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A study of dye anchoring points in half-squarylium
dyes for dye-sensitized solar cells†

Arthur Connell,a Peter J. Holliman,*a Matthew L. Davies,a Christopher D. Gwenin,a

Sophie Weiss,a Mateusz B. Pitak,b Peter N. Horton,b Simon J. Colesb

and Graeme Cookec

This paper reports the synthesis of a series of new half-squaraine dyes (Hf-SQ) based around a common

chromophoric unit consisting of linked indoline and squaric acid moieties. Carboxylate groups have been

incorporated onto this core structure at four different points to study the influence of the anchoring

group position on dye-sensitized solar cell (DSC) device performance. Dyes have been linked to TiO2

directly through the squaric acid moiety, through a modified squaric acid unit where a vinyl dicyano

group has replaced one carbonyl, via an alkyl carboxylate attached to the indole N or through a

carboxylate attached to the 4 position of a benzyl indole. Contact angle measurements have been

studied to investigate the hydrophobic/hydrophilic properties of the dyes and the results have been

compared to N719 and Z907. Full characterization data of all the dyes and synthetic intermediates are

reported including single-crystal X-ray structural analysis for dye precursors; the indole (2a) and the half-

squarylium esters (3a) and (6b), as well as the dyes (4c), (8) and (12). Dye colours range from yellow to

red/brown in solution (lmax range from 430 to 476 nm) with 3 ranging from 38 000 to 133 100 M�1

cm�1. The performance of the dyes in DSCs shows the highest efficiency yet reported for a Hf-SQ dye

(h ¼ 5.0%) for 1 cm2 devices with a spectral response ranging from 400 to 700 nm depending on the

dye substituents. Co-sensitization of half-squarylium dye (7b) with squaraine dye (SQ2) resulted in a

broader spectral response and an improved device efficiency (h ¼ 6.1%). Density functional theory (DFT)

calculations and cyclic voltammetry have been used to study the influence of linker position on dye

HOMO–LUMO levels and the data has been correlated with I–V and EQE data.
O'Regan and Grätzel's breakthrough in DSC devices used Ru
bipyridyl dye N3 to sensitize nanoparticulate TiO2.1 Since 1991,
Ru-bipy dyes have remained a widely used family of DSC dyes.2

However, these dyes are expensive which is partly due to raw
material costs but also due to lengthy purication procedures
which hinder scaling and they have relatively low molar
extinction coefficients (3) and generally poor spectral response
above 600 nm leading to DSC efficiencies of 11.1% for N719
(ref. 3) and 11.4% for C101.4 This has led to the development of
“Ru-free” organic DSC dyes (e.g. triphenylamines,5 coumarins6

and indolines7) which absorb in the same region as Ru-bipy
dyes (450–600 nm) where AM1.5 solar intensity is highest.
Generally, these organic dyes are simpler to purify than Ru-bipy
Gwynedd LL57 2UW, UK. E-mail: p.j.
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hemistry 2014
complexes and have signicantly higher 3. This allows thinner
photo-electrodes to be used which can reduce recombination
losses and improve device voltages. High 3 is also advantageous
when co-sensitizing the TiO2 electrode to broaden spectral
response because if fewer dye sorption sites utilized for the dye
harvesting light at 400–650 nm, this leaves more space for near
infrared (NIR) dyes which absorb at l > 650 nm.

Extending DSC spectral response remains key to increasing
device efficiency. This has led to the development of panchro-
matic dyes (e.g. “Black dye”,8 squaraine9–12). However, the
synthetic and purication procedures associated with such dyes
make them expensive and ensuring optimized spectral
response across 400–900 nm in a single dye has proved very
difficult. Co-sensitizing DSC photo-anodes with combinations
of two or more dyes is another approach to increasing light
harvesting13–16 which has led to the rst reports of ultra-fast co-
sensitization17,18 and h > 12% for a combination of porphyrin
and triphenylamine dyes.19

Co-sensitization requires dyes which can harvest longer
wavelength photons. In this context, squaraines have been
studied as DSC dyes20–22 because of their high 3 and lmax $

650 nm where Ru-bipy dyes are less effective sensitizers.
J. Mater. Chem. A, 2014, 2, 4055–4066 | 4055
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Scheme 1 Dye anchoring points on half-squaraine chromophore.
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Half-squarylium (Hf-SQ) dyes are produced as an intermediate
during the synthesis of unsymmetrical squaraine dyes.23,24 Hf-
SQ dyes are known to be uorescent25 and have been tested in
ZnO giving h ¼ 0.27% (ref. 26) 0.53%,27 and, more recently, in
TiO2 DSC devices giving h ¼ 3.54%.28 The Hf-SQ unit is also
interesting because it offers a number of locations where a
carboxylate anchoring group can be positioned. It is widely
believed that the most efficient DSC dyes possess a donor–p
bridge–acceptor (D–p–A) conguration.29 In this paper, we have
used the synthetic exibility of the Hf-SQ moiety to investigate
the inuence of anchor position on DSC performance using a
common chromophoric unit. Scheme 1 shows the anchor
points tested (A/B ¼ indole aromatic moiety, C ¼ alkyl carbox-
ylate on the indole N, D ¼ carbonyl or vinyl dicyano moiety and
E ¼ H+ for an acid or an alkyl group for an ester). We believe this
the rst report of this type. We have also investigated the effect
of varying Hf-SQ side chain on dye/TiO2 surface hydrophobicity.
As such, this paper reports the synthesis of new Hf-SQ dyes
along with detailed characterization, calculations of HOMO–

LUMO energy levels and electron density distributions which
have been correlated with DSC device testing. The co-sensiti-
zation of Hf-SQ and squaraine dyes has also been studied which
offers the potential to reduce dye cost whilst also improving
spectral response and device efficiency due to both sensitizers
being prepared from the same synthetic pathway.
Scheme 2 Synthetic pathways to half-squaraine dyes.
Results and discussion
Dye synthesis

The synthetic routes used to produce the Hf-SQ used in this
work are shown in Schemes 1 and 2. The rst step is the
esterication of squaric acid in ethanol to give (1) which was
prepared according to the method described by Terpetschnig
et al. in good yield with spectroscopic data in line with the
literature.30 Compounds (2a–c) and (5a–b) were prepared using
a general N-alkyl substitution reaction at the indole nitrogen
with various iodo-alkanes.31 All of the materials were prepared
in high yield (>90%) with spectroscopic data in line with the
literature.31 The molecular structures of (2a), (2b) and (5a) have
been conrmed by single crystal X-ray analysis (Fig. 1).
Compounds (2a–c) and (5) were reacted with (1) to prepare (3a–

c) and (6), respectively. In addition, single crystal analysis of (3a)
shows the expected conguration (Fig. 1). Finally, hydrolysis of
(3a–c) and (6a–c) using NaOH as described elsewhere20,30 gives
4056 | J. Mater. Chem. A, 2014, 2, 4055–4066
the Hf-SQ dyes (4a–c) and (7a–b), respectively. The target
compounds (4a–c) and (7a–b) were analyzed using 1H and 13C
NMR, high resolution mass spectrometry, UV-visible spectros-
copy, I.R. spectroscopy and melting points. In addition, single
crystal analysis of (4b) and (4c) sodium salts show the expected
molecular conguration as shown in (Fig. 3 and 4, ESI†). The
synthetic routes to (8), (10) and (12) are shown in Scheme 2.
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 Crystal structures of dye precursors and dyes (a) (2a), (b) (2b), (c) (3a), (d) (5a), (e) (6b), (f) (9) and (g) (12). Displacement ellipsoids – 50%
probability.
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In situ hydrolysis of (6c) together with nucleophilic substitution
of a squaric acid carbonyl with malononitrile was used to
prepare compound (8). These reaction conditions have been
reported elsewhere in the literature for the preparation of
related vinyl dicyano substituted Hf-SQ molecules.23,32 Dye (10)
and (12) were prepared by reacting (9)33 and (11)34 with (1),
respectively. All of the dyes were isolated in high yield (>75%)
and characterised using 1H, 13C NMR, high resolution mass
spectrometry, melting points, infrared and UV-visible spec-
troscopy. The expected molecular conguration (8) (sodium
salt) and (12) with the carboxylate linker groups sited on a vinyl
dicyano-derivatized squaraine unit and on the benzyl of the
This journal is © The Royal Society of Chemistry 2014
indole, respectively have been conrmed by, single crystal X-ray
analysis (Fig. 1) and (Fig. 6 ESI†). Whilst some structurally-
related Hf-SQ dyes and their precursors have been reported
previously,20,30 (5), (6b), (7b) and (8) are variants (see ESI†) with a
dodecyl chain attached to the nitrogen of the indole. The
spectroscopic data for these new compounds are in line with the
previously reported data (see ESI for references†). Dye (10) is
signicantly different to previously reported Hf-SQ dyes due to
the linker being attached to the nitrogen of the indole. However,
the 1H and 13C NMR of (10) show resonances in the expected
regions for the various functional groups in the molecule and
high resolution mass spectrometry has identied the expected
J. Mater. Chem. A, 2014, 2, 4055–4066 | 4057

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1039/C3TA15278B


Fig. 2 Contact angle measurements and pictures for TiO2 surfaces
dyed with (a) N719, (b) Z907, (c) (7b), (d) (8), (e) (10) and (f) (12).

Table 1 Contact angles for dyes sorbed on TiO2 photo-electrodes

Surface Contact angle/�

N719 45.8 � 3.0
Z907 110.1 � 5.0
(7b) 42.3 � 3.0
(8) 25.5 � 3.0
(10) 38.7 � 3.0
(12) 106.2 � 4.0
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mass for this compound. In addition, the expected functional
groups, including the carboxylate moiety, have been identied
using infrared spectroscopy and (10) has a lmax of 440 nm and
an extinction coefficient of 116 000 M�1 cm�1 in ethanol
measured using UV-visible spectroscopy.

The new dyes in this paper have been designed with bulky
side groups to try to minimize inter-molecular interactions
which can give rise to dye aggregation and increased recombi-
nation processes between adsorbed dye molecules on the TiO2

surface. This is an established approach to DSC dye design,
which has been described previously.2,3 However, this can make
it more difficult to grow single crystals for X-ray analysis which
hinders structural studies of DSC dyes. Using careful purica-
tion and slow evaporation, it was possible to grow suitable
crystals of several HF-SQ dyes and precursors reported
including; (4c), the esteried precursor of (7b) i.e. (6b), (8) and
(12). Analysis of the crystal structure obtained from (4c) i.e. the
molecule containing the longest and potentially most hydro-
phobic alkyl unit (Fig. 4, ESI†) shows a complex structure where
the negatively charged squaric acid moiety is balanced by
sodium ions but with several molecules H-bonded together
through the carbonyl and C–OH of this acyloin moiety (ESI,
Fig. 5 and Table 4†). The hydrophobic hexadecyl alkyl chain is
then arranged pointing away from the hydrophilic, electrostat-
ically charged squaric acid linker group in the same way that
might be observed in a surfactant. Interestingly, this localized
arrangement is then extended to the wider crystal packing
arrangement so that alternating layers of hydrophilic squaric
acid and hydrophobic alkyl chains can be observed (Fig. 5,
ESI†). This structural arrangement is important in the context
of DSC devices because these dyes were designed with the hope
that the charged, hydro-philic squaric acid moiety of the Hf-SQ
dyes (4a–c), (7a–b) would chemisorb to the TiO2 surface through
a bi-dentate ester-like linkage whilst the long chain alkyl moiety
might point away from the surface (Fig. 3). It was also hoped
that this localized structure might extend to the inter-molecular
packing arrangement of dyes on the TiO2 surface creating a
hydrophobic surface and that this might affect electrolyte–dye
interactions and device stability in a similar manner to that
which occurs for Z907 versus N719.35 To test this hypothesis,
contact angles have been measured for TiO2 electrodes dyed
either with N719, Z907, (7b), (8), (10) and (12) are shown in Fig. 2
and Table 1. The data show that lms dyed with N719 have a
lower contact angle and are relatively hydrophilic by compar-
ison to lms dyed with Z907 in line with literature reports35,36 for
these and other dyes incorporating various hydrophobic
molecular entities such as the alkyl chains on Z907.35 Interest-
ingly, although (7b) and (8) both contain dodecyl alkyl chains
attached to the nitrogen of the indole moiety, neither dye
displays the expected hydrophobic properties that Z907 does
with lower contact angles observed than for N719. Neither do
(7b) or (8) show enhanced hydrophobicity relative to (10), which
does not contain a long chain alkyl unit. By comparison, (12)
does show a contact angle similar to Z907 despite possessing a
shorter (octyl) alkyl chain compared to the longer, dodecyl unit
in (7b) and (8). This suggests that hydrophobicity is also inu-
enced by other factors as well as alkyl chain length. These are
4058 | J. Mater. Chem. A, 2014, 2, 4055–4066
believed to include the orientation of individual dye molecules
on the surface which will, in turn, inuence the orientation of
the alkyl chain to the surface and, hence, any inter-molecular
dye interactions and wider surface arrangement of dyes. All of
these factors are important because contact angles only
measure average surface hydrophobicity which results from the
collective action of many molecules across the surface. For DSC
dyes, such as Z907, where a dye monolayer is believed to form, it
is reported that the alkyl chains are orientated towards the
periphery of the adsorbed dye such that these groups will be the
rst part of the molecule in contact with any species
approaching the TiO2 surface. For the Hf-SQ dyes, the poor
hydrophobicity of (7b) and (8) by comparison to (10) could be
due to the alkyl chains being orientated in a way that does not
point them towards the periphery of the molecule, or because a
complete monolayer has not formed and/or because the alkyl
chains do not form a collective surface. This is clearly not the
case for (12) and therefore the position of the linker group and
alkyl chains result in an orientation of the alkyl chain to repel
hydrophilic species. Equilibrium dye loading measurements
show that 81.7 mg cm�2 of (7b) sorbs to titania whilst (10) and
(12) show comparable and much lower dye loadings at 33.9 and
34.0 mg cm�2. It was not possible to measure the dye loading of
(8) because this dye bleached rapidly and completely on
This journal is © The Royal Society of Chemistry 2014
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Fig. 3 (a) Colours and molecular configurations of selected dyes in
solution and sorbed to TiO2 and normalized UV-visible spectra of (b)
dyes in solution and (c) dyes adsorbed onto TiO2 films. Data show (7b)
dotted line, (8) long dashes, (10) short dashes and (12) solid line.
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exposure to alkali. Dye loading correlates with Jsc for (7b), (10)
and (12) with the highest dye loading and Jsc for (7b) whilst
lower dye loadings and Jsc are observed for (10) and (12). In
addition, the broader spectral response of (10) relative to (12)
explains the increased Jsc of (10) compared to (12). The dye
loading data further suggest that dye orientation is important
and appears to be more inuential than dye loading when
inuencing contact angles (assuming dye uptake is complete).
Interestingly, very low contact angles were observed for all dyes
when measurements were made using the electrolyte solvent
methoxypropionitrile instead of water suggesting complete
wetting of the surface should occur in DSC devices. This should
This journal is © The Royal Society of Chemistry 2014
ensure the redox couple (I3
�/I�) is able to interact with the dye-

oxide surface avoiding any dye regeneration limitations on
device performance.

The optical properties of the dyes (7b), (8), (10) and (12) have
been studied both in solution and adsorbed to translucent TiO2

lms (Fig. 3). (12) has a lmax at 428 nm (133 100 M�1 cm�1) in
solution which red shi�s to 444 nm when adsorbed to TiO2.
Bathochromic shi�s are observed for (7b) (lmax 442 nm, 38 000
M�1 cm�1) and (10) (lmax 440 nm, 116 000 M�1 cm�1) in solu-
tion which are attributed to the increased conjugation from the
naphthyl indole by comparison to the benzyl indole in (12). (10)
also exhibits narrower absorption peaks than (7b) and the
solution appears bright orange by comparison to the more
diffuse yellow hue of (7b) and (12). Furthermore, a decrease in
the extinction coefficient is observed for (7b) compared to (6b)
which is similar to observations reported in the literature for
other de-esteried Hf-SQ molecules.26,28 A relatively large bath-
ochromic shi� and signicantly broadened absorption peaks
are observed for (7b) and (10) when adsorbed to TiO2 (Fig. 3). To
help understand these effects, the HOMO and LUMO maps for
molecules (7a), (8), (10) and (12) have been calculated (Fig. 4).
All of the dyes show that both the HOMO and LUMO are delo-
calized throughout the p-framework although there is signi-
cantly greater electron density for the LUMO around the squaric
acid unit and at the nitrogen of the indole group. This should
result in greater electronic interaction between the anchoring
unit and TiO2 surface which contributes to the broader
absorption spectra for (7a), (8) and (10) which link via these
groups by comparison to (12) which links via a benzyl carbox-
ylate. Interestingly, the Hf-SQ–TiO2 interface has also been
investigated using DFT calculations by Cicero et al.28 which also
shows that the HOMO is delocalized through the p-framework
of the whole structure while the LUMO contains a notable
electron density contribution arising from the squaric acid
group.28 These workers reported that the HOMO–LUMO tran-
sition should therefore move electron density to the anchoring
group resulting in directional electron transfer to the TiO2

surface.28 A similar phenomenon should also occur in the dyes
reported here. Finally, incorporating the vinyl dicyano entity
into the Hf-SQ central unit in (8) results in the largest peak
broadening and bathochromic shi� both in solution (lmax

476 nm, 57 700 M�1 cm�1) and when adsorbed to TiO2 lms.
Whilst this inuence of the electron donating vinyl dicyano
group is similar to that reported for squaraines,23,32 to the best
of our knowledge, this effect has not yet been reported for
half-squaraines.
DSC device testing

Table 2 shows I–V data for selected Hf-SQ devices. Initially, DSC
devices were prepared with and without 5 mM the additive che-
nodeoxycholic acid (CDCA). However, the power conversion effi-
ciencies of devices without CDCA were always at least 25% lower
than those with CDCA; see e.g. (10) or (12) due to slight improve-
ments in Jsc, Voc and FF. This is in line with published reports that
CDCA suppresses aggregation28,32,37 and affects the position of the
conduction band resulting in improved electron injection.32,37
J. Mater. Chem. A, 2014, 2, 4055–4066 | 4059
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Fig. 4 Optimized geometries and HOMO and LUMO maps of the
methyl indoline derivatives of selected dyes calculated using DFT.

Table 2 I–V data for DSC devices prepared using various half-
squaraine dyes. Errors on device efficiencies are �0.2%

Dye h/% FF Voc/V
Jsc/
mA cm�2

Single dye devices
(4a) + CDCA 3.3 0.56 0.64 9.20
(4b) + CDCA 3.8 0.62 0.66 9.22
(4c) + CDCA 3.5 0.67 0.63 7.92
(7a) + CDCA 4.0 0.61 0.60 10.90
(7b) 4.5 0.66 0.65 10.40
(7b) + CDCA 5.0 0.68 0.71 10.25
(8) 2.8 0.47 0.53 11.11
(10) 3.5 0.65 0.67 8.12
(10) + CDCA 3.9 0.68 0.68 8.38
(12) 2.4 0.74 0.61 5.31
(12) + CDCA 2.7 0.72 0.68 5.44
N719 only 6.4 0.60 0.73 14.69

Co-sensitized devices
SQ2 + CDCA 3.4 0.67 0.62 8.25
(7) + SQ2 + CDCA 6.1 0.66 0.63 14.61
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Table 2 shows device data for TiO2 devices sensitized with
Hf-SQs containing either benzyl or napthyl indoles with alkyl
chains of varying in length (ethyl to octadecyl). Comparing the
benzyl indole dyes (4a–c) shows very similar device performance
data for all three dyes with h ranging from 3.3–3.8%. The vari-
ance was mainly due to differences in Jsc which ranges from 7.9–

9.2 mA cm�2 with very similar Voc values observed for all three
dyes (ca. 0.65 V). The slightly lower Jsc value was observed for the
indole with the longest alkyl chain (hexadecyl) may reect
slightly poorer electron injection or dye regeneration from the
4060 | J. Mater. Chem. A, 2014, 2, 4055–4066
electrolyte but this is only has a relatively small effect on
h. However, a�er synthesis, this dye was also the most difficult
to purify from the iodohexadecane precursor by comparison to
the shorter chain iodoalkane dyes and precursors which may
also have had a slight negative effect on Jsc for (4c).

Studying the effects of alkyl chain length on the naphthyl
indoles of dyes (7a) and (7b) shows two main differences.
Firstly, a signicant upli� in h is observed for the napthyl
indoles (4.0–5.0%) compared to their benzyl indoles which
mainly results from increased Jsc (10.2–10.9 mA cm�2). This Jsc

increase is attributed to a slight broadening of the absorption
spectra due to the extended conjugation of the napthyl indole.
This is in line with literature data for squaraines which report
improved h for the napthyl indole squaraine, SQ2 versus the
benzyl indole, SQ1.20,21 Interestingly, for the napthyl indoles,
increasing the length of the alkyl chain attached to the indole N
from an ethyl group in (7a) to a dodecyl chain in (7b) increases
Voc from 0.61 to 0.71 V respectively. This is the highest Voc

observed for the Hf-SQ dyes reported here which, along with an
improved FF, gives the highest single dye efficiency (h ¼ 5.0%).
In addition, the Voc of 0.61 V observed for (7a) is close to the
literature value of 0.64 V reported elsewhere for this dye.28 We
believe this to be the highest efficiency Hf-SQ reported to date.
The improved Voc and FF may be due to decreased dye aggre-
gation on the TiO2 photo-electrode which could be caused by
the longer alkyl chain in (7b) sterically reducing inter-dye
interactions. Due to the improved device performance of (7b) by
comparison to (4a–c) or (7a), the dye (7b) was taken forward for
further study using co-sensitization studies and for comparison
with dyes (8), (10) and (12).

Cyclic voltammetry (CV) measurements of (7b), (8), (10) and
(12) in solution (10 mM in degassed THF) have been carried out
to compare dye oxidation and reduction processes with spectral
and DSC device data along with theoretical DFT calculations to
try to further examine any structure–activity relationships
arising from changes to the dye linker position. The CV data for
This journal is © The Royal Society of Chemistry 2014
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