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ABSTRACT 

Current theories of object recognition in human vision make different predictions about 

whether the recognition of complex, multi-part, objects should be influenced by shape 

information about surface depth orientation and curvature derived from stereo disparity. We 

examined this issue in five experiments using a recognition memory paradigm in which 

observers (N=134) memorised and then discriminated sets of 3D novel objects at trained and 

untrained viewpoints under either mono- or stereo viewing conditions. In order to explore the 

conditions under which stereo-defined shape information contributes to object recognition we 

systematically varied the difficulty of view generalisation by increasing the angular disparity 

between trained and untrained views. In one series of experiments objects were presented from 

either previously trained views or untrained views rotated (15˚, 30˚ or 60˚) along the same 

plane. In separate experiments we examined whether view generalisation effects interacted with 

the vertical or horizontal plane of object rotation across 40˚ viewpoint changes. The results 

showed robust viewpoint dependent performance costs: observers were more efficient in 

recognizing learned objects from trained relative to untrained views, and recognition was worse 

for extrapolated relative to interpolated untrained views. We also found that performance was 

enhanced by stereo viewing but only at larger angular disparities between trained and untrained 

views. These findings show that object recognition is not based solely on 2D image information 

but that it can be facilitated by shape information derived from stereo disparity. 

 

Word count: 234 words 
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The human visual system is remarkably adept at recognising three-dimensional (3D) 

objects across changes in viewpoint, although there is considerable evidence that recognition is 

not entirely viewpoint invariant (e.g., Arguin & Leek, 2003; Bülthoff & Edelman, 1992; Harris, 

Dux, Benito, & Leek, 2008; Hayward, 2003; Leek, Atherton, & Thierry, 2007; Tarr & Pinker, 

1990). Other work has shown that viewpoint dependency in recognition is influenced by a 

variety of factors including, for example, shape discriminability (e.g., Hayward & Williams, 

2000), complexity (e.g., Bethell-Fox & Shepard, 1988), object geometry (e.g., Leek & 

Johnston, 2006; Tarr & Pinker, 1990), familiarity (e.g., Leek, 1998a & 1998b) and the level of 

image classification required by the task (e.g., Hamm & McMullen, 1998).  

Of interest in the current study is the potential contribution to view generalisation of 

shape information derived from stereo disparity. Stereo disparity potentially provides useful 

information about shape that may facilitate view generalisation and recognition, including for 

example, surface orientation, surface curvature gradients and polarity, as well as 3D aspect ratio 

(Norman, Todd, & Phillips, 1995; Norman, Swindle, Jennings, Mullins, & Beers, 2009; 

Welchman, Deubelius, Conrad, Bülthoff, & Kourtzi, 2005; Wismeijer, Erkelens, Ee, & Wexler, 

2010).  However, it has been proposed that stereo disparity plays little, if any, role in the 

perception and recognition of object shape (Li, Pizlo, & Steinman, 2009; Li & Pizlo, 2011; 

Pizlo, 2010). For example, Pizlo and colleagues have suggested that 3D shape can be recovered 

from mono-ocular two-dimensional (2D) perceptual input alone when image reconstruction 

follows geometric simplicity constraints (e.g. Li, Pizlo, & Steinman, 2009; Li & Pizlo, 2011; 

Pizlo, 2010). Similarly, current appearance- or image-based models of recognition have 

proposed that view generalisation is accomplished via interpolation among viewpoint-specific 

templates that comprise solely 2D image features (e.g. Bülthoff & Edelman, 1992; Reisenhuber 

& Poggio, 1999; Serre, Oliva and Poggio, 2007). In contrast, a key assumption of structural 
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description models is that recognition involves the segmentation of complex objects into 

constituent 3D parts or shape primitives (e.g., Biederman 1987; Hummel & Stankiewicz, 1996; 

Marr & Nishihara, 1978; Leek, Reppa & Arguin, 2005; Leek, Reppa, Rodriguez & Arguin, 

2009). Part segmentation has been assumed to be supported by the recovery of local surface 

depth orientation and concave curvature minima which arise at part boundaries (Biederman, 

1987; Hoffman & Richards, 1984; Marr & Nishihara, 1978) – a hypothesis that is supported by 

a growing body of evidence highlighting the special functional status of concave curvature 

minima in shape perception (e.g., Cohen, Barenholtz, Singh & Feldman, 2005; Davitt, Cristino, 

Wong & Leek, 2014; Hoffman & Richards, 1984; Leek, Cristino, Conlan, Patterson, Rodriguez 

& Johnston, 2012; Lim & Leek., 2012). Thus, these contrasting theoretical models of shape 

representation make different predictions about the use of certain kinds of shape information 

from stereo disparity. Notably, structural description models, unlike 2D image-based models, 

predict that the recovery of information about local surface depth orientation and concave 

curvature minima from stereo input should facilitate the derivation of a 3D object model to 

support view generalisation during recognition1. 

Current studies investigating stereo effects on view generalisation and recognition 

provide an incomplete picture (Bennett & Vuong, 2006; Burke, Taubert, & Higman, 2007; 

Burke, 2005; Chan, Stevenson, Li, & Pizlo, 2006; Edelman & Bülthoff, 1990; Liu, Ward, & 

Young, 2006; Humphrey & Khan, 1992; Lee & Saunders, 2011; Pasqualotto & Hayward, 2009; 

Rock & DiVita, 1987). For example, Burke (2005) presented stereo images of deformed 

                                                      

1 We do not claim that stereo disparity provides the only source of shape information about local surface 

orientation and curvature. Indeed, cues such as shadow and shading gradients, texture and non-accidental 

properties of edge features that are computable from mono input could also be used to infer surface properties. 

However, surface depth orientation and part boundaries at surface intersections are enhanced under conditions of 

stereo viewing due to binocular disparity.  
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paperclips in a sequential matching task and reported reduced viewpoint costs when stereo 

information about object structure was available (see also Bennett & Vuong, 2006; Lee & 

Saunders, 2011). Similar results were earlier found by Edelman & Bülthoff (1992) also using 

‘bent paperclip’ and amoeba stimuli (see also Burke, 2005; Chan et al., 2006; Lee & Saunders, 

2011; Rock & DeVita, 1987). However, a limitation of studies using these types of stimuli is 

that the results are not readily generalizable as the stimuli cannot be decomposed into parts. 

Thus, they do not provide the appropriate conditions to test predictions about the potential role 

of stereo-defined cues to part segmentation in complex 3D objects. However, there are two 

reports of studies contrasting mono- vs. stereo viewing of multi-part object stimuli. Humphrey 

and Khan (1992, Exp 3) contrasted effects of viewpoint change between learning and test views 

for novel 3D clay objects under conditions of mono- and stereo-viewing (manipulated by 

viewing the actual 3D models in either mono- or binocular viewing through a shutter).  Training 

and test views differed by 40 or 80 degrees through rotation about a vertical axis perpendicular 

to the line of sight. Unfortunately, the results were equivocal. Overall they showed a clear 

advantage for the recognition of objects at trained views – indicating viewpoint-dependent 

performance. However, the effects of presentation mode (stereo, mono) were unclear. The 

results showed an advantage for mono-ocular viewing in response times, but the opposite 

pattern for accuracy. On the one hand, this could reflect a difference in the way in which shape 

information from stereo input is processed – where we might expect slower (but more accurate) 

processing due to the requirement for resolving stereo correspondence. Alternatively, as noted 

by Humphrey and Khan (1992, p. 186/187), it could simply reflect a strategic bias by observers 

to favour accuracy over speed with the stereo displays (i.e., a speed-accuracy trade-off). 

Unfortunately, it is not possible to distinguish between these two possibilities from the results 

presented by Humphreys and Khan (1992).  
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In a more recent study, Pasqualotto and Hayward (2009) contrasted mono versus stereo 

viewing of 3D computer-generated models of real-world objects in a sequential matching 

(rather than recognition) task. They found that when observers were required to match objects 

across large (180 degree) viewpoint differences stereo viewing produced a performance cost 

(in both RTs and accuracy). The cost was attributed to a mismatch at large angular disparities 

between the information computed from mono and stereo-input. This finding appears to 

challenge the prediction of parts-based models that stereo-defined shape information should 

facilitate view generalisation and object recognition. However, such a conclusion would be 

premature. In the first place the task involved sequential matching rather than recognition, 

which requires indexing a long-term memory representation of object shape. In addition, the 

absence of a stereo advantage for view generalisation may have arisen because observers were 

able to efficiently match familiar features of the objects across views from 2D input alone – 

particularly given that the stimuli were highly common ‘real-world’ objects. Indeed, if stereo-

disparity can potentially facilitate recognition by making explicit 3D image features (e.g., such 

as part-boundaries at regions of concave surface curvature minima), we might expect to only 

observe stereo effects when mono-ocular cues to shape alone are insufficient, or ambiguous. 

That is, a stereo advantage in view generalisation is more likely when shape equivalence cannot 

be determined on the basis of 2D image similarity. A key factor determining 2D image 

similarity is viewpoint disparity: 2D image similarity for any given object will be larger for 

small angular differences in viewpoint.  At the same time, the earlier work by Bülthoff and 

Edelman (1992) showed that effects of viewpoint disparity on recognition efficiency are non-

linear – in part because of familiarity: we are more familiar with some views of known objects 

than others. Notably, viewpoint costs in shape matching are not equivalent for horizontal and 
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vertical axis rotations in depth. Thus, potential effects of stereo disparity on view generalisation 

must also take into account the axis of depth rotation. 

Our goal in this paper was to address these limitations of previous studies in order to 

examine whether shape information derived from stereo disparity facilitates view generalisation 

and object recognition as predicted by parts-based structural description accounts. To control 

prior experience and familiarity with specific views our studies used a set of CAD generated 

surface rendered, solid, multi-part, novel objects. The complexity and part structure of the 

object set was carefully controlled. In addition, we used a recognition memory task that allowed 

us to examine how the availability of stereo information influences performance when 

observers must match a perceptual description of object shape to a long-term memory 

representation at increasing disparities between trained and test views. This also allowed us to 

contrast performance between horizontal and vertical axis rotations in depth. 

In a series of five experiments, observers were asked to memorise a subset of four-part 

novel objects from either mono or stereo visual displays. In a subsequent test phase they 

discriminated targets (previously learned objects) from visually similar distracters at either 

trained or novel viewpoints in either mono or stereo. In Experiment 1, we replicated previous 

studies by contrasting performance between mono or stereo displays across trained and 

untrained interpolated viewpoints around the horizontal plane. In Experiment 2a and 2b we 

examined whether stereo viewing effects were modulated by task difficulty. In these two 

experiments, trained and interpolated viewpoints were on the same axis while extrapolated 

views were on the orthogonal axis. In Experiment 2a, the trained viewpoints were in the 

horizontal axis while in Experiment 2b the trained viewpoints were on the vertical axis. In 

Experiments 3a and 3b we examined the boundary conditions for stereo viewing effects by 

reducing the angular disparity between trained and untrained views.  
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EXPERIMENT 1 

METHODS 

Participants 

Participants were 30 students (22 females age M= 20.73, SD= 1.96, one left handed) from 

Bangor University who took part in exchange for course and printer credits. All participants 

reported normal or corrected to normal vision and normal colour vision. Prior to the experiment 

participants were tested for normal stereoscopic vision. During this test, the participants were 

presented with a stereo anaglyph image and were asked to describe to the experimenter what 

they were seeing. The protocol was approved by the local Research Ethics and Governance 

Committee. Participation was voluntary and prior informed consent was obtained. All the 

participants tested were included in the analysis. 

 

Stimuli  

The stimulus set comprised 24 novel objects (see Figure 1), each consisting of a unique spatial 

configuration of four volumetric parts (see Leek et al., 2012).  
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Figure 1: Stimuli used throughout the experiments. The top row was used as targets while the other 

three rows were used as distractors. Please visit the online version of this Journal to view this figure in 

colour. 

 

The parts were uniquely defined by variation among non-accidental properties (NAPs) 

comprising: Edges (Straight vs. Curved), symmetry of the cross section, tapering (co-linearity) 

and aspect ratio (Biederman, 1987). For each stimulus a baseline ‘canonical’ three-quarter view 

was determined. The models were designed in Strata 3D CX software (Strata Inc, USA) then 

imported and rendered in Matlab (Mathworks Inc, USA) using custom code. Objects were 

rendered with a smooth surface and no texture cues in a yellow mustard colour (RGB:  227, 

190, 43) using a stereoscopic camera with an Inter-Pupillary Distance (IPD) of 67mm. Each 

rendered image pair were converted to a red-cyan anaglyph. Stimuli were scaled to have the 

same rendered size for the canonical viewpoint (X=0˚, Y=0˚, Z=0˚) sustaining on screen an 

average size of 15˚ by 15˚ and were displayed on a white background. 

 

Apparatus and Materials 

Stimulus presentation and data collection were performed with e-Prime v1.2 (Psychology 

Software Tools, USA) software.  Stimuli were presented on a CRT 22 inch monitor with a 

screen resolution of 1024 x 768 pixels at 100 Hz refresh rate. In each experiment a chin rest 

was used to stabilise the participant’s head at a 60 cm viewing distance and a standard USB 

keyboard was used for response collection.  

 

Design and procedure 

We used a 2 (Display: mono, stereo) x 2 (Viewpoint: trained, interpolated) mixed design with 

Display as the between-subjects factor. The study was divided in three phases; learning, 
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verification and test. In the learning phase (see Figure 2) the participants were instructed to 

memorise the shapes of 12 out of 24 novel 3D objects presented on the computer screen. Each 

trial started with a fixation cross in the centre of the monitor for 500ms, followed by blank 

screen for 500ms Inter-Stimulus Interval (ISI) and then the name of the object in that trial (i.e. 

Object 1, Object 2 etc.) for 2s. This was followed by an ISI for 500ms and then the object was 

displayed from the first viewpoint for 3s, an ISI of 500ms, the same object from the second 

viewpoint for 3s, ISI (500ms), the same object from the third viewpoint (3s), and then a blank 

screen for 500ms before the next trial began. This trial order was sequentially repeated three 

times to ensure each object and its associated object number was well learned for the 

verification task. 
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Figure 2: Main trial structure during the learning phase. Please visit the online version of this Journal 

to view this figure in colour. 

 

Following the learning phase, participants completed a short verification task with feedback 

after each trial to ensure they had learned the target object set and could recognise them. 

Participants were shown a fixation cross in the centre of the monitor display for 500ms, 

followed by an ISI for 500ms and then one of the 12 learned objects from one of the three 

trained viewpoints. The task was to indicate as accurately as possible the object identification 

number using the function keys. Following the response accuracy feedback (i.e. 

correct/incorrect) was displayed for 1s. The verification task started with 72 trials (12 objects 

x 3 viewpoints x 2 repetitions) and participants had an accuracy criterion of 80% which they 

had to achieve in order to continue to test phase.  If this criterion was not obtained the 

verification task was repeated to ensure participants would be able to correctly identify the 

target objects in the test phase. If participants did not reach an accuracy level of 80% after the 

verification stage they were asked to forgo the rest of the experiment.  

 The design of the test phase was similar to the verification task with the exceptions that 

no accuracy feedback was provided and participants had to decide whether the object displayed 

was one of the original trained objects (regardless of viewpoint changes) from the learning 

phase (target) or if it was previously unseen object (distractor). Responses were made using the 

‘K’ for target and ‘D’ for distractors keys. During the experimental session participants wore 

either a pair of cyan/cyan glasses for the mono viewing condition or red/cyan glasses for the 

stereo viewing condition (for both learning and test phases). The testing phase consisted of 576 

randomised trials (288 trained object trials: 12 objects * 6 viewpoints * 4 repetitions and 288 

untrained object trials: 12 objects * 6 viewpoints * 4 repetitions) in a single block.  

Analysis of Results 
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Trained and untrained object trials were analysed, signal detection theory sensitivity index’s d’ 

was used as the primary dependent measure (Brophy, 1986). Additionally analyses of RTs were 

also undertaken, but for ease of exposition are only reported where relevant. Response Times 

(RTs) were first trimmed, removing any trials with very fast (<180ms) or slow (>2500ms) 

responses and reported for the target trials only. Incorrect responses and RTs more than two 

standard deviations above and under the trimmed mean were classed as outliers and excluded 

from the reaction time analysis. The same criteria for pre-processing of the data were applied 

for all the reported studies. 

RESULTS 

Mean d’ is shown in Figure 3.  

 

Figure 3: Experiment 1 schematic rotations and mean performance (d’) as a function of display type 

(dark grey – 2D; light grey – 3D) and viewpoints (Trained X axis: -120º, 0º, 120º ;Interpolated X axis: 
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-60º, -180º, -60º). Error bars represent Standard Errors (SE). Please visit the online version of this 

Journal to view this figure in colour. 

 

A 2 (Display: Mono, stereo) x 2 (Viewpoint: trained, interpolated) mixed ANOVA on the d’ 

scores revealed a significant main effect of Viewpoint F (1, 28) =10.744, p= .003, ηp²= 0.277, 

a marginally significant effect of Display F (1, 28) =3.956, p= .056, ηp²= 0.124; but no 

interaction. Planned comparisons were performed using t-tests to contrast viewpoint effects for 

mono and stereo stimulus presentation. There was a significant difference for the Mono viewing 

condition between trained (M= 3.32, SE= 0.21) and interpolated views (M= 2.92, SE= 0.25; t 

(14) = 2.78, p= .015), but not for the Stereo display condition (trained M=3.76, SE = 0.17, 

interpolated views M=3.54, SE=0.16; t(14)=1.79, p=0.09) There was also a significant 

difference in the interpolation viewpoint condition between mono (M=2.92, SE= 0.25) and 

stereo viewing (M= 3.54, SE= 0.16) groups t (28) = -2.11, p= .004.  

Analyses of RTs 

The mean RTs (SE) across conditions are shown in Table 1. The same patterns of significant 

differences were found in the analyses of RTs as in the analyses of d’. A main viewpoint effect 

F (1, 28) = 6.059, p= .002, ηp² = 0.178 was found with no other main or interaction effects. 

Post-hoc analysis using a paired t-test showed again a difference in the Mono viewing condition 

where trained viewpoint RTs (M=952.03, SE= 57.53) where slower that interpolated 

(M=1005.53, SE = 58.74) viewpoints significantly t (14) = -2.64, p= .0019. This effect was not 

present during the stereo condition t(14)=-0.80, p=0.43.  

 

 

 

 



 STEREO-DISPARITY AND VIEW GENERALIZATION    15 

  

Table 1:  Experiment 1 mean Reaction Times (ms) and Standard Errors (ms)  

  Trained viewpoints Interpolated Viewpoints 

  2D 3D 2D 3D 

Exp1 RT M(ms) 952 890 1006 906 

 SE (ms) 58 26 59 28 

 

Discussion 

Experiment 1 showed that observers were more efficient at recognising objects from trained 

views over untrained interpolated views – replicating results from previous studies (Bülthoff & 

Edelman, 1992; Edelman & Bülthoff, 1992; Leek, 1998b; Tarr & Pinker, 1990; Wong & 

Hayward, 2005). In contrast, while there was only a weak main effect of the mono- vs. stereo 

display, planned comparisons showed higher sensitivity for stereo over mono presentation 

during view interpolation. This finding is consistent with the hypothesis that stereo-defined 

depth information can constrain view generalisation (that is, reduce uncertainty about shape 

equivalence) for solid, multi-part, objects. However, given the relatively weak effects of stereo 

vs. mono presentation (and the mixed results reported in previous studies), in Experiment 2 we 

examined whether stronger evidence for the use of depth cues derived from stereo disparity 

would be observed for harder discriminations between trained and untrained views.  In order to 

increase difficulty we included out-of-plane rotations requiring extrapolation from trained 

views along an orthogonal axis as well as adding extra distractors. This is motivated by prior 

evidence showing an advantage for view generalisation based on within-plane interpolation 

between trained views over out-of-plane extrapolation from trained views (e.g., Bülthoff & 

Edelman, 1992; Edelman & Bülthoff, 1992). 

 

EXPERIMENT 2 
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METHODS 

Participants 

50 students from Bangor University participated in this experiment in exchange of course or 

printer credits. None of the participants had taken part in Experiment 1. All participants were 

screened for normal stereo vision (see E1, above). Two participants were excluded from further 

analyses as their performance was at chance level when recognising objects from trained 

viewpoints. Experiments 2a and 2b included 24 participants each (2a: 16 females age M = 20.08, 

SD = 3.73, three left handed; 2b:18 females age M = 22.53, SD = 7.55).  The protocol had 

received approval from the local Research Ethics and Governance Committee. Participation 

was voluntary, and all participants gave prior informed consent.  

 

Stimuli apparatus and procedure 

The stimulus set was the same as in Experiment 1. Each stimulus was rendered from a different 

viewpoint each differing by 40 degrees around the horizontal and vertical axis (see figure 4). 

The object set for Experiments 2a and 2b consisted of the same 12 target objects as in E1 but 

with 36 distracters. We used the same apparatus as in Experiment 1.  

 

Design and Procedure  

We used a 2 (Display: mono, stereo) x 3 (Viewpoint: trained, interpolated, extrapolated) 

mixed design with Display as a between-subjects factor. For Experiment 2a (see Figure 4a) the 

trained viewpoints (-80 o, 0o; +80o) were rotated on the horizontal axis. In the test phase the 

interpolated viewpoints were rotated ±40o on the same horizontal axis falling within the trained 

viewpoints. Extrapolated viewpoints were rotated ±40o outside of the trained viewpoints on the 

vertical axis from the +80o location. For Experiment 2b (see Figure 4b) the trained viewpoints 

(-80 o, 0o; +80o) were rotated around the vertical axis. In the test phase the interpolated 



 STEREO-DISPARITY AND VIEW GENERALIZATION    17 

  

viewpoints were rotated ±40o on the same axis as the trained viewpoints (-40o; +40o). 

Extrapolated viewpoints were rotated orthogonally on the horizontal axis ±40o. We used the 

same paradigm as in experiment 1, where subjects had to learn 12 objects at 3 different 

viewpoints followed by a verification stage. The testing phase consisted of 504 randomized 

trials (252 trained object trials: 12 objects * 7 viewpoints * 3 repetitions and 288 untrained 

object trials: 36 objects * 7 viewpoints) in a single block.  

 

RESULTS 

Exp. 2a – Interpolated viewpoints along horizontal axis/Extrapolated vertical axis 

Mean d’ are shown in Figure 4a. A 2 (Display: mono, stereo) x 3 (Viewpoint: trained, 

interpolated, extrapolated) mixed ANOVA on the d’ scores showed significant main effects of 

Viewpoint, F (2, 52) = 53.382, p< .0001, ηp ²= 0.672, and Display, F (1, 26) = 4.947, p= .0035, 

ηp² = 0.160. There was no significant interaction. Planned comparisons using Bonferroni 

corrected t-tests showed significant differences for the mono display condition (Trained: M = 

3.24, SE= 0.29; Interpolated: M = 2.90, SE= 0.27; Extrapolated: M = 2.46, SE = 0.25) between 

all viewpoint comparisons (all ps < .002). The same pattern of effects was found in the stereo 

display condition (Trained: M= 3.94, SE= 0.24; Interpolated: M = 3.66, SE = 0.24; Extrapolated: 

M = 3.42, SE= 0.28) between all viewpoint comparisons (all ps < .002). Bonferroni corrected 

independent t-tests between stereo and mono viewing conditions showed a significant 

advantage for the stereo viewing group for both the interpolation t (26) = -2.113, p= .0044 and 

extrapolation conditions t (26) = -2.561, p = .0016.  

Analyses of RTs 

Mean RTs per condition are shown in Table 2. RT analyses showed a significant main effect of 

Viewpoint F (2, 52) = 30.340, p < .0001, ηp² = 0.539, but no other main effects, and no 



 STEREO-DISPARITY AND VIEW GENERALIZATION    18 

  

interaction. Bonferroni corrected post-hoc analyses using paired t-tests showed a significant 

difference in the mono viewing condition (Trained: M = 843.92, SE = 46.72; Interpolated: M = 

893.46, SE = 55.58; Extrapolated: M = 924.77, SE = 53.72) where trained viewpoints were 

recognised significantly faster than interpolated t (13) = -3.587, p = .0009 and extrapolated 

views t (13) = -5.428, p< .0001. In the stereo condition (Trained: M = 953.22, SE = 46.76; 

Interpolated: M = 981.66, SE = 53.11; Extrapolated: M =1022.98, SE =54.51), RTs to 

extrapolated viewpoints were significantly slower than the trained t (13) = -4.648, p= .0001 and 

interpolated views t (13) = -5.262, p< .0001. No other contrasts were significant. 

Table 2: Experiment 2a and 2b mean Reaction Times (ms) and Standard Errors (ms)  

 

  Trained viewpoints Interpolated Viewpoints Extrapolated Viewpoints 

  2D 3D 2D 3D 2D 3D 

Exp2a RT M(ms) 844 953 893 982 925 1023 

 SE (ms) 47 47 56 53 54 55 

        

Exp2b RT M(ms) 880 943 912 968 898 961 

 SE (ms) 59 35 59 38 65 35 
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Figure 4: Experiment 2a (left) and 2b (right) schematic rotations and mean performance (d’) as a 

function of display type (dark grey – 2D; light grey – 3D) and viewpoints (Exp2a: Trained X axis: -

80º, 0º, 80º ;Interpolated X Axis: -40º, 40º; Extrapolated Y axis: -40º, 40º - Exp2b: Trained Y axis: -

80º, 0º, 80º ;Interpolated Y Axis: -40º, 40º; Extrapolated X axis: -40º, 40º). Error bars represent 

Standard Errors (SE). Please visit the online version of this Journal to view this figure in colour. 

 

Exp. 2b – Interpolated viewpoints along vertical axis/Extrapolated horizontal axis 

Mean d’ are shown in Figure 4b. A 2 (Display: mono, stereo) x 3 (Viewpoint: trained, 

interpolated, extrapolated) mixed ANOVA on the d’ scores revealed a significant main effect 

of Viewpoint F (2, 44) = 26.204, p< .0001, ηp² = 0.544. There was also a significant main effect 

of Display with participants significantly better at recognising objects shown in stereo than 

mono F (1, 22) = 10.616,  p =.0004, ηp² = 0.325. No interaction effects were found. Bonferroni 

corrected post-hoc analyses by t-test showed significant differences for the mono display 

condition (Trained: M = 2.26, SE = 0.23; Interpolated: M = 1.87, SE = 0.19; Extrapolated: M = 

1.75, SE = 0.17) between the trained and interpolation viewpoints t (11) = 4.488, p = .0003, and 

between the trained and extrapolation viewpoints t (11) = 6.496, p < .0001. In the stereo display 

condition (Trained: M = 3.16, SE = 0.25; Interpolated: M = 2.98, SE = 0.24; Extrapolated: M = 

2.81, SE = 0.26), there was a significant difference between the extrapolation and the trained 

viewpoints t (11) = 3.601, p = .0012. 

Analysis of RTs 

Mean RTs per condition are shown in Table 2. There was a significant main effect of viewpoint, 

F (2, 44) = 4.479, p= .0017, ηp² = 0.169 but no other main effects, and no significant interaction. 

Post-hoc analyses comparing within and between factors showed no significant effects. 

 

 

Discussion 
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As in Experiment 1 we found a highly significant and robust effect of viewpoint in both the 

analyses of sensitivity and RTs. Participants were more efficient at recognising trained views, 

and least efficient with extrapolated views on an orthogonal axis – for both vertical and 

horizontal out-of-plane rotations. Overall, participants showed higher sensitivity when learning 

objects on rotations around the horizontal axis. Of most relevance to the current study was the 

finding that in both experiments we found a significant benefit for stereo presentation in the 

analysis of sensitivity – which was equivalent for interpolated and extrapolated untrained views. 

This pattern of results suggests that depth information derived from stereo disparity is computed 

by the visual system, and facilitates view generalisation –particularly when generalisation 

among trained and untrained views is difficult. We further tested this hypothesis in Experiment 

3 using relatively small angular disparities between trained and untrained interpolated and 

extrapolated views of 15° and 30 degrees° which were smaller than those used in either 

Experiment 1 (60°) or Experiments 2a and 2b (40°). We predicted that under these conditions 

view generalisation would not be influenced by the availability of stereo-defined depth cues.   
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EXPERIMENT 3 

METHODS 

Participants  

In this last experiment we tested 60 participants, four participants were excluded from further 

analyses as their performance was at chance level when recognising objects from trained 

viewpoints. Experiments 3a and 3b included 32 participants (11 females age M= 20.42, SD= 

2.41) and 24 participants (11 females age M= 24.43, SD= 5.33, one left handed) respectively. 

The protocol had received approval from the local Research Ethics and Governance Committee. 

Participation was voluntary, and all participants gave prior informed consent.  

 

Stimuli apparatus and procedure 

Stimuli, apparatus and procedure were the same as in Experiments 1 and 2. The angular 

disparity between trained and untrained viewpoints (see Figure 5) was 15˚ for Experiment 3a 

and 30˚ for Experiment 3b around horizontal (Y) axis.  

 

Design and Procedure  

Experiments 3a and 3b used the same 2 (Display: mono, stereo) x 3 (Viewpoint: trained, 

interpolated, extrapolated) mixed design as Experiment 2a and 2b. We uses the same stimuli 

than in the two previous experiment. In experiment 2a we used 12 target and 12 distractors 

while in experiment 3b 12 target and 36 distractors were used.   
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RESULTS 

Exp. 3a (view generalisation across 15˚ disparity) 

Mean d’ are shown in Figure 5a. A 2 (Display: mono, stereo) x 3 (Viewpoint: trained, 

interpolated, extrapolated) mixed ANOVA showed a main significant effect of viewpoint, F (2, 

44) = 3.998, p = .0025, ηp² = 0.154, but no effect of Display, and no interaction. Bonferroni 

corrected post-hoc analyses by t-test showed no significant differences for the mono display 

condition (Trained: M = 4.08, SE = 0.27; Interpolated: M = 4.09, SE = 0.26; Extrapolated: M = 

3.97, SE = 0.27). In the stereo display condition (Trained: M = 4.18, SE = 0.23; Interpolated: M 

= 4.27, SE = 0.19; Extrapolated: M = 3.99, SE = 0.22), there was a significant difference 

between the interpolation and the extrapolated viewpoints t (11) = 3.83, p = .008. Between 

subjects post-hoc analyses showed no significant effects. 

 

Analyses of RTs 

Mean RTs per condition are shown in Table 3. As with the analyses of d’, RTs showed a 

significant effect of viewpoint, F (2, 44) = 10.455, p < .0001, ηp² = 0.322 with no other main 

or interaction effects. Bonferroni corrected post-hoc analyses by t-test showed no significant 

differences for the mono display condition. In the stereo display condition there was a 

significant difference between the trained (M = 825.79, SE = 61.55) and the interpolated (M = 

849.91, SE = 62.88) viewpoints t (11) = -4.08, p = .005. Between subjects post-hoc analyses 

showed no significant effects. 
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Table 3: Experiment 3a and 3b mean Reaction Times (ms) and Standard Errors (ms)  

 

  Trained viewpoints Interpolated Viewpoints Extrapolated Viewpoints 

  2D 3D 2D 3D 2D 3D 

Exp3a RT M(ms) 970 826 1002 850 1055 893 

 SE (ms) 43 62 49 63 53 68 

        

Exp3b RT M(ms) 750 783 773 786 780 826 

 SE (ms) 21 32 20 32 19 34 

 

 

 

Figure 5: Experiment 3a (left) and 3b (right) schematic rotations and mean performance (d’) as a 

function of display type (dark grey – 2D; light grey – 3D) and viewpoints (Exp3a: Trained X axis: -

30º, 0º, 30º ;Interpolated X Axis: -15º, 15º; Extrapolated Y axis: -45º, 45º -- Exp3b: Trained X axis: -
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60º, 0º, 60º ;Interpolated X Axis: -30º, 30º; Extrapolated X axis: -90º, 90º). Error bars represent 

Standard Errors (SE). Please visit the online version of this Journal to view this figure in colour. 

 

Exp. 3b (view generalisation across 30˚ disparity) 

Mean d’ are shown in Figure 5b. A 2 (Display: mono, stereo) x 3 (Viewpoint: trained, 

interpolated, extrapolated) mixed ANOVA showed a main significant effect of viewpoint, F (2, 

60) = 27.198, p< .0001, ηp² = 0.476, but no effect of Display, and no interaction. No further 

analyses were conducted. Bonferroni corrected post-hoc analysis using a paired t-test showed 

a significant difference for the mono display condition (Trained: M = 3.21, SE = 0.21; 

Interpolated: M = 3.04, SE = 0.18; Extrapolated: M = 2.82, SE= 0.20) between the trained and 

extrapolated viewpoint t (15) = 3.700, p = .0006 as well as between the interpolated and 

extrapolated viewpoints t (15) = 2.804, p = 0.04. Similar effects were found in the stereo 

condition (Trained: M = 3.50, SE = 0.24; Interpolated: M = 3.39, SE = 0.23; Extrapolated: M = 

3.02, SE = 0.20) where accuracy is worst for the extrapolated viewpoint than the interpolated t 

(15) = 4.800, p < .0001 and trained viewpoint t (15) = 4.896, p < .0001. Between subjects post-

hoc analyses found no significant differences.  

 

Analyses of RTs 

Mean RTs per condition are shown in Table 3. Analyses of RTs showed a similar pattern 

with a main effect of viewpoint F (2, 60) = 22.393, p < .0001, ηp² = 0.427, but no effect of 

Display, and no interaction. Bonferroni corrected post-hoc analysis using a paired t-test showed 

a difference in the mono display condition (Trained: M = 749.88, SE = 20.73; Interpolated: M 

= 772.94, SE = 20.39; Extrapolated: M = 780.13, SE = 18.60) where trained viewpoint were 

recognised significantly faster than interpolated t (15) = -3.351, p = .0013 and extrapolated ones 

t (15) = -3.370, p= .0012. In the stereo display condition (Trained: M = 783.23, SE = 31.59; 
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Interpolated: M= 785.58, SE = 32.05; Extrapolated: M = 825.85, SE = 33.77), responses to the 

extrapolated viewpoints were significantly slower than the interpolated t (15) = -4.995, p < 

.0001 and trained viewpoints t (15) = -5.720, p < .0001. Between subjects post-hoc analyses 

found no significant differences. 

 

 

Discussion 

Experiments 3a and 3b showed that even at relatively small angular disparities between 

trained and untrained views of 15˚ and 30˚ we found significant time costs in view 

generalisation for both interpolated and extrapolated relative to trained views. In contrast, and 

unlike Experiments 1, 2a and 2b, we did not find an effect of display, showing that observers 

performed the task just as efficiently under mono and stereo viewing conditions.  This is 

consistent with the hypothesis that depth cues to shape derived from stereo disparity are 

computed when available, but only facilitate recognition when the task is made more difficult 

through greater angular disparity between views. In order to examine this further we 

conducted a meta-analysis of the data across all five experiments by using the learnt 

viewpoints as the baseline. 

 

Meta-Analysis: Generalisation effect modelling 

 

For this analysis we wanted to capture the degree of change in accuracy between the trained 

and untrained viewpoints across all five experiments by performing a regression analysis on the 

difference scores. View interpolation was expressed as the d’ percentage change between the 

trained and interpolated viewpoints, and view extrapolation as the d’ percentage change 

between the trained and extrapolated viewpoints. A negative interpolation effect of, for example 
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-25%, would mean that a participant is 25% worse at performing the recognition task when 

viewing an object from an interpolated view than from a trained viewpoint. This approach 

allowed us to compare the data across experiments. 

 

Figure 6: Meta-analysis across all 5 experiments. Circles indicate the 2D mean percentage accuracy 

change across participants either between the learnt and interpolated viewpoints on the right hand side 

or between the learnt and extrapolated viewpoints on the left hand side. Stars indicate mean percentage 

accuracy change in 3D. Light grey designates the 3D viewing condition; while dark grey indicate the 

2D viewing condition. The shaded areas are the bootstrapped Confidence Intervals (CI) computed over 

10000 permutations of the linear regression.  

 

Figure 6 shows the mean effects per experiment for the interpolated (5 studies) and extrapolated 

(4 studies) viewpoints as well as the best least squared fitted linear model passing through 0˚ 

(as the learning viewpoints where taken as the baseline). The regressions were performed using 
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all the 134 participants. The shaded regions are the bootstrapped Confidence Intervals (CI) 

computed over 10000 permutations for the simple linear regression (actual values reported in 

table 4).  

 

Table 4: Meta-analysis regression parameters. The 95% confidence intervals were computed using a 

10000 permutation bootstrapping procedure.  

 

 Interpolation Viewpoints Extrapolation Viewpoints 

 2D 3D 2D 3D 

B 0.239 0.103 0.548 0.339 

R2 0.639 0.415 0.760 0.852 

b 95% CI [0.165 0.296] [0.051 0.139] [0.416 0.632] [0.298 0.379] 

 

 

The regression slope b is an indicator of the viewpoint effect where a value close to 0 would 

indicate no viewpoint effect while a value close to one would indicate a very large effect. This 

analysis revealed several important results: (1) Participants are significantly more accurate 

when performing a recognition task while viewing the stimuli stereographically. This is true for 

both interpolated and extrapolated viewpoints (CI do not overlap). (2) The advantage for stereo 

viewing increases with difficulty – being greater for generalisation across large angular 

disparities than smaller disparities between trained and untrained views. (3) Recognition from 

extrapolated views was significantly harder than from interpolated views (CI do not overlap).  
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GENERAL DISCUSSION 

The main results of the study can be summarised as follows: (1) Experiment 1 showed 

an advantage in terms of both sensitivity and RTs for the recognition of solid multi-part objects 

at trained relative to  interpolated views differing by 60˚ in angular disparity around the 

horizontal rotation plane. Observers also showed an advantage in performance for stereo over 

mono displays for RTs (p = .004; sensitivity, p = .056). (2) In Experiments 2a and 2b we 

increased task difficulty by including both interpolated and orthogonal extrapolated untrained 

views differing by 40˚ in angular disparity from the trained view along either the vertical or 

horizontal axis. The results showed effects of viewpoint in both sensitivity and RTs, with 

observers showing least efficient performance for extrapolated relative to interpolated views 

regardless of rotation axis. Both experiments showed an advantage for stereo over mono 

displays in terms of sensitivity (p = .003 and p = .0004 respectively). (3) In Experiments 3a and 

3b we tested the boundary conditions for the stereo viewing advantage by reducing the difficulty 

of discriminations to 15˚ and 30˚ angular disparity between trained and untrained views. The 

results showed an advantage for trained over untrained views but no benefit for stereo viewing 

in either sensitivity or RTs. We conducted a correlation analysis to check for a speed/accuracy 

trade off across all the experiments. We found no significant correlation between sensitivity 

(d’) and reaction times for the mono condition r(187)=0.1457, p= 0.079 and for the stereo 

condition r(190)= -0.0132, p=0.85 across all the experiments. A meta-analysis of the data across 

all five studies confirmed the view generalisation effect and showed that the advantage for 

stereo viewing is modulated by the degree of angular disparity between trained and untrained 

views reflecting the ease of shape discrimination.   

These results provide new evidence about the effects of stereo disparity on view 

generalisation during object recognition, and about the conditions under which effects of stereo 
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are found. Stereo viewing enhances specific kinds of shape information about local surface 

depth orientation and curvature minima arising at part boundaries (Norman et al., 1995; 2009; 

Welchman et al., 2005; Wismeijer et al., 2010). We predicted that under structural description 

approaches which assume high-level part segmentation the availability of this information 

under conditions of stereo viewing should facilitate recognition and view generalisation (e.g., 

Biederman 1987; Hoffman & Richards, 1984; Hummel & Stankiewicz, 1996; Marr & 

Nishihara, 1978; Leek et al., 2005; Leek et al., 2009). In contrast, according to image-based 

models such as HMAX (Reisenhuber & Poggio, 1999; Serre et al., 2007) recognition across 

views is achieved via interpolation among stored 2D aspects. These models do not attribute 

special functional significance to 3D shape properties such as surface concavities at part 

boundaries that are enhanced by stereo viewing. The results show that – under some conditions, 

stereo viewing can facilitate view generalisation during object recognition. This finding is 

consistent with the predictions of structural description models that place emphasis on the 

important functional role of surface depth and curvature information for the representation of 

3D object shape. They challenge models that do not attribute functional significance to these 

kinds of image features (e.g., Bulthoff & Edelman, 1992; Chan et al., 2006; Li & Pizlo, 2011; 

Li, Pizlo & Steinman, 2009; Pizlo, 2008; Reisenhuber & Poggio, 1999; Serre et al., 2007).  

However, a further important finding was that the advantage for view generalisation 

from stereo viewing was only apparent at larger angular disparities between trained and novel 

views, and that the effect did not interact with axis of rotation. This suggests that shape 

information derived from stereo disparity may only facilitate object recognition over larger 

changes in viewpoint when 2D cues to shape equivalence become less reliable. One possibility 

is that shape information derived from stereo viewing is only used to facilitate view 

generalization when it provides additional useful information (or is only used when object 
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classification from monocular cues alone is ambiguous). Thus, there may be sufficient 

monocular image information to support view generalisation when the task is relatively easy to 

perform (e.g., across relatively small angular disparities between trained and untrained views – 

see Exp. 3) but that 3D shape information enhances performance when the task becomes more 

challenging – see Exps 1, 2a and 2b. More broadly, this can be understood in terms of optimal 

cue combination approaches to perception (e.g. Hillis, Watt, Landy, & Banks, 2004; Jacobs, 

2002; Knill & Saunders, 2003), and is also consistent with other proposals that recognition may 

involve both image-based and structural description representations (e.g., Foster & Gilson, 

2002; Hummel, 2013; Hummel & Stankiewicz, 1996).  

Finally, our findings add to previous work supporting a role for stereo-defined shape 

information in the perception of other classes of stimuli (Bennett & Vuong, 2006; Chan, 

Stevenson, Li & Pizlo, 2006; Edelman & Bülthoff, 1992; Burke, 2005; Burke et al., 2007; 

Humphrey & Khan, 1992; Lee & Saunders, 2011; Liu et al., 2006; Pasqualotto & Hayward, 

2009; Rock & DiVita, 1987). Interestingly, the observation of Pasqualotto & Hayward (2009) 

of a stereo disadvantage during view generalisation across large angular disparities suggests 

that, on some occasions, the integration of monocular and stereo-based cues to shape can, under 

some conditions, disrupt recognition. We did not find evidence for that in the current study. A 

key issue for future work will be to further elucidate the conditions under which stereo 

information is beneficial or detrimental to shape perception. 

In summary, this study examined whether shape information derived from stereo 

disparity influences recognition across viewpoints for solid, multi-part, 3D objects. Each study 

used a recognition memory paradigm in which observers memorised and then discriminated 

sets of 3D novel objects at trained and untrained interpolated and extrapolated viewpoints under 

either mono- or stereo viewing conditions.  Task difficulty was manipulated by varying the 
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magnitude of angular disparity between trained and untrained views, and by rotated around the 

horizontal and vertical axes. The results across all five studies including 134 participants 

showed robust viewpoint dependent performance costs: observers were more efficient in 

recognizing learned objects from trained relative to untrained views. In addition, performance 

was worse for extrapolated relative to interpolated untrained views. We also found evidence 

that viewpoint effects were reduced during stereo presentation – but only under conditions of 

relatively more difficult discrimination involving greater angular disparity between trained and 

untrained views. This pattern of results was confirmed in a meta-analysis of data across all five 

experiments. These findings show that, consistent with structural description models, object 

recognition in human vision is not based solely on 2D image information but that it can be 

facilitated by shape information derived from stereo disparity. 
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