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Abstract 

Functional Magnetic Resonance Imaging ( £MRI) is an exciting technology 
which allows neuroscientists to gather data on activity within the brain. 
This activity corresponds to neural processes such as emotion or motor 
activities. By applying machine learning techniques to £MRI data, the 
patterns corresponding to these processes can be recognised and classified. 

The ability to classify neural processes opens up a wealth of opportunities 
to neuroscientists. Early £MRI experiments focus on identifying regions of 
the brain involved in processes such as pain or emotion. Having identified 
these regions, it is possible to see how they react to stimuli differently in 
participants with different conditions, for example depression, autism or 
attachment disorder. 

Most of this work is exploratory in nature, with analysis being carried out 
offtine, that is, once the tMRI data collection is complete. More recent ad
vances in classification speed and accuracy, and in fMRI technology, have 
allowed for real time experiments. During real time fMRI experiments the 
classifier is trained and then used during the course of the experiment. In 
what is termed a neurofeedback loop, the stimuli presented to the partici
pant can be updated or altered dependent upon the classification result of 
the output data. Real time fMRI has been used in many proof of concept 
type experiments, such as navigating mazes or balancing a pendulum by 
using different thought processes. 

In order to better facilitat e real time fMRI classification, it is proposed 
here that an on.line classifier will be advantageous. During the course of a 
real t ime tMRI experiment, training data is often very limited, therefore 
the ability of a classifier to learn from new data during the course of the 
experiment will be of benefit. In order to maintain speed and accuracy, 
we propose a random subspace ensemble of linear classifiers. 

Further to this, it is noted that in many cases, during the online phase, 
true class labels may not be known. The use of an on.line 'naive labelling' 
classifier within an ensemble framework is proposed as an alternative to 
a fixed pre-trained classifier. This is extended by the introduction of a 
'guided update' strategy for the ensemble, whereby the classifiers within 
the ensemble are updated using the ensemble decision, rather than the 
individual decisions. Comparison of this strategy with a fixed classifier 
ensemble and an ensemble of classifiers with individual 'naive' updates 
is provided. Variations of the guided update strategy are also proposed, 



whereby classifiers within the ensemble are only updated when specific 
criteria are fulfilled. These criteria are based upon agreement with the 
ensemble decision, and confidence in the ensemble decision. 

The proposed methods are shown to provide more accurate results than 
using a fixed classifier, and are tested across a variety of emotion based 
fMRI data sets. 
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Chapter 1 

Introduction 

1.1 Motivation 

The use of functional Magnetic Resonance Imaging ( fMRI) as a tool for investigation 

of processes within the brain. Until recently, analysis of fMRI data has been uni

variate, considering data from each voxel in the scan independently. The activation 

patterns associated with brain processes however, are highly distributed throughout 

the brain. Univariate approaches are unable to capture and make use of this distribu

tion. In order to improve the tools available to the psychologists and neuroscientists, 

multivariate classification techniques are now being used for fMRI data. 

A move towards neurofeedback experiments, conducted in real-time, has meant 

that data handling and classification need to be fast, allowing the psychologist or 

neuroscientist to update the stimuli according to the results. 

Due to the expense and time taken to organise and conduct fMRI experiments, 

it is advantageous to be able to complete an experiment in a single trial. Typically, 

classifiers will be trained on data from one trial, and then used for classification 

in subsequent trials. This work seeks to offer a classifier which can learn from a 

small batch of training data at the start of a trial, and then continue to learn and 

update throughout the course of the trial. There are many fields relating to this 

thesis, an introduction is offered to each area, however only those methods used in 
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the experiments are explained in detail. Data was kindly supplied by psychologists 

from the School of Psychology, Bangor University. 

1.2 Research Hypothesis 

The human brain is a complex architecture, fascinating to both scientists and non

scientists alike. Lately, the powers of fMRJ have received much media attention. 

Experiments hitting the headlines have included discovery of awareness in patients in 

a vegetative state [92], and 'love can ease pain' [134]. 

Multivariate analysis of fMRI has allowed classification of participants' 'brain 

states' when they are subjected to different stimuli. Advances in classifier and fMRI 

technology have meant t hat this analysis can now happen in real time. 

fMRI data is complex in nature, and suffers from a very high feature-to-instance 

ratio, typically, with very few training examples available. Linear classifiers, in par

ticular t he support vector machine with linear kernel, are popular for £MRI analysis 

due to their speed and accuracy [23, 30, 75, 94]. 

Classifier ensembles are deemed to be more accurate than individual classifiers, 

and are less prone to overfitting the data than individual classifiers. This is par

ticularly beneficial in data sets with a large feature-to-instance ratio. The Random 

Subspace (RS) ensemble framework [52] has been shown to be accurate for data sets 

displaying such properties; specifically when there is high redundancy in the feature 

set [116] . Experiments with the RS ensemble on £MRI data have shown promising 

results, [71], which this thesis aims to build upon. 

Here it is hypothesised that a classifier for £MRI data would benefit from continu

ing to learn t hroughout t he course of an experiment. An online classifier is capable of 

updating after each new instance is presented. This means that the classifier is able 

to continue learning beyond the initial training phase. 
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It is also noted that there may be cases when the true 'label' of the participant's 

brain state may not be known. The use of naive labelling is proposed a.s a possible 

solution [73]. The drawback is the possibility of a 'runaway' classifier, where the 

uncorrected classifier progressively learns 'the wrong thing' [26]. By using naive la

belling for online learning within a classifier ensemble, here, it is hypothesised that not 

only will the classifier continue to learn throughout the course of the experiment, but 

that the ensemble environment will counteract any runaway behaviours introduced 

by naive labelling. 

To test the hypothesis, it is proposed to use the ensemble decision, rather than 

the individual classifier decisions for the updates of the online classifiers. As this 

approach may compromise the diversity of the ensemble, this work is concluded by 

offering different criteria which may be used to determine when to update the ensem

ble members. 

1.3 Outline of Tasks 

In order to move towards real-time classification of potentially unlabelled fMRl data, 

the overall task is broken down into a series of challenges. 

1. To introduce and consider some of the challenges of analysing fMRI data. 

2. To introduce the techniques which will be applied to fMRI analysis in this thesis, 

namely linear classifiers, online classification and semi-supervised learning. 

3. To introduce classifier ensembles, specifically the random subspace ensemble. 

Parameters are derived for the random subspace ensemble for application to 

flv1RI data. 

4. The naive labelling strategy for semi-supervised classification of i.i.d fMRI data. 

5. Supervised classification of non-i.i .d. fMRI data. 
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6. Exploration of update strategies for using naive labelling with classification of 

non-i.i.d. fMRI data. 

1.4 Contributions 

This thesis offers the following contribut ions: 

1. Guidelines to parameter selection for the random subspace ensemble. As part 

of a collaboratory work recommendations for the parameters of the ensemble 

based upon criteria of usability, feature set diversity and coverage were derived. 

These values were tested on both synthetic and real fMRI data. 

2. The use of naive labelling within an ensemble framework in order to reduce 

the likelihood of a runaway classifier. The online naive labelling strategy is 

compared with a fixed pre-trained classifier , and a classifier with supervised 

online updates. Both individual classifiers and random subspace ensembles are 

considered. The methods are tested on i.i.d. (shuffled) fMRI data. 

3. The use of a random subspace ensemble of online linear classifiers for streaming 

fMRI data. Three online classifier models were compared, both as individual 

classifiers and as part of a random subspace ensemble. 

4. The guided update strategy for a classifier ensemble. Two update strategies for 

the random subspace ensemble were compared with a fixed pre-trained classifier 

for streaming fMRI data. 

5. Criteria upon which to update the guided ensemble. Three update criteria are 

introduced for t he guided ensemble. Ensembles updated using these criteria 

were compared with the naive ensemble and guided ensemble. 
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Chapter 2 

fMRI Data and Analysis 

2.1 Brain and Behaviour 

Human behaviour is controlled by the brain, and can be separated into processes 

including motor control, vision and emotion. Different regions of the brain are re

sponsible for different processes, with some processes involving more than one region 

of the brain. 

The brain can be categorised into three areas, the forebrain, the midbrain and the 

hindbrain [18]. The midbrain and the hind brain are mainly concerned with primary 

support functions such as respiration and control of the pulse. The forebrain is 

responsible for the majority of high level functions such as memory and language. 

The forebrain is the area of the brain where conscious processes such as decision 

making takes place. 

The forebrain is further sub-divided into four regions, known as lobes, illustrated 

in Figure 2.1. The function of the lobes is described below [39]: 

The frontal lobe, is located at the front of the brain, and is where conscious deci

sions are made. It is involved in regulating behaviour and handling the planning 

and control of movement, and can be thought of as our management centre. 

The parietal lobe, is located in the upper-rear part of the brain. This lobe is 

involved in processing information about sensations such as temperature, pain 
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Occipital lobe 

Figure 2.1: The location of the lobes in the forebrain. 

or pressure. 

The temporal lobe, located beneath the parietal lobe, is the region of the brain 

concerned with memory and language processes. Auditory and speech percep

tion are processed in the temporal lobe. 

The occipital lobe, is located at the rear of the brain and plays a key role in 

processing visual information . 

Perhaps the most important part of the forebrain is t he cerebral cortex. The cerebral 

cortex forms a thin surface layer on the outside of the forebrain. The layer is t ightly 

folded in order to give a high surface area. Also referred to as the grey matter, it 

contains approximately ten billion brain cells. Below this surface layer lie bundles 

of myelin nerve fibres, known as the white matter. These nerve fibres transport 

information around the cortex and to other regions of the brain. 

One goal of neuroscientists is to ascertain regions of t he brain which are responsible 

for controlling specific processes. Much research has focused on emotion. Detecting 

and recognising emotion is the main focus of the studies in this thesis. Emotion has 

been found to be regulated by both the amygdala and the insular cortex. 
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Figure 2.2: Top: Location of the amygdala, highlighted in yellow. 
Bottom: Location of the insular cortex, highlighted in red. 
Images created using the standard Talairach atlas in AFNI [24], images courtesy of 
N. N. Oosterhof of Bangor University. 
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The amygdala is located within the temporal lobes, as can be seen in Figure 2.2 

(top). Experiments have shown different levels of activation in the amygdala across 

participants with certain psychological disorders such as borderline personality disor

der, autism and depression. The emotional response of the amygdala has been used 

by scientists to distinguish between groups of people experiencing these conditions, 

and control groups [4, 88,114]. 

The insular cortex is a portion of the cerebral cortex, as illustrated in Figure 2.2 

(bottom). The insular cortex has been linked with cravings such as food or drug 

cravings [45]. It also has a role in pain, and basic emotions such as anger, fear, 

happiness or sadness. 

2.2 Investigating the Brain 

There are many techniques available for investigating the structure and behaviour of 

the brain. These techniques are categorised as being either invasive or non-invasive. 

Based upon the nature of the task in hand, one technique may be more appropriate 

than another. Factors affecting the choice of technique include differences in spatial 

and temporal resolution, and the ease of data acquisition - some setups are more 

portable than others. The use of radiation in some techniques also affects their 

appropriateness in certain circumstances. Six of the more common techniques are 

described below: 

Computerised Axial Tomography (CAT scan) (non-invasive) involves taking 

a series of x-rays along an axis. These x-rays are stacked to generate a 3-

dimensional volume image. Different intensity levels in the image can be used 

to distinguish between structures in the brain. CAT scans are typically used in 

diagnostics, for example locating tumours, blood clots or fractures which may 

occur as a result of a trauma. 
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Positron Emission Tomography (PET scan) (invasive) involves injecting a ra

dioactive tracer isotope into the body. As the isotope decays, it loses energy 

until a point where it interacts with an electron. The process results in the 

release of a pair of photons. These photons are detected by the PET scanner. 

PET is used diagnostically and can be used to track response to cancer treat

ments. One advantage of PET over other techniques, is its ability to show how 

the body is responding to something over time, by tracking the progression of 

the isotope through the brain, rather than capture a snapshot at a single mo

ment in t ime. PET has been used for neuroimaging to study the response of the 

brain to ageing [38] and in subjects with post traumatic stress disorder [102] . 

Magnetoencephalography (MEG) (non-invasive) records brain activity from 

the magnetic fields produced by electrical activity in the brain. One advantage 

of MEG is that it measures brain activity directly, ( other techniques measure 

brain activity by a secondary physiological response). In addition to this, MEG 

has both excellent spatial and temporal resolution, in the order of a millimetre 

and milliseconds respectively. The major drawback of MEG is that the magnetic 

fields are only a few femoteslas in magnitude. A large amount of shielding is 

therefore required during scanning in order to shield external signals, such as 

those from the Earth's magnetic field. Neuroscience experiments using MEG 

include studying the response of the brain during movement [43], and studying 

the sotomotor cortex ( a brain region involved in motor control) in tetraplegic 

patients [ 60]. 

Electroencephalogram (EEG) (non-invasive) is used to record electrical signals 

within the brain via a series of electrodes placed on the scalp. Spatial resolution 

of EEG is dependent upon the number of electrodes used, but is typically very 

low. Another potential drawback of EEG is that the information gathered comes 
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only from the areas of the brain close to the surface of the skull. Deeper neural 

activity occurring within the folds of the cerebral cortex may not be accounted 

for. 

Advantages of EEG are the high temporal resolution and high tolerance to sub

ject head movement. Another huge benefit is the portability of the technology. 

Whereas other techniques require large static scanners, EEG experiments can 

be carried out using a small portable headset or cap. This makes EEG a popular 

choice for many experiments. 

One example of an early experiment with EEG is the comparison of self-reported 

emotional response in depressed patients and a non-depressed control group [28]. 

A more recent application sees the use of EEG in automatic seizure detection 

[61 J. 

Magnetic Resonance Imaging (MRI) (non-invasive) uses magnetic fields to align 

protons in the body. Once the field is turned off, the protons return to their 

previous state, releasing photons. These photons produce an electrical signal 

which is measured by the scanner. MRJ like CAT scans, generates scans one 

slice at a time, with the slices being stacked to form a volume. MRI is typically 

used for diagnostics, particularly when soft tissue structures, or structures with 

low density contrast are involved. 

Functional Magnetic Resonance Imaging (fMRI) (non-invasive) is used to 

measure changes in neural activity. Increased neural activity results in a higher 

demand for oxygen. The magnetic properties of oxygenated blood are different 

to those of de-oxygenated blood. An increased vascular response is therefore 

visible as a grey-level intensity change in the scan. This vascular response is 

known as the Blood Oxygen Level Dependent (BOLD) response. 



fMRI is a non-invasive and powerful method for analysis of the operational 

mechanisms of t he brain. The data acquired from fMRI provides a spatially 

accurate account of neural activity. Analysing the BOLD signal allows scientists 

to discover how brain states are mapped onto patterns of neural activity, giving 

insight into the functional architecture of the mind and the processes which 

control and reflect human behaviour. By taking repeated scans over a period 

of time, neural activity can be tracked and measured. Whilst the temporal 

resolution of fMRI is far lower than that of EEG, the spatial resolution is much 

higher, and it allows the measurement of activity throughout the brain, rather 

than restricted to the surface. 

Many neuroscience experiments focus on fMRI, and it is data gathered using 

this technology which is considered for the remainder of this thesis. 

2.3 Data Acquisition 

fl\1RI data is acquired in a standard MRI scanner. The scanner takes the form 

of a large cylindrical magnet. The participant lies on a table which is slid inside 

the cylinder. Stimuli are presented to the participant whilst they are inside the 

scanner. Stimuli may be images, audio, or sensory (such as heat or pain). The 

brain is scanned after each presentation and the response is transferred to a server 

or computer which is attached to the scanner. Scans make up a t ime series and 

are collected and analysed once the experiment has concluded. The setup of the 

experimental process is illustrated in Figure 2.3. 

A scan is taken as a series of slices. These slices are built up into data volumes. 

Each volume contains information from the full area that was scanned. Slice thickness 

is measured in millimetres, ranging from 3mm upwards. The participants head is 

typically braced in order to reduce any movement during the course of the experiment, 

and to maintain alignment between sequential slices and volumes. 
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Figure 2.3: flv1RI experimental setup. Stimulus is presented to participant. Scans are 
collected and analysed offline. 

During the course of an fMRI experiment, many volumes may be acquired over 

time. The length of time between each volumetric scan is known as the repetition 

time, or TR. A typical TR will be somewhere between l s and 3s. The lower the 

TR, the higher the temporal resolution of the data. The echo time, or TE, is a 

measurement of the scanner corresponding to the delay time between the initiation of 

the magnetic field pulse by the scanner and the peak of the measured response (echo). 

This measurement effectively determines the lag between the pulse and image sample 

being recorded. 

The strength of the magnet in the scanner is measured in Tesla. The higher 

the Tesla rating of the scanner, the higher the spatial resolution of the scan. Higher 

spatial resolution means that finer detail can be examined. Currently, scanner ratings 

are typically 3-Tesla or 7-Tesla. 

The activation of a voxel1 in response to a stimulus is shown in the scan as a 

change in grey level intensity. Activation is expected to follow a given pattern known 

as the haemodynamic response function (HRF). Figure 2.4 illustrates the pattern of 

stimuli (black solid line) and HRF (red dashed line) . The exact shape of the HRF 

is known to vary between subjects, psychological states, experimental conditions and 

different brain regions [50). In addition to this, in practice, the response of the voxels 

is noisy, and hence will not follow this pattern exactly. 

Changes in activation over time can be analysed. Analysing groups of voxels, 

1 A voxel is a three dimensional, volumetric pixel. 
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Figure 2.4: Plot of stimuli (black) and HRF (red). Time is measured on the x-a..-xis. 

or the whole volume image, allows for better interpretation of patterns representing 

neural processes. 

Data quality can be measured by the signal-to-noise ratio (SNR) and contrast

to-noise ratio (CNR). The image SNR represents the quality of each individual vol

umetric image, and is calculated by dividing the mean activation of voxels within a 

volume by the standard deviation of the activation. The temporal SNR is calculated 

on a voxel by voxel basis, as the mean value of the voxel over time divided by the 

standard deviation of the activation of the voxel over t ime. Theoretically, increases 

in the resolution of the scan (higher scanner rating), lead to higher spatial SNR. 

Increasing the TR increases temporal SNR [6]. 

The CNR represents the maximum differences in signal intensity recorded in a 

given voxel over the course of an experiment. CNR is defined over time for each 

voxel as the ratio of task related variability (contrast) to non-task related variability 

(noise) [ 46]. The contrast can be calculated as the difference in signal between classes. 

High CNR means that differences in brain response to different stimuli will be more 

easily detected. If CNR is low, then very little difference will be detected between 

two conditions of interest [6]. CNR varies with TE; the optimal TE depends upon 

the properties of the tissue being scanned. 
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Figure 2.5: Block design fMRI experiment. Red and blue represent stimuli from two 
different classes. 

2.4 Experimental Design 

The range of experimental designs available includes block design, event-related design 

and real time experiments. 

Block design experiments repeat several different stimuli from the same class back

to-back in a 'block' in order to fully capture the response of the brain. A typical 

block may last between 15 and 40 seconds. After each block of stimuli, it is 

common to allow for a rest period in order to allow the brain to return to a 

resting state. This may consist of either the presentation of neutral stimuli, or 

no stimuli at all. Figure 2.5 illustrates an example presentation of stimuli in 

a block design experiment. Each vertical line represents the presentation of a 

stimulus. Examples of possible stimuli are the presentation of an image, sound, 

or instruction. 

Event-related designs display stimuli from different classes in a random order of pre

sentation. There may be rest periods after each stimulus (spaced event-related) 

or stimuli may be displayed successively (rapid event-related). Examples of the 

presentation of stimuli for event-related designs can be seen in Figure 2.6. 

Real time experiments involve adjusting the stimulus based upon the response of 

the subject. Real time experiments are discussed further in Section 2.11. 
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Figure 2.6: Event-related fMRI experimental designs. Red and blue represent stimuli 
from two different classes. 
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Figure 2.6 illustrates the stimuli presentations in block and event-related designed 

experiments. Time is represented on t he x-axis, the colours red and blue correspond 

to stimuli from two different classes. 

fMRl experiments may be carried out in a single run, or over the course of several 

runs. Over the course of an experiment several participants may attempt the same 

task. Analysis across several participants is more complex than with single participant 

data. It is therefore beneficial to be able to analyse results using methods which can 

be tailored to each individual participant. 

2.5 Labelling fMRI Data 

Assigning class labels to fMRI data is not a trivial task. In addition to the delay 

from the TE, there is a delay (referred to as the haemodynamic delay) between the 

reaction to a stimulus and the change in the BOLD response being measured. 

Assuming the experiment has a block design, as is the case with our experimental 

data, the first decision is how to handle the TRs. One solution is to average t he 

responses of the TRs within a given block (temporal compression), resulting in a 

single data point per block. This method can reduce the effect of noise within t he 

data, however it also significantly reduces the amount of data points available. 

The alternative to temporal compression is to include each TR as a separate data 

point. In doing this, some noise is included in t he data, however the increase in the 

number of data points available is a big advantage. The two approaches are compared, 

among others, by Mourao-Miranda et al, [95], where temporal compression was found 

to improve the accuracy of the analysis. Whilst this may be the case, the approach 

is not feasible for analysis of fMRI data in real t ime, where scans are required to be 

processed individually. Considering each TR as a separate data point makes a step 

towards the analysis of real time fMRI data. 
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Having chosen to treat each TR as a separate data point, a further step is to 

choose how to assign class labels. As previously mentioned, the response of the brain 

to a stimulus is not instantaneous, the transition between brain states is gradual, 

and it is unclear at which point one state ceases and the next begins. This leads 

to a series of potential la.belling scenarios varying with t he extent of inclusion of the 

haemodynamic delay. The simplest and most popular methods of label assignment 

include: 

'Ignoring' the haemodynamic delay - simple box car model - As a simple so

lution, the instances (brain volumes) are labelled by taking the class label for 

each brain volume to be consistent with the stimulus being presented. This is 

line with one of the protocols suggested by Pereira at al [101] . It is acknowl

edged that this assignment does not specifically consider the delay in the brain 

response, however some delay is accounted for in the TE. 

Taking into account the haemodynamic delay - shifted box car model - Class 

labels are shifted by 1 TR in order to tal{e into account for the delay in the 

BOLD response. 

Convolution of the signal with the HRF - In order to take into account the 

haemodynamic delay, labels are derived from the expected activation, rather 

than the presented stimuli. At any one time, the label assigned, corresponds to 

the stimulus with the highest activation. 

2.6 Data Preprocessing 

In its raw form, £MRI data is noisy, and volumes or t ime slices may be misaligned 

due to head movement or change in brain shape ( due to the pulse for example). Data 

acquired from the scanner requires several preprocessing steps before analysis can 
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begin. Strother, [120), provides a detailed review of the preprocessing pipeline. The 

most frequently used preprocessing steps are summarised below. 

Slice timing correction: As each fMRI volume is acquired one slice at a t ime, 

there is a slight time difference between acquiring the first and last slice of a 

volume. In this time it is possible that physiological changes have occurred, 

due to respiration or head motion, as well as changes in the BOLD signal. 

The time series of the voxels within the volume are therefore shifted slightly 

to compensate for this, or else the same event would appear to be initiated at 

different times throughout the volume. That is, it would appear to start later 

in the first slice than the last slice of the volume. 

Motion correction: Subject head movement is a significant cause of artifacts. Al

though the use of restraints significantly reduces head motion, slight movement 

may still occur due to the nature of the experimental task, or due to discomfort 

in the scanner. In addition to this, respiration and the pulse can cause motion 

and changes to the shape of the brain. The motion may appear either as a 

translation or a rotation or a combination thereof. Volume scans are therefore 

re-aligned in order to compensate for this head motion. 

Spatial filtering: Spatial smoothing is achieved by convolution of each fMRI volume 

image with a gaussian kernel. In general, it is not a single voxel which will 

respond to a stimulus, rather a group of neighbouring voxels. Hence, whilst 

the noise factor for a given voxel is generally independent of other voxels, the 

activation will typically extend over several adjacent voxels. 

Whilst spatial smoothing has a benefit of increasing the SNR [42] of the image, 

it comes at the cost of reducing the spatial resolution of the data. It is therefore 

important that an appropriate gaussian kernel is used to ensure a balance is 

achieved. 
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Temporal filtering: High and low-pass filtering can be applied to t he t ime series 

to correct for artefacts and physiological noise. High-pass filters are used to 

correct low frequency physiological noise, caused by respiration ( ~0.25Hz) or 

the pulse ( ~lHz) [42]. Low pass filtering, or temporal smoothing, can be used 

for denoising [120]. 

Preprocessing steps are usually carried out by software packages such as Brainvoyager 

QX (Braininnovation, Maastricht, The Netherlands) [47], AFNI [24] or SPM [42]. 

2. 7 Data Preparation 

Even when the data has been pre-processed, further steps may be considered prior to 

analysis. These preparatory steps are used to make the data set more manageable, 

and must be used with caution in order to avoid introducing bias into the data set. 

Bias is discussed further in Section 2.8. 

2. 7.1 Voxel Mask 

fMRI data analysis may be carried out on the full brain scan, or on parts of the scan 

corresponding to specific brain regions. To extract a region of the brain a voxel mask 

may be applied to the data volumes. One such mask is the grey matter voxel mask. 

Recall that the grey matter is the area of the brain where the majority of neural 

activity occurs. By excluding the white matter and non-brain regions from t he scan, 

irrelevant voxels are removed from the analysis. It is particularly desirable to avoid 

'discriminatory' voxels appearing outside the brain, leading to false-positives, in a 

scenario similar to that of t he dead salmon2 [5] . Voxel masks may also be applied to 

extract regions such as the amygdala or insular cortex, in experiments focusing on 

emotions for example. 

21.n an experiment by Bennett et al, a frozen salmon was placed in an fMRJ scanner and subjected 
to a series of emotionally charged images. Results from the anaysis showed the salmon to be 
'responding' to the stimuli. The work highlights the danger of false positives in fMRJ analysis. 
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There are many methods available for deriving a grey matter mask. The standard 

method is to derive the mask using the anatomical MRI data where the resolution 

is higher, and colour intensities correspond to the white and grey matter. Such a 

mask can be extracted using software such as the SPM toolbox [42] or Brainvoyager 

QX [47]. 

Here, an alternative method is offered for deriving an approximate grey matter 

mask directly from the BOLD signal. 

Deriving a mask from the BOLD signal 

For working with fMRI data in real time, it is advantageous to derive a grey matter 

mask quickly, and from the BOLD data itself. Similar to the masking procedure 

described for removing artifacts by Cohen, [22], two properties are considered for 

each voxel; its mean and variance in activation throughout its time-series. 

• Voxels with a mean above a threshold are discarded - these are likely to corre

spond to white matter. 

• Voxels with a mean below a threshold are discarded - these are likely to be 

outside the brain. 

• Voxels with variance above a threshold are discarded - very noisy voxels are 

likely to appear on the edge of the brain due to image registration issues. 

• Voxels with variance below a t hreshold are discarded - voxels with low variance 

are likely to be outside the brain or in the white matter. 

Figure 2. 7 shows examples of grey matter masks derived in this way, to illustrate 

the effect of changing the parameters. The sub-figures show parameter combinations 

relating to different thresholds (measured as percentiles) for the mean and variance. 

The upper threshold on the mean can be seen to alter the amount of white matter 

included. A lower t hreshold results in the area outside the brain being selected. 
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Altering t he thresholds on the variance does not appear to have much effect visually 

on this 'slice' of the brain. Looking at the number of voxels included however, it can 

be seen that widening the range of the variance increases the number of voxels. 

2. 7.2 Normalisation 

Another next step in data preparation is normalisation. Normalisation is carried out 

across the time series for each individual voxel. Normalising the signal in this way 

ensures that the activation values of each voxel are in the same range. This allows bet

ter identification of genuinely discriminat ive voxels, rather than voxels which simply 

have a large range of activation values. 

2. 7 .3 Feature Selection 

Recall that fMRI data has a large feature-to-instance ratio, having many more features 

than instances, and typically contains a large amount of irrelevant voxels. Irrelevant 

voxels should not be confused with redundant voxels. An irrelevant voxel does not 

offer any discriminatory power to the classifier. It can be thought of as noise. A 

redundant voxel is one whose discriminatory properties may be mirrored by at least 

one other voxel, or combination of voxels, in the voxel set. A large number of voxels 

will make the classifier prone to over fitting the training data. A preliminary voxel 

selection step may therefore be used. Instead of sampling from t he whole set of voxels, 

a smaller subset of voxels may be selected first [ 101]. Several techniques exist for this 

step, and may be univariate or multivariate: 

ANOVA or t-test (univariate) To test the hypothesis that the class means are 

equal, statistical tests such as the t-test or ANOVA calculate a statistic for each 

voxel. This gives an indication of the discriminatory power of that voxel based 

on the data points and labels passed to the test . The F-statistic, t-statistic or 

corresponding p-value can be used as a method to 'rank' voxels according to 
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No mask: 106,720 voxels 

Default 
Mean range: 0.6 - 0.96 

Variance range: 0.01- 0.95 
Mask size: 28,940 voxels 

Mean range: 0.6 - 0.96 Mean range: 0.6 - 0.96 Mean range: 0.5 - 0.98 
Variance range: 0.01- 0.99 Variance range: 0.05- 0.95 Variance range: 0.01- 0.95 

Mask size: 29,590 voxels Mask size: 28,940 voxels Mask size: 38,219 voxels 

Mean range: 0.65 - 0.9 Mean range: 0.5 - 0.98 Mean range: 0.65 - 0.9 
Variance range: 0.01- 0.95 Variance range: 0.01- 0.99 Variance range: 0.05- 0.95 
Mask size: 20,183 voxels Mask size: 39,411 voxels Mask size: 20,183 voxels 

Figure 2.7: Examples of voxel masks derived from BOLD signal. Top row shows 
the unmasked volume slice and the default mask. Red voxels indicate those selected. 
Voxel mask sizes correspond to the complete volume mask. 
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their importance. The voxels with the lowest p-values, corresponding to the 

highest F or t-statistics are selected. 

Maximum activation (univariate) This method considers the maximum activa

tion of each voxel in the data set. Voxels are ranked according to their maximum 

activation levels. The t heory is that voxels with higher maximum activation 

contribute more to the classification. 

Two methods exist for selecting voxels from the ranked list. The first approach 

considers the whole data set, the overall highest ranked voxels are selected as the 

feat ure set. The second approach considers voxels on a class by class basis. For 

each class t he highest ranked voxels are selected, the resulting class based voxel 

sets are merged to make up a final feature set [71]. The class based approach is 

a step towards ensuring that the defining features of each class are represented 

in the feature set, however requires a priori knowledge of the classes. Where 

maximum activation has been used for feature selection in this thesis, it is the 

overall ranking which has been considered. 

SVM method (multivariate) By applying a classifier such as a support vector ma

chine (SVM) (described in Section 3.2.1) to the data set , coefficients or weights 

can be derived for each of the voxels. The weights are used to rank the voxels. 

Those voxels with higher weights are those which contributed most to the clas

sification, and are therefore more discriminative than those with lower weights. 

The voxels with the higher weights are therefore the ones which are carried 

forward. 

Recursive feature elimination (RFE) (multivariate) This method follows a sim

ilar principle to the SVM method. Rather than selecting the highest weighted 

voxels, RFE eliminates the voxels with the lowest weight. The classification 

and weight calculation process is repeated on t he new reduced voxel set . As 
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some voxels have been eliminated, weights and the ranked order of weights 

may change. The voxels with the lowest weights in the new classification are 

eliminated. The process is repeated until only the desired number of voxels 

remain [49] . 

Other methods There are many other more complicated voxel selection methods 

available. These range from t he searchlight algorithm [64] and Monte Carlo 

mapping [9] to genetic and memetic algorithms [1, 10]. Whilst techniques such 

as these may offer a more sophisticated solution, they pose major complexity 

challenges in terms of application to real t ime scenarios, due to their iterative 

nature. 

Admittedly, the univariate approaches do not consider potential relationships between 

voxels. Some voxels may not be indicative individually, but may form part of an 

indicative group, which multivariate methods may identify. On balance however, the 

speed and simplicity of univariate techniques mean that they remain a popular choice 

for feature selection. 

2.8 A voiding Bias 

When analysing data from fMRI experiments it is important not to introduce any bias 

into the data set. The first step in the analyses presented in this thesis is to separate 

the data set into two further data sets, the offiine training data set, and the online 

streaming data set. So as not to introduce any bias into t he analysis, it is important 

that the feature selection and normalisation steps, if used, are performed in the correct 

order. If a voxel mask is going to be applied, this should be the first step, else features 

may be selected from outside the desired region. Feature selection should follow, it is 

important that this takes place on the training data alone. The maximum activation 

method of feature selection in particular, will not work if normalisation takes place 
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first. Allowing the rest of the data to be seen at this stage is known as peeking or 

double-dipping [65,101]. After the features have been selected, then the remaining 

data may be normalised, normalisation coefficients should be calculated for the offline 

training data, and then applied to the streaming data volumes as they are acquired. 

2.9 Traditional Analysis of fMRI Data 

Much fMRI analysis focuses on the General Linear Model (GLM). When used for 

fMRI analysis, the GLM models the activation of voxels across the time series. The 

model takes the form 

y = x /3 + E (2.1) 

where y is the response variable (BOLD response), xis a matrix of predictors and (3 

is a matrix of coefficients corresponding to the relative contributions of the predictors. 

Consider a simple case of a block design experiment where periods of stimulation 

are alternated with periods of rest. The BOLD signal of a voxel over time is the 

response variable y. The predictor variables x are the so called 'design matrix', which 

is the time series of the stimuli as shown for a single stimulus in Figure 2.4 (in black). 

Alternatively, x could be the stimuli convolved with the haeomodynamic response 

function (HRF), plotted in red in Figure 2.4. The magnitude of the coefficients, 

/3, determines how closely the voxel output y is related to the stimuli. If for some 

stimulus the signals y and xi were to be identical, then /3i = 1, all other (3j = 0, j =I= i 

and E = 0. The collection of (3s across all voxels in the brain can be further analysed 

to determine which voxels are truly related to the stimuli, and which have high (3 by 

chance. Statistical tests involving multiple comparisons can be used for this purpose. 

This technique can be used to test responses to different stimuli, determine regions 

of interest, or to compare differences between different participant subgroups [56, 57, 

88,114]. The technique has also been used in studies about pain perception [62,103], 

and more recently to investigate the brain activity of patients in a vegetative state [92]. 
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2.10 Multivariate Analysis of fMRI Data 

Whilst univariate techniques have provided insight into the functional map of the 

brain , multivariate machine learning techniques can advance knowledge by taking 

into account inter-voxel relationships. Sitaram et al [115], present the argument 

against univariate and region-of-interest approaches arguing that perceptual, cogni

tive, or emotional activities generally recruit a distributed network of brain regions 

rat her than single locations. By applying multivariate analysis, these spatiotemporal 

relationships can be captured and utilised. A classifier is trained to predict which 

stimuli are being presented to the participant, based upon the entire flvfRI volume 

images. 

Linear classifiers are preferred for the classification of fMRI data because they 

are simple, fast , reasonably accurate and interpretable. Given the extremely large 

feature-to-instance ratio associated wit h £MRI data, linear classifiers are expected to 

outperform many other classifiers because they are less prone to over fitting the data3 . 

The spectrum of linear classifiers applied to £MRI data include the linear dis

criminant classifier (LDC) and penalised versions thereof [48], the Gaussian Nai"ve 

Bayes [90] (linear if all variances are assumed to be equal), sparse logistic regres

sion [131] and more. The classifier used most often, however, is the support vector 

machine classifier (SVM) [23, 29, 30, 66, 75, 93-95, 127, 132]. 

2.11 Real Time fMRI 

Recently there has been interest in the development and application of real t ime 

£MRI [22,25]. Real time experiments are typically achieved via a brain computer in

terface (BCI). BCI technology is by no means unique to £MRI, and is also been used 

with EEG, PET and MEG [31,123,130]. The BCI forms part of a loop known as a 

3 The classifiers mentioned in the following sections are described in more detail in Chapter 3 
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Figure 2.8: The neurofeedback loop. Based on t he classification output, the partici
pant is instructed to perform a mental exercise that will drive the brain pattern closer 
to one corresponding to the desirable behaviour. 

neurofeedback loop. The neurofeedback loop is sketched in Figure 2.8. The partic

ipant receives initial instructions and possibly some stimuli. Next, the participant's 

state of mind is measured and classified. 

By applying online and real time classification to the data as it is collected, neu

roscientists are able to acquire feedback during the course of the trial. The effi

ciency and precision of real time fMRI for brain control has been demonstrated 

by participants carrying out tasks such as navigating through computer-generated 

mazes [53, 91, 133], balancing a virtual inverted pendulum [37], predicting decisions 

in an economic game [54], and moving an arrow towards a target [77] . 

Real t ime £MRI classification allows for self-regulation experiments with fMRI. 

Self-regulation is the ability to regulate ones' own emotions or behaviour. Self

regulation is achieved by controlling brain subnetworks, for example those involved in 

pain perception [32] or sadness [106]. Based on the measured brain state, feedback is 

given to the participant who then attempts to adjust his/her brain state to improve 

task performance. A possible application of self-regulation is treating alcohol or drug 

addiction. In order for self-regulation to be viable, delay between brain activity and 

feedback to the participant needs to be minimal [128]. 

Weiskopf et al, [129], provide a review of real time fMRI for BCis and self-
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regulation. The review outlines technical issues raised by real time fMRI; such issues 

include delays in getting data from the scanner and artifact control. Researchers 

working with real time fMRI have to cope with artifacts such as head motion and 

scanner drift in real time. This is of course in addition to the speed requirements 

of the classifier. Hollmann et al [53, 55] tackle these issues by developing their own 

programming language, experiment description language (EDL), in order to unify the 

tasks. 

Whilst many fMRI experiments are considered to be real-time, variations on the 

setup exist. A range of analysis setups are discussed below. 

Offi.ine analysis The traditional case, where fMRI data is collected and then anal

ysed offiine. 

Offline training, real-time experiment Currently, whilst there are increasing num

bers of real time studies being conducted, very few update the classifiers during 

the course of the fMRI run. The majority rely on a previously trained offline 

classifier. 

In this case, two or more runs of the experiment are conducted. The first 

run is used for training and familiarisation with the task, data is collected and 

analysed offiine. The classifier is trained offiine on the data, and is used for 

real-time classification in subsequent runs. It is assumed that task performance 

and neural activity are static, thus the classifier trained offiine on data acquired 

during the training run will be sufficiently accurate for classification during the 

testing run. 

Anderson et al [2], train the classifier one day, and test on another. In this case, 

classification is carried out on a series of predefined brain regions. Rather than 

to consider each individual voxel as a feature, the method considers 4 x 4 x 4 

cubes of voxels. Based upon the offiine data, for each voxel block, a baseline 
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activation level is calculated as the average activation of the 64 voxels in the 

block, averaged over time. For classification, the features are calculated on a 

block by block basis as the difference between the average activation of the 

block in the current scan, and the value calculated as baseline for that block. 

Reducing the number of features in this way reduces the likelihood of over.fitting, 

however also runs the risk that properties of a potentially indicative voxel may 

be diluted if it is surrounded by less indicative voxels. 

Papageorgiou et al [100] also train an SVM classifier on a separate run to the 

neurofeedback experiment. There may be circumstances where this setup is not 

feasible. fMRI scanning is expensive and time-consuming. It is often desirable 

to complete the entire experiment, training and neurofeedback in a single run. 

In a study by Eklund et al [37], subjects are required to 'control' a pendulum. 

By activating the motor cortex, participants are able to shift the pendulum 

either to the left, or to the right. The perceptron classifier is trained during an 

initial offiine phase. During the real time phase, the fMRI data is classified and 

the stimulus (balanced pendulum) is updated accordingly. During this setup, 

the participant is responding independently of any stimuli. In this phase, there 

are no clearly defined class labels, rather a desired goal to balance the pendulum 

and an assumption that the participant wishes to succeed in the task! Whilst 

primarily chosen for its speed and ease of implementation, the perceptron was 

found to provide sufficient discrimination for this classification task. 

Online classifier updates Given that it is not always practical to conduct multiple 

runs of an experiment, due to time and cost restraints, a classifier which is 

capable of training during the course of a run is beneficial. A weak classifier 

may be trained on the first few TRs of a run, and then continue to learn and 

adapt through the course of the experiment. 
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Laconte [76], presents a series of future challenges when working with real time 

fMRI data. The author notes that future experiments may be designed in 

such a way as that the brain response is expected to change over time. It is 

suggested that future classifiers should be able to adapt and learn with the 

data throughout the course of the run. Online classification techniques have 

already been appHed for EEG classification in BCI settings [11,17,81,121]. 

Real time ffi-1:RI techniques have also been used to allow subjects to form words 

using a character map [36], where the cursor is moved by different motor control tasks. 

Classification was carried out using a single layer neural network and a multi-class 

SVM. The neural network showed the best results, and was preferred due to its' capa

bility of handling multiple classes. The authors claim that for optimal performance, 

SVM requires classes to be independent. Practically speaking, this is not always the 

case. For example, in this experiment, tasks relating to the different classes involve 

bilateral movement - left and right hand and toe movement. Some voxels will re

spond to both left and right movements, thus reducing the independence between the 

classes. The authors hypothesise that this is one reason for the poorer performance 

of the SVM in this study. The authors comment that their fMRI classification system 

is not flawless. However beyond curiosity, such experiments serve as proof of concept: 

fMRI classification can be a fast and accurate component of the BCI for the purposes 

of neurofeedback. 

The length of time taken to feed back results in some circumstances is up to a 

minute. Immediate feedback is defined by Weiskopf et al [129] as being recieved in un

der 2 seconds, this approximately equates to 'within a TR'. For real time experiments, 

this is the target aimed for. 

A recent paper by Hollmann et al [54], shows that brain responses can be predicted 

1 or 2 seconds before the participant revealed a decision. The experiment was based 

upon the ultimatum game, where two subjects are to share a sum of money. The first 
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participant chooses how to split the money and the second participant has to decide 

whether to accept or reject the proposed split. Should the split be rejected, neither 

participant receives anything. The brain response of the responder was analysed 

using an online relevance vector machine classifier (RVM) in conjunction with their 

experiment description language [53, 55]. 

Aside from the neurofeedback impact that real time fMRI experiments can have, 

there are also bonuses in terms of conducting the experiment. By receiving feedback 

during the course of the experiment, a researcher is quickly able to spot any technical 

errors and respond to problems as they arise. 

When analysing real time fMRI data, there are two different approaches, the 

incremental approach and the sliding window approach. The incremental approach 

calculates statistics based upon all data presented up until a given moment in time. 

The sliding window approach considers a subset of the total data collected within a 

given time span. Whilst the sliding window approach relies less on stationarity, and 

therefore may adapt better to concept drift, this comes at the cost of loss of statistical 

power [130]. 

2.12 Software Packages 

Various software packages and toolboxes are available for flv1RI analysis. The most 

frequently used packages include Brainvoyager QX [47], AFNI [24] and SPM [42]. 

Data analysis in this thesis has been carried out using Matlab [87], and the Matlab 

statistics toolbox, with fMRI preprocessing being carried out in Brainvoyager QX. 

2.13 Data Sets 

Four fMRI data sets are considered as examples in this thesis. Full descriptions are 

given below with a summary provided in Table 2.1. 
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2.13.1 Emotion_Negative (ENl and EN2) 

ENl and EN2 are two runs of the same experiment, corresponding to single runs with 

two different participants. Participants were instructed to up-regulate t heir target 

region activity, evoking emotion, for periods of 20s using negative emotional imagery. 

Periods of emotion are alternated with baseline periods of rest, of 14s. There were 

12 blocks of up-regulation and rest. The classification t ask is to distinguish between 

periods of emotion, and periods of rest. 

2.13.2 Emotion-13oth (EB) 

A single par ticipant viewed a series of emotionally charged images in a block design 

experiment. A sequence of £MRI brain scans was obtained from a single run. There 

were 12 blocks of images with positive valence type, 12 blocks with neutral valence 

type and 12 blocks with negative valence type. Each block of images lasted for a 

period of 6 s (4 pictures presented for 1.5s) followed by a period of fixation (12s du

ration)4. Fixation TRs are removed from the data set. The classification task is to 

distinguish between positive, negative and neutral emotion. 

For ENl , EN2 and EB, data was collected on a 3 Tesla Philips Achieva MR scanner 

(TR= 2s, TE= 30ms, 30 slices, in-plane resolution 2 x 2mm2
, 3mm slice thickness) . 

Slices were positioned such that the bottom slice was 30mm ventral to the anterior 

commissure and angled to encompass all of the ventral prefrontal cortex. 

Preprocessing of the data was performed using Brainvoyager QX. The data were 

corrected for intra-subject angular and t ranslational motion and :filtered to remove 

long-term drift [58]. 
4 The images were selected from a benchmark database, International Affective Picture System 

(IAPS) [79], where each image hru; been rated on scales from O to 10 on two dimensions: arousal 
( calm to excited) and valence (negative to positive) 
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Table 2.1: Summary of the three fMRI data sets 

Name # Instances Volume # Voxels Classes # Runs 
size per run 

ENI 204 60 X 31 X 44 81840 2 1 
EN2 204 59 X 32 X 44 83072 2 1 
EB 109 60 X 62 X 45 167400 3 1 

Bangor 2 360 58 X 40 X 46 106720 3 3 

2.13.3 Bangor 2 

The participant viewed visual stimuli in 14 second blocks. The stimuli were taken 

from three categories: faces, places and objects, plus a control block of fixation. Three 

runs were carried out. For each category and fi..xation period, in each run, there were 

six presentations from each category. Within each block, the individual stimuli were 

presented at a rate of 1 Hz. Each run consisted of 120 TR.s with blocks of stimuli 

permuted across the runs. The data is pooled across the runs, giving an overall total 

of 360 data points. The size of each scanned volume was 59 x 32 x 44, resulting in 

106720 voxels per volume. Data was collected on a 1.5 Tesla Philips Achieva MR 

Scanner (TR = 2s, TE = 50ms, 20 slices, in-plane resolution 4 x 4mm2
, 5 mm slice 

thickness). Preprocessing was again performed using Brainvoyager QX. 

2.14 Summary 

This chapter has introduced techniques for investigating the brain, with a focus on 

functional magnetic resonance imaging (fMRI). flvIRI data will be used throughout 

this thesis. Different experimental designs for fMRI experiments are introduced. 

Steps for preprocessing fMRI data prior to analysis have been described, including 

optional extra steps such as feature selection, for preparing the data. In order to 

extract the relevant voxels from the brain, a technique for deriving an approximate 

grey matter mask from the BOLD signal has also been introduced. 
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The progression of fMRJ analysis is discussed, from traditional univariate tech

niques such as correlations with the GLM, through to multivariate classification and 

real time experiments. For classification, methods of assigning class labels are dis

cussed. 

Finally, the chapter introduces ENI, EN2, EB and Bangor 2, the four fMRI 

datasets which are used throughout this thesis. 

34 



Chapter 3 

Linear Classifiers for Streaming 
Data 

3.1 Classification 

A classifier can be thought of as a 'black box' into which an instance ( data point) is 

passed, and a class label is produced as output, as in Figure 3.1. 

Taking N training instances, each described by n features; each instance comes 

from one of C classes. Each instance xi E lRn, i E {l, ... , N}, together with its 

corresponding label Yi , y E {l, ... , C} is passed to a training algorithm. The training 

algorithm outputs a function, or series of functions, which are used to discriminate 

between the classes. These are based upon the features of the training set. Subse

quently, when a new instance is passed to t he classifier, t he classifier calculates the 

class label by combining the properties of the new instance with the functions calcu

lated during training. If the label assigned by the classifier does not match the true 

label, then the classifier is noted as having made an error. For non-streaming data, a 

separate testing data set, T e may be used. The error is measured as the proportion 

Data Point I . . I Class Label 
----•. Class1f1er _- ---

Figure 3.1: A classifier is a 'black box' into which a data point is passed as input , 
and a class label is produced as output. 
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of instances from Te which are incorrectly classified. 

Maximum achievable classifier accuracy depends upon the distribution of the 

classes, and the nature of the classifier chosen. Some common types of classifier 

are discussed with examples below. 

3.2 Offline Linear Classifiers 

This work focuses mainly on linear classifiers due to their simplicity and speed. A 

linear classifier can only achieve 0% error on the training data in cases where classes 

are linearly separable. As noted in [89], for fMRJ data, LDA and linear SVM can 

actually perform better than non-linear classifiers, possibly because the latter are 

more prone to overfitting. 

3.2.1 Support Vector Machine (Linear Kernel) 

The support vector machine (SVM) finds the maximum margin hyperplane between 

two classes [13,124]. The SVM uses a kernel to map features into a high dimensional 

feature space in which the classes are separable. There are many types of kernel 

available, with linear, polynomial or radial basis functions being the most popular. 

Here the focus is upon the linear kernel. 

The SVM takes as input the data set and labels. The labels are in the form 

y E { -1, 1}. The SVM seeks to find the maximal margin hyperplane, wr xi + b = 0 

such that wTxi + b < 0 when Yi = - 1 and wTxi + b > 0 when Yi= 1. 

By finding the maximal margin hyperplane, that is, the boundary with maximal 

distance to the nearest data points, the risk of misclassification of unseen data points 

is minimised. The support vectors correspond to those data points which control the 

width of the margin, and thus are those closest to the boundary. 

Closely related to the SVM is the relevance vector machine (RVM). The form of 

the RVM is similar to the SVM, however instead of outputting class labels, the RVM 
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outputs a probabilistic classification. 

3.2.2 Linear Discriminant Classifier 

The Linear Discriminant Classifier (LDC) can be described as the minimum-error 

classifier for classes with normal distribution and equal covariance matrices. The LDC 

is a robust classifier, and thus can also yield good results even when the classes are 

not normally distributed. Linear discriminant classifiers rely on a simple assumpt ion 

of Gaussianity of the data, which is often not met in practice. However, even when 

the assumption does not hold, linear classifiers have been found to be surprisingly 

accurate [51] . 

Denote by P(y) the prior probability for classy. The prior probability for classy 

can be estimated as the proportion of training data coming from class y . The mean 

and covariance matrL"'C of the data set are represented by It and I: respectively. For 

a t raining set of N data points, we represent estimates of the mean and covariance 

matrix by m N and SN respectively1 . For the training data set, these are calculated 

as 

(3 .1) 

(3.2) 

Note that these are the biased estimates, non-biased estimates can be calculated by 

replacing t by N:1. 
The discriminant function for classy is described by 

(3.3) 

which becomes 

(3.4) 

1 Assume all vectors are column vectors 

37 



6 

4 

2 

0 

-2 

~4'----_--'-2-----'-0--2'---4-'-----'-6-

( a) 

6 

4 

2 

0 

-2 

-~~-_~2- ~ 0-~2'---4~-~6-

(b) 

Figure 3.2: (a) Data set 1: Two classes which are linearly separable in two dimensions. 
(b) Data set 2: Two classes which are not linearly separable in two dimensions. 

When an unseen data point is presented to the classifier for testing, the classifier 

calculates gy(x) for y = {l, ... , C}. The class y corresponding to the highest value 

of 9y is assigned to x. 

3.2.3 Examples 

Examples are calculated based on two synthetic two-dimensional data sets. Both 

data sets are generated from gaussian distributions, separated and labelled to form 

two classes. In one data set the data points are labelled such that the two classes 

can be linearly separated in two dimensions. The second data set is labelled in such 

a way that the classes can not be separated by a linear boundary. Each data set has 

250 instances coming from each class. Figure 3.2 illustrates the two data sets. For 

each data set a stratified sample of 40% of the data is used for training the classifier. 

The remaining 60% is used for testing. 

Linearly Separable Data Points 

The SVM with linear kernel and t he LDC are compared for the linearly separable 

data set. The results are shown in Figure 3.3. The boundaiy derived from the LDC 

is indicated in blue, with the boundary derived from the SVM in green. Data points 
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Figure 3.3: LDC (blue) and SVM (green) for linearly separable data. 
(a) Training data 
(b) Training and testing data. 

4 6 

circled in green correspond to the support vectors of the SVM. For this data set where 

both training and testing data points are linearly separable, both classifiers achieve 

100% accuracy on both training and testing data. There is little difference between 

the class boundaries derived from the different classifiers. 

Data Points Which Cannot be Separated by a Linear Boundary 

The SVM with linear kernel and the LDC are also compared for the data set where 

data points are not linearly separable. The results are shown in Figure 3.4. The 

boundary derived from the LDC is indicated in blue, with the boundary derived from 

the SVM in green. Data points circled in green correspond to the support vectors of 

the SVM. For this data set, the data points are not linearly separable in either the 

training or the testing data. The training and testing error of both LDC and SVM 

is noted in Table 3.1. There is no significant difference in the performance of the two 

classifiers. 
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Figure 3.4: LDC (blue) and SVM (green) for non linearly separable data. 
(a) Training data 
(b) Training and testing data. 

Table 3.1: Training and Testing Error for SVM and LDC (%) 

SVM LDC 
Training error 4.5 4 
Testing error 2 2 
Overall error 3 2.8 
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Table 3.2: Training and Testing Error for SVM and LDC (%) on fl\i[RI Data 

SVM LDC 
Training error 0 0 
Testing error 20.11 23.37 
Overall error 21.08 18.14 

3.2.4 fMRI Data 

The two classifiers are also tested on fMRI data using the data set ENI, as described 

in Section 2.13. A grey matter mask was calculated to remove irrelevant voxels. A 

stratified sample of 9 data points per class was taken for training - this reflects the 

amount of data which would be available for training in a neurofeedback experiment. 

ANOVA was used on the training data to extract 2000 voxels to use as features 

in the classification. The data was normalised, using coefficients calculated on the 

training data, again reflecting the methodology used in real time fl\i[Rl analysis. The 

remaining 186 data points were used for testing. Table 3.2 shows the training and 

testing errors for the two classifiers. 

In this case the SVM performs better than the LDC, however the ability of the 

LDC to handle multiple classes online makes it more desirable for the purpose of this 

thesis. Accuracy in fl\i[RI experiments varies dependent upon the experiment. Holl

mann et al (54] report accuracies of 70% using an RVM in a multi-subject trial. Ex

perimental design also influences the acheivable classifier accuracy. Mourao-Miranda 

et al (94], compare classifier accuracy for using averaged TRs (temporal compression) 

versus treating each TR as a separate data point. Using temporal compression the 

acccuracy was 90%, whist treating each TR as a separate training example accuracy 

was 74%. The latter approach is the one used in this thesis as it is most representative 

of the real-time scenario. 
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3.3 Online Linear Classifiers 

Many domains where data is received in a streaming format are suited to online 

learning. Such data comes from areas including credit card transactions, telecommu

nications and internet searches [33, 34,119]. 

Internet search data [21] and detection of suspicious URLs [85] are two applications 

of online classification. Another major application of online classification is spam 

filtering, with online linear classifiers [107, 112, 125). More recently, online classifiers 

have been applied to EEG data [11, 17,81, 121). 

An initial offline classifier will be trained on a small offline training sample. Dur

ing the subsequent online classification each data point is classified by the 'current' 

classifier as it becomes available. For the purpose of comparing approaches, it is 

assumed that true class labels are recovered immediately after classification. If the 

'current' classifier misclassifies the incoming data point , then the classifier is updated 

by adding the new data point to the training set, and recalculating the parameters 

of the classifier. A classifier which updates only when a data point is misclassified in 

this way is known as an error driven classifier. 

3.3.1 Linear Perceptron for Streaming Data 

The perceptron is an online linear classification algorithm for two classes, developed 

by Rosenblatt [111]. The classifier consists of a single discriminant function, which 

act s as a boundary between the two classes. The algorithm first init ialises coefficients, 

or weights, w = [wo, .. . , wnf as small random numbers. A learning parameter 17 is 

also defined. The learning parameter corresponds to the 'readiness to learn' of the 

algorithm, and defines the weighting of new data points compared to past data. 

Assuming i data points have already been presented to the classifier , denote the 

next data point as x i+1 E !Rn with its true label Yi+l , initially unavailable. The data 

point is augmented, z = [l xf+i]T, where the first element, 1, will multiply the 
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bias coefficient w0 . The data point is then classified by the 'current' classifier. The 

predicted label ( + 1 or - 1) for xi+1 is calculated as Ypredicted = sign ( z T w) , where 

sign(a) = 1 if a 2". 0 and sign(a) = -1 if a< 0. 

If the data point is misclassified, the weight vector is updated as w +- W-'TJ z Yi+l· 

3.3.2 Balanced Winnow 

The balanced winnow, [83], follows a similar principle to the perceptron, however has 

two sets of weights; a positive set w+ and a negative set w-. Both sets of weights are 

initialised as positive random numbers, and a learning rate f3 is chosen. The predicted 

label for XH1 is calculated as Ypredicted = sign (zT (w+ - w-)). 

Following misclassification of a new data point, the n + 1 weights of the balanced 

winnow are updated. If Yi+l = +1, then wt +- 13-ziwt and w; +- f3ziw;, else if 

Yi+l = - 1, then wt+- 13z;Wj and w; +- 13- ziw;, for j = 0, 1, ... ,n. 

3.3.3 Online Linear Discriminant Classifier 

The online linear discriminant classifier (O-LDC) is an adaptation of the linear dis

criminant classifier. One immediate advantage of the O-LDC over the perceptron or 

winnow, is the capability to classify data sets of more than two classes. In order to 

carry out online updates the means and inverse covariance matrix require updating 

after each misclassified data point. Let m iv) be the estimate of the mean for classy, 
y 

where iy is the number of points from class y thus far. The total number of points in 

the series is i = i1 + i2 + ... + ic. Let Si be the estimate of the common covariance 

matrix calculated from the i observations. Suppose that xi+l comes from class y. 

The recursive update for the mean of classy is calculated as 

(y) - 1 ( . (y) ) 
mi +1 - -- iymi + xi+l . 

II iy + 1 II 
(3.5) 

The inverse covariance matrix for class y is updated as 

s-:-1 = ~ s-:-1 - i z z i 
. 1 ( s-1 T 3-1 ) 

i+l i i i(icl) + zT Sil z ' 
(3.6) 
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where z = x - m}~L- The prior probabilities are also updated, for classy, as P}y) = 

if:1
1

, and for all other classes, P?l = f:h, where k =/- y. The O-LDC update is lossless. 

This means that the recursively calculated estimates of m iy) and Si are the equivalent 
u 

of those calculated using all i data points [35, 68}. 

3.3.4 Examples 

For illustration, the same two data sets are used to show the progress of the online 

classifiers. For each data set an initial stratified sample of 10% of the data is used for 

an offiine training data set, T. The remaining instances are shuffled and presented as 

an online streaming data set, S. The classifier will update after each streaming data 

point. The accuracy progression of the online classifiers is illustrated by a series of 

plots. In each figure, the top left plot shows discriminant function as calculated on 

the training data. Subsequent plots illustrate the performance of the classifier after 

different amounts of online data have been presented. 

In this t hesis, two approaches are considered for the measurement of online error. 

Due to the streaming nature of fMRI data, instead of a single error score, it is useful 

to consider an error progression, in terms of time. The first approach, as with the 

non-streaming case, is to consider a separate training data set Te, of size Nre- The 

error rate is measured as the proportion of instances from Te which are misclassified 

by the current classifier at time t. 

I:f:;o' e( i) 
Nre 

(3.7) 

where e ( i) = 0 if the classifier has labelled point i correctly, and 1, otherwise. 

The second approach uses the online dataset, S to measure error. At time t, 

instance Xt is classified by the current classifier prior to training. If Xt is misclassified, 

then the classifier is noted as having made an error at time t. The error rate of the 

classifier can be calculated as the number of data points incorrectly classified divided 
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by t he number of data points presented so far. The error rate can be represented 

mathematically as an equation, 

(3.8) 

where e(j) 

otherwise. 

0 if the classifier has labelled the point at time j correctly, and 1, 

Linearly Separable Data Points 

Figures 3.5, 3.6 and 3.7 show t he perceptron, winnow and O-LDC for linearly sepa

rable classes. For each figure, the top left plot shows the boundary derived from the 

training data. Subsequent plots show the progression of the boundary after online 

updates. The tit le of each plot indicates the amount of online training data which 

has been processed. New instances, that is those which have been presented since the 

last plot, are illustrated by an x. 

Not Linearly Separable Data Points 

Figures 3.8, 3.9 and 3.10 show t he perceptron, winnow and O-LDC for the case 

where the training data is not linearly separable. Once again, the top left subplots 

illustrate the classifier decision boundary after the training data, with subsequent 

plots illustrating new instances as an x. 

Cumulative Error 

Figure 3.11 shows the cumulative error plots for the online classifiers for both data 

sets. Cumulative error is calculated using Equation 3.8. In Figure 3.ll(a) it appears 

that there is no error progression for the O-LDC. This is due to the O-LDC achiev

ing 100% accuracy on this data set, thus the error rate appears as a flat line at 0, 

coincinding with the x-axis. 
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Figure 3.5: The online Perceptron for linearly separable data. 
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Figure 3.6: The online Winnow for linearly separable data. 
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Figure 3.7: Online linear discriminant classifier for linearly separable data. 

48 



Training data 

40% streaming data 

0 2 4 

80% streaming data 

6 

4 

2 

0 

-2 

0 2 4 

6 

6 

20% streaming data 

6 

4 

2 

0 

-2 

-j4-----2~-~0-~2-~4-,..___,6____, 

60% streaming data 

6 

X 

100% streaming data 

6 

Figure 3.8: The online Perceptron for non linearly separable data. 
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Figure 3.9: The online Winnow for non linearly separable data. 
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Figure 3.10: Online linear discriminant classifier for non linearly separable data. 
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Figure 3.11: Cumulative error progression. 

3.4 Comparison of Online Linear Classifiers for Real 
Data 

An example is presented here from a previous work [104], t o illustrate the choice of 

classifier for online data. The three online linear classifiers, the perceptron, balanced 

winnow and O-LDC, are compared across a selection of two-class i.i.d. data sets. 

3.4.1 Data Sets 

The data sets used for the tasks are summarised in Table 3.3. 

Experimental results with the balanced winnow indicated some discrepancies when 

the features had a large range of ranges and variances. To compensate for this, all 

data was normalised with mean µ = 0 and variance 0'2 = 1 for each feature. 

3.4.2 Method 

Each data set is prepared in the same way. Firstly, a testing data set, T e, is generated 

by taking a stratified sample of 10% of the data points. A second stratified sample is 

taken to make up an o:ffline training data set, T. It is said, that to accurately train a 

classifier, t he size of the training data should be approximately 10 x n x c, where n 

is the number of features and c is t he number of classes in the data set [96]. As such, 
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Table 3.3: Data sets used in the experiment 

Data set Features Classes Data points Source 
sonar 60 2 208 UCI 

laryngeall 16 2 213 Collection1 

votes 16 2 232 UCI 
breast 9 2 277 UCI 
heart 13 2 303 UCI 
liver 6 2 345 UCI 

spect 44 2 349 UCI 
ionosphere 34 2 351 UCI 

wbc 30 2 569 UCI 
laryngeal2 16 2 692 Collection 

pima 8 2 768 UCI 

1 Collection http: //pages. bangor. ac. uk/,nasOOa/activities/real_data.htm 

we set Nr, the cardinality of the training data, to be Nr = 1 x n x c. The remaining 

data points make up the online streaming data set, S. Sis shuffled in order to remove 

bias and ensure that the data is i.i.d .. 

Offiine versions of the classifiers (perceptron, winnow and O-LDC) are trained on 

T . Data points from Sare then passed to each classifier in a streaming fashion. The 

classifiers are tested on the incoming data point. If the classifier makes an error, then 

the classifier is updated accordingly. The task is repeated 100 times for each classifier 

on each data set. The error of the classifier is calculated on Te aher each presentation 

of a new data point in the online phase, using Equation 3.7. 

3.4.3 Results 

The results are organized as follows: Figure 3.12 to 3.14 show results of the comparison 

of the online algorithms. For each graph, the y-axis represents the error score on T e. 

The x-axis represents the number of data points from S which have been processed. 

The blue, red and green lines represent the O-LDC, perceptron and balanced winnow 

respectively. The plots show the progression of error scores. The data tables show 
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the average and final testing error scores for the data sets. 

3.4.4 Discussion 

Figures 3.12 to 3.14 show the comparisons between the three online classifiers for each 

data set. The end points of the plots give an indication as to how well each classifier 

has performed on the particular data set, and represent error scores calculated after 

the entirety of S has been presented. The precise values for these error scores can 

be seen in the corresponding tables. For three of the data sets, 'spect', 'ionosphere' 

and 'wbc', the performance of the three classifiers are comparable, with no distinctly 

better model. For the other eight data sets the results show the O-LDC to be a better 

model than the perceptron or balanced winnow. 

Whilst the end results of the O-LDC are impressive, the learning patterns of the 

classifiers are also of interest. The learning patterns can be seen from the shapes of 

the curves. The learning patterns of the O-LDC are markedly better than those of 

the other two algorithms. The O-LDC is seen to converge whilst the perceptron and 

balanced winnow oscillate. The learning rate of the classifiers can also be described 

numerically as the average error of the classifier throughout the online run. Having a 

lower average error indicates a better learning pattern, as the classifier has converged 

faster. The values for the average error is also given in the error tables. s Paired 

t-tests were carried out on both the final error and average error scores across the 

data sets. The significance level for the paired t-tests was set at 0.05. The results of 

the paired t-tests can be seen in Figure 3.15. The plots show wins versus losses for 

the three algorithms. As there are three algorithms and eleven data sets, 3 x 11 = 33 

comparisons are made. Each classifier is part of 22 comparisons, thus the best point 

is marked at 22 wins and no losses, and the worst point at 0 wins and 22 losses. 

For the paired t-test on the final error score, the O-LDC had 16 significant wins and 

1 loss. The number of wins and losses for each algorithm is represented by (wins, 
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Sonar Laryngeall 

- 0-LDC 0.26 

0.24 

0.22 

20 40 60 80 100 120 140 

Average Final Average Final 
0 -LDC 0.2474 0.2314 0 -LDC 0.1862 0.1648 

Perceptron 0.2772 0.2729 Perceptron 0.2009 0.1914 
Winnow 0.2824 2690 Winnow 0.2185 0.2067 

Votes Breast 

50 100 150 

Average Final Average Final 
0-LDC 0.0448 0.0317 0-LDC 0.2729 0.2593 

Perceptron 0.0746 0.0687 Perceptron 0.3375 0.3514 
Winnow 0.0855 0.0700 Winnow 0.2926 0.2814 

Figure 3.12: Online error plots and tables. 
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Heart Liver 

50 100 

Average Final Average Final 
0 -LDC 0.2063 0.1830 0-LDC 0.3456 0.3169 

Perceptron 0.2506 0.2333 Perceptron 0.4030 0.3983 
Winnow 0.2532 0.2543 Winnow 0.4861 0.4974 

Spect Ionosphere 

250 50 100 150 200 250 

Average Final Average Final 
0 -LDC 0.2774 0.2420 0-LDC 0.1594 0.1403 

Perceptron 0.2466 0.2403 Perceptron 0.1754 0.1700 
Winnow 0.2416 0.2391 Winnow 0.1576 0.1461 

Figure 3.13: Online error plots and tables. 
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WBC Laryngeal2 

0.1 - 0-LDC 
- Perceptron 

0.09 - Balanced Winnow 

1 00 200 300 400 500 

Average Final Average Final 
O-LDC 0.0534 0.0439 O-LDC 0.0522 0.0464 

Perceptron 0.0523 0.0458 Perceptron 0.0733 0.0612 
Winnow 0.0593 0.0532 Winnow 0.1039 0.0749 

Pima 

0.34 

100 200 300 400 500 600 

Average Final 
O-LDC 0.2426 0.2303 

Perceptron 0.3087 0.3147 
Winnow 0.2982 0.3000 

Figure 3.14: Online error plots and tables. 
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Figure 3.15: Wins versus losses for the three algorithms. The diagonal line corre
sponds to wins = losses. 

losses). For the paired t-test on the final error score, the O-LDC scored (16, 1), the 

percept ron scored (5, 11) and the balanced Winnow scored (3, 12). For the paired 

t-test on the average error score, the O-LDC scored (17, 3), the perceptron scored 

(8, 12) and the balanced Winnow scored (4, 14). These results show the O-LDC to 

have performed significantly better than either the perceptron or balanced winnow, 

in both terms of final error and average error. 

3.5 Semi-supervised Learning 

It is generally assumed that true class labels are available throughout the classifier 

training process. Classifiers can be updated online using these labels. In practice, 

the true class labels may not be available, beyond an initial training phase. Semi

supervised learning offers techniques where unlabelled data may be used to update 

the classifier. Learning techniques can be broadly divided into three categories: 

Supervised learning During supervised learning true class labels are known. This 

is the category into which classification traditionally falls. 
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Unsupervised learning During unsupervised learning labels are not known. The 

goal is to seek _information about the distribution of the data. Clustering is an 

example of unsupervised learning. 

Semi-supervised learning In reality, gathering labelled data can be expensive, 

time consuming, destructive or dangerous, and very often requires professional 

expertise [73]. On the other hand, large volumes of unlabelled data are relatively 

easy to come by. Semi-supervised learning algorithms combine elements of both 

supervised and unsupervised learning [97,113]. Many paradigms exist, includ

ing co-training [12, 63], link-based classification [84], Gaussian processes [80], 

expectation maximisation (EM) [59] and naive labelling [73]. 

In the context of on-line classification for fMRI data, the choice of semi-supervised 

learning algorithm is restricted by the streaming nature of the data. It is as

sumed that a small initial labelled data set will be available, followed by a stream 

of unlabelled data points. Iterative procedures such expectation maximisation 

are therefore not suitable in the context of on-line classification. 

Co-training is a method whereby two classifiers ( C1 and C2) are trained on the 

labelled data set, using different subsets of features. The classifiers are used 

to predict labels for the unlabelled data. The data point and label combina

tions most confidently predicted by C1 are used to train C2 and vice versa. 

For application to on-line data, it is possible to use co-training in a 'batch' ap

proach where the algorithm is applied after a given number of unlabelled data 

points have been collected. Whilst the high feature-to-instance ratio of fMRI 

data malrns it well suited to splitting the feature space, this batch approach is 

infeasible for providing real-time feedback. 

By relaxing the requirements of the model, the predicted label of a classifier can 

be used for updates after each data point. In doing this, the model becomes 
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truly on-line, and can be used for streaming data. 

The remainder of this t hesis focusses upon naive-labelling, whereby the classi

fier is updated by adding the new data point to the training set and taking the 

predicted label as the true label. This approach should be taken with caution, 

however, guarding against the possibility of a run-away classifier that progTes

sively learns 'the wrong thing' [26]. A more refined approach to using predicted 

labels for unlabelled examples is dynamic labelling [44]. In this case, using a 

similar principle to co-training, out of a pool of unlabelled data, the data point 

whose label is most confidently predicted is used to update the classifier. The 

process is iterated until no unlabelled examples remain. This method is only 

suited however, to cases where the full pool of unlabelled data is immediately 

available. 

3.6 Naive Labelling 

Naive labelling is a semi-supervised learning protocol whereby in the absence of 

ground truth, updates are carried out using the label predicted by the classifier. 

Without knowing the true class labels, there is a choice of using the predicted labels, 

or using a fixed, pre-trained classifier throughout. This scenario is particularly rel

evant for neurofeedback experiments. In these circumstances the fixed classifier will 

have been trained on a small offi.ine data set which may not be representative of the 

data set as a whole. A classifier which has been trained offiine on a small data set 

will be likely to show a high error rate. In addition to this, any concept drift will 

render a fixed classifier useless. 

Training a classifier with naive labelling does not come without risk. The classifier 

may be led astray should updates occur using incorrectly predicted class labels. This 

may lead to 'run-away' behaviour where the classifier becomes less accurate as training 

progresses [26, 27]. The likelihood of runaway classifiers is related to the amount of 
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offiine training data and on how well the underlying data distribution model is guessed 

when designing the classifier [73]. It is expected that the lower t he amount of training 

data is, the higher are the chances of a runaway classifier appearing in the ensemble. 

3.7 Summary 

This chapter has touched upon many areas of machine learning and classification. 

These areas are far broader and deeper than the scope of this thesis. The techniques 

and methods discussed here have been selected with the end goal and challenges of 

classifying streaming fMRI data in mind. 

Recall that classification of fMRI data raises challenges such as a limited amount 

of time to collect pilot data with the participant and a large feature-to-instance ratio. 

Given these challenges the initial classifier may be of insufficient accuracy. Here it is 

hypothesised that applying online classification to £MRI data is desirable. As such, 

simple online linear classifiers have been introduced. These classifiers are capable of 

processing large volumes of data quickly, with a low risk of overfitting. 

Considering neurofeedback type real-time fMRI experiments, there is a realistic 

possibility that class labels will not be available during the online phase. Concepts 

such as semi-supervised learning are therefore introduced, specifically naive labelling, 

which will be applied to £MRI data in Chapters 6 and 7. 
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Chapter 4 

The Random Subspace Ensemble 

4.1 Combining Classifiers 

A classifier ensemble is made up of several individual member classifiers. The en

semble output can be considered as a decision made by a consensus of experts. The 

output from the individual classifiers is fed into a 'combiner' and a decision is made. 

This system is illustrated in Figure 4.1 

A classifier ensemble is less sensitive to noise and redundant features than an indi

vidual classifier. The problems associated with over-fitting are therefore less prevalent 

in classifier ensembles than individual classifiers. Classifier ensembles are also deemed 

to be more accurate than individual classifiers [67]. 

A good ensemble should be made up of diverse classifiers. If all classifiers in 

Data Point Combiner f-----.t Ensemble Decision 

Figure 4.1: Illustration of classifier ensemble. 
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the ensemble were to be the same, or very similar, then an ensemble would have 

little or no advantage over an individual classifier in terms of accuracy, and may be 

computationally more expensive. Diversity, and measures of diversity within classifier 

ensembles is something to which much attention has been devoted [74]. In this work 

kappa-error diagrams are adopted as a measure of ensemble diversity, kappa error 

diagrams are discussed further in Section 6.2.1. 

4 .1.1 Ensemble Design 

When designing a classifier ensemble there are four possible factors to take into con

sideration [67]. At the data level, member classifiers may be trained on different 

subsets of the data in order to generate diversity. Another way t o generate diversity 

is to train the member classifiers on different feature subsets. There is also a choice 

as to which base classifiers to use. Finally, there are different forms of combiner. 

Perhaps the most simple and int uitive combiner is the majority vote method. 

For t he majority vote, the class label with the highest number of 'votes' across the 

individual classifiers is taken to be the ensemble output. Despite its simplicity, in 

many settings, the majority vote has been found to be equally accurate as other more 

complicated combiners [78]. The simple majority vote is the combination method used 

throughout this work. It is noted that for cases of two-class data sets, in order to avoid 

ties when using t he majority vote, it is sensible to have an odd number of classifiers in 

the ensemble. One major advantage of the majority vote over other methods, is that 

once the individual classfiers are trained, no further training is required to construct 

the ensemble. 

For ensembles which train individual classifiers on different portions of the data 

set, or on different feature subsets, several alternatives exist for selecting which data 

points or features are used. Bagging (bootstrap aggregating) creates training subsets 

by sampling with replacement from the set of data points (a bootstrap sample) [14]. 
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The consequence of sampling in this way is that a given data point may appear once, 

more than once or not at all across the individual classifiers in the ensemble. 

Boosting algorithms, with AdaBoost [41] being the most well known, also gen

erate diversity by using different training examples. Instead of sampling uniformly 

with replacement, boosting algorit hms maintain a weight vector for the contribution 

of each training example. At each iteration, the weight vector is updated. Train

ing examples which are misclassified are assigned higher weights. This causes the 

'difficult ' examples to be featured more often in the training set, and forces their 

properties to be taken into account, encouraging each new classifier to make different 

errors to the previous one, thus generating diversity. Variants of boosting algorithms 

have been used in a wide range of settings from credit card fraud detection ( algorithm 

Ada.Cost) [19] to optical character recognition [3]. 

Another algorithm, the Random Subspace (RS) method, trains ensemble members 

on different feature subsets, selected at random. This method is described in more 

detail in Section 4.2. Skurincha and Duin [116], compare the performance of bagging, 

boosting and the RS ensemble with different base classifiers for two artificial and five 

real data sets. The usefulness of each ensemble method was shown to be dependent 

upon the training sample parameters and the base classifier chosen. 

More recent additions to the field of classifier ensembles include the random oracle 

[70], spherical oracle [109] and rotation forest [110]. 

Classifier ensembles have many applications, typically in areas where an individ

ual classifier is prone to high error. These include face recognition , remote sensing 

and medicine, each with their own challenges. For example, challenges presented by 

remote sensing include huge volumes of data, with a large number of features. Typical 

challenges tackled by classifier ensembles include those where there is too much data, 

too little data, or too little of a specific type of data [98], for example when there are 

very few instances from one class compared to another. 
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For working with fMRI data, one of the greatest challenges is the feature-to

instance ratio. Choosing an ensemble which trains on subsets of instances would only 

exacerbate this challenge. As such, an ensemble which reduces the dimensionality 

of the data set is the most appopriate. Whilst other approaches such as principal 

component analysis also reduce dimensionality, in doing so, they transform the feature 

space. The advantage of the random subspace approach, is that the output can be 

directly related back to the location of the voxels within the brain. 

Thus the remainder of this work focuses on the RS ensemble, which is described 

in more detail below. 

4.2 Random Subspace Ensemble 

In general, when performing classification, the more features that are available, the 

better the resulting classifier. It is however possible to 'overfit' the classifier on the 

training set, especially in data sets with a high feature-to-instance ratio. The Random 

Subspace ensemble (RS), introduced by Ho [52], is a classifier ensemble whereby 

ensemble members are trained on feature subsets rather than the entire feature set. 

The reduction in the dimensionality of the feature set while retaining the number of 

training data points makes RS ensembles particularly suitable for data sets with a 

large feature-to-instance ratio. 

The RS ensemble requires two parameters. These correspond to the number of 

classifiers in the ensemble, L , and the cardinality of the feature subsets, M. Define 

X = { x 1 , ..• , x11 } to be the total set of n features. To create an RS ensemble, L feature 

subsets of size M < n are generated by drawing at random without replacement from 

a uniform distribution over X. Each of these L subsets makes up the feature set for 

one of the L classifiers. The L member classifiers are trained and tested using the 

respective M features. 
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The RS ensemble framework has been used with a variety of base classifiers in 

a number of settings. In the original paper, Ho tests a random subspace ensemble 

with decision tree classifiers against a single decision tree, and against ensembles 

generated through bagging and bootstrapping [52]. Whilst the RS method received 

close competition from bagging and bootstrapping for some data sets, Ho concluded 

by saying that "the method is expected to be good for recognition tasks involving 

many redundant features". Sun et al, [122], compare ensemble methods, including 

the RS ensemble, using EEG data, and found that the best choice of ensemble was 

dependent upon the base classifier and choice parameters. 

The RS ensemble has been shown to be highly effective in other data sets with 

large feature-to-instance ratios. Micro-array data, like fMRI, suffers from high di

mensionality of the feature space. Coupled with a low number of training examples, 

problems with overfitting arise. The R.S ensemble with linear SVM provides an ele

gant and accurate solution [7, 8]. 

RS ensembles and variations thereof, have also been applied to face recognition 

[20, 126, 135, 136]. The algorithm is believed to be of benefit due to the "inherent 

sparsity and small sample size of data" [20]. This is a similar set of challenges to 

the ones faced with fMRI data. In the face recognition study conducted by Zhu et 

al [136] , a variation termed semi-random subspace is used. The initial feature space 

is broken down into several local regions, the RS approach is applied to each region 

and the base classifiers are combined to make a final decision. Two combination 

approaches were tested , firstly taking all the classifiers in parallel and combining the 

outputs to make a final decision. The second approach is the hierarchical approach, 

generating an intermediate decision for eacl1 local region. These local decisions are 

then combined for the final ensemble output. By capturing any spatial relationships 

between features in the local regions the semi-RS method was shmvn to improve upon 

the results of the RS method for this task. In £1\l[Rl, the voxels which respond to a 
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given stimulus are highly distributed throughout the whole brain. Whilst the semi

RS method was shown to be successful for face recognition, selecting and separating 

regions of the brain in this manner may break important relationships and not capture 

the full response of t he brain. 

The RS ensemble approach has also been adopted by Polikar et al in an algorithm 

for handling missing features [105] . 

fMRI data poses a severe classification challenge because of the extremely large 

feature-to-instance ratio. The RS ensemble therefore seems a natural choice to apply 

to fMRI data, especially as the algorithm is computationally inexpensive due to the 

reduced number of features per ensemble member. Kuncheva and Rodriguez [71], 

compare eighteen classifier methods for fMRI data. The experiments were conducted 

with a variety of voxel selection methods and parameters. The RS ensemble with 

SVM was shown to perform best across the trials conducted. 

A random subspace based technique has also been used on fMRI data for brain 

mapping [9,117,118], and as another application, Richiardi et al [108] use an ensemble 

of decision trees to classify fMRI connectivity graphs1 . 

For data sets wit h a large number of irrelevant features, the RS ensemble has 

been used in conjunction with an init ial feature selection step. Bertoni et al [7] use 

this technique for microarray data. The feature selection step is used in order to 

remove noisy and irrelevant, uninformative genes from the analysis. The aim is to 

improve the accuracy of the classifiers within the ensemble in order to further improve 

the ensemble performance. The authors use a univariate significance based feature 

selection approach, and acknowledge that any feature selection algorit hm can be used. 

There is a lack of clarity about the number of features, which ought be selected as 

'relevant' or 'statistically significant'. One approach is to set, instead of a predefined 

number of voxels, a threshold on the significance level of a univariate statistic. This 

1 An fl\,fRJ connectivity graph describes the relationships between brain regions across a time 
i;eries, as the participa.nti; are ::mbjected to different i;timuli [108). 
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may be a value such as a= 0.05) or a corrected value. Correction approaches include 

the Bonferroni correction for multiple comparisons or the false discovery rate [99]. 

Dependent upon the choice of feature selection method, and the choice of correction 

applied) there may be a dramatic difference in the number of voxels selected [99]. 

This is best illustrated by an example. Taking the ENl data set, there are 81,840 

voxels. Applying an ANOVA to the un-masked data set2, 43,332 voxels are found to 

be significant at a significance level of a= 0.05. 

The Bonferonni correction takes into account the number of statistics being calcu

lated, and the family-wise error. If n test statistics are to be drawn from a distribution 

with probability a of being greater than a threshold) the probability of all statistics 

being less than the threshold is (1 - at. The family-wise error rate is the proba

bility that one or more values are great er than a, 1 - (1 - at, which for small a 

can be approximated as na [42]. Applying the Bonferonni correction, the significance 

threshold required can be re-calculated as ! . 
For ENI, applying the Bonferroni correction reduces the number of significant 

voxels to 11,446. For the three class data set, EB, there are 86,400 voxels. In the 

same procedure, using an AN OVA, 7,806 voxels are found to be significant at p = 0.05. 

Using a corrected p-value, this drops to 1 voxel. For consistency across data sets, the 

approach used for t his thesis is to set a predefined number of voxels, I<, rather than 

define a significance level. 

4.3 Deriving Parameters for the RS Ensemble for 
fMRI Analysis 

In comparison with many other ensemble frameworks, the RS ensemble has an advan

tage of requiring only two parameters, the number of classifiers in the ensemble, L, 

and the number of features in each feature subset , M. There is very little guidance as 

2 As this is for illustration purposes only, the ANOVA was applied to the entire data set. 
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to how best to select values for these parameters. Based upon a notion of 'important' 

features, a theoretical approach to derive values for L and M is proposed3 • 

Due to the large number of voxels in a typical fMRI scan, important discriminative 

information may be contained in a relatively small number of voxels. An assumption is 

made that there are Q of these 'important' voxels, contained in a set I = { q1 , ... , qq}, 

IC X, where Xis the set of all voxels, X = {x1 ,x2 , ... ,xn} and III = Q << n, 

and the remaining n - Q voxels are random noise. Also, it is assumed that the 

cardinality of the subspace M is much smaller than n. Recommended values for L 

and M are sought in terms of n and Q, based upon the theory that accurate and 

diverse individual classifiers are a prerequisite for better ensembles [15, 16, 67]. 

As the accuracy of the classifiers within the ensemble is not known a priori, prop

er ties of the feature subsets are used as potential indicators. Three such properties; 

usability, coverage and feature set diversity are introduced. 

Usability A classifier built upon random noise alone, will be no more accurate than 

random chance. It is therefore of interest to have at least one q E I in each 

feature subset. A classifier is defined as being usable if its feature subset contains 

at least one 'important' voxel q E I. 

To calculate the probability of drawing a feature subset that represents a usable 

classifier, t alce Y to be the number of 'important' features in a subset of size 

M, drawn without replacement from X. Y is a random variable which has a 

hypergeometric distribution with probability mass function 

Thus the probability of drawing a usable classifier is 

(n-Q) 
P( usa.ble classifier) = 1 - P(Y = 0) = 1 - (~) 

3This work was conducted in collaboration with L.I.Kuncheva and J .J.Rodriguez [69, 72] 
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The usability of an ensemble is defined as the proportion of classifiers from 

L which are defined as being usable. Define a completely usable ensemble as 

an ensemble where all L member classifiers are usable. As feature subsets are 

sampled independently, the probability of a completely usable ensemble is 

P ( U = I ) = P ( usable classifier) L = 

This can be simplified as 

Since it is assumed that .M < < n, the equation can be further simplified to 

This approximation is equivalent to replacing the hypergeometric distribution 

with a binomial distribution. Given the size of n for fMRJ data, it can be said 

that sampling with replacement is approximately equivalent to sampling without 

replacement. Y can therefore be approximated with a binomial distribution 

with parameters M and JJ = ~. The probability of a completely usable classifier 

in this case would be 1 - (1 - ~)M. 

For a given parameter set (L, M, n and Q), the expected degree of usability 

of the ensemble, E[U], can be calculated. Denote by Z a random variable 

which expresses the number of usable classifiers in the ensemble. Then Z has a 

hypergeometric distribution. Define the total as the number of possible samples, 

without replacement , of size M from X, that is , (~ ) . The number of usable 

classifiers is calculated by taking the number of non-usable classifiers, (11-;?) , 
from the total. The number of selected classifiers at a time is L. The expected 

value of Z is Selectedx Usable therefore the expected usability of the ensemble is 
Total ' • 
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E[U] = 1;E[Z] 

E[U] = ~ XL X (1- (n-;l)) = 1- (n~Q) 
L (~) (~) . 

The expected usability of the ensemble does not depend on the ensemble size 

L. It is hypot hesized that ensembles with a higher degree of usability will be 

more accurate. 

Coverage In order to best use the available information for classification, it is desir

able to include as many q EI in t he feature subsets as possible. Ideally, each 

q E I to be select ed at least once in the L samples of M features. The degree 

of coverage of the ensemble, C, is defined as the proportion of features q E I 

( out of Q) which are selected for one or more of the L classifiers. 

In order to calculate the degree of coverage, as the feature subsets are sampled 

independently from X, the binomial approximation to the hypergeometric dis

tribution can be used once again. The probability of selecting a given q E I in 

sample of size M, can be calculated as 1
~. Conversely, the probability that q 

is not selected is 1 - ~ . The probability that q is not selected in any of the L 

feature subsets, denoted P(ij), is P(ij) = (1 - ~t. The probability of q being 

selected in at least one of the L feature subsets is therefore 1 - P(q). 

The probability of all features being covered is 

Denote by Z the number of covered features out of Q. Z has binomial dis

tribution with parameters Q and p = 1 - (1 -1:,t. The expected coverage 

is 
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The expected coverage depends on the ensemble size L and the subset size M 

but not on Q. The assumption here is that the higher the degree of coverage, 

the more accurate the ensemble. 

For fixed Q and n, E[U] is monotonically increasing with M and E[C] increases 

with both Land M . This suggests that a larger ensemble with a larger feature 

sample is best. Note that in the extreme, the case of M = n, the ensemble will 

be made up of classifiers built upon identical subsets. This defeats the object 

in having an ensemble in the first place. It is also likely, that with an excessive 

feature-to-instance ratio, t he classifiers may overfit the data. A third property, 

termed feature set diversity, is therefore introduced. 

Feature set diversity In order to maintain a level of diversity within t he ensemble, 

it is important that the feature subsets used to construct the L classifiers are 

non-identical. Given the assumption that n - Q voxels are random noise, and 

do not contribute to the classification. Feature set diversity is calculated based 

upon the contribution of the Q important features. 

Denote by S1 , S2, ... , SL the L feature subsets sampled from X. Consider 

respective subsets of 'important' features in S1 and S2 respectively. Feature Set 

Diversity (D) is defined as 

Two classifiers are non-identical if their feature subsets differ by at least one 

'important' voxel. Each feature q E I may or may not contribute to D. A 

value of 1 will be added if q is in either set but not in both. Then t he expected 

diversity for any pair of subsets S1 and S2 is 

Q 

E[D] = L P(qi E I1)P(qi ¢ h) + P(qi ¢ li)P(qi E 12)-
i=l 
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Figure 4.2: Theoretical (red, circles) and simulation curves (black, dots) coincide for 
the expected values of U, C and D for n = 1000, Q = 100 and L = 10. The empirical 
curve is calculated as an average of 10 ensembles with randomly sampled L = 10 sets 
of M features. 

Since all features in I have equal chance of being selected in a subset of size 111, 

and the subsets are drawn independently, 

NJ ( M) E[D] = 2Q-;;: 1 - -;; . (4.1) 

This calculation disregards non-usable classifiers. An ensemble can be still be 

diverse even if it contains non-usable classifiers for which Ii = 12 = 0. 

The expected theoretical value of E[U]. E[C'] and E [D] are calculated for n = 1000, 

Q = 100 and L = 10. Simulations, calculated as an average of 10 ensembles are run 

with L = 10 randomly sampled sets of M features. The resulting theoretical and 

empirical curves, shown in Figure 4.2, are seen to coincide. Varying L had little effect 

in the shape or position of the curve. Based upon these results we claim that values 

of M close to ~ are optimal as all three criteria reach their maxima. 
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Chapter 5 

Random Subspace Ensemble for 
N on-i.i.d. Streaming fMRI Data 

5 .1 A Simulation Experiment 

Having defined the three criteria and derived suggested values for L and M, a simu

lation is used to check the relationship between the criteria and the accuracy of the 

RS ensemble for £MRI type data. 

5.1.1 Data 

In order to illustrate and simulate the theory, a synthetic data set with realistic 

properties is generated. This allows control of n and Q. This synthetic 2 class data 

set is based upon the first two classes of the Bangor 2 data set. To create the data set, 

the Contrast to Noise Ratio (CNR) for each voxel of the real fMRI data set (Bangor 2: 

Classes 1 and 2) is calculated. The CNR of each voxel is then used to rank the voxels. 

The means and covariance matrix are stored for the top Q voxels. These correspond 

to the Q important features in the data. Multivariate Gaussian distributions were 

simulated for each class. The remaining n - Q features were simulated as random 

noise, with mean zero and standard deviation equal to the mean CNR for the Q 

important features. 
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5.1.2 Experimental Protocol 

For each parameter combination (M, L , Q, n), detailed below, 10 data sets were gen

erated. Each data set had 10 training examples per class (total 20 training examples) 

and 100 testing examples per class (total 200 testing examples). This ratio was 

chosen to reflect that of real fMRI data sets. Data sets were generated with total 

number of features, n = {200, 500, 1000}, number of important features, Q, such that 

~ = {0.02, 0.05, 0.1, 0.25, 0.5, 1}. For the ensemble parameters, .A,f took 20 evenly 

spaced values from 1 ton, L took evenly spaced values between 1 and 200. 

As a base classifier, an SVM was used. For each parameter combination the error 

of the RS ensemble is calculated, along with the observed values for usability, U, 

coverage, C and feature set diversity D for the ensemble. 

5.1.3 Results 

From the results of the simulations surfaces for U, C, D are obtained along with the 

error of the ensembles. These are visualised on a (L, M) grid. Figure 5.1 shows an 

example of the surfaces for the distribution where n = 500 and Q = 50. Each point is 

calculated as an average across 10 simulations, with data being drawn independently 

from the chosen simulated distribution. The shapes of the surfaces were consistent 

across all six ratios of ~. The shape of the surfaces confirms the hypothesis that 

larger values of U, C and D lead to more accurate ensembles. 

From subplot (a) it can be seen, that as expected, usability does not depend upon 

L. U quickly raises to 1 as M increases. Feature set diversity, subplot (c), produces 

a 'tent'-shaped surface. Once again, the values of D depend upon lvf, but not on L. 

The largest values of D are achieved for M ~ ¥- Coverage, as seen in subplot (b) , 

has a value of 1 for the largest part of the grid. C is the only property which depends 

upon L. The plot suggests that small to medium sized values of L are sufficient. As 
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Figure 5.1: The three RS characteristics and the ensemble error as functions of the 
ensemble size L and the feature set size M. Each of the 2 classes in the data set was 
sampled from a Gaussian distributions with Q = 50 relevant and n - Q = 450 noise 
features . 

a rule of thumb, it is therefore suggested to use .M = ~ and L = {~ for fMRI data. 

The observed error is shown in subplot (d) . 

Table 5.1 summarises the simulation results. The table shows the ~ ratio, the 

average error rate of the RS ensemble over the whole (L, M) grid, denoted E, as well 

as the error using the recommended values, denoted E*. E is seen to be greater t han 

E* across all values of ~. The table also shows the correlation coefficients between the 

RS ensemble error E, on one hand, and U, C, and D , on the other. These coefficients 

support the hypothesis that large values of usability, coverage and feature-set diversity 

are beneficial for the ensemble. 
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Table 5.1: Summary of the simulation results . .E is the average RS ensemble error 
across the (L, M) grid. E* is the value of the ensemble error for the recommended 
parameter values, Jvl = ~ and L = ~. 

Correlation with E 
9. ratio E E* Range of E o-(E) Usabrnty Coverage Diversity 

0.02 7.99 1.25 0.70-50 16.43 -0.513 -0.873 -0.649 
0.05 5.80 1.75 0.80-50 12.62 -0.602 -0.865 -0.566 
0.10 5.73 1.40 0.60-50 11.83 -0.467 -0.791 -0.628 
0.25 6.97 0.90 0.35-50 14.51 - 0.174 - 0.746 -0.645 
0.50 5.47 2.15 0.35-50 10.94 -0.035 -0.540 -0.579 
1.00 8.58 1.05 0.25-50 11.90 N/A -0.367 -0.543 

5.1.4 Experiment with Real f.MRI Data 

The RS ensemble with SVM was rw1 on classes 1 and 2 (faces and places) of the 

Bangor 2 data set. Firstly, k = 1000 voxels were pre-selected using the SVM method. 

Three-fold cross-validation was then applied to test the RS ensemble. The ensemble 

was tested on a 10 x 10 grid of values for M and L. M was varied from 1 to k at 

equal intervals, and L wa.s varied from 1 to k/5. The ensemble error is illustrated as 

a surface over the ( L, Jvl) grid in Figure 5.2. The recommended values of M = 500 

and L = 100 are marked as lines across the 3-D surface. The lines intersect near the 

minimum of the error surface, confirming empirically the recommendation for L and 

M. The average error across the whole grid was 0.2138, the error at M = 500 and 

L = 100 was 0.0521. 

5.2 Online Classifier Ensembles for tMRI Data 

Before applying naive labelling to streaming fMRI data, supervised online learning 

is considered. Three online linear classifiers are tested on the ENI data set. The 

classifier models chosen are the perceptron, winnow and online linear discriminant 

classifier (0-LDC). The questions of interest are 
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Figure 5.2: RS error on the real fMRI data set as a function of the ensemble size L 
and the feature size M. The recommended values for Land M are overlayed on the 
surface. 

1. Are random subspace ensembles more accurate than individual classifiers for 

fMRI data? 

2. Does online learning benefit the classifiers and/ or the ensembles? 

3. Which individual classifier is best suited for (supervised) classification of stream

ing fMRI data? 

5.2.1 Method 

For this experiment the ENl data set used as it is a 2-class problem, which suits 

the perceptron and winnow. The data set was labelled using the standard box-car 

method. The data set is prepared by taking an offiine training data set, T consisting 

of the first blocks of each presentation type, that is, the first block of emotion, and 

first block of rest, of cardinality NT = 17. The remaining 187 data points, in sequence, 

make up the online data set, S. 

Experiment 1: Individual Classifiers For each base classifier (perceptron, win

now and O-LDC) , an offiine (batch) version is trained on T, using class labels 1 

and 2 to correspond to emotion and fixation respectively. This may be regarded 
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as an initialization period in an fMRI experiment. After this initial training pe

riod, the online data points are presented one at a time. As each data point is 

presented, the 'current' classifier is tested; if the data point is misclassified then 

the cla.ssifier is updated. 

Experiment 2: Random Subspace Ensemble For each base classifier an RS en

semble is trained on T. Ba.sed upon the ./11 = n/2 recommendation, L = 11 

and M = 1000 are chosen as the ensemble parameters. The online data points 

are presented one at a t ime, and the individual classifiers within the ensemble 

are tested. Each individual classifier which incorrectly classifies the data point 

is updated. The accuracy of the ensemble is recorded. 

5.2.2 Results 

The cumulative error is calculated at each streaming data point in S, using Equa

tion 3.8. The error progressions for the individual cla.ssifiers and RS ensembles are 

illustrated in Figure 5.3 (a) and (b) respectively. 
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Figure 5.3: Cumulative error progression for online data. 

The O-LDC outperforms the other classifiers both individually and as an ensem

ble, which is seen by the end point of the progression showing a lower error score. 
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The perceptron comes second whilst the winnow yields the worst results. The error 

progression for t he perceptron appears to start at zero as the perceptron correctly 

classifies the first few data points in S. Table 5.2 summarises the final cumulative 

error scores, at TR = 187. The results show that for all base classifiers, the RS en

sembles perform better than the individual classifiers. The O-LDC is seen to improve 

dramatically during the online learning phase, and is t he most accurate base classifier 

in both experiments. This reinforces the results from the i.i.d. example, which shows 

the O-LDC to be better than the perceptron and winnow. 

Table 5.2: Final errors for individual classifiers and classifier ensembles (%), taken at 
TR= 187. 

Individual classifier 
Cl~i,ifier eni,emble 

Kappa-error Diagrams 

0-LDC 
9.29 
5.71 

Perceptron 
12.14 
8.57 

Winnow 
17.86 
17.14 

As the online instances are presented and the classifiers in the ensemble are updated, 

the mean pairwise error and kappa diversity scores change, creating a t rajectory. 

Figure 5.4 plots the trajectories of the means of the kappa-error clouds for the RS 

ensembles over time, one trajectory for each base classifier model. The endpoint of 

each trajectory is indicated with a marker. Take the RS ensemble of the perceptron 

as an example, represented by a green trajectory and red square marker in Figure 

5.4. Following offiine training, the pairwise error of the ensemble is e ~ 0.21, the 

corresponding kappa diversity score is 1,, ~ 0.3. In the case of the perceptron, the 

general trend of the trajectory is downwards (indicating decreasing pairwise error) 

and to the right (indicating decreasing diversity). The final pairwise error for the RS 

ensemble of perceptron classifiers is e ~ 0.125, with 1,, ~ 0.7. 
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The initial high diversity of the perceptron may explain its early accuracy. This 

diversity decreases over time. Only the trajectory of the 0-LDC ensemble shows an 

improvement of bot h diversity and accuracy over time. 

0.3 

0.25 

~ 0.2 
g 
w 

0.15 

0.1 0 LDC 
■ Perceptron 
A Winnow 

0
·
08.2 0.4 0.6 

kappa 
0.8 

Figure 5.4: Trajectory of means of kappa error diagrams. 
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Figure 5.5: Design matrix highlighting occurrence of individual and ensemble errors, 
plotted against the design matrix (black line). Individual errors represented by red 
dot, ensemble errors by black cross. Transitions between classes are illustrated by 
vertical grey stripes. 

To compare the p erformance of the ensemble and individual classifiers, it is inter

esting to see when classification errors occurred. Figure 5.5 shows the 'design matrix' 

corresponding to expected levels of neural activity. Peaks correspond to negative 

emotion and valleys to rest (no emotion). Transition TRs, between the classes, are 

marked by grey vertical stripes. These TR.s are where errors in classification are ex

pected to be made. Errors by the individual 0-LDC are marked by red dots whilst 
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black x's mark errors made by the 0-LDC ensemble. For both classifiers, errors are 

predominantly made in the first half of the experiment. This is a strong indication 

that the classifiers improve over time. This supports evidence from the error pro

gressions in Figures 5.3(a) and (b). In Figure 5.3(a), the error progression individual 

0-LDC classifier is seen to make errors beyond TR= 100, whilst in Figure 5.3(b) the 

ensemble is seen to stop making errors at approximately TR= 80. In addition to this, 

from Figure 5.5 it can be seen where the errors occur in terms of the design of the 

experiment. Fewer errors occur at peaks and valleys than in the transition periods, 

with those errors that do occur in peaks and valleys appearing early in training. Er

rors made by the ensemble are seen to occur less frequently than those made by the 

individual classifier. The ensemble is also seen to stop making errors sooner than the 

individual classifier. 

5. 3 Processing Time 

The 0-LDC has been shown to perform more accurately than either the Perceptron 

or Winnow. Also, the classifier ensembles have been shown to outperform the indi

vidual classifiers. However in order to perform in real-time the updates need to be 

sufficiently fast, it is important that the classifier ensemble can update within the 

required amount of time ( ~ 1 TR). Experiments were conducted in order to test the 

processing times for training and updating the 0-LDC. 

5.3.1 Method 

This experiment used the ENl data set. A stratified sample of 9 data points per 

class was taken as an initial training sample. A grey matter mask was calculated 

and applied, reducing the feature space from 83,072 voxels to 28,118. The time taken 

to calculate the mask was 0.49s1. The time taken to perform two voxel selection 

1 Experiments were repeated 20 times, with mean times being reported. Experiments were carried 
out using Matlab [87] on a laptop with an AMD Turion 64 x2 2GHz processor and 2GB of memory. 
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Table 5.3: Update times (s) for individual classifiers 
K Initial training time Update time 
20 0.0029 0.0016 
50 0.0050 0.0018 
100 0.0119 0.0026 
250 0.0811 0.0117 
500 0.5745 0.0790 
1000 3.6419 0.5015 
2000 27.1080 3.3411 

methods were compared, the ANOVA and maximum activation method. To select 

2000 voxels from the 28,118, the ANOVA took 70.33s whilst the maximum activation 

method took only 0.04s. 

5.3.2 Results 

Table 5.3 shows the processing time for training and updates for an individual clas

sifier, with different numbers of features, [(. Update times include time taken to 

select the voxels (from the grey matter mask and ANOVA) and normalise the data 

point , using the coefficients derived from the training data. Table 5.4 shows the init ial 

training times for classifier ensembles for different combinations of L and .M. Table 

5.5 shows the update times for the ensembles. 

It can be seen that above K = 250 features the individual classifier slows dra

matically. For the ensemble, even with L = 13 and M = 250 the updates occur well 

within the required t ime ( ~ 2s) , and it has already been shown that in this setting, 

the ensemble outperforms the its individual component classifiers. This supports the 

hypothesis that the ensemble is the better choice for real time classification. 

5 .4 Discussion 

The experiments show that for streaming fMRI data the random subspace ensem

ble performs better than the individual online linear classifiers. This is based upon 
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Table 5.4: Training times s) for classifier ensembles 
£ = 5 L = 9 L = 11 L = 13 

]\,f = 20 0.0102 0.0135 0.0166 0.0188 
1\1 = 50 0.0182 0.0309 0.0366 0.0438 
M = 100 0.0568 0.0989 0.1210 0.1449 
M=250 0.4054 0.7340 0.8977 1.0650 

Table 5.5: Update times (s) for classifier ensembles 
L = 5 L = 9 L = 11 L = 13 

1\1 = 20 
J'\1 = 50 
M = 100 
M = 250 

0.0083 0.0154 
0.0094 0.0171 
0.0131 0.0247 
0.0626 0.1088 

0.0197 
0.0207 
0.0298 
0.1325 

0.0215 
0.0235 
0.0356 
0.1586 

comparison between the mean performance of the individual classifiers and the mean 

performance of the classifier ensembles. It may be argued t hat certain individual 

classifiers perform better than the ensemble, however it is not possible to establish in 

advance which individual classifiers these would be, hence the ensemble offers a more 

robust output. 

Across both the individual and ensemble experiments, the online linear discrim

inant classifier (O-LDC) is seen to be more accurate than either the perceptron or 

the winnow. As a linear classifier, the O-LDC is fast to train and has demonstrated 

accurate results. The O-LDC is therefore t he best choice of t he base classifiers tested 

here, for use in online pattern classification studies of the human brain. 

For this study it has been assumed that the true class labels are known during 

t he online training phase. The situation when this is not the case is considered in 

Chapters 6 and 7. 
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Chapter 6 

Classification of i.i.d. fMRI 
Streaming Data 

A study is proposed to determine whether a classifier benefits from naive labelling 

when the data comes as a series of fMRl brain volume images. Whilst a run-away 

classifier is a realistic adversity when naive labelling is used, it is hypothesized that 

by using an RS ensemble, a sufficient number of classifiers within the ensemble will 

be improved beyond their offiine accuracy, and thus the ensemble will counteract any 

adverse effects on an individual ensemble member. 

6.1 Experimental Protocol 

Three data sets are used, ENl , EN2 and EB. The data sets are labelled using a 

shifted box-car method as described in Section 2.5, where the labels are shifted by 

1 TR ( corresponding to an offset of one data point). This means that the number 

of instances in the experiment is 1 less than in the original data descriptions. For 

each data set, a voxel mask is derived, based upon the BOLD signal, using the 

method outlined in Section 2.7.1. This mask is applied to reduce the feature set, 

predominantly to the grey matter of the brain. The resulting data sets are summarised 

in Table 6 .1. 

The data points from each data set were split into two subsets: T, a data set 

used for offiine (batch) training, and S, a data set which is prepared and presented 
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Table 6.1: Summary of data sets after applying the grey mask 

Name 
ENl 
EN2 
EB 

Voxels (Features) 
28426 
28662 
29865 

Data Points 
203 
203 
108 

Classes 
2 
2 
3 

to the classifier as online (streaming) data. The initial data points were shuffled and 

sampled to form T. It is noted that this breaks the autocorrelation of the fMRI signal, 

however in order to explore semi-supervised learning for streaming fMRI data, the 

method first needs to be shown to work for stationary, independent and identically 

distributed (i.i.d.) data. This issue is discussed later in relation to presenting the 

online data stream. 

Having selected T , the remaining data points are oversampled to construct S with 

500 data points1 . This is t he closest approach to constructing i.i.d. sets. In order to 

reduce the dimensionality of the feature set, following the recommended procedure 

by De Martino et al. [30], a fixed amount (K), of voxels are pre-selected. This is 

achieved by taking t he K voxels with maximum activation, based on T. Both training 

and testing data are normalised, using the mean and standard deviations calculated 

for T. 

A 'fixed' offiine random subspace ensemble is trained on Talone. Three scenarios 

are considered: 

Scenario A: No Updates (Fixed). The online data points from Sare presented 

to the ensemble one at a time. The ensemble is not updated during the online 

phase. The cumulative error is measured in order to compare whether using 

naive labelling is better than the no-action scenario. 

1The 500 data points are sampled independently from the remaining data points. Data points 
may appear in S once, more than once, or not at all. 
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Scenario B: Supervised Updates (Supervised). The true class labels are as

sumed to be immediately available. As each online data point is presented 

to the ensemble, each ensemble member is updated using the true class label. 

Scenario C: Unsupervised Updates (Naive). The true class labels are assumed 

to be unavailable. As each online data point is presented to the ensemble, each 

ensemble member is re-trained using its individual predicted label as the true 

label. 

The experiments were conducted across a range of parameters; number of pre-selected 

voxels K = 500, ensemble size L = [5, 9, 11] and feature set cardinality j\1 = 

[20, 50, 100]. The cardinality of the training sets were NT = [20, 40, 100]. Due to 

the random nature of the feature selection for the RS ensemble, experiments were 

repeated 50 times, and the results were averaged. 

For each scenario, the error rates of the individual member classifiers which make 

up the ensembles are also considered. 

Computational costs of the preprocessing and classification are not assessed quan

titatively here. This is not expected to be a major obstacle, however, given that 

the classifiers have relatively low computational costs, and that earlier studies have 

demonstrated the feasibility of real-time classification [37, 53, 54, 77] , and processing 

speed of computers is increasing over time. 

The study seeks to answer the following questions: 

Individual vs ensemble. For classification of unlabelled fMRI data, does an indi

vidual classifier or classifiers in an ensemble framework yield better results? In 

line with previous and existing research, classifier ensembles are expected to 

have higher accuracy than an individual classifier. This may not be true if the 

individual classifiers deteriorate progressively. At some point the ensemble will 

become worse than the average individual classifier. 
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Fixed vs untrained updates. For streaming fMRI data, is it advantageous to up

date the ensemble using naive labels? 

6.2 Results 

The cumulative error progression is calculated for each time step using Equation 3.8. 

The 'final' errors for the three data sets, taken at time t = 500 are summarised 

as colour plots in Figure 6.1, full error values can be found in Tables A.1, A.2 and 

A.3. For each combination of 111 and Nr , ensembles of L = [5, 9, 11] classifiers are 

generated, giving a total of 25 individual classifiers. The individual error is taken 

as the mean error of these 25 classifiers at time t = 500. Each column of the table 

represents a value of L, with the last column showing the mean error of the individual 

classifiers, titled 'I' . Each row of the table corresponds to a value of NT. Within each 

coloured grid, rows correspond to values of 111, and columns to the three RS ensemble 

methods, Fixed (F) , Naive (N) and Supervised (S). 

As expected, the supervised classifier is superior to the fixed and naive classifiers. 

The final error scores at t = 500 are compared for the fixed ensemble and the naive 

ensemble in order to see which scenario works best for unlabelled data. The results of 

this comparison are summarised in Table 6.2. A'+ ' indicates that the naive ensemble 

performs better than the fixed ensemble. A ' - ' indicates the naive ensemble performs 

worse than the fixed ensemble. Significance was calculated using a paired t-test, 

uncorrected for multiple comparisons. Significant results at a = 0.05 are indicated 

by EB and e . 

For these parameters the results suggest that the naive ensemble is on a par or 

better than the fixed ensemble (21 EB, 23 + , 35- and 4 e ). For M 2'.: 50, the naive 

ensemble performs much better than the fixed ensemble, (20 EB, 19 +, 13 - and 2 

e ). Data set EB was the most 'difficult ' for the classifiers, as this is where different 
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Figure 6.1: Final cumulative error scores (%). Error scores are coloured from blue 
through to red representing low and high error respectively. Values of Mare shown as 
rows of each coloured grid. 'F' , 'N' and 'S' correspond to fixed, naive and supervised 
ensembles. 'I' corresponds to mean individual error of classifiers for a given 1\1 and 
NT. 
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Table 6.2: Direct comparison of fixed and naive ensembles. '+' and '-' respectively, 
represent a 'win' or 'loss' by the naive ensemble. A circle surrounding the + or -
indicates t hat t he result is stat istically significant at significance level a= 0.05. L is 
ensemble size, lvf is cardinality of feature subsets, NT is cardinality of training data 
set. 

ENI EN2 EB 
NT 20 40 100 20 40 100 20 40 100 
JH 
20 - - e - - - + - -

L = 5 50 + EB + + EB e - + + 
100 - + EB - EB EB + + + 
20 - - - - - - - - -

L = 9 50 - EB e + EB - + + -
100 + EB EB EB EB EB - + -
20 + - e + - - EB - + 

L = 11 50 + EB - EB EB + - - + 
100 EB EB EB + EB EB - + -

emotions are being recognised. The other challenge with this data set is the addition 

of a third class. 

6.2.1 Kappa-error Diagrams 

Kappa-error diagrams are now an accepted tool for comparing classifier ensembles 

[86]. Each pair of classifiers in t he ensemble generates one point on the diagram. 

The x-axis of a kappa-error diagram is the diversity of t he pair, 1,, . Lower values 

of 1,, indicate higher diversity. Kappa measures the level of agreement between the 

classifiers while correcting for chance [40]. Consider a testing set of N examples, the 

pairwise "' is defined as follows 

K, = (Nll + NlO)(NlO + NOO) + (Nll + NOl )(NOl + NOO)' 
(6.1) 

where N 11 is the number of testing examples on which both classifiers are correct, 

where N°0 is the number on which both classifiers are wrong, N 10 is the number on 

which classifier 1 is correct and classifier 2 is wrong, and N°1 is the number where 
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classifier 1 is wrong and classifier 2 is correct; N°0 + N11 + N 01 + N 10 = N. 

In a kappa-error diagram, the y-axis shows the averaged error rate of the pair. 

Each ensemble can be plotted as a cloud of points in a kappa-error diagram. En

sembles whose 'clouds' of points are situated closer to the bottom left corner of the 

diagram are usually preferable as they display high pair-wise accuracy and high di

versity. 

For the experiments considered here, there is one classifier ensemble for every time 

point t. It is interesting to see how the cloud shape and position of the kappa-error 

diagram changes with t ime. For each TR the kappa error and pairwise accuracies are 

calculated. To demonstrate how the kappa-error diagrams progress with time, the 

mean of the kappa-error clouds are calculated at each TR. Instead of plotting the 

entire clouds of points, it was decided to plot the trajectories of the centres. 

In order to understand the mechanism of improvement through naive labelling en

sembles, the progression of the error over time and the corresponding time-trajectory 

on the kappa-error diagram are considered. Figure 6.2 (a) shows the error plot for 

EB2 with L = 11, M = 100 and Nr = 100. The plot is taken from t = 25 onwards, 

as at low t there are large fluctuations in the cumulative error leading to the plot 

appearing noisy and unstable. If the plot was to be taken from t = 0, then the plots 

for all scenarios would start from one point, as the same offiine ensemble is used in 

each case. The marker and line colour indicate the base classifier, a solid line indicates 

the classifier ensemble whilst a dashed line indicates the individual classifier. 

The error rate of the fixed classifier is expected to remain constant over t ime. The 

error rate of the supervised classifier will drop as the classifier sees more data. It is 

hoped that the naive classifier follow the same pattern as the supervised classifier, in 

that the error will drop as t increases, thus showing the naive labelling strategy to be 

beneficial. 

The figure shows the dashed lines, representing the individual classifiers, above 
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Figure 6.2: Figures for EB data taken with ensemble size L = 11, feature set cardi
nality M = 100 and training data set cardinality Nr = 100. 
(a) Error progression. Solid line indicates classifier ensembles. Dotted ]jne indicates 
individual classifiers. Plot illustrates changes in error over time. 
(b) Kappa-error progression. Kappa-error progression plots t he changes in pair-wise 
accuracy and diversity as the classifier ensembles learn over time. 

the corresponding solid lines. This indicates that the classifier ensembles outperform 

the individual classifiers. The error of the supervised ensemble is seen to drop over 

time, whilst the error of the fixed classifier ensemble remains constant. The naive 

ensemble is seen to improve over time, with significantly better results than the fixed 

ensemble. 

Figure 6.2 (b) shows the kappa error trajectories corresponding to EB2 with L = 

11, M = 100 and Nr = 100. The cloud for the fixed ensemble is expected to float 

about the initial point, as the only difference from one time point to the next will 

be the estimate of kappa and the individual errors. The classifier and the ensemble 

parameters do not change, hence the movement will be only a small fluctuation. The 

supervised ensemble, on the other hand is expected to drop down the plot, indicating 

that the individual accuracies improve with more data being seen. It is curious how 

the diversity of the ensemble progresses, i.e. , whether the cloud will move to the left 

(larger diversity) or right. The endpoint of each trajectory is indicated with a marker. 
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A good classifier ensemble will be both accurate and diverse, and thus appear near 

the bottom left hand corner of the diagram. As the t rajectories of the ensembles are 

plotted over time, if the ensemble improves, it is expected that the t rajectory will 

progress towards the bottom left corner. 

The trajectory of the supervised ensemble tracks down as accuracy increases. The 

diversity decreases slightly, this suggests that all classifiers within t he ensemble are 

being driven towards the optimal classifier, thus are becoming more similar. The fixed 

ensemble, as expected, shows very little progression. The naive ensemble shows an 

increase in both accuracy and diversity, both of which are desirable characteristics. 

To better see what is happening the individual progressions of the classifiers are 

plotted. Figures 6.3 ( a) and (b) show the typical patterns of the individual classifiers 

for t he fixed and supervised ensembles respectively: the error of the fixed classifiers 

remains constant while the error of the supervised classifiers drops over t ime. 

For the naive classifiers, it is desirable to see a similar shape to that of the su

pervised classifiers. Figures 6.4 (a) and (b) show two cases of the patterns of t he 

individual naive classifiers. In both cases the naive ensemble performed significantly 

better than the fixed ensemble. Figure 6.4 ( a) is a case where t he naive classifiers 

show a desirable learning pattern , improving over time. In Figure 6.4 (b) some clas

sifiers are seen to display runaway behaviour. What is interesting in this case is that 

the naive ensemble still performs better than the fixed ensemble, indicating that the 

ensemble environment counteracts the runaway behaviour. 

6.2.2 Individual vs Ensemble 

From Figure 6.1 the error of the individual classifiers is compared with the error of the 

ensembles. The error rate for the ensembles can be seen to be lower. This supports the 

hypothesis t hat a classifier ensemble is more accurate t han an individual classifier. 

In Figure 6.2 (a) the error progression of the individual classifiers can be directly 

93 



Fixed 

a.st. 
t I 1ft 

05 
,,_,_ ,,_. .. 

. ~-v,' 
"'r • , I 

0.4 ... e w 0.3 · 

0.2 

o.1 F '· 
100 200 300 400 500 

Observations 

(a) Fixed classifiers. 

... 
e 
w 

0.4 

0.2 

0.1 

Supervised 

100 200 300 400 500 
Observations 

(b) Supervised classifiers. 

Figure 6.3: Typical error progression of individual classifiers (data set: ENl , size of 
ensemble: L = 5, cardinality of feature subsets: M = 100, cardinality of training 
data set: NT = 20). 
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(b) EN2: L = 11, M = 50, NT = 20. 

Figure 6.4: Comparison of different individual classifier progressions for the naive 
ensemble. Improvement over the fixed ensemble was obtained with both ensembles. 
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compared with the classifier ensemble. The classifier ensembles are seen to be more 

accurate than their individual counterparts. 

6.2.3 Fixed vs Unsupervised Updates 

From Table 6.2 the results from the fixed classifier can be directly compared with 

those of the naive ensemble. For the correct parameters, the naive ensemble with 

unsupervised updates is beneficial to the ensemble. Specifically, when the cardinality 

of the feature set is M 2: 50 the naive ensemble performs better than the fixed 

ensemble. The method is tested on two 2-class data sets and one 3-class data set. 

The method performs best for the 2-class data sets, when the accuracy of the initial 

fixed ensemble is higher. 

6.3 Discussion 

It has been shown that classifier ensembles are more accurate than individual clas

sifiers for streaming i.i.d. fMRI data. The experiments also show that given an 

appropriate choice of parameters, classifiers updating using the naive labelling strat

egy perform well within an ensemble framework. It was shown that for sufficient 

training data, a naive classifier ensemble performs significantly better than a fixed, 

pre-trained classifier ensemble. 

During a real time fMRI experiment, there is the potential for concept drift. An 

online classifier working in this environment is required to be capable of updating 

and adapting during the course of the experiment. Naive labelling offers an intuitive 

solution to this problem. 

In these experiments the data is treated as being i.i.d., which is not strictly the 

case for flv:IRI in general. This approach serves as a first step towards semi-supervised 

learning for streaming fMRI data. The non-i.i.d. case raises new questions. Auto

correlations and the non-stationary nature of streaming fMRI data may weight and 
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'pull' an online classifier in a certain direction, encouraging runaway traits. In the 

next chapter, it is shown how naive labelling combined with the random subspace 

ensemble may be applied to streaming £MRI data in order to simulate a real-time 

scenario. 
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Chapter 7 

Semi-supervised Classification of 
N on-i.i.d. fMRI Streaming Data 

7 .1 Introduction 

Up to this point, online classifiers for flv1RI have been considered in cases where data 

was simulated as i.i.d. data, or where true class labels are known. During fl\~RI 

experiments there may be concept drift. This can be attributed to head motion, 

physiological changes or low-frequency scanner drift. Recall that, as stated by La

Conte, [76], future applications of ™RI analysis may consider cases where changes 

in patterns are expected. Experiments involving performance enhancement, rehabil

itation or therapy expect the brain response to change over time, with trials being 

conducted weeks, months or even years apart. In these cases, pre-trained supervised 

classifiers will become less relevant and there is a need for a classifier which adapts 

with the data as it trains over time. This is identified as one of the current challenges 

in ™RI classification. 

It has already been shown that with the correct parameter tuning, an ensemble 

framework may constrain the potential negative behaviour of a classifier with naive 

updates. As a next step, the theory is applied to streaming data, and options are 

considered for handling changes within the data, that is, when there is both concept 

drift and unlabelled data. 
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The situation becomes a catch twenty two. A fixed pre-trained classifier may be 

used, which is known to be inaccurate due to concept drift, or there is the gamble 

with naive labelling, which may improve the classifier, but runs the risk of making 

it worse. Here an alternative method is proposed for using naive labelling within an 

ensemble framework. Consider guided updates : the ensemble prediction is taken to 

be the 'true' label and is used to update each member classifier instead of its own 

predicted label. In a related work, [82] also use ensemble labels to boost accuracy in 

semi-supervised learning, in an offiine co-training approach. 

7.2 Guided Update Strategy 

Intuitively, the predicted label from a classifier ensemble is likely to be more accu

rate than the predicted label from an individual classifier within the ensemble. It 

is hypothesised that by using the ensemble decision to update the individual ensem

ble members, the likelihood of runaway classifiers is reduced. The ensemble with 

'guided' updates is expected to perform better than an ensemble where its members 

are updated using their individual predicted labels. 

7.2.1 Theory and Illustrations 

Before applying the guided update strategy to streaming £MRI data, the hypothesis 

is first tested theoretically and with a simulated i.i.d. case. 

Consider an ensemble of L classifiers. The ensemble receives a sequence of N i.i.d. 

data points whose class labels are unknown. If the classifiers in the ensemble are not 

updated throughout the online run, the ensemble at data point N will be equally 

accurate as the starting ensemble. Updating the classifiers can improve ensemble 

accuracy. 

Two update strategies can be employed, both within the naive labelling approach. 
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Individual Update. The member classifiers are re-trained by augmenting the train

ing data with the current observation and the label proposed by the classifier 

as the true label. 

Ensemble Update. The member classifiers are re-trained by augmenting the train

ing data with the current observation and the label proposed by the ensemble 

as the true label. 

The individual update can be regarded as a Markov chain where each processed 

data point is a step in the chain. Denote the initial accuracy of the classifier by p. 

Assume that, if a correct label is used for the update, the accuracy increases to p + E, 

and if incorrect label is used, the accuracy decreases to p - E, where E is a small 

positive constant. The transition matrix for the update step is 

Before the update 
wrong 
correct 

After the update 
wrong correct 

1-Pt+ E Pt - E 

Pt+ E 

Note that the accuracy is tagged by t , the time step. The transition matrix con

tains the current accuracy Pt which varies from one step to the next. Thus the Markov 

chain is non-homogeneous, and asymptotic distributions are not readily available. 

The probability for correct classification at step t + 1 can be calculated from the 

transition matri..'< 

(7.1) 

If the classifier is better than chance at the start (p > 0.5) , the accuracy is expected 

to increase progressively with t. For the individual update method, the majority vote 

accuracy does not play a role in the update. Assuming independent classifiers, the 

majority vote accuracy will increase with the increase of p. 
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For the guided update, the probability for correct classification of the individual 

classifier at step t + 1 depends on the ensemble accuracy, Pens in addition to Pt 

Since for independent individual classifiers Pens > Pt , the improvement in the 

individual accuracy will be better for the ensemble updates. 

Monte Carlo simulations were carried out to illustrate the behaviour of the two 

types of updates compared to the fixed (not updated) classifier. 1000 independent 

runs were performed for each of t he two update strategies, and for the fixed ensemble 

(no updates). The following protocol was used: 

• L random numbers between 0.5 and 0.6 were generated as the initial accuracies 

of the classifiers in the ensemble. 

• 500 steps of online update were performed. 

• At each step, L random numbers were sampled uniformly from the .interval [0, l ] 

and compared with the current classification accuracies to obtain 'correct' and 

'wrong' classifications for each classifier. 

• Majority vote accuracy of the ensemble was calculated and stored. 

• The accuracy of each classifier was updated according to the respective strategy 

- Pt+1 = Pt for the fixed ensemble strategy. 

- Pt+i = Pt+ € if the classifier was 'correct' at step t and Pt+1 = Pt - € if the 

classifier was 'incorrect', for the individual update strategy (€ = 0.001). 

- Pt+l =Pt+ 1: if the ensemble was 'correct ' at step t and Pt+1 = Pt - € if the 

ensemble was 'incorrect', for the guided update strategy (€ = 0.001). 
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The ensemble accuracies were averaged across the 1000 runs, producing curves with 

500 consecutive online accuracies. Figure 7.1 plots the three curves t ogether with the 

predicted majority vote curves. The majority vote accuracy at step t was calculated 

under the assumption of independent classifiers using 

L 

Pens= L P! (1 - Pt)L-i_ 
i=fL/21 

The individual accuracies Pt were calculated iteratively, starting from p0 = 0.55 (the 

expected value of the initial accuracies) , and using updates as in equations 7.1 and 

7.2. 
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Figure 7.1: Simulation and theoretical results for the fixed ensemble and t he two 
update strategies. 

The figure shows that the ensemble-update leads to the best results, followed by 

the single update. The assumptions that the data is i.i.d, the classifiers are indepen

dent, and the updates lead to improvement (however small) if the correct label is used, 

cannot be guaranteed in practice. Int uit ive as they are, caution should be exercised. 

Naive labelling has been shown to have mixed effect on the classification accuracy 

depending on t he classifier model, and even on the init ial parameter guesses [68]. 
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Given the non-i.i.d. nature of fMRI data, a lesser difference will be seen between 

the two update strategies, however this simulation serves as proof of concept and 

supports the hypothesis. Having shown that the ensemble update strategy is capable 

of improving upon the individual update strategy for i.i.d. data, the concept is applied 

to streaming fMRI data. 

7 .2.2 Protocol 

The experiment is carried out on data set ENI. Class labels were assigned using the 

box-car approach, shifted by a single TR. The data sets are prepared by taking, as 

an offiine training sample, T, the first 17 instances of the data set. These instances 

correspond to the first blocks of stimuli presented from each class. Volume masks are 

derived and applied to each data set. This is the same approach as in Section 6.1, 

and the data set summary in Table 6.1 applies here also. An ANOVA test is used on 

T to pre-select a fixed amount, K = 2000, of voxels. The remaining 187 data points, 

in sequence, make up the online training data, S. The data sets T and S are then 

normalised, using the means and standard deviations calculated for T. Note that this 

is different to the previous study on naive labelling, where the streaming data set was 

shuffled and oversampled to form i.i.d. data. 

An offline RS ensemble of O-LDC classifiers is trained on T. The same base 

ensemble is used for each of the update strategies. Data points from S are presented 

sequentially, with the following procedure being applied: 

Fixed strategy Ensemble accuracy is tested on the new data point. No ensemble 

update is carried out. 

Naive strategy Ensemble accuracy is tested on the new data point. Each ensemble 

member is updated using its individual predicted label. 
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Figure 7.2: Cumulative error progression comparing t he three strategies for L = 13, 
M = 20. Vertical lines represent class boundaries. 

Guided strategy Ensemble accuracy is tested on the new data point . Ensemble 

members are updated using the ensemble decision. 

The experiment is repeated for parameters L = [5, 9, 13], M = [20, 50, 100,250]. 

7 .2.3 Results 

For each time-step t the cumulative error is calculated using Equation 3.8. Figure 7.2 

plots of the cumulative error scores over t ime for parameters L = 13 and M = 20. The 

vertical lines indicate the class boundaries. The presence of a sequence of multiple 

instances from the same class (due to the block design of the experiment) can be 

seen to affect the classifier in that with every class change a small peak is seen in the 

error level. This peak arises where the classifier sees data points from the 'transition' 

period, where the true state of t he brain is uncertain. The transit ion is the period 

when the classifier is expected to make most mistakes. Overall, the trend of the plot 

is that the error level declines over t ime, showing that the classifiers learn and adapt 

with the data. The ensembles follow a similar learning pattern for the first two thirds 

of the trial. For the last part, t he naive and guided ensembles continue to gradually 

improve, whilst the error of the fixed ensemble stabilises at around 22.5%. 
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Figure 7.3: Final cumulative error scores (%) taken at t = 187. 'F', 'N' and 'G' 
correspond to fixed, naive, and guided strategies,respectively. The range of the final 
error scores is 17.8% - 22.2%. Error scores are coloured from blue through to red 
representing low and high error respectively. 

The 'final' error scores, taken at t = 187, are illustrated in Figure 7.3, and are 

available numerically in Table A.4. Each 'box' corresponds to a value of L, whilst 

each row corresponds to a value of M. Strategies can be compared for a given L, M 

combination by looking at a row within a box. The range of final error scores across 

the three strategies was 17.8% - 22.2%. 

The results from the strategies are compared for all parameters using a paired 

t-test with significance a = 0.05. Both the final error scores and the average error 

are compared. For a given strategy, the average error corresponds to the area under 

the error progression curve for that strategy and thus gives an indication of learning 

capability. As there are 12 parameter sets and 3 strategies, a total of 36 pairwise 

comparisons are made. The numbers of wins vs losses are plotted in Figure 7.4. The 

best point is at 24 wins and no losses, the worst point at 0 wins and 24 losses. 

Direct comparison of the naive and guided strategies with the fixed ensemble is 

offered in Table 7.1. Strategies which perform better than the fixed classifier are 

indicated by a'+', strategies which perform worse are indicated by a'-'. Significant 

results (calculated using a paired t-test at a = 0.05) are indicated by EB and e re

spectively. From Table 7.1 it can be seen that both the naive and guided ensembles 

perform significantly better than the fixed ensemble for the vast majority of param

eters. The guided ensemble, overall, has a higher number of 'wins' than the naive 
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F igure 7.4: Pairwise wins vs losses. Significance calculated at a= 0.05. 

Table 7 .1: Direct comparison of the naive and guided strategies wit h t he fixed en
semble. Strategies which perform better than the fixed classifier are indicated by a 
'+ ', strategies which perform worse are indicated by a '-' . Significant results are 
indicated by EB and e respectively. 

L=5 L =9 L = 13 
Naive Guided Naive Guided Naive Guided 

M = 20 EB EB EB EB EB EB 
M=50 EB EB EB EB EB EB 
M = 100 E0 EB EB E0 EB EB 
M = 250 EB EB EB - EB + 
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ensemble across these parameter settings. This indicates that using the ensemble 

decision to update the classifiers is beneficial. Making use of the higher accuracy of 

the ensemble decision constrains potential runaway behaviour in individual ensemble 

members, which in turn leads to a more accurate ensemble. 

7 .2.4 Discussion 

Real-time fMRI classification faces the challenge of unlabelled data and concept drift. 

This study proposes a solution in the form of classifier ensembles. The solutions have 

been tested and illustrated on streaming fMRI data. The experiments show that the 

ensembles benefit from updating during the online phase. Both update strategies 

perform significantly better than the fixed strategy across a variety of parameters. 

The guided update strategy offers a possible solution to the combination of unla

belled data and concept drift. Results from the update strategy compare well with 

the standard naive classifier ensemble, and perform significantly better than the fixed 

classifier ensemble. The guided update strategy is shown to have a lower error score 

than either the fixed or naive update strategies in seven of the twelve parameter com

binations tested. From the cumulative plot it can be seen that the majority of errors 

occur during transition periods. In order to prevent the classifiers learning 'the wrong 

thing' during these periods, introduced below are further criteria, offering different 

scenarios under which the ensemble may be updated. 

7 .3 Error-driven and Confidence-driven Updates 

Two update criteria are considered: The confidence and error. By using confidence 

and error to regulate the updates, three further guided update strategies are gener

ated: 

Error Driven Classifiers within the ensemble whose individual predicted label does 

not agree with the ensemble decision are updated using the ensemble decision. 
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Confidence Driven The confidence with which the ensemble has made its predic

tion is calculated. Denote by y the outputted (predicted) label of the ensemble, 

and by Yi the predicted label of the component classifiers. Confidence is calcu

lated as 

confidence = I:~=1 {Yi = y} 
L 

Classifiers within the ensemble are updated using the ensemble decision, when 

the confidence in the predicted label is above a t hreshold. For data sets of two 

classes this threshold may be between 50% and 100%, here 75% is chosen, as 

the mid-point of t he available range. 

Error and Confidence Driven Classifiers within the ensemble whose predicted la

bel does not agree with the ensemble decision are updated using the ensemble 

decision, when the confidence in the predicted label is above a threshold. 

7 .3.1 Experimental Protocol 

Experiments are carried out for the two single run, two-class 'emotion detection' 

fMRI data sets, ENl and EN2, using the same protocol as in Section 7.2.2. For this 

experiment, the parameters of the RS ensemble are chosen as L = {5, 9, 11} and 

M = {20,50, 100,250}. 

In the online phase of the experiment, the following strategies are considered: 

Naive strategy Ensemble accuracy is tested on the data point. Classifiers are up

dated using predicted labels from the individual classifiers. 

Guided strategy Ensemble accuracy is tested on the data point. Classifiers are 

updated using the ensemble decision. 

Error Driven Ensemble accuracy is tested on the data point . Classifiers whose 

individual predicted label does not agree with the ensemble decision are updated 

using the ensemble decision. 
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Confidence Driven Ensemble accuracy is tested on the data point. Confidence is 

calculated. Classifiers are updated when the confidence in the predicted label 

is above the threshold. 

Error and Confidence Driven Ensemble accuracy is tested on the data point. 

Confidence is calculated. Classifiers whose individual predicted label does not 

agree with the ensemble decision are updated when the confidence in the pre

dicted label is above the threshold. 

7.3.2 Results 

The cumulative error scores are calculated for each parameter, data set and method 

combination using Equation 3.8. For each data set the final error scores (taken at 

t = 187) are compared for each of the parameters and methods. The results are 

illustrated for the two data sets in Figure 7.5. Numerical values for the final error are 

available in Table A.5. 

Table 7.2 summarises the number of wins per strategy. A winning ensemble is the 

ensemble with the lowest error at the final data point , t = 187. As there are twelve 

parameter combinations for each data set, there are 24 comparisons. Where there 

was a tie between methods for one parameter set, both methods were awarded a 'win' 

as either is acceptable when choosing an optimal strategy, hence the total sums to 

25. 

Table 7 .3 directly compares each of the methods with the naive classifier. Methods 

which perform better than the naive classifier are indicated by a'+' , methods which 

perform worse are indicated by a'-'. Significantly better/worse results (at a = 0.5, 

tested using a paired t-test) are indicated by EB and e respectively. The numbers of 

each 'result' are summarised in Table 7.4. 

In order to see if the new strategies improve upon the performance of the guided 

ensemble, the results are directly compared. These are presented in Table 7.5, with 
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Figure 7.5: Final cumulative error scores. The range of final error scores for each 
data set is indicated in the title . Error scores are coloured from blue through to red 
representing low and high error respectively. L is the ensemble size, (L = {5, 9, 11} 
represent the rows of each coloured grid). Mis the cardinality of feature subsets. cN', 
cc,, 'E' , 'C' and 'EC' correspond to the naive, guided, error-driven, confidence-driven 
and error plus confidence-driven ensembles respectively. 

Table 7.2: Number of wins per strategy, taken by comparing ensemble errors at the 
final data point. Total adds up to 25 due to a tie between methods for one parameter 
set. 

Strategy 
Naive 
Guided 
Error-driven 
Confidence-driven 
Error plus confidence-driven 
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Number of wins 
1 
0 
1 

12 
11 



Table 7.3: Comparison with naive classifier ensemble. 'G', 'E ' , 'C' and 'EC' corre
spond to the guided , error-driven, confidence-driven and error plus confidence-driven 
ensembles respectively. Methods which perform better than the naive ensemble are 
indicated by a '+', methods which perform worse are indicated by a '-'. Significantly 
better/worse results (at a= 0.5, tested using a paired t-test) are indicated by EB and 
e. 

M = 20 M = 50 M = 100 M = 250 
G E C EC G E C EC G E C EC G E C EC 

L = 5 e EB + EB + - + + - + + EB - + - + 
ENl L = 9 e + + EB - - + - e - - + - EB + EB 

L = 11 e + + EB - - + + - - - + e - + + 
L=5 + - + + - - + - - e + - - - + + 

EN2 L = 9 - - EB - - e + - e - + - e + EB + 
L = 11 - - + - + e + - - - + + - - + + 

Table 7.4: Summary of Table 7.3 showing number of each 'result' per strategy 

Method EB + - e 
Guided 0 3 14 7 
Error driven 2 5 14 3 
Confidence driven 2 19 3 0 
Confidence plus error 5 11 8 0 
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Table 7.5: Comparison with guided classifier ensemble. 'E', 'C' and 'CE' correspond 
to the error-driven, confidence-driven and error plus confidence-driven ensembles re
spectively. Methods which perform better than the guided ensemble are indicated by 
a'+' , methods which perform worse are indicated by a '-'. Significantly better/worse 
results (at a= 0.5, tested using a paired t-test) are indicated by EB and e. 

M = 20 M = 50 M = 100 M = 250 
E C EC E C EC E C EC E C EC 

L = 5 EB EB EB - + + + EB EB + + EB 
ENl L = 9 EB EB EB - + + + EB EB + + EB 

L = 11 EB EB EB + + + + EB EB EB + EB 
L =5 - + - - + - - + + + + + 

EN2 L = 9 - EB + - + + + EB + EB EB EB 
L = 11 + + - e + - + EB + - + + 

Table 7.6: Summary of Table 7.5 showing number of each 'result' per strategy 

Method EB + - e 
Error driven 5 10 8 1 
Confidence driven 10 14 0 0 
Confidence plus error 10 10 4 0 

a summary in provided in Table 7.6. 

All three adaptations of the guided ensemble are shown to improve upon the 

guided ensemble. The methods are shown to perform well across a variety of parame

ters. The results from Tables 7.2, 7.3, 7.4, 7.5 and 7.6 suggest that of those tested, t he 

best method for streaming fMRI data is the confidence driven method. The method 

compares well against both the naive and guided ensembles. In direct comparison 

with the guided ensemble, the confidence-driven ensemble is shown to perform better 

for all parameters. The methods appear to perform bett er for ENl than EN2. To 

better see what is happening, the cumulative error plots and kappa error trajecto

ries are considered. Figures 7.6, 7.7, 7.8 and 7.9 show the pairs of cumulative error 

diagrams and kappa error trajectories for a selection of parameter combinations and 

data sets. 
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Figure 7.6: Data set ENl, L = 5, M = 250 
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Figure 7.7: Data set ENI , L = 5, .M = 100 
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Figure 7.8: Data set EN2, L = 5, M = 20 
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Figure 7.9: Data set EN2, L = 9, 1'1 = 250 
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Figure 7.10: Pairwise wins vs losses. Significance calculated at a = 0.05. 

Again, pairwise comparisons are performed using at-test. With 5 methods tested 

across 12 parameter sets and 2 data sets, a total of 240 pairwise comparisons are 

made. The numbers of wins vs losses are plotted in Figure 7.10. The best point is at 

96 wins and no losses, the worst point at 0 wins and 96 losses. 

For ENl, in both cases, initially the error rates of the error-driven ensemble and 

confidence plus error-driven ensemble are higher than these for the other three en

sembles . As more streaming data points are processed the error rate for these two 

ensembles continues to drop, whilst the error rate of the naive ensemble and guided 

ensemble rises. These error changes are reflected in the kappa error trajectory dia-
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grams. The interesting point to note from these, is that the higher kappa value ( and 

thus lower diversity) is associated with the most accurate ensembles. It may be that 

as the individual classifiers within the ensemble become more accurate they are driven 

towards the optimal classifier, and thus as they become more accurate, they become 

more similar and the diversity decreases. 

For EN2, the cumulative error rate of all ensembles follows a similar pattern. 

From the kappa-error trajectory diagrams the pairwise accuracy of the naive, guided 

and confidence-driven ensembles can be seen to initially decrease, and then increase. 

This is matched by an initial increase then decrease in diversity. The 'error-driven' 

and 'confidence plus error-driven' ensembles are seen to follow the opposite pattern, 

resulting in a higher pairwise accuracy and lower diversity than the other three en

sembles. 

Whilst the ensembles follow different error patterns for the two data sets, the 

results for the confidence-driven and confidence plus error-driven ensembles are con

sistently better than, or on a par with the guided ensemble. Both strategies also show 

good results compared with the naive ensemble. 

7.3.3 Discussion 

Real-time fMRI classification faces the challenge of unlabelled data and concept drift. 

The naive and guided ensembles have previously been shown to handle streaming data 

better than a fixed classifier. This study proposes several extensions to the guided 

update strategy, in an attempt to maintain ensemble diversity and accuracy, and con

strain the possibility of runaway classifiers given the potential changing environment. 

The solutions have been tested on streaming fMRI data. 

When compared with the naive and guided ensembles, for two two-class data sets, 

ensembles updating using the confidence criterion, or confidence combined with error, 

were shown to perform best . These methods performed well consistently, compared 
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with both the naive and guided ensembles. Experiments were carried out with a 

simple O-LDC classifier for its simplicity and speed. Whilst the experiments are not 

carried out in real time, there is no reason that the online classification algorithms 

would not be capable of working in real time. Further work testing the methods with 

a variety of base classifiers and across a wider variety of data sets may give a deeper 

understanding of the mechanism of improvement offered by the guided update. 
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Chapter 8 

Conclusion 

8.1 Summary of Work 

Classification of fMRI data comes wit h many challenges. Performing the classification 

of fMRI data in real time only adds to these. By applying online classification to fMRI 

data, it has been shown that classifier performance improves as more instances are 

seen. Linear models have been popular for classification of fMRI data as they are 

sufficiently accurate and are fast enough to work in real time. This work has continued 

in the same vein, using an online variant of the linear discriminant classifier (O-LDC). 

Results have been shown to be fast , with updates occuring well within the acceptable 

time (2s) for 'immediate' feedback in real-time fMRI trials. 

The O-LDC has been used in conjunction with a random subspace (RS) ensemble. 

The ensemble framework allows for fewer features to be used per classifier, and due 

to the excessive amount of features in fMRI data, is less computationally expensive 

than a single classifier trained upon the entire feature set. By using an RS ensemble, 

there is also a lesser risk of over-fitting t he classification model. 

It was noted that there are cases in fMRI experiments when the true brain state of 

a participant is unknown. In such cases, it is impossible to update the classifier using 

a known label. It was hypothesised that using the label predicted by t he classifier 

as the true label, online classification could still be applied. Furthermore, it was 
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hypothesised that by using the ensemble label rather than the individual classifier 

labels to update the ensemble members, a more accurate result would be achieved. 

Chapter 5 introduces streaming fMRI data, simulating a real time scenario. Three 

base classifiers are tested in an ensemble, the perceptron, winnow and 0-LDC. The 

0-LDC was shown to have a better learning pattern than the other two classifiers, 

and produced more accurate results. 

Chapter 6 presents a study of the naive labelling scenario, using RS ensembles 

of 0-LDC classifiers for i.i.d. (shuffled) flvIRI data. The ensemble update strategy 

was shown to perform better than the individual update strategy, with both update 

strategies performing better than a fixed, pre-trained classifier. 

Combining the results of both studies, a further study, presented in Chapter 7 

considers naive labelling for streaming fMRI data. Once again, the ensemble update 

strategy was shown to prevail. Acknowledging that there is a potential for concept 

drift in flvIRI data, and that there is uncertainty around the transition period between 

brain states, two update criteria were int roduced. These criteria correspond to the 

certainty of the ensemble decision, and the decision of the member classifiers within 

the ensemble. Updating the member classifiers when the ensemble was confident in its 

decision proved to be t he best strategy, and meant that classifiers were not updated 

during the uncertain, transition phases. 

8.2 Future Work 

The next step would be to apply the methods discussed here in real time. Unfor

tunately this was not possible for this thesis as there was no direct access to the 

fMRI scanner. The updates for the 0-LDC are fast. Both classifying the incoming 

data point and updat ing the classifier ensemble happen within a TR, allowing for 

immediate feedback. 
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Perhaps one of the greater challenges with real time fM:RI is that of preprocessing 

the raw data and preparing each data volume for classification. Working with raw data 

direct from the scanner, whilst the fastest approach, introduces excess noise into the 

data. Steps such as filtering and motion correction can be computationally expensive, 

and large head motions may be over compensated, introducing error. ·weiskopf et 

al [129] detail some of the challenges and proposed solutions for preprocessing fM:RI 

data in real time. With computational power ever on the increase, it is not expected 

that these issues would be of great consequence. 

Another interesting line of future work would be to further examine the mech

anisms of using the ensemble decision for classifier updates, in particular, with the 

update criteria in place. Greater understanding of this process could lead to the de

velopment of further techniques, not just for the RS ensemble with 0-LDC classifiers, 

but for a variety of ensemble frameworks and base classifiers, applicable to many 

types of very high-dimensional streaming data. 
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M=50 
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M=20 
M=50 
M= 100 
M = 20 
M=50 
M = 100 
M = 20 
M = 50 
M = 100 

L=5 
F N 

30.68 31.12 
29.52 28.75 
27.45 27.52 
24.88 25.66 
25.43 24.09 
24.74 24.16 
18.80 19.82 
17.43 16.85 
23.64 22.24 

L=5 
F N 

32.30 32.39 
29.80 29.15 
30.14 30.43 
29.16 29.49 
30.45 28.49 
29.87 28.82 
23.96 24.16 
21.94 23.32 
28.90 26.90 

Table A.l: ENl Error Table{%) ' , 

L=9 
s F N s F 

14.26 29.42 29.94 13.41 30.00 
7.84 27.86 28.48 7.30 27.33 
5.18 28.99 27.99 4.88 26.56 
13.68 21.75 22.33 11.23 20.62 
8.08 25.45 24.39 7.54 24.21 
5.36 26.59 24.77 5.18 24.86 
12.24 17.37 18.06 11.14 16.40 
5.24 13.42 14.57 4.34 15.04 
5.07 23.44 21.74 4.86 24.47 

Table A.2: EN2 Error Table{%) 
L=9 

s F N s F 
17.78 31.05 31.45 16.55 30.69 
10.23 30.11 29.63 9.86 30.54 
7.08 30.11 28.94 6.76 30.10 
16.40 27.05 27.73 14.80 25.36 
10.12 30.91 29.30 9.75 29.43 
6.86 28.96 26.83 6.16 28.64 
15.36 22.00 22.80 13.12 21.18 
6.82 20.56 20.62 5.50 18.38 
5.90 29.42 26.01 5.84 28.80 

L = 11 Individual 
N s F N s 

29.97 12.83 33.28 34.61 19.76 
26.66 7.28 29.93 31.46 11.45 
25.08 4.71 28.63 30.18 7.06 
21.03 11.69 32.43 32.97 19.49 
23.19 7.19 27.04 27.00 11.14 
23.44 4.76 26.33 26.14 6.86 
17.39 11.02 25.21 25.96 17.83 
15.27 4.25 24.71 25.06 9.16 
23.17 4.95 24.75 23.44 6.18 

L= 11 Individual 
N s F N s 

30.32 16.23 33.25 34.79 23.29 
29.43 9.18 31.09 32.79 15.15 
30.04 6.56 30.66 32.62 9.64 
25.92 14.70 35.69 36.19 22.80 
27.73 9.12 30.93 30.83 14.59 
26.87 6.17 29.57 29.50 8.92 
21.46 12.50 29.52 30.36 20.90 
18.14 5.25 29.43 30.10 11.88 
25.73 5.54 29.44 27.30 7.41 
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L=5 
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63.00 62.93 
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62.20 62.46 
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62.23 62.17 
56.42 58.01 
57.19 56.85 
59.12 58.76 

!11[ = 20 
N s 

19.61 18.35 
18.92 17.82 
18.90 17.95 

Table A.3: EB Error Table (%) ' , 

L = 9 L = 11 
s F N s F N 

30.73 62.52 63.54 27.10 64.71 63.44 
15.72 63.09 62.25 14.20 62.22 63.11 
10.42 61.78 62.80 10.31 63.45 63.80 
26.08 61.51 62.79 22.11 60.21 60.83 
13.00 61.65 61.44 11.67 60.99 61.87 
8.71 60.90 60.16 8.33 61.27 61.02 
1.82 58.76 59.2-5 1.60 60.91 60.26 
1.11 54.21 55.23 1.08 58.97 57.69 
1.25 59.10 60.31 1.31 58.11 59.54 

Table A.4: ENI Error (%) ' , 

M = 50 M = 100 
F N s F N s 

21.71 18.78 18.24 21.96 19.56 19.47 
21.91 18.61 18.09 22.00 18.92 19.39 
21.90 18.36 17.83 21.99 19.14 19.38 

Individual 
s F N s 

26.04 64.12 64.68 40.33 
13.56 62.90 63.84 22.24 
10.16 62.98 63.60 11.81 
21.87 64.03 64.09 36.98 
11.14 62.46 62.64 18.30 
8.17 62.04 62.10 9.67 
1.56 62.00 62.14 2.81 
1.15 60.64 60.72 1.48 
1.33 60.52 60.64 1.38 

M = 250 
F N s 

22.03 20.24 21.22 
22.03 20.92 22.09 
22.00 20.59 21.87 
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Table A.5: Error Table{%) ' , 
ENl 

L = 5 L=9 L = ll L=5 
26.82 25.45 25.05 17.74 
28.38 27.80 27.27 17.67 
25.89 24.98 24.45 16.74 
24.7.5 24.86 25.02 18.70 
25.37 24.17 23.82 17.71 
25.67 24.76 24.19 17.14 
25.65 25.74 25.49 17.73 
25.44 24.56 24.02 16.74 
26.54 25.41 25.34 18.01 
25.25 24.86 23.60 17.78 
27.04 23.86 23.66 17.01 
27.92 25.87 24.74 17.87 
25.86 23.89 23.67 16.26 
26.04 24.24 23.81 19.06 
24.62 23.40 23.01 17.38 
25.41 24.77 23.66 18.37 
26.49 25.10 25.66 18.61 
26.09 23.37 23.02 17.09 
25.00 22.59 23.87 18.57 
24.53 21.92 23.25 17.40 

EN2 
L=9 L = ll 
16.46 17.25 
16.72 17.61 
15.40 17.04 
17.43 17.43 
16.70 18.14 
16.82 16.46 
17.71 16.22 
16.82 16.17 
18.41 18.66 
17.06 17.20 
15.47 18.54 
16.75 19.61 
14.76 17.87 
15.90 18.67 
16.13 17.80 
18.27 17.24 
19.48 17.90 
16.84 17.01 
17.02 18.44 
17.25 17.17 
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