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ABSTRACT 

This study investigates the contribution of surface-based primitives to the perception 

of three-dimensional object shape. Observers matched subsets of closed contour 

fragments, surfaces and volumetric components to whole novel objects during a 

whole-part matching task. We manipulated two factors: Viewpoint (either same or 

different between component parts and whole objects) and target-distracter similarity. 

Similarity was varied in terms of systematic variation in non-accidental (NAP) or 

metric (MP) properties (NAPs) of individual parts. The results showed that whole-part 

matching was better for surface parts and volumes over closed contour fragments. 

However, there was no difference between surfaces and volumes even across changes 

in viewpoint between wholes and parts. The same pattern was found regardless of 

whether whole-part similarity varied by NAP or MP differences. The results provide 

new evidence supporting a role for surface-based image primitives in object shape 

perception.  

 

Word count: 140 
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The human visual system is remarkably adept at recognising complex three-

dimensional (3D) objects despite the variability in sensory information about object 

shape brought about changes in viewpoint, scale, translation and illumination. One of 

the fundamental issues that theories of object recognition must address is how the 

visual system represents object shape (e.g., Attneave, 1954; Biederman, 1987; 

Cristino, Conlan, Patterson & Leek, 2012; Davitt, Cristino, Wong & Leek, 2014; 

Edelman, 1999; Hummel & Biederman, 1992; Hummel & Stankiewicz, 1996; Leek, 

Cristino, Conlan, Patterson, Rodriguez & Johnston, 2012; Leek, Reppa, & Arguin, 

2005; Leek, Reppa, Rodriguez, & Arguin, 2009; Marr & Nishihara, 1978; Pizlo, 

Sawada, Li, Kropatch & Steinman, 2010; Pizlo, 2008; Ullman, 2006).  

In principle, object recognition could be supported by several different types of 

shape information at varying spatial scales. For example, some kinds of low-level 

image features can be computed at a relatively coarse spatial scale including edge co-

linearity (parallelism), global elongation, principal axis curvature, symmetry, aspect 

ratio and scale. Such information may be sufficient for classifying objects under some 

conditions (e.g., differentiating a banana and a carrot on the basis of variation in 

principal axis curvature). In contrast, other image features may (and in some cases, 

must) be computed locally at finer spatial scales. These include contrasts in luminance 

used to determine edge boundaries and vertices as well as local variations in surface 

depth and curvature (e.g., Biederman, 1987; Cristino et al, 2012; Davitt, Cristino, 

Wong & Leek, et al, 2014; Leek et al, 2012; Marr & Nishihara, 1978; J.F. Norman, 

Todd, H.F. Norman, Clayton & McBridge, 2006). It has also been proposed that the 

visual system uses higher-level primitives to represent object shape (e.g., Barr, 1981; 

Bergevin & Levine, 1993; Biederman, 1987; Biederman & Cooper, 1991; Guzman, 

1968; Krivic & Solina, 2004; Marr & Nishihara, 1978; Pentland, 1986; Ullman, Vidal-
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Naquet & Sali, 2002; Zerroug & Nevatia, 1999), including volumetric parts, such as 

generalised cylinders (Brooks, 1981; Marr & Nishihara, 1978), super-quadrics (Barr, 

1981; Pentland, 1986) and 3D geons (Biederman, 1985; 1987).  

Here, we investigate evidence for another kind of primitive derived from edge-

based approximations of object surface shape (Leek et al., 2005; 2009). There are 

several reasons why surfaces may be expected to play a key role in visual perception 

(e.g., Norman & Todd, 1996; Norman, Todd, & Phillips, 1995; J.F. Norman et al., 

2006). For example, surfaces are important in constraining actions (digit placement) 

during prehensile movement (e.g., Servos, Goodale, & Jacobson, 1992), and have been 

shown to influence the distribution of object-based attention (Leek, Reppa & Tipper, 

2003; Nakayama, He, & Shimojo, 1995; Nakayama & Shimojo, 1992; Reppa, Schmidt 

& Leek, 2012; Reppa & Leek, 2003; 2006). Surfaces are also important for the 

binding of object shape and other attributes such as colour, texture and shadow (Cate 

& Behrmann; 2010; Chainay, & Humphreys, 2001; Fan, Medioni, & Nevatia, 1989; 

Faugeras, 1984; Fisher, 1989; Leek et al., 2005; 2009; Marr & Nishihara, 1978). 

Therefore, surface information can be important in constraining attention and action.  

The role of surfaces in object shape representation has been less widely 

examined, and in particular the question of whether surface-based primitives can 

contribute to the representation of object shape for recognition. This question was first 

investigated by Leek et al (2005) using a whole-part matching task. Observers viewed 

stimulus streams comprising a 3D novel object made of two distinct volumetric parts, 

and second ‘comparison part’ stimulus comprising a sub-set of the edge contour of the 

novel object. The comparison stimuli could contain a sub-set of contour fragments 

from the novel object, a non-volumetric configuration of spatially adjacent edge-

defined surfaces, or one of the two volumetric parts. The task was to decide whether or 
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not the comparison stimuli matched any sub-set of shape information in the whole 

novel object. The key finding was that while whole-part matching of surface and 

volumetric parts was faster than for contour fragments, there was no difference in 

performance between surfaces and volumes; that is, the configuration of surfaces into 

volumetric components afforded no matching advantage over non-volumetric 

configurations of surfaces.  

Further evidence for the role of visible surfaces in object shape representation 

was reported by Leek et al (2009). In that study observers memorised a set of novel 

objects, each consisting of two adjacent volumetric parts. They then performed a 

primed recognition memory task in which they had to discriminate between studied 

and non-studied objects.  Some primes contained only surfaces that were visible in the 

parent object (visible surface only primes), while other primes contained some 

surfaces which were occluded in the parent object via self-occlusion (occluded surface 

primes). All primes were masked and were either related or unrelated to the 

subsequent target object in terms matching shape information. The results showed 

robust priming effects for related vs. unrelated primes on subsequent recognition 

latency. Most importantly, however, priming magnitude was determined by the degree 

of correspondence between visible surfaces in the primes and targets. That is, priming 

decreased for primes containing some occluded surfaces relative to primes only 

containing visible surfaces. On the basis of these results, Leek et al (2005; 2009) 

argued that shape perception comprises a level of representation that specifies edge-

based surface primitives  – and that these primitives may be used to constrain image 

classification during object recognition (see Lee & Park, 2002; Fan, Medioni & 

Nevatia, 1989; Faugeras, 1984; Fisher, 1989 for related approaches in machine 

vision).  
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Current Study 

The current evidence suggests that visible surfaces are explicit in object shape 

representation. Nevertheless, two issues may compromise the evidence for the of 

surface-based shape primitives in object shape representation. First, in the earlier 

behavioural studies based on whole-part matching by Leek et al (2005; 2009) whole 

objects and object parts were always presented from the same viewpoint. Viewpoint 

change may be critical in determining the kinds of shape representations that are 

computed from sensory input (e.g., Arguin & Leek, 2003; Foster & Gilson, 2002; 

Harris, Dux, Benito & Leek, 2006; Leek, 1998a; 1998b; Leek & Johnston, 2006; Leek, 

Atherton & Thierry, 2007; Tarr & Bülthoff, 1998; Ullman, 1998). Where there is no 

viewpoint change it may be sufficient for the visual system to compute image-based 

shape descriptions that can support direct matching of object shape components – 

whereas for the most part, object recognition systems must rely on the computation of 

shape representations that allow generalisation across views. For this reason, it is 

important to examine whether previous findings supporting the derivation of surface-

based image primitives would generalise to tasks that require view generalisation.  

A second limitation of current evidence is that previous studies have not 

systematically examined how variations in part similarity influence behavioural 

performance in whole-part matching. This is also of potential theoretical significance. 

A key distinction is between non-accidental (NAP) and metric (MP) properties of 

object shape (e.g., Biederman, 1987; Lowe, 1985). NAPs are elementary categorical 

dimensions that distinguish image features (e.g., straight vs. curved, parallel vs. 

tapered), and which are relatively invariant to viewpoint change. In contrast, MPs 

denote spatial relations among features that require precise specification (e.g., 

perceived aspect ratio, turning angle between contours and magnitude of curvature), 
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and hence are sensitive to viewing angle. Results from several studies have shown that 

observers are more efficient at discriminating shape on the basis of changes in NAPs 

than MPs (e.g., Amir, Biederman & Hayworth, 2012; Biederman & Gerhardstein 

1993; Biederman & Bar, 1999) – consistent with the hypothesis that the rapid 

computational of NAPs plays an important role in shape perception - and they are 

assumed to underlie the derivation of geon-based primitives in RBC (e.g., Biederman, 

1987). Importantly, neither the study of Leek et al (2005) nor Leek et al (2009) 

investigated how variation between volumetric and surface parts in NAP/MP 

properties affected task performance between conditions. For instance in Leek et al 

(2005) match vs. mismatch decisions were made primarily on the basis of metric 

properties. That is, a mismatch volumetric or surface comparison part would come 

from an object that was similar to the target object in terms of non-accidental 

properties but differed mainly in term of metric properties. Therefore, any advantage 

in matching volumetric parts over surface parts may have been obscured because 

observers were forced to make 2D image-based discriminations. Thus, under 

conditions where the volumetric parts can be uniquely distinguished by variation in 

NAPs, then more efficient matching of volumetric relative to surface parts (contrary to 

the results of Leek et al, 2005) may be expected. Furthermore, the failure to control for 

NAP/MP distinctiveness may have given rise to a ‘spurious’ advantage in matching 

surface-based parts.  

We examined these two issues in the current study using a whole-part matching 

paradigm similar to that used by Leek et al (2005). Observers were asked to make 

whole-part matching judgements to 3D multi-part novel objects. Part stimuli 

comprised regions of closed contour fragments, complete volumetric parts or edge-

based surface polygons. Unlike in the Leek et al (2005) study, the parts were presented 
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from either same viewpoint as shown in the whole object display, or from a different 

viewpoint. This manipulation allowed us to examine the generality of surface-based 

matching across viewpoint change.  

In addition, we systematically varied the mismatch similarity between wholes 

and parts on mismatch trials in terms of NAPs or MPs. For one group of participants, 

mismatch parts were primarily distinguished from whole objects within a given trial 

by MPs (Figure 1A). In a second group of participants, mismatch comparison parts 

were primarily distinguished from the whole objects by NAPs. If the similarly 

efficient matching of surface and volumetric parts to whole objects was dependent on 

conditions where volumes can be distinguished only by MPs, then volumetric parts 

should outperform surface parts when the former can be uniquely distinguished by 

NAPs alone.  
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METHOD 

Participants  

Fifty participants were recruited from Swansea and Bangor Universities, twenty-five 

for each of the two mismatch groups. In the MP Mismatch Similarity group 

participants (7 males) had a mean age of 22.5 years (SD=3.21) and participated in the 

experiment for either course credit or £3 payment. In the NAP group participants (3 

males) had a mean age of 21.5 years (SD = 5.13) and participated in the experiment for 

course credit. All participants reported normal or corrected-to-normal vision. 

-------------------------------------------- 

INSERT FIGURES 1A AND 1B ABOUT HERE 

-------------------------------------------- 

Apparatus and Stimuli  

The experiment was run on a Windows PC with a 19” RGB monitor using E-Prime. 

The stimuli were twelve novel and geometrically regular 3D objects, each of which 

consisted of two connected volumetric parts: a main base or principal component, and 

a secondary component. They were rendered in externally lit, three-quarter views 

using Strata 3D Pro. Each object was scaled to fit within a 6 x 6-cm frame that 

subtended 6.86° x 6.86° of visual angle from a viewing distance of 50 cm. For each of 

the 12 objects, three types of comparison part stimuli were created: closed contour, 

volumetric, and surface parts (see Figure 1A and 1B). The volumetric parts comprised 

the principal (N=12) and secondary (N=12) components of each object. These differed 

in that when segmented from the ‘parent’ object the principal component contained a 

visible surface that was previously occluded when the components were combined. 

The secondary component contained only surfaces that were visible in both the whole 

(parent) object and individual part. For each object two types of surface parts were 
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also created (N=24).   These consisted of adjacent surfaces with the constraint that 

they did not make up a complete volume and that the number of surfaces matched 

exactly the number of surfaces in the volumetric parts stimuli.  The contour stimuli 

(N=24) were created by selectively deleting regions of bounding and internal edge 

contour, so that the resulting closed form did not correspond to any single volume or 

any object surface. Following creation of the closed form, the surface information was 

removed by replacing the yellow colour with white (as the background). 

 Plane rotated versions of each part were created via rotation of +90 o or -90 o 

around the z axis perpendicular to the observer. These were used in the different 

viewpoint condition (see Design section and Figure 2).  

-------------------------------------------- 

INSERT FIGURE 2 ABOUT HERE 

-------------------------------------------- 

In order to prevent a strategy of simple pixel-by-pixel matching between 

comparison stimuli and whole objects in the same viewpoint condition, the whole 

object displays were enlarged to 150% the size of the images to be matched. Such 

moderate size transformations do not influence 3D-shape recognition (e.g., Fiser & 

Biederman, 1995; Norman et al., 2009). In addition, comparison part stimuli were 

centred so that the image pixels did not overlap.  

 As object and part stimuli necessarily differed in terms of low-level features 

(e.g. amount of visible contour and surface area; number of vertices and visible 

surfaces), Tables 1 and 2 formally quantify and compare, respectively, those 

differences on each of these dimensions in two-dimensional space. Their effect on 

matching performance is reported in the Results (footnote 1).  

----------------------------------------------------- 



Surface-based primitives and shape representation     11 

 

INSERT TABLE 1 AND 2 ABOUT HERE 

----------------------------------------------------- 

Design 

The experiment was based on a 3 (Part Type: contour, volume, surface); X 2 (Part 

Viewpoint: same vs. different); X 2 (Part Identity: principal vs. secondary) X 

Mismatch Similarity (NAPs vs. MP), with the latter factor manipulated between-

participants. Mismatch Similarity was manipulated using two groups of stimuli that 

varied the similarity of target to mismatch parts in terms of NAPs and MP contrasts. In 

the MP group, the frequency of targets and mismatch volumetric parts differing solely 

by MPs relative to NAPs was 2:1. In the NAP group the ratio of MP to NAP 

differences was 1:2 – see Figures 1A and 1B. The reason for using different ratios as 

opposed to pure sets of MP or NAP mismatch pairs was to avoid the possibility that 

participants would tune selectively to MP or NAP differences biasing performance 

criteria. The manipulation of this factor allowed us to determine whether whole-part 

mismatch similarity in terms of NAP vs MPs contrasts could influence the pattern of 

results (see Introduction). The factor of Part Identity was included in light of the 

previous results of Leek et al (2009) showing that part-whole priming is influenced by 

the presence of previously occluded surfaces in segmented part primes. The principal 

components contained a surface that was occluded in the whole object, while the 

secondary components contained only visible surfaces. The factor of Part Viewpoint 

was manipulated to permit examination of the effects of viewpoint change between 

whole objects and parts on the patterns of performance across part types – addressing a 

limitation of previous work (see Introduction).  

 For each Mismatch Similarity participant group there were 144 match and 144 

mismatch trials (N total = 288). There were 24 trials for each of the 12 within-subjects 
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conditions. For each participant, each whole object was presented 24 times, and each 

part stimulus type was presented four times (twice in the same viewpoint as the whole 

object and twice in a different viewpoint). Trial order was randomized, within each of 

four blocks, for each participant. The dependent measure was D prime (d’) scores 

calculated using the hit and false alarm rate per condition.  

 

Procedure 

In match trials, the comparison part stimuli comprised a sub-set of shape information 

from the whole novel object that was presented in the same trial. In mismatch trials, 

the comparison part stimuli belonged to a different object. Stimulus pairings for the 

mismatch trials were determined by the mismatch similarity group. Trial procedure is 

shown in Figure 3. Participants were seated approximately 50cm from the monitor. 

Each trial began with the central presentation of a visual prompt 'Ready'? until the 

participant initiated the trial sequence by pressing the space bar. Following a blank 

inter-stimulus interval of 750ms, one of the whole object stimuli appeared at screen 

centre for 1,200ms. Following a blank inter-stimulus interval of 750ms, a part stimulus 

was displayed in the centre of the screen until the participant made a response. 

Participants were informed that each part would be in the same orientation as the 

whole object preceding it, or plane-rotated clockwise (for half of the parts) or counter-

clockwise (for the other half of the parts). The task was to decide as quickly and as 

accurately as possible whether or not the part stimulus came from the whole object 

that preceded it. Responses were made by pressing one of two keys (D or K) labelled 

'Yes' or 'No' on a standard keyboard. There was a response deadline of 3 seconds. If a 

response was incorrect or timed out participants received feedback in the form of a 

short error tone. Half of the participants in each Mismatch Similarity group made 
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match (Yes) responses with their dominant hand and mismatch (No) responses with 

their non-dominant hand. For the other half, these assignments were reversed. The 

experiment lasted approximately 35 minutes. 

----------------------------------------------------- 

INSERT FIGURE 3 ABOUT HERE 

----------------------------------------------------- 
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 RESULTS 

Mean correct response times (RT) greater than or equal to 2 standard deviations (SD) 

from their own grand mean were excluded from the data. This accounted 0.9% of 

correct response RT. Timed-out responses accounted for .03% of all trials. The mean 

error rate across all conditions was 32.2% (SD=15.10%).  

 The goals of the analyses were to examine two key issues: (1) whether the 

patterns of whole-part matching across the contour, volume and surface part 

conditions is modulated by changes in viewpoint, and (2) whether the relative 

efficiency of matching volumetric vs. surface parts is dependent on the extent to which 

mismatch decisions are made primarily on the basis of NAP or MP differences.  

Table 3 shows the mean d’ per condition per Group. Mean d’ scores per 

condition are shown in Figure 4.   

--------------------------------------------------------------- 

INSERT TABLE 3 and FIGURE 4 ABOUT HERE 

--------------------------------------------------------------- 

Part Viewpoint x Part Type x Part Identity. The goal of this analysis was to 

examine whether the pattern of matching for the three part types (contour, volumes, 

and surfaces) when they appear at the same viewpoint as the whole object (same 

viewpoint condition) changes when parts appear at a different viewpoint from the 

whole object (different viewpoint condition). The factor of Part Identity (principal vs. 

secondary) was included in the current analysis, because previous evidence (Leek et 

al., 2009; see Introduction) has shown significant differences in performance between 

comparison parts which contain occluded surfaces (as the current principal volumetric 

parts do) and parts which have only previously visible surfaces (the current secondary 

volumetric parts and the surface parts). For this analysis we collapsed across 
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Mismatch Similarity. Cell means per condition (collapsed across Mismatch Similarity) 

appear in Figure 4A.  

A 2 (Part Viewpoint: same vs. different) x 3 (Part Type: contour, volumetric, 

surface) x 2 (Part Identity: principal vs. secondary) repeated-measures ANOVA 

showed a significant main effect of Part Viewpoint, F (1, 22) =43.76, p<=0001, with 

better performance with same versus different part viewpoint trials. There was also a 

significant main effect of Part Type, F (2, 44) =6.91, p=.002. The main effect of Part 

Identity was not significant, F (1, 22) =1.70, p>.05, but it was qualified by a 

significant Part Type and Part Identity interaction, F (2, 44) =3.96, p=.03. There were 

no other significant effects or interactions (all p values >.05).  

Pairwise comparisons examining the Part Type X Part Identity interaction 

showed that for principal parts there was no difference between contour and 

volumetric parts, t (23)=.19, p>.05. However, surface parts yielded significantly higher 

sensitivity (d’) than contour and volumetric parts [ (23)=2.58, p=.017, and t (23)=2.98, 

p=.007, respectively]. The pattern of d’ was very different for secondary parts, where 

volumetric components contained no occluded surfaces. Here both volumetric and 

surface parts yielded higher d’ scores than contour parts [t (23) =3.07, p=.005, and t 

(23) =2.45, p=.02, respectively]. Further comparisons between principal and secondary 

parts, showed no difference in d’ between principal and secondary contour parts, t (23) 

=1.01, p>.05, and principal surface parts were only marginally more discriminable 

than their secondary versions, t (23)=1.93, p=.07. However, secondary volumetric 

parts yielded significantly higher d’ than principal volumetric parts, t (23) =2.32, 

p=.02. This is further evidence of the performance cost associated with occluded 

surfaces, corroborating previous evidence by Leek et al (2009).  
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Group X Part Type (for secondary parts only). The second set of analyses 

examined whether the nature of similarity between comparison parts and whole 

objects (NAPs vs. MPs) might influence the pattern of matching. For this analysis we 

collapsed across Part Viewpoint, as it was not involved in an interaction with Part 

Type in the previous analysis. The d’ scores from secondary parts only were used here. 

That is because for secondary parts, both volumetric and surface parts contained 

visible surfaces only. Therefore, all else being equal, we examined whether mismatch 

similarity influenced the pattern of matching across the three part types. Cell means 

(collapsed across Part Viewpoint) for this comparison appear in Figure 4B.  

A mixed 2 (Mismatch Similarity: NAP vs. MP) X 3 (Part Type: contour, 

volume, surface) ANOVA carried out on d’ scores showed a significant main effect of 

Part Type, F (2, 46) =4.43, p=.02. Pairwise t-tests showed no difference in d’ between 

volumetric and surface parts, t (23) =.53, p>.05, while both part types had higher d’  

than contour parts [t (23)=3.07, p=.005, and t (23)=2.45, p=.02, respectively]. Neither 

the main effect of Mismatch Similarity (F (1, 23) =3.69, p=.07), nor the Mismatch 

Similarity X Part Type interaction were significant, F (2, 46)<1, p>.051.  

 

 

 

 

                                                 
1 Because there were differences between comparison parts in terms of percent edge contour, number of vertices, 

and surface area we carried out three ANCOVAs on d’ scores with each of those factors as covariates to examine 

whether the pattern of results was influenced by those differences. We collapsed across the variables of Part 

Viewpoint and Mismatch Similarity We created a new independent variable, Part, by combining the Part Type and 

Part Identity into a single factor with six levels: contour principal, contour secondary, volumetric principal, 

volumetric secondary, surface principal, and surface secondary. None of the three low-level features yielded either a 

significant main effect or was involved in an interaction with the Part factor. Furthermore, the pattern of d’ cannot 

easily be explained by the pattern of those differences. For example, there are instances where there were significant 

differences in low level features between two conditions with no difference in accuracy and vice versa. 
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GENERAL DISCUSSION 

Previously, it was shown that volumes do not necessarily enjoy an advantage in 

whole-part matching performance over lower-order shape descriptions of surfaces 

(e.g., Leek et al., 2005; 2009), leading to the hypothesis that surface-based shape 

primitives can mediate object shape representations of 3D objects. Aiming to provide 

further support to this hypothesis, the current study examined the two factors that may 

have obscured a benefit for volumetric parts or primes: part viewpoint relative to the 

whole object, and nature of the mismatch parts. Three main findings emerged. First, 

observers were better at matching volumetric and surface parts to whole objects than 

contour segments, replicating previous work (Leek et al., 2005; 2009). Most critically, 

observers were equally efficient at matching surface and volumetric parts regardless of 

whether whole objects and parts varied in viewpoint, or whether mismatch trial 

similarity was based primarily on NAP or MP differences. Finally, matching 

performance was modulated by whether part stimuli contained an occluded surface 

(principal vs. secondary parts).  

Viewpoint change between the whole object and part influenced performance 

overall, with observers showing higher discriminability to parts that appeared at the 

same viewpoint as the whole object. This finding is consistent with previous 

demonstrations of how viewpoint may be critical in object recognition performance 

(e.g., Arguin & Leek, 2003; Foster & Gilson, 2002; Harris, Dux, Benito & Leek, 2006; 

Leek, 1998a; 1998b; Leek & Johnston, 2006; Leek, Atherton & Thierry, 2007; Tarr & 

Bülthoff, 1998; Ullman, 1998). Nevertheless, the pattern of matching performance was 

not influenced by part viewpoint in the current study. In whole-part matching 

sequences where there is no viewpoint change (e.g., Leek et al., 2005; 2009), matching 

can be possible by computing image-based shape descriptions, without the need to 
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compute volumetric representations. The finding that part viewpoint change relative to 

the whole objects did not lead to such an advantage for volumes, suggests that the 

observed equivalent matching performance across surface and volumetric parts cannot 

be explained as an artefact of computing image-based descriptions, but reflected the 

computation of object shape.  

Non-accidental properties of object shape (e.g., Biederman, 1987; Lowe, 1985) 

are known to play a key role in object shape perception, with observers being more 

efficient at discriminating shape on the basis of changes in NAPs than MPs (e.g., 

Amir, Biederman & Hayworth, 2012; Biederman & Gerhardstein 1993; Biederman & 

Bar, 1999). Matching decisions in the previous matching study by Leek et al., (2005) 

were largely made on the basis of metric properties, which may have forced observers 

to make image-based discriminations, obscuring any advantage of volumetric parts 

over non-volumetric surface configurations. In the current study, the nature of 

mismatch parts (whether they came from objects that differed from the target objects 

in terms of NAPs or in terms of MPs) did not influence overall sensitivity or the 

pattern of matching. Both volumetric and surface parts were matched more efficiently 

that contour parts, regardless of whether mismatch decisions were made on the basis 

of MPs or on the basis of NAPs. This suggests the benefit of parts containing visible 

surfaces (surface and volumetric parts) over comparison parts that do not (such as the 

contour parts) does not depend on whether matching is done on the basis of metric or 

non-accidental properties.  

The effect of surface occlusion on performance – demonstrated by the 

modulation in whole-part matching between principal and secondary part stimuli, is 

consistent with the earlier report by Leek et al (2009). They found differential part-

whole priming from primes containing only surfaces that are visible in the whole 
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object versus primes containing a previously occluded surface (i.e., as in the principal 

components used in the current study). Their finding, along with the current results, 

provides further evidence for the existence of a level of shape representation in human 

vision that contains only visible (i.e., viewer-centred) descriptions of object surfaces, 

and provides more general support to other evidence implication surface-based 

representations in object perception (e.g., Cate & Behrmann; 2010; Chainay, & 

Humphreys, 2001; Fan, Medioni, & Nevatia, 1989; Faugeras, 1984; Fisher, 1989; 

Leek et al., 2005; 2009; Marr & Nishihara, 1978; Nakayama, He, & Shimojo, 1995; 

Nakayama & Shimojo, 1992).  

One surface-based model of shape representation and recognition was outlined 

by Leek et al (2005 – see also Ashbrook, Fisher, Robertson & Werghi, 1998; 

Faugeras, 1984; Fisher, 1989, Lee & Park, 2002 for implementations of surface-based 

models in computer vision). According to this surface-based model, 3D objects are 

represented in terms of their constituent surface patches, whose shapes are 

approximated by 2D polygons (see also Phillips et al., 2003). Those closed polygons 

can be either regular or irregular in shape, a property which distinguishes them from 

NAP-based volumetric primitives (such as geons). Object surface configuration is 

encoded within a surface configuration map (see also Lee & Park, 2002). This map 

uses reference frames, defined by a three-dimensional spatial coordinate system, to 

specify the local pair-wise relations between spatially adjacent surfaces.   

Of particular significance for the model is that the representations do not 

contain volumetric primitives, and the perception of object shape does not involve 

volumetric part decomposition as would be predicted by some accounts of object 

shape representation (e.g., Barr, 1981; Brooks, 1981; Marr & Nishihara, 1978; 

Pentland, 1986).  This hypothesis can account for the current findings of equivalent 
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performance in matching irrespective of whether the surfaces were in a volumetric or 

non-volumetric configuration. In Leek et al (2005), the encoding of higher-order 

structure is hypothesized to come via the development of correlational structure in the 

surface configuration map where local groups of spatially adjacent surfaces (i.e., from 

the same object region) form stronger patterns of inter-correlation than spatially 

separated surfaces (i.e., those from different regions of the object). Such emergent 

higher-order structure provides a basis for the links between lexical-semantic 

distinctions among object parts (e.g., feet, legs, bodies, arms, hands and heads) and 

object shape representations.  

 In conclusion, the current results extend those found in earlier studies 

using whole-part matching to show that efficient matching of part stimuli comprising 

spatial adjacent groups of edge-defined surface patches generalises across changes in 

viewpoint, and is not dependent on the whether mismatch similarity is defined 

primarily in terms of NAP or MP differences. Thus, the data provide further empirical 

support for the hypothesis that object representations in human vision underlying 

object recognition make use of surface primitives.  
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Table 1: Image properties of the contour, volumetric and surface comparison part stimuli.  

 

 

 

 

 

 

 

 

 

 

 

 
Percent (%) of total 

edge contour 
N vertices Surface area 

Part 

Identity 
Part Type M SD M SD M SD 

Large Contour 58.61 8.27 9.00 1.04 25.95 7.28 

Volumetric 68.68 8.28 10.08 1.31 22.51 7.96 

Surface 74.75 11.53 9.54 1.15 24.03 5.41 

 

Small 

 

Contour 

 

51.49 

 

9.35 

 

7.83 

 

1.11 

 

15.52 

 

4.29 

Volumetric 42.86 13.68 5.75 1.42 11.38 4.42 

Surface 64.80 12.22 9.00 1.35 16.32 3.47 
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Table 2: Comparisons between each of the three comparison parts along each of three 

types of low-level feature. Comparisons are reported separately for each Part Identity 

(large vs. small). Number of edge vertices refers to the total number of edge vertices 

(Y, T, and L) per comparison part stimulus. Surface area (calculated in centimetres 

using the ImageJ software, version 1.43) refers to the area enclosed by the bounding 

contour. Asterisks (*) follow each significant difference.  

 

Part Identity Comparison 

   

Low-level feature t Statistic 

Large  

Contour vs. Volume Percent (%) of total edge contour t (11)=2.98, p=.007* 

 N vertices t (11)=4.52, p=.0001* 

 Surface area t (11)=1.1, p>.05 

   

Contour vs. Surface Percent (%) of total edge contour t (11)=3.93, p=.001* 

 N vertices t (11)=2.38, p=.04* 

 Surface area t (11)=.73, p>.05 

   

Volume vs. Surface Percent (%) of total edge contour t (11)=1.48, p>.05 

 N vertices t (11)=6.27, p=.0001* 

 Surface area t (11)= .45, p>.05 

Small 

 

Contour vs. Volume 

 

Percent (%) of total edge contour 

 

t (11) = 1.80, p>.05 

 N vertices t (11) = 3.99, p=.001* 

 Surface area t (11) = 2.33, p=.03* 

   

Contour vs. Surface Percent (%) of total edge contour t (11)=2.99, p=.007* 

 N vertices t (11)=2.31, p=.03* 

 Surface area t (11)= .50, p>.05 

   

Volume vs. Surface Percent (%) of total edge contour t (11)=4.14, p=.0001* 

 N vertices t (11)=5.74, p=.0001* 

 Surface area t (11)=3.04, p=.006* 
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Table 3: Mean d’ scores (standard deviations in parenthesis) per condition for the MPs 

group (match/mismatch decisions made on the basis of metric differences) and the 

NAPs (match/mismatch decisions made on the basis of NAP differences).  

 
Part 

Viewpoint 

 
 

MP 

group 

NAP 

group 

 

 Part Type Part Identity 
Mean d’  

(SD) 

Mean d’ 

(SD) 

 

Same  

 

 

Contour 

Principal    

Secondary    

Volumetric 
Principal    

Secondary    

Surface 
Principal    

Secondary    

      

Different   

 

Contour 
Principal    

Secondary    

Volumetric 
Principal    

Secondary    

Surface 
Principal    

Secondary    
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FIGURE LEGENDS 

 

Figure 1A and 1B. The stimulus sets used for participants in the MP Mismatch 

Similarity group  (1A) and participants in the NAP Mismatch Similarity group (1B). 

All the part stimuli are shown for each of the twelve objects. For each object its pair 

appears directly across from it. The NAP/MP column reports the type of difference 

between each volume of each object when compared with one of the two volumes of 

its paired object. For instance, in Figure 1A there is an MP difference between the top 

volume of Object 1 and the top volume of Object 7. Similarly, in Figure 1B there is a 

NAP difference between the top volume of Object 2 (pyramid) and the lower volume 

of Object 7 (truncated pyramid). The ‘Type of difference’ column shows the type of 

MP or NAP differences between the left side and the right side volumes for each 

object. In some cases where the difference is in terms of NAP, there is more than one 

difference between the volumes (e.g., in Figure 1B, the volumes differ both in terms 

the axis shape and in terms of their ending). Note: CS stands for cross section, and AS 

stands for aspect ratio.  

Figure 2. An illustration of the contrasting displays used for the same and different 

Part viewpoint conditions across Part types. 

Figure 3. The trial procedure.  

Figure 4. The mean d’ per Part Type and Part Identity, collapsed across Group (Naps 

vs. MP) and Part Viewpoint (same vs. different). Bars indicate standard error. 
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FIGURE 1(a) 
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FIGURE 1(b) 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4A 

Mean d’ scores per Part Viewpoint, Part Type and Part Identity (collapsed across 

Group). The graphs illustrate the similarity in the pattern of matching (despite changes 

in part viewpoint relative to the whole object.  
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FIGURE 4B 

Mean d’ scores per Group and per Part Type for secondary parts only (see text for 

details). The graphs illustrate the similarity in the pattern of matching across contour, 

volumetric and surface parts in the two participant Groups.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 


