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ABSTRACT 17 

Scientific information about European sea bass (Dicentrarchus labrax) stocks in NE Atlantic 18 

is limited and a more accurate definition of the stock boundaries in the area is required to 19 

improve assessment and management advice. Here we study the connectivity and movement 20 

patterns of European sea bass in Wales (UK) using the stable isotope (δ13C and δ15N) 21 

composition of their scales. Analysis of fish scale δ13C and δ15N values in the last growing 22 

season was performed on 189 adult sea bass caught at nine coastal feeding grounds. Fish >50 23 

cm total length (TL) caught in estuaries had very low δ13C and this is characteristic of fresh 24 

water (organic/soil) input, indicating the primary use of estuaries as feeding areas. A random 25 

forest classification model was used to test if there was a difference in δ15N and δ13C values 26 

between north, mid and south Wales and whether it was possible to correctly assign the fish to 27 

the area where it was caught. This analysis was restricted to fish of a similar size range (40-50 28 

cm TL) caught in open coastal areas (n=156). The random forest classification model showed 29 

that about 75% of the fish could be correctly assigned to their collection region based on their 30 

isotope composition. The majority of the misclassifications of fish were fish from north Wales 31 

classifying to mid Wales and vice versa, while the majority of fish from south Wales were 32 

correctly assigned (80%). Our findings suggest that two sub-populations of sea bass in Welsh 33 
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waters use separate feeding grounds (south vs. mid/north Wales), and may need separate 34 

management.  35 

 36 

KEY WORDS: European sea bass, Stable isotopes, Random forest, Feeding ground, Stock 37 

boundaries. 38 

 39 

INTRODUCTION 40 

Most current fisheries controls are applied at large geographic scales that often encompass 41 

entire sea basins. Effort controls such as Minimum Landing Size (MLS) are only effective if 42 

the life history and growth of fish is uniform across the scale at which they are applied. 43 

However, for many species of fish, we have limited understanding of their home range and 44 

hence the interaction between local environmental parameters and life history traits such as 45 

growth rate potentially leading to a mismatch with the scale of management.  46 

The European sea bass (Dicentrarchus labrax) is an economically important species exploited 47 

by multiple fishing fleets across Europe (Pawson et al. 2007a, ICES 2013). In northern Europe, 48 

the recent combination of declining recruitment and increasing fishing mortality has led to a 49 

rapid decline in stock biomass and has triggered management advice for an 80% reduction in 50 

catches as an immediate conservation measure (ICES 2014). A package of emergency 51 

management measures was implemented in 2015 and then strengthened for 2016. For 52 

commercial fishing, these measures included a temporal ban on pelagic trawling (six months) 53 

and on hooks, lines and fixed gill nets (two months), a monthly catch limit, an increase in the 54 

MLS from 36 to 42 cm for northern sea bass and an area closure around Ireland. For 55 

recreational fishers the measures include a six month moratorium followed by one fish bag 56 

limit and the same increase of the MLS of the commercial sector 57 

(http://ec.europa.eu/fisheries/cfp/fishing_rules/sea-bass/index_en.htm).  58 

Although the stock structure of sea bass in the northeast Atlantic has not been clearly 59 

delineated, there is evidence that sea bass around Ireland and in the Bay of Biscay could be 60 

treated as two populations separate from the eastern Celtic Sea, English Channel, and North 61 

Sea (Fritsch et al. 2007, ICES 2012). In addition, previous proposals of stock boundaries, based 62 

on conventional tagging studies (ICES 2001, ICES 2002, ICES 2004, Fritsh et al. 2007, Pawson 63 

et al. 2007b), concluded that there were two separate stock units between the east and west UK 64 

(Pawson et al. 2007b). However, despite the inferences from tagging studies, ICES has 65 

http://ec.europa.eu/fisheries/cfp/fishing_rules/sea-bass/index_en.htm
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concluded that current evidence supports the view that sea bass in the North Sea (ICES Division 66 

IVb&c) and in the Irish Sea, the English Channel and Celtic Sea (Ices Divisions VIIa,d,e,f,g&h) 67 

should be treated as a functional stock unit as there is no clear basis at present to subdivide 68 

them into independent stock units (ICES 2012). Clearly, a more accurate definition of the stock 69 

boundaries is required to improve assessment and management advice to underpin sustainable 70 

exploitation. 71 

Previous tagging studies around England and Wales have shown a tendency for adult sea bass 72 

to migrate to the south and west in autumn (English Channel), during the pre-spawning season, 73 

and to return north and eastwards in spring to feeding areas (Pawson et al. 2007b, Pawson et 74 

al. 2008). These mark-recapture studies have provided evidence of philopatry in relation to 75 

feeding and spawning areas (Pawson et al. 2007b, Pawson et al. 2008). Pawson et al. (2008) 76 

reported that 55% of sea bass > 40 cm that were tagged and released during the summer were 77 

subsequently recaptured within 16 km of their original tagging location on their summer 78 

feeding grounds. A further 23% were recaptured during winter at least 80 km from their release 79 

site. These data provided strong evidence that sea bass in England and Wales may share 80 

common migration routes to the same spawning grounds but may exhibit segregation by 81 

returning to specific summer feeding grounds (Pawson et al. 2008). If this is the case, then 82 

management of sea bass stocks may need to be applied at a much smaller regional level than 83 

currently proposed by ICES.  84 

Although the use of external tags can provide valuable information on stock structure and 85 

movement patterns of fish (e.g. Dunn and Pawson 2002, Pawson et al. 2007b, Neuenfeldt et al. 86 

2013) there are multiple problems with their use that include, for example, transmission of data 87 

to the researchers, and poor recapture rates (Block et al. 2011). Natural biogeochemical 88 

markers (trace elements and stable isotopes) located in the hard parts of fishes (e.g otoliths and 89 

scales) have great potential as ‘internal’ tags to study stock structure, and to study connectivity 90 

between fish populations in, and movements between, chemically distinctive water bodies by 91 

fishes during their lifetime (Elsdon et al. 2008, Trueman et al. 2012). Structures such as otoliths 92 

and scales deposit new material incrementally as the fish grows, and can provide a record of 93 

the elemental and isotopic composition of the water in which the fish has lived at each stage of 94 

its lifetime (e.g. Thorrold et al. 1998, Cadrin et al. 2013).  95 

The use of stable isotopes remains a relatively underused tool for tracking migration and 96 

general movements in marine animals (Trueman et al. 2012). This is because there can be 97 
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uncertainties in the use of stable isotopes, in particular in the spatial distribution of stable-98 

isotope values across marine basins and in understanding patterns of isotope fractionation in 99 

biological systems (Vander Zanden & Rasmussen 2001, Caut et al. 2009). In addition, isotopic 100 

signatures vary temporally between body tissues that differ in their metabolic activity and 101 

therefore represent an integration of feeding history over varying timescales from weeks to 102 

months (Vander Zanden et al. 2015). However, incrementally growing hard tissue structures 103 

such as scales and otoliths will embed within their structure an isotopic signature laid down 104 

during a specific period of growth (specific timescale) (Rooker et al. 2008, Sepulveda et al. 105 

2009, Trueman et al. 2012). For fish scales in particular, the analysis of the isotopic signature 106 

generally only refers to the most recent season of growth due to the limitations imposed by 107 

scale architecture (Hutchinson & Trueman 2006). In fact, a typical sea bass scale consists of 108 

two portions: a hard upper layer composed of calcium phosphate overlying a poorly 109 

mineralised layer composed largely of collagen (Hutchinson & Trueman 2006). The 110 

collagenous layer grows by a process of underplating and for this reason only the most recent 111 

season of growth is characterised by younger collagen (Hutchinson & Trueman 2006). 112 

As our understanding of the spatial variation of isotope ratios in the aquatic environment has 113 

developed, it has been possible to produce ‘isoscapes’ that map geographic changes in aquatic 114 

isotopic signatures (see Graham et al. 2010, West et al. 2010). These isoscape maps can then 115 

provide information on the movement patterns and foraging behaviour of study species (see 116 

Graham et al. 2010, Hobson et al. 2010). For example, recent studies of scale δ13C and otolith 117 

δ13C and δ18O chemistry has provided valuable insights into the large-scale marine migrations 118 

of Atlantic salmon and identification of their feeding areas at sea (Mackenzie et al. 2011, 119 

Hanson et al. 2013).  120 

The aims of this paper were to (1) measure the δ13C and δ15N composition in the last season of 121 

growth in scales from adult sea bass caught at several locations around Wales (UK) and (2) to 122 

use these isotopic signatures to infer patterns of movement and connectivity between feeding 123 

areas to determine the possible presence of different stock units within Welsh coastal waters. 124 

Spatial variation in δ15N of the base of the foodweb for the Irish Sea has been established with 125 

a 3‰ difference in δ15N between north and south Wales (Jennings & Warr 2003). Therefore, 126 

if sea bass show philopatry to regional feeding grounds around the UK, as suggested by Pawson 127 

et al. (2008), we predicted that sea bass caught in north and south Wales would exhibit distinct 128 

scale isotopic signatures that could be used to classify fish back to summer feeding region.  129 
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 130 

MATERIALS AND METHODS 131 

Data collection and preparation of samples 132 

 133 

Scales from 189 adult sea bass (38.6-60.7 cm total length TL) were collected from a 134 

geographically representative range of coastal sites in Wales (Figure 1), 101 scales were 135 

collected during the feeding season (July-December 2013) and 88 during the spawning season 136 

(March-May 2014). 137 

Due to the scale architecture, using collagen from the most recent growth period is the only 138 

way to obtain isotope data from the last (most recent) feeding season. Although sea bass scales 139 

are relatively large, the last season is often thin (depending on the month of capture, with an 140 

average width of section of 0.44 (±1.7 SD) mm), and therefore several scales from each 141 

individual fish were used to gather enough material (0.6 mg) for analysis. Individual scales 142 

were briefly soaked in Millipore™ ultra-pure water and manually cleansed using non-metallic 143 

forceps and a small nylon brush to remove any remaining adhering vestigial tissue. The last 144 

season of growth was trimmed from the top edge of the scale, weighed and placed into pre-145 

weighed tin capsules. Decalcification of sea bass scales was not performed prior to isotopic 146 

analysis since the removal of inorganic carbonates has no significant effect on scale δ13C and 147 

δ15N values (Sinnatamby et al. 2007, Woodcock & Walther 2014). 148 

Scale samples were analysed in a mass spectrometer. Analytical precision for δ13C and δ15N 149 

was based on both the long term reproducibility of calibrated in-house standards and repeat 150 

analysis of sample material. Standard deviation error for δ13C was <0.1‰ and for δ15N was 151 

<0.2‰.  152 

Data analysis 153 

 154 

Isotope ratios were expressed using a delta (δ) notation, representing parts per thousand (‰) 155 

deviations from the international standards PeeDee Belemnite (PDB) for carbon and air for 156 

nitrogen, according to the following equation: 157 

X = [(Rsample – Rstandard)/Rstandard] x 1000                                                                                 (1) 158 
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where X is δ13C or δ15N and R is the ratio of the heavy isotope to the light isotope (13C:12C or 159 

15N:14N) in the sample and the reference material. 160 

We first measured the intra fish variability to determine whether the use of a single sample per 161 

fish provided an accurate measurement of the isotopic signal. We tested seven fish (three from 162 

north, one from mid and three from south Wales). For each fish, we prepared and compared 163 

three replicates of scale material (last growing season) of 0.6 mg obtained from the same single 164 

mix of scales collected from the body area under the pectoral fin. A repeated-measures 165 

ANOVA was then applied to assess the presence of significant differences in the isotopic signal 166 

between samples of the same fish. 167 

Of the 189 fish whose samples were analysed in the present study, 28 (38.6-60.7 cm TL) were 168 

caught in estuaries (Aberdovey-mid Wales, n=13 and Burry Port-south Wales, n=15) while the 169 

remainder were caught in open coastal waters. A comparison of the δ13C values between the 170 

two groups (estuarine fish vs. marine fish) was undertaken using Welch’s t-test. This test was 171 

not performed for δ15N, due to the influence of the fish size on the accumulation of the isotope 172 

ratio of this element (13 estuarine fish were > 50 cm TL) (Jennings et al. 2002). To assess the 173 

possible differences in the isotope signal of sea bass collected during the feeding and spawning 174 

season, sea bass from the same location (Hell’s Mouth-Mid Wales, fish provided by the same 175 

fisher and caught in the same spot, n=15 for both seasons) were compared using a one-way 176 

ANOVA. This analysis explores how long sea bass stay in the same feeding area. As the scale 177 

material is laid down during the feeding season, the scales collected during the spawning season 178 

represent the isotopic signature of the area occupied by the fish during the whole preceding 179 

feeding season and not only during part of it.  180 

To assess the presence of spatial differences in the isotope composition between areas a random 181 

forest classification model (R package “randomForest”, Liaw & Weiner 2002) was used. 182 

Random forest analysis (Breiman 2001) is a nonparametric technique derived from 183 

classification and regression trees (CART). The decision-tree modelling approach requires 184 

fewer assumptions than traditional parametric methods (e.g. Linear Discriminant Analysis) 185 

(Strobl et al. 2009). In particular random forest analysis allows correlated predictor variables 186 

to be utilised without transformation or exclusion to obtain unbiased predictions and estimates 187 

of variable importance (Strobl et al. 2009). In this context, random forest analysis has been 188 

shown to be preferred for discrimination based on otolith microchemistry when the 189 

assumptions of the traditional parametric methods cannot be reached (Mercier et al. 2011). The 190 
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random forest model produces many classification trees from which are derived an ensemble 191 

of classifications to predict the dependent variable (in our case “geographic location” of sea 192 

bass) as a result of average assignment across trees (Strobl et al. 2007, Strobl et al. 2009). By 193 

default, the random forest model partitions the data into ‘training’ (generally 70% of data) and 194 

‘test’ samples selected at random from the data set. Whilst the training samples are used to 195 

build the model, the test set is used to validate its performance.  196 

Estuarine fish were excluded from this analysis, to remove the effect of the different salinities 197 

encountered between freshwater and marine habitats on δ13C (Doucett et al. 1999). The analysis 198 

was also restricted to fish of a similar size range (40-50 cm TL) to remove the effect of the fish 199 

size on the variation of δ15N between individuals (e.g. Jennings et al. 2002). The δ13C and δ15N 200 

values of 156 sea bass between 40 and 50 cm TL caught in coastal areas (98 caught during the 201 

feeding season and 58 during the spawning season) were then compared to assess if spatial 202 

differences in isotope composition existed. The nine different capture locations were first 203 

aggregated into three main groups: north, mid and south Wales (Figure 1). The random forest 204 

classification model was then used to test if there was a difference in scale δ13C and δ15N values 205 

between north, mid and south Wales and whether it was possible to correctly assign the fish to 206 

the area where it was caught based on scale isotopic signature. In addition this statistical 207 

technique allowed the importance of each predictor variable in the classification process to be 208 

evaluated and ultimately to identify specific isotopic signatures by area. Based on the level of 209 

separation and/or overlap of the isotopic signatures between areas we expected to derive 210 

insights on movement patterns related to feeding behaviour for adult sea bass.  211 

The association, or proximity, between each fish (characterized by the combination of δ13C and 212 

δ15N), is the number of times that they occur together in the same terminal node. The 213 

“randomForest” package normalized these counts to produce a proximity matrix that can be 214 

analysed using a metric scaling method. The resultant Multi-Dimensional Scaling plot 215 

represented the degree of differentiation in stable isotopes values between the three geographic 216 

locations. 217 

Conditional variable importance was reported to show the relative contribution of each 218 

predictor variable (δ13C and δ15N) to the classification performance. To evaluate the conditional 219 

variable importance we measured the Mean Decrease Accuracy (MDA) of the forest when the 220 

values of each predictor (δ13C and δ15N) are randomly excluded (or permuted). The greater the 221 
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decrease in the accuracy of the random forest resulting from the exclusion (or permutation) of 222 

a single variable, the more important that variable is for classification of the data. 223 

To aid interpretation of the results of the random forest analysis, a conditional inference tree 224 

was used. In particular this single-tree method helped to trace the effects of δ13C and δ15N on 225 

the classification of the feeding locations of bass and ultimately to identify the range of δ13C 226 

and δ15N values associated with each location. To this end, the “ctree” function for conditional 227 

inference trees in the “party” R package (Hothorn et al. 2006) was used.  228 

We finally assessed the degree of correlation between the average value of δ15N for sea bass 229 

scales for each location sampled in this study and the corresponding values of predicted spatial 230 

variation in δ15N baseline estimated from the isoscape map (Jennings & Warr 2003). The model 231 

developed by Jennings & Warr (2003), which related the δ15N of scallops of each sampling site 232 

to day of sampling, shell height, depth, surface temperature, bottom temperature and summer 233 

salinity was used to calculate the δ15N baseline corresponding to our capture locations. Since 234 

not all our sampling sites corresponded exactly to the scallop samplings sites in Jennings & 235 

Warr (2003), we used the δ15N baseline values corresponding to the closest areas to our 236 

sampling sites (Colwyn Bay, site 28; Anglesey, site 27; Trefor, site 30; Hells Mouth, site 31; 237 

Aberdovey, site 33; Skokholm Island, site 34; Tenby, Burry Port and Gower, site 37). Although 238 

this isoscape map was developed in 2002, the hydrodynamic and biogeochemical processes 239 

controlling the distribution of carbon and nitrogen isotope values are temporally stable 240 

(MacKenzie et al. 2014). All analyses were carried out using R version 3.0.2 (R Core Team 241 

2013). 242 

 243 

RESULTS 244 

The repeated measures ANOVA showed no significant difference between the three replicates 245 

of the scale material in δ15N (F2,12=0.33, p=0.73) and δ13C (F2,12=1.14, p=0.35) values (Table 246 

S1 in Supplement 1). This demonstrated that the use of a single sample per fish provided an 247 

accurate measurement of the isotopic signal in scale material laid down during the last feeding 248 

season. 249 

No significant difference was found in the isotope data between the feeding and spawning 250 

season for the fish caught in Hell’s Mouth (North Wales) (One-way ANOVA, F1,28=0.17, 251 

p=0.68 for δ15N; F1,28=2.59, p=0.12 for δ13C) (absolute values are reported in Table S2 in 252 
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Supplement 1). This result suggested that adult sea bass caught in the same area have similar 253 

isotope composition even when caught at different times of the year. 254 

The 28 sea bass caught in estuaries had a significantly lower δ13C values (–18.22 ± 1.49‰) 255 

than those caught in coastal areas (–13.31 ± 0.99‰) (Welch’s t-test, t = 16.8, P < 0.001; 256 

absolute values are reported in Table S3 in Supplement 1) which was expected given that 257 

freshwater ecosystems generally have lower δ13C values relative to marine systems (Doucett 258 

et al. 1999). Out of these fish, 13 were adult sea bass > 50 cm TL. 259 

Regional difference in the marine δ13C and δ15N values was detected (Table 1), such that values 260 

from south Wales were separated from those of mid and north Wales (Figure 2a). The two 261 

dimensional representation of the random forest analysis also showed the degree of overlap of 262 

the isotopic signature between north and mid Wales (Figure 2b).  263 

The random forest classification model built on the training samples had a discrimination 264 

capacity c. 75%, which means that most fish were correctly classified between north, mid and 265 

south Wales. For both the training (n=116) and test (n=40) data sets, the majority of the 266 

misclassifications were fish from north Wales that were classified as mid Wales and vice versa, 267 

while the majority of fish from south Wales were correctly assigned (80%) (Table 2). In this 268 

case, the misclassification corresponded to regions (Tenby and Skokholm Island) 269 

geographically closer to Mid Wales than the rest of the samples (Burry Port and Oxwich-270 

Gower). 271 

The Mean Decrease Accuracy (MDA) of the forest showed that both variables (δ13C and δ15N) 272 

were important for the classification process. On average, δ13C seemed slightly more important 273 

than δ15N for classifying the fish.  The importance of each isotope varied regionally such that 274 

δ15N was more important for classifying fish in north Wales, δ13C for mid Wales and both 275 

isotopes were important for classifying fish to south Wales (Table 3). 276 

The most important primary split in the conditional inference tree was the δ13C value; sea bass 277 

from north and mid Wales were allocated on the branch corresponding to δ13C≤–13.2‰ on the 278 

proportion of 82% (n=42) and 88% (n=30) respectively (Figure 3). Out of these proportions, 279 

most of the fish from north Wales (83%, n=35) had a δ13C value in the range of –14.3‰ and –280 

13.2‰ while fish from mid Wales equally split between the δ13C value comprised between –281 

14.3‰ and –13.2‰ (47%, n=14) and δ13C ≤–14.3‰. Only 13% (n=9) of sea bass caught in 282 

south Wales was allocated on the branch corresponding to δ13C≤–13.2‰. In fact most of the 283 

sea bass from south Wales (87%) were characterized by δ13C > –13.2‰. In particular 100% of 284 
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fish with δ13C > –13.2‰ and δ15N ≤ 15.47‰ were from south Wales. This specific signature 285 

characterised 68% of the total samples from south Wales (Figure 3).  286 

A strong linear relationship was found between the average values of scale δ15N measured in 287 

this study by location (y) and the corresponding values of the δ15N baseline in the vicinity of 288 

the sampling location (from Jennings & Warr 2003) (x) (y=0.674x + 9.83, P<0.001, adjusted 289 

R2 = 0.81) (Figure 4).  This demonstrates that the spatial differences in δ15N detected in this 290 

study are consistent with the spatial patterns in δ15N that occur at the base of the food web 291 

suggesting localised feeding in Welsh sea bass.  292 

 293 

DISCUSSION 294 

The use of isotope tags to study the movement of fish by linking the stable isotope composition 295 

measured in fish tissue to that of the base of the food chain at the site of origin is a powerful 296 

tool that can help to better define stock boundaries at a local level (Trueman et al. 2012). The 297 

δ13C and δ15N values of tissue protein are controlled by the trophic level of the fish and δ13C 298 

and δ15N values for primary production at the location occupied by the fish during periods of 299 

active growth (e.g. Deniro & Epstein 1978, Fry 1981). The highly significant relationship 300 

between the average value of δ15N found in fish scales and the average value of δ15N baseline 301 

by location (Jennings & Warr 2003) confirmed our assumption that the observed spatial 302 

differences in sea bass δ15N reflected spatial differences in δ15N of the base of the food web 303 

rather than differences in sea bass feeding strategies. In this context the use of the last growing 304 

season of sea bass scales can represent an advantage in the analysis because the corresponding 305 

isotopic signature takes into account the temporal variability in prey type and abundance across 306 

whole of the previous feeding season. Our results thus suggest that much of the spatial variance 307 

in the δ15N of sea bass along the Welsh coast could be attributed to differences in base δ15N 308 

and not in the diet composition, which could be considered, to a first approximation, similar 309 

across Wales. Similar results have been obtained for other predatory fishes such as dab 310 

Limanda limanda and whiting Merlangius merlangus, for which the spatial variance in δ15N 311 

was mostly attributed to differences in δ15N at the base of the food chain (Jennings & Warr 312 

2003).  313 

Our results also showed that the average δ15N in fish scales tended to increase with latitude. 314 

This south-north gradient of δ15N seems to be confirmed from other studies, which documented 315 

higher values of δ15N associated with cooler temperatures (Jennings et al. 2008) and higher 316 
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levels of oxygen (Radabaugh et al. 2013). While the mechanisms underpinning the spatial 317 

isotopic gradients are not fully understood and several factors may influence the spatial 318 

variation in δ15N values, the degree of resuspension of particulate organic nitrogen is likely to 319 

be a major factor (e.g. Saino & Hattori 1987). Aberdovey (mid Wales) was the only location 320 

where sea bass had lower δ15N compared to two areas further south. It is possible that the sea 321 

bass from Aberdovey (a site at the mouth of a large estuary) were caught along a freshwater-322 

marine gradient, a fact that could explain this apparent discrepancy, as terrestrial inputs to 323 

freshwater bodies are more δ15N-depleted than marine plankton (Schoeninger & DeNiro 1984, 324 

Owens 1987). This interpretation would also be consistent with lower δ13C with respect to fish 325 

from the other coastal areas, which could confirm that sea bass caught in Aberdovey originated 326 

from a feeding area with freshwater influence (Doucett et al. 1999).   327 

Our study also demonstrates that the random forest analysis, although not yet widely used in 328 

marine ecology for hierarchical classification (e.g Mercier et al. 2011), is a powerful statistical 329 

tool, as it allows not only predictors to be used without transformation or exclusion but also 330 

the relative importance of the variables in the classification process to be estimated (Strobl et 331 

al. 2009). Therefore, while δ15N appeared more important than δ13C in classifying adult sea 332 

bass in north Wales (c.f. fish from mid Wales), both variables were necessary to correctly 333 

classify fish from south Wales. Moreover the conditional inference tree allowed us to identify 334 

the range of δ13C and δ15N values associated with each location and thus to establish a 335 

geographic range of the isotopic signatures. Additional variables (e.g. element concentration, 336 

Sr, Ba, Mn and Mg) could be used in the future to improve the discriminatory power of the 337 

random forest and thus the precision level of the biogeochemical tag (Wells et al. 2000, Ramsay 338 

et al. 2011, Seeley et.al 2015). 339 

Our results showed that the stable isotope composition of fish scales provides unique insights 340 

into fish movement at a regional scale (e.g. the Welsh coastline) without the need for expensive 341 

conventional tagging studies. While fine-scale ontogenetic changes in habitat use have been 342 

identified for other fish species (e.g. NE Atlantic orange roughly, Shephard et al. (2007)), the 343 

use of fish scales has been limited to few species to date (Ramsay et al. 2012; Woodcock & 344 

Walther 2014). The analysis of δ13C and δ15N in adult sea bass collected around Welsh waters 345 

showed a high degree of overlap in the isotope composition between north and mid Wales. 346 

This finding could be explained by ecological patterns of sea bass population in mid and north 347 

Wales and/or by abiotic factors such as temperature in these areas. While the overlapping of 348 

the isotopic signature in sea bass scales could indicate the presence of connectivity between 349 
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north and mid Wales for feeding behaviour, it might also depend on a similar temperature range 350 

in these areas, as the isotopic signature is related to productivity, which is temperature-driven 351 

(e.g Fogel & Cifuentes 1993). Fish from south Wales appeared more isolated and characterised 352 

by a very distinctive isotopic signature, especially fish from the most southern areas (Burry 353 

Port and Oxwich-Gower). This finding suggests the possible presence of (at least) two 354 

separated sub-populations of sea bass in Welsh waters with little mixing between sea bass in 355 

the south with those in mid and north Wales.  356 

This separation is based on fish locations during the feeding season, and thus our study 357 

confirms that adult sea bass do spend extended periods of time feeding in regional inshore areas 358 

as suggested by Pawson et al. (2007b and 2008). In this sense, the lack of difference in the 359 

isotopic signature of sea bass caught in Hell’s Mouth-mid Wales (the only area where sea bass 360 

were caught in the same exact location) between feeding and spawning season, support the 361 

previous evidence that adult fish spend most of the feeding season in the same location. In fact 362 

the scale material is laid down during the feeding season and therefore the scales collected 363 

during the spawning season represent the isotopic signature of the area occupied by the fish 364 

during the whole preceding feeding season. Similar fidelity has been demonstrated, through 365 

tagging experiments, for other species in the region, such as plaice Pleuronectes platessa, 366 

which remained on the same feeding grounds throughout the summer and autumn (Dunn & 367 

Pawson 2002). In addition, stock boundaries were defined at a regional level with restricted 368 

stock units in the north-east Irish Sea, the western Irish Sea, and a stock in the south-east Irish 369 

Sea (Dunn & Pawson 2002).  370 

No information on the presence of local separate spawning areas is currently available. Due to 371 

this lack of information, three possible scenarios remain open: 1) the two sub-populations mix 372 

during the spawning season and are part of the same stock, 2) they do not mix during the 373 

spawning season and can be therefore considered as two separate sub-populations, 3) they mix 374 

only partially. Future research should address this topic and the isotopic signatures identified 375 

in this study could be used to track the origin of individuals from spawning aggregations. 376 

However, whichever scenario is correct, it is already clear that different spatial scales of 377 

movement characterize the two sub-populations. Adult sea bass from south Wales are likely to 378 

have a restricted range of movement, not only for feeding behaviour as demonstrated by this 379 

study but also for spawning, considering the proximity of a well-known spawning ground of 380 

the species outside the Bristol Channel (known as “Trevose Head”, Lancaster et al. 1998, 381 

Reynolds et al. 2003). In this sense, the south Wales sub-population would have a “resident” 382 
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behaviour, where feeding grounds and spawning grounds are all within close geographical 383 

proximity to one another. This trait has been found in many populations of the Atlantic cod 384 

Gadus morhua where the residence areas (nursery, feeding and spawning grounds) were 385 

geographically close and had relatively stable environmental conditions (Robichaud & Rose 386 

2004). In contrast, adult sea bass from mid and north Wales either undertake a long-distance 387 

migration to the Trevose Head spawning area and/or other potential spawning grounds in south 388 

Wales/England or, alternatively, a small-scale migration to possible spawning grounds located 389 

off the coast of mid and/or north Wales. Our results provide for the first time insights into a 390 

regional segregation of the sea bass stock, which implies that local/regional management may 391 

be more appropriate than the present single stock approach. In this context, specific regulations 392 

based on regional variation in the ecology and life history of sea bass could facilitate a more 393 

rapid achievement of the conservation objectives.  394 

Our results also suggest that a portion of the largest sea bass adopt estuaries as preferential 395 

feeding areas. In fact all fish with a total length >50 cm caught in estuarine areas showed very 396 

low δ13C, indicating the primary use of estuaries as feeding areas, as freshwater ecosystems are 397 

generally δ13C depleted relative to marine systems (Doucett et al. 1999). It is possible that 398 

interspecific competition for resources has resulted in some big adult sea bass adopting an 399 

estuarine feeding habit. Estuaries have been recognised to support the early phase of 400 

development of the species (Kelley 1988, Lancaster et al. 1998) as well as part of the juvenile 401 

stock (3-5 years old) (Pawson et al. 2005) and the present study stressed the importance of this 402 

habitat for large adult sea bass. While other fish species, such as flathead mullet Mugil 403 

cephalus, have been recognised as using estuarine areas through the juvenile and/or adult life 404 

stages (Elliott et al. 2007), few previous studies have mentioned the presence of adult sea bass 405 

in estuarine habitats in NE Atlantic (Kelley 1987, Kennedy & Fitzmaurice 1972, Pickett & 406 

Pawson 1994). Moreover, these studies focused on describing the opportunistic feeding 407 

behaviour of the species and its different habitat use, without associating estuaries with a 408 

specific ecological role in the adult phase. Our results indicated estuarine feeding of some large 409 

sea bass during extended time periods, possibly during the whole feeding season. Estuarine 410 

areas could therefore be characterised by higher protection levels, if protecting large sea bass 411 

(e.g. large spawners) is a management target.  412 

In conclusion, the use of the natural variability of the stable isotope composition of fish scales 413 

to describe movement patterns of a migratory fish species is an emerging area of research (e.g. 414 

MacKenzie et al. 2011, Ramsay et al. 2012, Woodcock & Walther 2014). This technique has 415 
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useful applications to identify the use of different feeding grounds by individuals from the same 416 

population, and also offers a non-lethal alternative to the use of otoliths to determine 417 

geographic segregation and/or connectivity between foraging areas. Combined δ13C and δ15N 418 

measurements of fish scales can clearly identify regional feeding areas providing insights on 419 

the feeding ecology at local level and contributing to a better definition of the stock structure 420 

and the related management units. 421 
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Table 1. Values (mean ± SD) of δ13C and δ15N in scale material formed during the last growth 583 

period of the adult sea bass Dicentrarchus labrax (40-50 cm TL, n=156) caught in coastal areas 584 

around Wales. 585 

Area Location δ13C (VPDB)‰  δ15N (AIR)‰ 

North Wales (n=51) Colwyn Bay –13.85 ± 0.61 16.76 ± 1.06 

Anglesey –13.35 ± 0.69  15.96 ± 0.50 

Trefor –13.62 ± 0.61 16.06 ± 1.40 

Mid Wales (n=34) Hells Mouth –14.02 ± 0.70 15.64 ± 1.09 

Aberdovey –15.05 ± 0.61 14.84 ± 0.39 

South Wales (n=71) Skokholm Island –12.98 ± 1.20 15.43 ± 0.79 

Tenby –12.45 ± 0.50 14.82 ± 0.62 

Burry Port –12.78 ± 0.68 15.24 ± 1.27 

Gower –12.36 ± 0.48 14.52 ± 0.70 

 586 

587 
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Table 2. Observed vs. predicted feeding locations of adult sea bass derived from the random 588 

forest classification model for training and testing (cross-validation) data sets. 589 

  Predicted 

 

  North Mid South Error (%) 

  train test train test train test train test 

O
b

se
rv

ed
 North 28 8 3 4 8 0 28.2 33 

Mid 8 1 18 4 2 1 35.7 33 

South 7 3 4 0 38 19 22.4 13.6 

 590 

591 



22 
 

Table 3. Conditional variable importance from random forest analysis, expressed as the mean 592 

decrease accuracy (MDA) of the random forest model associated with the removal of each 593 

predictor (δ13C and δ15N) for each location.  594 

Mean decrease accuracy 

 North Mid South average 

δ15N 33.20 5.98 21.53 31.36 

δ13C 14.66 26.44 37.04 47.70 

 595 

  596 
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 597 

 598 

Figure 1. Map of Wales indicating the locations where sea bass were caught for the analysis of 599 

scale carbon and nitrogen stable isotope ratios.  600 

  601 
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 602 

Figure 2. a) Isotopic plot showing the δ13C and δ15N in the scales of adult sea bass caught in 603 

nine different locations around the coast of Wales. b) Two-dimensional representation of the 604 

random forest analysis, showing the degree of separation between locations based on scale δ15N 605 

and δ13C. Open symbols, north Wales; grey symbols, mid Wales and black symbols, south 606 

Wales. 607 

  608 
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 609 

Figure 3. Conditional inference tree on the full dataset (n=156 adult bass, comprising the 116 610 

training cases and the 40 testing cases used in the random forest analysis) using the variable 611 

δ13C and δ15N. Inner nodes (ovals) indicate which variables were used for splitting (threshold 612 

values on the line) and n is the number of adult sea bass falling in each terminal node. Bars 613 

express the proportion of sea bass in the node that are from north, mid or south Wales. 614 

  615 
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 616 

Figure 4. Relationship (regression line) between the average scale δ15N in sea bass captured in 617 

9 locations around the coast of Wales and the corresponding values of predicted spatial 618 

variation in δ15N baseline estimated from the isoscape map in the Irish Sea (Jennings and Warr, 619 

2003) (grey area: 95% confidence interval of the slope of the regression line). 620 

 621 

 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 
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Supplementary material 632 

Supplement 1 633 

Table S1. Absolute isotope values used in the repeated-measures ANOVA to assess the 634 

presence of significant differences in the isotopic signature between samples of the same fish. 635 

Location Individual δ15N δ13C 

Colwyn Bay I1 17.9 -13.8 

Colwyn Bay I1 17.6 -14.1 

Colwyn Bay I1 17.5 -14.2 

Trefor I2 15.6 -13.2 

Trefor I2 16.1 -13.2 

Trefor I2 16.7 -13.3 

Hell’s Mouth I3 15.7 -14.1 

Hell’s Mouth I3 15.1 -13.8 

Hell’s Mouth I3 15.4 -13.9 

Aberdovey I4 14.7 -15.2 

Aberdovey I4 14.8 -15.1 

Aberdovey I4 14.7 -15.0 

Skokholm Island I5 16.4 -12.8 

Skokholm Island I5 16.5 -12.8 

Skokholm Island I5 16.6 -12.9 

Tenby I6 14.8 -12.6 

Tenby I6 14.8 -12.1 

Tenby I6 15.0 -12.8 

Gower I7 15.5 -12.1 

Gower I7 15.5 -12.3 

Gower I7 15.3 -12.3 

 636 

 637 

 638 

 639 

 640 
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Table S2. Absolute isotope values used in the one-way ANOVA to assess possible differences 641 

between the feeding and spawning season for the fish caught in Hell’s Mouth (North Wales) 642 

Season Month δ15N δ13C 

feeding October 16.8 -14.0 

feeding October 17.8 -14.0 

feeding October 15.0 -14.6 

feeding October 14.4 -15.5 

feeding October 15.0 -14.8 

feeding November 16.5 -14.0 

feeding November 16.3 -14.4 

feeding November 15.4 -13.9 

feeding November 14.7 -14.5 

feeding November 17.6 -13.1 

feeding November 14.1 -14.4 

feeding November 15.3 -13.4 

feeding November 14.3 -14.0 

feeding November 14.5 -14.9 

feeding November 15.6 -13.8 

spawning April 15.7 -13.1 

spawning April 15.2 -14.5 

spawning April 14.2 -13.7 

spawning March 15.4 -14.2 

spawning March 14.7 -14.3 

spawning March 16.2 -12.8 

spawning March 15.7 -14.2 

spawning March 17.8 -13.2 

spawning March 14.8 -14.8 

spawning March 15.7 -14.0 

spawning March 16.7 -13.2 

spawning March 16.7 -12.2 

spawning March 14.9 -14.5 

spawning March 14.8 -14.2 

spawning March 17.3 -14.4 

 643 

 644 
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Table S3. Absolute isotope values of the 189 sea bass collected around Wales and indication 645 

of the capture location (coast vs. estuary) used for the Welch’s t-test. 646 

Area Location δ15N δ13C 

North coast 14.9 -14.1 

North coast 16.8 -14.0 

North coast 19.0 -14.2 

North coast 17.0 -13.8 

North coast 16.0 -14.6 

North coast 16.1 -14.5 

North coast 17.0 -13.2 

North coast 15.8 -14.1 

North coast 17.6 -14.0 

North coast 18.6 -13.9 

North coast 16.0 -13.9 

North coast 16.3 -12.2 

North coast 17.0 -14.2 

North coast 16.4 -13.8 

North coast 16.7 -13.1 

North coast 14.7 -15.7 

North coast 16.0 -12.4 

North coast 15.8 -13.2 

North coast 16.3 -12.8 

North coast 15.0 -13.5 

North coast 16.3 -14.2 

North coast 16.3 -14.0 

North coast 16.1 -13.3 

North coast 15.9 -14.1 

North coast 16.1 -12.8 

North coast 17.1 -13.2 

North coast 17.3 -13.8 

North coast 17.9 -13.7 
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North coast 15.8 -14.2 

North coast 17.4 -13.3 

North coast 16.0 -12.7 

North coast 17.3 -13.4 

North coast 15.5 -12.9 

North coast 18.1 -13.3 

North coast 16.6 -12.5 

North coast 17.1 -13.7 

North coast 18.0 -13.4 

North coast 14.3 -14.1 

North coast 16.2 -13.2 

North coast 16.3 -13.6 

North coast 16.2 -13.2 

North coast 15.7 -14.6 

North coast 15.4 -14.6 

North coast 11.1 -14.4 

North coast 14.2 -14.6 

North coast 15.9 -13.7 

North coast 13.7 -14.2 

North coast 16.4 -13.3 

North coast 16.4 -14.8 

North coast 15.6 -13.0 

North coast 16.5 -13.3 

North coast 15.8 -13.8 

Mid coast 16.5 -14.0 

Mid coast 16.3 -14.4 

Mid coast 15.4 -13.9 

Mid coast 14.7 -14.5 

Mid coast 17.6 -13.1 

Mid coast 14.1 -14.4 
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Mid coast 15.3 -13.4 

Mid coast 14.3 -14.0 

Mid coast 14.5 -14.9 

Mid coast 15.6 -13.8 

Mid coast 16.8 -14.0 

Mid coast 17.8 -14.0 

Mid coast 15.0 -14.6 

Mid coast 14.4 -15.5 

Mid coast 15.0 -14.8 

Mid coast 14.7 -15.2 

Mid coast 14.4 -14.4 

Mid coast 14.9 -15.8 

Mid coast 15.3 -14.8 

Mid coast 15.2 -14.3 

Mid coast 13.9 -15.3 

Mid coast 15.4 -14.2 

Mid coast 14.7 -14.3 

Mid coast 16.2 -12.8 

Mid coast 15.7 -14.2 

Mid coast 17.8 -13.2 

Mid coast 14.8 -14.8 

Mid coast 15.7 -14.0 

Mid coast 16.7 -13.2 

Mid coast 16.7 -12.2 

Mid coast 14.9 -14.5 

Mid coast 14.8 -14.2 

Mid coast 17.3 -14.4 

Mid coast 15.7 -13.1 

Mid coast 15.2 -14.5 

Mid coast 14.2 -13.7 
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Mid estuary 15.9 -19.1 

Mid estuary 15.2 -20.5 

Mid estuary 16.2 -19.5 

Mid estuary 15.5 -19.1 

Mid estuary 15.3 -19.5 

Mid estuary 15.5 -19.2 

Mid estuary 16.1 -19.1 

Mid estuary 15.3 -18.5 

Mid estuary 16.1 -19.4 

Mid estuary 15.9 -19.4 

Mid estuary 15.5 -20.1 

Mid estuary 15.6 -19.5 

Mid estuary 15.8 -19.8 

South coast 16.0 -13.9 

South coast 15.3 -12.3 

South coast 14.8 -15.1 

South coast 14.1 -15.2 

South coast 14.7 -12.6 

South coast 14.8 -12.6 

South coast 14.6 -13.4 

South coast 16.8 -13.0 

South coast 14.9 -13.2 

South coast 16.4 -12.8 

South coast 16.1 -12.4 

South coast 16.2 -10.3 

South coast 15.8 -13.0 

South coast 15.4 -13.1 

South coast 15.7 -11.8 

South coast 14.6 -13.2 

South coast 14.4 -13.1 
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South coast 15.1 -12.9 

South coast 15.7 -13.0 

South coast 14.4 -13.2 

South coast 15.6 -12.7 

South coast 16.0 -12.2 

South coast 14.9 -12.5 

South coast 14.8 -12.6 

South coast 14.6 -12.4 

South coast 14.0 -12.3 

South coast 14.8 -12.3 

South coast 14.9 -13.8 

South coast 15.2 -12.1 

South coast 15.0 -12.9 

South coast 14.3 -13.0 

South coast 14.1 -13.0 

South coast 14.5 -12.6 

South coast 14.7 -12.5 

South coast 15.4 -12.5 

South coast 14.9 -12.7 

South coast 14.6 -12.2 

South coast 15.5 -11.9 

South coast 15.5 -12.1 

South coast 13.8 -12.0 

South coast 13.4 -12.3 

South coast 14.3 -11.5 

South coast 13.4 -11.7 

South estuary 15.6 -17.5 

South estuary 14.9 -16.6 

South estuary 16.7 -16.1 

South estuary 16.1 -16.2 
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South estuary 14.9 -17.2 

South estuary 14.3 -20.4 

South estuary 16.5 -16.4 

South estuary 14.0 -17.6 

South estuary 14.9 -16.5 

South estuary 16.2 -16.4 

South estuary 16.1 -17.1 

South estuary 16.7 -17.9 

South estuary 15.2 -16.6 

South estuary 17.0 -19.1 

South estuary 16.7 -15.9 

South coast 14.5 -12.1 

South coast 15.5 -12.9 

South coast 15.4 -12.4 

South coast 13.7 -12.2 

South coast 16.7 -12.9 

South coast 16.2 -14.1 

South coast 17.9 -13.2 

South coast 13.2 -14.2 

South coast 14.8 -13.0 

South coast 16.7 -12.1 

South coast 15.0 -12.2 

South coast 14.7 -12.5 

South coast 14.9 -12.6 

South coast 14.1 -12.6 

South coast 15.4 -11.7 

South coast 14.2 -12.4 

South coast 14.8 -12.7 

South coast 14.9 -11.8 

South coast 14.2 -12.7 



35 
 

South coast 14.8 -12.7 

South coast 14.5 -11.8 

South coast 14.3 -12.0 

South coast 14.7 -12.4 

South coast 14.3 -11.9 

South coast 14.4 -11.8 

South coast 14.9 -12.1 

South coast 15.0 -11.7 

South coast 15.0 -12.4 

South coast 13.9 -12.5 

South coast 16.7 -12.5 

 647 


