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Abstract
Decision trees are a fundamental statistical learning tool for addressing classification and regression problems through a 
recursive partitioning approach that effectively accommodates numerical and categorical data [1, 2]. The Classification 
and regression tree (CART) algorithm underlies modern Boosting methodologies such as Gradient boosting machine 
(GBM), Extreme gradient boosting (XGBoost), and Light gradient boosting machine (LightGBM). However, the standard 
CART algorithm may require improvement due to its inability to learn from unlabeled data. This study proposes several 
modifications to incorporate test data into the training phase. Specifically, we introduce a method based on Graph-based semi-
supervised learning called “Distance-based Weighting,” which calculates and removes irrelevant records from the training 
set to accelerate the training process and improve performance. We present Semi-supervised classification and regression 
tree (Semi-Cart), a new implementation of CART that constructs a decision tree using weighted training data. We evaluated 
its performance on thirteen datasets from various domains. Our results demonstrate that Semi-Cart outperforms standard 
CART methods and contributes to statistical learning.

Keywords Decision Trees · Semi-Supervised · CART  · Generalization · Semi-CART  · Distance-based Weighting

1 Introduction

Supervised Learning algorithms have proven effective in 
significant labeled data scenarios. Conversely, Semi-Super-
vised Learning algorithms have exhibited a superior ability 
to generate highly-accurate predictions due to utilizing both 
labeled and unlabeled data sets. A crucial issue in semi-
supervised learning algorithms is effectively utilizing the 
unlabeled data during the training phase. Even though labe-
ling data incurs prohibitively high costs, is time-intensive, 
or is infeasible, semi-supervised learning presents a consid-
erable advantage over supervised learning due to the sig-
nificantly greater access to unlabeled data. It allows for an 
efficient and cost-effective data acquisition method, making 
it a preferred choice in varied scenarios. Semi-supervised 

learning has introduced several algorithms, such as Self-
training [3], co-training [4], Pseudo-labeling [5], and Label 
Propagation [6]. Self-training is a widely used method in 
semi-supervised learning by iteratively assigning pseudo 
labels to unlabeled samples. It is used to mitigate the require-
ment for labeled data, which can be time-consuming and 
labor-exhaustive to obtain practical tasks [7]. Co-training 
is a framework for semi-supervised learning that extends 
from self-training. It works by training two classifiers sepa-
rately on different views of the data and using the predic-
tions of either classifier on unlabeled instances to augment 
the training set of the other [4]. Pseudo-labeling is a general 
approach to SSL1 that does not rely on domain-specific data 
augmentations. It generates hard pseudo-labels for unlabeled 
data and uses them as accurate labels. However, in its origi-
nal formulation, pseudo-labeling performs relatively poorly 
due to erroneous high-confidence predictions from poorly 
calibrated models; these predictions generate many incorrect 
pseudo-labels, leading to noisy training [8]. Label Propaga-
tion is a widely used graph-based approach to SSL. It works 
by constructing a nearest neighbor graph of the dataset and 
propagating labels along the data manifold. Many varia-
tions of label propagation algorithms have been developed, 
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focusing mainly on constructing the similarity matrix and 
integrating label propagation with other methods [6].

Figure 1 depicts the dataset used for supervised and 
semi-supervised learning algorithms. Figure 1(a) shows the 
training dataset used for supervised learning algorithms, 
representing a relatively small number of points. In con-
trast, Fig. 1(b) displays the labeled and unlabeled points, 
illuminating the potential use of semi-supervised algorithms. 
Semi-supervised learning methods, including self-training, 
co-training, Moreover pseudo-labeling, rely on datasets sim-
ilar to that depicted in Fig. 1(b). Utilizing both labeled and 
unlabeled data, semi-supervised learning techniques offer an 
advantageous approach for training models by taking advan-
tage of a larger, combined pool of labeled and unlabeled data 
points unavailable during supervised training approaches. At 
its core, semi-supervised learning capitalizes on the avail-
ability of labeled and unlabeled data, thereby enhancing the 
accuracy of the developed models relative to those that only 
rely upon labeled data.

Decision trees are commonly used and effective methods 
for classifying statistical data in machine learning. Due to 
their capability of representing complex decision-making 
processes easily and understandably, decision trees have 
gained popularity and been broadly adopted in various 
domains, including finance, healthcare, and social sciences. 
Multiple decision tree algorithms have been developed for 
constructing decision trees, including ID3,2 C4.5, C5, and 
CART,3 which is the algorithm that we focused on in our 
methodology. The CART algorithm uses the GINI Index 
method to select the best feature and value in each step of 
building a tree; The GINI index measures the impurity of a 
set of data. It selects the feature and value that split the data 
most effectively [9]. The research introduces the Distance-
based Weighting method, which proposed calculating the 
training row weight by computing its distance from the 
test dataset and removing unsalvageable training rows. The 
objective is to use high-relevance, high-quality data for 

model training. We drew inspiration from semi-supervised 
algorithms and subsequently proposed a new algorithm for 
constructing a tree utilizing CART, incorporating calculated 
weights. The study illustrates that the proposed method can 
effectively enhance the CART algorithm’s accuracy.

We introduce Semi-CART, a new algorithm for 
constructing decision trees based on CART’s fundamental 
principles. Semi-CART utilizes a new Gini index equation 
during the training process to use calculated weights, 
allowing for improved feature and value splitting. Notably, 
Semi-CART outperforms standard CART in terms of 
accuracy by utilizing better candidates for splitting and 
predicting unseen datasets. The Semi-Cart is evaluated 
on thirteen different datasets of various fields. The 
experimental results demonstrate the superior performance 
of the proposed method compared to other state-of-the-art 
algorithms.

The subsequent sections of this paper are structured in 
the following manner. Section  2 highlights related works, 
including other approaches for Semi-Supervised learning 
and decision tree algorithms. Section   3 introduces the 
proposed method, including a detailed description of the 
Distance-based Weighting algorithm, the new Gini index 
equation, and the Semi-Cart algorithm. Section  4 describes 
the experimental results, including the datasets and 
evaluation metrics. Section  5 briefly discusses future works, 
including the possible extension of the proposed method to 
other machine learning algorithms. Section  6 concludes the 
paper with discussions of the contributions and limitations 
of the proposed method.

2  Related works

We conduct a comprehensive literature review on decision 
trees and semi-supervised learning techniques. We 
emphasize highlighting the importance of these concepts in 
developing and refining our proposed algorithms, namely 
Distance-based Weighting and SemiCart, as they serve as 
the fundamental principles underlying these approaches.

Fig. 1  Training with Labeled 
and Non-Labeled data

(a) Labeled Data (b) Labeled and Non-Labeled Data

2 Iterative Dichotomiser 3.
3 Classification and Regression Tree algorithm.
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2.1  Decision trees

Decision trees have been used in machine learning for sev-
eral decades and have roots in various fields, such as math-
ematics and philosophy. Morgan and Sonquist in paper 
“Problems in the analysis of survey data, and a proposal” 
introduced decision trees for machine learning in 1963, 
Their premise was founded on the notion that decision trees 
can aid in identifying the critical factors influencing a spe-
cific outcome and subsequently employ this knowledge in 
forecasting future events [10]. Figure  2 illustrates the pro-
cess for constructing a tree data structure using the Tree 
Builder algorithm. The algorithm receives the dataset as 
input and generates a tree structure from the root node to 
the leaf nodes. Each leaf node corresponds to a particular 
value that can be utilized for making predictions.

Decision tree algorithms are commonly used in machine 
learning for statistical data classification and regression. 
These algorithms represent models in a tree structure, where 
each node in the tree represents a decision or a test on a 
particular attribute, and the edges represent the outcomes of 

those tests. The tree structure allows for the straightforward 
representation of complex decision-making processes, mak-
ing decision trees popular in various domains. Decision trees 
can handle numerical and categorical data, making them 
versatile tools for classification tasks. Decision tree classi-
fication is based on decision tree induction, which involves 
learning decision trees from class-labeled training data. A 
decision tree is represented as a graphical tree structure in 
which each outcome of a test and each leaf node (or terminal 
node) holds a class label. A simple decision tree to detect 
high risk and not a high risk is depicted in Figure  3 by ask-
ing two questions, the first one is age, and the second one is 
doing exercise.

Quinlan’s ID3 algorithm, published in 1986, is considered 
one of the earliest and most popular decision tree algorithms. 
The ID3 algorithm recursively splits the dataset based on the 
attribute that provides the maximum information gain, which 
is calculated using the entropy measure. The resulting deci-
sion tree can be used for classification and can also provide 
insights into the most important attributes of the classifi-
cation task [11]. In the paper “Decision Tree Induction: A 

Fig. 2  Dataset to tree structure

Fig. 3  Simple binary decision 
tree
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Comparative Study of ID3, C4.5, and CART”, The authors 
evaluated the algorithms based on accuracy, tree size, and 
computational time on datasets from the UCI Machine 
Learning Repository.4 They found that their performance 
varied depending on the dataset characteristics. While ID3 
outperformed C4.5 and CART for some datasets, C4.5 or 
CART was the better choice for others. The authors found 
that C4.5 produced smaller trees than ID3 and CART, which 
may benefit interpretability and efficiency. CART was the 
fastest algorithm in terms of computational time. The study 
also evaluated the effectiveness of different splitting criteria 
and found that information gain was the most effective for all 
three algorithms, although the gain ratio performed similarly 
for C4.5. The authors noted that the performance of these 
algorithms depends on the dataset and problem character-
istics [9]. As shown in Fig.  4, the algorithms employed for 
constructing decision trees can handle multiple data types. 
The ID3 algorithm is designed to work with categorical 
datasets, whereas the C4.5 algorithm can work with both 
continuous and categorical datasets [2]. On the other hand, 
CART can handle nominal attribute datasets, as well as con-
tinuous datasets with categorical labels to generate decision 
trees [12].

2.2  CART 

The Classification and Regression Trees (CART) algorithm, 
first proposed by Leo Breiman in 1984, is a powerful tool 
for developing decision trees to handle both categorical 
and numerical data. In the realm of machine learning 
problems, classification stands as a significant concern. 

Calculating the most appropriate candidate for splitting 
data into decision trees is crucial. The CART algorithm 
uses the statistical measures of Gini impurity and entropy 
to construct a decision tree. These approaches assist in 
identifying the most appropriate node splits to be used in 
building the tree. Specifically, the CART algorithm uses the 
Gini Index equation to construct a decision tree, as shown 
in Eq.  1. The GINI Index Eq.  1 measures the impurity 
of a dataset, thereby enabling the selection of the optimal 
candidate for splitting. In Eq.  1, “pi” denotes the probability 
of rows sharing the same label. For instance, in 3/8, “three” 
represents three rows with the same label, divided by the 
total count of rows. The binary trees produced by the 
CART algorithm exhibit several prominent features, such as 
supporting boosting, pruning, and average speed. Breiman, 
the founder of the CART algorithm, emphasized that “a 
key criterion for a good classification procedure is that it 
not only produces accurate classifiers (within the limits of 
the data) but also provides insight and understanding of the 
predictive structure of the data [13].

The standard CART algorithm is a widely used decision 
tree tool, popular due to its ability to handle missing values 
present in datasets efficiently. However, a drawback of CART 
is its instability, which results in minor modifications in 
data leading to significant changes in the resultant decision 
tree [14]. In response to the instability issue, Guolin Ke 
introduced two novel techniques, Gradient-based One-Side 
Sampling (GOSS) and Exclusive Feature Bundling (EFB), 
in the LightGBM paper. GOSS disregards a significant 
proportion of data instances with low gradients and only uses 
the remaining samples to calculate the information gain [15]. 
Our proposed methodology leverages the concept of GOSS 
and introduces the Distance-based Weighting technique to 
eliminate redundant rows from training data, as discussed 
in Sect.  3. The CART algorithm follows several steps in 
creating a decision tree model. Initially, the dataset is split 
into two subsets—the training dataset for building the tree 
and the testing dataset for considering model performance. 
Next, the algorithm selects the optimal feature to split the 
dataset based on the GINI index. This process is carried 
out recursively on the resulting subsets until a stopping 
criterion, like the maximum depth or the minimum number 
of samples for splitting a node, is met. The decision tree is 
then pruned to enhance performance by removing branches 
with low accuracy contributions. Finally, the decision tree 
model predicts class labels or continuous.

The CART is popular in boosting algorithms to construct 
weak learners. Boosted Trees is a machine learning method 
that combines several decision trees sequentially, with each 

(1)Gini(p) = 1 −

N
∑

i=1

p2i

Fig. 4  Methodology of decision trees

4 https:// archi ve. ics. uci. edu/.

https://archive.ics.uci.edu/
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tree considered a weak learner [16]. Similarly, XGBoost, 
a widely adopted algorithm, uses CART to create decision 
trees [17]. LightGBM, developed by Microsoft Research, 
also relies on CART to produce weak learners [15]. The 
adaptability of the CART algorithm and its ability to support 
boosting techniques contribute to its popularity among 
machine learning specialists. Boosting is an ensemble 
method that blends weak and strong learners to achieve 
greater accuracy, as emphasized in [15].

2.3  Semi‑supervised

Semi-supervised learning is a machine learning technique 
class that addresses scenarios where labeled data is limited. 
In contrast, a significant amount of unlabeled data is 
available. In some scenarios, acquiring labeled data for 
supervised learning models can be demanding and resource-
intensive. Researchers have developed SSL methodologies 
to address limitations that leverage labeled and non-labeled 
data to improve model performance. By integrating both 
data types, the resultant model can make more accurate 
predictions, especially when dealing with prediction tasks 
that do not have enough labeled training data. SSL is a 
regularization technique that leverages the information 
inherent in unmarked data. The goal of SSL is to minimize 
the risk of overfitting, which occurs when the machine 
learning model is excessively intricate and adequately fits the 
training data. Such scenarios often lead to underperformance 
when presented with new data [18]. Incorporating a small 
set of labeled data alongside a larger set of unlabeled data 
during machine learning model training has enhanced test 
accuracy. This approach is advantageous because it requires 
fewer labeled data than Temporal Ensembling [19]. Various 
approaches are employed within semi-supervised learning, 
such as Self-training, Co-Training, and Graph-Based 
methods, with the field continuously advancing through 
developing novel techniques.

Self-training is a machine learning technique that is 
widely employed in semi-supervised learning. This approach 
utilizes labeled data to generate a model capable of assigning 
a label to unlabeled data. The self-training method trains a 
model with a small set of labeled data. The trained model 
is then applied to label the remaining unlabeled data. The 
new labeled data is added to the labeled data set, expanding 
the dataset for the next iteration. The iterative procedure is 
executed repetitively until a desirable degree of precision 
is attained. However, over-relying on self-directed learning 
can limit the model’s effectiveness, such as the possibility 
of error propagation and the assumption that the model’s 
predictions on the unlabeled data are consistently precise. 
These limitations may compromise the model’s overall 
performance and impede its ability to infer accurate 
predictions. Nevertheless, self-training remains an essential 

technique in semi-supervised learning, particularly in 
cases where labeled data is scarce and expensive. These 
limitations and benefits of self-training are well documented 
in the literature, as highlighted in [20].

Co-training is a semi-supervised learning technique 
that involves training two separate models on different 
data views, each using a small amount of labeled data and 
then unlabeled data to iteratively improve the models’ 
performance by cross-validating each other’s predictions. 
The approach assumes that each view of the data is 
conditionally independent given the class labels, which 
allows the models to learn from each other and reduce the 
need for labeled data [21]. Co-training is a popular technique 
employed in semi-supervised learning methods. While it is 
a useful approach, there may be better fits for some data or 
learning task types. The careful selection of training sets and 
views is critical to the success of this method.

Graph-based methods constitute a popular semi-
supervised learning technique whereby the data structure 
of a graph is harnessed to propagate labels from labeled 
data points to unlabeled ones. By constructing a graph with 
data points represented as nodes and edges connecting 
similar data points, the graph-based methods utilize 
similarity metrics, such as Euclidean distance or cosine 
similarity, to assign weights to the edges. In practice, the 
labeled data points function to initialize labels of the nodes, 
while the labels of unlabeled data points are determined 
through label propagation. Laplacian regularization and 
label propagation are some common graph-based methods. 
The former involves adding a regularization term to the 
learning objective to penalize estimates that differ from the 
suppositions of the graph structure. The latter utilizes the 
Laplacian matrix of the graph to smooth the labels across 
the graph. Formulating the labels of unlabeled data points 
entails solving a linear system comprising the Laplacian 
matrix and the labels of the labeled data points. Nonetheless, 
the effectiveness of these methods largely depends on the 
quality of graph connectivity and the similarity metric 
adopted. Therefore, graph construction and parameter 
adaptation require careful attention to attain desirable 
outcomes [22, 23]. Inspired by the Graph-based methods, 
we developed a distance-based weights method to compute 
weights and eliminate noisy training instances.

2.4  Semi‑supervised decision trees

Decision tree algorithms such as ID3, C4.5, and the CART 
are supervised machine learning techniques that rely on 
labeled data for learning and prediction. However, limited 
labeled datasets can hamper their performance. Combining 
decision trees with semi-supervised learning strategies has 
been proposed to enhance performance and mitigate this 
difficulty. Integrating semi-supervised learning methods can 
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improve the decision tree model’s performance by leveraging 
the untapped information within the unlabeled data. These 
approaches provide improved classification power and gen-
eralization compared to rigidly supervised methods.

The authors of “Semi-supervised Self-training for 
decision tree classifiers” propose a novel methodology to 
enhance decision tree classification accuracy in cases where 
labeled data is scarce. This strategy integrates semi-super-
vised techniques with self-training to employ the informa-
tion in a substantial amount of unlabeled data to improve the 
classifier’s classification accuracy. The self-training algo-
rithm is utilized iteratively to add only the most confident 
predictions of the decision tree classifier to the labeled data-
set, consequently amplifying the size of the labeled dataset 
and overall accuracy of the decision tree classifier. Assess-
ments of this model were conducted on various datasets, and 
results demonstrated that the semi-supervised self-training 
methodology significantly enhances accuracy compared to 
the standard supervised approach. Specifically, the proposed 
method achieved an average accuracy improvement of 6.3% 
on the tested datasets. In summary, this research provides 
a contemporary approach to augment decision tree classi-
fier accuracy when only a limited amount of labeled data is 
present. The proposed self-training method combines the 
advantages of semi-supervised techniques with the iterative 
self-training algorithm, enhancing the classification accu-
racy of decision tree models [24]. In our research, the pro-
posed Semi-CART algorithm employs a novel approach by 
integrating weights derived from test data into the training 
set, significantly improving the model’s performance. This 
methodology strategically refrains from utilizing unreliable 
predicted labels for training, ensuring that the model’s gen-
eralization capabilities are independent of label prediction 
accuracy.

The authors of “Ensemble of decision tree reveals 
potential miRNA-disease associations” propose a semi-
supervised learning approach to predict potential miRNA-
disease associations. They address the limitations of 
traditional supervised learning methods, which require 
a great deal of labeled data that is often costly and time-
consuming. To overcome this limitation, the authors 
introduce semi-supervised learning methods that harness 
labeled and unlabeled data to improve prediction accuracy. 
Their technique involves partitioning the feature space into 
multiple subspaces Using the random subspace method. 
They assemble a decision tree for each subspace utilizing 
labeled and unlabeled data, then aggregate the decision trees 
into an ensemble via majority voting on their predictions. To 
tackle the class imbalance problem, the authors incorporate 
an oversampling technique known as the “Synthetic 
Minority Over-sampling Technique” (SMOTE). The authors 
evaluate their approach using a miRNA-disease association 
dataset and compare it with several state-of-the-art methods. 

The results show that their ensemble of decision trees 
outperforms all the other ways in terms of AUC, F1-score, 
and precision-recall curve. Overall, the paper demonstrates 
the effectiveness of using SSL in combination with ensemble 
learning for predicting miRNA-disease associations [25]. 
In “Ensemble of Decision Trees Reveals Potential miRNA-
Disease Associations,” the study highlights that prediction 
accuracy is closely linked to input data quality, with 
incomplete or biased data leading to potential inaccuracies. 
In contrast, our Semi-CART method’s performance has been 
rigorously tested across diverse datasets featuring varying 
label ratios to validate its robustness and accuracy.

Kim, Kyoungok introduces, in the paper titled “A 
Hybrid Classification Algorithm by Subspace Partitioning 
through Semi-supervised Decision Tree,” a new algorithm 
that combines the strengths of decision trees and subspace 
partitioning techniques in a semi-supervised manner. The 
proposed approach involves constructing a decision tree 
using the labeled data sets. Based on the obtained decision 
tree, the algorithm proceeds to partition the unlabeled data 
into appropriate subspaces. The resulting subspaces are 
classified by applying subspace partitioning methods such as 
k-NN or SVM, utilizing the respective labeled and unlabeled 
data sets. The study’s findings reveal that the presented 
algorithm surpasses traditional decision tree classifiers 
and semi-supervised algorithms, such as self-training and 
co-training, in terms of performance. Furthermore, the 
research demonstrates that the proposed algorithm exhibits 
a remarkable impact, particularly when labeled data is 
scarce and the abundance of unlabeled data points is high 
[26]. In the study “A Hybrid Classification Algorithm by 
Subspace Partitioning through Semi-supervised Decision 
Tree,” a critical limitation is identified in the traditional 
decision tree algorithm’s capacity for subspace partitioning, 
which often results in subsets lacking uniform structural or 
topological properties. Our proposed methodology diverges 
from conventional space partitioning techniques instead of 
utilizing weights calculated from the training set to the test 
set. This innovative approach, coupled with a comprehensive 
array of distance measurement techniques, is specifically 
designed to rectify these identified shortcomings, thereby 
significantly enhancing the overall efficacy of the model.

The research paper “Fast Semi-Supervised Self-Training 
Algorithm Based on Data Editing” introduces an innovative 
algorithm within semi-supervised learning, a technique that 
integrates labeled and unlabeled data for training purposes. 
This study details the development of a rapid self-training 
algorithm, which employs data editing to enhance the 
quality of high-confidence samples. Drawing inspiration 
from the Ball-k-means algorithm, it introduces a ball-cluster 
partitioning and editing method. A notable aspect of this 
algorithm is its linear time complexity relative to the sample 
size. Comprehensive experimental evaluations conducted 
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on 20 benchmark datasets demonstrate that this algorithm 
exhibits expedited processing speeds and outperforms 
comparative algorithms in classification efficacy [27]. In 
semi-supervised learning, self-training methods reliant on 
high-confidence pseudo-labels for unlabeled data often face 
the challenge of label noise, leading to error accumulation 
during iterative training. Such methods also exhibit 
susceptibility to training instability, compromising their 
reliability. Additionally, bias in semi-supervised learning 
arises from intrinsic problem characteristics and potentially 
incorrect pseudo-labels. Contrarily, our Semi-CART method 
diverges from using pseudo labels, known for their instability 
across datasets, thus ensuring more excellent reliability and 
consistent performance across various datasets.

The research delineated in “Semi-Supervised Learning 
with Decision Trees: Graph Laplacian Tree Alternating 
Optimization” introduces an innovative semi-supervised 
learning paradigm for decision trees. This framework is 
characterized by its scalability and efficacy, particularly 
notable in contexts with minimal labeled instances. It 
facilitates the derivation of precise and interpretable models 
predicated on decision trees under such constraints. The 
resolution of the underlying problem is achieved through a 
novel reformulation, necessitating the iterative resolution of 
two less complex sub-problems: a supervised tree learning 
problem, addressable via the Tree Alternating Optimization 
algorithm, and a label smoothing problem, resolvable by 
engaging a sparse linear system. This methodological 
approach directly integrates the labeled data into the 
operator, bolstering the efficacy of semi-supervised learning 
through spectral clustering techniques [28].

Contrasting with traditional methodologies, where 
the algorithm labels the unlabeled data by minimizing a 
quadratic objective influenced by the graph’s structure, our 
proposed approach diverges significantly. The conventional 
method’s reliance on this procedure results in polynomial 
complexity correlated with the sample size n, potentially 
leading to substantial computational demands in large 
datasets. Our method, in contrast, calculates weights derived 
from the test dataset, distinctively abstaining from predicting 
labels for the test data. These computed weights are then 
employed in the training of decision trees. Our methodology 
has demonstrated superior performance over the traditional 
approach across various datasets through comprehensive 
empirical assessments, showing particular effectiveness 
in situations involving varying label ratios.

3  Methodology

We will introduce the “Distance-based Weighting” algorithm 
for training decision trees in semi-supervised settings. One 
of the challenges in such settings is dealing with unlabeled 

datasets in the training phase. We utilize a “Distance-
based Weighting” algorithm to overcome this challenge 
that calculates similarities between training and test data 
instances. We assign weights to the training instances based 
on these similarities, which are added to the training dataset 
as “weights.” The algorithm then removes training instances 
with zero weights to increase model efficiency and speed 
up the training process with fewer data. We refer to these 
steps as the “Distance-based Weighting” methodology. Our 
proposed algorithm aims to improve decision tree learning 
efficiency and accuracy in semi-supervised settings while 
utilizing unlabeled data. We introduce a novel algorithm 
called “Semi-CART,” designed to augment the predictive 
ability of the decision tree model. Our methodology 
incorporates a weight column into the decision tree model 
to improve prediction accuracy significantly. Specifically, 
we adapt the GINI impurity equation to include the weight-
based computations during the learning phase of Semi-
CART. The resulting algorithm can enhance prediction 
accuracy by integrating relevant weight-related factors into 
the decision tree model.

3.1  Distance‑based weighting

The “Distance-based Weighting” method is a novel approach 
that facilitates a non-streaming process that considers the 
similarities between training and test data points. Specifi-
cally, the methodology uses the Euclidean distance metric 
to calculate the similarity between each training record and 
the test dataset. Furthermore, each training row is append 
one as a weight value based on its similarity to the test data, 
which ranges from zero to the total number of test data 
points. A zero weight value implies that the training row 
does not correspond closely with any test data points and 
is therefore excluded from the training process. Our pro-
posed approach allows for removing training data that may 
interrupt model accuracy, hence filtering out irrelevant data 
noise and improving the decision tree’s predictive capacity, 
particularly for an extensive test dataset.

Figure  5 portrays four data points, where the training set 
comprises points A and B, and points C and D represent the 

Fig. 5  Distance measuring in weighing algorithm
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test set. The Distance-based Weighting algorithm adopted in 
our methodology employs the Euclidean distance metric. The 
computation results show that points A and C (AC) are closer 
to C and B (CB). Similarly, D and B (DB) are found to be 
closer to A and D (AD). The neighbor one approach adds +1 
to a node’s weights with the closest test data. In the first step, 
the algorithm adds +1 to the weight of point A because of its 
proximity to C. Consequently, point C is removed, and point 
B is selected in the next step. In the second step, the algo-
rithm compares the distances AD and DB and adds +1 to the 
weight of B while removing point D. This process is repeated 
until all test data is used. The neighbor two approaches are 
similar, except that in each step, the algorithm adds +1 to the 
weights of the two nearest neighbors and removes the used 
test data after each iteration. The count of test data meas-
ures the training instance’s proximity to the entire set of test 
data. The Distance-based Weighting algorithm is respon-
sible for computing the nearest neighbors of each training 
row concerning a given test data. Ultimately, this enables the 
Distance-based Weighting algorithm to assign appropriate 
weights to each training instance based on their proximity 
to the test data. The proposed algorithm eliminates redun-
dant or irrelevant instances in the training dataset by assign-
ing zero weights to the corresponding rows. The resultant 
refined dataset not only expedites the learning process but 
also improves the accuracy of the prediction model. Upon 
augmenting the number of neighbors to three, every training 
instance determines its closest neighbor using the Euclidean 

distance equation. The proposed Distance-based Weighting 
algorithm computes the distances between every record in 
the training set and the three closest neighbors in the test 
set. Subsequently, it excludes training instances that receive 
zero weights, thus refining the dataset for training. This 
approach is preferred over using one of the nearest neighbors 
because data scattering carries more weight in three neigh-
bors. Moreover, rows with zero weight are less common than 
in one neighbor. As the nearest neighbors’ value increases, 
the probability of individual training rows being the closest 
neighbors increases, thereby avoiding their removal in the 
purge process. To illustrate how the weights are assigned and 
how the training data is purged, we visualize the process in 
the following section.

Figure  6 illustrates the distribution of training and test 
data points on a chart, with training data marked in blue 
and test data marked in red. Subsequently, one neighbor is 
drawn in Fig.  6(a), along with the weights assigned to the 
training data. The proposed Distance-based Weighting algo-
rithm employs the Euclidean distance measurement method, 
similar to the KNN5 algorithm. The algorithm calculates the 
distance between two points in the multidimensional fea-
ture space by considering all the feature values, as shown 
in Eq.  6(b). Additionally, Fig.  6(c) presents a new train-
ing point on the right side, which needs to be considered 

Fig. 6  Steps of distance-based 
weighting algorithm works

(a) step 1 (b) step 2 (c) step 3

(d) step 4 (e) step 5 (f) step 6

(g) step 7 (h) step 8 (i) step 9

5 K-Nearest Neighbor.
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for calculating the distance via the Distance-based Weight-
ing algorithm. Subsequently, in Fig.  6(e), the distance val-
ues between the new training row and three test rows are 
depicted. Next, the Distance-based Weighting algorithm 
selects the smallest distance, as shown in Fig.  6(f), and 
presents the status of each line in Fig.  6(g). Subsequently, 
long-distance lines are removed in Fig.  6(h), and the Dis-
tance-based Weighting algorithm calculates the weight of 
training rows in Fig.  6(i). If a training row is significantly far 
from test records, its weight is calculated with a zero value. 
The Distance-based Weighting preprocessing algorithm, 
as previously discussed, utilizes the Euclidean distance to 
assign weights to the training data. It can utilize other dis-
tance measurements techniques like Manhattan, Mahalano-
bis, Cosine, Jaccard, and Hamming.

Figure  7 depicts an expanded view of the training and 
test data points. Specifically, Fig.  7(a) presents four points 
from the training set and eight points from the test set. 
Subsequently, in Fig.  7(b), the Distance-based Weighting 
algorithm computes the distance between each training 
instance and its nearest test point. Figure  7(c) displays 

the training points with weights assigned by the Semi-Cart 
approach for the training phase. Conversely, in Fig.  7(d), 
a blue point in the lower-left corner has a zero weight due 
to its long distance from all test sets. The Distance-based 
Weighting algorithm draws inspiration from GOSS to 
eliminate redundant training points, resulting in a cleaner 
dataset that enhances the accuracy of the constructed tree. 
Figure  8 presents a simple baseline whereby a straight line 
is trained from all the training data points. In Fig.  8(a), 
this baseline is visualized and compared against the test 
data points represented by the orange lines. It is observed 
that the baseline exhibits significant errors when compared 
to the test data points. The Distance-based Weighting algo-
rithm is applied to remove noisy data points from the train-
ing set to address this issue. As shown in Fig.  8(b), this 
approach yields a cleaner dataset for training, resulting in 
a baseline that performs better than the noisy dataset base-
line. Specifically, the errors between the baseline and the 
test data points are reduced, indicating the Distance-based 
Weighting algorithm’s efficacy in improving the trained 
model’s accuracy.

Fig. 7  Steps of distance-based 
weighting algorithm with more 
data points

2pets)b(1pets)a(

4pets)d(3pets)c(
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3.2  Semi‑cart

Improving the accuracy of decision trees is a crucial area of 
research due to its widespread applications in different fields. 
In this section, we introduce a new algorithm called Semi-
CART, which aims to improve the accuracy of decision trees 
in classification and regression problems. One of the critical 
components of Semi-CART is the Distance-based Weighting 
algorithm, which calculates the distance between test data 
and training data and removes ineffective training rows. This 
preprocessing step ensures that only valuable data is used in 
training, which can lead to improved accuracy in the result-
ing decision tree. In the standard CART algorithm, GINI 
impurity is used to split the dataset and select the best can-
didate for each split based on information gain. Semi-CART 
builds upon this by using a new formula for GINI impurity 
that considers the weights of the training rows. Specifically, 
the new formula Eq.  2 replaces “pi” with “w/S,” where “w” 
is the weight of the training row and “S” is the sum of all 
train data weights. The implementation of Semi-CART is 
described with pseudo-code, and we show that it outper-
forms the traditional CART algorithm in terms of accuracy 
on thirteen different datasets with varying features and rows.

Algorithm 1  Distance-based weighting: set weights to 
train data

 

Moreover, We discuss the benefits of using the Distance-
based Weighting algorithm and how it can remove useless 
or noisy training data, leading to a more accurate decision 
tree. The Distance-based Weighting algorithm benefits 
non-streaming processes and large datasets with noisy data. 
The Semi-Cart method uses the new Gini index formula, 
which utilizes weights to select a better value for separat-
ing the tree. This approach can be efficient when dealing 
with extensive test data sets and when the test and training 
data distribution is similar. By incorporating weights into 
decision-making, the Semi-Cart method can effectively iden-
tify and remove noisy or irrelevant data points, resulting in 
a cleaner and more accurate dataset. The Semi-Cart method 
offers a robust and efficient approach to building decision 
trees, mainly when dealing with complex or high-dimen-
sional data sets. In the forthcoming section, we will present 
the comparison results between Semi-CART and CART on 
various datasets. Additionally, we will visually demonstrate 
the accuracy outcomes and the optimal number of neighbors 
for which Semi-Cart outperforms CART.

(2)GINI = 1 −

N
∑

i=1

(w∕S)2i

Fig. 8  Baselines for noisy data 
vs. clean data

(a) baseline with noisy dataset (b) baseline without noise
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Algorithm 2  Weighting alg: remove useless data

In summarizing the effectiveness and methodology of 
the distance-based weighting algorithm within our pro-
posed framework, it is pivotal to outline the sequential 
steps and their impact on the algorithm’s performance. Ini-
tially, the dataset is collated and partitioned into training 
and test subsets. This approach’s core hinges on applying 
the distance-based weighting algorithm. This algorithm 
employs a diverse array of methods, including Mahalano-
bis, city block, Euclidean, squared Euclidean, cosine, cor-
relation, Hamming, Jaccard, Chebyshev, Canberra, match-
ing, dice, Rogers-Tanimoto, Russell-Rao, Sokal-Michener, 
and Sokal-Sneath, to calculate the distances between each 
element in the training set and the test set. This calcula-
tion is instrumental in determining the proximity of each 
training set element to the test set. For instance, a train-
ing row assigned a weight of 1 indicates it is the nearest 
neighbor to a record in the test set. Conversely, a training 

set element with a weight of 34 signifies its closest prox-
imity to 35 records in the test set, highlighting its greater 
significance during the training phase. Upon computing 
these weights, the training set retains its sample size but 
varies in column size due to the inclusion of weights. This 
necessitates an adaptation of the Gini formula to accom-
modate these weights. Unlike traditional approaches where 
dataset splitting is based on the value of a candidate with 
weight 1, our modified semi-CART approach utilizes can-
didates with higher weights for dataset division. Finally, 
the model is evaluated using the test dataset upon conclud-
ing the training process. This strategy, which integrates the 
calculated weights, allows for predictions that align with 
the distribution of the test dataset, thereby enhancing the 
model’s accuracy and relevance all these steps have been 
depicted in  9.

Fig. 9  Training and evaluating 
of distance weighted algorithm 
and semi-CART 
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4  Results

In this section, we delineate the outcomes of our experi-
mental research, wherein we juxtaposed the performance 
of the Semi-CART and CART algorithms across a spec-
trum of datasets. These datasets were characterized by a 
diversity in the number of features and rows. A pivotal 
aspect of our methodology involved the implementation 
of the Distance-based Weighting algorithm. This algo-
rithm was crucial in excluding non-contributory training 

rows and in the computation of weights, which were 
determined based on the proximity between the test and 
training data sets. Table  1 provides a comprehensive 
overview of thirteen distinct datasets, each varying in the 
size of their features. Our study systematically divided 
the dataset into training and testing subsets. This divi-
sion, crucial for assessing algorithmic efficacy, is visually 
depicted in Fig.  10.

As previously noted, the datasets employed in our study 
exhibit variability in the number of features and records. 
Additionally, each dataset is characterized by a distinct ratio 
of labels. Figure  11 provides a clearer understanding of 
these variations. This figure graphically represents the label 
ratios across the various datasets, visually elucidating the 
disparities and patterns within each dataset’s composition. 
This visualization aids in a more comprehensive interpreta-
tion of the dataset characteristics and their potential influ-
ence on the research outcomes.

As we can see, we have balanced and imbalanced 
datasets; in Table  2, the results of cart vs. semi-cart have 
been mentioned. In our comparative analysis of the CART 
and Semi-CART algorithms, we employed a 10-fold cross-
validation technique. This approach was executed iteratively, 
running CART and SEMI-CART 10 times to ensure 
robustness in our findings. The results obtained from these 
iterations were then meticulously compared, providing a 
comprehensive evaluation of the algorithms’ performance 
and efficacy. In Fig.  12, The analysis reveals that across 
all datasets, the Semi-CART algorithm either outperformed 
or matched the performance of the CART method while 

Table 1  Dataset division into training and testing sets

Dataset Total length Training 
length

Test length Unnoisy 
length

Banknote 1371 685 686 685
Fertility 100 50 50 48
Wdbc 569 284 285 280
Biodeg 1055 527 528 527
Haberman 305 152 153 140
Transfusion 748 374 374 323
Hepatitis 80 40 40 37
Tictactoe 957 478 479 457
Vote 232 116 116 97
Bupa 344 172 172 147
Breast 276 138 138 123
Glass 213 106 107 93
Mammographic_

masses
829 414 415 389

Fig. 10  Total, train, test
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requiring a smaller training set. This consistent efficacy of 
Semi-CART, evident in our results, underscores its potential 
advantages in terms of efficiency and effectiveness in various 
data contexts. The accuracy metric is a crucial focal point 
within our comparative analysis, albeit representing only a 
single facet of the evaluation between the CART and Semi-
CART algorithms. In order to offer a more comprehensive 
assessment, we have augmented our evaluation with 
additional metrics, including precision, recall, and the F1 
score, as illustrated in Fig.  13. These collectively provide 
a multifaceted perspective on the performance of the 
algorithms, enabling a nuanced comparison across various 
dimensions of effectiveness. Subsequent sections will 
expound upon these comparative findings, shedding light 
on the strengths and limitations of each algorithm within 
the context of our study.

To ensure a fair and controlled environment for compar-
ing the CART and Semi-CART algorithms, we conducted 
the analysis iteratively, executing the comparison ten times. 
This approach allowed us to calculate the maximum, mini-
mum, average, and standard deviation for key performance 
metrics: accuracy, precision, recall, and F1 score. This rigor-
ous methodology underscores the reliability and depth of our 
comparative analysis. In each iteration of our analysis, we 
meticulously tracked the accuracy, precision, recall, and F1 
score values. These metrics were then mentioned in Tables 3 
and 4, providing a dynamic and detailed portrayal of the 
algorithms’ performance across successive runs. This visu-
alization facilitates a deeper understanding of the effective-
ness of the consistency and variability in the algorithms. Our 
investigation delves into the algorithm’s dynamic behavior, 
focusing on its statistical metrics as they evolve throughout 
the iterations.

Fig. 11  Labels ratio
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Table 2  Performance metrics 
for CART and SEMI_CART 

Dataset Method Max accuracy Max precision Max recall Max F1

Biodeg CART 0.99714 0.995 0.998 0.996
SEMI_CART 0.99714 0.998 0.998 0.996

Transfusion CART 0.77027 0.536 0.354 0.409
SEMI_CART 0.78784 0.7 0.394 0.436

Glass CART 0.89524 0.801 0.88 0.789
SEMI_CART 0.92381 0.857 0.893 0.853

Habermanm CART 0.74333 0.794 0.899 0.829
SEMI_CART 0.75333 0.802 0.996 0.852

Fertility CART 0.83 0.133 0.2 0.117
SEMI_CART 0.87 0.25 0.35 0.267

Bupa CART 0.74118 0.701 0.706 0.685
SEMI_CART 0.75 0.901 0.706 0.689

Breast CART 0.9963 0.995 1.0 0.998
SEMI_CART 0.9963 0.996 1.0 0.998

Bank_note CART 0.98321 0.981 0.986 0.981
SEMI_CART 0.99051 0.987 0.995 0.99

Wdbc CART 0.93393 0.948 0.956 0.949
SEMI_CART 0.95714 0.961 0.974 0.966

Vote CART 0.96087 0.954 0.968 0.952
SEMI_CART 0.97826 0.968 0.993 0.978

Tictactoe CART 0.99895 1.0 0.997 0.999
SEMI_CART 0.99895 1.0 0.998 0.999

MM CART 0.79878 0.807 0.794 0.789
SEMI_CART 0.82683 0.886 0.972 0.818

Hepatitis CART 0.9625 0.948 1.0 0.969
SEMI_CART 0.9625 0.957 1.0 0.976

Fig. 12  Accuracy of cart vs. 
semi-CART 
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5  Future works

The weighting algorithm uses Euclidean distance measuring 
and uses all feature values to measure the distance of the 
train and test data. If this distance measurement owned 
the importance of each feature, it could result in higher 
speed and more accuracy. It is recommended to check the 
distribution of that specific feature in test and train data 

To find each feature’s importance. The other important 
thing in The weighting algorithm is the algorithm’s time 
complexity, and we propose to Shard the data and parallelize 
the algorithm to reduce time complexity. Another important 
thing is building a new boosting algorithm like GBM or 
XGBoost with The weighting algorithm and Semi-CART, 
but we should assign The weighting algorithm weights in 
each step of the learning process.

Fig. 13  Accuracy, precision, recall, F1
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Table 3  Dataset statistics 
for CART and semi-CART 
performance (first seven 
datasets)

Dataset Metric CART Semi-CART 

Min Max Avg Std Min Max Avg Std

Bank_note Accuracy 0.9759 0.9832 0.9804 0.00206 0.9759 0.9905 0.9818 0.0434
Precision 0.961 0.981 0.973 0.00542 0.968 0.987 0.9759 0.0629
Recall 0.98 0.986 0.9838 0.00215 0.98 0.995 0.9848 0.1004
F1-Score 0.973 0.981 0.9781 0.00238 0.973 0.99 0.9791 0.0608

Biodeg Accuracy 0.9952 0.9971 0.9968 0.000664 0.9952 0.9971 0.9967 0.0264
Precision 0.991 0.995 0.9935 0.00118 0.991 0.998 0.9932 0.0359
Recall 0.994 0.998 0.9966 0.00117 0.994 0.998 0.9966 0.0437
F1-Score 0.993 0.996 0.9951 0.0011 0.993 0.996 0.9949 0.0399

Breast Accuracy 0.9926 0.9963 0.9959 0.00117 0.9963 0.9963 0.9963 0.0018
Precision 0.99 0.995 0.9935 0.00151 0.994 0.996 0.9946 0.0021
Recall 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0
F1-Score 0.995 0.998 0.9968 0.000789 0.997 0.998 0.9973 0.0012

Bupa Accuracy 0.6588 0.7412 0.6982 0.02554 0.6588 0.75 0.7020 0.0385
Precision 0.608 0.701 0.6481 0.02877 0.608 0.901 0.6522 0.1356
Recall 0.541 0.706 0.6401 0.05241 0.541 0.706 0.6464 0.1347
F1-Score 0.562 0.685 0.6328 0.03786 0.562 0.689 0.6376 0.0866

Fertility Accuracy 0.74 0.83 0.78 0.0287 0.8 0.87 0.8338 0.0325
Precision 0.0 0.133 0.0464 0.0423 0.0 0.25 0.0869 0.0845
Recall 0.0 0.2 0.0649 0.0655 0.0 0.35 0.0791 0.0949
F1-Score 0.0 0.117 0.0448 0.0354 0.0 0.267 0.0775 0.0781

Glass Accuracy 0.8524 0.8952 0.8805 0.01513 0.7486 0.7878 0.7671 0.0125
Precision 0.667 0.801 0.732 0.04279 0.426 0.7 0.5135 0.0854
Recall 0.664 0.88 0.7789 0.07736 0.29 0.394 0.3271 0.1145
F1-Score 0.676 0.789 0.7346 0.04027 0.349 0.436 0.3803 0.1323

Haberman Accuracy 0.6867 0.7433 0.712 0.0201 0.6933 0.7533 0.7265 0.0238
Precision 0.761 0.794 0.7751 0.01118 0.759 0.802 0.7722 0.0196
Recall 0.825 0.899 0.8593 0.0244 0.863 0.996 0.9189 0.0497
F1-Score 0.796 0.829 0.811 0.01402 0.799 0.852 0.8282 0.0193
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6  Conclusion

In This paper, We propose a novel Semi-CART algorithm 
to construct decision trees that can achieve higher accuracy 
than the base algorithm, CART. We also provide a detailed 
explanation of how the Weighting algorithm works and how 
it incorporates weights into the training data. We illustrate 
how the Weighting algorithm removes ineffective training 
data and improves the accuracy of classification and regres-
sion problems. Furthermore, we introduce a new formula of 
GINI impurity with weights to select the best candidate for 
splitting. This new formula replaces “p” with “w/S,” where 
“w” is the weight of the training row and “S” is the sum of 
all train data weights. We present the implementation of 
Semi-CART with pseudo-code and demonstrate its effective-
ness through experiments.

Additionally, we discuss removing useless data and 
comparing CART with Semi-CART. The Weighting 
algorithm is appropriate for non-streaming processes, mainly 
when the extensive test data contains noisy training data. 
Finally, we highlight that CART is the fundamental concept 
in state-of-the-art algorithms like XGBoost and LightGBM.

Data availability In this study, we utilized datasets from the UCI 
Machine Learning Repository. This prominent online resource 
offers a comprehensive collection of datasets for empirical analysis 
in machine learning and data science. This repository, managed by 
the Center for Machine Learning and Intelligent Systems at the Uni-
versity of California, Irvine, provides well-prepared data facilitating 
robust statistical testing and validation of innovative algorithms. For 
our research, specific datasets were downloaded and employed, includ-
ing Banknote, Fertility, WDBC (Wisconsin et al.), Biodegradability, 
Haberman’s Survival, Blood Transfusion Service Center, Hepatitis, 
Tic-Tac-Toe, Congressional Voting Records, BUPA Liver Disorders, 
Breast Cancer Wisconsin (Original), Glass Identification, and Mam-
mographic Masses. Each dataset was chosen for its relevance to the 
specific machine-learning tasks, ranging from classification challenges 
to predictive modeling. The wide range and varied nature of these data-
sets render the UCI Machine Learning Repository an essential resource 
for conducting comprehensive empirical research across different areas 
of machine learning. Further information about the datasets and access 
to the repository can be found at the UCI Machine Learning Repository 
website. https:// archi ve. ics. uci. edu/.
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Table 4  Dataset statistics 
for CART and Semi-CART 
performance (Next Six 
Datasets)

Dataset Metric CART Semi-CART 

Min Max Avg Std Min Max Avg Std

Hepatitis Accuracy 0.9625 0.9625 0.9625 1.17e−16 0.9625 0.9625 0.9625 0.0279
Precision 0.922 0.948 0.9362 0.00989 0.935 0.957 0.9427 0.0183
Recall 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0376
F1-Score 0.955 0.969 0.9629 0.0059 0.958 0.976 0.9666 0.0259

Mammo-
graphic_
masses

Accuracy 0.7634 0.7988 0.7845 0.01339 0.7683 0.8268 0.7973 0.0937
Precision 0.76 0.807 0.7845 0.01474 0.76 0.886 0.8107 0.1048
Recall 0.747 0.794 0.7663 0.01632 0.747 0.972 0.8016 0.1988
F1-Score 0.755 0.789 0.7727 0.013 0.767 0.818 0.7875 0.1807

Tictactoe Accuracy 0.9979 0.9989 0.9988 0.000335 0.9990 0.9990 0.9990 0.0006
Precision 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0
Recall 0.995 0.997 0.9966 0.000699 0.997 0.998 0.9971 0.0023
F1-Score 0.997 0.999 0.9984 0.000699 0.998 0.999 0.9985 0.0012

Transfusion Accuracy 0.7405 0.7703 0.7558 0.00798 0.7486 0.7878 0.7671 0.0125
Precision 0.426 0.536 0.4877 0.02934 0.426 0.7 0.5135 0.0854
Recall 0.29 0.354 0.33 0.0202 0.29 0.394 0.3271 0.1145
F1-Score 0.349 0.409 0.3824 0.01952 0.349 0.436 0.3803 0.1323

Vote Accuracy 0.9435 0.9609 0.9522 0.00615 0.9478 0.9783 0.9609 0.0132
Precision 0.934 0.954 0.9421 0.00635 0.935 0.968 0.9492 0.0124
Recall 0.933 0.968 0.9525 0.01196 0.943 0.993 0.9708 0.0206
F1-Score 0.94 0.978 0.9571 0.0146 0.94 0.978 0.9571 0.0146

Wdbc Accuracy 0.9107 0.9339 0.9213 0.00721 0.9143 0.9571 0.9307 0.0133
Precision 0.913 0.948 0.9309 0.01183 0.926 0.961 0.9419 0.0129
Recall 0.926 0.956 0.9457 0.00879 0.935 0.974 0.9517 0.0184
F1-Score 0.929 0.949 0.9371 0.00601 0.932 0.966 0.9442 0.0113

https://archive.ics.uci.edu/
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