
Path-based Design Model
for Constructing and Exploring Alternative Visualisations

James Jackson , Panagiotis D. Ritsos , Peter W. S. Butcher and Jonathan C. Roberts

Gallery of
rendered
visualisations

Inset, demonstrates an H-curve path

Inset shows open
“select a path” menu

Drag and drop
onto Genes panel

Drag and drop
genes onto gallery

Hover over to save or
delete visualisations

Fig. 1: The Genii visualisation designer that demonstrates our flowpath model. Individuals define their own path or choose predefined
flowpaths (left panel), drag and drop the visualisation properties into the gene panel (middle), which are rendered onto the gallery
(right). Users can either create a new gene which adds a new image to the gallery, or edit parameters (through drag and drop) to adapt
current visualisations. Crafted visualisations can be exported and used in other applications.

Abstract—We present a path-based design model and system for designing and creating visualisations. Our model represents
a systematic approach to constructing visual representations of data or concepts following a predefined sequence of steps. The
initial step involves outlining the overall appearance of the visualisation by creating a skeleton structure, referred to as a flowpath.
Subsequently, we specify objects, visual marks, properties, and appearance, storing them in a gene. Lastly, we map data onto the
flowpath, ensuring suitable morphisms. Alternative designs are created by exchanging values in the gene. For example, designs that
share similar traits, are created by making small incremental changes to the gene. Our design methodology fosters the generation of
diverse creative concepts, space-filling visualisations, and traditional formats like bar charts, circular plots and pie charts. Through our
implementation we showcase the model in action. As an example application, we integrate the output visualisations onto a smartwatch
and visualisation dashboards. In this article we (1) introduce, define and explain the path model and discuss possibilities for its use, (2)
present our implementation, results, and evaluation, and (3) demonstrate and evaluate an application of its use on a mobile watch.

Index Terms—Path-based design, Visualisation Design, Alternative Visualisations

1 INTRODUCTION

Alternative visualisations are useful but challenging to create. Em-
ployed throughout the visualisation domain, they range from sketched
planning to explore potential design solutions, to multiple views to
explore alternative viewpoints. They offer different perspectives, in-
spire creativity, validate insights, and help communicate varied narra-
tives. When people set out to create a new visualisation, they often
explore numerous design ideas, making many quick sketches on paper.
For example, by adhering to methods such as the Five Design-Sheets
approach, people produce numerous quick sketches to outline their
concepts [73]. They draw a horizontal line to represent an axis, and
place three or four rectangles above it to depict a bar chart. Draw two
perpendicular lines to represent an X and Y axis, and add a few circles
within the space to depict a scatter plot. Or draw a simple rectangle to

• J. Jackson was with the School of Computer Science and Engineering,
Bangor University, UK. Now with ExaDev.

• P.D. Ritsos, P.W.S Butcher and J.C. Roberts, are with the School of
Computer Science and Engineering, Bangor University, UK. E-mail:
{p.ritsos;p.butcher,j.c.roberts}@bangor.ac.uk.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

denote a computer monitor.
Individuals are sketching skeletal illustrations to represent various

visualisation concepts. They begin by outlining shapes such as rectan-
gles or curves and straight lines to capture the fundamental structure
and form of the object being depicted. Similar skeletal outlines are
employed in other areas of design. This approach reflects a fundamental
principle in figure drawing: starting with the essence or skeleton of the
subject before adding details. Frank Reilly explained this process as
starting to draw the human form from its “line-of-action” [23, 50]. It
involves drawing lines that represent the primary movement or flow
of the figure’s pose, before detailing the rest of the figure, see Fig. 2.
The concept of creating a skeleton serves as a powerful strategy for
visualisation design. Different paths can be imagined, from x-axis,
circles, zigzags, to space-filling curves such as Hilbert, Moore or Peano
curves.

Our conceptual idea is straightforward yet impactful: establish a
skeleton, represented by a flowgraph, to provide the structure for the
visualisation. Encode the parameters of the visualisation design using a
genetic metaphor, where various components such as symbols, colours,
and textures represent genes. Swap in and out different aspects of this
‘gene’, such as symbols, colour, textures, to generate diverse design
variations. The flowpath acts as a backbone to the visualisation, on
which we constrain the path through an envelope description, which
confines the scope of the visuals. We map objects along the path in
sequence, and map data values on visual attributes of the objects to

https://orcid.org/0000-0002-9383-5888
https://orcid.org/0000-0001-9308-3885
https://orcid.org/0000-0002-3361-627X
https://orcid.org/0000-0001-7718-3181
https://exadev.io
mailto:reprints@ieee.org
https://p.ritsos;p.butcher,j.c.roberts}@bangor.ac.uk

encode data. The power with this strategy is to explore designs quickly
by exchanging values in the gene. Effects and filters can be mapped
along the path, such to merge or intersect overlapping objects, or ac-
cumulating transparency of overlapping objects, or morphing them
together in some way. Figure 3 outlines this concept, exemplified by a
simple bar chart on an angle. The flowpath is defined by a contiguous
set of vertices v0 to vn−1, but does not need to be continuous in space,
as it can contain spatial jumps, which allows visual separate designs
(such as small-multiples) to be created. In the case of the bar chart,
rectangular objects placed between the vertices, which are scaled and
coloured by the data. Other visualisation forms are made by changing
the sequence order, locations of points, form of objects, envelop, align-
ment of the actual object (middle, top, bottom etc.), and applied filters
on the placed objects.

While the idea is simple, the challenge is to extend this principle and
to develop a framework around this model, that allows users to express
their creativity and to be able to easily make their own visualisation
designs. This work substantially extends our poster presentation at
IEEE VIS 2018 [32] and workshop paper [31]. We make four contribu-
tions: (1) A path-based model for the creation of visualisation designs,
visualisations are structured on this backbone skeleton path, Sec. 4. We
present the model such that other people can implement and expand it.
(2) The Genii system implementation contains a component library,
renderer and builder application, enabling users to create visualisations
by constructing genes through the path-based design model. Outputs
from the builder are displayed in Figs. 1, 12 and 13 and Sec. 5. Ad-
ditionally, we showcase a mobile watch implementation that how the
system can create visualisations for a smartwatch Fig. 11. (3) Several
case studies, where we re-create published visualisations using our
path-based model Sec. 6 and Fig. 12, and (4) an evaluation of the tool
and model, Sec. 7.

a cLine of action f
e

d

g

h

i

j

k
rhythm lines

b

Fig. 2: Reilly lines of action [50]. The method is a constructive approach
that emphasises primary lines of action, a→b, c→d, h→i, j→k, and
secondary forms (rhythm lines), e→, and f→g.

2 BACKGROUND

We have long advocated the use of alternative visualisations for various
purposes. In the design phase, it enables individuals to explore various
potential solutions [73]. In exploratory visualisation, different forms
can focus on specific tasks or facilitate particular interactions [70].
Meanwhile, in explanatory visualisation, different views can help in-
dividuals understand the information more effectively [71]. Several
ideas converged to inspire this work, including alternative design, the
skeleton pathway, and design similarity.

Our classes on creative visualisation design employ the Five Design-
Sheets (FdS) approach [73], where multiple sketches are an essential
part of the initial sheet. A key principle of this creative design process
is encouraging individuals to produce numerous alternative rapidly
drawn sketches during the design planning phase. This method allows
for a more effective exploration of a wide range of potential solutions.
In our sketching approach, we emphasise the importance of drawing
confident yet simple lines. These initial lines serve as the foundational
framework, akin to a skeleton, upon which more detailed and refined
elements can be built. This method helps designers establish the basic
structure and proportions of their work early on, providing a clear
guide for subsequent stages of the design process. By focusing on
strong, assured strokes, individuals can better visualise the overall
composition and make necessary adjustments before committing to
more intricate details. In another course, we provide general sketching

skills with an emphasis on drawing human figures. In art education
there are several approaches. Bridgman [14] emphasises the masses of
the body and their connections. Loomis [46] works with proportions
and builds up the body from simple shapes — there are similarities
between ideas of sketching by Loomis [46] and scaffold shapes, with
the diatoms approach by Brehemer et al. [11]. We however focus on
Frank Reilly’s method [23, 50], which guides students to draw simple
lines (flow lines of action) along with secondary structures (rhythm
lines), see Fig. 2. Artists are encouraged to first sketch the line-of-
action before adding in the body, legs, head and other forms. It is a
constructive approach. By first defining the lines of action the human
shapes are more expressive, and the sketch is more convincing. Simple
shapes can be defined by single lines, e.g, a line top to bottom when
someone is standing Fig. 2(c→d) or an S-shape when someone is
leaping (a→b). Complex shapes can be expressed with multiple lines
of action as (h→i) and (j→k). As we examine these sketches, our
attention is instinctively drawn to the principal lines of action. We
imagined building visualisations by similar methods.

Our third source of inspiration, similarity, and design modification.
This goal emerged during consultations with a company specialising in
nursing applications. They aimed to create alternative visualisations for
presenting patient health data, ensuring consistency in visual represen-
tations for patients with similar ailments while being distinct enough
to differentiate between individual types of ailments. The approach
of similarity and design modification offers many benefits. Modifica-
tions allow designers to experiment with variations without losing the
core essence of the design, balancing innovation with coherence. This
method enables the creation and evolution of a suite of ideas, allowing
people to explore and refine concepts effectively.

(1) Path Creation (2) Envelope definition (3) Object placement (4) Data mapping (5) Realisation

P

Eb

Et Top region

Bottom region(v0) (vn-1)

Fig. 3: To create the visualisation, first define the sequence, describe the
envelope, place objects, map data and add any final filters to realise the
visualisation. We represents the points P as a sequence of vertices v0
to vn−1 (1). This acts as a skeleton that forms the supporting structure
of a visualisation. The envelope (2) acts to control the scope of the
placed objects (Et to Eb). Data is mapped along the sequence of points
(4), where in this example data is applied to size the objects to create
an angled bar chart. Finally colour is mapped to the sequence data to
complete the visual design (5).

2.1 Design goals

We define six design goals that define specific objectives and intentions
to guide the creation and implementation of our path-based design
model for alternative visualisations.

Our first goal is to develop a method to compose the visualisation
from a series of straightforward steps. This is beneficial because it
enables a module design, where individual components can be devel-
oped, tested and maintained separately, and it promotes re-usability
and scalability. We explored the use of higher-order functions, like
such as map, from declarative and functional languages. Map is used
to apply a user-defined function onto each element of a list. Where
for instance, const l = [1, 2, 3] makes a list l, and const r = l.map((v,
k) => v * k) multiplies down the list, and the result r becomes a list
[0, 2, 6]. We conceptualised that a path is a sequence of coordinates,
where developers would apply visual design elements onto every facet
of the path. Data is mapped to each object along the path. The visual
components are combined to form a sophisticated visual design.

We require mechanisms to enable paths of different shapes, and
allow them to be continuous and non-contiguous. This is beneficial to
allow flexibility in data presentation, varied visual interpretations, and
support different visualisation types. One example use of paths, is from
the data-sonification paths of Roberts and Franklin [72]. They use a path
to scan the visualisation, map a kernel each position, which is turned to

sound. Another example is the PATH definition in the SVG web format,
which can describe non-contiguous paths <path d="M0 0 L0 100 L 100
100 Z M 200 0 L 100 100 L 200 100 Z" />. Consequently, linear paths
would make a bar chart, whereas circular paths could be used to create
a dial visualisation.

Secondly, we recognised the importance of having self-contained
visualisations that render within a viewport. The visualisation can en-
capsulate all necessary components (data, styling, interactions) within
itself, makes the system portable, can be optimised for an available
screen real estate, and offers portability as it can adapt for different
viewport sizes. For instance, the nursing application visualisations
would need to be sized appropriately to appear at the top of other text
descriptions of the patient. The visualisation for our smartwatch (977
mm2 for an Apple Watch 5, 44mm, or a few centimetres in physical
dimensions) represents a small viewport. Thus a design goal is to allow
a range of paths to be created, and constrain them to a viewport. Our
approach is to clip the visualisations using an envelope (see Sec. 4.1).

Third, we require a deterministic system. A deterministic system
ensures that given the same input or conditions, the visualisation will
always produce the same output. It means the system is consistent,
easier to debug and test because the behaviour is predictable, and
results can be compared. This is crucial for scientific research, where
reproducible of results is essential for validation and verification. While
random paths could yield interesting and unique designs, they would
vary potentially with each run. Our solution is to use a seed. Such
seeds are often used by game developers, to generate the landscape
and keep it consistent between sessions. Our solution was to save the
design as gene expression that can be used to define the whole complex
visualisation, and to enclose the seed in the gene expression.

Our fourth requirement is to enable designs to be similar, yet differ-
ent. This helps to develop a range of designs, help to maintain brand
identity across ideas and maintain a recognisable style and personalisa-
tion. For instance, using graphical elements to represent a collective
group (e.g., a ward of patients) while ensuring each individual patient
stands out visually. Or to enable users to create a variety of visual-
isation designs that share common traits yet are distinct and visibly
unique. It should be adaptable and extensible, capable of designing
both connected and non-connected visualisation types across a wide
range, and apply to each part: object or colour palettes, paths, data
and so on. We achieve this by our modular approach of using a path,
envelope, object placement and filters and storing it in a gene.

Fifthly, in addition to being deterministic, we require the visualisa-
tion generation algorithms to be suitable for real-time use and com-
putable. Whether heuristic or exact decisions are made, we needed to
be sure that we could compute and finish the design. The design con-
straints that we impose on our model are not as strict as, for example,
with graph drawing [4] or label placement algorithms (e.g., [79]). But
there may be ways to make the model render depend on its context.
Much like L-systems or context-grammars. Indeed our goal is to foster
the creation of creative outputs, contrary to the goals of a developer
who, when it comes to graph layout and label placement, is typically
concerned with readability. In our case it may not matter if the objects
overlap, and in fact, it may result in a nicer visual if they do overlap. In
addition, we do need the algorithm to complete in real-time, and there
may be situations where a heuristic is used to make a choice over two
positions. We wish to avoid situations whereby the algorithm merely
alternates between two choices and does not terminate. This is more
an implementation challenge, and our solution is to focus on greedy
approaches, such as to choose the first/ naive choice, or to follow a
worsening choice strategy, like the Tabu search [94] algorithm. Finally,
when such decisions are made, we need to save the seed or choice, such
that the design is still deterministic.

Sixth, we require an extensible model, so that different path types,
or layout algorithms may be used in the future. Our solution is to divide
the model into modules: path, envelope, object placement and effect
filters. We believe that the path model is implicitly extensible, because
of its composable nature; it would be easily possible to change the path
to 3D, or add different elements onto the path, and to merge, clip or
perform other functional operations to extend our basic ideas.

3 RELATED WORK

Inspired by the structures of Reilly [50], we define a flowpath (line
of action) and envelops (rhythms) to define a skeleton on which vi-
sual shapes can then be added to create a visualisation. This pathway
represents the primary visual flow of the visualisation. These obser-
vations align closely with theories of visual flow [16, 59], which have
been substantiated by eye-tracking studies [56]. We further discuss
visual flow in the design goals in Sec. 2.1 when we expand on our
goals, and in Sec. 4 when we talk about paths. Ware [90] discusses
a similar concept to reading a chart, often referred to as “eyeballing
the graph”. This concept emphasises the intuitive process by which
individuals visually interpret graphical data, such as scanning a chart
from left to right along the x-axis. Conceptually, this flow provides a
convenient sequence, which we use as a backbone to create a visual
design. Bertin’s classification of image space usage [6] uses icons to
show the specific structures (linear, circular and so on) following also
this idea of flow.

Creating glyphs [9] aligns with some of our goals as they provide
a method to present complex data effectively, are scalable, and re-
searchers aim to create variations that are both similar and distinctive.
We direct the reader to several relevant surveys. Ward [89] investigates
glyph placement strategies. Borgo et al. [9] reviews design guidelines,
techniques and algorithms for glyph generation. Ropinski, Oeltze and
Preim [74] survey the use of glyph visualisations for spatial multivariate
data. Fuchs et al. [26] review 64 user studies of data glyphs, provide
a meta analysis of the results and look into related design trade-offs.
There are many ways to design glyphs (see Borgo et al. [9]). For
instance, Legg et al. [41] uses a quasi-Hamming distance to ensure
sufficient individuality in the resulting glyphs. Ebert et al. [21] explore
procedural generation, based on the automatic generation of glyph
shapes using superquadric functions (also see Patel and Laidlow [60]
and Gerrits et al. [27]), fractal surface displacement, and implicit sur-
faces. Another strategy is metaphoric; to either take an object (such as
a pea pod, as used by Koc et al [39]) or analyse an image to generate
the component structures, that can be built into the final glyph (as used
in MetaGlyph [95] or glyph from icon [65]). An alternative approach is
to evolve generations (e.g., [47]) or use learning systems. Indeed, glyph
learning systems is a dynamic and promising research area [44, 92]. A
further strategy is to have an underpinning structure, to base the glyph
on. For instance, Ying et al. [96] in their circular glyph maker, define
interior, intermediate and exterior structures. Brehmer et al. [11] use a
generative approach, mixing a scaffold of a shape (rectangle, triangle,
etc.), encoding channel and mark shape palette; similarly, Khawatmi
et al. [37] start off with simple geometric shapes. While Keck and
Engeln [36] use a star. We, however, use a different structure. We use
a flowpath as the backbone of the design. Our paths can be created
manually, randomly, procedurally or from data (see Sec. 4). While
Pereira et al. [62] do use a simple skeleton line, their purpose is to
create fonts, not glyphs or visualisations.

Glyphs have been used in a wide range of situations. For example,
Kindlmann and Westin explore glyph packing in medical visualisa-
tion [38], whereas Maguire et al. [48] propose a taxonomy-based glyph
design approach, intended for visualising experimental design work-
flows encountered in biology. Legg et al. [40] explore their use in
real-time sports analysis. Pearlman, Rheingans and Des Jardins [61]
focus on glyph-based multi-variate visualisation in different scenarios,
such a analysing student applicant pools, network traffic and fantasy
football team building. Kammer et al. [35] create a small-multiple
zoomable dashboard of glyphs; in a similar grid-based approach Rees
et al. [66] present hierarchical glyphs, to overcome the overplotting
challenge when placing glyphs, and Pires et al. [64] a treemap of glyphs.
Suschnigg et al. [82] use glyphs to present anomolies in time series
data. Glyphs are also used in more unconventional depictions, such
as haptic glyphs [72], or in mobile Augmented Reality environments
(e.g., Chen et al. [98]), or hand crafted for scientific visualisation [97].
And have been used to represent uncertainty [24,27]. Many researchers
have investigated the effectiveness of glyphs. For example, Maguire et
al. [49] investigate how motifs can increase comprehension of work-
flow visualisations. While Hu et al. [30] analyse statistical orderings

of star glyphs. Other researchers have evaluated specific glyphs, such
as whether Chernoff faces [17] are readable [55], the effectiveness of
temporal glyph designs [25], glyph placement strategies on maps [53],
analyses of historic use of music glyphs [57], effectiveness of flower-
versus star glyphs [86], and how some designs are more glanceable
than others [7].

Creating small visualisations aligns with some of our goals includ-
ing rendering in a viewport, scalable, and quick to create. Tufte’s [85]
sparklines are small, simple, word-sized graphics with high resolution.
Saito et al. [75] use two-tone pseudo colours for quick data overviews,
Willet et al. [91] developed scented widgets embedding visualisations
into UI elements, Perin et al. [63] created sportlines for player move-
ment in soccer, and Goffin et al. [28] designed word-scale visualisations
with flexible placement. Brandes et al. [10] introduced Gestaltlines,
multivariate sparklines using Gestalt principles. For a review of word-
sized visualisations, see Beck and Weiskopf [5].

Many developers have created tools to assist in visualisation creation.
Early Modular Visualisation Environments (MVEs) like AVS, IBM DX,
IRIS Explorer or Visage [77], enabled users to craft custom solutions
by connecting various modules together. Visual authoring systems
like iVisDesigner [67], Lyra [76], and DataIllustrator [45] assist de-
signers in creating custom visualisations. While effective for bespoke
designs, our focus is on rapid design and the generation of multiple
diverse visual depictions. Several tools assist in hierarchy visualisa-
tions: Visception [80] focuses on nesting, HiVe [81] uses a grammar
for hierarchical layouts, and GoTreeScape [42] employs a declarative
grammar. Preset-based visualisations [78] and StructGraphics [83]
enable designing visual structures before applying data. Structured
mock-ups rely on display space partitioning [87]. Li et al. [43] identify
features of visualisation designs that they explain as being similar to
rRNA genes, that they use to build a high-dimensional phylogenetic
tree. Influential studies include Brehmer et al.’s mobile time range
visualisations [13] and Blascheck et al.’s smartwatch glanceable visual-
isations [7], which we replicate using our path model (see case studies,
Sec. 6). Our method is similar to TimeSplines [58], but allows path
creation and attribute swapping with a drag-and-drop interface.

P

Simple path

(v0) (v1) (v2) (v3)

(e0) (e1) (e2)

Path with a jump

(v0) (v1)

(v2)

(e0)

(e1)

With several jumps

P
(v0) (v1)

(v2) (v3)

P
(v4)

Fig. 4: The path is made from a set of vertices. Objects encode the data
and are mapped along the path.

4 THE PATH-BASED MODEL

Referring to the simple example Fig. 3, we define our path P to be a
directed path that is made from a finite series of vertices (see Fig. 4).
While typically we equate vertices with (x,y) locations, it is possible
to imagine that they could be mapped to other modalities; e.g., with
sonification the sequence (path) could be notes on a music scale, sounds
over time. A walk along this path therefore moves alternating between
vertices and edges, v0,e0,v1,e1,v2, . . . ,vk−1,ek−1,vk,. Our path is a
flowgraph, in that we utilise every point in the path, and provide an
order on the set of points from the first (v0) to the last (vk), which define
the entrance and exit points, respectively. The path acts as a skeleton,
on which we place visual marks. The path is contiguous, where there
is a neighbourly structure from one vertex to another, however it does
not need to be continuous, because we allow edges to jump. The path
can also intersect and cross over itself, and can return to a previous
position. However, this is achieved by adding the same points to the
the path. The path itself does not hold any logic, it is merely a route to
direct how the geometry is placed. Logical operations take place when
the objects are placed along the path.

The flowgraph is used to express a visual flow through a visualisation
design space [22]. The way someone ‘eyeballs’ a chart can be influ-

enced by the cues surrounding it. The arrow of an x-axis and the nature
that it is a line, draws the eye from the left side to the right. Visual
designers can change how people look at certain parts of the picture;
they provide visual cues to lead the viewer to flow in a particular visual
direction [2]. For instance, gradient lines direct the viewer along the
direction of the lines, colour gradually getting darker would encourage
the user to look in that direction, whereas size changes would encourage
attention, while visual cues such as arrows would focus the observer to
focus on the arrow head or whatever the arrow points to. The way we
look at the visualisation is not random. We direct our eyes to interesting
features, and follow the story of the graphic.

Visual flow is evidenced in many activities that involve a human
looking through their eyes. For instance, a person reading an English
text would read from the top-left of a page along a line to the right, and
from the top of the page to the bottom (in a Z-pattern). Or someone
looking at a webpage would glance at the top left and move down the
page to the right. This dominance is named the Gutenberg pattern [59].
The visual flow, allows users to eyeball the visualisation [84] and permit
the user to notice patterns such as heights of graphs, trends and outliers.
Consequently, it is possible to analyse the visual flow and the dominant
flow from the composition of the visualisation. In fact eye tracking
can help to reveal these patterns of user behaviour, demonstrating for
instance that web-users fixate on webpages in an F-pattern [56]. The F-
pattern also suggests that most users will not read to the end of the row,
but they skim down the page reading quickly and scanning the text. Eye
tracking has been used widely in visualisation, for node-link diagrams,
trees, and to understand how a user searches, perceives and explores
a visualisation [16]. Matzen et al. [51] explain that visualisations are
read differently depending on the task, and the type of visualisation,
with unfamiliar visualisations inciting more eye tracked fixations. From
these fixations they have developed salience metrics to predict how
users will view visualisations [52]. But even before eye-tracking studies,
Bertin [6] classified several arrangements of how to utilise the image
space, and provided a visual naming scheme based on these methods,
including the dimension of the plane , repeated categories ,
collection of items xn , cumulative quantities on a dimension ,
circular , irregular , and regular arrangement . These display
models are summarised by Roberts [69]. Brehmer et al. [12] extend
Bertin’s scheme which they use to classify storytelling and timeline
techniques. There are similarities in their design space to ours; while
they focus on specific instances, we have developed a path model that
can be used to create different visualisations, and our gene allows us
to easily change between several design strategies. Additionally other
path types are useful for our designs, including spiral and golden
spiral . By defining the vertices of the path we can recreate each of
these styles.

Our path is piecewise linear. We treat each of the edges as discrete
parts. This is a sensible solution, because (i) the data that we map
onto the visualisations will always be discrete in nature, (ii) it is clear
how to map data onto the path, because it can be easily mapped along
the edges, and (iii) even if the original data is continuous in nature,
a developer we would have stored a discrete (sampled) version of it
in a database. This strategy does not inhibit continuous or smooth-
looking visualisations; on the contrary we control such smoothing at
the envelope (Sec. 4.1) and object placement stages (Sec. 4.2). We note
that it would be possible for us to have defined a curved path, such as
the cubic beziers definition in the SVG PATH. Yet, one disadvantage
with this solution is that while such a path would be continuous it would
be unclear how to map the data onto it.

Finally, it would be possible to create unsuitable paths, such as those
that are unnecessarily complex, contain too many vertices that may
take a long time to render, or paths with the points that are all located
in a small space that produce overplotted images. However, our goal
is not to constrain potential creativity, and hence we do not constrain
the length or position of the vertices in the path. Nevertheless, in
our implementation we make checks on the path, e.g., eliminate null
vertices, that the smallest object is larger than a pixel, and clipped to
render in a unit space.

Et
Top region

Bottom region

P

(i) Full envelope

Normal

(ii) Only top envelope

P

Eb

(iii) Only bottom envelope

P
(v6)

(iv) Decision per edge

(v5)(v0)
P

(v0)

(v0)

(v6)

(v0) (v5)

P P

(v) Z-pattern, using top envelope (vi) Z-pattern, switching envelope

Fig. 5: It is possible to control the placement of the objects by changing
parameters of path and envelope. (i) Shows centred objects along the
path; (ii) uses only the top envelope and snapping the objects to the
path, (iii) puts objects under the path, (iv) can alternate between top
and bottom envelop, (v) z-pattern showing how the return angle places
objects underneath, (vi) and by switching the envelope on the angle
objects can be placed above the path.

4.1 Envelope

The envelope is defined by a finite set of vertices of a top (Et) and
bottom (Eb) path, and sits on the main path (P). The envelope has a
Normal (N) that defines a vector perpendicular to the path P, which
is used to determine the top and bottom envelope regions. While the
path describes the visual flow and positioning of the elements, the
envelope determines how the objects appear along the path, and defines
the baseline of where the objects are placed. For example, the objects
can be placed centred, above or below the line through controlling
which part of the envelope is used, as shown in Fig. 5. The envelope
defines a range, which is the viewing region where the graphical objects
will be drawn. It can be used to clip the visualisation object should it be
larger than the range of the envelope, or filters can be applied (during
the object placement stage) such to smooth or filter and merge objects
together, see Fig. 8 and Sec. 4.2.

P

P

Circular design: fix envelope to a central point Circular design by circle objects

Envelope vertices

v0

(v5)

Fig. 6: Different circular visualisations can be created through circular
paths, and by setting the envelope points to a fixed location. Or by
placing circular objects.

In many situations it is easy to conceive that the envelope Et and
Eb will be parallel to the path. The envelope is defined by a series of
vertices (much like the path), and progresses along with the path to
define the visual flow of the visualisation. Fig. 5 shows some example
path and envelope combinations. Fig. 5(i) demonstrates the full enve-
lope, with a parallel path, which is used to centre the objects as they
are placed along the path. Not only can the path be non-continuous,
but also we can determine if the objects sit above or below the path, by
changing the envelope, as shown in Fig. 5(ii) and (iii). In fact, we can
use this technique to create a small-multiples display. Fig. 5(iii) also
shows that it is possible to create overlapping objects. We can switch
the choice of the envelope, such to move the baseline of the object
from top to bottom, as shown in Fig. 5(iv). Finally, Fig. 5(v) and (vi)

show zig-zag paths, where (v) is the normal situation whereby the path
naturally turns the objects upside down, as it goes through the diagonal
part of the Z-path. This example is important, because a designer may
wish to keep the objects upright. This is achieved by switching between
top and bottom envelope, when the path turns.

By changing how the path is constructed and how the envelope and
path work together, and how the objects are placed we can describe
different structures. In particular, the envelope does not necessarily
have to follow the path, so for instance, by fixing all the vertices of
one envelope (Eb in this case), we can create a circular visualisation
(Fig. 6). An alternative circular visualisation design can be created
using a linear path, and placing circular objects.

4.2 Object Placement
Once the path and envelope have been defined, we now decide what
objects to place down, and how to apply them. These objects are the
geometrical shapes that become the visual marks that encode the data.
We have used many shapes including circles, arcs, donuts, triangles,
rectangles and lines. The location of the objects is controlled by the path
and envelope, but the visual appearance and any effects are applied in
this step. Objects are usually placed in path order and overlapped, where
subsequent objects will be placed on top of previous ones. Therefore,
if a different order is required, either the path vertices need to be re-
ordered, or the data order changed. When the objects are placed they
are positioned, scaled, rotated, and any filters applied, before applying
the clipping of the path, or other constraints applied by the path and
envelope. For example, a stream graph visualisation can be created
by defining a path (P) drawing one outline, using the same vertices to
draw the second outline, subtracting the objects, and smoothing it with
a filter (see Fig. 7).

P v0 v1 v2 v3
v5 v6 v7 v8

Object placement
first object (v0..v4)

Object placement
second object (v5..v9)

Intersect objects Smooth

Designing a stream graph visualisation

Design path with jump
back to begining

v4
v9

Fig. 7: Building up a stream graph visualisation, through several coinci-
dent paths.

By placing different objects and applying a variety of filtering opera-
tions we are able to create typical visualisations, as well as new designs.
There are many filters that could be applied, including smoothing, in-
tersection, union, blend, blur and shadow. Overlapping objects allow
several effects to be applied. Fig. 8 shows three scenarios: (i) objects
placed on order, with later objects being positioned on top, (ii) later
objects cutout sections, and (iii) combining objects with a metaball
operation [8].

We can define more complex visualisations using more abstract
paths, see Figs. 9 and 10. For example, to create a scatterplot (Fig. 9)
either the path is defined as a straight line across the x axis, where the
vertices are determined by each of the x data values, and the objects
being placed are the scatterplot circle symbols. Or an abstract path is
defined, that joins every datapoint together, and is positioned such that
each data point sits on the edge between two vertices. The scatterplot
is drawn by moving along this abstract path. This second approach
would be helpful if considering label placement. Other paths can be
implemented,

4.3 Data mapping

The data mapping stage of our model offers some interesting choices
and opportunities. We can map data to any part of the model, such as
the path, envelope, object, object position and its appearance, and apply
filter operations on the objects (based on data). For example, a simple
bar chart is created by defining a regular set of path points (v0 to vn),
choosing an envelope that sits on the path, placing rectangles such that
they sit on the path, and mapping each data value to adapt the height

P
v0 v1 v2 v3 v4

Using path order
(painters algorithm)

Metaballs

Different filtering operations

Clipping by boundary
of object

Fig. 8: Illustration of an envelope overlap and three possible strategies
for dealing with it: 1 objects are placed in order, with the next object
overlapping the previous, 2: The previous object is cutout, 2: The objects
are combined using a function (in this case Metaballs).

P
v0 v1

v2
v3

Designing a scatterplot visualisation

Define a straight path

v4
v5

v6
v7

Move along path,
drawing vertical objects

Completed scatterplot Make path from data order

v1

v2 v3

v4

v5
P

OR

Fig. 9: Two strategies for representing a scatterplot using the path model.
1) The path is defined across the design space and scatterplot marks
are placed vertically. 2) A path is constructed from the data in order and
scatterplot marks are placed along that path.

of the rectangle. This will create a black set of rectangles (the default
colour), so to add different hues we can map a colour to the fill of each
rectangle. We could adapt this further, for example by mapping data to
vertex position we can change the width of each rectangle. Same data
values could be simultaneously mapped to different parts of the model,
or data to different parts to realise a multivariate visualisation.

Data mappings can be dependent on previous decisions. This is
possible because we have a precise ordering to our model (path creation,
envelope, object placement and mapping). For instance, to create
stacked bar charts, subsequent rectangles start where the previous ends.
Trees and other hierarchical structures can be similarly created. While
we do not allow conditional logic to be embedded in the path, we do
allow the path to jump, therefore simple tree structure can be created by
placing an object, and then jumping the path to the start of that object.
While the path does provide a skeleton, and describe the general visual
flow, (in the most extreme cases) the geometric objects can move away
from the physical constraints of the path. For instance, a rectangle
can be positioned on an edge, with its exact location being jittered (or
offset from a data value). However, when such operations are applied,
it is important to consider the requirements of being composable, self-
contained and deterministic. Any seed value (for stochastic jittering)
or data values for relative positioning, must be encoded into the gene
expression such make certain the visualisation is deterministic.

5 IMPLEMENTING THE PATH MODEL

The Genii builder is shown in Fig. 1, resultant output in Fig. 13, and
case studies in Fig. 12. The system consists of a component library,
renderer and builder application, see Supplemental Materials. We
first made sketches, which helped us to refine the initial concepts and
the model. We implemented an initial prototype with JavaScript and
HTML5 Canvas [32]. This prototype included features for object
unions, intersections, and metaballs [8]. However, we encountered
difficulties in creating paths that depended on the positions of other
objects. We needed a more modular approach to the implementation.
We chose React.js because it is modular in approach, uses HTML5,
CSS and JavaScript, and in particular we are able to pass detailed data to
control the DOM. It also provides rapid prototyping and multi-platform
support. It also allowed us to develop the full browser application and
migrate it to the Apple watch, which links with a iPhone, see Fig. 11.
We detail the implementation below:

Flowgraph. There are three ways to implement a path in Genii. First
we define set paths. These include: inline linear which provides a uni-
form straight line distribution of points horizontally across the canvas.
Disjoint inline a path with jumps. Ring which is a circle of points, with

Hilbert Peano GraySweep Scan Diagonal SpiralCircle Z-mirror

Inline (linear) Circular Spiral Parametric spiral Continuous
linear

Disjointed
linear GoldenRing

Fig. 10: Example path types. Lower are space-filling path types, includ-
ing sweep, scan, diagonal and Hilbert, Z-mirror, Peano, and Gray [19].
Each space-filling path traverses every grid point, in a continuous, non-
overlapping manner. Hilbert, Peano, Z and Gray look to place nearby
points in the grid such they become close together in the curve.

the same first and last coordinates. parametric spiral which is formed
by a series of straight line paths with 90o rotations and increasing path
lengths. Hilbert space filling curve that passes through every point
within a square grid in an uninterrupted, non-overlapping fashion. Each
path is adaptable, for instance, by anchoring one reference point to
the center of a circular path, we can generate a star plot. Second, we
provide a path editor for user-generated paths. Individuals can visually
place points, and Genii records the path accordingly. Finally, paths can
be added to the code, by replicating and editing the React component.

We implement the envelope in Genii by clipping. Elements are
placed (centred aligned, top or bottom aligned) along the path, based on
the Normal. Which can be used to create objects that alternate between
above, below or on the path. Object placement is achieved by placing
geometric shapes between vertices of the path. As shown in Fig. 9,
the distance between vertices determines the default location of the
object placement. Then the data values will then adapt this position.
For example, one chosen shape can be mapped along the path, and its
location adapted by the data. Or the shape can alternate its placement
(sitting on the line, or below it) dependent on its position. Or different
shapes can be applied, to each location along the path, dependent on
the data. Genii includes several basic geometric shapes, including:
lines that can be used to create triangles, or outline shapes; triangles
by drawing a line between the vertices and the central point is adjusted
by the data value; arcs using the central as a Bézier control point of a
quadratic curve, rectangles; circles and ellipses, where the radius can be
controlled by the distance between the vertices, or by a constant, or by
a data value. We have implemented several filter operations, including
object/primitive fill, linear gradient fill and radial fill, change of object
stroke, and metaball merge.

We needed a way to load data and define the sizes of the
visualisation. We store the data in a JSON object that includes the
name (a string), data value (float) and data range(float) of the data for
each category, the width and height of the visualisation (in centimetres),
and padding around the edge of the visualisation. This provides a
convenient way for us to save the data created in Genii. We store
the visualisation design in ourgene expression. Users hover over
the top right hand side of the Genes panel (see Fig. 1 middle). The
saved file contains a set of enumerated types stored as parameters in

Fig. 11: Photograph of the Genii iOS application where people can build
the visualisations and load them to the companion smart watch.

https://React.js

JSON. Our application will only save valid genes, but should they
be invalid (edited by an external user) our application first validates
the gene expression and warns the user where the problem lies, this
is achieved using the transpiler (Babel.js). The gene saves many
properties (see Listing 1), including: Path Mode, Path Rotation,
Path Point Distance, Path points, Object Shape, Object Colour, Path
Grouping. To make the application deterministic, the user is asked to
name their visualisation, which is hashed to a 32bit integer value. We
use a hashCode() function of string s to create the product sum of the
string’s character codes, as follows h(s) = ∑n−1

i=0 s[i] · 31n−1−i .

Listing 1: Example gene; used to save the path-based visualisation

1 c o n s t params = {
2 shape : Gene . shape .BAR,
3 c o l o r : Gene . c o l o r .FROM_DATA,
4 c o l o r _ k e y : Gene . c o l o r _ k e y . OFF ,
5 p a t h _ p o i n t s : Gene . p a t h _ p o i n t s . EVEN,
6 path_mode : Gene . path_mode . INLINE ,
7 p a t h _ r o t a t i o n : Gene . p a t h _ r o t a t i o n .NONE,
8 p a t h _ g r o u p i n g : Gene . p a t h _ g r o u p i n g .NONE,
9 o b j e c t _ r o t a t i o n : Gene . o b j e c t _ r o t a t i o n .NONE,

10 o b j e c t _ s i z e : Gene . o b j e c t _ s i z e . FULL ,
11 f i l t e r : Gene . f i l t e r . OFF ,
12 debugg ing : Gene . debugg ing . OFF
13 }
14 c o n s t Gene = new Gene (params) ;

6 CASE STUDIES

To demonstrate the model we recreate several visualisations from papers
(Blascheck et al. [7] and Brehmer et al. [13]) and an imaginative design
from a concept sketch. Each of the visualisations from the papers are
small visualisations that would be suitable for mobile devices. For each,
we present their visualisation and analyse the structure, show a copy
of their original visualisation and explain how we recreate them in our
path model.

To recreate the bar chart, donut chart and radial bar chart of
Blascheck et al. [7] we need to imagine the visual path. The left column
of Fig. 12 (top) shows their original visualisations, our paths and our
recreation, see Fig. 12). Understanding the visual path of the bar chart
is easy, where a straight path would readily recreate this visualisation.
Similar to the examples in Fig. 5 we recreate this chart using a straight
path, envelope that stretches to the top of the design space, rectangles
aligned on the path encoded with data. The donut chart can be created
in several ways. We could treat this as one circular object that is placed
on a simple path (see Fig. 6) or a circular path. Circular paths can differ,
depending on whether the objects would sit at the top of the envelope or
the objects sit on the path. The best decision depends on how the donut
will be used, and how it displays data. Because the width of the donut’s
ring is not defined in the original paper we decided to create the donut
chart with a circular path, truncated circular segments of a cone (the
objects) sitting on the path. There are different ways to implement the
radial bar chart (as discussed before, see Sec. 4.1 and Fig. 6); we chose
to implement it using a straight path with circular objects, encoding
the data to fill a percentage of the full 360o arc. For each visualisation
the colours follow a colourblind friendly differentiator scheme between
data visualisation elements.

We recreate two visualisations from Brehmer et al. [13], shown in
Fig. 12, which can be done in different ways. For the first visualisa-
tion we use a straight path; but on the outset it may not be clear to
ascertain how many paths are required. Either the flow is considered
as one path and we place a complex object at each point; or it can
be appraised as several paths, that are located at the same point (like
the streamgraph example, Fig. 7). While the outcome would be the
same, differences exist in the way to build the path and apply the data.
We use a straight path with envelope above it. There are two other
possible path and envelope combinations: i) path through the middle
with envelope above and below; ii) path along top with envelope below.
Alternative i) requires extra checks on the data and a more complex
placement calculation. The differences between alternative ii) and the

2ULJLQDO
9LVXDOLVDWLRQ

3DWK (QYHORSH
'H¿QLWLRQ

&7'
5HQGHULQJ

2EMHFW
3ODFHPHQW

2EMHFW
$GMXVWPHQW

6NHWFK

Original
visualisation

Path & envelope
definition

Object
placement

Object
adjustment

Rendering

Recreating visualisations from Blascheck et al. [8]

Recreating visualisations from Brehmer et al. [15]

Creating a micro visualisation from a sketch

Fig. 12: Recreating visualisations by Blascheck et al. [7] (top) and
Brehmer et al. [13] (middle). Also creating a visualisation using a non
linear path from a sketch. Showing the original visualisation, an explana-
tory depiction of the path used, and the final rendering (right).

chosen path are subjective and we make the decision to place it at the
bottom was made to match with an y axis. In addition we map colour.
Three visual variables are used to describe the data: a) colour is a linear
gradient from blue to yellow to orange for daily temperature range, and
an opaque white colour to denote the average temperature range; b)
the size of the element shows the size of the range of the data point; c)
the placement of the element shows the start of the range. We map a
filter to the objects, to round the corners (in the same stylistic way), and
we do not include labels (but could do so by adding a new path, and
placing text labels). We create the circular visualisation using a similar
path to the circle chart of Brehmer et al. [13], but apply different shapes
and align the objects to the outer part of the envelope.

Finally, we create a disjointed design which has four separate vi-
sualisations (see Fig. 12). We sketched the idea and then created a
disjointed path. We start by defining z-pattern path, we insert extra
vertices into each part of the z shape, such that we can describe the
individual visualisations. For the first three (bar, donut and circular
chart) we followed the descriptions as described above. The final visu-
alisation uses a random path, and place circles along the path, applying
a metaball filter to blend the circles.

7 BROWSER AND MOBILE APP USABILITY EVALUATION

Our emphasis lies in crafting diverse designs rather than assessing the
effectiveness of the resulting visualisations. For evaluations of their
efficacy, we direct readers to the work of other researchers in the field
(e.g., [7, 13]). To evaluate the usability of our path model, we used our
desktop implementation (see Figs. 1 and 13) and mobile phone/watch
tool (see Fig. 11), with default paths available. Users were given a

https://Babel.js

Circular Golden Spiral

Linear

Hilbert Circle Zig zag Disjointed linear

Scan

Scan

Fig. 13: Genii visualisation designs, showing a range of different flow
paths.

five minute introduction video showing how to use the tool, followed
by five minutes self-guided exploration, where they could create their
own visualisation designs. They identified if they “liked” or “disliked”
each creation during the desktop study by clicking on the images in the
gallery. On mobile, users had the ability to send the visualisation to the
Apple Watch if they liked the design. We chose a short design duration,
because we wanted users to rapidly create many visual designs. After
five minutes they completed the System Usability Scale (SUS) [15]
questionnaire. Participants also reflected on their design process, by
answering (1) “Describe how you would like to use these visualisations
in day to day life”; (2) “Describe some aspects that you liked about the
visualisation design process”; and (3) “Describe some aspects that you
disliked about the visualisation design process”.

Participants. An initial pilot study was carried out using four partici-
pants (two web developers, one psychology student and a student nurse)
recruited over social media. We used our JavaScript evaluation frame-
work [33] that allows users to anonymously perform the evaluation.
From this feedback we improved the gene encoding strategy (chang-
ing it from an initial drop-down menu to a drag-and-drop interface),
added a colour for each gene, and made the gene clearer (through the
drag-and-drop interface). For the browser study, 18 participants were
recruited via social media covering a range of backgrounds. Because of
our anonymous system we do not know who completed our evaluation,
but from conversations and where we advertised we conclude: eight
were general public (not at the University) and four postgraduate and
six undergraduate students (from a range of computing, nursing and
psychology). Separately, the mobile study was conducted under con-
trolled conditions using a single iPhone and Apple Watch, this study
comprised two groups, the first was eight final year Computer Science
students, the second group comprised nine members of the public.

Results. In the browser study the SUS survey was fully completed
by 15 of the 18 participants. We calculate the mean SUS score to
be 75.42 (Fig. 14) indicating a ‘good’ score according to Bangor et
al. [3]. The minimum score was 40 while the maximum score was
92.5. The lowest score is interesting, because while they answered low
values in the SUS each of their comments were extremely positive;
perhaps they misunderstood how to complete the SUS Likert scale. For
the mobile study all 17 participants completed the SUS survey. The
mean score was 80.83 indicating a ‘good’ score. The minimum 32.5
while the maximum was 92.5. The low score for the mobile study was
accompanied by largely positive comments except that the labelling of
properties did not make much sense to the user. Along with the SUS,
we can analyse the created visualisations.

The browser study visualisations. The 18 participants created a
total of 163 visualisations. The minimum number of visualisations
created was 4 and the maximum 15. This means that, on average,
9.06 visualisations were created per participant within five minutes.
The survey automatically time-stamps every action, and especially it
automatically progresses to the SUS after five minutes. Therefore we
are able to evaluate the duration of the design process. The average time
spent designing was 356.5 seconds with a minimum of 302.2 seconds
and a maximum of 689.3 seconds. Using this data we can infer that
users of the model are able to create a visualisation every 39.37 seconds.
Of the 163 visualisations that were created 89 were liked (through self
judgement) and the remaining 74 disliked.

The mobile Study visualisations. During the mobile study 19 par-

20 30 40 50 60 70 80 90 100

Browser

Mobile

SUS Score

Fig. 14: Box plots of SUS scores. The usability of each tool was good,
and therefore should not affect adversely the generation of each visuali-
sation.

ticipants created a total of 156 visualisations with a minimum number
of 3 and a maximum of 12, this averages to 8.21 visualisations per user.
Within the given five minute period participants created, on average,
one visualisation every 36.54 seconds. 106 of the visualisations were
sent to the Apple Watch indicating that 67.9% of the visualisations
created were liked. The binary choice between like and dislike forced
participants to make clear decisions over the rendered visualisation and
whether amendments of the gene were needed. 157 of the visualisations
in the browser study and 111 during the mobile were created using
a unique combination of gene parameters, this adds credence to our
assertion that the model allows users to create many different designs
in a small amount of time.

8 DISCUSSION AND CONCLUSIONS

We believe the path model has huge potential to create new visuali-
sations, and by manipulating objects on the path by the envelope and
filtering operations and storing the gene we are able to create a wide
range of visual designs. In fact, participants in our evaluation said that
the model was “simple to use”, another said “very easy to use”, and it

“could create some interesting designs very fast”. Indeed, our evaluation
demonstrated that participants were rapidly creating visualisations, be-
tween 4 and 15 in five minutes. Some participants in our evaluation said
that they would like to use it for “mobile or smart watch applications,
maybe for health or fitness indications” with another participant saying
that it would “integrate into smart devices where you could actively
quickly design and change backgrounds for devices”. Other partici-
pants said that it would be “suited to a dashboard including other more
detailed plots, or as a summary visualisation on a mobile application”.

The concept of using the visual flow as the main underpinning struc-
ture for creating visualisations is a new way to contemplate visualisation
design. While other researchers have considered paths or skeleton con-
structs (e.g., [6, 12]), they have done so to classify visualisations, or to
analyse analysed the visual flow of pictures (e.g., [16, 59]), whereas
Pereira et al. utilise a simple path [62]. However, our work places the
flowgraph as the core visual skeleton to design visualisations. Like
with the line-of-action lines of Reilly [50] the flowgraph provides an ex-
cellent and understandable structure to underpin visualisation designs.
Integrating the flowgraph into visualisation design not only provides
a structured framework but also enhances the creation of alternatives.
By defining how elements flow and interact within a visualization, the
flowgraph enables designers to create narratives, emphasize relation-
ships, and guide viewer understanding intuitively. This approach has
potential to support dynamic visual storytelling. Moreover, leveraging
the flowgraph as a foundational design element encourages exploration
and innovation in visual representation techniques, paving the way for
new insights and discoveries.

One of the challenges for a designer, though, is that they need to
think creatively, to first imagine what the path would be, and then
decide on how to map the objects along the path. Most visualisations
are designed from the data up; where the visualisation designs are
created pragmatically through mapping data to change visual variables
that are placed on the display. However, in our approach, developers
need to conceptualise the visual flow, and use this to structure their
visual design (though, much like a sketch artist would do). From our
evaluation and case studies (especially) it is clear that some paths are
easy to comprehend. It is clear that a bar chart has a linear flow, it is

clear that a pie chart would have a circular path; but for some designs
the path will be less clear. What path would be best for a tree? What
would be the best path to label points on the graph? Such complex
paths can be approximated using multiple paths or several jumps in the
path, but there may be other ways to achieve this. When planning or
designing new visualisations the user needs to think about the design
and iteratively refine their ideas, perhaps starting off by sketching
designs [73] before implementing them. We believe a similar approach
is needed here. Visual designs will emerge, and the developer needs to
contemplate what the visual path will be. Sometimes the designer will
create a path and realise that it was the wrong strategy. Developers will
need to learn how to create the ‘best’ and most efficient path.

The gene provides a quick way to re-factor designs. We demon-
strated this in our second case study. Once the path, envelope, object
placement, filters and data mapping have been created, it is easy to
swap out some of the parts to create a new design. In that case, turning a
straight path into a circular one. Such a strategy would be difficult with
traditionally built visualisations. The idea of the gene was positively
discussed in our evaluation. Once participant said “love how you can
alter the final visualisation without having to start from scratch”. Some
did say that some genes do create similar visualisations, but we believe
this is the result of their use of the tool and choices they made. There
was some confusion over some of our name choices, for example one
participant wrote: “..I did not know what an ‘inline half’ was before I
created the visualisation and even though I liked the outcome”. When
utilising the path editor, users have the freedom to define their preferred
path.

One limitation with Genii is that it is not always easy to change from
one visual flow to another. For instance, swapping between a straight
path to create a circular visualisation using circular objects, into one
that uses a circular path with straight objects currently requires the
user to re-define the path and swap the mapped objects. But similar
challenges exist when programming these visualisations from a library,
and refactoring the code. We are currently improving our implemen-
tation to allow this pivoting operation to be simpler. There are other
improvements we could make. One participant said “I would have
liked a textual or visual description of what each property would do to
my visualisation.” and another “when there were many visualisations
in the right hand panel, knowing which gene corresponded to which
visualisation was tricky when I wanted to copy and modify them”. We
are working to develop and improve the implementation.

There could be several extensions, or further ideas to our flowgraph
model, that we could explore. Paths-in-path could simplify the cre-
ation of hierarchical structures. We could define several paths, name
them, and use them later. This re-use could make path design eas-
ier. However, we did not include path-in-path because our flowpath
model already allow jumps, can contain infinite vertices, the path can
depend on complex data, which in turn can be used to provide the same
functionality as paths-in-paths would provide. Another issue would
be that adding such path-references and paths-in-paths would make
the input parser more complex, and it is not necessarily requires. It is
already possible to create an application to output more complex paths
that could encode several complex jumps to that would be necessary
to model a tree, treemap or other hierarchical visualisation. We also
considered adding logic into the path itself. For instance, we already
make decisions on the path which are based on the data. This is used
to alternate the position of the objects on, or above the path, to change
their colour and so forth. But it could be possible to embed logical de-
cisions on the path. To achieve this functionality we would need to add
ID labels to control jumps within the path itself. This would provide
another way to build hierarchical (or other complex) structures. Apply-
ing logic to the path could allow element reuse, and recursion to occur
within the design process. However, this would turn our path model
from a scene description language into a programming language. From
deterministic to non-deterministic. There has been a similar discussion
within the scene graph community – where researchers have discussed
the placement of logical statements within the scene [34,93]. Much like
standard scene graph implementations [29, 68, 88], our model does not
include logic at the path level. But not having logical, variables or ID’s

embedded with the path does not restrict complex paths to be created;
we can still code a program to write more complex paths, which can
then be used as before.

Another addition is to add labels and legends. One solution we
contemplated was to add a specific path-type to layout this metadata.
One path description for the data and another for the meta-information.
However, because our path contains jumps, we can already achieve this
functionality. Our solution is to append this information to the end of
the path. The path jumps to each location to place text, in the same
way as we describe a scatterplot visualisation, see Fig. 9. Alternatively
labels could be added when the objects are placed – where the object
becomes a multivariate object (containing geometry and text). The
position of the text label could be determined by one of the numerous
label placement strategies [1, 18]. Another way could be to couple the
idea of logic within the path with label placement. Legends may also
be placed along another path with decisions made at on construction or
placement at any part of the model.

Our model allows the creation of many visualisations – some good,
some bad – and by using the gene we are able to swap in/out param-
eters to discover or create new visualisations. Therefore, as one of
the evaluation participants noticed, it is possible to create unsuitable
visualisations. While not the focus of this paper, we do note that we
are currently performing a more in depth evaluation of different vi-
sualisations designed by our method. With our builder interface, and
even using the given (non- user-created) paths, we can combine and
create thousands of parameters, and among them some will be poor
visualisations. For instance, let’s assume we want to apply a circle to a
straight line path. By default, our circle segment has no data, and so it
has a zero height; at the start of the process it will not necessarily look
good. By adding default and random data we acknowledge that some
early designs may not look good, and require effort on the part of the
designer. But this is a typical solution to designing: “the best way to a
good idea is to have lots of ideas” (Pauling, [20]). Subsequently, one
solution could be to include design rules into our path model. Rules
could make some automatic design decisions to the placement of ob-
jects such as used in graph-drawing or label placement algorithms [1]
or perhaps delivered from machine learning, such as Draco [54].

In fact, this is one of the areas we want to expand. In future work we
imagine automatically creating different genes, that will subsequently
produce different visualisations. We aim to further explore the effec-
tiveness of visualisations in a more in depth evaluation and use these
evaluations to drive future gene generation to recommend good visuali-
sations to the user. An important output from these future evaluations
would also be to establish recommended envelope parameters for given
paths. This concept of a gene allows us to think of visualisations as
a small series of properties. With this we would like to explore the
possibility of gene mutation and combination. Borrowing concepts
from Genetic Algorithms, we would like to create an implementation
which allows users to combine and refine visualisations creating new
generations and allowing for the usage of mutations. Another future
work idea is to develop into 3D and investigate different coordinate
systems.

In this paper we have introduced a path-based design model, the
Genii system (component library, builder and renderer). We also pre-
sented an in-depth description of the flowmodel. The model encourages
people to think about the visualisation in terms of a visual path, define
a flowpath, apply different envelopes, place objects and filters on the
path to generate alternative visualisation designs. The visualisations
are saved as SVG, which can used in other applications; and have
demonstrated how the system can be applied for use on a smartwatch.
We demonstrate the model and system works, by several case study
applications. Where we re-create several visualisations in the literature
and one from a sketch. We have performed a user evaluation, which
supports that the model is understandable and can be used to create a
range of visualisations. By encoding the path model into a gene we
are able to swap in/out parameters to quickly create different visual
depictions. Finally, we hope that our path model will be extended and
developed by other researchers.

SUPPLEMENTAL MATERIALS

The Genii system (jamesjacko.github.io/genii/) is released
under CC BY 4.0, and includes the component library
doi:10.5281/zenodo.12571856, renderer doi:10.5281/zenodo.12571917
and builder doi:10.5281/zenodo.12571944.

FIGURE CREDITS

Credit all images to authors; Figs. 1 to 14, with the addition of accom-
panying thumbnails from Blascheck et al. [7] (top) and Brehmer et
al. [13] (middle) in Fig. 12.

ACKNOWLEDGMENTS

This work is funded by KESS 2. Knowledge Economy Skills Schol-
arships (KESS 2) is a pan-Wales higher level skills initiative led by
Bangor University on behalf of the HE sector in Wales. It is part funded
by the Welsh Government’s European Social Fund (ESF) convergence
programme for West Wales and the Valleys.

REFERENCES

[1] P. K. Agarwal, M. van Kreveld, and S. Suri. Label Placement by Maximum
Independent set in Rectangles. Comp. Geometry, 11(3):209 – 218, 1998.
doi: 10.1016/S0925-7721(98)00028-5

[2] R. Arnheim. Art and visual perception: A psychology of the creative eye.
Univ of California Press, 1965.

[3] A. Bangor, P. Kortum, and J. Miller. Determining What Individual SUS
Scores Mean: Adding an Adjective Rating Scale. J. Usability Studies,
4(3):114–123, 2009.

[4] G. D. Battista et al. Graph Drawing: Algorithms for the Visualization of
Graphs. Prentice, 1st ed., 1998.

[5] F. Beck and D. Weiskopf. Word-Sized Graphics for Scientific Texts.
IEEE Trans. Visual Comput. Graphics, 23(6):1576–1587, 2017. doi: 10.
1109/TVCG.2017.2674958

[6] J. Bertin. Graphics and Graphic Inf. Processing. deGruyter, 1981.
[7] T. Blascheck et al. Glanceable Visualization: Studies of Data Comparison

Performance on Smartwatches. IEEE Trans. Visual Comput. Graphics,
25(1):630–640, 2019. doi: 10.1109/TVCG.2018.2865142

[8] J. F. Blinn. A Generalization of Algebraic Surface Drawing. Trans. Graph.,
1(3):235–256, 1982. doi: 10.1145/357306.357310

[9] R. Borgo, J. Kehrer, et al. Glyph-based Visualization: Foundations, Design
Guidelines, Techniques and Applications. In Eurographics (STARs), pp.
39–63, 2013. doi: 10.2312/conf/EG2013/stars/039-063

[10] U. Brandes, B. Nick, B. Rockstroh, and A. Steffen. Gestaltlines. CGF,
32:171–180, 2013. doi: 10.1111/cgf.12104

[11] M. Brehmer, R. Kosara, and C. Hull. Generative Design Inspiration for
Glyphs with Diatoms. IEEE Trans. Visual Comput. Graphics, 28(1):389–
399, 2022. doi: 10.1109/TVCG.2021.3114792

[12] M. Brehmer, B. Lee, et al. Timelines Revisited: A Design Space and
Considerations for Expressive Storytelling. IEEE Trans. Visual Comput.
Graphics, 23(9):2151–2164, Sep. 2017. doi: 10.1109/TVCG.2016.2614803

[13] M. Brehmer, B. Lee, P. Isenberg, and E. K. Choe. Visualizing Ranges
over Time on Mobile Phones: A Task-Based Crowdsourced Evaluation.
IEEE Trans. Visual Comput. Graphics, 25(1):619–629, Jan 2019. doi: 10.
1109/TVCG.2018.2865234

[14] G. B. Bridgman. Bridgman’s Life Drawing. Dover Publications, 1971.
[15] J. Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation

in industry, 189(194):4–7, 1996.
[16] Z. Bylinskii, M. A. Borkin, et al. Eye Fixation Metrics for Large Scale

Evaluation and Comparison of Information Visualizations. In Proc.ETVIS,
pp. 235–255. Springer, 2017. doi: 10.1007/978-3-319-47024-5_14

[17] H. Chernoff. The Use of Faces to Represent Points in k-Dimensional
Space Graphically. JASA, 68(342):361–368, 1973.

[18] J. Christensen, J. Marks, and S. Shieber. An empirical study of algorithms
for point-feature label placement. ACM Trans.Graph., 14(3):203–232,
1995. doi: 10.1145/212332.212334

[19] M. Connor and P. Kumar. Fast construction of k-nearest neighbor graphs
for point clouds. IEEE Trans. Visual Comput. Graphics, 16(4):599–608,
2010. doi: 10.1109/TVCG.2010.9

[20] F. Crick. The Impact of Linus Pauling on Molecular Biology. In The
Pauling Symposium: Special Collections, The Valley Library, Oregon State
University, OR, 1996.

[21] D. S. Ebert et al. Procedural Shape Generation for Multi-dimensional
Data Visualization. Comp.&Graph., 24(3):375 – 384, 2000. doi: 10.
1016/S0097-8493(00)00033-9

[22] C. W. Eriksen and D. W. Schultz. Information processing in visual search:
A continuous flow conception and experimental results. Perc. & Psych.,
25(4):249–263, 1979.

[23] J. Faragasso. Mastering Drawing the Human Figure From Life, Memory,
Imagination. Dover Publications Inc, 2020.

[24] S. J. Fernstad and J. J. Westberg. To Explore What Isn’t There—Glyph-
Based Visualization for Analysis of Missing Values. IEEE Trans. Vi-
sual Comput. Graphics, 28(10):3513–3529, 2021. doi: 10.1109/TVCG.2021.
3065124

[25] J. Fuchs, F. Fischer, et al. Evaluation of Alternative Glyph Designs for
Time Series Data in a Small Multiple Setting. In Proc. SIGCHI, pp.
3237–3246. ACM, 2013. doi: 10.1145/2470654.2466443

[26] J. Fuchs, P. Isenberg, A. Bezerianos, and D. Keim. A Systematic Review
of Experimental Studies on Data Glyphs. IEEE Trans. Visual Comput.
Graphics, 23(7):1863–1879, 2017. doi: 10.1109/TVCG.2016.2549018

[27] T. Gerrits, C. Rössl, and H. Theisel. Towards Glyphs for Uncertain
Symmetric Second-Order Tensors. CGF, 38(3):325–336, 2019. doi: 10.
1111/cgf.13692

[28] P. Goffin, W. Willett, J. Fekete, and P. Isenberg. Exploring the Placement
and Design of Word-Scale Visualizations. IEEE Trans. Visual Comput.
Graphics, 20(12):2291–2300, 2014. doi: 10.1109/TVCG.2014.2346435

[29] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image
Recognition. In IEEE CVPR, June 2016.

[30] R. Hu, B. Chen, et al. Shape-Driven Coordinate Ordering for Star Glyph
Sets via Reinforcement Learning. IEEE Trans. Visual Comput. Graphics,
27(6):3034–3047, 2021. doi: 10.1109/TVCG.2021.3052167

[31] J. Jackson, P. Ritsos, and J. Roberts. Towards a Tool for the Creation
of Micro-visualisations. In Proc.CGVC. EG, 2019. doi: 10.2312/cgvc.
20191270

[32] J. Jackson, P. D. Ritsos, and J. C. Roberts. Creating Small Unit Based
Glyph Visualisations. In Posters IEEE VIS, 2018.

[33] J. Jackson and J. C. Roberts. VisSurvey.js – A Web Based Javascript
Application for Visualisation Evaluation User Studies. In Posters IEEE
VIS, 2017.

[34] J. Johnson, R. Krishna, et al. Image Retrieval Using Scene Graphs. In
IEEE CCVPR, 2015.

[35] D. Kammer, M. Keck, et al. Glyphboard: Visual Exploration of High-
Dimensional Data Combining Glyphs with Dimensionality Reduction.
IEEE Trans. Visual Comput. Graphics, 26(4):1661–1671, 2020. doi: 10.
1109/TVCG.2020.2969060

[36] M. Keck and L. Engeln. Sparkle glyphs: A glyph design for the analysis
of temporal multivariate audio features. In Proc. AVI, pp. 1–3, 2022. doi:
10.1145/3531073.3534491

[37] M. Khawatmi, Y. Steux, et al. ShapoGraphy: A User-Friendly Web Ap-
plication for Creating Bespoke and Intuitive Visualisation of Biomedical
Data. Front. Bioinform., 2, July 2022. doi: 10.3389/fbinf.2022.788607

[38] G. Kindlmann and C. Westin. Diffusion Tensor Visualization with Glyph
Packing. IEEE Trans. Visual Comput. Graphics, 12(5):1329–1336, 2006.
doi: 10.1109/TVCG.2006.134

[39] K. Koc, A. S. McGough, and S. Johansson Fernstad. PeaGlyph: Glyph
design for investigation of balanced data structures. Inf. Visualization,
21(1):74–92, 2022. doi: 10.1177/14738716211050602

[40] P. A. Legg et al. MatchPad: Interactive Glyph-Based Visualization for
Real-Time Sports Performance Analysis. CGF, 31(3):1255–1264, 2012.
doi: 10.1111/j.1467-8659.2012.03118.x

[41] P. A. Legg, E. Maguire, S. Walton, and M. Chen. Glyph Visualization: A
Fail-Safe Design Scheme Based on Quasi-Hamming Distances. CG&A,
37(2):31–41, 2017. doi: 10.1109/MCG.2016.66

[42] G. Li and X. Yuan. GoTreeScape: Navigate and Explore the Tree Visual-
ization Design Space. IEEE Trans. Visual Comput. Graphics, 29(12):5451–
5467, 2023. doi: 10.1109/TVCG.2022.3215070

[43] S. Li, R. J. Crouser, G. Griffin, C. Gramazio, H.-J. Schulz, H. Childs, and
R. Chang. Exploring hierarchical visualization designs using phylogenetic
trees. In Proc. VDA, vol. 9397, pp. 68–81. SPIE, 2015.

[44] Y.-T. Liu, Y.-C. Guo, et al. Learning implicit glyph shape representation.
IEEE Trans. Visual Comput. Graphics, pp. 1–12, 2022. doi: 10.1109/TVCG.
2022.3183400

[45] Z. Liu, J. Thompson, et al. Data illustrator: Augmenting vector design
tools with lazy data binding for expressive visualization authoring. In
Proc.CHI. ACM, 2018. doi: 10.1145/3173574.3173697

https://jamesjacko.github.io/genii/
http://doi.org/10.5281/zenodo.12571856
http://doi.org/10.5281/zenodo.12571917
http://doi.org/10.5281/zenodo.12571944
https://doi.org/10.1016/S0925-7721(98)00028-5
https://doi.org/10.1109/TVCG.2017.2674958
https://doi.org/10.1109/TVCG.2017.2674958
https://doi.org/10.1109/TVCG.2018.2865142
https://doi.org/10.1145/357306.357310
https://doi.org/10.2312/conf/EG2013/stars/039-063
https://doi.org/10.1111/cgf.12104
https://doi.org/10.1109/TVCG.2021.3114792
https://doi.org/10.1109/TVCG.2016.2614803
https://doi.org/10.1109/TVCG.2018.2865234
https://doi.org/10.1109/TVCG.2018.2865234
https://doi.org/10.1007/978-3-319-47024-5_14
https://doi.org/10.1145/212332.212334
https://doi.org/10.1109/TVCG.2010.9
https://doi.org/10.1016/S0097-8493(00)00033-9
https://doi.org/10.1016/S0097-8493(00)00033-9
https://doi.org/10.1109/TVCG.2021.3065124
https://doi.org/10.1109/TVCG.2021.3065124
https://doi.org/10.1145/2470654.2466443
https://doi.org/10.1109/TVCG.2016.2549018
https://doi.org/10.1111/cgf.13692
https://doi.org/10.1111/cgf.13692
https://doi.org/10.1109/TVCG.2014.2346435
https://doi.org/10.1109/TVCG.2021.3052167
https://doi.org/10.2312/cgvc.20191270
https://doi.org/10.2312/cgvc.20191270
https://doi.org/10.1109/TVCG.2020.2969060
https://doi.org/10.1109/TVCG.2020.2969060
https://doi.org/10.1145/3531073.3534491
https://doi.org/10.1145/3531073.3534491
https://doi.org/10.3389/fbinf.2022.788607
https://doi.org/10.1109/TVCG.2006.134
https://doi.org/10.1177/14738716211050602
https://doi.org/10.1111/j.1467-8659.2012.03118.x
https://doi.org/10.1109/MCG.2016.66
https://doi.org/10.1109/TVCG.2022.3215070
https://doi.org/10.1109/TVCG.2022.3183400
https://doi.org/10.1109/TVCG.2022.3183400
https://doi.org/10.1145/3173574.3173697
https://VisSurvey.js

[46] A. Loomis. Figure Drawing for All It’s Worth (How to draw and paint).
Viking Adult, 1943.

[47] D. Lopes, J. Correia, and P. Machado. Adea – evolving glyphs for aiding
creativity in typeface design. In Proc. GE Comp., pp. 97–98, 2020. doi:
doi.org/10.1145/3377929.3389964

[48] E. Maguire et al. Taxonomy-Based Glyph Design. IEEE Trans. Visual
Comput. Graphics, 18(12):2603–2612, 2012. doi: 10.1109/TVCG.2012.271

[49] E. Maguire et al. Visual Compression of Workflow Visualizations with
Automated Detection of Macro Motifs. IEEE Trans. Visual Comput.
Graphics, 19(12):2576–2585, 2013. doi: 10.1109/TVCG.2013.225

[50] M. D. Mattesi. Force: Dynamic Life Drawing for Animators. CRC Press,
3rd Ed., 2017.

[51] L. E. Matzen et al. Patterns of Attention: How data Visualizations are
Read. In Proc. Augmented Cognition, pp. 176–191. Springer, 2017. doi:
10.1007/978-3-319-58628-1_15

[52] L. E. Matzen et al. Data Visualization Saliency Model: A Tool for Evalu-
ating Abstract Data Visualizations. IEEE Trans. Visual Comput. Graphics,
24(1):563–573, 2018. doi: 10.1109/TVCG.2017.2743939

[53] L. McNabb and R. S. Laramee. Multivariate Maps—A Glyph-Placement
Algorithm to Support Multivariate Geospatial Visualization. Information,
10(10), 2019. doi: 10.3390/info10100302

[54] D. Moritz et al. Formalizing Visualization Design Knowledge as Con-
straints: Actionable and Extensible Models in Draco. IEEE Trans. Visual
Comput. Graphics, 25(1):438–448, 2019. doi: 10.1109/TVCG.2018.2865240

[55] M. Naveh-Benjamin and R. G. Pachella. The Effect of Complexity on
Interpreting “Chernoff”’ Faces. Human factors, 24(1):11–18, 1982.

[56] J. Nielsen and K. Pernice. Eyetracking Web Usability. New Riders
Publishing, Thousand Oaks, CA, USA, 1st ed., 2009.

[57] A. Nuñez-Alcover et al. Glyph and position classification of music sym-
bols in early music manuscripts. In IbPRIA, Madrid, Spain, pp. 159–168.
Springer, 2019. doi: 10.1007/978-3-030-31321-0_14

[58] A. Offenwanger, M. Brehmer, et al. TimeSplines: Sketch-Based Authoring
of Flexible and Idiosyncratic Timelines. IEEE Trans. Visual Comput.
Graphics, 30(1):34–44, 2024. doi: 10.1109/TVCG.2023.3326520

[59] X. Pang, Y. Cao, R. W. Lau, and A. B. Chan. Directing User Attention
Via Visual Flow on Web Designs. ACM Trans.Graph., 35(6):240, 2016.
doi: 10.1145/2980179.298242

[60] M. Patel and D. H. Laidlaw. Visualization of 3D Stress Tensor Fields
using Superquadric Glyphs on Displacement Streamlines. IEEE Trans.
Visual Comput. Graphics, 27(7):3264–3276, 2021. doi: 10.1109/TVCG.2020.
2968911

[61] J. Pearlman, P. Rheingans, and M. des Jardins. Visualizing Diversity and
Depth over a Set of Objects. CG&A, 27(5):35–45, Sep. 2007. doi: 10.
1109/MCG.2007.139

[62] F. A. Pereira, T. Martins, et al. Generative Type Design: Creating Glyphs
from Typographical Skeletons. In Proc. Dig. Int. Arts, pp. 1–8, October
2019. doi: 10.1145/3359852.3359866

[63] C. Perin, R. Vuillemot, and J. Fekete. SoccerStories: A Kick-off for Visual
Soccer Analysis. IEEE Trans. Visual Comput. Graphics, 19(12):2506–
2515, Dec 2013. doi: 10.1109/TVCG.2013.192

[64] A. H. I. Pires et al. A Summarization Glyph for Sets of Unreadable
Visual Items in Treemaps. In Proc IV, pp. 242–247. IEEE, 2020. doi: 10.
1109/IV51561.2020.00047

[65] D. Presnov and A. Kolb. Glyph from Icon – Automated Generation of
Metaphoric Glyphs. CoRR, 2022. doi: 10.48550/arXiv.2206.05061

[66] D. Rees, R. S. Laramee, et al. Agentvis: Visual analysis of agent be-
havior with hierarchical glyphs. IEEE Trans. Visual Comput. Graphics,
27(9):3626–3643, 2021. doi: 10.1109/TVCG.2020.2985923

[67] D. Ren, T. Höllerer, and X. Yuan. iVisDesigner: Expressive Interactive De-
sign of Information Visualizations. IEEE Trans. Visual Comput. Graphics,
20(12):2092–2101, Dec 2014. doi: 10.1109/TVCG.2014.2346291

[68] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks. In C. Cortes et al.,
eds., Proc. Neural Inf. Proc. Systems, pp. 91–99, 2015.

[69] J. C. Roberts. Visualization Display Models – Ways to Classify Visual
Representations. Comp. Int. Design & Const., 2(4):241—250, 2000.

[70] J. C. Roberts. State of the art: Coordinated multiple views in exploratory
visualization. In Proc.CMV, pp. 61–71, 2007. doi: 10.1109/CMV.2007.20

[71] J. C. Roberts, P. Butcher, A. Sherlock, and S. Nason. Explanatory jour-
neys: Visualising to understand and explain administrative justice paths of
redress. IEEE Trans. Visual Comput. Graphics, 28(1):518–528, 2022. doi:
10.1109/TVCG.2021.3114818

[72] J. C. Roberts and K. Franklin. Haptic glyphs (hlyphs) - structured haptic

objects for haptic visualization. In Proc. World Haptics, pp. 369–374,
2005. doi: 10.1109/WHC.2005.68

[73] J. C. Roberts, C. Headleand, and P. D. Ritsos. Sketching Designs Using the
Five Design-Sheet Methodology. IEEE Trans. Visual Comput. Graphics,
22:419–428, 2016. doi: 10.1109/TVCG.2015.2467271

[74] T. Ropinski, S. Oeltze, and B. Preim. Survey of Glyph-based Visualiza-
tion Techniques for Spatial Multivariate Medical Data. Comp.&Graph.,
35(2):392 – 401, 2011. doi: 10.1016/j.cag.2011.01.011

[75] T. Saito, H. N. Miyamura, et al. Two-tone Pseudo Coloring: Compact
Visualization for One-dimensional Data. In Proc. InfoVis, pp. 173–180,
2005. doi: 10.1109/INFVIS.2005.1532144

[76] A. Satyanarayan and J. Heer. Lyra: An Interactive Visualization Design
Environment. CGF, 33(3):351–360, 2014. doi: 10.1111/cgf.12391

[77] W. Schroeder, K. Martin, and W. Lorensen. The Design and Implementa-
tion of an Object-Oriented Toolkit for 3D Graphics and Visualization. In
Proc. Vis, pp. 93–100, 1996. doi: 10.1109/VISUAL.1996.567752

[78] H.-J. Schulz and S. Hadlak. Preset-based Generation and Exploration of
Visualization Designs. J. Vis. Lang. & Comp., 31:9–29, 2015. doi: 10.
1016/j.jvlc.2015.09.004

[79] C. D. Schulze, N. Wechselberg, and R. von Hanxleden. Edge label place-
ment in layered graph drawing. In Diag. Repr. & Inf., pp. 71–78. Springer,
Cham, 2018. doi: 10.1007/978-3-319-91376-6_10

[80] Y. Sekse Kristiansen and S. Bruckner. Visception: An Interactive Visual
Framework for Nested Visualization Design. Comp.&Graph., 92:13–27,
2020. doi: 10.1016/j.cag.2020.08.007

[81] A. Slingsby, J. Dykes, and J. Wood. Configuring Hierarchical Layouts
to Address Research Questions. IEEE Trans. Visual Comput. Graphics,
15(6):977–984, 2009. doi: 10.1109/TVCG.2009.128

[82] J. Suschnigg, B. Mutlu, et al. Visual Exploration of Anomalies in Cyclic
Time Series Data with Matrix and Glyph Representations. Big Data
Research, 26, 2021. doi: 10.1016/j.bdr.2021.100251

[83] T. Tsandilas. StructGraphics: Flexible Visualization Design through Data-
Agnostic and Reusable Graphical Structures. IEEE Trans. Visual Comput.
Graphics, 27(2):315–325, 2021. doi: 10.1109/TVCG.2020.3030476

[84] E. R. Tufte. Visual Explanations. Graphics Press, Connecticut, 1997.
[85] E. R. Tufte. The Visual Display of Quantitative Information, vol. 2. Con-

necticut, 2001.
[86] C. van Onzenoodt, P.-P. Vázquez, and T. Ropinski. Out of the Plane:

Flower Vs. Star Glyphs to Support High-Dimensional Exploration in Two-
Dimensional Embeddings. IEEE Trans. Visual Comput. Graphics, pp.
1–15, 2022. doi: 10.1109/TVCG.2022.3216919

[87] R. Vuillemot and J. Boy. Structuring Visualization Mock-Ups at the
Graphical Level by Dividing the Display Space. IEEE Trans. Visual
Comput. Graphics, 24(1):424–434, 2018. doi: 10.1109/TVCG.2017.2743998

[88] G. Wang, S. Li, S. Wang, B. Lu, and W. Li. ViWoSG: A Distributed Scene
Graph of Ultramassive Distributed Virtual Environments. Sci.in China
Series, 52:457–469, 2009. doi: 10.1007/s11432-009-0071-3

[89] M. O. Ward. A taxonomy of glyph placement strategies for multidi-
mensional data visualization. Info. Vis., pp. 194–210, 2002. doi: 10.
1057/palgrave.ivs.9500025

[90] C. Ware. Information Visualization:.. Kaufmann, 2nd ed., 2004.
[91] W. Willett, J. Heer, and M. Agrawala. Scented Widgets: Improving

Navigation Cues with Embedded Visualizations. IEEE Trans. Visual
Comput. Graphics, 13(6):1129–1136, 2007. doi: 10.1109/TVCG.2007.70589

[92] S. won Park. Generating Novel Glyph Without Human Data by Learning to
Communicate. In Proc. MLfC. Springer, 2020. arxiv.org/pdf/2010.04402.

[93] D. Xu et al. Scene Graph Generation by Iterative Message Passing. In
IEEE CVPR, July 2017. doi: 10.1109/CVPR.2017.330

[94] M. Yamamoto, G. Camara, and L. A. N. Lorena. Tabu Search Heuristic for
Point-Feature Cartographic Label Placement. GeoInformatica, 6(1):77–90,
2002. doi: 10.1023/A:1013720231747

[95] L. Ying, X. Shu, et al. MetaGlyph: Automatic Generation of Metaphoric
Glyph-based Visualization. IEEE Trans. Visual Comput. Graphics,
29(1):331–341, 2023. doi: 10.1109/TVCG.2022.3209447

[96] L. Ying, T. Tangl, et al. GlyphCreator: Towards Example-based Automatic
Generation of Circular Glyphs. IEEE Trans. Visual Comput. Graphics,
28(1):400–410, 2022. doi: 10.1109/TVCG.2021.3114877

[97] S. Zeller, F. Samsel, and L. Bartram. Affective, Hand-Sculpted Glyph
Forms for Engaging and Expressive Scientific Visualization. In VISAP,
pp. 127–136. IEEE, 2022. doi: 10.1109/VISAP57411.2022.00025

[98] C. Zhu-Tian, Y. Su, Y. Wang, et al. MARVisT: Authoring Glyph-Based
Visualization in Mobile Augmented Reality. IEEE Trans. Visual Comput.
Graphics, 26(8):2645–2658, 2020. doi: 10.1109/TVCG.2019.2892415

https://doi.org/doi.org/10.1145/3377929.3389964
https://doi.org/doi.org/10.1145/3377929.3389964
https://doi.org/10.1109/TVCG.2012.271
https://doi.org/10.1109/TVCG.2013.225
https://doi.org/10.1007/978-3-319-58628-1_15
https://doi.org/10.1007/978-3-319-58628-1_15
https://doi.org/10.1109/TVCG.2017.2743939
https://doi.org/10.3390/info10100302
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1007/978-3-030-31321-0_14
https://doi.org/10.1109/TVCG.2023.3326520
https://doi.org/10.1145/2980179.298242
https://doi.org/10.1109/TVCG.2020.2968911
https://doi.org/10.1109/TVCG.2020.2968911
https://doi.org/10.1109/MCG.2007.139
https://doi.org/10.1109/MCG.2007.139
https://doi.org/10.1145/3359852.3359866
https://doi.org/10.1109/TVCG.2013.192
https://doi.org/10.1109/IV51561.2020.00047
https://doi.org/10.1109/IV51561.2020.00047
https://doi.org/10.48550/arXiv.2206.05061
https://doi.org/10.1109/TVCG.2020.2985923
https://doi.org/10.1109/TVCG.2014.2346291
https://doi.org/10.1109/CMV.2007.20
https://doi.org/10.1109/TVCG.2021.3114818
https://doi.org/10.1109/TVCG.2021.3114818
https://doi.org/10.1109/WHC.2005.68
https://doi.org/10.1109/TVCG.2015.2467271
https://doi.org/10.1016/j.cag.2011.01.011
https://doi.org/10.1109/INFVIS.2005.1532144
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1109/VISUAL.1996.567752
https://doi.org/10.1016/j.jvlc.2015.09.004
https://doi.org/10.1016/j.jvlc.2015.09.004
https://doi.org/10.1007/978-3-319-91376-6_10
https://doi.org/10.1016/j.cag.2020.08.007
https://doi.org/10.1109/TVCG.2009.128
https://doi.org/10.1016/j.bdr.2021.100251
https://doi.org/10.1109/TVCG.2020.3030476
https://doi.org/10.1109/TVCG.2022.3216919
https://doi.org/10.1109/TVCG.2017.2743998
https://doi.org/10.1007/s11432-009-0071-3
https://doi.org/10.1057/palgrave.ivs.9500025
https://doi.org/10.1057/palgrave.ivs.9500025
https://doi.org/10.1109/TVCG.2007.70589
http://arxiv.org/pdf/2010.04402
https://doi.org/10.1109/CVPR.2017.330
https://doi.org/10.1023/A:1013720231747
https://doi.org/10.1109/TVCG.2022.3209447
https://doi.org/10.1109/TVCG.2021.3114877
https://doi.org/10.1109/VISAP57411.2022.00025
https://doi.org/10.1109/TVCG.2019.2892415

	Introduction
	Background
	Design goals

	Related Work
	The path-based model
	Envelope
	Object Placement
	Data mapping

	Implementing the path model
	Case Studies
	Browser and mobile app usability evaluation
	Discussion and Conclusions

