A plea for standardized nomenclature of snake venom toxins
Hargreaves, A.D.; Mulley, J.F.

Toxicon

DOI: 10.1016/j.toxicon.2014.08.070

Published: 27/08/2014

Peer reviewed version

Dyfyniad o’r fersiwn a gyhoeddwyd / Citation for published version (APA):
A plea for standardized nomenclature of snake venom toxins

John F Mulley¹ and Adam D Hargreaves¹

1. School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, LL57 2UW

John Mulley – j.mulley@bangor.ac.uk
Adam Hargreaves - bspa1b@bangor.ac.uk
…they have all one language; and this they begin to do: and now nothing will be restrained from them, which they have imagined to do. Go to, let us go down, and there confound their language, that they may not understand one another’s speech.”

Genesis, Chapter 11, verses 6-7

In the book of Genesis a spiteful God replaces a single, unifying language with a diversity of different ones, removing at a stroke mankind’s ability to work together towards a common goal. We believe that the Tower of Babel myth has clear relevance to the snake venom literature, particularly to the nomenclature of snake venom toxins.

An established nomenclatural system for human genes, administered by the Human Genome Organisation (HUGO) Gene Nomenclature Committee (HGNC), has existed since 1979 (Shows et al., 1979) and similar systems also exist for mice (administered by the International Committee on Standardized Genetic Nomenclature for Mice) and zebrafish (administered by the Zebrafish Nomenclature Committee (ZNC)), as well as various other animal models. As a result, orthology, paralogy and the evolutionary relationships of these genes are clear for all to see. A nomenclatural committee was established by the International Society on Toxinology (IST) in 1992 after several exchanges in the ‘Letters to the Editor’ section of Toxicon in the early 1990’s (Aird, 1990, Kaiser, 1990, Kumar et al., 1990), and more recently there have been suggestions for rational nomenclatural systems in spiders (King et al., 2008), scorpions (Tytgat et al., 1999), sea anemones (Oliveira et al., 2012) and centipedes (Undheim et al., 2014). However, despite over 20 years of asking, a nomenclatural system for reptile toxins has still not been established.

The lack of widely-accepted, unifying standards for the nomenclature of snake venom toxins has resulted in huge diversity and disparity in the literature. In most cases the names assigned provide no insight into the evolutionary origins or relationships of the toxins, complicating comparative studies of venom composition, function or evolution both within and between species. For example, the similar sounding ophanin (accession AY181984, (Yamazaki et al.,
opharin (accession AY299475, Direct submission) and ohanin (accession DQ103590, (Pung et al., 2005)) from the king cobra (Ophiophagus hannah) are members of two different gene families – opharin and opharin are cysteine-rich secretory proteins (CRISPs) and ohanin is a vespryn-like gene. Conversely, the differently sounding pseutarin C from Pseudonaja textilis (accession AY260939, (Rao et al., 2004)) and trocarin D from Tropidechis carinatus (accession DQ017707, (Reza et al., 2007)) are both coagulation factor X genes and barietin from Bitis arietans (accession FJ554635, (Yamazaki et al., 2009)), apisin from Agkistrodon piscivorus (accession FJ554636, (Yamazaki et al., 2009)) and cratrin from Crotalus atrox (accession FJ554637, (Yamazaki et al., 2009)) are all vascular endothelial growth factor F (vegf-f) genes. The snake venom literature is replete with further examples, all of which obscure the relationships and functions of the toxins themselves – who would imagine that “cobra venom factor” which has been known since the late 19th century (Vogel, 1991) is part of the complement system from its name alone? Indeed, we have recently shown (Hargreaves et al., 2014a) that the complement c3 gene has in fact been duplicated in cobras, giving rise to cobra venom factor, which should more accurately be called complement c3b to reflect its true evolutionary history. We have previously suggested (Hargreaves et al., 2014b) that the “evolutionary characterization code” proposed by the Anolis Gene Nomenclature Committee (AGNC) for lizards of that genus (Kusumi et al., 2011) should be applied to snake venom toxins, and we reiterate that suggestion here. Full details of this classification code can be found in the relevant reference (Kusumi et al., 2011), but we provide a brief summary of some of the most relevant points below:

- Gene symbols should be written completely in lower case and in italics, for example “gene2”.
- Punctuation (dashes, periods, slashes) should not be used unless they are part of a human or mouse gene symbol.
Whenever orthology can be assigned, this should be present in the gene name, for example if the human gene symbol is "GENE2" then the reptile gene symbol would be "gene2".

- If an orthologous gene cannot be identified in any currently sequenced genome, a novel name may be selected by the investigators.
- Gene symbols should not start with letters to indicate genus/species.
- Gene duplicates should be assigned the suffix "a" or "b" to indicate them as being paralogs, e.g. gene2a and gene2b.

In addition, we would suggest that where toxins are known only from peptide or protein sequences, without accompanying characterized gene sequences, they should be named on the basis of similarity to existing toxins using the suffix “–like” or be acknowledged as uncharacterized toxins. We should not shy away from acknowledging our ignorance, nor from presenting challenges to future researchers. That being said, it seems likely that the availability of genomic and transcriptomic data from an ever-growing range of species (see next section) will go at least some way to facilitating the identification of toxins in proteomic studies.

With the recent publication of the whole genome sequences of two species of snake (the Burmese python *Python molurus bivittatus* and the king cobra, *Ophiophagus hannah* (Castoe et al., 2013,Vonk et al., 2013)), ongoing projects for several more (Castoe et al., 2011) and increasing amounts of transcriptomic data becoming available for a wide variety of species it is now more important than ever that these data are made as easily accessible, understandable and useable as possible. Whilst we appreciate the historical nature of the names of many snake venom toxins and do not argue that their sometimes rich history should be neglected, we must also consider the needs of the present and the future. The field of snake venom research should not distance itself from the rest of biology via the continued use of non-standardized nomenclature. If we want to facilitate collaboration with those from other research fields it is
important that we all speak the same language – only then can we work together to better understand the origins and evolution of snake venom; its composition and function and its possible utility in the development of novel therapeutics.

We note that Toxicon, unlike many other journals, does not currently suggest or enforce a standard nomenclature of genes reported in its papers. We therefore respectfully suggest that the Editors of this journal are well-placed to lead the way in the acquisition and development of a standardized nomenclatural system for snake venom toxins (and, indeed, for the toxins of other venomous animals). After all, what is the point of being an Editor if you can’t play God once in a while?

Adam D Hargreaves and John F Mulley
School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd, LL57 2UW, United Kingdom

References


