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5.5.3 Finding the Most Accurate Classification Results with 

ECB and CBC Modes 

Classification Results for 8-bit Codes 

148 

According to the results, RoFo shows the most accurate classification table of 

all the algorithms. Table 5.18 (a) below, a confusion matrix, is a representative 

set of results from 8 classes of RoFo classifications. The table includes 240 data 

points for each block cipher algorithm (AES, DES, IDEA and RC2) in ECB mode. 

Each row in the confusion matrices corresponds to the known class of the data, 

and each column represents the predicted classifications. Table 5.18 (b) 4 classes 

shows that the model correctly predicted the positive classes for AES, 64 times 

and incorrectly 26 times, for DES, 8 times correctly and 22 times incorrectly, for 

IDEA, 6 times correctly and 24 times incorrectly and for RC2, 50 times correctly 

and 40 times incorrectly. The resulting accuracy was 53.33% (128 out of 240 cor­
rectly classified). 

Actual class IDEA-128 RC2-128 RC2-42 RC2-84 

AES-128 0 1 7 2 0 
AES-192 0 0 8 0 2 
AES-256 0 3 0 3 
DES-64 11 0 2 9 

IDEA-128 0 0 7 9 
RC2-128 4 2 0 0 21 0 0 
RC2-42 0 0 5 9 0 9 6 
RC2-84 0 0 10 6 0 8 6 

(a) Confusion matrix for RoFo classifier (8 classes). 

AES DES IDEA RC2 

1 25 
DES 

IDEA 
RC2 10 

(b) Confusion matrix for RoFo classifier (4 classes)). 

Tab. 5.18: RoFo Confusion matrix using 8-bit. 

Classification Results for 16-bit Codes 

The Naive Bayes classifier with ECB mode, as shown in Table 5.19 (a), was the 

most accurate for 8 classes for all encryptions with different encryption keys. Ta­

ble 5.19 (b) 4 classes, which is a combination of all encryption key algorithms, 

shows that the model correctly predicted the positive class for AES, 64 times and 
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incorrectly predicted it 26 times, for DES, 8 times correctly and 22 times incor­

rectly, for IDEA, 6 times correctly and 30 times incorrectly and for RC2, 50 times 

and 40 times incorrectly. The resulting accuracy was 57.92% (139 out of 240 cor­

rect! y classified). 

Actual class IDEA-128 

AE5128 0 
AES-192 0 
AES-256 0 
DES-64 11 

IDEA-128 
RC2-128 1 
RC2-42 0 10 
RC2-84 0 0 9 

(a) Confusion matrix for Naive Bayes classifier (8 classes) 

Predicted class 
AES DES IDEA RC2 

Actual class 

AES 
DES 

IDEA 
RC2 

(b) Confusion matrix for Naive Bayes classifier (4 
classes)) 

RC2-128 RC2-42 

1 0 
1 0 
2 3 
0 2 
0 6 
20 0 
0 3 
0 6 

Tab. 5.19: Naive Bayes confusion matrix for the 16-bit codes. 

RC2-84 

2 
2 
0 
7 

6 
1 
11 

5 
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5.5.4 Execution Time to Build the Model 

Execution Times to Build the Model with ECB Mode 

Table 5.20 shows the results of the comparison that was conducted with respect 

to the time taken to build the model, with the two key lengths, 8-bit and 16-bit 

codes for all 8 classes. It can be observed that the C4.5 classifier has the highest 

time requirement to build the model in all experiments. In addition, IBL and 

Naive Bayes classifiers need less time requirement to build the model in ECB 

mode. 

Tab. 5.20: Time taken to build the model with 8-bit and 16-bit in the ECB mode. 

Algorithms 8-bit (seconds) 16-bit (seconds) 
Naive Bayes 0.12 4.10 
SVM 2.48 16.54 
IBL 0.01 0.35 
Bag 2.82 132.12 
AdaBMl 0.14 4.86 
C4.5 0.90 57.01 

Execution Times to Build the Model with CBC Mode 

Table 5.21 shows the results of the comparison that was conducted with respect 

to the time taken to build the model, along with the two key lengths, for 8-bit and 

16-bit codes for all 8 algorithms. Again, it can be observed, that the C4.5 classifier 

has the highest time requirement to build the model in all experiments. 

Tab. 5.21: Time taken to build the model with 8-bit and 16-bit codes with CBC 
mode. 

Algorithms 8-bit (seconds) 16-bit (seconds) 
Naive Bayes 0.03 4.02 

SVM 1.86 16.38 
IBL 0.00 0.35 
Bag 1.68 123.83 

AdaBMl 0.05 4.61 
C4.5 0.72 143.97 



Summary 

In this chapter, Pattern Recognition was found to be a useful tool to identify the 

encryption mode and classification of encrypted plain-text files. 

The main purpose of this chapter was to show the impact on the classification 

accuracy of the different key sizes (1, 3, 5 and 30) with different input data sizes 

(120, 240 and 400 instances), as well as using different Symmetric cipher algo­

rithms (block cipher algorithms) with different encryption key sizes, and in ECB 

and CBC modes. In addition, two datasets using 8 classes and 4 classes with 8-bit 

and 16-bit codes were used. 

In this study, the accuracy for the eight classifiers (Naive Bayes, SVM, MPL, IBL, 

Bag, AdaBMl, RoFo and C4.5) was evaluated. The experiments were performed 

using the WEKA Machine Learning Platform. The aim was to find the best clas­

sification algorithm with the highest accuracy for four different block ciphers for 

the first group that includes: DES, IDEA, AES and RC2; and for the second group 

that includes: RC2, RC6, Blowfish, Twofish, XTA, CAST and DESede (128-bit). 

Experiments were conducted to identify encryption algorithms of encrypted data 

using a variety of classifiers. First the results of the experiments show that Pattern 

Recognition techniques are useful tools for cryptanalysis as a means of identify­

ing the type of encryption algorithm used to encrypt the data. 

This work shows, that as expected, increasing the number of encryption keys will 

result in reducing the classification accuracy. The results show that it is possible to 

achieve an accuracy above 40% with some classifiers when each file is encrypted 

with different numbers of keys. It was also clear that increasing the number of 

files used also improves accuracy. 

In the second experiment, the keys used were different for each text data. These 

results show that the RoFo classifier had the best performance when identify­

ing the encryption method for ciphered data, while IBL performance was the 

worst. Furthermore, the performance of the classifiers improved significantly 

when identification of 4 classes (encryption) was considered. It was noted that 

the three versions of AES (128, 192 and 256) were not distinguishable within AES. 

Further, RC2 (128-bit) does not match the other versions of the same encoding 
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RC2 (42, 84-bit). 

The performance of each of the classifiers was presented, and the experimental 

results show that in general, the RoFo classifier has the highest classification ac­

curacy. As a result, it was considered that Pattern Recognition could be used as a 

useful tool for accuracy. 

Finally, as expected, the CBC mode needs more processing time than the ECB due 

to its key-chaining nature. However, in terms of using both RoFo and MLP clas­

sifiers with 16-bit, the result was not accurate since there were too many features, 

despite using a 64-bit Java Virtual Machine (JVM) and 6GB of RAM. An interest­

ing point was that the ECB mode obtained higher accuracy classification than the 

CBC mode, which was not expected due to key chaining. 



Chapter 6 

Encryption Classification for Stream Cipher 

Algorithms 

The purpose of this chapter is to use of Pattern Recognition (PR) techniques for 

identification of the encryption method used from the encrypted plain-text file 

for stream ciphers. Different classifiers were used for identification and the study 

also provides a comparison between stream and block cipher algorithms. An 

overview of the the study in Section 6.1. Section 6.2 explains the methodology 

and Section 6.3 addresses identification encryption method and Section 6.4 de­

scribes the experimental setting. Section 6.5 compares the classifier results be­

tween stream and block cipher algorithms. The chapter concludes with a sum­
mary. 

6.1 Introduction 

In cryptography, one can distinguish between a block and stream algorithm. The 

stream cipher-text could be any length whereas the block cipher have to be in 

increments of the block sizes. Moreover, distinguishing between different types 

of stream cipher is far more difficult but possible under further assumptions. The 

basic point is to remember is that stream cipher algorithms can encrypt data of 

any size and does not require that the size is known in advance. Also the same 

algorithm is applied to encrypt and decrypt the data. 

6.2 Methodology 

In this section, the same methodology were used as has been used in the previous 

chapter. The encryption was carried out by using Crypto++ library. Again a 

Matlab program was used to build the WEKA file. The classifiers used in WEKA 
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included: Naive Bayes (NB), SVM, IBL, AdaBMl, RoFo and C4.5 classifiers. In 

this experiment, first 8-bit codes file data points were selected and then 16-bit 

code file data points were selected. The aim was to compare between them to 

determine which one provides better accuracy. 

6.3 Identification of Encryption Method 

This section presents the results of the experiments that were conducted in order 

to study the performance of the proposed classification method. The identifica­

tion of encryption method for input stream ciphers are presented with each data 

input file being a data point in our dataset. The study included the following five 

different stream cipher algorithms and four block cipher algorithms: 

• Stream cipher algorithms: Grain 128-bit, He 128-bit, RC4 128-bit, Salsa20 

128-bit and VMPC 128-bit. 

• At the end of the chapter, the result are compared with the following block 

cipher algorithms: AES (128, 192 and 256-bit), DES 64-bit, IDEA 128-bit and 

RC2(42, 84 and 128-bit). 

In this experiment, 8-bit character coded data files were selected, and Matlab 

was used to extract histograms of the encrypted dataset. We also used the same 

method with 16-bit character coded files. For these experiments, we have selected 

the 30 files from the BECC dataset (150 data points for stream ciphers and 240 data 

points for block ciphers) to produce 150 and 240 data points that can be found in 

the DVD. The encryption was carried out by using the Crypto++ library. Then a 

Matlab program was used to create the WEKA input files. For more information 

about how these were created files, see Section 4.5 in Chapter 4. 

6.4 Experimental Results 

This section explains the results of the experiments for the evaluation of the clas­

sifier encrypted text using stream cipher algorithms and block cipher algorithms 

for comparison. The training set used for the experiments one class used for 

stream cipher algorithms later on these are compared with two classes for block 

ciphers algorithms. The testing set was used to identify the unknown stream and 
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block that were to be classified. Ten fold cross-validation was used and all clas­

sifiers were trained using the same training sets and were tested using the same 

testing sets to establish the classification. 

We have also used the confusion matrices find the highest accuracy and the Mul­

tidimensionality Scaling (MDS) method was used to find the similarities and dis­

similarities between algorithms. The equation in section 5.2.2 was used and ap­

plied to all classifiers (Naive Bayes, SVM, MLP, IBL, Bag, AdaBMl, RoFo and 
C4.5). 

Figure 6.1 shows sample output from WEKA for the Naive Bayes classifier. The 

150 BECC encryption text files was used as data points for the training and testing 

sets as in chapter 5. The following is a sample of Naive Bayes classifier, which 

was one of the eight different classifier that were investigated. The Naive Bayes 

classifier obtained 14.67% accuracy with 22 times out of 150 correctly classified 

and 85.33% accuracy with 128 out of 150 times incorrectly classified. 
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=== Run information == 

Scheme: weka.classifiers.bayu.NaiveBayas 

lnsbnces: 150 

Attributes: 151 

Tut mode: 10-fold cross-validation 

=== Classifier model (full traininc set) == 

nme t aken to build model: 0.03 seconds 

===Summary == 

Correctly Classified Instances 22 

Incorrectly Clu sified Instances 128 

Kappa statistic 

Mean absolute error 

Root mean squared error 

Relative absolute error 

Root relat ive squared error 

Total Number of lnstancu 

=== Confusion Matrix === 

a b c d • < .. classified as 

4 512 8 l I • = l 

76610llb=2 

6788l l c = 3 

10 7 s 4 1 I d = 4 

879601•=5 

14.6667 'l6 

85.3333 'l6 

•0,0667 

0.3365 

0.5266 

105.1717 % 

131.6544 % 

150 

Fig. 6.1: Classification result of Naive Bayes classifier from WEKA. 

6.4.1 Results of Stream Cipher algorithms 

156 

First, experiments were conducted using an 8-bit encoding. For each class, the 

confusion matrix was used to find the correct and incorrect classifier between 

d ifferent types of stream cipher algorithms. The following describes the exper­

imental results. Tables 6.1 (a), (b), (c) and (d) show the confusion matrices for 

different types of classifier. Five classes were used with the 30 BECC encryption 

text files using 30 different key sizes. The table shows that all the classifiers had 

similar accuracy of around 20%. In addition, the system struggled to distinguish 

between them due to the randomness of the datasets. In summary, MLP shows 

the highest accuracy with 21.33%, second was SVM with 20%, third was IBL clas­

sifier with 19% and finally NB obtained the lowest accuracy w ith 14%. 
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Grain128 HC128 RC4-128 Salsa20 VMPC 

Grain128 1 
H C128 0 

RC4-128 3 
Salsa20 9 
VMPC 11 7 

(a) Confusion matrix for NB classifier 

Grain128 HC128 RC4-128 Salsa20 VMPC 

Grain128 3 7 0 
HC128 9 0 

RC4-128 0 
Salsa20 5 
VMPC 8 12 

(b) Confusion matrix for SVM classifier 

Predicted class 
Grain128 HC128 RC4-128 Salsa20 VMPC 

Actual class 

Grain128 6 7 
HC128 6 

RC4-128 1 6 
Salsa20 1 13 
VMPC 2 13 

(c) Confusion matrix for MLP classifier 

Grain128 HC128 RC4-128 Salsa20 VMPC 

5 3 
5 5 

RC4-128 
Salsa20 5 8 
VMPC 7 8 

(d) Confusion matrix for IBL classifier 

Tab. 6.1: Confusion matrix for Naive Bayes, SVM, MLP and IBL classifiers. 

Tables 6.2 (a), (b), (c) and (d) show similar results with similar difficulties in dis­

tinguishing between the algorithms. The reason for the similar results again is 

due to the random nature of the dataset as mentioned before. 
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Predicted class 
Grain128 HC128 RC4-128 Salsa20 VMPC 

Actual class 

Grain128 
HC128 

RC4-128 
Salsa20 
VMPC 

(a) Confusion matrix for Bag classifier 

Grain128 HC128 RC4-128 Salsa20 VMPC 

Grain128 
HC128 

RC4-128 
Salsa20 
VMPC 

(b) Confusion matrix for AdaBMl classifier 

Grain128 HC128 RC4-128 Salsa20 VMPC 
Actual class 

Grain128 4 6 
HC128 5 

RC4-128 7 
Salsa20 5 
VMPC 6 4 

(c) Confusion matrix for RoFo classifier 

Predicted class 
Grain128 HC128 RC4-128 Salsa20 VMPC 

Actual class 

Grain128 
HC128 

RC4-128 
Salsa20 
VMPC 

(d) Confusion matrix for C4.5 classifier 

Tab. 6.2: Confusion matrix for Bag, AdaBMl, RoFo and C4.5 classifiers. 

Experiments were also conducted using 16-bit encoding. Tables 6.3 (a), (b), (c) 

and (d) show similar results with similar difficulties in distinguishing between 

the algorithms. The highest accuracy obtained was the Naive Bayes classifier 

with 26.66%. In second place were for the MLP classifier 24.66% and SVM came 

in third place with 21.33% accuracy, and the lowest accuracy obtained was IBL 

forth place at 20.66%. 



Chapter 6. Encryption Classification for Stream Cipher Algorithms 159 

Grain128 HC128 RC4-128 Salsa20 VMPC 
Actual class 

Grain128 
HC128 
RC4-128 
Salsa20 
VMPC 

(a) Confusion matrix for NB classifier 

Grain128 HC128 RC4-128 Salsa20 VMPC 

Grain128 
HC128 

RC4-128 
Salsa20 
VMPC 

(b) Confusion matrix for SVM classifier 

Predicted class 
Grain128 HC128 RC4-128 Salsa20 VMPC 

Grain128 5 4 
HC128 6 

RC4-128 
Salsa20 7 
VMPC 8 

(c) Confusion matrix for MLP classifier 

Grain128 HC128 RC4-128 Salsa20 VMPC 
Actual class 

Grain128 6 8 
HC128 4 

RC4-128 11 5 
Salsa20 6 7 
VMPC 9 10 

(d) Confusion matrix for IBL classifier 

Tab. 6.3: Confusion matrix for Naive Bayes, SVM, MLP and IBL classifiers. 

The results for Bag, AdaBMl, RoFo and C4.5 shown in Tables 6.3 (a), (b), (c) and 

(d). The highest accuracy obtained was the AdaBMl classifier with 25.33%. In 

second place were the RoFo classifier 20% and Bag came in third place with 

18.66% accuracy, and the lowest accuracy obtained was C4.5 forth place at 17.33%. 

According to the confusion matrix results the system can not distinguish between 

those algorithms. When 16-bit encoding is used. 
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Grain128 HC128 RC4-128 Salsa20 VMPC 
Actual class 

Grain128 
HC128 
RC4-128 
Salsa20 
VMPC 

(a) Confusion matrix for Bag classifier 

Grain128 HC128 RC4-128 Salsa20 VMPC 
Actual class 

Grain128 0 0 0 
HC128 0 0 
RC4-128 28 2 
Salsa20 28 
VMPC 22 

(b) Confusion matrix for AdaBMl classifier 

Grain128 HC128 RC4-128 Salsa20 VMPC 

6 
HC128 6 
RC4-128 4 
Salsa20 
VMPC 6 

(c) Confusion matrix for RoFo classifier 

Predicted class 
Grain128 HC128 RC4-128 Salsa20 VMPC 

Actual class 

Grain128 
HC128 
RC4-128 
Salsa20 
VMPC 

(d) Confusion matrix for C4.5 classifier 

Tab. 6.4: Confusion matrix of Bag, AdaBMl, RoFo and C4.5 classifier. 

Further experiments were conducted to compare the classification accuracy per­

formance of eight classifiers with the five stream cipher algorithms: Grain128, 

HC128, RC4, Salsa20 and VMPC algorithms. The aim was to find the best classi­

fication algorithm with the highest accuracy for the five stream ciphers. 

For this experiment, one dataset was used, which had 5 classes ( one for each 

algorithm) and 150 (BECC) encryption text files were selected as shown in Figure 

6.2. 
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Stream ciphers 

s eJ Grain HC VMPC 

1281 1281 1281 1281 1281 

CJ [:] [:] [:] [:] 

Fig. 6.2: Diagram of stream cipher algorithms with 150 variation as used to pro­
duce the data points. 

Table 6.5 shows the accuracy of the eight classifiers. Column two represents the 

dataset 5 classes using 8-bit coding and the third column represents the dataset 5 

classes 16-bit coding. Figure 6.3 shows that Naive Bayes was the highest accuracy 

of 26.67% with 27 instances out of 150 correctly classified for the 16-bit coding. 

The results for the C4.5 with an accuracy of 17.33%. 

However, the IBL and Bag classifiers both had the same accuracy of 19.33% with 

29 instances out of 150 being correctly classified. Naive Bayes had lowest accu­

racy of 14.66% with 9 instances out of 150 were correctly classified. The table also 

shows that there is a slight different between all classifiers when using 8 bit and 

16 bit encodings. For example, AdaBMl obtained higher accuracy for 8-bit cod­

ing. This is due to higher security of stream cipher algorithms since they encrypt 

each bit and byte separately, unlike block cipher algorithms. 
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Tab. 6.5: Classification accuracy performance of the classifier with five stream ciphers. 

~ s 

s 

Naive Bayes 
SVM 
MPL 
IBL 
Bag 
AdaBMl 
RoFo 
C4.5 

215 

20 . .. 

10 

6 . " ' .... 

Dataset with 5 stream cipher 

SVM 

256 Attributes, 
150 Instances 

MLP 

(%) 

14.66 
20.00 
21.33 
19.33 
19.33 
23.33 
14.00 
16.66 

ll!L Bag 
Type of clauO:::ation 

Dataset with 5 stream cipher 
65536 Attributes, 

150 Instances 
(%) 

26.66 
21.33 
24.66 
22.00 
18.66 
25.33 
20.00 
17.33 

AdaBM1 RoFo C4.6 

Fig. 6.3: An accuracy of stream cipher algorithms. 

6.4.2 Multidimensional Scaling (MOS) 

This section describes results from further investigation into the classification ex­

periments. Figure 6.4 (a) demonstrates the scatter-plots of the 150 BECC encryp­

tion text files (data points) in two dimensions for the 8-bit coding. The data is 

plotted using different markers for the five algorithms. 

The scatter-plot shows that the classes are overlapping to a large degree, suggest­

ing that the high recall and precision rates for HC128, Table 6.5, are only possible 

in higher dimensions. The centres of the "clouds" of points for the five classes are 

plotted in Figure 6.4 (b ). According to this scatter-plot, all algorithms have sim­

ilar representation. The class centres are indistinguishable if plotted on the axes 
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Fig . 6.4: Scatter-plots of the 150 data points and the class centres for the 8-bit 
encoding. 

of sub-plot Figure 6.4 (a). This highlights the difficulty in recognising the type of 

encryption through simple classification algorithms. 

Additional insights about the relationship of the five algorithms can be gained 

by constructing and plotting a Distance Matrix. The (i,j)-th entry of the Distance 

Matrix is the distance between objects i and j in the original multidimensional 
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space. In this study, the Distance Matrix is of size 150-by-150. The matrix can 

be thought of as consisting of 5-by-5 blocks, each block corresponding to a pair 

of encoding methods. Each one of these cipher streams is itself a matrix of size 

30-by-30. For example, the block sitting at the top right corner of Distance Ma­

trix will contain the distances by the 30 messages encoded by Grain128 and then 

encoded by VMPC. For the codes to be distinguishable, they have to exhibit high 

similarity within their "own" blocks and low similarity with other codes. 

Figure 6.5 shows an image of the Distance Matrix for the 8-bit encoding case. 

The blocks of 30-by-30 distances are outlined in black. The blue colour indicates 

high similarity while red indicates low similarity. The 3-by-3 block sub-matrix 

in the top left corner is largely blue, showing the similarity within the code. The 

five algorithms are not distinguishable, which is visible because of the dark blue 

colour of the respective blocks. 

Fig. 6.5: An image of the Distance Matrix for 8-bit encoding. The class labels are 
as follows: 1 Grain (128), 2 HC (128), 3 RC4 (128), 4 Salsa20 (128) and 5 
VMPC (128). 

Figure 6.6 (a) the 16-bit coding shows the cluster of outliers to the right of the 

main cluster. Further analysis results that the points in this cluster do not come 

from a single message. The large discrepancy of the differences skewed the colour 

scatter-plot of the respective Distance Matrix, as seen in Figure 6.7. The red ver­

tical and horizontal lines demonstrate the unusually large distances compared to 
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the rest. Unlike the 8-bit coding, there is clear pattern to suggest that none of the 

codes are distinguishable. 
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Fig. 6.6: Scatter-plots of the 150 data points and the class centres for the 16-bit 
encoding. 
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Fig. 6.7: An image of the Distance Matrix for 16-bit. The class labels are as fol­
lows: 1 Grain (128), 2 HC (128), 3 RC4 (128), 4 Salsa20 (128) and 5 VMPC 
(128). 

6.4.3 The Most Accurate Classifier Results 

For 8-bit codes 

According to the results, the AdaBMl classifier is the most accurate classifier of 

all the algorithms. Table 6.5 below is a representative set of results from the five 

classes. The table includes a total of 150 (8 x 3) BECC encrypted text files for 

each stream cipher algorithm: Grain128, HC128, RC4, Salsa20, and VMPC. Each 

row shows the results for each class, and the columns represent the predicted 

classes. The correct predictions are along the red diagonal; for example, only six 

of the Salsa20s were correctly classified but only zero of the VMPC were correctly 

classified. These results also shows that RC4 and VMPC algorithms are distin­

guishable from the rest. 

From the AdaBMl confusion matrix, in Table 6.6 we see that the accuracy rate is 

(38/150) X 100 = 25.33%. 
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Tab. 6.6: Confusion matrix of AdaBMl classifier. 

Algorithms 
Grain128 
HC128 
RC4-128 
Salsa20 
VMPC 

For 16-bit codes 

1 

2 
3 

Salsa20 VMPC 
0 1 
3 0 

1 
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This section describes the results for the 16-bit encoding case. The most accurate 

classifier was found to be the Naive Bayes classifier as shown in Table 6.7. The 

correct predictions lie along the red diagonal, which shows that our classification 

correctly classified seven of the Grain128 algorithms, six of the HC128 algorithms, 

ten of the RC4 algorithms, seven of the Salsa20 and ten of the VMPC algorithms. 

This means that both Grain128 and VMPC algorithms are distinguishable from 

the rest because of their high accuracy, and it impossible to identify the RC4 al­

gorithm due to its low accuracy. 

From the Naive Bayes confusion matrix in Table 6.7, we see that the accuracy rate 

is ( 40 / 150) X 100 = 26.66%. 

Tab. 6.7: Confusion matrix of Naive Bayes classifier. 

Algorithms Salsa20 VMPC 
Grain128 3 3 6 
HC128 6 4 
RC4 3 
Salsa20 4 7 
VMPC 7 3 

6.5 A Comparison Between the Classification of 

Stream and Block Cipher Algorithms 

This section compares the results for stream ciphers nd block ciphers. Tables 6.8 

and 6.9 show that in the block cipher algorithms most of the classifier obtained 

a higher accuracy compared to stream cipher algorithms. Figure 6.8 shows that 

RoFo classifiers have a better overall accuracy performance, whereas and RoFo 

achieved the lowest accuracy with stream ciphers. But Figure 6.9 shows that 

Naive Bayes with block ciphers have a better accuracy and MLP and RoFo both 

are none accuracy as mentioned in previous chapter. In general, stream cipher 
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algorithms are more difficult to classify than block ciphers due to random nature 

of the datasets. 

Tab. 6.8: Comparing accuracy between stream and block ciphers using 8-bit cod­
ing. 

Algorithms Block ciphers (4 classes)% Stream ciphers (5 classes)% 
Naive Bayes 44.17 14.66 
SVM 32.08 20.00 
MPL 39.58 21.33 
IBL 30.42 19.33 
Bag 47.50 19.33 
AdaBMl 43.33 23.33 
RoFo 53.33 14.00 
C4.5 51.67 16.66 

60 ~-------
53.33 

Naive Bayes SVM MPL IBL Bag Ada BMl RoFo (4.5 

■ wi th 4 block cipher classes ■ With 5 stream cipher classes 

Fig. 6.8: Accuracy result for block and stream ciphers with 8-bit codes. 

Tab. 6.9: Comparing accuracy between stream and block for 16-bit codes. 

Algorithms Block ciphers (4 classes) % Stream ciphers (5 classes) % 
NB 57.92 26.66 
SVM 32.08 21.33 
MPL None 24.66 
IBL 37.50 22.00 
Bag 41.25 18.66 
AdaBMl 39.58 25.33 
RoFo None 20.00 
C4.5 38.75 17.33 



Chapter 6. Encryption Classification for Stream Cipher Algorithms 169 

70 ,---------------------------------

60 

so 

40 

30 

20 

10 

0 

Naive Bayes SVM MPL IBL Bas AdaBMl RoFo (4.5 

■ with 4 block cipher classes ■ with S stream cipher classes 

Fig. 6.9: Accuracy result for block and stream ciphers with 16-bit codes. 



Summary 

The aim of this chapter was to find the most accurate classification algorithm for 

the five different stream cipher algorithms Grain128, HC128, RC4, VMPC and 

Salsa20 and then to compare with block cipher algorithms. The results showed 

that with 8-bit encoding of the encrypted files, the highest accuracy obtained was 

the AdaBMl classifier with 23.33% and lowest was the RoFo classifier with 14%. 

There was only a slight difference between algorithms and essentially the system 

had difficulty distinguishing between all stream cipher algorithms. For 16-bit 

encoding, the highest accuracy obtained was for the Naive Bayes classifier with 

26.67%, and the lowest accuracy was C4.5 classifier with 17.33%. Again it was ob­

served that the system had difficulty distinguishing between all the algorithms. 

In addition, when the 8-bit and 16-bit encoding results were compared for all al­

gorithms the difference in accuracy was found to be slight with AdaBMl classifier 

had obtained the best accuracy 25.33 %. Further, the five algorithms used with 

the 16-bit encoding are not distinguishable, unlike with the 8-bit encoding case 

where there is a clear pattern. 

For stream cipher algorithms, we obtained much lower accuracy compared to 

block cipher algorithms due to the stream cipher algorithms producing encrypted 

output with less patterns that could be explained for classification by the differ­

ent classification algorithms. Some of the algorithms were using streaming data 

which also provided greater security. 

In summary, our experimental results showed that stream cipher algorithms are 

more difficult compared to block cipher algorithms to classify encrypted output. 

This is due to the bit based streaming approach adopted by the algorithms and 

the randomly distributed characters that was consequently produced in the en­

crypted output. 



Chapter 7 

Conclusion and Future Work 

A summary of the most important results and directions for future work are pre­
sented in this chapter. 

The capability of encryption and decryption information is crucial to secure fi­

nancial transactions and even elementary forms of on-line privacy. Cryptology 

has two categories: cryptography and cryptanalysis. Cryptanalysis characteris­

tically involves learning how resistant a cipher is for distinguishing attacks and 

to recover the key. Most studies in cryptanalysis begin with the hypothesis that 

encryption and method of operation are already identified. One of the crucial 

problems in cryptanalysis is identifying the encryption method used. There has 

been comparative very little work done on this problem using Pattern Recogni­

tion classification techniques. The purpose of the research has been to determine 

whether Pattern Recognition can be used to identify the encryption method. 

7.1 Review of Thesis 

This thesis investigated the hypothesis that Pattern Recognition classification can 

be used as a useful tool used to help identify the encryption method used to 

encrypt data. The experimental results support the hypothesis for block cipher 

algorithms but not for stream cipher algorithms and highlights the importance of 

using Pattern Recognition for encryption classification. It provides a reference to 

guide researchers who are interested in contributing towards the same area in the 

study of cryptography algorithms. Other researchers can also benefit by using 

the Bangor Sources Files Corpus (BSFC) and Bangor Encryption Classification 

Corpus (BECC) that were used for the evaluation. 

A brief summary of the dissertation is follows: 

Chapter 2 provides an overview of cryptography and cryptanalysis. Crypto­

graphic were divided into two categories: Symmetric and Asymmetric algorithms. 
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The study focused on Symmetric cipher algorithms, which include block and 

steam cipher algorithms. This chapter also focused on cryptanalysis, and dif­

ferent types of cryptanalysis. 

Chapter3 focused on the use of using cryptographic techniques with different 

categories and on cryptanalysis with different types of encryption modes. It was 

observed that using pattern recognition is a useful tool for classification, which 

was a main focus of our research. Furthermore, this chapter described the follow­

ing classifiers: Naive Bayes, SVM, MLP, IBL, Bag, AdaBMl, RoFo and C4.5. 

Chapter 4 described how we created the datasets used in the evaluation. There 

were two different datasets created: first, the Bangor Source File Corpus called 

(BSFC) and second, Bangor Encryption Classification Corpus called (BECC). Dif­

ferent methods were used to analyse the datasets to find out whether the datasets 

were random or not. These were: Frequency test, Chi-square test and a com­

pression test (PPM). The results from running these tests show that the encrypted 

data is random in nature and therefore difficult to classify. 

Chapter 5 includes three main experiments. The first used different numbers of 

keys with dissimilar text files (512KB) in ECB and CBC modes. The second ex­

periment worked on changing the number of keys sizes and the encryption key 

in block cipher algorithms. The third experiment worked on classifying different 

instances with different numbers of keys sizes. In this experiment, eight classi­

fiers were used: Naive Bayes, SVM, MPL, IBL, Bag, AdaBMl, RoFo, and C4.5 for 

accuracy. All experiments were performed using the WEKA machine learning 

platform. The aim was to find the best classification algorithm for four different 

block ciphers (DES, IDEA, AES, and RC2). Different keys were also used for each 

algorithm. 

The results illustrated that the RoFo classifier has the best performance on iden­

tifying the encryption method for the ciphered data in the BECC while the worst 

performance was IBL. Moreover, the performance of the classifiers differed sig­

nificantly when identification of four classes (i.e four different encryption algo­

rithms) was considered. It was observed that the three versions of AES (128, 192 

and 256 bits) are not separately distinguishable. It was also noted that RC2 (128 

bits) does not match the other versions of the same encoding RC2 (42 bits) and 

RC2 (84 bits). 

As expected, by increasing the number of encryption keys, the classification accu­

racy will reduce. It was also observed that increasing the number of files used also 

improved the accuracy. Further, the results show that it was possible to achieve 

accuracy above 40% with some classifiers when each file was encrypted with a 
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different key. 

A very interesting point was that the ECB mode had higher accuracy than the 

CBC mode which was not expected. Unfortunately, in terms of using both RoFo 

and MLP classifiers with 16-bit codes, no result were obtainable since there were 

too many features to be processed. 

Chapter 6 included an analysis of stream cipher algorithms. In all the algorithms 

that were investigated, the difference in accuracy was found to be slight when 

8-bit and 16-bit codes were compared. Moreover, the five algorithms used with 

16-bit codes were not distinguishable, unlike with 8-bit codes where there was a 

clear pattern. 

7.2 Review of Hypothesis 

The hypothesis is that Pattern Recognition classification techniques can be used 

effectively to help identify the encryption method used to encrypt the data. The 

results showed that Pattern Recognition techniques are useful tools for cryptanal­

ysis as a means of identifying the type of encryption algorithm used to encrypt 

the data. The hypothesis was proved for block cipher algorithms but was not 

proved for stream cipher algorithms. For stream cipher algorithms the system 

had difficulty in distinguishing between different types of stream cipher algo­

rithms but with block cipher algorithms many of the classifier were able to dis­

tinguish between algorithms. 

7.3 Review of Aim and Objectives 

The main objective of this dissertation was to test out a novel application of classi­

fication (i.e. identification) to classify encryption output. In this study, eight clas­

sifiers were used: Naive Bayes, SVM, MLP, IBL, Bag, AdaBMl, RoFo and C4.5. 

The study were focused on classifying encryption output for different block and 

stream cipher algorithms. 

Following are the list of the objectives: 

• The creation of a dataset of encrypted files that can be used for evaluation 

of classification accuracy. 

• Analysis of the encrypted text files. 
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The first objective has been achieved in Chapter 4, and the second objective has 

been achieved in Chapters 5 and 6. 

7.4 Future Work 

The limitations and future work of the work presented in this dissertation are 

summarized as follows: 

1. The case study presented in this thesis only evaluates encryption using a 

selection of block and stream ciphers. It cannot be used for all types of 

block and stream ciphers because of the specific focus of this research on a 

finite selection of algorithms and further investigation is needed for other 

algorithms. 

2. Classification of Asymmetric algorithms could be investigated using a sim­

ilar study. Pattern Recognition techniques can also be applied to identify 

the encryption method for these algorithms. 

3. There are three further types of encryption modes that could be investigated 

to enhance the accuracy and the security with block cipher algorithms: CFB, 

OFB and CTR modes. 

4. The CBC mode did not give the expected results due to the key chaining 

nature of the algorithm. Each block is dependent on all plain-text block 

procedures up to the preceding point, therefore that each message is unique. 

This needs to be investigated further. 

5. The Fuzzy method could be used to further enhance the accuracy of block 

and stream cipher algorithms and the effected on the classification accuracy 

needs to be investigated. 

6. Text categorisation techniques could be used to analysis the datasets and 

compare with our results [278]. 



Appendix A 

Matlab Code to Generate the WEKA Files 

and Histograms 

A.1 Generate WEKA File Code 

Source code for generating the WEKA file. 

t = dir(pa); 

Data8 = []; 

Labels = []; 

k= l; 

for i = 3:numel(t) 

ENCClasses{k} = t(i).name; 

tinfolder = dir([pa '/' t(i).name]); 

for j = 3:numel(tinfolder) 

s = [pa '/' t(i).name '/' num2str(j - 2) '_encrypted.bin']; 

f = fopen(s); 

A = fread(f); 

f close(f); 

h = extract_binary _histogram_new(A,l); 

Data8 = [Data8;h]; 

Labels = [Labels;k); 

fprintf('Now working on %s, file %s\n ',ENCClasses{k},s) 

end 

k = k + l ; 

end 

save Data8Matlab_ECB Data8 Labels ENCClasses 

%% Prepare a version fo \leka 

if exist('Da ta8Weka_ECB.arff) 

de let e('Data8Weka_ECB.arff') 

end 

c l c 

diary Data8\leka_ECB.arff 
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Appendix A. Matlab Code to Generate the WEKA Files and Histograms 

fprintf ('@relation SuhailaENC\ n \ n ') 

for i = 1:size(Data8,2) 

fprintf('@attribute v%d real\n',i ) 

end 

fprintf ('@attribute class (1,2,3,4,5,6,7,8} \n\n@data \ n \ n ') 

for i = l: s ize(Data8,l) 

for j = 1:size(Data8,2) 

fprintf('%9i',Data8(i ,j )) 

e nd 

fprintf{' %i\ n',Lab els{i)) 

end 

d i ary off 

A.2 Generate Histogram 

Source code for generating the histograms. 

function h = extra ct_binary _histogram{A,Mode) 

if Mode== 1 

else 

end 

Granularity = 8; 

wb = wai tbar(O,'Please wait .. .'); 

Histogr amElements = 2"Granularity; 

for i = l:His t ogramElements 

h{i ) = s um(A == i ); 

wai tbar(i / His togramElements,wb) 

end 

c lose{wb) 

Granularity= 16; 

A = reshape{A,2,l ength(A)/2)'; 

Index = A{:,1)•256 + A{:,2) + 1; 

wb = waitbar(O,'Please wait .. .'); 

His togramEJements = 2"Granularity; 

for i = 1:HistogramElements 

h(i) = sum(lndex == i); 

waitbar(i / His togramElements, wb) 

end 

close(wb) 

176 



Appendix B 

Generate Histograms for Each Block Cipher 

Algorithms 

The histogram method is a statistical statement that demonstrates the frequency 

of values within ranges or steps of values that fall between a certain minimum 

and maximum. The aim of this method is to capture the statistical properties 

of the cipher-text. It illustrates the variations in the frequency of occurrence of 

symbols, which means it can be employed as the classification decisive factor. 

And also, to find the datasets are random or not. 

A pattern of varying encryption methods can be perceived in the histograms of 

the cipher-texts. A histogram is a technique extensively applied in different appli­

cation frameworks which are characteristic of query optimization statistical and 

temporal databases, OLAP applications, data streams and so on. Histograms are 

well suited to the aim of this study, particularly on occasions of identifying the 

encryption method from Ciphertext-Only Attacks [279] [280]. 

According to the results, these histograms was found to be very informative as 

it demonstrates that the entirety of the pixels have a pattern for 8-bit codes, but 

with 16-bit codes the pattern is not clear because the features are too large. In 

these histograms it was noted that the blue curves show how the raw data will 

be converted to the final image, and a pattern can be perceived in the histograms 

of the cipher-texts of varying encryption methods. 

Figure B.l to Figure B.2 show images of the histograms for all algorithms for 8-bit 

codes with AES, DES, IDEA and RC2 using 128-bits key size in ECB mode. Fig­

ure B.3 to Figure B.4 shows the CBC mode histogram using the same algorithms 

with same key sizes. In general, all histograms for he 8-bit codes shows that the 

distribution indicated that the data is random in nature. 

Next, Figure B.5 shows the histogram of all algorithms with ECB and CBC modes 

using a 16-bit codes. Figure B.7 and Figure B.8 show that there is no pattern in 

CBC mode using a 16-bit codes because the features are too large when it is in 
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Fig. B.1: Histograms for AES and DES algorithms with ECB mode using 8-bits. 

CBC mode. 
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Fig. B.2: Histograms for IDEA and RC2 algorithms with ECB mode using 8-bit 
codes. 
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Fig. B.3: Histograms for AES and DES algorithms with CBC mode using 8-bit 
codes. 



Appendix B. Generate Histograms for Each Block Cipher Algorithms 

[ 

} 
u. 

I 

IDEA 128 willl 28 
2500,----..------~--~---,---- -.----

1500 

50 100 150 

Symbols 

200 

(a) IDEA-128bits 

Symbols 

(b) RC2-128bits 

250 300 

181 

Fig. B.4: Histograms for IDEA and RC2 algorithms with CBC mode using 8-bit 
codes. 
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Fig. B.5: Histograms for AES and DES algorithms with ECB mode using 16-bit 
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Fig. B.6: Histograms for IDEA and RC2 algorithms with ECB mode using 16-bit 
codes. 
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Fig. B.7: Histograms for AES and DES algorithms with CBC mode using 16-bit 
codes. 
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