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on geodynamic processes for this area—these are tectonic 
uplift and tectonic stability. Considering tectonic stability, 
the fossil reefs would have to be interpreted as lagoonal 
patch reefs, for which no modern counterparts exist in 
the study area. However, in the case of tectonic uplift, we 
conclude that the fossil reefs studied were once situated at 
around 10-m water depth.

Keywords  Taphonomy · Paleoecology · Invertebrates · 
Coral composition · Reefs

Introduction

Coral reefs are geological and biological structures that 
preserve environmental data over thousands of years. This 
makes them useful proxies for sea level (Edinger et  al. 
2007) and climate change (e.g., Lough and Barnes 1997) 
and enables studying these factors on reef-coral commu-
nities in the fossil record (Pandolfi and Greenstein 2007). 
Comparing fossil with extant reef communities requires 
methods that can be employed in both settings. Here we 
present a case study using photo transects and point-
counting of coral coverage and community composition to 
compare past and present reefs from the Egyptian Red Sea 
coast. A number of features make the Red Sea region an 
excellent setting for such an approach: (1) Extensive out-
crops of fossil reefs occur parallel to and in close proximity 
of the modern coastline; (2) these are better preserved than 
many tropical terraces, and (3) the young age of the lowest 
reef terrace facilitates direct comparison with modern reef 
communities.

Pleistocene reef terraces of the Red Sea have been stud-
ied since the late 19th century (Walther 1888) and have 
been investigated over the past few decades with respect 

Abstract  Fossil reefs have the potential to provide impor-
tant data for studies of climate and environmental change. 
This is particularly true for Pleistocene-Holocene coral 
reefs, which predominantly consist of communities undis-
turbed by anthropogenic impact and therefore provide a 
baseline for evaluating the status of modern reefs. We used 
photo transects and point-counting to quantitatively com-
pare two Pleistocene reef terraces of two Pleistocene sites, 
tentatively assigned to marine isotope stage 5e, with habi-
tats (reef flat, reef edge, reef slope at 5- and 10-m water 
depth) of a modern reef near El Quseir, Egypt. The modern 
reef exhibits a clear trend of increasing taxonomic richness 
and diversity from the reef flat towards the reef slope at 
10-m water depth. The most abundant genera are Pocillo-
pora, Acropora, Millepora, and massive Porites, but strong 
differences between individual habitats were evident. The 
most abundant genera in the fossil reefs are massive Porites 
and Dipsastraea. With regard to quantitative composition, 
all modern reef habitats differed significantly from each 
other as well as from the fossil reefs. The fossil reef com-
position is most similar to the modern reef slope habitat at 
10-m water depth. There are two conflicting hypotheses 
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to sea level changes, microfacies, diagenesis, age, and 
faunal composition (Veeh and Giegengack 1970; Dullo 
1986, 1990; Andres et al. 1988; Hoang and Taviani 1991; 
El Moursi et  al. 1994; Gvirtzman 1994; Bosworth and 
Taviani 1996; Strasser and Strohmenger 1997; Taviani 
1998a, b; Plaziat et al. 2008; Lambeck et al. 2011; Parker 
et  al. 2012; Mewis and Kiessling 2013). To our knowl-
edge, however, no study has quantitatively compared the 
faunal composition of modern and nearby fossil reefs in 
an attempt to define the original depositional water depth. 
This is especially worthwhile for the lowermost terraces 
of marine isotope stage (MIS) 5e, which show relatively 
minor diagenetic alteration (Gvirtzman and Friedman 
1977; Dullo 1984, 1986). These reefs are the most prom-
ising target for a past-modern comparison and for evaluat-
ing community stability over geological time scales.

We therefore compare two Pleistocene reef terraces, ten-
tatively assigned to MIS 5e, to the reef flat, reef edge, and 
reef slope at 5- and 10-m water depth of a modern fring-
ing reef at the Egyptian coast of the Red Sea. An estima-
tion of paleo-depth is a prerequisite for comparative studies 
because faunal composition of reefs is strongly depth con-
trolled (e.g., Riegl and Velimirov 1994).

This work was designed to test whether the original 
water depth of Pleistocene reef terraces can be determined 
from their taxonomic composition. The main objectives 
were to (1) characterize the modern and fossil reef habi-
tats regarding their taxonomic composition and diversity, to 
then (2) assess how similar the fossil reef terraces are to the 
different modern habitats.

Materials and methods

Study area

The Recent reef is located at Abu Sauatir (Fig. 1), 12 km 
northwest of El Quseir (26°12′25″N, 34°13′13.2″E). We 
divided it into four habitats: reef flat, reef edge, reef slope 
at a depth of 5 m, and reef slope at a depth of 10 m (Fig. 2). 
The reef is naturally divided into a northern and a southern 
part by a wadi mouth.

The fossil reef terraces are located at Abu Dabbab, 97 km 
southeast of El Quseir (25°19′56″N, 34°44′36″E), and at 
El Mohgar, 13  km southeast of El Quseir (26°0′12.3″N, 
34°20′7″E). They are the lowest terraces at these sites and 
were studied 3–5 m above present sea level (Fig. 3a). The 
reef consists of coral framestones, bindstones dominated 
by coralline red algae or vermetid gastropods, and rud- and 
grainstones, consisting of coral fragments, mollusks, and 
echinoderm debris (Fig. 3b–f). Corresponding to ages pro-
vided for nearby terraces, the reefs are tentatively assigned 

to MIS 5e (i.e., the Eemian stage) between 115 and 130 kyr 
before present (Plaziat et al. 2008).

Field methods

To evaluate the taxonomic composition of the modern reef 
habitats, 16 quadrats of 0.25  m2 per habitat were photo-
graphed during snorkeling (reef flat and edge) or SCUBA 
diving (reef slope) along transects in April 2012. The reef 
edge transects were done at approx. 2-m water depth: the 
wave energy prohibited sampling at shallower depths in this 
habitat at any time of day. The starting point of each transect 
was chosen randomly; from there, photographs were taken 
at intervals between 0.5 and 2 m using a 50 × 50-cm metal 
frame for scaling. The reef flat was divided into a proximal 
and a distal transect of eight quadrats, respectively; the reef 
edge and the reef slope at 10-m depth were divided into 
northern and southern transects with eight quadrats each.

In the fossil reef, we used line transects similar to those 
in the Recent reef. At El Mohgar, we took photographs of 
23 quadrats every 2 m along a tape measure. At Abu Dab-
bab, 16 quadrats were photographed without leaving a gap 
between the individual frames.

The modern sites were evaluated exclusively by ana-
lyzing photographs. For each quadrat, several full-view 
and detail images were taken. In the fossil reefs, in addi-
tion, quadrats were drafted on paper and major constituents 
identified directly in the field to better distinguish between 
in situ corals and coral rubble.

Point-counting was used to produce a quantitative data-
set of the taxonomic composition. A grid with 100 intersec-
tion points was added to the best full-view image for each 
quadrat, resulting in 1600 data points for each of the four 
modern reef habitats and the fossil reef at Abu Dabbab, 
respectively, and in 2300 data points for El Mohgar. Using 
the detail-view images, the taxon under each intersection 
was identified and counted. Percentages of the counts were 
arcsine-root-transformed prior to statistical analysis to gain 
linear data (Legendre and Legendre 1998). Photo-quadrat 
(Bohnsack 1979 and references therein) and grid-point 
intercept sampling (e.g., Pilliod and Arkle 2013) are effi-
cient survey methods, although there might be limitations 
when sampling rare taxa. The standard error of sample 
proportion for each taxon in the modern reef habitats (flat, 
edge, slope 5  m, and slope 10  m) and the fossil reef ter-

races was calculated using the equation SE =

√

p×(1−p)

n
 

and yielded values between 0.3 and 1.2 %. It is worth not-
ing, however, that the size of a coral colony was not always 
smaller than the distance between two grid points (see van 
der Plas and Tobi 1965).

Taxonomic richness and diversity were evaluated 
for each quadrat, and the arithmetic means plus 95  % 
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confidence intervals were calculated for each habitat. 
Richness was measured as the total number of genera and 
diversity was measured with the Shannon–Wiener index 
(Shannon 1948). The Margalef index (Margalef 1958) and 
Simpson index (Simpson 1949) showed similar trends as 
the Shannon–Wiener index and are therefore not shown 
here. The Mann–Whitney U test (Mann and Whitney 1947) 
was used to compare the northern and the southern tran-
sects of the reef edge and the slope.

We evaluated the difference between all modern reef 
habitats and the fossil reefs using one-way analysis of 
similarity (ANOSIM; Clarke and Warwick 1994). Pairwise 

comparisons yielding R values above 0.75 (well separated), 
above 0.5 (overlap, but clearly separated), above 0.25 
(stronger overlap, poorly separated) or under 0.25 (negli-
gible separation) display the degree of separation between 
habitats (Clarke and Gorley 2006). Non-metric multidimen-
sional scaling (MDS; Kruskal 1964) was used to visualize 
the differences among all habitats. The Bray-Curtis simi-
larity index (Bray and Curtis 1957) was chosen as distance 
measure. The distances between two points represent the 
ranks of dissimilarity (Clarke and Gorley 2006). Similar-
ity percentages (SIMPER; Clarke and Warwick 1994) were 
calculated to evaluate which taxa primarily contributed to 

Fig. 1   Study sites of the modern reef at Abu Sauatir and the fossil reef terraces at El Mohgar and Abu Dabbab, Egypt
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dissimilarities between the habitats. These analyses were 
done using the software package PAST (Hammer et  al. 
2001) and PRIMER 6 (Clarke and Gorley 2006).

Scleractinians and Millepora were identified to genus 
level because species identification based on photographs 
alone was not consistently possible. Genus data, how-
ever, are considered sufficient for the purpose of this study 
because, based on an extensive data set, Pandolfi (2001) 
concluded that analyses of Quaternary coral communities 

are robust to taxonomic scale between species and genus 
level. Sessile mollusks were identified to genus level but 
later pooled due to low numbers. Other biota categories 
included Porifera, octocorals and non-coralline algae. Coral 
rubble, dead corals, sand and coralline algae could not be 
consistently distinguished and were therefore combined for 
the analyses (category “coral rubble/coralline red algae”).

In addition, data of the northern and southern reef edge 
as well as reef slope transects were pooled, as there were no 

Fig. 2   Modern reef habitats: transect pictures of the a reef flat with Stylophora; b reef edge with Acropora, Millepora, Pocillopora, and others; 
c reef slope in 5-m depth with Porites, Millepora, and others; and d reef slope in 10-m depth with Porites and Acropora, and others
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Fig. 3   Fossil reef terraces: a the studied terraces at El Mohgar, b 
framestone of Lobophyllia patch reef at Abu Dabbab, c framestone 
with coral Leptoria and venerid bivalve Periglypta at Abu Dabbab, d 
bindstone with coralline red algae at El Mohgar, e bindstone with the 

vermetid gastropod Dendropoma maxima and coralline red algae at 
El Mohgar, f rudstone with spines of Heterocentrotus mamilatus and 
gastropod Turbo radiatus at El Mohgar
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significant differences between the two sites (Mann–Whit-
ney test; U =  401.5; p =  0.3812, U =  447; p =  0.9667, 
respectively). Three samples (one modern, two fossil) 
were dominated by single taxa and excluded from statis-
tical analysis because they were outliers in all statistical 
analyses.

Results

Abundance and diversity of the modern reef

Taxonomic richness and diversity increase from the reef 
flat towards the reef slope, with a small drop on the reef 
slope at 5-m depth (Fig.  4). Stylophora is the only coral 
genus found on the reef flat; the reef edge holds 10, the reef 
slope at 5-m depth 16, and the slope at 10-m depth 17 gen-
era of stony corals (Table 1). Acropora and Pocillopora are 
the most abundant hexacorals on the reef edge; Pocillopora 
is also dominant at 5-m depth (Table 1; Figs. 5, 6). Porites 
is the dominant genus at 10-m depth, followed by Acropora 
(Table 1; Figs. 5, 6).

Abundance and diversity of the fossil reefs

The fossil reefs in El Mohgar and Abu Dabbab have simi-
lar compositions (Table 1; Fig. 7): Coral rubble, sand and 
coralline algae account for 67 and 73 %, respectively, and 
Porites is the most abundant coral genus. However, Dipsas-
traea makes up 13 % of total coverage in El Mohgar, but is 
rare (3 %) in Abu Dabbab). Leptoria is exclusively found in 
Abu Dabbab. Overall, nine taxa were found in Abu Dabbab 
and El Mohgar, respectively (Table 1).

Species richness and diversity are lower at the fossil 
sites than on the modern reef edge and slope, but consid-
erably higher than on the reef flat. The Shannon-Wiener 
index is marginally lower in El Mohgar (H = 1.040) than in 
Abu Dabbab (H = 1.086; Fig. 4).

Modern reef habitats in comparison

Most modern reef habitats and the two fossil sites are well 
separated from each other. Among the modern habitats, 
however, the reef slope at 5-m water depth differs only 
slightly from the reef edge and the slope at 10-m depth 
(Table 2). The reef flat is the most distinct modern reef hab-
itat, as is also shown by ordination (Fig. 8). The other three 
modern reef habitats overlap partially.

Coral rubble/coralline algae is the most important cat-
egory in all habitats. On the reef flat, this category contrib-
uted almost 90 % to average similarity (see Electronic Sup-
plementary Material, S1). On the reef edge, coral rubble/
coralline algae (64 %) and Pocillopora (16.6 %) are impor-
tant. The reef slope in 5-m depth is similar to the reef edge: 
four groups contribute 94  % to average similarity; coral 
rubble/coralline algae (53  %) is followed by Pocillopora 
(24 %) and Millepora (13 %). In 10-m depth, five groups 
contribute 93 %; most important are coral rubble/coralline 
algae (56 %), Acropora (15 %), and Porites (15 %).

Coral rubble/coralline algae is also the largest contribu-
tor to the average dissimilarity between the reef flat and all 
other modern reef habitats (see Electronic Supplementary 
Material, S2). The reef flat is best distinguished from the 
reef edge and reef slope at 5-m water depth by Pocillopora, 
and from the reef slope at 10-m depth by Porites, Acro-
pora, and coral rubble/coralline algae. Millepora, Pocil-
lopora, and coral rubble discriminate the best between the 
reef edge and the reef slope in 5 m, and Porites, Acropora, 
and Pocillopora between the reef edge and the reef slope at 
10 m. The two reef slope habitats are best distinguished by 
Pocillopora, (highly abundant at 5-m depth), followed by 
Millepora, Porites, and Acropora.
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Modern versus fossil reefs

Results of ANOSIM indicate a very high similarity between 
the two fossil sites, however, both are well separated from 
all modern habitats (Table 2). The reef slope at 10-m depth 
is the most similar to the fossil sites (R values < 0.6) of all 
habitats in the Recent reef. These results are reflected in the 
MDS (Fig. 8), where the reef slope at 10 m and the two fos-
sil sites plot relatively close to each other.

Coral rubble/coralline algae and Porites contribute more 
than 90 % to the average similarity in Abu Dabbab and El 
Mohgar (see Electronic Supplementary Material, S1). Fif-
teen and fourteen taxa contribute over 90 % to the average 
dissimilarity between Abu Dabbab/El Mohgar and the reef 
slope at 10-m depth, respectively (see Electronic Supple-
mentary Material, S2). Acropora, coral rubble/coralline 

Table 1   Percentage cover of 
all taxa and taxonomic groups 
found in the modern and fossil 
reefs

CR/CA Coral rubble/Coralline algae

Reef flat Reef edge Reef slope 5 m Reef slope 10 m El Mohgar Abu Dabbab

CR/CA 85 56 51 56 67 73

Stylophora <1 2 <1 1 1

Pocillopora 9 18 2 <1

Porites <1 5 15 16

Montipora <1 2 3

Acropora 7 3 10 <1 <1

Millepora 9 15 2 <1 <1

Goniastrea 4 <1 1

Octocorals 3 6

Sessile molluscs <1 <1 <1 <1

Non-coralline algae 14 7 1 1

Porifera <1 <1 1 <1

Dipsastraea 1 <1 1 13 3

Favites 1 <1 <1 1 <1

Leptoria 1 <1 4

Hydnophora <1 <1 <1

Coscinaraea <1

Tubastrea <1

Astreopora 1

Psammocora <1

Pavona 1

Leptoseris 1 <1

Cyphastrea <1

Pachyseris <1

Gardineroseris <1 1

Echinopora <1 <1

Turbinaria <1

Siderastrea <1

Galaxea 1 1

Lobophyllia <1 <1

Total (n) 5 16 21 22 10 10
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Table 2   R values (bottom 
left) and Bonferroni-corrected 
p values (top right) of the 
pairwise comparisons between 
the different habitats of the 
modern reef and the fossil 
reefs in Abu Dabbab and El 
Mohgar with one-way ANOSIM 
(distance measure: Bray–Curtis 
similarity index)

R overall = 0.6065; p = 0.0001

Reef edge Reef flat Slope 5 m Slope 10 m Abu Dabbab El Mohgar

Reef edge 0.0015 0.0030 0.0015 0.0015 0.0015

Reef flat 0.5129 0.0015 0.0015 0.0015 0.0015

Slope 5 m 0.3067 0.9515 0.0015 0.0015 0.0015

Slope 10 m 0.4515 0.8006 0.4832 0.0015 0.0015

Abu Dabbab 0.6814 0.6859 0.8361 0.5175 0.9975

El Mohgar 0.7795 0.6903 0.8588 0.6020 0.07889
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algae, and Porites (with decreasing contribution) are the 
three most discriminating taxa between the reef slope at 
10  m and the Pleistocene assemblage of Abu Dabbab, 
whereas for El Mohgar these are Acropora, Porites, Dip-
sastraea, and coral rubble/coralline algae.

Discussion

Although we found a significant difference between all 
modern predefined reef habitats, the degree of separa-
tion varies considerably. The reef edge and the reef slope 
at 5-m depth are the least separated, probably because the 
difference in water depth is small. Including images from 
the most wave-exposed part, on the actual reef crest, would 
probably have led to slightly different results, but this was 
not possible during our fieldwork.

The Abu Sauatir reef shows the assemblages typical for 
wind-exposed settings with a steep relief as described by 
Riegl and Velimirov (1994) from the northern Red Sea. A 
relatively high abundance of Millepora on the reef edge 
and the upper reef slope has also been documented for 
other localities in the northern Red Sea (e.g., Loya and Slo-
bodkin 1971; Riegl and Velimirov 1994) and indicates the 
exposition to currents (Riegl and Piller 1997).

A comparison of coral coverage data of the modern 
reef suggests similarities in mean values and trends with 
water depth with nearby localities: At Abu Sauatir (this 
paper), coral cover is the highest at 10-m depth, nearly as 
high at 5 m and at the reef edge, and clearly the lowest on 
the reef flat. The drop in diversity from reef edge to reef 
slope at 5-m depth can be attributed to the dominance of 
Millepora and Pocillopora at 5 m. The sites examined by 
Riegl and Velimirov (1994) at Hurghada had similarly high 
coral coverage, with values ranging from 36 to 82 % (plus 
considerable soft coral cover at some of their sites). Stony 

coral coverage was not significantly different between the 
sheltered, semi-exposed, and exposed sites, and the shel-
tered group of reefs included both the highest and lowest 
coral cover observed by Riegl and Velimirov (1994). Riegl 
and Piller (2000) compared live coral coverage in differ-
ent reef habitats at Safaga in the northern Red Sea and also 
found uniformly high coverage ranging from 43 to 59  % 
in reef crest, reef edge, reef slope and slope base habitats 
of exposed and semi-exposed sites. Sheltered localities, 
however, had strongly variable coverage ranging from 24 
to 26 % on the reef crest and slope base sites, respectively, 
to 68 % on the reef edge and even 85 % on the slope and 
in and low-relief areas. Alter (2004) surveyed the species 
composition, zonation and diversity patterns of reef-build-
ing coral communities in the Gulf of Aqaba. In contrast to 
our study, he found coral cover to be the highest (36.5 %) 
on the upper reef slope at 0.5–3 m-depth, and it decreased 
with increasing depth to 20  % (3–7  m) and 13.4  % 
(8–12 m). With the exception of the reef flat (11.1 %), those 
coverage values are lower than on the modern reef in Abu 
Sauatir. Loya (1972) reported a higher mean coverage from 
Eilat, but the overall trend of decreasing coverage from the 
reef edge to the reef slope was the same.

The quantitative composition of the fossil assemblages 
at the two sites was compared to the modern habitats in 
order to estimate their depositional water depth. At large 
spatial scale by-occurrence subsampling leads to interpret-
able results (Kiessling et  al. 2012). However, we did not 
subsample our data due to low numbers of quadrats (16 
per modern reef habitat, 39 in the fossil reefs) and genera 
(only nine genera of stony corals were found in the fossil 
reefs). The fossil reefs are most similar to—but still signifi-
cantly different from—the modern reef slope at 10-m water 
depth. There are two possible interpretations: (1) the fos-
sil terraces belong to quiet-water conditions of a lagoon, 
which would also show a similar species composition, or 
(2) the fossil terraces belong to a reef slope at about 10-m 
water depth and differences to the modern reef at this depth 
reflect taphonomic bias, and/or natural temporal and spatial 
variability of coral communities.

Porites is among the dominant taxa at both fossil locali-
ties. Modern communities dominated by massive Porites 
are either taken as an indicator for shallow reef environ-
ments with moderate wave energy such as back-reef mar-
gins or lagoons (Riegl and Velimorov 1994; Veron 2000; 
Montaggioni 2005; Gischler et al. 2008; Hongo and Kay-
anne 2011) or may indicate low-energy environments at 
depths of 10–15 m (Done 1982; Riegl and Velimorov 1994; 
Riegl and Piller 1999; Grossman and Fletcher 2004; Mon-
taggioni 2005). At our modern study site, massive Porites 
increased with water depth, being the dominant genus in 
10-m depth. Back-reef zones are absent in the modern reef 
we studied and could thus not be used for comparison to 

Fig. 8   MDS plot of all reef habitats (distance measure: Bray–Curtis 
similarity index)
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the fossil reefs. However, the mean sea level was higher 
during the Eemian, and back-reef deposits are present in 
MIS 5e reefs at Quseir el Qadim (Plaziat et al. 1998; Tavi-
ani 1998a). It is therefore possible that the Porites- and 
merulinid-dominated coral communities of the fossil reef 
terraces were once situated in a lagoonal back-reef habitat. 
The idea of tectonic uplift in this area has been rejected in 
numerous publications (e.g., Hoang and Taviani 1991; Bos-
worth and Taviani 1996; Plaziat et al. 1998, 2008), which 
supports the interpretation of the fossil terraces as back-
reefs rather than reef slopes. However, in a study that takes 
glacio-hydro-isostatic processes into account, Lambeck 
et al. (2011) conclude that long-term tectonic uplift along 
the northern and central sides of the Red Sea is more likely 
than tectonic stability. The uplift rate for Quseir el Qadim is 
stated as 0.057 mm per year and the observed Last Intergla-
cial sea level as 7 m higher than today (Plaziat et al. 2008; 
Lambeck et al. 2011). Thus, the MIS 5e fossil reef terraces 
that are situated 3–5  m above sea level today could have 
been reef slopes at around 10-m depth or deeper.

Arborescent corals and most notably Milleporidae, 
which are abundant in certain zones of the studied modern 
reefs, were absent or underrepresented in the fossil reefs 
studied here. This difference could result from the fossil 
sites representing a lagoonal habitat that is not present in 
the modern reef we studied. Another possible reason for 
this discrepancy, however, is taphonomic bias because life 
and death assemblages of coral reefs typically differ signif-
icantly (Greenstein and Pandolfi 1997; Pandolfi and Green-
stein 1997a, b; Edinger et al. 2001). These differences are 
mostly attributed to growth form biases, typically towards 
arborescent growth forms in death assemblages, but are 
also influenced by the environment (Greenstein and Pan-
dolfi 2003).

Finally, the differences between the fossil sites studied 
and any of our studied modern habitats could reflect the 
natural spatial and temporal variability observed in the 
modern Red Sea. The modern reef was 25 and 110  km 
away from the fossil reef terraces in El Mohgar and Abu 
Dabbab, respectively. Thus, differences between modern 
and fossil reefs could be partly caused by such local effects. 
In the northern Red Sea, however, differences between 
coral communities at different localities and water depths 
are mostly due to hydrodynamic exposure, with massive 
Porites always being characteristic for sheltered conditions 
(Riegl and Velimirov 1994). Moreover, coral coverage may 
differ widely in the northern Red Sea as outlined above, but 
coral zonation is very conservative (e.g., Riegl and Velimi-
rov 1994; Riegl and Piller 1997). In a survey that spanned 
20  years, a trend towards increasing community homog-
enization and decreasing average size of coral colonies in 

the Red Sea was found and related to the impact of climate 
change (Riegl et al. 2012). These trends, however, are sub-
tle compared to the strong differences between the modern 
and fossil reefs in our study. We are therefore confident that 
these differences reflect either different habitats or tapho-
nomic bias and not natural spatial or temporal variability of 
coral communities in the northern Red Sea.

Conclusions

This is one of the few attempts to evaluate the depositional 
water depth of late Pleistocene reef terraces (here tenta-
tively assigned to MIS 5e) at the Red Sea by quantitative 
analysis of coral coverage and taxonomic composition (see 
also Mewis and Kiessling 2013). The studied modern reef 
at Abu Sauatir shows the assemblages of wind-exposed 
settings with a steep relief that are typical for the northern 
Red Sea. Live coral coverage is similar to values reported 
from other localities in the region but differs strongly from 
those reported from the Gulf of Aqaba. Except for the reef 
flat, the fossil reefs studied at Abu Dabbab and El Moh-
gar were less diverse and less rich in taxa than the modern 
reef habitats. Considering tectonic activity and sea-level 
change, the fossil reefs must have been situated at 10-m 
depth or deeper. This is corroborated by statistical analy-
sis: While the fossil reef terraces are significantly differ-
ent from all modern habitats, they are most similar to the 
modern reef slope at 10-m depth. We attribute differences 
to the modern reef slope mainly to selective loss of arbo-
rescent and branching corals during fossilization and mix-
ing of life and death assemblages in the fossil reef. How-
ever, should the hypothesis of tectonic stability be correct, 
a second way to interpret the data is that the fossil reefs 
belonged to a back-reef lagoon, which is absent in the 
modern reef.
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