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Data-Driven Erbium-doped Fiber Amplifier Gain
Modeling Using Gaussian Process Regression

Calum Harvey, Graduate Student Member, IEEE, Md Saifuddin Faruk, Senior Member, IEEE, and Seb J. Savory,
Fellow, IEEE

Abstract—We propose a data-driven erbium-doped fiber am-
plifier (EDFA) gain model utilizing Gaussian process regression
(GPR). An additive Laplacian and radial-basis function kernel
is proposed for the GPR and was found to outperform deep
neural network (DNN) methods while additionally providing
prediction uncertainty. Performance is measured using mean
absolute error (MAE) averaged across five different EDFAs with
three manufacturers. The GPR achieves an MAE of 0.1 dB
using 30 training samples in contrast to the DNN that achieves
an MAE of 0.25 dB using 3000 training samples. Additionally,
we demonstrate that active learning can be used to improve
robustness and repeatability of convergence.

Index Terms—EDFA modeling, Gaussian process regression,
active learning.

I. INTRODUCTION

ITH the advancements in coherent transceivers and the
W subsequent improvements in metrology available from
optical links, there has been an increase in work discussing
how this new data can be used for measurement-informed
modeling and, potentially, digital twins [1]. Another key use
of this monitoring data is the introduction of software-defined
networks (SDN) which is an approach to network management
that enables dynamic reprogrammability for optimization of
metrics such as margin allocation. Optimal margin allocation
needs accurate quality of transmission (QoT) estimation tools
which in turn need highly accurate amplifier noise figure and
gain models.

Erbium-doped fiber amplifier (EDFA) gain modeling has
been explored using numerous different approaches range from
fully analytical to black box neural network methods. The
original equations proposed in [2] provide an accurate estimate
of gain, however, they require the use of internal parameters
that in practice are not easily accessible. To address this,
simplified analytical approaches such as the centre of mass
example shown in [3] have been proposed, however, at the
cost of decreased accuracy which significantly reduces their
usability.

Data-driven approaches can fill this gap by learning the
mapping between input and output powers without the need
for explicit knowledge of the internal parameters but with
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more accuracy than the simplified analytical models. Typical
approaches involving the use of artificial neural networks
have been widely explored for gain modeling [4]-[8] through
varying approaches such as training a model for each channel
[7] or incorporating the simplified analytical model as input
parameters [8]. These approaches, although provide good
results, typically require a very large quantity of training data
which can be costly to obtain for EDFA modeling. Addition-
ally, they provide a point estimate, meaning the confidence of
the prediction is unknown.

A solution to both these issues is to utilize probabilistic
methods, more specifically Gaussian process regression (GPR)
[9] which uses the properties of the Gaussian distribution to
provide uncertainty estimations. GPR has already been shown
to have significant benefits within optical communication [10],
however, has yet to be applied to EDFA modeling, an area
where measurement collection is particularly costly.

In this paper, we propose a data-driven EDFA model utiliz-
ing GPR to infer gain from any spectrum of channel dependent
input powers. Our GPR uses an additive radial-basis function
and Laplacian kernel to learn the relationship between input
and output. The resulting approach is shown to only require 30
training spectra to converge the optimal mean absolute error
(MAE) when tested on five distinct EDFA. Additionally, active
learning is shown to increase monotonicity of convergence,
therefore improving robustness, without reducing accuracy.

II. PROPOSED DATA-DRIVEN MODEL OF AN EDFA

Our data-driven model contains numerous elements func-
tioning together with the goal of providing an setup with the
ability to accommodate retraining. Our data collection setup
is shown in Fig 1 which consists of a laser source, wavelength
selective switch (WSS), and EDFA being monitored.

Measurement collection is controlled by a central controller
that interfaces with the individual components. Reconfigura-
tions are primarily made in the WSS with channel dependent
input and output powers being measured using power monitors
and written to a database.

A. Gaussian Processes

We utilize the GPR approach to infer the gain spectrum of
an EDFA given the channel dependent input power spectrum
while providing associated uncertainties relating to predic-
tions. GPR is a non-parametric probabilistic modeling method
that outputs Gaussian probability distributions instead of scalar
values, allowing for quantifiable uncertainty [9]. Typically,
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Fig. 1. Data retrieval and processing setup

GPR models are single output therefore an individual model
is trained for each channel.

Additionally, GPR is a kernel method and therefore allows
for the definition of a kernel function which allows us to
embed our knowledge on how we think the individual data
points should relate to each other.

There are two high level problems that need to be addressed
by the kernel. Firstly, since a channel can either be on’ or
’off’, there are two distinct states that the kernel needs to be
able to capture. Secondly, we know that input powers will
not have uniform influence over the gain of a single channel.
Therefore, we need to ensure that each inputs influence can
be adjusted.

Our kernel, shown in Eq. 1, addresses the first problem
by being an additive combination of two functions. The first
component is a radial-basis function (RBF) which performs
well for our main cluster of ’on’ channels and a Laplacian
function described by [11] which is robust to outliers [9] and
therefore identifies ’off” channels more effectively. By making
them additive, the value of the overall kernel will be large if
either of the constituent parts is large. Allowing us to ensure
similarity to correctly quantified in either of the two states.

The second can be resolved by ensuring the length scale
is dimension dependent instead of a single scalar value. By
making the length scale a d dimensional vector, the kernel
can train the values to give each input dimension a different
impact over the output of the model.

2
k(Az) = s*exp ((W) > + exp (_HleH> (1)
1 2

where Az = x; — x; with ; and z; denoting input vectors
being compared. There are three optimizable hyperparameters
in the kernel /; and [y being length scale of the respective
functions and s being the scaling factor of the RBF kernel.
Additionally, the length scale of the RBF kernel [; is made
dimension dependent has discussed above whereas s is left as
a scalar as ’off’ channels cannot benefit from the additional
complexity.

These hyperparameters are then optimized using the marigi-
nal log likelihood loss function using the Adam optimizer with

itialize with 2
training samples
dd lest
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Select most and least certain samples
using GPR prediction variance

No

- Make predictions on
all candidate samples

Yes

[ ]

Training
dataset
size =30

Fig. 2. Pool-based active learning approach using Gaussian processes to
determine confidence of model predictions

a learning rate of 0.1 and 2000 epochs. All data is normalized
using min-max scaling to ensure all values are between 0 and
1 before training is undertaken.

B. Active Learning

Pool-based active learning [12] is an approach used in sce-
narios where labeling training data is expensive but unlabeled
data is readily available. An example usage would be in image
recognition, where images are easily obtainable but labeling
the image content requires human input and therefore has
a cost associated. However, we utilize this approach for an
alternative purpose of distilling a large dataset into a small
subset without losing accuracy. The primary motivation for
this is the O(n?) time complexity of training the GPR, making
large training datasets incompatible with GPR. Contrastingly,
it has significantly lower inference complexity, meaning there
are few drawbacks to performing large numbers of predictions.

The process is illustrated in Fig. 2 where the aim of the
active learning process is to intelligently create the most data
efficient training dataset possible where every training sample
is adding some empirical value to the accuracy of the model.
Our heuristical approach involves utilizing the uncertainty
produced by the trained GPR model when predictions are
made, adding the most and least certain samples from our large

pool of 3000 unlabeled data points during each iteration.
Firstly, an initialization process needs to be developed to

allow an initial model to be training, with which to complete
the active learning. To ensure maximum usage of the active
learning process, we initialize with a single random sample
within our training dataset that is used to train a model.

After initialization, the active learning process follows the
following procedure. Each iteration the highest and lowest
variance samples are selected, labeled, and added into the
training dataset until the training dataset reaches a size of
100 samples. Each time new samples are added, the model
is retrained to incorporate the newly added training data.

It was found that convergence to a low error occurred sig-
nificantly before 100 samples, however, to ensure convergence
under any circumstance 100 was chosen as the termination
point.
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Fig. 3. Comparison of mean absolute error of EDFA gain modeling methods
simplified analytical, deep neural network, naive Gaussian processes, and
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ITI. RESULTS AND DISCUSSION

Our experiment utilizes measurements from two Manlight
EDFA, one FSCOM EDFA, and the published dataset found at
[13] which provides ROADM measurements for 8 preamp and
8 booster Lumentum EDFA at 15/18/21 dB fixed gain values.
By showing good performance over a range of manufacturers,
the generalizability of the modeling approach can be easily
shown. The experimental setup seen in Fig 1 was used for
the two Manlight and FSCOM EDFA whereas the published
dataset was written to the database manually to ensure the
retreival of data for the modeling was identical for each EDFA
independent of where the data came from.

In our measurements, each channel has a 33% chance of
being off for any given partial-load configuration, additionally,
channels that are "on’ are set to a random power of between
-22 and -18 dBm. The EDFA being modeled is set to a fixed
gain of 25 dB and a tilt of 0 dBm. A new configuration is
periodically generated and applied to the WSS through the
controller. Once a change is detected in the channel configu-
ration, measurements are taken pre and post amplification and
written to the database. The model then utilizes the database
to access the data for training the model.

For the published data, we use the 15 dB gain measure-
ments, again with 0 dB tilt, to validate performance at high
and low gain values.

In Fig. 3, we compare our GPR approach with and without
active learning to the simplified analytical and a deep neural
network approach similar to the architecture proposed in [4].
By using a more generic architecture instead of a highly opti-
mized approach as proposed in [13], we allow the flexibility to
adapt based on the number of channels being used as it differs
for our measurements. GPR without active learning consists
of adding random samples instead of using the active learning
approach.

Our GPR approaches significantly outperform the DNN and
analytical methods, converging with only 30 training samples
to an MAE of 0.05 dB and 0.04 dB for conventional GPR
and active learning GPR respectively. Although this is to be
expected due to the data efficiency of GPR, we found that even
if the training data provided to the DNN is increased by two
orders of magnitude to 3000 datapoints, the MAE is 0.3 dB
which is still significantly higher than the GPR approaches.

Spectrum predictions are shown in Fig. 4 for the partial and
fully loaded cases when trained on 30 samples. Each predicted
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Fig. 4. Gain spectrum predictions for (a) partially-loaded and (b) fully-loaded
configurations when trained on 30 samples
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Fig. 5. Average performance of naive and active learning approaches at

different training sample sizes over 5 runs. Inset shows increased variance
of Naive compared to active learning.

point is the mean of prediction from the GPR, however, due
to the variance being too small the associated uncertainty for

each prediction is not visible.
The key benefit of the active learning approach over the

typical GPR is the stability of its convergence that comes
from strategically picking our training dataset. Fig.5 shows the
average of the error over 5 unique runs of both naive and active
learning based GPR. We see significantly more variance in
error when samples are naively added compared to the active
learning. By using the naive approach, it is not guaranteed
that the model will decrease in error as the number of training
samples increases, whereas, the active learning can be seen
as monotonic and therefore provides greater guarantees of

performance.
The results shown in Table I show that the GPR approaches

have good performance on all EDFA that were tested, with



EDFA (Number of Channels) | DNN from [13] M = 258 x 10% | Simplified DNN M = 66 x 10° | GPR M = 135 x 10° | GPR w/AL M = 2 x 10°
Manlight 1 (16) 0.62 (-) 0.25 (-) 0.05 (0.26) 0.04 (0.26)

Manlight 2 (16) 0.77 () 042 () 0.08 (0.26) 0.08 (0.26)

FSCOM (16) 0.66 (-) 0.27 (O 0.07 (0.26) 0.07 (0.26)

Lumentum 1 from [13] (95) 0.17 () 0.20 () 0.30 (0.58) 0.18 (0.55)

Lumentum 2 from [13] (95) 0.16 (- 0.18 () 0.15 (1.09) 0.14 (0.98)

Average Error 0.34 0.25 0.13 0.10

TABLE I

MAE IN DECIBELS OF THE SIMPLIFIED DNN, DNN PROPOSED IN [13], GPR, AND GPR WITH ACTIVE LEARNING FOR FIVE DIFFERENT EDFA TRAINED
WITH 30 SAMPLES FOR GPR AND 3000 FOR ACTIVE LEARNING AND DNNS. M IS THE TOTAL NUMBER OF MULTIPLICATIONS REQUIRED FOR TRAINING.

slightly higher error on the published Lumentum dataset. This
could primarily be caused by the dataset being field fiber mea-
surements and subsequently more unpredictable. The average
error was found to be 0.1 dB and there was no degradation
in performance by using active learning. Additionally, due
to the usage of a probabilistic approach we can define a
standard deviation associated with each prediction we make.
This can therefore be used to quantify how certain we are of
a prediction, however, for the DNN this is not available.

The DNN proposed in [13] is also evaluated and although
it performs well with data that it was designed for. However,
performance is significantly degraded on our measurements
whereas the GPR manages to maintain a much lower average
error.

Furthermore, computational complexity for each approach
is calculated. For GPR, we use n? with active learning having
an additional factor ¢ denoting the number of iterations needed:
i(n®). Our DNN is computed by nt(ab + bc + cd + de + ef)
where ¢ is number of epochs and a,b,c,d,e,f are the number
of nodes in each layer.

Table I shows the results of these calculations. Both DNN
approaches are significantly more computationally complex
than the simple GPR. Although it is expected for the simple
GPR to be less complex, it is worth noting that even with the
added complexity of the active learning the complexity is still
less than the DNN.

IV. CONCLUSION

We have proposed and experimentally validated a data-
driven EDFA gain modeling approach utilizing Gaussian pro-
cesses on five separate EDFAs. We have reduced the number
of training data required to 30 samples while still having an
average MAE of 0.1 dB across all EDFA tested while provid-
ing prediction uncertainty. This is a significant improvement
on the DNN approach which averages an MAE of 0.25 dB
for 3000 training samples. Additionally, we show that active
learning can be incorporated to improve monotonicity of error
reduction in relation to number of training samples, improving
the robustness of the model training process. Our results show
that for EDFA gain modeling a Gaussian processes approach
is superior to neural network methods due to less training
samples needed and the inherent prediction uncerainty.

V. ACKNOWLEDGEMENTS

For the purpose of open access, the author has applied
a Creative Commons Attribution (CC BY) license to any

Author Accepted Manuscript version arising. Data under-
lying the results presented in this paper are available at
https://doi.org/10.17863/CAM.107402

REFERENCES

[1] M. S. Faruk and S. J. Savory, “Measurement informed models and digital
twins for optical fiber communication systems,” Journal of Lightwave
Technology, vol. 42, no. 3, pp. 1016-1030, 2024.

[2] A. A. M. Saleh, R. M. Jopson, J. D. Evankow, and J. Aspell, “Modeling
of gain in erbium-doped fiber amplifiers,” IEEE Photonics Technology
Letters, vol. 2, no. 10, pp. 714-717, 1990, publisher: Institute of
Electrical and Electronics Engineers (IEEE).

[3] K. Ishii, J. Kurumida, and S. Namiki, “Experimental investigation of
gain offset behavior of feedforward-controlled WDM AGC EDFA under
various dynamic wavelength allocations,” IEEE Photonics Journal,
vol. &, no. 1, pp. 1-13, 2016.

[4] Y. You, Z. Jiang, and C. Janz, “Machine learning-based EDFA gain
model,” in 2018 European Conference on Optical Communication
(ECOC). IEEE, 2018.

[5] F. D. Ros, U. C. d. Moura, and M. P. Yankov, “Machine learning-
based EDFA gain model generalizable to multiple physical devices,”
2020 European Conference on Optical Communications (ECOC), 2020,
_eprint: 2009.05326.

[6] A. Raj, Z. Wang, F. Slyne, T. Chen, D. Kilper, and M. Ruffini,
“Self-normalizing neural network, enabling one shot transfer learning
for modeling EDFA wavelength dependent gain.” [Online]. Available:
http://arxiv.org/abs/2308.02233

[71 S. Zhu, C. L. Gutterman, W. Mo, Y. Li, G. Zussman, and D. C.
Kilper, “Machine learning based prediction of erbium-doped fiber WDM
line amplifier gain spectra,” in 2018 European Conference on Optical
Communication (ECOC). IEEE, 2018.

[8] S.Zhu, C. Gutterman, A. D. Montiel, J. Yu, M. Ruffini, G. Zussman, and
D. Kilper, “Hybrid machine learning EDFA model,” in Optical Fiber
Communication Conference (OFC) 2020. Optica Publishing Group,
2020, p. T4B.4, journal Abbreviation: Optical Fiber Communication
Conference (OFC) 2020. [Online]. Available: https://opg.optica.org/
abstract.cfm?URI=OFC-2020-T4B.4

[9] C.E.Rasmussen, Gaussian processes for machine learning. MIT Press,
2006.

[10] J. W. Nevin, F. J. Vaquero-Caballero, D. J. Ives, and S. J. Savory,
“Physics-informed gaussian process regression for optical fiber com-
munication systems,” Journal of Lightwave Technology, vol. 39, no. 21,
pp. 6833-6844, 2021.
A. Feragen, F. Lauze, and S. Hauberg, “Geodesic exponential kernels:
When curvature and linearity conflict.”
B. Settles, “From theories to queries: Active learning in practice,” in
Active Learning and Experimental Design workshop In conjunction
with AISTATS 2010, ser. Proceedings of Machine Learning Research,
I. Guyon, G. Cawley, G. Dror, V. Lemaire, and A. Statnikov, Eds.,
vol. 16. Sardinia, Italy: PMLR, 16 May 2011, pp. 1-18. [Online].
Available: https://proceedings.mlr.press/v16/settles11a.html
[13] Z. Wang, D. C. Kilper, and T. Chen, “Open EDFA gain spectrum
dataset and its applications in data-driven EDFA gain modeling,”
Journal of Optical Communications and Networking, vol. 15, no. 9, pp.
588-599, 2023, conference Name: Journal of Optical Communications
and Networking. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/10210309

(11]

(12]




