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Abstract 

Advances in Graphical Processing Units (GPUs) bring both opportunities 

and challenges for the acceleration of volumetric visualisation. Many re­

searchers have highlighted these problems, such as GPU memory access 

and _ low computation-throughput bottlenecks. For raytracing, stackless 

traversal techniques are often used to circumvent memory bottlenecks by 

avoiding the use of a stack and instead replacing return traversal with ex­

tra computation. This thesis addresses whether the stackless traversal ap­

proaches are useful on newer hardware and technology (such as CUDA). 

In addition this work explores the possibility of accelerating volumetric 

segmentation to allow real-time user interaction. As segmentation meth­

ods, especially those based on machine-learning, will typically examine 

all the voxels of a volume, they are ideally suited to the parallel nature 

of GPU computation. Further, context-preserving volume rendering is ex­

plored for segmentation data in order to see if rendering the segmentation 

information of a volume can be useful for users. 

In order to explore usefulness of stackless traversal on modern GPUs this 

thesis presents a novel stack]ess approach called kd-jump. Kd-jump ex­

ploits the benefits of index-based node traversal and formulates a return 

mechanism based on applying an inverse. Kd-Jump allows traversal to 

immediately return to the next valid node, when required, without having 

to backtrack one node at a time or perform additional node testing, as the 

case is with Kd-Backtrack. This allows kd-jump to avoid incurring extra 

node visitation, which will typically incur a greater amount of redundant 

work. The stackless method is achieved by the addition of a single 32-bit 

integer, which is stored within a fast GPU register, and an accumulation 

matrix that is stored in constant memory. In addition ray clipping to the 



bounds of a node is required upon return. It is shown that Kd-Jump out­

performs a stack-based approach by an average range of 10% to 20%. 

This thesis presents a context-preserving visualization method for segmen­

tation data derived from volumetric medical images. A segmented volu­

metric image contains a number of anatomical objects which are important 

features to be visualized. The context preserving rendering algorithm uti­

lizes the curvature at the surfaces of the segmentation objects to modulate 

the opacity contribution during rendering. This results in the areas of high 

curvature, typically the most important features, being opaque and visible 

and everything else being transparent. 

A segmentation tool utilizing support vector machines (SVM) is also pre­

sented. This segmentation tool utilizes incremental SVM to allow for real­

time learning and unlearning of input data and background training. This 

enables the SVM to train on previous input while the user continues to pro­

vide further input. The theory for such a system is that the complex task 

of training an SVM does not incur a noticeable delay, specificalJy after the 

user has finished inputting data and requires the results. Further, in order 

to expedite the class prediction of the remaining volume, using the trained 

SVM, GPUs are employed. CUDA-kernels are utilized to predict the class 

of each volume voxel and then store the result in a class volume. This first 

entails transposing the voxel into the higher dimensional space used in the 

SVM and then computing the weighted-kernel sum. These tasks are com­

pletely parallel in respect to the voxels and are perfectly suited for GPU 

acceleration. 

The main contributions of this thesis can be summarized as the following; 

• A novel stackless traversal approach for balanced, or left-balanced 

binary trees, which provides a theorized and proven performance im­

provement compared to a stack-based approach. 

• A volume visualisation method for context-preservation specifically 

tailored for segmentation data. 



• A segmentation tool, which utilizes incremental SVM training, fast 

GPU-based volume prediction and fast GPU-based segmentation ren­

dering, to enable a user to segment volumetric data in real-time with 

fewer delays. 
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Chapter 1 

Introduction 

Since the advent of imaging technology and its digital storage much research has been 

dedicated to creating and improving new ways to analyze such data. Imagining tech­

nology has many forms; a digital camera records the reflected light to produce a two­

dimensional image of the subject object(s). Computed tomography records multiple 

X-ray images or the subject and reconstructs a three-dimensional volume reconstruc­

tion. Regardless of the input source, the data requires a method for analysis. Analysis 

can be achieved by many methods; however, the typical solution is to simply reproduce 

the input such that is can be displayed on a visualization device, such as a computer 

monitor. 

In the case of a two-dimensional image, the data is easily projected onto a monitor 

with very little effort. However, with volumetric data, the three-dimensional space 

must be projected onto the two-dimensional screen. Such a problem is not trivial and 

there are many different methods which produce (at times) vastly different outcomes. 

Medical professionals often work and think in terms of 3D space; for example, 

diagnostic examinations have to take into account not only the size and the shape of 



Figure 1.1: Doctor examining patient CT scans 

pathologies of interest, but also their spatial position and vicinity to other anatomical 

structures. Hence, 3D visualization techniques have huge potential in aiding medical 

professionals to better understand patient anatomy and pathology. 

The two main methods for the visualization of volumetric data are direct-volume 

rendering and isosurface visualization. For both of these visualization approaches there 

exist numerous algorithms to produce the end result; for example, slice-based projec­

tion, surface splatting, and raytracing. 

Apart from the visualization of data, other methods for analysis attempt to seg­

ment the recorded data into separate regions. Typically for medical data, segmentation 

means separating organs from other organs. Combining the output of a segmented vol­

ume and using it during visualization allows specific regions to be rendered uniquely, 

or even completely made hidden. These techniques allow for better understanding of 

how an object relates to its sun-oundings, or simply to allow a user to observe the object 

without obstruction. 

Segmentation of volumetric data has a vast research following, not least because of 

the importance of the work for medical applications and practitioners. However, pro­

ducing an interface which is simple and desirable for use is again not a trivial problem. 
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1.1 Problem Description 

1.1 Problem Description 

Producing a GUI for the segmentation of volumetric data, and the visualization of re­

sults therein, has a number of challenges. Firstly the software must provide a simple, 

yet robust interface such that new users can easily use it. On the other-hand experi­

enced users should be able to acquire the results they desire quickly. Secondly, the 

underlying computations performed by the software must not impede the usability of 

the program; i.e. the user is does not have to wait long periods of time for results, nor 

should the user witness delays while providing the input data used for directing the 

segmentation. 

There are two features of segmentation software which can suffer from the afore­

mentioned problems. The segmentation computation itself can be slow, especially if 

machine learning methods are utilized. Not only would machine learning-based seg­

mentations require some form of training the entire volume would also need to be 

classified in order to arrive at the complete segmentation. Secondly, visualization of 

the segmentation data must be fast and useful to the user. 

To summarise, these problems are; 

• Slow segmentation, where the user must wait for results. 

• Slow visualization, where the users experience interacting with the visualization 

is slow and frustrating. 

• Difficulty in understanding the context of a segmentation in relation to the sur­

rounding features. 

3 



1.2 Hypothesis 

1.2 Hypothesis 

This thesis hypothesizes that with the utilization of Graphical Processing Units, vol­

ume visualization can be performed faster by catering to the strengths of GPUs while 

also avoiding their weaknesses. Specifically, avoiding access to GPU memory and 

favouring computation can yield faster results for ray tracing. Further, that segmenta­

tion of volumetric data can be made faster by utilizing the power of GPUs. Finally, 

that segmentation data can be directly visualized using context preserving rendering. 

1.3 Objectives 

In order to prove the hypothesis this thesis will explore the three areas of research and 

present new work. These objectives are; 

• To research the field of segmentation and volume visualization 

• To provide a visualization method, which is not only fast and robust, but also 

tailored to avoid GPU weaknesses. 

• To develop a segmentation tool, which is fast yet robust enough to cope with 

complex segmentations. 

• To develop visualization methods for segmentation data, which preserve context 

and improve understanding of data. 

4 



1.4 Papers 

1.4 Papers 

The following are the published (or accepted for publication) research papers relevant 

to this thesis. 

D. M. Hughes, L S. Lim. "Kd-Jump: a Path-Preserving Stackless Traversal for 

Faster Isosurface Raytracing on GPUs". IEEE Transactions on Visualization and Com­

puter Graphics, 15(6), 2009, pp 1555- 1562. 

D.M. Hughes, LS. Lim, "Context-Preserving Rendering of Medical Segmentation 

Data", Proc of 29th International Conference of the IEEE Engineering in Medicine and 

Biology Society, August 2007, pp. 5521-5524. 

D.M. Hughes, LS. Lim, "A case-study of inconsistent surface reconstruction in 

recent literature resulting from Octree rotation-variance", Proc. of Theory and Practice 

of Computer Graphics 2007, Bangor, pp. 195-200. 

1.5 Thesis Format 

Chapters are organized as follows: 

• Chapter 2 outlines the background techniques in the fields of visualization and 

segmentation. 

• Chapter 3 outlines the previous research most relevant to the work contained in 

this thesis. 

• Chapter 4 outlines isosurface and volume rendering approach utilizing an im­

plicit kd-tree specifically tailored for use on GPUs. This chapter also introduces 

a stackJess traversal approach for balanced binary-trees, which swaps memory 

access for computation. 
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1.5 Thesis Format 

• Chapter 5 presents a segmentation tool using incremental SVM powered by mul­

tiple cores and GPUs. Also presented is a context-preserving rendering tech­

nique for segmentation data. 

• Chapter 6 presents a method for consistent surface-reconstruction when using 

methods derived from object-space subdivision; such as an Octree. 

• Chapter 7 finalizes with the conclusions of the thesis. 

6 



Chapter 2 

Background 

This chapter outlines the history of volume rendering and the methods developed; from 

the initial research through to the modern methods being employed today. 

2.1 Volumetric Visualization 

With the advent of the digital age, many forms of three-dimensional data-sets began to 

be recorded. The most common was scanned data from Computed Tomography (CT) 

or Magnetic Resonance Imaging (MRI), and scientific simulations such as fluid flow. 

These three-dimensional data-sets are formed from two-dimensional slices and can 

hold information on whatever has been scanned; be it humans, animals of inanimate 

objects. The main problem was visualizing the data so that it could be analyzed. 

Volume visualization is the process of representing a given volume, whether it is 

three-dimensional or four-dimensional (animated), such that a human can observe it 

in a meaningful manner. There are two principle disciplines in volume visualization; 

realistic rendering [333, 28 1, 126] and scientific visualization (or non-photorealistic 
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2.1 Volumetric Visualization 

rendering) [ 113, 199, 87]. Realistic rendering attempts to recreate the visual look of 

something as it is in real life, such as how light interacts with materials, while scientific 

visualization simply tries to give a visual insight into the data with more emphases on 

portraying the information. 

2.1.1 Surface Contouring 

Early volume visualization during the 1960s and 1970s was limited by the computa­

tional power available at the time. The simple solution for viewing three-dimensional 

data was to examine it one slice at a time. However, examining volume slices one at 

a time does not easily allow an observer to recreate the three-dimensional look and 

feel in their imagination; in addition it does not enable a doctor to analyze anatomy 

from all angles. As a result, researchers began to find methods of rendering the data in 

three-dimensions, from arbitrary view points. 

Initial research into (general) computer graphics took the form of vector rasteriza­

tion; whereby dots, lines and curves are rendered to a two-dimensional buffer, which 

was then viewed on a display, or printed with a plotter [ 13]. As vector rasterization was 

well established, at the time, the initial visualization of volumetric data exploited these 

techniques; specifically, surface contouring or isosurfacing. Surface contouring is the 

process of finding and extracting a contour, or multiple contours, from a volumetric 

data-set and then rasterizing it; [330, 2 13, 329, 304]. This form of visualization was 

not ideal because of problems in interpreting the output, as noted by Stevens [291]. 

The next research step was to polygonize the surface contours and visualize the 

resulting triangle mesh. Early work in this field attempted to connect contours of a 

slice with the contours of the next; for instance, by using methods from graph theory; 

8 



2.1 Volumetric Visualization 

[ I 54]. However, most early solutions suffered from problems; such as inaccuracy 

and ambiguities [98). The most notable algorithm to emerge, in the field of contour 

extraction, was marching cubes [ 197). 

The marching cubes algorithm moves through the volume and examines one voxel 

at a time; a voxel is an imaginary cube situated between the volume data points. The 

goal of the marching cubes algorithm is to examine the voxel-corner intensities and to 

arrive at a suitable polygonal-mesh to represent the isosurface. By examining whether 

the corner intensities are above or below the desired isovalue, cases can be formed. 

Specifically, the state of each corner intensity in relation to the chosen isovalue is con­

verted to a boolean bit in an 8-bit integer; where each bit represents a corner. The naive 

approach is to consider that there are 28 cases and thus 28 possible polygonal config­

urations; although, when considering reflection and rotation, there are only IS-unique 

cases. There are, however, ambiguities with the original algorithm [86). Marching 

cubes was, and still is, infamous because it was patented. As a result of these prob­

lems, marching tetrahedra [ I 08, 56) was introduced, where a voxel is dissected into 6 

tetrahedrons. This makes the number of cases shrink to 16 and removes any ambiguity, 

while also bypassing the patent. 

Figure 2.1 : The Marching-Cubes voxel cases and resulting polygons. Image source http: 
//users.pol ytech .unice.fr/~lingrand/MarchingCubes/algo .html 
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2.1 Volumetric Visualization 

Employing isosurface extraction and visualizing the resulting polygonal mesh is 

still popular today. Almost every piece of software that can visualize volumetric data 

will employ isosurface extraction; for example Matlab [2 11). 

During the early I 990s, focus moved away from how to extract polygonal isosur­

faces and moved towards how to find valid regions of the volume quickly. Originally 

Marching Cubes was designed to march through the entire data-set, which was not 

ideal for larger data-sets with much empty space. 

An important development in speeding up isosurface generation was the space­

efficient pointerless octree by [325]. In this work, the volume was subdivided using an 

octree, with each node containing a minimum and maximum value for the sub-volume 

the node represented. The research showed that by employing an octree acceleration 

structure not only could the valid regions of the volume be found very quickly, and 

thus generate the isosurface much faster than the marching method, but the structure 

could also be memory efficient. 

The Span-Space technique was introduced by Livnat [196) to as another possible 

solution to the valid-voxel search problem. In a span-space each voxel is mapped 

to a two-dimensional grid. The dimensions of the grid are the mjnimum and maxi­

mum value stored within a voxel. For memory efficiency the span-space is divided 

into memory buckets. Data-points (voxels) are then quantized and stored within these 

buckets. For fast lookup, a kd-tree is also built over the span-space. When searching 

for given an isovalue, the kd-tree can rapidly find the buckets which contain voxels 

with the desired isovalue passing through them. The main drawback of the work was 

the considerable amount of overhead, i.e. voxels checked but not contributing to the 

final isosurface, due to use of memory buckets. 

With researchers solving the search time bottleneck by using acceleration struc-
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2.1 Volumetric Visualization 

tures focus moved once more toward making the whole process of extraction and vi­

sualisation more accurate (220] and faster [196, 64]; of particular interest is the work 

by Livnat [ 195] where the isosurface extraction process is accelerated by exploiting 

view-dependence. 

With consumer graphics hardware becoming more widespread, researchers began 

to exploit them for isosurface visualization (320, 90, 321 ]. With the work of Rottger 

[263] an improved Projected Tetrahedra algorithm was presented for isosurface vi­

sualization. The work utilized 3D Textures, a multiple pass renderer and exploited 

OpenGL-hardware boolean operations to speed up the projection and shading of the 

tetrahedra polygons. Further work with the rendering of tetrahedral cells was presented 

by Weiler (319], who implemented a ray casting system using a programmable shading 

language. This removed the need to project the cells using polygons and directly ray 

traced the tetrahedrons with scene traversal and intersection testing performed on the 

GPU itself. 

2.1.2 Isosurface Raytracing 

Unlike surface contouring, which typically extracts the surface to geometry primitives 

and then renders the geometry with rasterization, ray tracing directly accesses the vol­

ume data and immediately renders the isosurface to the screen. The typical method is 

to shoot rays into the volume and find the first isosurface intersection. 

Intersection testing is an important aspect of isosurface raytracing and has vari­

ous methods available to balance accuracy versus speed (208]. The analytic method 

[241 , 280], employing schwarze's cubic solver (275], is accurate but computationally 

expensive. Linear interpolation between the entry and exit points of a voxel is the most 
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basic and fastest numerical approach for intersection, but is not accurate. Neubauer's 

Method [222] uses repeated linear interpolation to anive at the correct intersection 

location; however, several iterations are required. Finally, the correct root finding 

method, introduced by Marmitt, et al [208], is able to reproduce the same results as the 

analytic method in a numeric fashion. 

2.1.2.1 History 

It was Parker [24 1] who introduced interactive isosurface ray tracing. The work demon­

strated that it was feasible to directly ray trace the isosurface, rather than extract a ge­

ometric mesh from the volume. The algorithm employed was a brute-force raytracer 

with three-steps: traverse the rays through the volume cells, analytically compute the 

isosurface-ray intersections upon finding a valid cell and, upon a successful intersec­

tion, shade the screen pixel. Of interest is the use of bricking and a two-level hierarchy, 

to help reduce the overhead of empty space and improve memory caching. In addition 

the use of an analytical-solver for the intersection test provided high accuracy. Finally, 

the paper itself was popular and served as a generalization of previous work and a base 

for further work. 

During the late 1990s, consumer hardware for computer networking saw vast im­

provements, allowing for very fast and high-bandwidth communications between ma­

chines. Researchers exploited fast and cheap networking to separate the visualization 

of a data-set across multiple machines [63, 20, 62]. While employing multiple ma­

chines was the norm many years previously, these new out-of-core methods provided 

for real-time visualisation and interactive manipulation. 

An important milestone was the introduction of an implicit kd-tree for isosurface 

rendering on CPUs, by Wald [312]. The work was further improved upon by Grob 
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[I 07] to include MIP rendering. The implicit kd-tree was designed to keep a low 

memory footprint, while also enabling high quality rendering of medium sized vol­

umes, at interactive frame rates on consumer CPUs. The implicit kd-tree method is 

further explored in Chapter 2. 

The rendering of discrete isosurfaces (distance fields) was explored by [118] for 

massive data-sets. Accelerated by an Octree for space skipping and an OpenGL-shader 

based raytracing mechanism, interactive rendering with advanced surface-shading was 

achieved. Specifically, surface curvature was exploited for non-photo realistic render­

ing, which allowed for highlighting of interesting features on surfaces that would have 

normally have been hidden. In similar work, Stegmaier [290] presented a ray tracing 

system for distance fields with more emphasis on ray tracing effects, such as reflection 

and refraction. Also of note in this work was the ability to combine rendering meth­

ods, such as isosurface rendering and direct volume rendering with advanced effects 

and tone-shading. Finally, work with distance fields also gave rise to methods for con­

verting geometry to volume data, such that volume rendering techniques could be used 

[142]. 

A major advancement in progress isosurface came with the interactive isosurface 

ray tracing of time-varying tetrahedral volumes [311 ]. This work focused purely 

on a CPU-based implementation, exploiting SIMD for small-packet and large-packet 

traversal. For raytracing arbitrary isovalues, an implicit BVH was introduced, much 

like in the previous work of Wald [312]. 

With data-set size growing ever larger, research focused on solving the mem­

ory problems and rendering speed shortcomings, as was the case with the work by 

Friedrich [96]. An LOD system was utilized, whereby, upon traversal into a region, 

the volume data and sub-tree would be loaded into main memory from the hard-drive. 
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Interactive frame rates were achieved for the isosurface rendering of multi-gigabyte 

volumes, so large they could not be directly loaded into main memory. In addition, 

the work did not require Out-of-core methods, unlike the previous research by Chiang 

[63]. 

As GPUs improved over time, with far better architecture to provide general pro­

gramming, the distinction between research into isosurface visualisation and direct 

volume rendering began to break down. Specifically, it was becoming possible to ren­

der isosurfaces with direct volum~ rendering, simply by choosing a transfer function 

to highlight the isovalue [90]. Of particular interest was the work of Hadwiger [ 11 8] 

which showed a robust and comprehensive rendering application could accommodate 

a multitude of rendering techniques and effects, including direct volume rendering and 

isosurface rendering. However, early isosurface-like transfer functions simply assumed 

all values above an isovalue should be rendered. Actual isosurface transfer functions 

require very nan-ow peaks for a single isosurface, rather than isobands. The main 

problem with this was discussed and solved by Knoll [ I 62]. The simple solution was 

to include a peak-finding algorithm into the direct volume rendering integral, such that 

nan-ow peaks in the transfer function (isosurfaces) are not missed due to the numerical 

sampling rate employed by the volume ray tracer. 

2.1.3 Direct Volume Rendering 

Direct volume rendering reconstructs how light interacts with a gaseous medium and 

how the light is transported to the viewer's eye. The techniques employed typically can 

be separated into two fields, photo-realistic rendering and non-photo realistic render­

ing. For example, a realistic rendering of a volume might be the modelling of radiation 
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through the medium, such as X-Ray, while a non-photo reali stic rendering may involve 

the use of a transfer function to map data values to arbitrary colours and opacities. 

The goal in volume rendering is the mapping of information contained in a volu­

metric medium such that it can be represented on display devices, or printed. Typically, 

the volume data is stored in a discrete form, as illustrated in Fig.2.2. There are several 

factors governing the final result, such as: how light propagates through the medium; 

what the physical properties of the medium are; and what kind of information is being 

visualized. 

2.1.3.1 Modeling Light Transportation 

Figure 2.2: Discrete storage of volumetric data and representation as voxels. Image source 
and copyright: SIGGRAPH 2009 Course Notes [207] 

The human eye detects light as it hits the retina. Light, either from the sun or 

from artificial lighting, must travel from its source through the world before arriving 

at the eye. As light travels through the world it is altered by the various mediums, 

whether they are gaseous or solid, that are present. Basic interactions that can occur 

are absorption, reflection, refraction. 

A computer simulation may or may not model all these interactions and indeed 

may not simulate light as it occurs in the real world. For the sake of speed it is typical 
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to reverse the model such that we only compute the light which enters the eye and not 

all the light given from a light-source. The most important optical models used today 

in volume rendering were reported in the survey paper by Max[212] and have been 

summarized by Engel [89): 

Absorption only: is where the volume medium is assumed to be full of light absorb­

ing gas. No light is emitted. 

Emission only: is where the gas within the volume emits light, but is completely 

transparent. 

Absorption plus emission: is a combination of the previous two optical models and 

is the typicaJly used method. The gas not only emits light, but also absorbs incoming 

light also. 

Scattering and shading/shadowing: is another popular optical method, whereby 

light is scattered within the volume as it passes through. This method can also consider 

whether the light between the source and voxel is impeded by the volume, and therefore 

cast a shadow upon the voxel in question. 

For a comprehensive look into the simulation and modelling of light see the two­

volume work by Glassner [ I 00). 

2.1.3.2 The Volume Rendering Pipeline 

There are several stages in a typical volume rendering pipeline [89): 
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Data Traversal The data of the volume must be traversed in the sense of acquiring 

the data necessary to compute the volume rendering integral. Traversal of the data may 

be accelerated using an acceleration structure; i.e. to avoid empty space [78]. A basic 

approach is to simply step along rays in discrete steps, accessing the volume along the 

way. The step-size can also be made adaptive [ 185]. 

Interpolation Due the fact volume data is typically in discrete form, it is required to 

reconstruct the original volume function using filters [2 10]. The most common filter 

is simply linear interpolation in three-dimensional space (trilinear). This is especially 

true for GPU volume renderers as trilinear-interpolation is hardware accelerated. 

A B - 1 

-1 -0.5 O 0.5 
1 -1 0 

I I 

Figure 2.3: Example of reconstruction filters (one-dimensional), where A) is the box-filter, B) 
is the linear-filter and C) is the cosine-filter. Source: SIGGRAPH 2009 Course Notes [207] 

Gradient Computation It is typical to compute the local gradient of data when ap­

plying local illumination. Typically, central-differences is used for reconstructing the 

first-derivative in a numerical manner. It is also common to increase the distance pa­

rameter in order to acquire smoother results and limit the visual effect of the discrete 

nature of the data. Alternative methods may employ the first-derivative of the trilinear­

interpolant [241 ], or tricubic-interpolant [ I 44] or indeed other reconstruction filters 

where an analytical derivative is available. 
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Classification Classification, in the sense of the the volume rendering pipeline, is the 

process of altering the visual properties of specific data or regions within the volume. 

Typically, this involves applying a transfer function, where the volume data is mapped 

to a colour and opacity contribution and is in-turn used during composition. Alterna­

tively, a second volume may be utilized that defines a segmentation class for volume 

regions. Such segmentation classes may represent individual anatomy and as such 

may be rendered with different optical properties. Pre-classification is the term used 

when the volume samples are classified prior to interpolation, while post-classification 

is when the interpolated value is used in the transfer function instead. Pre-integrated 

classification is when the integral between two values of a transfer function are pre­

computed. Pre-integration provides the best rendering quality, while pre-classification 

the worst [90]. See Section 2.5. 

Illumination Local-illumination is the typical lighting method used during volume 

rendering, which computes the first bound in relation to the scene lights and viewing 

camera. With additional ray casting, shadowing can be achieved. Global-illumination 

tracks all light rays, throughout a scene, as they bounce multiple-times until arriving at 

the camera. 

Composition Composition is the process of iteratively stepping along a ray, either 

in back-to-front or front-to-back ordering, and numerically integrating the volume­

integral. 
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2.1.3.3 Volume Rendering Integral and Composition 

Simulating the propagation of light through a medium requires computing the volume 

rendering integral, i.e. , the integration of the medium and optical properties as they 

travel to the eye. 

The typically used optical model is the emission-absorption model and leads to the 

following volume-rendering integral, as described by Engel [89]: 

D D D 
- .f K(1)d1 J -f' K(r)dl 

l (D) = foe "0 + q(s)e :, ds 

so 

where K is the absorption coefficient and q is the source term (emission). Integration 

is from the entry point s = so to the exit location s = D. It is common practice to 

compute the volume rendering integral in an iterative fashion. This leads to the front­

to-back (from the camera into the volume) composition scheme, with the assumption 

that non-associated colours are used: 

where Cdsi and a dsi are the accumulated results of the previous computations, and 

where Csrc and <Xsrc are the source terms, typically given by the transfer function. 

2.1.3.4 History 

Early research focused on the reprojection of the volume to allow the data to be viewed 

from arbitrary view angles. Specifically, the additive reprojection technique simulated 
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an x-ray image by averaging the intensities of voxels, situated along parallel rays, 

from the rotated volume to the image plane [259, 129]. Simular work involved source­

attenuation reprojection [139, 273], which assigns a strength and attenuation (opacity) 

coefficient to each source voxel. This technique allowed for hiding uninteresting areas 

and to obscure certain objects from view, while highlighting more important features. 

Another interesting development was depth cueing [304], whereby the volume opacity 

contribution is inversely-proportional to the distance from the camera to the voxel. 

This has the effect of giving the perception of depth, which is especially useful when 

employing parallel projection; i.e. , a lack of perspective. 

During the early 1980s colour displays became more readily available, which re­

sulted in volume rendering exploiting the benefits of coloured rendering. Specifically, 

Farrell [92] introduced colour transfer functions by classifying volume intensity ranges 

to a 9-bit colour (3 bits per colour). This work also reported difficulties in distinguish­

ing the seperate regions when using more than four colours. 

An important milestone was the work by Drebin [84], who introduced a basic form 

of utilizing multiple transfer functions for multiple materials. Specifically, the work 

analyzed the volume histogram and classified intensity ranges as being one or more 

materials. For example, very low intensities would be defined as air, while very high 

intensities would be defined as bone. Rather than illustrate the entire volume with a 

single colour and opacity, each material was coloured differently and materials could 

overlap one another. The research is also notable for the composition of multiple 

input-sources; i.e., the material boundaries, the partial-derivatives for each axis and 

the individual material volumes. 

With desktop computers becoming more readily available to researchers during the 

late 1980s and early I 990s, there was an explosion of new research. New techniques 
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emerged employing more computationally expensive algorithms while reducing the 

algorithm complexity. Notable is the work of Levoy [189] which utilized ray tracing 

and trilinear interpolation in a generalized and simple algorithm; one typically used 

today. Levoy's [ 189] approach is further described in section 2.2.1.1. 

Optimization of volume rendering became a focus of the work by Levoy [ 190]. The 

ray casting method employed was a grid traverser and two methods for performance 

optimization were described. Firstly an octree-like pyramid of sub-volume cells was 

built over the original volume space. This structure had the purpose of defining empty­

space, such that when the ray traversed into empty cells, the space could be avoided. 

If the cell was valid, the ray would traverse down the pyramid-tree into a finer volume 

grid. The technique was further refined in later work by Levoy[ 191 ], where a mip­

map was employed for gaze-directed rendering. The second optimization employed 

was early ray termination, which had been researched previously by Whitted[324]. As 

the ray traverses from front-to-back, colour and opacity is accumulated accordingly. 

Once the ray accumulation is fully opaque, further traversal is not required (and thus 

terminated) as no further contribution to the volume integral is possible. 

Another major milestone for direct volume rendering was high-quality pre-integration 

by Engel [90]. Pre-integrated classification, as reported earlier by Rottger [263] for 

cell-projected tetrahedra rendering of isosurfaces, provides for a substantive improve­

ment to image quality compared to post-classification methods. One of the main draw­

backs to direct volume rendering is the need for numerical integration of the volume 

rendering integral. The problem arises when the sampling rate (along the viewing ray) 

is too large, resulting in visible artifacts in the final output. Direct volume rendering 

with pre-integration of the transfer function, forms a lookup into a two-dimensional 

table, given the volume values at the entry and exit points (i.e. [t , t + sample rate]), and 
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uses the value for colour and opacity accumulation. The table itself is populated with 

the correct integration of all possible value combinations; i.e. the integration of the 

transfer function from any value, to any value. As a result of using pre-integrated clas­

sification, larger sampling distances can be employed. This greatly reduces the render 

time, without compromising the rendering quality. 

The work by Kruger [170] is an example of early work with GPU acceleration of 

volume rendering. This work was performed on older hardware, where rasterization 

shaders were employed. The approach had the benefit of being easily integrated with 

OpenGl or DirectX rendered scenes. 

An interesting development was the work by Hadwiger [11 4] for volume rendering 

of segmented data sets. The work focused on working with the segmentation data di­

rectly, rather than the original volume and facilitated the merger of multiple visualiza­

tion techniques, such as direct volume rendering and maximum intensity projection. 

The interesting factor of this work was the trilinear interpolation within the voxels. 

Due to voxel corners having segmentation IDs rather than intensity values, direct tri­

linear interpolation is not possible. Instead multiple trilinear interpolations, at least 

one for each unique segmentation ID within the voxel is required. For each unique 

segmentation ID, a binary-valued voxel is formed. The interpolated values for each 

ID case is then stored. The segmentation case with the highest value is chosen and 

the segmentation ID returned to the shader program. Using this system, high-quality 

post-classification was possible, as well as pre-integrated classification. 

With advancements being made toward more optimal visualization algorithms, as 

well as further computational power for researchers to exploit, more focus was directed 

to the visual information portrayed by the rendering; such as multi-dimensional trans­

fer functions as reported by Kniss [ 159] and the context-preserving rendering approach 
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by Bruckner [37]. These techniques are discussed further in Section 2.5. 

The latest research in direct volume rendering suggests that solving the problem 

of visualizing massive volumes is the current research trend. Of note is the research 

by Crassin [73], which employs a LOD system, similar to that of Friendrich [96], 

and load-on-demand bricking. For a broad overview of current techniques the book 

by Engel [89] is an invaluable survey of real-time rendering methods. In addition the 

SigGraph course-notes [207] details the cutting-edge research and practical discussions 

for the implementation of latest visualization methods. 

2.2 Rendering Techniques 

While ray tracing had always been of interest to researchers, alternate algorithms for 

volume rendering began to be published in the 1990s, such as those reported in the sur­

vey paper by Elvins [88]. These algorithms could be divided into two groups, image­

order and object-order. With image-order rendering each pixel is only concerned with 

the data that the ray of light passes through as it travels from the camera, through the 

pixel and into the scene. With object-order rendering, individual objects are projected 

to the screen to determine the pixels that the object contributes to. 

The following section outlines the most notable volume rendering techniques to 

have emerged; these being Ray Tracing, Shear Warp Transform, Texture Slicing, Splat­

ting and Cell Projection. 

2.2.1 Ray tracing 

Ray tracing projects a ray from an origin (typically the camera) into a scene and can 

be used for a number of purposes. In relation to graphics, ray tracing typically refers 
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to finding intersections with geometry and/or determining the interaction of the ray of 

light with a volumetric medium. Ray tracing and ray casting are very similar, except 

for subtle differences. With ray casting, new directions for the ray are not computed, 

as they are with ray tracing upon intersecting with geometry. This means effects such 

as refraction and reflection are only possible with ray tracing. In recent years the term 

"ray tracing" has been more widely employed to describe both methods. 

Ray casting, for computer graphics, was first pioneered by Appel [ 13] for the ren­

dering of solid geometry, however, it was not until the work of Roth [262] before the 

term "Ray Casting" was coined. Initial focus was directed toward ray tracing solid 

geometry and improving the shading model to include more effects, such as shadows 

[ I 3, 35], specular reflection [315], transparency [223], global illumination [324], and 

improved realism [18, 29, 3 1, 151, 328]. With a research foundation for ray tracing 

solid geometry formed (and later generalized by Kajiya [ 146]), focus moved toward 

the ray tracing of volumetric densities and volumetric effects. The work of Blinn [30] 

focused on improving the lighting models for computer rendering, with specific focus 

on clouds and how they scatter the light (reflection and diffusion). 

An alternative technique to Ray Tracing is Path Tracing, which is a technique used 

to simulate the physical behaviour of light as closely as possible. Originally described 

by the rendering equation introduced by Kajiya [ 146], Path Tracing was later refined by 

Lafortune [ 178] to include bidirectional path tracing; i.e. tracing the path of light both 

from the camera and from the light at the same time. Path Tracing belongs to a group 

of algorithms able to simulate global illumination (indirect lighting). Other techniques 

for global illumination include photon mapping [14 1], radiosity [104], beam tracing 

[128], cone tracing [5] and ambient occlusion [44]. 
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2.2.1.1 Volume Ray tracing 

3D Voxel Intersection 
2D image pixel 

t I 

Figure 2.4: Visualization of the Ray casting process. Image source: volviz.com 

Work dedicated to ray tracing of volumetric data saw much pioneering research in 

the mid-to-late 1980s. Of note is the rendering equation described by Kajiya [ 147], 

which improved upon Blinn 's [30] light scattering model. In addition, the work de­

scribed a method for ray tracing density models, which, for example, could be used to 

simulate clouds. 

Improvements and generalization of the ray tracing of volume data came with the 

work by Levoy [189], whose work is notable for the non-binary classification of the 

data, much like the research published in the same year by Drebin [84]. Levoy 's [ 189] 

work is also interesting for using a ray stepping algorithm and employing trilinear inter­

polation within volume voxels. Unlike modern volume ray tracing methods, whereby 

the classification is typically performed prior to interpolation, Levoy prepared and clas­

sified the data prior to rendering. The general pipeline presented first feeds the CT data 

set into a shading program, which outputs a colour volume. The CT data is then sent 

to separate classification program, which outputs a volume of opacities. This results 
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in two separate pre-processed volume arrays. The final step of the pipeline casts rays 

into both volumes and uses trilinear interpolation to sample the data. This process of 

applying a classification routine before interpolation is referred to as pre-classification, 

whereas interpolating the data before classifying it is referred to as post-classification. 

Grid traversal was an important method for the earlier research into volume ray 

tracing. Typically there are two methods for tracing a ray through a volume. First we 

can progress along the ray at constant distances (sampling rate), which requires floating 

point arithmetic to compute the new location within the volume. The alternative is 

to traverse the ray using a DDA line algorithm, which is useful when only integer 

arithmetic is feasible. Initial use of DDA ray traversal focused on traversing polygon 

scenes that had been space-partitioned into grids, as detailed by Fujimoto [99] and 

Amanatides [6]. Later these techniques were used for interactive ray tracing of volume 

data [190]. In modern times, grid traversal methods showed favourable results for the 

rendering of animated scenes, as well as providing efficiency due to ray coherence, in 

work by Wald [313]. 

Exploration of volume data and providing multiple visualization options, such as 

surface clipping, was the focus of the work by Hohne [130]. A generalized voxel 

model was introduced by this work, which enabled the introduction of a second imag­

ing modality; i.e. combining CT and MRI data. Ray casting was utilized for the 

rendering of segmented surfaces from the volume. The work also computed the sur­

face normal from the original volume data using central differences, which produced 

superior image quality. 

Ray tracing, typically being a naturally parallel process, exhibits coherence among 

primary rays. This is to say that rays traversing through the same areas of the scene 

can exploit caching, such that data need only be loaded once for a group (or packet) 
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of rays. Initial research into exploiting ray coherence came with the work by Kaplan 

[ 149]. It was further explored by Yagel [332], who solved the problem of using DDA 

algorithms without artefacts. Later, other researchers would exploit coherence for other 

visualization methods, such as Wilhelms [326], who outlined a coherent method for 

cell projection. 

Ray coherence was again exploited by Wald [3 14] to enable interactive ray tracing 

of large polygon scenes and later introduced for animated scenes [313]. The work is 

also notable for introducing ray packets, which could exploit SIMD technology for 

considerable performance gains. In general, coherence algorithms typically have used 

a DDA grid traversal, with packets of rays. The latest research by Knoll [163] contin­

ues this trend using a multi-resolution grid for the ray tracing of isosurfaces at interac­

tive frame-rates on CPUs. 

As consumer hardware technology advanced, the speed with which volume render­

ing could be achieved was significantly improved as reported by Westermann [321 ]. 

2.2.1.2 Volume Ray tracing on GPUs 

With the advent of programmable shader languages, ray tracing pipelines could be 

implemented purely in the GPU, as was presented by Purcell [252, 253]. Alterna­

tively, the GPU could be exploited only for the computationally intensive aspects of 

the ray tracing pipeline to create a hybrid CPU/GPU rendering system [52]. However, 

while the power of GPUs is undeniable for certain functions (typically those of high 

computation and low thread-branching), an on-going battle has been waged between 

CPU-based ray tracers and GPU-based ray tracers, as to which is the fastest and best. 

Ray tracing on GPUs introduces new challenges for researchers (as reported by 

Aila [4]), not only from an implementation perspective but also in determining which 
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algorithm can best fully utilizes the device hardware. Many previous ray tracing ap­

proaches were designed for CPU-based ray tracing and as such may not have the same 

benefits when implemented on GPUs. Ray tracing algorithms can be divided into two 

categories; those that reduce the overall workload and those that optimize the traver­

sal. For instance packet traversal [312] is where a group of rays are represented and 

traversed as a packet. Packet traversal reduces the amount of work for the group of 

rays by performing the common traversal steps once. Coherent traversal [ 164] at­

tempts to exploit the fact that rays typically traverse the same nodes most of the time 

by forcing convergence after ray divergence. Optimization algorithms cater for spe­

cific strengths and drawbacks of targeted architecture, for example, stackless traversal 

[94, 248, 73, 133]. 

A major contribution to GPU-based volume ray casting was the stream framework 

proposed by Kruger [ 171 ]. While the framework utilized standard acceleration tech­

niques, such as empty-space skipping and early ray termination, the method by which 

the rendering method integrated into the GPU was unique. The proposed method ren­

ders a cube, which has its RBG colours set to its XYZ values. The initial rendering pass 

only renders the back-facing polygons of the cube. The resulting image is stored in a 

GPU texture. Next a ray tracing shader is attached to the GPU and the cube is rendered 

again, except this time showing the front faces. Both rendered images (front and back 

faces) provide the start and end positions for the rays. Each front-face fragment (pixel) 

then becomes a ray and is shaded by the GPU using the attached ray tracing shader. 

The shader simply subtracts the RGB values of the front face from the back face, which 

results in a view direction vector. The ray tracer then steps along the ray, samples the 

volume, which is stored in a 3D-Texture, and computes the volume integral. 

The multi-pass rendering framework by Kruger [ 17 1] proved useful for researchers, 
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with Hadwiger [ 118] extending the idea for larger volumes. In Hadwiger's [ 11 8] work 

the volume was divided into bricks, typically 83 in size. Rather than render a cube, for 

computing the start and end points to ray trace, each valid brick was rendered. This 

enabled a far better system for empty space skipping than the previous work. In addi­

tion the ray tracer did not sample the original volume, but rather a compacted volume 

of bricks. This ensured that no empty-space was uploaded to the GPU, thus saving 

time and memory space. Also of note is that bricks could be uploaded asynchronously, 

such that the ray tracer could render one brick (and read the data) while another brick 

was being uploaded. This facilitated the rendering of large volumes without the data 

transfer becoming a bottleneck. 

An alternative framework for GPU-based volume rendering, by Stegmaier [290], 

was similar to Hadwiger's [ 17 1] work in that the front-faces of a cube were rendered 

with a custom fragment-shader attached to enable ray tracing. However, the later work 

used a single-pass and omitted the rendering of the back buffer. Ray directions were 

computed on-the-fly by subtracting the polygon-fragment location from the camera lo­

cation. This work is also notable for implementing a wide variety of advanced effects, 

such as shadows, reflection and refraction. 

2.2.1.3 Stackless Ray tracing 

In general, ray tracing of an acceleration structure requires a stack to record tree nodes 

which cannot be immediately traversed, but which should be returned to if required. 

Due to shared-memory limitations of GPUs, such an approach typically requires the 

stack to be stored in the GPU's main memory (global memory). However, since the 

slowest aspect of most cmTent GPUs is accessing the global memory, a stack-based 

approach can induce a memory bottleneck. 
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Foley [94] highlighted that a stack-based traversal approach on GPUs induced such 

a performance bottleneck. Their solution was to completely remove the need for a 

stack and resort to extra computation for correct traversal. The two approaches they 

introduced for general kd-trees were kd-restart and kd-backtrack. kd-restart, upon 

requiring to return, restarted traversal from the root node, while also moving the ray's 

segment-range ahead of previously visited areas. kd-backtrack dealt with returning by 

backtracking up the tree one node at a time until a valid continuation point was found. 

Both approaches require a considerable amount of additional work to find valid nodes 

into which to continue traversal. 

Further exploration of stackless traversal was the focus of the work by Popov [248] 

with the rediscovery of Ropes [270, 271 , 202]. The Ropes technique adds additional 

neighbour information to each node of a tree, which allows a traversal mechanism 

to traverse into a neighbour cell/region upon discovering that the current sub-tree has 

no ray/geometry intersection. Unlike a stack though, intermediate nodes above the 

neighbour node can also be avoided, resulting in less nodes being visited in general; 

subsequently making the method faster than a stack anyway. However, the massive 

memory cost of requiring pointers for each plane of the bound is a disadvantage. 

Stackless approaches are typically a game of balance, such that by avoiding a stack 

either more memory is required [248] in the tree, or more computation and iterations 

of the traversal mechanism is needed [94]. The work of Horn [133] focused on the 

balance aspect of designing a stackless method by introducing kd-shortstack. Rather 

than completely remove the stack, a very small one is used. This short stack can be 

made small enough to fit in the fast (but limited) shared-memory available on the GPU 

multiprocessors. If the stack overflows the slower global memory can be used instead 

[200], or the algorithm can revert to kd-restart [133, 94]. 
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2.2.2 Texture Slicing 
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Figure 2.5: Example of Texture Slicing. Image source: equalizergraphics.com 

Texture slicing, depicted in Fig. 2.5 is a very simple, yet effective approach for 

visualizing volumetric data. Several two-dimensional slices are placed within the vol­

ume, facing the observer, at regular intervals. The underlying volume is then sampled 

on the slices. These slices are then composed together by the graphics card to form the 

final image. This approach is especially useful for graphics hardware as all sampling 

and composition can be accelerated by purpose-made hardware components. 

The use of 3D texture mapping for volume rendering was explored simultaneously 

by Cullip [74] and Crabal [48), implemented on the RealityEngine workstation with 

OpenGL extensions. Two variants were discussed, one where planes were parallel to 

the observer and another with planes parallel to one of the volume's axis. Later work 

by Rezk [257) enhanced the slicing technique to overcome accuracy problems when 

using 2D Texture mapping on consumer hardware where 3D Texture mapping was not 

available. An alternative to placing 2D planes within the volume's Cartesian domain 

was the spherical-domain based approach of Westermann [320]. 
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2.2.3 Cell Projection 

Like splatting, cell projection is an object-order approach. However, unlike splatting, 

the cell is typically polygonized and the polygons projected to the screen. Early work 

by Shirley[282] decomposed volumes into tetrahedral cells. These were then polygo­

nized and rendered (typically with hardware graphics cards) with transparent triangles. 

The rendered triangles were composed to form the final volumetric rendering. In sim­

ilar work, Wilhelms [326] projected the visible cell faces directly (rather than using 

tetrahedral calls), using triangles or quadrilaterals, and improve image quality with 

improved volume integration methods. Renewed interest in cell projection by Rottger 

[263] exploited new graphics hardware to further improve the rendering quality and 

speed for direct volume rendering and isosurfacing. 

2.2.4 Splatting 
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Figure 2.6: Example of the Volume Splatting Process. Image source: [61] 

Splatting is a method whereby the volume, in the form of three-dimensional recon­

struction kernels or splatting primitives, is projected to the image plane; see Fig. 2.7. 

These projected kernels are first sorted, then evaluated and finally composed to form 
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the final image. The method is very flexible and only requires some form of sorting to 

ensure correct composition ordering is met. The first publication for volume splatting 

was by Westover [322, 323]. 

A hierarchical approach was presented by Laur [182], where a pyramid structure 

was used to refine the splat cell size based on local data variance. Also the pyramid 

structure allowed rendering to be flexible so that lower resolution could be chosen to 

meet a desired frame-rate. 

A new splatting primitive, called the EWA (elliptical weighted average) volume 

resampling filter, was introduced by Zwicker [343]. This filter combined an elliptical 

Gaussian reconstruction kernel with a Gaussian low-pass fi lter to deliver reconstruction 

of both surface (isosurfacing) and volume data for perspective-based visualization with 

improved anti-aliasing. The work was extended by Ren [256] with a new object-space 

fo1mulation of EWA splatting for irregular point samples and an efficient implementa­

tion on graphics hardware. Hardware acceleration was again the focus of Chen [6 1 ], 

who introduced an adaptive EWA splatting method without reduction in quality, and 

Neophytou [221] who introduced RBF-based (Radial Basis Function) splatting primi­

tives for irregular grids. 

2.2.5 Shear-warp 

Shear-warp volume rendering, introduced by Lacroute [ 176] is closely related to tex­

ture slicing in that two-dimensional slices are placed within the volume, however, these 

slices are axis-aligned rather than aligned toward the camera. This gives the benefit of 

the slice-sampling being completely linear and subsequently very optimized for mem­

ory access. The approach does, however, require an additional step to correct the visu-
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Figure 2.7: The Shear-warp volume rendering process. Image source: [176] 

alization for proper composition. Specifically, once the volume slices have been ren­

dered to an intermediate base-plane, the base-plane must be transformed using shearing 

to match the view perspective. While the method allows for much optimized memory 

access, the shear-warp transformation means certain regions of the image-plane may 

be under-sampled (poor quality). As such, it is typical to super-sample during the vi­

sualization so that the base-plane is larger than the output screen. This then allows for 

better quality after the shear-warp transform. The shear-warp method is depicted in 

Fig. 2.7 

A number of advancements were published in the years after the original work. 

Utilization of shared-memory multiprocessors by Lacroute [ 175] facilitated real-time 

rendering. In independent work, Amin [9] also presented a parallel implementation 

of the shear-warp algorithm for faster results. Later work by Sweeney [294], short­

comings with image quality were addressed using body-centered cubic grids, while 
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other research by Schulze [274] combined the shear-warp method with pre-integrated 

classification. The effectiveness of the algorithm was also highlighted for the visu­

alization of 4D (time varying) datasets in the work by Anagnostou [10]. Finally, the 

technique saw renewed interest for modern graphics hardware with the work by Guo 

[ 111 ]. As modern GPUs are most optimized when global memory is accessed linearly, 

shear-warp was shown to exploit the hardware texture caching quite well. 

2.3 Acceleration Structures 

As rendering techniques became more advanced and more complicated scenes could 

be rendered, researchers began to highlight the need for efficient acceleration structures 

both for geometry ray tracing [152, 17, 265] and volumetric visualization [ I 90]. 

Acceleration structures are now an important aspect of modern volume rendering 

approaches, especially so if large regions of the volume are unimportant or empty. In 

most rendering approaches the empty space within a volume never contributes to the 

volume integral. If the empty-space is avoided completely, and assuming the mecha­

nism for avoiding the empty space is faster than examining it in the first place, faster 

rendering can be achieved. 

There are many acceleration structures available and each is typically designed for 

specific purposes or to have specific properties; be it faster lookup, or a low mem­

ory footprint. Object-space and domain-space splitting is also a defining attribute of 

acceleration structures. 
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2.3.1 Grid 

The most basic acceleration structure available is the sub-division of a volume (or 

space) into a regular grid. Early ray tracers, such as those by Kajiya [147) and Levoy . 

[ I 90), traversed grids for volume rendering, while Amanatides [6] and Fujimoto [99] 

also used them for polygon ray tracing. 

The work of Parker [241] introduced a multi-level hierarchy grid, where the vol­

ume is divided into equally sized cells. These cells were referred to as macrocells as 

they also contained a min/max value to describe the range of volume values contained 

within it. Also utilized in the work was bricking, which had been introduced by Cox 

[72). 

Bricking is typically performed as a solution to when the volume is too large to be 

completely stored in memory, as reported by Westermann [320). Rather than render the 

entire volume, each brick is rendered individually. While one brick is being rendered, 

others can be prepared and loaded, i.e., from the hard-drive to memory. Modem ray 

tracers have exploited grid traversal for ray coherence resulting in better performance 

due to optimized memory access upon groups of rays [163, 3 14]. 

Gobbetti [ IO l ] presented a method for out-of-core volume rendering of massive 

data-sets. By decomposing the volume into small bricks, asynchronously transferring 

data to the GPU, and the removal of empty space, the work allowed for real-time 

visualization of very large volumes at interactive frame rates. 

2.3.2 Kd-Tree 

A kd-tree, introduced by Bentley [22], is a spatial splitting structure. Given a root node, 

which encompasses the entire volume, the space is split by an axis-aligned plane. The 
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splitting typically occurs along the axis corresponding to the largest dimension. By 

recursively splitting nodes, and forming two children, a hierarchical tree is created. 

Examples of kd-trees being used for visualisation, include storing sampled points dur­

ing image reconstruction [235], dividing a volume with a balanced kd-tree for isosur­

face and direct volume ray tracing [312] and for ray tracing of polygonal scenes [95]. 

Further work has focused on improving the build quality of kd-tree to optimize for 

ray traversal [ I 02, 202, 123, 137] and to facilitate building (or updating) in real-time 

[340, 247, 279, 137] on GPUs. 

2.3.3 Octree 

An octree is another favourite acceleration structure researchers have used for acceler­

ating visualization, such as the work by Meagher [2 17, 2 l 8] and Samet [272]. Given a 

root node, which represents the entire volume, the space is separated into eight octant 

children. With an octree, nodes are split along all the axes and when the space can no 

longer be divided a leaf is formed. Because all three of the axes are split at a node, the 

depth of octrees is typically quite shallow, when compared to a kd-tree. A survey of 

Octree methods was reported by Knoll [ 160]. 

Octrees have been utilized by many researchers for various visualization prob­

lems, such as isosurface visualisation [325], representation of three-dimensional ob­

jects [138], simplifying object neighbour finding for collision detection [219], hidden 

surface removal during volume rendering [83, 3 16], and overcoming volume mem­

ory requirements using octree-based compression [ 180, 11 2]. Knoll [166] used a 

lossless-compression octree representation to store compressed volume data for fast 

iso-surfacing, while Hadwiger [ 117] described a two-level hierarchical representation 

37 



2.3 Acceleration Structures 

utilizing a form of octree, which allowed object-order and image-order empty space 

skipping for real-time ray-casting of discrete isosurfaces. 

An interesting development was the branch-on-need octree, where the nodes were 

only further split if needed, i.e. if that region was visible and needed to be rendered. 

Originally introduced by Wilhelms [325] the method was further refined by Sutton 

[292] for temporal data-sets. 

2.3.4 Bounding Volume Hierarchy 

Bounding Volume Hierarchies (BVH) have been quite popular for many years (used 

in the work by Kay [ 152]) due to their simplicity and more favourable properties than 

Kd-trees or Octrees. Most notable is the fact that a BVH is an object-order hierarchy 

rather than a space-order hierarchy. This is to say that a BVH splits a node by the data 

it represents, rather than the space. Because of the absence of splitting planes, nodes 

store a boundary, which encompasses the space within which the objects reside. In 

addition, the traversal of a BVH requires rays to check for intersections with the bound 

of each node. BVH can be used for volumetric data, however, they are typically better 

suited for irregular grids, tetrahedral volumes [311] or polygonal data [ 11 0, 109]. 

The basic structure has seen little change over the years, except for two notable 

cases. Firstly, instead of having three bounds it is possible to only store the bounds for 

a single axis in each node to form a bounding interval tree, as shown by Wchter [317]; 

these forms of trees are also referred to as range-trees [23]. Secondly, the work by 

Dammertz (77] compacted the BVH tree, such that a node was split into four children 

rather than the typical two, which generally reduced the number of traversal iterations 

during ray tracing allowing for better performance. Real-time construction of BVHs 
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has also been a focus for researchers, either exploring refitting of existing BVHs [ 181, 

310, 334] or completely building a new BVH from scratch [308, 183] 

2.4 Graphics Hardware Programming 

Over the years computers saw the introduction of dedicated hardware to accelerate 2D 

rasterization and then, in later years, 3D graphics acceleration. Initially, hardware was 

expensive and limited to specialized research workstations. However, in modern times 

consumer-based hardware that can operate in desktop computers has becoming the de 

facto standard for performing wide-impact research upon [233). 

2.4.1 Early Hardware Programming 

In order to allow developers (primarily game developers) the option for more control 

over how 3D geometry was rendered, shader languages were introduced [26 l, 32). 

These shader programs worked primarily on the input geometry and the screen frag­

ments (pixels). Early development of hardware-based visualization methods utilized 

these shaders in order to accelerate the volume rendering process [ 171 , 11 4, 192, I 40, 

278). However, as shader languages were not designed for general usage program­

ming, much work was dedicated to getting the programs to work in the first place. 

This typically entailed packing general variables into textures (within the red, green, 

blue and alpha components). In addition, loops were not available with earlier shader 

languages. 
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2.4.2 Compute Unified Device Architecture (CUDA) 

Recently a new GPU programming language has been developed called CUDA [225]. 

CUDA is designed to facilitate general usage programming on GPUs, while also pro­

viding the mechanisms for parallel processing. While other languages are in devel­

opment and have been explored for use with visualization, notably OpenCL [42] and 

Brook [43], CUDA still remains the most developed and has been shown to be efficient 

for interactive ray tracing [200]. Parallelization of algorithms has been a difficult en­

deavor, and while automatic methods have been proposed [342], it typically requires 

extensive research and a great deal of time. 

CUDA allows for code, in the form of kernels, to be uploaded to the GPU and to 

operate directly on the hardware. In addition, CUDA also allows for simple integration 

with existing CIC++ code. What is interesting about this integration is that while 

shader languages may require a great deal of initialization code before work can even 

begin, most of the low-level operations required to initiate CUDA kernels are hidden. 

In fact, apart from a minor difference in the calling convention, CUDA kernels can be 

called much like a normal C function. 

CUDA has had a far reaching impact on research in many fields, not just visualiza­

tion. For example with N-Body simulation [226], SQL Database acceleration [21] and 

fast detection of humans in videos [26]. 

2.5 Classification and Context 

Volume data acquired from CT or MRI are typically recorded as single value intensi­

ties. As colour displays became more readily available researchers began to exploit the 

benefits for coloured volume rendering. By classifying the input data, it became pos-
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sible to render different intensities with different colours and opacities. This section 

details the work with classification and transfer functions. Additionally, research into 

the segmentation of volume data is also explored. Volume segmentation is the process 

of defining and separating one or more regions within the volume. Different to clas­

sification, which is typically performed during the rendering cycle, segmentation also 

considers anatomical features, locality, a priori knowledge and directed user input. 

2.5.1 Transfer Functions 

In standard direct volume rendering, visual distinction of objects is usually achieved 

with a transfer function that assigns optical properties such as colours and opacities 

to data values [84, 302]. During composition of the volume rendering integral, these 

colours and opacities are accumulated as the ray passes through the volume and finally 

rendered to the screen pixels. 

Developing methods for the design of transfer functions is a difficult task, as re­

ported by Pfister [244]. For certain image modalities, data intensities can have an 

intrinsic meaning, such as bone being high-valued, while air being low valued; in 

such a case, simple transfer function can be easily achieved [84]. However, soft tis­

sue typically has a uniform set of values (for example in CT data) which makes visual 

distinction hard to achieve. 

Marks [206] presented an automatic systems where a variety of transfer functions 

are automatically generated with various colours and opacities given to various ranges 

of data. The resulting volume renderings for each automatically generated transfer 

function are previewed to the user who is then able to choose which to use. Kindlmann 

[155] presented a novel technique for semi-automatic generation of opacity functions 
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to visualize boundary relations between materials of near-constant value. The work 

explored designing transfer function over 2D and 3D histograms based upon the scalar 

value and the first and second derivatives. Kniss [158, 159] expanded upon the work 

with multidimensional transfer functions and GUI improvements to aid users to ma­

nipulate multidimensional transfer functions. 

2.5.2 Context/Importance-Driven Rendering 

Figure 2.8: Transfer Functions allow for varied visualisations of volumetric data. Image 
source: Bruckner [40] 

Given a large range of possible settings, constructing an appropriate transfer func­

tion is often a daunting and frustrating task that involves adjusting a lot of non-intuitive 

parameters. A solution to this problem is context-preserving rendering, which is where 

the opacity of samples is modulated to reflect its perception importance to the viewer. 

Context-preserving volume rendering, as introduced by Bruckner [37], utilizes the 

intrinsic information of a volume, such as gradient, and view dependent information, 

such as camera location, to provide context cues for the viewer. By employing context­

preservation the user is typically able to perceive the make-up of many more anatomi­

cal objects when compared to standard DVR. 

Context-preserving rendering has an artistic background. Many illustrative and 

technical drawings of medical organs use an artistic method called ' ghosting' to hide 

surfaces which obscure the details behind them; for example a drawing of the palm 
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of a hand may be made transparent to allow the viewer to see inside. Indeed many 

researchers have attempted to mimic illustrative techniques [87]. Bruckner's [37] re­

search on context-preserving rendering is able to automatically simulate the 'ghost' 

effect. However, their approach does not use segmentation data and must simulate the 

transparency effect outlined by Diepstraten [81]. Similar work by Viola [307] utilized 

segmentation data in an importance-driven rendering technique to compose images 

based on the importance of user selected objects; i.e. to create a transparency window 

on the skin to reveal anatomy within. 

2.6 Segmentation 

Segmentation is essentially the act of differentiating a specific feature from the re­

maining features and space. Although segmentation has some roots in early volume 

and image visualization, i.e., classification, it has now become an enormous research 

field of its own [97, 266, 236, 337, 66, 203] and has shown importance in preopera­

tive planning [36]. A simple example would be the visualization of a human skull as 

recorded and stored by a CT scan. This would essentially entail removing the flesh 

and only leaving the bone structure. There are many ways that segmentation can be 

accomplished. 

2.6.1 Overview 

The task of segmenting a volume data-set can be achieved manually by hand, automat­

ically, where the user does not initially direct the segmentation, or semi-automatically 

which requires initialization and/or direction from the user. 
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2.6.1.1 Manual Segmentation 

Manual segmentation, i.e. performed by hand, of scientific data can still be a com­

monly exercised task [ I 22, 174, 58). Manual-segmentation could be manually drawing 

on images, manual thresholding or the outlining of shapes or tissue [ 153, 67]. Typi­

cally, manual segmentation is performed by experts who have extensive knowledge of 

the data recorded. As such there is an element of trust that the results of an expert's 

segmentation will be correct. Even for two-dimensional data, such as slides, this can 

be a difficult task to perform especially if there are several features to differentiate. For 

three-dimensional and four-dimensional data, the task of manually segmenting each 

slice would be an extremely long endeavour, even at low resolutions [ 130). Not only 

would manual segmentation be time consuming, it could be subject to errors. 

2.6.1.2 Automatic Segmentation 

Automatic segmentation is typically utilized where a priori knowledge of an object 

leads to an automatic method to segment that object or feature from any data-set. For 

example, for the automatic segmentation of the brain [19, 69, 41 ], lungs [135, 15, 16], 

heart [338, 243] and cancer tumors [251 , 14]. 

Automatic segmentation techniques, which do not require previous knowledge of 

the objects present in the data-set, are also possible. These methods typically segment 

the entire space and result in the separation of all unique objects present in a data-set. 

Examples include the contour-tree method [303, 269, 50], which typically also make 

use of thresholding or level-set methods [23 1] with random seed locations [ 143]. 

Kuhnigk [ 173) presented an automatic, real-time segmentation approach for le­

sions. In addition, the approach presented a method to analyze the resulting segmenta-
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tion for accuracy, called segmentation-based partial volume analysis (SPVA). 

2.6.1.3 Semi-Automatic Segmentation 

Semi-automatic segmentation schemes are methods whereby information is given by a 

user [229] to the segmentation algorithm in order to direct it toward a custom segmen­

tation [ 177, 49]. For example, a user may define seed points for a level-set algorithm, 

or region-growing algorithm [246]. By altering the seed locations, or adding multiple 

source, different segmentations could be possible. Other examples of semi-automatic 

segmentation algorithms are machine-learning methods. Machine-learning methods 

typically ' learn' a small number of training examples. Once trained these machines, 

when given an arbitrary input, attempt to predict whether the input is part of the desired 

segmentation. 

2.6.2 Region Growing 

Region growing is a simple technique where upon being given a seed (starting location) 

the algorithm will expand the segmentation outward if the neighbouring pixels/voxels 

have a similar property. Further interaction is possible by the user, by defining con­

straints such as edges the region cannot expend into. Effective segmentation can be 

achieved by this popular approach [341, 2, 242, 298, 131 ]. 

2.6.3 Watershed 

The watershed algorithm considers the volume or image to be a topographic relief. A 

simple analogy is to consider a drop of water as it falls into a surface. The drop will 

flow down a path reach a local minimum, or water-basin. Further raindrops will expand 

45 



2.6 Segmentation 

the water-basins until regions overflow and merge with one another. The approach has 

been found to be useful for segmentation of volumetric data [283, 91, 27]. Automatic 

segmentation using an iterative watershed has also been reported by Mancas [205]. 

2.6.4 Level-Set Methods 

The Level-Set method [232, 276] is a technique used to define shapes, curves and 

boundaries from functions. An example of how a simple shape is formed in this fashion 

is shown in Fig. 2.9. Segmentation is achieved by the evolution of the level-set function 

itself, rather than of the contours, i.e. like region-growing. By using a signed-distance 

function, inside a shape, the zero-level set will form a boundary. Numerous research 

has utilized level-set methods for the segmentation of anatomy [238], with specific 

interest in directing the level-set by using shape priors, as reported by Rousson [264] 

and Chen [60]. 

• • 

Figure 2.9: Example of the level-set method. Image source: Wikipedia [230] 
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2.6.5 Deformable Models/ Atlas 

Segmentation using deformable models involves using 3D shapes with forces acting 

upon them, which deform the surface towards a shape. These forces typically attempt 

to constrain the original model, or to contract/expand it toward detected edges or fea­

tures. The approach is popular for the segmentation of anatomy in medical images 

[68, 2 16, 2 15]. 

A similar method is Atlas, where an atlas-image is chosen, i.e. an image of the 

brain, and the system attempts to register that shape in the subject-image. This is 

achieved by transformation of the Atlas image. While simple, the method has been 

shown to be very useful [ 12 1, 204, 198]. 

2.6.6 Neural Networks 

Neural networks [124] are used to learn patterns [85] based on training-sets, either 

supervised or unsupervised, and then predict the probability [288] that further input­

data matches the trained model. Applications for image and volume segmentation have 

much interest and success [3, 120, 234, 237]. 

2.6.7 Clustering 

Clustering methods are a broad selection of techniques which subdivide a data-set, 

where data elements in clusters are expected to be similar and the union of clusters 

results in the original whole data-set. Hard clustering divides the data into a single 

cluster only, while fuzzy clustering [25] assigns a membership value of each data-point 

for each cluster. Clustering methods have been used for image and volume segmenta­

tion, for example, Clark [65] segmented MRI volumes while Zhang [336] presented an 
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application of a fuzzy c-means method for segmenting brain grey-matter tissue in MRI 

images. Shen [277] addressed the noisy nature of results from MRI's and developed 

a fussy c-means clustering algorithm. The proposed approach focused on neighbour 

attraction, which considered the location and features of neighbouring voxels. Sub­

sequently, the work showed more accurate segmentation results, of brain ti ssue from 

MRI data. 
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Chapter 3 

Previous Work 

This chapter details and compares the major research that is relevant to the work un­

dertaken in this thesis. 

3.1 Stackless Raytracing 

Numerous ray tracers are based on using e ither a kd-tree, such as the interactive Kd­

Tree ray tracers by Horn [ 133] and Shevtsov [279], or a BVH, such as the BVH ray­

tracer for deformable scenes by Wald [3 10]. Both Kd-Trees and BVHs are a form of 

binary-tree, such that nodes partition their represented space or object into two groups. 

In the case of a kd-tree the space is split using a split-plane, as shown in Fig. 3.1. 

Ray tracing algorithms that employ a kd-tree, traverse through the acceleration 

structure to fi nd geometry, or voxels, likely to intersect the ray. If a ray intersects the 

splitting plane node, then both children are valid and possibly need to be traversed into. 

BVHs are much the same, except splitting planes are not used and computing which is 

the nearest node is done differently. 
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Figure 3.1: Example of a Kd-Tree. Image source: Foley [94] 

With a depth-first traversal mechanism, where the algorithm tries to find the first 

intersection along the ray, the closest node is traversed into first. If the traversal of the 

first node does not result in the ray termination, then the second node will have to be 

traversed into. Maintaining the list of other nodes to return to is typically achieved with 

a stack. However, a stack implementation on GPUs typically requires using the slow 

global-memory. Ultimately, accessing this memory repeatedly results in a slowdown 

of the ray tracer. 

Problems with employing a stack have been addressed by exploring semi-stackless 

or completely-stackless approaches, such as those described below. 

3.1.1 Kd-Restart and Kd-Backtrack 

The initial work that focused on stackless ray tracing, on modern GPUs, was under­

taken by Foley [94]. In their work two methods were devised for ray tracing general 

kd-trees without a stack; Kd-Restart and Kd-Backtrack. Both methods where based on 

the principle of moving the valid ray segment ahead of previously visited nodes. 

During ray tracing of kd-trees, a ray segment {t11ear,t1ar} is maintained. This 

segment is used to determine whether a ray intersects a split plane, or whether the 
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intersection of the ray and plane at td occurs before (td < t11ear) or after (td > t 1ar) 

the ray segment. When a return is needed by the traversal mechanism, Kd-Restart sets 

t11 ear = t 1ar so as to avoid the current node. The mechanism then returns to the root 

node of the tree and resumes traversal. The effect is that the traversal mechanism will 

travel down the same path as until it reaches the parent of the node just returned from. 

As the ray segment now lies completely on other side of the split plane, the previously 

visited node will not be valid and only the alternative node will be traversed to. 

Kd-Backtrack works in much the same way as Kd-Restart, except rather than restart 

from the root node, the traversal mechanism (after progressing the ray segment for­

ward, returns to the immediate parent of the current node. Kd-Backtrack was reported 

by Foley [94] as being faster than Kd-Restart, however, both approaches will result in 

previously-visited nodes being tested at least one more time. 

Refinement of kd-restart by Horn [ 133], by moving the root node (the point where 

traversal restarts from) deeper if possible, reduced the number of extraneous nodes 

revisited because of traversal restarts. This approach also improved the performance 

over the original Kd-Restart in the work by Crassin [73], who employ the bricking 

method for volume rendering of massive data-sets. The work is also of additional 

interest for partially using indices for traversing their acceleration structure; the stack­

less approach presented in Chapter 3 is based upon using index numbers, rather than 

pointers, to traverse a kd-tree. 

3.1.2 Kd-Shortstack 

Kd-Shortstack, or simply short stack, was a method introduced by Horn [ 133] that used 

a small stack rather than a full one. This stack was a fixed-size list, stored in the fast 
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3.1 Stackless Raytracing 

shared-memory onboard the GPU processors; this effectively bypasses the use of the 

slow global-memory. To compensate for stack overflows the use of Kd-Restart can be 

used. Specifically, when new nodes are pushed into an already full stack, the bottom 

most entry is discarded. This has the effect of storing the newest return-points, but 

forgetting the older ones. To compensate for the lost data, when popping from an 

empty stack the traversal mechanism will revert to Kd-Restart. The shortstack method 

was reported by Horn (133] as being more than twice as fast when compared to the 

original Kd-Restart by Foley (94]. 

3.1.3 Ropes 

An alternative and novel approach to stackless traversal was the re-introduction of 

ropes by Popov (248] for GPU based ray tracing. Ropes are additional memory point­

ers that link a node to its neighbour nodes. This allows the traversal, when needing 

to return the next valid node, to simply travel along the rope into the neighbour node. 

The approach comes at the cost of additional memory pointers per node as well as 

additional computation to build and optimize the ropes prior to rendering. 

3 

5 

6 

Figure 3.2: Example of Ropes for a Kd-Tree. Nodes are linked to neighbouring nodes via 
memory pointers (Ropes), once traversal required testing other parts of the tree, the mechanism 
follows the link for the face the ray intersects. Image source: Popov [248] 
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The traversal mechanism my Popov [248] is depth first until a sub-branch becomes 

invalid, at which point the traversal is much like grid-traversal. Each node has 6 faces .. 

The first task is to determine which face the ray exits through and once determined, 

the node link of that face, linking the node to its neighbour, is followed. This give 

an advantage over normal kd-tree traversal in that less intermediate nodes are visited 

in comparison. Thus, not only is the Ropes technique stackless, it will also have less 

traversal iterations; both of these factors for GPU-base ray tracing. 

The main disadvantage of this method is that a pre-processing step is required to 

build the face-links before they can be used. This may main that real time building 

and optimization of the links is not feasible, say for large animated scenes. The other 

disadvantage is the massive memory requirement; un-optimized each node will require 

6 32-bit memory pointers. For example, Popov reported, that on average, the memory 

overhead was a factor of 3. 

3.1.4 Link-Map 

The Link-Map method [284] is a stackless traversal mechanism for BVH trees. In 

essence this method stores the traversal order, top-to-bottom then left-to-right of a 

BVH, rather than the BVH itself. The method requires building a fixed-order traversal 

route through the scene. While leading to a stackless stream-like traversal, the method 

generally does not account for the ray direction and can have pathological cases where 

the mechanism traverses for a long time [95]. The method by Carr [53] introduced 

building a BVH for geometry images, using the Link-Map method, which enabled 

GPU ray tracing of rasterized geometry. 
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3.1.5 Sparse Matrix Tree 

The sparse Matrix Tree method presented by Andrysco [ I 2] is a novel way to effi­

ciently store trees without memory pointers. The method can be thought of as placing 

a regular grid over the space. However, as the data is stored sparsely, cells with no data 

do not require any space in the tree. In addition, index-based referencing of nodes and 

node children is used in the method, allowing for stackless traversal. The research by 

Andrysco [ 12] was published after the work undertaken and published in this thesis. 

3.2 Volume Visualization 

Volume visualization plays an important role in modern science, medicine and indus­

try. From the exploration of gaseous phenomena [340] and the analysis of industrial 

CTs [ I I 6], to virtual endoscopy of the sinus [ 168]. Visualization of volumetric medical 

data has seen much research over many years. The two prominent approaches typically 

employed are direct volume rendering [306, 90, 240, 38] and isosurface visualization. 

3.2.1 Isosurface Visualization 

Isosurface rendering is a simple and effective approach for the visualization the differ­

ent intensities present in the data. Many methods for isosurface visualization have been 

presented ranging from direct volume rendering using isosurface transfer-functions 

[240], rasterization of isosurfaces extracted to polygonal data [ 197], or direct ray trac­

ing [312, 165, 161]. 

Implicit kd-trees were presented by Wald [3 I 2] for single and multiple isosurface 

ray tracing on CPUs. The implicitness of Wald's method is that the kd-tree is actually 
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built over the entire space and all possible values. As such the tree is an implicit 

acceleration structure for each isosurface, by storing the minimum and maximum value 

present within a node and its sub-branch. During traversal each node is tested against 

the desired value to see whether a ray-isosurface intersection will be possible within 

the node's region. In addition, implicit kd-trees were shown to be useful in the work 

by Grob [107] for Maximum Intensity Projection rendering. Wald further explored the 

use of an implicit acceleration structure with implicit BVH for tetrahedral grids [3 11 ]. 

Recently Knoll [162] introduced a peak-finding algorithm for Direct Volume Ren­

dering. This method is useful when very narrow peaks in the transfer function are 

present, such as when a single isovalue is highlighted for isosurfacing. The approach 

is important in the sense that it is now possible to accurately render isosurfacee, in 

combination with DVR, in a robust and comprehensive manner. 

An interesting method for isosurface rendering is the representation of volumes 

as Bezier Tetrahedra, as reported by Kloetzli [ I 57]. The method involves dividing a 

cuboid volume into a tetrahedral grid and using BT to define density within each grid 

point. The BT volume allows any isosurface to be rendered quickly and at higher­

quality (especially when super-sampling) than standard representation. The work was 

also implemented on a GPU for interactive framerates. 

Object-order methods for isosurface visualisation have also been explored recently 

for GPU-based solutions. For example, Liu [ 193] presented a cell-projection method 

on modem GPUs, while in further work Liu [194] presented a multi-layer depth peel­

ing approach for isosurface raytracing using single-pass hardware rasterization. Mar­

roqium [209] also accelerated cell-projection using GPU hardware for DVR and iso­

surface rendering. 
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3.2.2 Illustrative and Context-Preserving Volume Rendering 

Illustrative volume rendering does not attempt to produce realistic renderings of vol­

umes. Rather, the main goal of illustrative and non-photo realistic volume rendering is 

the transfer of additional visual information to the observer. Basic approaches modify 

the local shading model; for example the Phong-Blinn [28) lighting model. The sim­

plest and most known method is tone shading, an example being the work by Gooch 

[ 103). Cartoon shading [ 179) attempts to mimic the artistic style of cartoonists. More 

complex modifications map information, such as the dot-product, to programmable 

look-up tables, such as the work by Bruckner [39]. 

Context-preservation typically modulates the opacity and colour of volume sam­

ples during the integration of rays by the gradient, the distance from the screen, the 

shade due to light and the accumulated opacity of the last sample along the ray. The 

approach they described was implemented on graphics hardware. Typically graphics 

hardware has limited memory to store information. As such their proposed method 

by fell short of being able to use the desirable curvature information of the volume 

samples and instead utilised what was already available to them on graphics hardware. 

Namely these were gradient and shading intensity. Using these two quantities they 

simulated the curvature. 

Zhou [339) introduced a focus point and radius to DVR that allows a user to specify 

a region of interest. The rendering then enhances the focus region by modulating 

the opacity of each sample during rendering. Kruger [ 169) extended the work by 

introducing curvature into the focus region. By choosing the greatest opacity, between 

distance modulation or curvature modulation, they were able to have a focus region 

whereby the user would be able to 'see' into the volume but also get context cues 
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because of the curvature. However, this method was localized and outside the region 

everything had high opacity. 

Other methods for providing illustrative rendering include the work by Rautek 

(254] who used fuzzy logic and interaction-dependent rules to allow for more expres­

sive illustrative rendering in real-time, while Rezk (258] provided opacity peeling to 

view through surfaces at the anatomy beneath. 

3.2.2.1 Demand driven Raytracing 

Demand driven (255, 245] ray tracing divides the complex tasks involved in raytracing 

to separate processes. This takes into account that parallel computing devices operate 

fully when performing the same task. The cost of such systems is additional workload 

to organize rays and the work queue prior to parallel computation. 

The work by Foley (94] utilized multiple GPU shaders, where each shader was 

tasked with a separate stage of the ray-tracing pipeline; down-traversal, returns, shad­

ing, etc. This approach, i.e. rather than having a single shader for the entire pipeline, 

appears to be due to the limitations of GPUs at the time. Nonetheless it details a system 

whereby kernels are utilized in a demand driven manner, when needed. 

3.3 Volume Segmentation and Classification 

Volumetric data is usually comprised of intensity values. Segmentation and Classifica­

tion are used to give meaning to data-values, or local features such that they can either 

be rendered differently or extracted from the data. Typically, classification is the real­

time mapping of data-values, or derived attributes, to alternative colour and opacity 

contributions during visualization. Segmentation on the other hand is the separate task 
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of defining a complex shape using a tool, such that it can be stored, extracted or used 

later to enhance the visualization. In effect, segmentation and classification are two 

sides of the same coin. 

3.3.1 Segmentation 

There are many methods that can be used for segmentation, as detailed in the previous 

chapter. However, this thesis focuses on using machine learning methods, specifically 

support vector machines, and GPU-based acceleration of segmentations. 

3.3.1.1 Machine Learning Approaches 

Machine learning methods are based on learning a set problem and then trying to pre­

dict whether new information matches the learned pattern. Both Neural Networks and 

Support Vector Machines are machine learning methods. An example of a Neural Net­

work for segmentation was the work by Tzeng [301 ]. The work utilized both Neural 

Networks and Support Vector Machines (SVM) to deliver a method to classify higher­

dimensional data. Their work incorporated a GUI, based on earlier work [300], where 

the user could paint training data onto the volume. This paint information was then 

converted into the higher-dimensional input vectors needed to train the learning sys­

tem. Once trained, it was used to predict the classes of the remaining volume data. 

The SVM used in Tzeng's [301] work was implemented on CPU and as such suffered 

from slow classification of the volume. In addition, the SVM was trained after all input 

was gathered. This required that if input was changed the SVM had to be completely 

retrained with all inputs. Another method, presented by Song [287], utilized a proba­

bilistic neural network for the partial segmentation of Brain MRI's. The approach also 
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included a soft-labeling method to allow supervised learning using user input. 

Further uses of SVM for segmentation and pattern recognition have been reported 

in the survey papers of Bryn [46] and Hai [119]. Of interest is the work by Lempitsky 

[188], who utilized a random forests technique for SVMs to allow for the real-time 

automatic segmentation and quantification of anatomical features; specifically accurate 

delineations of the myocardium present in real-time 3D echocardiography. Other uses 

of random forest SVM were reported by Statnikov [289]. Finally, Zawadzki [335] 

applied a support vector machine algorithm for the segmentation and visualization of 

retinal structures in volumetric optical coherence tomography data sets. 

3.3.1.2 GPU-based Segmentation 

With the advent of GPU programming languages researchers have utilized the compu­

tational power of GPUs to accelerate segmentation methods, as reported by Hadwiger 

[ 115]. For example, Lefohn [187] presented an interactive deformation and visualiza­

tion of level-set surfaces that was 10 to 15 times faster than a CPU-based alternative. In 

addition the work provided a detailed user study to show the ease at which users could 

segment anatomy and effectiveness compared to a ground-truth manual segmentation. 

In similar work, Cates [54] accelerated level-set based segmentation using a sparse 

level-set GPU solver. Their work also provided an interface to allow hand-contouring 

to direct the segmentation. With the use of an ATI Radeon 9700 Pro, results showed a 

10 fold increase in performance when compared to a CPU-based solver. 

An important milestone was the work by Sherbondy [278] who presented a seg­

mentation algorithm based on seeded region growing, accelerated with the use of GPU 

shader languages. The results for completing a segmentation of a 1283 volume was 

approximately 6 seconds. The work was carried out on an ATI Radeon 9800 Pro and 
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is notable for having a centralized structure, whereby the segmentation and volume 

visualization where carried out directly on the GPU, without the need to transfer any 

data from the GPU to CPU. The approach also allowed the real-time visualisation of 

the progression of the segmentation as the regions grew. 

In a recent paper Chen [59] presented a tool-kit for volume sculpting and segmen­

tation accelerated by GPUs. The work is interesting in that the took-kit, using seeded 

region-growing and region-shrinking methods, allowed a user to interactively, by way 

of a paint tool, adapt a segmentation in a variety of ways. For instance, the example 

presented in the work was to allow a user to peel away portions of the skull by painting 

a region on the screen first. Then the user could explore within the head, through the 

hole on the skull, and perform further segmentations on the brain itself. 

3.3.2 Classification and Transfer Function Design 

Classification and Transfer function design enables users to interactively explore vol­

ume data by allowing customisation of the rendering process. For example, Salma 

[268] presented a high-level user-interface for transfer function design, which allowed 

experts to design transfer functions for difficult tasks, but allow non-experts to eas­

ily adjust. This method was shown to be particularly useful in exploring anatomical 

features without the complexity normally associated with such a task. Other methods 

include the work by Zhou [339] who applied distance-based enhancement to volume 

rendering to allows the user to specify a region of interest and highlight that region 

during the visualisation. 

In other work, Caban [47] utilized texture-based transfer functions, whereby a user 

specifies several textures with unique features, such as a portion of the brain. The input 
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images are then analyzed and a transfer function is automatically designed to visualize 

similar features within the volume. This approach was shown to be able to classify 

regions of interest without prior knowledge of the specific of each volume. 

Scale-space was utilized by Lum (201 ] for a novel classification system and user 

interface. The method transformed the volume in 4D scale-space. The work utilized 

filter banks and a novel interface to allow the user to easily control the classification 

process during rendering. 

Coerrea (70] introduced size-based transfer functions. The work involved creating 

a scale-space of the original volume and tracking extrema. Relative sizes of features 

in the original volume could then be computed. Subsequently, transfer functions based 

on this information could automatically visualize the anatomical features present in the 

original volume, based on their size. 

A method to automatically setup multi-dimensional transfer functions was pre­

sented by Roettger [260]. This was achieved by adding spatial information into a 

histogram and then classifying the histogram to form a transfer function with unique 

colours assigned to each class. Further, the work allowed user interaction with the abil­

ity to select classes in the histogram and customizing their properties. In addition, the 

work compared to other methods such as segmented volume rendering and showed in 

its ability to automatically highlight tumours with the proposed spatial transfer func­

tions. 

A number of recent advancements in the segmentation rendering have been made. 

Rendering of either the segmentation volume alone, or in combination with the in­

tensity volume allows for improved visualization of specific anatomy. Hadwiger [1 14] 

renders segmentation data on consumer hardware and applies filtering of object bound­

aries. This work enabled high-quality, pre-integrated classification of segmentation 
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objects without the need for the original intensity volume. Weber [318] renders seg­

mented data using specialized transfer functions, where segmentations are defined by 

a contour-tree. The contour-tree contained detailed information on the topology of the 

volume. 

A shape-based approach in extracting and rendering thin structures, such as lines 

and sheets, from three-dimensional volumetric data was presented by Huang [136]. 

Lee [ 186] developed a precise 3D image processing method to discriminate clearly the 

edges of segmentations by employing entropy maximization. The work by Kadosh 

[144] dealt with the reconstruction of segmented data, by applying a tricubic filter on 

distance fields. Finally, Hadwiger [ 11 8] rendered high-quality implicit surfaces on 

regular grids, for example, distance fields or medical CT scans, in real-time and could 

be applicable for segmented data. 
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Chapter 4 

Kd-Jump 

In this chapter a stackless traversal approach is presented. This approach is referred 

to as kd-jump, and is designed to traverse an implicit kd-tree to achieve an immediate 

return, much like a stack, without additional redundant node testing; as illustrated in 

Fig. 4.1. Also implemented is an enhanced form of the implicit kd-tree by Wald et al 

[3 I 2] where child nodes are tested prior to traversing into them. This has the potential 

to remove two iterations if a child is invalid; a down-traverse step and a return step. 

Finally, a hybrid kd-jump algorithm is presented, which utilises a volume-stepper for 

leaf testing and a run-time depth threshold to define where kd-tree traversal stops and 

volume-stepping occurs. By using both methods the benefits of empty-space removal 

and fast texture-caching can be attained. 
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Figure 4.1: Schematic illustration of additional nodes tested to achieve a correct return among 
different approaches. Kd-Jump does not need to re-test previously visited nodes. 
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4.1 Background 

This work employs and builds upon the implicit kd-tree by Wald, et al [312]. This 

section details how an implicit kd-tree is formed and traversed. 

4.1.1 Building Implicit Kd-Tree 

A kd-tree is a binary tree where, starting with a root, each node is divided into two 

children by an axis-aligned splitting-plane. When a node cannot be split, it represents 

one voxel and is referred to as a leaf. The split axis is typically chosen based upon 

which dimension is currently largest for the node, as illustrated by Fig. 4.2. 

Implicit kd-trees are required to be balanced-trees, such that all leaves of the tree 

are on the same depth. To achieve this balance, the voxel dimensions must be a power­

of-two, although each dimension need not be identical. Implicit kd-trees define actual­

dimensions and virtual-dimensions; where the actual-dimensions are for voxels that 

actually exist while the virtual-dimensions are used purely to ensure that a balanced 

kd-tree is built, as illustrated by Fig. 4.2. Even though the kd-tree is built upon a larger 

virtual-volume, the non-existent nodes and voxels are never visited; nor are they stored. 

There are two stages to building the implicit kd-tree, both of which are iterative 

processes. The first stage involves determining the number of levels for the tree, com­

puting the level information from top-to-bottom and allocating the node memory per 

level. The second stage involves calculating the node information from bottom-to-top. 

The initial building process is required to be run on the CPU in order to allocate GPU 

memory, while the more labour-intensive job of computing the node information can 

be performed in parallel on the GPU itself. 
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4.1.1.1 Initial Building 

Given a volume and its actual voxel dimensions R = [Rx ,Ry, RzJ. we first compute the 

virtual dimensions V = [2"1, 2'1, 2P] where 2111
-

1 < Rx ~ 2m, etc. The number of levels 

in the kd-tree is then defined as k = m + n + p. 

Each level of the kd-tree has real dimensions R1 and virtual dimensions V1• During 

the process of tree building, the algorithm also needs to maintain the current range 

of nodes as V1
• We use V1 to determine the largest dimension and the split takes 

place along the axis a1 E {x,y,z} of the largest dimension on level l. Thus, starting 

with v0 = V and v0 = [1 , 1, 1 ], the virtual-dimensions for each level are defined by 

V1t 1 = 2V1
,, while V1t ' = V1, /2. The actual-dimensions of each level can then be a a a a 

found by R1 = ceil (V1 (R/V)) . Finally, the number of nodes which are required per 

level is M1 = Ri x Rt x R~. 

Unlike general kd-trees using memory pointers, nodes are addressed using indices 

and a map is used to convert the indices to a location in memory. For three-dimensional 

data, a node has three indices U = [x,y, z], which are non-negative integers. Converting 

these indices, for a node on level l, to a memory location is achieved with offset + 

(Ux+ (Uy x Ri) + (Uz x Ri x R~1)) x sizeof(node), where the offset is the start of data 

for the level. 

Implicit kd-trees do not store a split-plane within each node. For each level of the 

kd-tree, the number of shared split-locations is R1
1 rather than M1; see Fig. 4.2. In fact, 

a 

the split plane for a node can be computed, for any node, during traversal so as to avoid 

using global memory. 
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4.1 Background 

F ig ure 4 .2: Wald 's, et al [3 12] implicit kd-tree. A balanced kd-tree is formed by building the 
tree upon the virtual-voxel dimensions, while only actual nodes and leaf data are stored. Also, 
note that split planes can be shared. 
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4.1.1.2 Computing Node Data 

Once the memory for the kd-tree is allocated, the node data and dimension splits for 

each level can be computed. Wald, et al [312] defined that each node contained the 

minimum and maximum (min/max) value for all data held within the node sub-tree. 

This min/max value is used to determine whether any child contains the cun-ent iso­

value and whether traversal should continue. 

This thesis defines that each node contains the two sets of min/max values; one 

for each child; rather than just one min/max value encompassing both. By storing the 

min/max of both children, faster traversal can be achieved. Specifically, the method 

can store both sets so that referencing of the data can be achieved by mapping the in­

dices to memory once and loaded in one transaction. In addition, by checking whether 

both children are valid (contains the isosurface) before traversing into them, we can 

potentially eliminate two redundant iterations (down-traversal and return) if a child is 

invalid. 

Starting from the last node level, the min/max values are computed by evaluating 

the children. In the case of the last level, this requires checking the eight corner values 

of a voxel. For the remaining node levels, the min/max sets are computed from the 

min/max sets held by the child nodes. As nodes are only dependent on their own 

children, all nodes on a tree-level can be computed in parallel. Finally, if memory 

overhead is a concern, the final level of nodes can be omitted and computed on the fly 

[3 I 2]. Special care must be taken if the volume is accessed via CUDA textures, as data 

is typically aligned to texels, rather than voxels; i.e., the data value is at the centre of a 

volume cell, rather than at the corners. 
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4.1.2 Traversing Implicit Kd-Trees 

Determining whether a ray intersects the isosurface is achieved by traversing the nodes 

which both intersect the ray and contain the isosurface. Starting from an origin, a ray 

is projected along a direction and a ray segment, defined by fnear and t Jar, is used to 

mark the valid portions along the ray where ray tracing can occur. Each node has 

two children, denoted first-child and second-child. During traversal, the children are 

also tagged as near-node and far-node, although the conventions are not synonymous. 

Like Wald, et al [3 12], a boolean NearFirst = ra, > 0 is defined, where r is the ray 

direction vector. Traversal from the parent into a child node is performed by updating 

the indices; we update Ud = 2Ud + ( l -NearFirst) for the near-node and Ud = 2Ud + 

(Near First ) for the far-node. By traversing the near-node initially, we ensure that the 

first intersection along the ray is found, at which point traversal can terminate. 
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Figure 4 .3: The three cases of traversal. (a) the ray-plane intersection distance td is within the 
ray segment Unear, !Jar), (b) the ray segment lies completely on the near side of the split plane, 
(c) the ray segment lies completely on the far side of the split plane. 
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Testing a node initially requires computing the intersection distance td from the ray 

origin to the split plane. Determining which children to traverse into is subject to where 

td is in relation to tnear and t Jar, as shown in Fig. 4.3. If tnear > td then the near-node 

is traversed and the far-node is culled. If t f ar < td then the far-node is traversed. A 

common case is when tnear < td < fJar and both child nodes are valid and (potentially) 

must be traversed. In this case, the near-node is initially traversed into and, if the ray 

does not find a valid intersection in that sub-tree, the algorithm returns to the far-node. 

The typical solution for storing the far-node is to use a stack to record the indices 

and the td and tJar values. However, a stack is not ideal for use on a GPU and this 

thesis explores a stackless approach. 

4.2 Stackless Traversal with Kd-Jump 

The basic traversal method of the traditional kd-tree is to store a return point when both 

children of a node are valid. Utilising a stack is a simple method to store the return 

information. However, a stack approach requires that the (currently) slowest part of the 

GPU pipeline is utilized; i.e., the global-memory. To avoid using the global-memory, 

one must remove the stack. There are two main stackless methods currently available 

(without requiring additional node memory); kd-restart and kd-backtrack. Both are 

trivial to implement for implicit kd-trees, but lead to additional workload compared to 

a stack-based approach. The extra work comes in the form of redundant node testing 

to find a continuation point. 

With kd-backtrack, the return mechanism is replaced by traversing back up the tree 

node-by-node until a valid node is found, at which point downward traversal contin­

ues. Once a valid parent node is found, the far-child is traversed. The approach was 
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originally envisaged for use with arbitrary kd-trees and therefore required additional 

parent-pointers to work. 

Traversal of implicit kd-trees does not involve memory pointers and all nodes for 

all levels are entirely referenced by indices. As a result, it is possible to forgo the need 

to backtrack one node at a time and simply jump immediately to the next valid node. 

A novel approach for this is now explained and referred to as Kd-Jump. 

4.2.1 Traversing to Child 

Traversal of the kd-tree involves tracking and updating three indices, so as to allow 

addressing of nodes. The indices of a node, at level l, are defined as U1 = [x1 ,yf , z1] and 

the indices of the next level are uL+ 1• The algorithm first initializes the child indices 

with those of the parent; u1+1 = U1. Then traversal, from parent to child, is achieved 

by altering the index-component corresponding to the axis a1 that splits the l'th level 

ut+ I = 2U1 +c C = {
0

1 

a1 a1 
' 

first child 
(4.1) 

second child 

4.2.2 Returning to Immediate Parent 

Like a stack-based approach, the best scenario is to return to the next immediate node to 

test. The current node and the node to return to will always share a common parent. As 

such, the first step is to arrive at that parent (see Fig. 4 .1 (a) or Fig. 4.4 ). The trivial case, 

given ut+ 1, is to return to the immediate parent U1. Again, for this simple case, the 

algorithm initializes the indices with U1 = u1+ 1 and then apply an operation equivalent 
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to the inverse of Eq.( 4.1 ). 

(uL+') u~, =floor + (4.2) 

4.2.3 Returning to Arbitrary Parent 

Returning from U1 to Uj (j < l) potentially requires different divisions of each ele­

ment of the index set. To achieve an immediate jump, we must deduce the number of 

iterations of Eq.( 4.1 ) that have been performed to each element of the index set. 

We define a k-by-3 matrix S, which stores the accumulation of the number of axis­

splits, for each level. The matrix is formed in a recursive manner. Each row is ini­

tialized with the previous row values; SI+ 1 = S1. This is then followed by altering the 

vector-component corresponding to the axis a1 that splits the l'th level 

(4.3) 

where Sm,n represents the matrix element at the m' th row and n'th column, and 

So= [0,0,0] (4.4) 

is the initialization vector for the root level. Note that S is formed only once during 

kd-tree construction. Thus, storing and accessing this matrix on GPUs can be made 

quite fast by using cached constant-memory. 

Given the accumulation matrix S, the current depth land the depth j of the common­

parent node, we can find the numbers of iterations, denoted N , of Eq .( 4.1) applied to 
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each index element between levels j and l as 

(4.5) 

where N = [Nx,Ny, Nz]. 

Finally, the algorithm is able to restore the index-set for the parent node being 

returned to by altering Eq.(4.2) to acknowledge the number of power-of-2 multiplica­

tions that have been applied (Eq.(4.5)). Thus, returning to the index-set Uj, given U1, 

is achieved using 

. (u') U1 = floor 2N , (4.6) 

where 2N = [2Nx, 2Nv , 2Nz]. So long as c :S 1, Eq.( 4.6) will correctly find the integer 

indices without having to re-determine c for each level. Also note, all divisions in 

Eq.(4.6) are a power-of-two and, therefore, they can be implemented using rightward 

bit-shifting. 

4.2.4 Completing Jump 

Once we have returned to the parent node, we can simply reapply Eq.(4.1 ) in order 

to traverse into the next child. However, the unknown element is the offset c, which 

we need to apply in order to arrive at the far-child. Assuming a nearest-first traversal 

ordering, this can be deduced by redetermining whether the first-node is the near­

facing node, which is quickly performed by examining the ray direction; such that if 

ra1 2: 0 then c = 1 else c = 0. The complete Kd-Jump method is illustrated by Fig. 4.4 

for a simple two-dimensional case. 
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After returning into the next node, the final step is to re-clip the ray to the bounds 

of the node and recompute the t-near and t-far intervals. The bounds can be computed 

on-the-fly, which avoids global-memory usage as well. See the work by Williams [327) 

for efficient Ray-Bound intersection methods. 
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Flags Node Indices Accumulation Buffer 

I 2 2 I 
I 0 I [2,1] 
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'---+ Set to far child 

T 

♦ 
[1,2x0+1] 

[1 ,1] 

Figure 4.4: A two-dimensional example illustrating the two-stage process of finding the in­
dices of the next node to test. 

.. .. .. 
Kd-tree •••• 
Traversal 

[ ....... .. .. , .. 

(a) Hybrid Traversal 

Min: 30 Min: 90 Min: 20 Min: 10 
Max: 90 Max 130 Max: 130 Max: 20 

(b) Dynamic Update 

Figure 4 .5: With hybrid traversal, the kd-tree is traversed until a variable threshold is met 
after which volume stepping occurs. With Dynamic update, nodes are updated with binary 
conditions as to whether chi ldren contain any part of the target isosurface. 
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4.2.5 Making Return Flags 

Our detailed Kd-Jump mechanism facilitates a return, but does not yet include how 

much to jump by. To return immediately during the course of ray traversal, we require 

a flag to specify whether a level along the traversal path has a node that requires testing. 

One should note that, for the current traversal path, only one possible node will be 

required to be returned to for each level. As such, we only require a single memory-bit 

per level to store a possible return. We define a 32-bit integer-register DepthFlags to 

store these flags. As the typical size of volumes used on GPUs today (without out-of­

core methods) is less than 10243, a 32-bit integer can hold the depth-flags. However, 

64-bit integers can be utilized to faci litate kd-trees of up-to 64 levels in the future; 

indeed CUDA devices already provide 64-bit hardware functionality. 

Given the DepthFlags register, we set whether a level should be returned to using 

bitwise operators; DepthFlags I= 1 « (31 - /) . Note that we store the bits in most­

significant ordering, such that the bit-index of the /'th level is 31 - l. We can determine 

whether there are return positions by checldng if DepthFlags > 0. Assuming that 

DepthFlags is non-zero, finding the first-set depth flag is akin to counting the consec­

utive number of zero-bits, starting from the least-significant bit; we denote this opera­

tion CountBits. Hence, the actual depth j to return to is 31 -CountBits(DepthFlags). 

Upon a successful return to a level, it is important to clear the j'th level flag bit to 

zero; again using bit manipulation. In CUDA CountBits can be accomplished using 

the built-in function ffs (however it is offset by plus 1). For an alternative to CUDA's 

f fs, see Andersons's 'Bit Twiddling Hacks' [11 ]. 
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4.3 Faster Traversal with Hybrid Kd-Jump 

An acceleration method for ray-tracing serves one primary purpose of removing the 

extraneous memory access affiliated with empty or invalid space. However, it is en­

tirely possible that an acceleration method might under-perform or even perform worse 

than a brute-force ray tracer, for example, when the acceleration method is complex or 

is utilized for too long. Thus, it is very important to be able to determine when and 

where an acceleration method is useful. For this purpose, we present hybrid traversal 

and dynamic update. 

4.3.1 Hybrid Traversal 

Each node in a kd-tree represents a sub-region of the complete volume. With each 

level of the kd-tree, this region is made ever smaller until a node represents a single 

voxel on the final level. This thesis employs a simple method, whereby we introduce a 

real-time depth threshold parameter to the traversal kernel. Once rays traverse past this 

threshold, we switch to the volume stepper and iteratively step along the ray from tnear 

to t far • The volume stepping is performed until the isosurface is crossed, or until t far 

is reached, after which a return is issued. Fig. 4.S(a) depicts where volume stepping 

within a volume region is used after traversal of the implicit kd-tree. 

The purpose of this hybrid system is two-fold; firstly, to gain the benefit of the 

fast texture-cache and, secondly, to allow the adjustment of the threshold in order to 

maximize the usefulness of the kd-tree. Although combining an acceleration structure 

with volume stepping methods is not entirely new [241], we present it here in order to 

show that a kd-tree can perform well and can be adjusted easily for dynamic situations. 

In addition, with a variable threshold, the point when the acceleration structure is useful 
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and when it is not (slower) can be analyzed. 

By building a complete kd-tree and then introducing a run-time depth threshold a 

user can alter the threshold, during ray tracing, in order to find the optimism setting. 

For instance, the optimal threshold is subject to several factors, primarily the volume 

size, the complexity of the data itself, the isosurface location and the view direction. 

Further, if the volume stepping distance is reduced, say to acquire better intersection 

results while zoomed in, then a larger threshold (traversing further down the kd-tree) 

would be more efficient. 

Also, the threshold depends on the complexity of the data-interpolation being per­

formed. If tri-linear interpolation is used, it would be more beneficial to switch to the 

volume stepper sooner. However, if tri-cubic interpolation is used, as is the case for 

discrete binary-volume rendering [ 144], then there is far more incentive for the kd­

tree to traverse for as long as possible, because of the lack of hardware acceleration. 

The same argument applies for complex intersection methods such as the con-ect root 

finding method [208]. 

4.3.2 Dynamic Update 

With the original implicit kd-tree work by Wald et al, each node contained a min/max 

pair; the minimum and maximum values within the region represented by the node. As 

described in the previous section, both child min/max pairs are loaded prior to traversal 

into children. Hence, during traversal, these two sets of values must be loaded from 

memory. For 8-bit data, this requires a 32-bit transaction while, for 16-bit data, the 

size of the node is 64-bits. The cost of loading this data, plus the cost of comparing the 

node value range with the target isosurface, may add additional complexity. 
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A better alternative is to move the node validity test out of the traversal stage and 

into the kd-tree update stage. Thus, instead of a node having two min/max pair's for 

each child, it simply has two boolean bits to specify if the children are currently valid 

for traversal. Upon a change in isovalue, this would require updating every node on 

every level starting from the original volume itself, as depicted in Fig. 4.5(b). This is 

already quite fast (less than 0.25 seconds) for 5123 volumes, even with a naive imple­

mentation. Much of this efficiency can be attributed to CUDA's cached texture-access, 

which not only applies to accessing three-dimensional volume, but also accessing the 

node data. 

With hybrid traversal, several deep-levels of the kd-tree may be avoided all to­

gether. It is shown, in the results, that the deeper levels are not particularly useful in 

our implementation. Therefore, the dynamic update can be made more efficient by 

only updating levels of the tree which may be traversed. This can be accomplished by 

introducing a separate sub-volume of min/max pairs. This sub-volume would represent 

the node information for a kd-tree level and would be considered the absolute cut-off 

depth. During traversal, the cutoff depth would have to override the depth threshold if 

the later is greater. 

Choosing whether to employ node-conditions or traversal-conditions depends on 

several factors. If memory size is an issue, or the isovalue is changed irregularly, then 

node-conditions would be more suited. In contrast, if the isovalue is altered every 

frame, then traversal-conditions would be better suited. 
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4.4 Results 

This work performed several comparative tests and recorded the timing information 

for the kernels using CUDA's high-resolution timers. The results presented here where 

averaged over multiple passes. Table 4.1 gives the results for the average frames-per­

second (FPS) spanning a wide range of the isosurfaces and multiple view directions 

for the test data. Fig. 4.8 and Fig. 4 .9 show the rendered results. 

Table 4.1: Average FPS across multiple views and multiple isovalues. Bonsai , Foot and Skull 
are of2563 in size while Aneurism is of 5123 . 

5121 10241 

stack kd-restart Kd-Jump stack kd-restart Kd-Jump 
Bonsai 58.3 34.2 65.6 17.3 10.0 18.9 
Foot 43.1 25.7 48.8 12.3 7.2 13.6 
Skull 52.9 32.1 59.7 15.5 7.1 16.8 
Aneurism 42.9 25.5 50.2 11.7 6.5 12.9 

Memory usage is an important factor for GPUs, due to limited resources. It is 

shown the typical memory usage in Table 4.2 for a 10242 screen, as would be the case 

with sjngle ray-tracing kernel. The table shows a stack requires considerable amount of 

global memory to accommodate all rays, while Kd-Jump requires only a small matrix 

in fast constant-memory. Although kd-restart uses the least resources, the redundant 

node visitation severely reduces performance as shown in Table 4 .1 . 

Table 4.2: Memory usage (per kernel) for traversal schemes with I 0242 screen resolution 
and maximum depth of 27. It assumes that CUDA will allocate all device memory for all 
threads (rays). Kd-Jump needs only a small amount of constant-memory (cached) and no 
device memory, while a stack requires a considerable amount of device memory. 

stack kd-restart Kd-Jump 
Device 405MB 0 0 
Constant 0 0 0.0003MB 

To further compare the performance of Kd-Jump, this work evaluates the theoret-

81 



4.4 Results 

ical performance, as shown in Fig. 4.6. In this evaluation, this work only tests the 

relevant code to store and retrieve a return position. A kernel with 10242 threads or­

ganized into 128-thread blocks, was set up, to achieve full occupancy. Both the stack 

and Kd-Jump kernels were tasked with storing and then retrieving n number of returns. 

The result clearly shows that Kd-Jump potentially has considerable speed gains. When 

cross-referenced with Table 4.1, however, it is evident the theorized gains of Kd-Jump 

over stack, in a complete ray-tracer, do not show as great of a speed gain. It is believed 

that it is due to the fact the memory accesses in the stack kernel are hidden better by 

the other computation; i.e. the general traversal loop, ray splitting computations and 

leaf testing. 
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Figure 4 .6: Theoretical performance (number of computations possible per second) between 
stack and Kd-Jump for increasing number of returns. 10242 threads perform n storages and 
then n returns. 
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Figure 4.7: FPS for Kd-Jump and stack traversal with different core frequency and mem­
ory frequency settings, rendering Foot (2563) with 5 I 22 resolution. It shows that Kd-Jump is 
computationally limited whereas stack is memory-latency Jjmited. 
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(a) (b) 

(c) (d) 

Figure 4 .8: Isosurface rendering results of the (a,b) Bonsai (2563) and (c,d) Foot (2563) Data­
sets 
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(a) (b) 

(c) (d) 

Figure 4.9: lsosurface rendering results of the (a,b) Skull (2563) and (c,d) Aneurysm (51 23) 

Data-sets 
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4.4.1 Limiting Factors 

We can test both the Kd-Jump and stack-based kernels with different settings for the 

core and memory frequencies, as shown in Fig.4.7. This allows us to examine which 

factor (computation or memory access) is limiting performance for each kernel. The 

results clearly show that Kd-Jump is computationally limjted while the stack-based ap­

proach is memory limited. This quick test can also be quite useful during development 

and implementation of ray tracing kernels, as it can indicate which factors should be 

optimized. 

4.4.2 Hybrid Kd-Jump 

In order to gain in pe1formance as much as possible and thus give merit for using a 

kd-tree in the first place, a comparison of a hybrid kd-tree kernel (using the presented 

Kd-Jump method) versus a pure brute-force ray tracing kernel was preformed. While 

these kernels are not optimized particulary well, both share the same code for stepping 

through the volume and detecting an isosurface crossing. 

For the Hybrid Kd-Jump kernel, this work incorporated a number of optimizations, 

specifically the hybrid traversal and dynamic update described in section 4.3. I and 

4.3.2. In addition, the Hybrid Kd-Jump kernel accesses node information from the 

texture cache rather than directly from global memory, which results in faster access. 

Table 4.3 shows the results for Hybrid Kd-Jump versus a brute-force volume­

stepper; showing multiple isosurfaces, data-sizes and screen sizes. For the sake of 

examining the effect of data-size on the performance, up-sampled (linear interpolation) 

versions of the bonsai, skull and foot data-sets were created, as well as a down-sampled 

(averaged) version of the Aneurism data-set; On average the rendering of 2563 sized 
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Table 4.3: FPS for Hybrid Kd-Jump versus brute-force averaged across multiple views per 
isovalue. Hybrid threshold is chosen to maximize performance in each case. It clearly shows 
that Hybrid Kd-Jump outperforms a brute-force volume-stepper for most cases. The volume­
stepping is faster only when there is very little empty space and the isosurface is found quite 
quickly (i.e., close to the bounds of the data). 

5121 10241 

data size isovalue brute Hybrid brute Hybrid 

2563 40 132.0 123.0 41.8 37.3 

Bonsai 
100 90.2 130.3 31.5 38.0 

5123 40 36.3 64.7 16.9 21.6 
100 22.1 81.6 10.4 26.3 

2563 40 117.0 126.6 36.3 39.0 
100 78.5 124.8 27.0 40.2 

Foot 
5123 40 41.0 71.1 15.9 25.3 

100 21.1 66.9 8.8 22.4 

2563 40 155.0 100.3 51.8 30.0 

Skull 
150 68.9 261.2 26.7 75.4 

5123 40 41.0 71.1 15.9 25.3 
150 21.1 66.9 8.8 22.4 

2563 40 76.0 126.1 26.9 34.5 

Aneurism 
100 67.6 282.4 24.1 76.5 

5123 40 20.1 53.2 8.9 16.1 
100 16.0 164.6 7.1 46.6 

volumes was twice as fast than the rendering of the 5123 volumes. Also of interest, 

in Table 4 .3, are the cases where brute-force outperforms Hybrid Kd-Jump. In these 

cases, two conditions are (always) present. Firstly, the isosurface covers much of the 

screen and secondly, the isosurface is close to the bounds of the data. Hence, a simple 

volume stepper only operates for a short period of time before detecting an isosurface. 

With more complex isosurfaces, longer distances from the bounds to the isosurface 

and larger screen resolutions, however, brute force is slower than Hybrid Kd-Jump. 

Fig. 4 . 11 shows the performance change for various threshold values and indicates the 

degree to which using a kd-tree is beneficial. 
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4.4.3 Multiple Rays Per Thread 

A bottleneck affecting all methods can occur when only one thread of a warp is active, 

or only one warp of a block is so. If CUDA allocates a block worth of resources (shared 

memory, registers) and operates that block until completion, it is logical to assume that, 

if only one warp is actually active, then the three remaining inactive warps will actually 

limit computation throughput. 

We can test this by altering the kernel to include an outer-loop, whereby new rays 

are loaded and initialized, once a warp has finished. It is doubtful that loading a new 

ray when a single-thread terminates will be effective. Indeed, during the initial de­

velopment, loading a new ray when each thread terminated induced much slower per­

formance. It is believed that this is due to the result of more code-branching during 

traversal, as well as the removal of the initial ray coherence. On the other hand, a 

warp terminates when all threads terminate. Thus loading a new batch of rays across 

the 32 threads of the warp will maintain the initial coherency of a group of rays while 

ensuring that as many warps are active throughout the lifetime of the kernel. This work 

implemented the multiray kernel as an extension of the Kd-Jump kernel. As seen in 

Fig. 4.12, we show positive benefits. 

4.4.4 Separating Kernels 

The basic approach to parallel ray tracing is to dedicate one thread per ray and to 

develop a single-kernel containing the entire rendering pipeline; node traversal, leaf 

testing and pixel shading. However, as a single-kernel, the pipeline will not fully 

exploit the GPU and may well indeed create performance bottlenecks. For instance, 

shading is a branchless process and hence should perform very well in parallel. In a 
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single-kernel ray tracer, however, some threads may begin shading prior to others; this 

causes thread divergence and serialization events. Thus, separating out the shading 

portion (as well as other portions) of the pipeline and placing it in a different kernel 

should result in better performance, at least in theory [245, 255]. That being said, 

launching multiple kernels can carry an overhead. Fig. 4.13 shows this theory has at 

least some merit. However, the performance improvement is small and only attained if 

a lot of shading occurs to begin with; the rendering of lower isovalues occupy a large 

portion of the screen. 

4.5 Discussion 

CUDA devices contain multiple processing units. Each processing unit is capable of 

operating many threads in parallel, although only a small number (a warp) actually 

work at any given moment. Currently, CUDA devices operate warps of 32 threads 

in size. With branchless code, all threads in a warp operate the same instruction of 

code and fully utilize the SIMD (Single Instruction, Multiple Data) functionality. If 

conditional branching occurs, then the threads branching into the statement are eval­

uated first and any thread not following the branch is masked inactive and forced to 

wait. Once the branch is evaluated, a serialization occurs and threads in the warp are 

re-synchronized automatically. Apart from the fact that divergent branching and serial­

ization incurs slowdown, the SIMD functionality might not be used to the fullest. Also, 

note that SIMD efficiency is dependent on limited code-branching and not necessarily 

ray-coherence. 

Currently, a maximum number of 1024 threads can be active on each multi-processor. 

While only a single warp (group of 32 threads) ever works at any given moment for 
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a multi-processor, CUDA is able to switch between warps waiting for instructions 

to complete and effectively ensure maximum throughput. For example, if one warp 

requests global memory, it will essentially have to wait for that request to complete 

and, during that time, other warps can operate. Thus, maximum occupancy ensures 

that costly instructions (such as memory access) are better hidden, by the GPu thread 

scheduler, and do not pose a bottleneck; this observation can be made by comparing 

Fig. 4.6 and Table 4. 1 where additional computation better masks the memory latency. 

In Fig. 4. 12, it is shown that further performance improvements can be gained with 

load-balancing (multiple rays per thread). 

Concern for maximum occupancy should be the first priority for researchers. De­

vice occupancy is determined by two factors, the number of registers and the amount 

of shared memory used by the kernel. Unfortunately, the limited amount of these 

factors makes full occupancy improbable to have the entire traversal pipeline as a sin­

gle kernel (on current architecture). To achieve full occupancy, without extensive and 

time-consumjng optimization, the traversal mechanism must be separated into multiple 

kernels. 

4.5.1 Multiple Kernels versus Single Kernel 

Separating kernels into multiple stages presents a new challenge; how should we orga­

nize the work for them? For example, let us assume that we have an Intersect-Kernel 

which detects ray-geometry intersections and a Shader-Kernel. Not all rays will have 

intersections and, therefore, they will not require shading. Cropping out the rays which 

do not require shading so that we can pass only valid rays to the Shader-Kernel requires 

an intermediate step to organize the memory. 
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A simple solution is to have the Intersect-Kernel to store a hit-flag specifying 

whether the ray has hit geometry. A separate kernel can then examine rays to find 

those with valid hits and create a work-list for the Shade-Kernel. This approach can 

also be performed in parallel (as a minimizing problem [ I 06]), where each thread is 

responsible for checking the state of a set number of rays. Regardless of how it is 

implemented, however, the additional step to organize the work requires extra com­

putation and memory access, and is therefore only useful if the benefit outweighs this 

cost. 

Simply separating kernels without organization of the input workload, for the shad­

ing kernel (i.e., simply having 1 thread per pixel), is shown in Fig. 4 .1 3. However, what 

remains to be seen is whether it is possible to reorganize workload between kernel calls, 

without it becoming a bottleneck in itself. 

4.5.2 Alternative To Accumulation Matrix 

The accumulation matrix approach, while simple, still requires constant-memory for 

storage. Different architectures may not provide fast caching features. An alternative 

to the accumulation matrix is to utilize more registers; one per-dimension. Each bit 

represents a level of the kd-tree. We store a TRUE, in the relevant register, to spec­

ify whether a dimension has been split on a particular level. The registers would be 

propagated with the correct split information during the kd-tree build stage, or actually 

during traversal. 

Determining N of Eq.(4.5) using the accumulation registers involves counting the 

number of TRUE bits between the cmTent depth and the return depth. Firstly, this 

requires masking the accumulation registers for only the levels in question and a bit-
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counter. In CUDA, this can be achieved using the __ po pc function (see Anderson [ 11 ] 

for an alternative using right-ward zero-bit counting). 

4.5.3 Limitations and Scope of Kd-Jump 

While Kd-Jump exploits the indexing method for implicit kd-trees, pointers are used 

for general kd-trees. As such, Kd-Jump in the current form cannot be readily used 

for a general kd-tree. In order to apply Kd-Jump to a general tree, one should be able 

to transpose a general kd-tree onto a 'virtual' balanced kd-tree and build a suitable 

memory map to reference node data. In practice, however, any additional computation 

for the map could lower the performance. 

When Kd-Jump is employed for isosurface ray-tracing or direct volume render­

ing, the traversal-orders are pre-defined and are quickly recomputed upon return. For 

MIP (Maximum Intensity Projection) rendering, however, re-determining the traversal­

order would require additional memory look-ups and testing, which could lower the 

performance. 

The Kd-Jump approach would be applicable for use with other binary trees, if 

nodes can be referenced with indices and index-updates can also be invertible. In 

theory, this approach could be used with BVH [184] if indices are employed and a 

sufficient method for mapping the indices to memory (without excess) is available. 

Since a BVH is not a spatial-splitting structure, tree-balancing is applicable. 

4.6 Summary 

This chapter has presented Kd-Jump, a stackless traversal of implicit kd-trees for faster 

isosurface ray tracing. It was shown that Kd-Jump can outperform both stackless and 
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stack-based approaches, while only needing a fraction of memory compared to a stack­

based approach. Further, Kd-Jump exploits the index-based referencing used for im­

plicit kd-trees to achieve traversal-paths equivalent to a stack-based method, without 

incurring the extra node visitation of kd-restart. 

To further strengthen kd-tree, Hybrid Kd-Jump was introduced. Hybrid Kd-Jump 

utilises a volume stepper for leaf testing and a run-time depth threshold to define where 

kd-tree traversal stops and volume stepping occurs. By using both methods it was pos­

sible to gain the benefits of empty-space removal and hardware-based texture interpo­

lation. It was shown that Hybrid Kd-Jump performs well at removing empty space and 

can outperform a brute-force ray-tracer. 

Memory usage for an implicit kd-tree may be too large if min/max pairs are stored 

in each node. This work showed that, if the conditions for the current isosurface are 

moved out of traversal and into the tree nodes themselves, then significantly less mem­

ory is required. In addition, even with a naive implementation, updating the implicit 

kd-tree for a large volume was shown to be quite fast. 

Finally this chapter showed the usefulness of loading new rays once a warp of 

threads completes and report that such an approach yields promising results for faster 

ray tracing. In addition, this chapter also discussed and examined the separation of the 

ray-tracing pipeline into separate kernels, and showed that the methodology has some 

promise for better efficiency. 
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(a) S: 27.1, KJ: 35.2, MR: 35.6 (b) S: 12.0, KJ: 16.2, MR: 20.8 

(c) S: 7.4, KJ: 10.7, MR: 12.8 (d) S: 4.3, KJ: 6.9, MR: 7.9 

Figure 4.10: Bonsai Tree rendered with a 10242 screen buffer, using a stack (S), Kd-Jump (KJ) 
and MultiRay (MR); MultiRay was based on the Kd-Jump Kernel. Full traversal of the implicit 
kd-tree is performed. Kd-Jump maintains a performance improvement for scenes of variable­
complexity. Additionally, load balancing rays with MultiRay shows improved performance 
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F igure 4. 11: FPS for Aneurism (5123) using Hybrid Kd-Jump (with dynamic-update) in 5122 

and l 0242 screen resolutions, over all thresholds. Threshold of l is a special case where a pure 
volume-stepper kernel is used. The last threshold represents a complete downward traversal of 
the kd-tree. The graph clearly shows that the Hybrid Kd-Jump is able to remove empty space 
and gain in performance by reducing redundant traversal steps into deeper levels. 
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Figure 4. 12: The results for loading multiple-rays per-thread once a warp terminates. Balanc­
ing workload (i.e., keeping CUDA warps as active as possible) can improve performance. 
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Figure 4.13: The difference in FPS (%) between separate kernels and the whole Kd-Jump 
kernel. For each isovalue, the FPS is averaged over different views. It shows that the separate 
kernels lead to only a minor improvement. 

96 



Chapter 5 

Real time Semi-Automatic Volume 

Segmentation 

Segmentation of volumetric data, whether it is medical or simulated, is the separation 

of a feature from the remaining space. The process of segmentation can be performed 

by-hand or aided by a computer. Computer aided segmentation can then be separated 

into two sub-topics, automatic and semi-automatic computer-aided segmentation. 

A segmentation tool of volumetric data must balance between ease-of-use for the 

user and effectiveness of the results. While some segmentations are fully automatic, or 

are designed for specific anatomy or features, some users may wish to segment the data 

themselves. Indeed many segmentations are still required to be manually performed by 

an expert. A trade off is to allow a user to still direct the segmentation, but with far less 

input. The usefulness of being able to segment a volume, in near real time, has been 

shown to be useful in a clinical environment in the clinical survey by Saiviroonporn 

[267]. In addition the power of GPUs has been shown to improve performance of 

GPU-based segmentation methods, as reported by Hadwiger [115]. 
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5.1 Support Vector Machines 

This chapter details a semi-automatic segmentation interface utilizing Support Vec­

tor Machines and acceleration techniques, such as incremental SVM and the utilization 

of a GPU for computationally intensive tasks. The hypothesis is that the training delay, 

after a user has stopped painting input data, can be hidden by the use of Incremental 

SVM, rather than be a noticeable delay if batch-training SVM was used. 

5.1 Support Vector Machines 

Machine learning methods, well detailed by Vapnik [305], are used to learn patterns 

and then predict whether new input matches those patterns; typically this involves 

classifying a domain based on a set of inputs. Fig. 5.1 illustrates a simple case where 

the domain has been divided by a line in order to separate the two classes of inputs; 

circles and squares. Inputs are referred to as feature vectors, where each vector element 

is an attribute. Thus, in Fig.5.1 there are two attributes, the x-position and y-position. 

Typically, applications of machine learning methods utilize feature vectors with many 

attributes. 

H 
■ ■ B ■ 

■ ■ y • • 
A • ■ 

• • • 
X 

Figure 5.1: The goal of a classifier (one based on a hyperplane decision function) is to find a 
hyperplane which will pass in-between the class clusters. 

Classifiers themselves are typically estimation functions of the form f: ]RN -+ ± l , 
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5.1 Support Vector Machines 

which are trained to a set of N-dimensional feature vectors Xi with corresponding class 

labels Yi=± I, where= (x1 ,YI) .. . (xe,Ye) E JRN x ± 1 [127]. A function is chosen such 

that when given a new example (x,y), 

J(x) = y. 

A good set of learning functions [45] for f, which Support Vector Machines are based 

on [127], are the class of hyperplanes 

with corresponding decision functions 

/(x) = sign((w·<l>(x) ) +b) 

As illustrated in Fig. 5. 1, the data can be linearly classified by a simple line. How­

ever, in a general case it is not the situation that a linear line, plane or hyperplane 

can separate the two classes in the input space; for example Fig. 5.2(a). To do this, 

nonlinear classifiers are needed. 

To solve the problem of finding a nonlinear hyperplane by which to separate (for 

classification) two classes, the input vectors can (theoretically) be nonlinearly mapped 

to a feature-space using <I>. It is then possible to find a linear optimal hyperplane in 

the feature-space, which will then correspond to a nonlinear decision function in the 

input-space; as illustrated in Fig. 5.2. The novelty of SVMs is that the map to feature­

space need not be computed directly and is implicitly defined by the use of kernels. 

Specifically, Boser [34] showed that a hyperplane can be computed while working in 
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5.1 Support Vector Machines 

• H 

■ • 
■ ■ ~ • ■ • • • 

• • • 
(a) inpul space (b) feature space (c) input space 

Figure 5.2: Forming a nonlinear SVM classifier is achieved by implicitly mapping the input 
space (a) to the higher-dimensional feature-space (b) and finding a linear optimal hyperplane 
there. The resulting hyperplane results in nonlinear classification back in input space (c) 

the kernel dot-product space (so long as it is positive-definite) and that mapping of 

the input vectors into higher dimensional-space is implicitly achieved [ 127]. Thus, the 

map <t> can be replaced with a kernel to define standard SVM decision function for 

classification: 
e 

f(x) = sign(E v; • k(x,xi ) +b) 
i 

where k is the kernel function. A common kernel for pattern recognition, and used in 

this thesis, is the RBF kernel: 

The hyperplane is constructed such that it maximizes the margin between the con­

vex hulls of the two input classes, as detailed by Hearst [ 127]. It is typically computed 

by solving a constrained quadratic programming problem, the solution of which will 

be w, with the expansion 

where input vectors with non-zero coefficients v; are a subset of the original training 
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5.1 Support Vector Machines 

data called support vectors. Alternatively, methods using Least-Squares in SVM clas­

sifiers solve the problem by finding a solution for a set of linear equations, as detailed 

by Suykens and Vendewalle [293]. 

Support vectors lie on the margin hyperplane and contain all the information needed 

to reproduce the problem during prediction. The remaining input-vectors (those that 

are not support vectors) will not contribute to the decision function when predicting 

the class of new examples. 

Early SVM methods were based on a hard-margin hyperplane, where a hyperplane 

is found for all input-vectors. A common problem is how to find an optimal hyperplane 

if there are errors or noise in the training data. The solution is to use the soft-margin 

approach detailed by Cortes [7 1 ], where an error function and a regularization parame­

ter Care introduced. The attribute C can be viewed as the cost of fitting the hyperplane 

to inputs with high error. Those inputs with high error will generally not influence the 

hyperplane, as illustrated in Fig. 5.3. 

To summarize, standard Support Vector Machines are learning functions that are 

trained once with set of labeled inputs, in order to find a separating hyperplane, which 

maximize the margin between two classes, such that when a new example is given the 

SVM decision function will estimate its class label. 

5.1.1 Incremental SVM 

Support vector machines, as detailed by Vapnik [305), require training before they can 

be used to predict the class of new examples. If all input data is known then there 

is no problem (in the context of this thesis) as the SVM model can be trained once 

and then used. However, if the input is not known a priori and/or is altered then this 
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Figure 5.3: SVM with soft-margins. A hyperplane that maximizes the margin between input 
classes is found, but inputs too costly to fit are (effectively) ignored as errors. Input-vectors on 
the margin are support vectors as they limit the margin width. Others input vectors not on the 
margin will have no impact in the standard SVM decision function. 

would require re-training the SVM model again, with all input vectors. In the context 

of a segmentation tool, where the user is likely to make mistakes and alter their input, 

constant re-training could easily result in a notable delay whenever the SVM model is 

required for classification. This would be especially so if the number of input vectors 

ranges in the thousands. 

Incremental SVM, also known as Online SVM is a way to train very large data­

sets one example at a time. Initially introduced by Syed [295], it was not until the 

work by Cauwenberghs [55] that an accurate method for incremental and decremental 

SVM learning was developed. Due to the nature of learning one example at a time, 

additional input vectors can be added very quickly. Also of high importance, especially 

for interactive segmentation, is the ability to unlearn training examples. Decremental 

learning is a method to accurately remove (or unlearn) one example from an already 
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5.1 Support Vector Machines 

trained SVM model. 

The method by Cauwenberghs [55, 80] (derivations partially reproduced for com­

pleteness in this thesis) employs an SVM of the form f (x ) = :£~ 1 Yiai · k(xi ,x) + b, 

which is trained to the inputs (xi ,Yi ) E IR111 x ±1\li E 1, ... ,N by solving the dual form 

quadratic program 

1 N N N 
min W = - L aiQijaj- E ai+b L Yiai 

O<a;<C 2 . . I · I · I - - l ,J= I = I= 

(5. 1) 

with Lagrange multiplier (and offset) band Qij = YiY jk(xi ,Xj ), The Kuhn-Tucker [ 172] 

conditions uniquely define the solution of the dual parameters { a , b} that minimize the 

above problem: 

h 

ai = 0 
0 ~ ai ~ C 
Oai = C 

Cauwenberghs [55] groups trained input-vectors into three sets; margin-vectors; 

error-vectors; and reserve-vectors, where the value 8i dete1mines which set the train­

ing input belongs to. With 8i > 0 the input lies outside the margin and is added to 

a set of reserve vectors that do not influence the decision function. If 8i = 0 then 

the input-vector is on the margin hyperplane, is a support vector and is added to the 

margin-vector group. Finally, if 8i < 0 then the input is within the margin, or clas­

sified incorrectly, and is added to the error-vector group. Fig.5.4 illustrated a basic 

classification of feature space using Incremental SVM using a soft-margin hyperplane. 
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5.2 Fast Segmentation Using Incremental SVM and CUDA 

Due to the nature of Incremental learning all input-vectors are maintained and can 

be moved into other sets during the course of training. By maintaining the Kuhn­

Tucker conditions for all inputs, incremental SVM can successfully update a trained 

model to incorporate new training examples - the derivations for Incremental SVM 

learning are beyond the scope of this thesis; please see the work by Diehl and Cauwen-

berghs [80). 

0 
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(a) Existing Model 

□ 
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• ·~ ~ Added Inputs 

(b) Incrementally Re-trained Model 

Figure 5.4: Incremental SVM updates an already trained model by learning new examples 
and updating previous examples. For example, the new inputs added in (b) change a previously 
learned input in (a) from being a margin-vector to an error-vector, while a previous reserve­
vector becomes a margin-vector 

5.2 Fast Segmentation Using Incremental SVM and CUDA 

Segmentation, in its most basic form, is the process of defining a region within a vol­

ume. This region can be classed as the wanted region, while the remaining space can 

be classed as the unwanted region. As detailed in the previous section, an SVM can 

be used to classify a domain into two classes. This thesis introduces a tool based on 

incremental SVM, where training inputs are provided by a user. To provide training 

data, the user paints onto a two-dimensional plane, which is aligned to one of the vol-
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5.2 Fast Segmentation Using Incremental SVM and CUDA 

ume dimensions and displays the volume data it passes through. Fig. 5.7 shows the 

introduced tool, where training inputs (shown as red and green) have been painted onto 

the input-plane. 

The segmentation software is divided into several distinct parts; user input, train­

ing, classification and visualization. All parts must be as fast as possible and to this 

end various methods and techniques can be employed. Specifically, there are low-level 

software-enhancements and high-level algorithm-enhancements utilized. The primary 

means by which the software is accelerated is with the incorporation of CUDA, multi­

CPUs, OpenGL and Incremental SVM. The segmentation software utilizes the incre­

mental SVM implementation described by Diehl and Cauwenberghs [80], which is 

available as Matlab code[79]. 

Motivation for the work was originally to provide a simplified version of an exist­

ing segmentation tool, presented previously by Tzeng [301 , 300], such that school chil­

dren could use it to interactively learn about anatomy. Children were able to segment 

anatomy from a variety of data-sets. The best results were then sent to a 3D-printing 

company to be made into solid objects, as shown in Fig. 5.5. 

Figure 5.5: Photo of 3D-printed objects based on segmentation data 



5.2 Fast Segmentation Using Incremental SVM and CUDA 

Originally, the software developed (that later became the basis for this work) for in­

teractive learning of anatomy used a batch SVM software library called LibSVM [57]. 

In addition, the whole volume classification was performed using LibSVM, which typ­

ically required approximately 50-60 seconds to calculate. In order to reduce this time, 

the developed software was made to incorporate a GPU-based SVM decision function. 

Rather than use LibSVM, the new CUDA-based code predicted the class of each vol­

ume voxel. Originally, the classified volume would be downloaded from the GPU and 

used in a CPU-based volume renderer. Finally, due to noticeable delays to train and 

retrain SVM models during segmentation, especially when difficult problems arose, 

incremental SVM was incorporated. The culmination of these improvements led to the 

new software implementation described in the following sections. 

Old Approach 
30 Sec 2 Sec 50 Sec 

User Input 

New Approach 
30 Sec 1 Sec 

Ill fll Ill fll Ill 
- 0.01 Sec - 0.01 Sec 

Figure 5.6: Comparison of previous approach (top) against the new approach (bottom). With 
the new approach there is no noticeable delay because of SVM training, once the user has fin­
ished supplying input. The delay waiting for volume classification is also significantly reduced 
by utilizing GPU's 

In the work by Tzeng [300] a novel interface was presented which allowed a user to 

paint on a 2D volume slice. Once painting was complete, the software would convert 

the painted inputs into training data, train a Neural Network and then apply the trained 
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5.2 Fast Segmentation Using Incremental SVM and CUDA 

model to predict the full volume class values. In later work, Tzeng [301] replaced the 

Neural Network learner with an SVM. In addition, a GPU-based volume classifier and 

renderer was introduced for the Neural Network method, but not for the SVM method; 

due of its complexity. The Neural Network shader was able to classify and render a 

2563 volume in under 0.75 seconds. Training of the Neural Network was, however, 

reportedly much slower than with the SVM trainer. 

5.2.1 Integration of CUDA 

CUDA [225] is a GPU programming architecture for GPUs. The segmentation soft­

ware utilizes the GPU resources and computation-power throughout to enhance the 

performance. Specifically, the volume data is stored directly in the GPU memory 

rather than in the system memory. The main reason for this design decision is that 

most of the segmentation software, i.e. those functions which require access to the 

volume, can be accelerated by CUDA kernels; whether they be parallel tasks or simply 

one-thread tasks. For example, generation of the input-vectors is done on the GPU 

directly and passed to the SVM trainer. 

5.2.2 GUI Overview 

The segmentation software GUI developed for this thesis, as seen in Fig.5.7, has func­

tionality similar to the software presented by Tzeng [300]. Specifically, an area for 

the user to paint training data, an ability to alter the depth of the slice on the cuJTent 

view plane, and an ability to observe the result. Results are visualized as either a clas­

sification plane or as a direct-volume rendering with only the segmentation regions 

visible. 
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5.2 Fast Segmentation Using Incremental SVM and CUDA 

Paint Tools Current Slice Result Visualization Type 

Figure 5.7: Screen capture of the segmentation GUI in use 

User input is required to produce the necessary training data for the SVM. User 

input is acquired using a two-dimensional slice-plane and paint-brush tools, where the 

view shows a single slice of the original volume, at a set depth. The depth can be 

adjusted by the user using a slide control, which is situated below the viewing area. 

The user selects a paint brush from the toolbar, selects a depth within the volume along 

one of three viewing axis and then clicks on the slice-plane to begin painting. 

The user is required to paint two groups, a region of green-paint that is the desired 

object or region, and a second region of red-paint, which typically encompasses the 

green-paint in order to limit the region size; as depicted in Fig. 5.11 . If the segmenta­

tion is incorrect, then the user must erase paint information from the areas the user has 
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5.2 Fast Segmentation Using Incremental SVM and CUDA 

determined are incorrect and repaint new inputs. Alternatively, if a segmentation is to 

be refined, the user may simply add new paint information without needing to over­

ride previous input. An example may be when a user is segmenting a complex object 

through 3D-space. In such a case they may be required to pick a new depth within 

the volume to add new paint information, such that the system correctly segments the 

object as it changes shape through the volume. 

5.2.3 Handling User Input 

Internally, once paint-events occur, the software tool, developed for this thesis, first 

checks the existing paint information for the voxel(s) the user specified. If no paint 

data already exists for the voxel then a training-input event is triggered. There are 

several features of the input painting which could see a slowdown if implemented 

naively. Firstly, once it is determined the paint information either adds or alters input 

to the SVM, the SVM must be updated accordingly. If this process was performed 

with a single system-thread (and subsequently within a single CPU) then there would 

be a noticeable minor slowdown in the speed with which the user is able to paint, as 

the SVM incrementally learns the input. 

To ensure the computational aspects of adding or altering an input point does not 

hinder the speed of the system, as perceived by the user, we can incorporate multi­

ple threads. The first thread is tasked with running the GUI, the basic handling of 

the events as they occur and low-level OpenGL render updates. The second thread is 

charged with managing the queue of paint events, testing for input changes and updat­

ing the SVM with incremental changes. 

With multiple threads the user is free to paint as much input as they wish with-
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out any noticeable delay (during painting). As a paint event occurs (mouse click and 

mouse move) the paint location is stored within a paint event queue. This queue is 

shared between the primary and secondary threads and locked whenever either access 

it. As the information (paint location and event type) is relatively small the queue 

need only be locked for a small duration as the threads update it. Once the data has 

been inserted/removed the threads are free to continue operating and the queue can 

be unlocked ready for further access by any thread. This is especially important as 

the secondary thread is tasked with retrieving paint events and then performing a large 

amount of computation to update the SVM. In a single-thread scenario, if the user had 

to wait for the SVM to be updated each time they clicked to add paint information there 

would be significant delays noticeable; especially if the SVM has difficulty finding a 

solution for a particular input. 

5.2.4 Generation of Training input 

The training input is comprised of several features that make up the multi-dimensional 

input-vector for the SVM utilized in this thesis software. As illustrated by Fig.5.8, 

these are: 

• Position - the three-dimensional cartesian-axis position of the training point 

within the volume, given as normalised X, Y and Z. Makes up the first 3 di­

mensions of the training vector. 

• Value - the normalized volume-value of the training point. Makes up the 4th 

dimension of the training vector 

• Neighbour Value - the normalised volume-values for the immediate 6-point 

neighbors of training point. Makes up dimensions 5 to 11. 

110 



5.2 Fast Segmentation Using Incremental SVM and CUDA 

• Gradient Magnitude - the un-normalized first-derivative at the input point. De­

rived from the normalised volume, using central-difference. Makes up dimen­

sions I 2 to 14. 

The volume, stored on the GPU, is bound to a texture reference. This enables 

cached-access to the data (using the texture-access functions), which is specifically 

useful if access is localized in a specific region. In the case of producing the training 

vector, there are several localized memory accesses, which will utilize the texture­

caching feature. 

Point Value Position 

+ 
[x,y.z) 

ffx,y ,zj [x,y,z] 

Neighbour 
Values 

f(y+1) 

f(x-1) f(x+1) 

f(y-1) 

ff x+h,y,z), ... 

Partial 1st 
Derivatives 

f()' 

dx/dff x,y,zj, ... 

Figure 5.8: Illustration of an input vector as used for segmentation 

Creating the training vector is performed by a specialized kernel, which is initial­

ized with the training point and a pointer to the output vector for storage. The kernel 

is programmed to set the vector with the relevant data; as listed previously. The po­

sition dimensions of the training vector are immediately stored and the volume value 

at this position is also accessed and stored. The 6-neighbour volume-values are then 

accessed using offsets to the original training point. By setting the texture reference 

to clip texture-accesses, no additional code is required to test for out-of-bounds cases. 
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5.3 Volume Classification 

Finally, with the neighbour values accessed and stored, the gradient vector is computed 

with central-difference. 

5.2.5 Visualization Backbone 

There are several visualizations occurring in the segmentation software; either being 

two-dimensional or three-dimensional. The basic approach for incorporating these 

visualizations in the software has been to utilize the Tao framework [ l ]. The Tao 

framework allows for OpenGL controls to be incorporated into the .Net software UI. 

Not only does this ensure fast rendering, but vastly simplifies the code by allowing 

OpenGL to automatically manage the screen rendering and view resizing. The other 

reason for utilizing OpenGL is to allow CUDA inter-operability. By supplying the 

OpenGL context to CUDA, CUDA can directly bind to a Pixel Buffer Object, which 

then allows CUDA kernels to directly render to the screen output. The user can specify 

the render mode for the output screen as either being a 2D texture showing the classi­

fication results for the currently-selected volume slice or the DVR visualization of the 

classified volume. 

5.3 Volume Classification 

Once an SVM has been trained it can be used to classify the remaining volume into 

two-classes; wanted and unwanted. The process of classifying the volume is com­

pletely parallel and does not require conditional branching at all; thus is ideal for GPU 

computation. To classify the volume there are several steps which must be accom­

plished. Firstly, the relevant SVM information, such as support vectors and SVM 

parameters, must be uploaded to the GPU. Secondly, each voxel of the volume must 
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5.3 Volume Classification 

be converted to an N-dimensional input-vector. Finally, the SVM is evaluated for each 

voxel vector and the predicted class stored. 

Volume classification is separated into two kernels, generation of the test vectors 

and SVM evaluation. These two tasks are separated in order to maximize the efficiency 

of each kernel. As previously detailed, it is favorable to utilize light-weight kernels as 

results in maximum occupancy of the GPU multiprocessors. 

Conversion of each voxel into a test vector is quite simple and nearly identical to 

the generation of training input (as described in section 5.2.4). However, the kernel 

for volume classification must produce a test vector for each voxel. Due to limited 

resources, only a finite number of vectors can be tested at any given moment. As a 

result, computation is divided into several batches, where only a small sub-set of the 

volume is tested at a time. The batch size is rather arbitrary and completely determined 

by the amount of available memory on the GPU. However, for thi s work a batch size 

of 256 x 1024 (number-of-threads x number-of-blocks) was chosen. With the 13-

dimensional feature space utilized, this approximately requires 13MB of GPU memory 

to store the test vectors. Once the test vectors have been created and stored, they are 

passed to the SVM evaluation kernel. 

The SVM evaluation kernel is designed such that each thread is responsible for 

evaluating a single test vector, as well as storing the predicted class for the correspond­

ing voxel. Due to the limited resources of CUDA kernels, and the fact SVM support 

vectors require a considerable amount of memory, SVM evaluation must be imple­

mented with care. Specifically, the kernel is designed such that each support vector is 

loaded once into shared memory, as shown in Fig. 5.9. By transferring one support 

vector at a time into shared memory and forcing all threads to operate synchronously 

with the currently loaded support vector, redundant access to global memory can be 
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Support Vectors 

thread 0 

float sum = svmBias; 

n-1 

II 

n+1 

float x[13] = Load Test Vector (0) 

For Each Support Vector, n 

if(thread is first) 

Load Support Vector (n) 

Synchronize= 

sum+= Svm Kernel(x, y) 

thread i 

float sum = svmBias; 
float x[13] = Load Test Vector (i) 

For Each Support Vector, n 

if(thread is first) 

Load Support Vector (n) 

=synchronize= 

sum + = Svm Kernel(x, y) 

thread i+1 
... 

.. ,. ..... 

Figure 5.9: Basic overview of SVM evaluation CUDA-kernel. All threads load their own test 
vector, while only the first thread loads support vectors into shared memory. Threads must wait 
(at the synchronization point) for the first thread to complete loading the support vector. 

avoided and the maximum efficiency can be attained. 

5.4 Segmentation Results 

For all testing the SVM was set to use a Gaussian RBF kernel with a scale (gamma) 

of 0.1 and C set to 1000. All values for all dimensions in the feature space were 

normalized between 0 and 1. For volume prediction, the timing results were recorded 

using CUDA's high resolution timers. Any delays observed during test, after the final 

input was painted, are given as approximations. 

A test was performed which resulted in many support vectors being required to fit 

the hyperplane, the result of which is given in Fig.5.11 . This represents a complex case 

due to the locality of the segmentation in only 2 of the 13 feature dimensions, which 
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ultimately results in many support vectors. In contrast, generally, segmentation of 

objects from volume data will not result in as many support vectors. The results show 

that with approximately 500 support vectors, prediction of the entire 2563 volume was 

accomplished in 2.12 seconds, while training of the final inputs (after painting had 

ceased) required approximately 0.25 seconds. 

The results for segmentation tests are shown in Table 5.1 with the corresponding 

screen captures shown in Fig.5.10. lnterestly, when segmenting a specific object, the 

number of support vectors is much lower than in the previous test case. As a result a 

noticeably smaller time (less than a second) was needed for the full volume prediction. 

Table 5. I: Statistics for results shown in Fig.5.10. 

Prediction SVM vectors 
size time margin error reserve 

Bonsai basin 256j 0.62 (sec) 159 0 2632 
Engine Cap 2562 X 128 0.66 (sec) 163 0 1230 
Skull side 2563 0.58 (sec) 137 0 3000 
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5.5 Discussion 

Using incremental SVM, rather than a standard non-incremental SVM, has advantages 

and disadvantages. With a normal SVM, where the input is gathered first and then sent 

for training at the same time, the GUI does not have to manage the SVM. Specifically, 

with incremental SVM, care has to be given to ensure that if input needs to be removed 

or changed, then the correct vector is unlearned. While this does require additional 

work and maintenance, an incremental SVM is much faster than a standard SVM. This 

is especially so for the user, as assuming paint operations are not delayed when adding 

new input to the SVM, the user is oblivious to the fact the SVM is being trained. 

It is questionable whether using 13 features for segmentation is useful. The initial 

hypothesis would be that with more features present in the input-vectors, that an SVM 

would more easily predict the volume classes. However, this was not the observed case 

during testing, contrary to the di scussion given by Tzeng [30 I ]. 

Segmentation typically entails the separation of an object or group of objects from 

the remaining space. These objects are easily distinguished by their location and in­

tensity. Thus, including the position and volume intensity, as features, is of the great­

est importance. However, whether including the neighbor values or local normal is 

useful is not clear. What is certainly clear is the problem these features can cause. 

Specifically, what was observed was small areas outside the desired spatial area being 

predicted as desired. 

In most cases, the incorrectly predicted areas corresponded to edges or areas with 

high gradient. Subsequently, one could deduce that the SVM was improperly trained 

by the user, and that local gradient and/or local neighbor features caused undesired 

predictions outside (spatially) the wanted object. 
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5.6 Context-Preserving Rendering 

5.6 Context-Preserving Rendering 

A segmentation-volume defines unique regions within a volume of intensities (CT 

or MRI data for example). Typically the segmentation-volume is used to customize 

the rendering of the intensity-volume. However, it is possible to directly render the 

segmentation-volume without considering the intensity-volume as was shown in the 

work by Hadwiger [ 11 4]. 

This section details a context-preserving visualization method for segmentation 

data, utilizing curvature information. Whilst this method is not incorporated into the 

segmentation GUI described in this chapter, it may prove useful in future work; see 

Section 5.7. 

A standard DVR approach is to project rays into the volume and compute the dis­

creet approximation of the DVR integral using the front-to-back formulation of the 

over-operator (249, 37]. Given a point along a ray P, an integer volume can be ac­

cessed f(P) to obtain a segmentation ID. Using front-to-back composition, it is pos­

sible to compute the opacity a; and colour c; contribution of each sample at each step 

along the ray: 

c; (5.2) 

where a (P;) and c(P;) is the opacity and colour contributions at P;, and where a;_1 

and c;_ 1 are the previously accumulated opacity and colour values along the view ray. 
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5.6.1 Curvature-Based Context Preservation 

Rendering the segmentation volume using purely DVR would result in large regions 

appearing largely opaque. Even with the use of transfer functions it would be hard to 

simultaneously remove regions obscure interesting features and preserve the important 

visual cues of those regions. In the approach described below the idea is to make 

areas with little or no curvature transparent, while having features with high curvature 

more opaque; for segmentation data only. It is also interesting to consider the distance 

of the sample point from the camera, such that samples closer to the view are more 

transparent. Additionally this work also considers the previously accumulated opacity 

along each ray such that it wilJ reduce the contribution of subsequent samples if a high 

amount of opacity has already been accumulated. 

In order to incorporate curvature and surface angle quantities into the proposed 

composition scheme, a volumetric scalar-field of normalized curvature values is de­

fined as k(P;) E [O .. 1], where kr; is the mean curvature value at P;. Also defined is the 

normalized gradient of a sample gP;• 

The combination of the curvature, distance, accumulated opacity and angle quan­

tities leads to the following new opacity equation for all samples P;: 

(5.3) 

with 

(5.4) 

where d = I IP; - El I is the normalised distance between the sample point and the cam­

era E, is a;_ 1 is the previously accumulated opacity, I IV· gp; 11 is the absolute of the dot 
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product between the surface normal and the view direction and ke controls view angle 

effect. The I - (kr;) [o .. J] term factors in the curvature for a second time and has the ef­

fect of ensuring lower opacity for samples with low curvature. The term I IP; - E 11 [O .. I] 

factors in the di stance of the sample at P; from the view location E. The distance quan­

tity is also normalised to the range [O .. I] such that I I Po - El I = 0 represents a point at 

the view location and I I PN -El I = I represents the sample point furthest away from the 

camera. The term I IV· gp; 11 has the effect of ensuring surfaces viewed side-on to the 

camera will be more opaque and gives important view-dependent edge cues. Finally, 

the term 1 - a;_, factors the previously accumulated opacity such that the opacity 

contribution of the cun-ent sample is reduced. 

There are two adjustable parameters available in Eq.5.4, ks and k1• k1 controls the 

the amount of opacity reduction and relates to the distance factor. With high values 

for k1 the opacity of samples closer to the camera are reduced, as shown in Figure 2. 

The ks parameter controls the sharpness of transition between high and low opacity 

contribution. A low value for ks will result in a smooth transition while a high value 

for ks will result in a sudden transition between low and high opacity, as shown in 

Figure 2. 

5.6.2 Focus Region 

Being able to specify a location of interest and rendering that area differently can be 

important for users. Our approach is derived from the work by Kruger [ 169] who 

chose between the unit distance and curvature value of a sample point to modulate the 

opacity contribution of a sample. 

We define a region of interest by defining a focus point S and a focus radius h. The 
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opacity of a sample using a focus region is: 

(5 .5) 
otherwise 

with 

(5.6) 

where clamp ( IIShP;II) computes the unit distance of the sample to the focus point. All 

sample points outside the radius are clamped to one I using the clamp function. The 

p<irameter kd controls the transition between the low and high opacity within the region 

of interest. The opacity modulation defined in Eq.5.5 has the effect of reducing opacity 

in a localized region such that if the curvature based modulation if greater than t then 

it is chosen instead, as shown in Figure 5.12(a). An obvious derivation of the equation 

is to invert the effect of the distance such that the focus point is opaque, as shown in 

Figure 5.12(b): 

(5.7) 

however this rendering on may not be useful on its own. An additional method is a 

combination of both effects to give a supporting perception cue for a user: 

with 
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where t is defined in Eq.5.6. The effect is to have the focus point and the area outside 

double the focus radius rendered using the feature modulation, while the area inside 

double the focus radius is rendered using the distance modulation if it is greater than 

the feature-based modulation. The result of Eq.5.9 is shown in Figure 5.12(c). 

5.6.3 Implementation and Results 

The work implemented the context-preserving rendering purely in software and on 

CPU. The normals and curvature at the segmentation object boundaries were pre­

computed. We store the normals and curvature only for segment boundaries by util­

ising an index volume. The curvature and normals for each boundary position were 

pre-calculated and stored prior to rendering. For each boundary position we exam­

ined its neighbor boundary points (of the same segment) and extracted them as spacial 

points. We then apply principle component analysis on the found points and calculate 

the curvature and normal, for the current boundary point, from the eigen vectors and 

values. 

The context-preserving rendering was tested using an altered version of the seg­

mented Visible Human head. The size of the head volume is 573 x 330 x 220 and the 

results are shown in Fig. 1 and 2. 

5.7 Summary 

This chapter has presented a semi-automatic segmentation tool accelerated by GPUs. 

The segmentation GUI allows a user to paint wanted and unwanted markers directly 

onto the volume. These markers then correspond to input data for a support vector 

machine. Once trained the SVM is utilized to predict the class of each voxel in the 
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volume, which in turn can be visualized with DVR such that only the segmented object 

is visible. 

The main contribution of this work can be summarized as being; 

• The use of incremental SVM to hide the training process while the user supplies 

the input. 

• The addition of vector labels to simplify the process of finding and unlearning 

trained vectors. 

• The use of CUDA to accelerate the generation of input vectors. 

• The use of CUDA to accelerate the class prediction for each volume voxel. 

The results showed that by using Incremental SVM, no noticeable delays where ob­

served after painting of training data. However, while the GPU-based volume classifier 

was able to compute the class-predictions for an entire 2563 volume in under a second, 

for the general cases, it is not ideal for a truly interactive segmentation. If a user wished 

to see a how a segmentation developed, by viewing the whole volume prediction, as 

they painting inputs, then a new system would be required. Specifically, SVMs divide 

the space with a hyperplane that maximizes the margin between class clusters. As such 

we need only attempt to predict the class of volume voxels within the SVM margin, 

as only within this area are we to find the hyperplane. Outside of the SVM Margin 

a system could simply flood-fill the areas after the boundary between the classes has 

been found. With such a system, the number of voxel predictions needed could be 

dramatically reduced, so much so as potentially allow real-time volume prediction and 

rendering as the user incrementally updates the SVM model. 
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(a) (b) (c) 

a 

(d) (e) ( f) 

(g) (h) (i) 

Figure 5 .10: The left column show the user input data on one volume slice. The middle 
column shows the predicted c lass on the same slice, while the right column shows the full 
volume prediction with volume rendering. Images (a,b,c) show the segmentation of the basin 
from the bonsai data-set. In images (d,e,f) a portion of the engine data-set has been segmented, 
while in images (g,h,i) half of the skull data-set as been removed (in addition to the air). 
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(a) 

(b) 

Figure 5.11: Classification results for test case. Prediction time for 2563 voxels: 2. 12 seconds. 
Number of vectors 491 (margin), 30 (error), 1377 (reserve). Feature space dimensions: 13 
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(a) (b) 

(c) 

Figure 5.12: Focus region opacity modulation with context-preserving rendering. The focus 
point is the left eye. (a) samples become more opaque further away from the focus point in 
(a) while they become more transparent in (b). (c) is a combination of both (a) and (b) were 
the opacity increase the further away from the focus point, but then decrease outside the focus 
region. 
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k1 = 1.0 k, = 4.0 

ks= 0.4 

ks= 0.8 

ks = 1.2 

Figure 5.13: Context-preserving volume rendering of volumetric segmentation data using 
different values fork, and ks 
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(a) (b) 

(c) (d) 

Figure 5.14: Renderings from different view points showing the context-preserving rendering 
of segmentation data 
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Chapter 6 

Consistent Reconstruction of Surfaces 

6.1 Introduction 

Consistent results are a fundamental aspect of computer science. Indeed without a 

robust method, research may not be entirely reproducible in a consistent and reliable 

manner. For many years octrees have been employed for a magnitude of tasks, ranging 

from space partitioning to data down-sampling. For such an important tool it is vital 

that its use is consistent and reliable. However, as we show in this chapter, it apparent 

that even recent research can overlook inconsistencies due to rotation variance resulting 

from the use of an octree. 

By design the octree is used to partition space into octants, which can recursively 

be subdivided. Typically, when applied to a space with some form of spatial data, 

the octree is centered and bound to that data; this ensures efficiency, and is widely 

practiced. While the sampling of an octree that has been centered and bound to the 

data is both position- and scale-invariant, it is not rotation-invariant. This is to say that 

if the data was scaled or translated, the octree results would be identical but not if the 
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data was rotated. 

In this thesis we explore the important field of surface reconstruction and highlight 

recent research where the rotation-variance of octrees has not been addressed. We 

provide a method utilizing PCA (Principle Component Analysis) by which rotation­

invariance can be achieved for an octree employed for surface reconstruction. In ad­

dition we show the inconsistency of the previous method and the consistency of our 

approach using curvature analysis. Finally, a discussion is given as to how this method 

could be applied to volumetric data. 

6.1.1 Previous Work 

Octrees are have been used extensively in surface reconstruction, from simply pre­

processing input data as done by Kalaiah [ 148], to allowing efficient handling of large 

data-set for smface reconstruction as reported by Kindlmann [ I 56]. While this thesis 

only explores and proves one example of inconsistency resulting from the use of an oc­

tree, it is possible -but in no way asserted or proven here- that other methods employing 

an octree may be rotation-variant and subsequently inconsistent. The method explored 

in this thesis (as the case study) was reported by Ohtake [228], who used an an octree 

to build a hierarchy of points-sets for use in multi-scale RBF surface reconstruction. 

Other examples of Octrees being used for surface reconstruction include the work 

by Dalmasso [76], who describes a volumetric approach to surface reconstruction from 

nonuniform data. The data volume is split and classified at different scales of spatial 

resolution into surface, internal and external voxels and hierarchically described using 

an octree. 

An automatic and interactive system to repair both the shape and appearance of 
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defective point sets by utilizing an octree was presented by Park [239]. Octree-based 

subdivision was employed by Ohtake [227) for large point sets to reconstruct surface 

models using multi-level partition of unity implicit surfaces, while Tabor [296) re­

constructed multi-scale implicit surfaces with attributes, given discrete attributed point 

sets. Xie [33 1] organized sample points using an octree for a surface reconstruction 

and was able to recover high-quality surfaces from noisy and defective data sets with­

out any normal or orientation information. Finally, Hornung [ 134] used a octree in 

a volumetric method for reconstructing watertight triangle meshes from arbitrary, un­

oriented point clouds. 

6.2 Surface reconstruction 

Smface reconstruction from unorganized point clouds is an important problem, espe­

cially for the recreation of real world objects that have been digitally scanned. Most 

object scanning technologies do not, by design, provide a surface model to be used in­

stantly, but rather supply data by which a surface or an object can be recreated. There 

are a variety of sources from which data is obtained. Contour slices, where an object 

has been scanned using a CT scanner and an iso-surface has been defined, it a typi­

cal source. Another source is interactive tools, where data is created in real-time by a 

user. However, most prominent is range-data, where an object has been scanned using 

a laser to measure distances to the areas of an object. 

There have been numerous solutions to the surface reconstruction problem. For 

examplem Hoppe [ 132) used an implicit surface model were surface reconstruction 

was defined as the zero set of an estimated signed distance function, while Bernardini 

[24) used a the rolling ball technique and Curless [75) used a volumetric approach. 
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Radial Basis Functions were used by Carr [51] to solve a scattered data interpolation 

problem and reconstruct surfaces. Alternatively, Nina Amenta [8, 7] used Voronoi 

vertices and Delaunay triangulation to create a piece-wise linear approximation of a 

smooth surface with better noise reduction. 

Typically the problem of reconstructing a surface requires that the input data be 

converted to an unorganized point cloud in three-dimensional space. In this paper we 

are exploring an approach whereby the surface reconstruction task is cast as a scattered 

data interpolation problem and the reconstruction is defined as an implicit surface. 

A surface that is not explicitly defined, but rather is embedded within another prop­

erty, is called an implicit surface. A distance field is an example of an implicit surface. 

The surface of a distance field is typically defined as zero and all space exterior or in­

terior to the surface is non-zero. Su1face reconstructions based on implicit surfaces is 

a popular approach due to a number of advantages it has over other representations. A 

particularly noteworthy advantage is the ability of implicit surfaces to easily represent 

models of complex topology. 

A well known approach for solving the scattered data interpolation problem is a 

RBF (Radial Basis Function) Network. 

6.2.1 Radial Basis Functions 

For the scattered data point interpolation, a RBF network is defined as [250, 125] 

N 

f (x) = L, wi</J (llx - Xi II) (6.1) 
i= I 

which satisfies the interpolation conditions f(xi) = Yi where Xi E JR3 are data points, 

and Yi E JR are function values. Unlike height-function interpolation, a surface embed-

131 



6.2 Surface reconstruction 

ded in three-dimensional space is often defined as a zero-level set f(x) = 0. 

To avoid the trivial solution that f is zero everywhere, off-surface points are typ­

ically appended to the input data and are given non-zero values Yi i= 0 whilst the on­

surface points are defined with Yi = 0 [82, 299]. The coefficients Wi are determined 

by solving a linear system Gw = y which is obtained by inserting the interpolation 

conditions into Eq. 6. 1. 

If the matrix G is ful1, however, this approach is limited to a small data set; ap­

proximately a thousand points or so. Given a large data set, a naive approach is to 

use a small subset of it and discard the remaining data points [82]. A better approach 

is to use CSRBFs (Compactly Supported RBFs) since their compact supports lead to 

a sparse linear system suitable for a large data set [33]. However, it is sensitive to 

the density of scattered data and, therefore, a careful selection of the support size for 

CSRBFs is required in surface reconstruction [33]. 

6.2.2 Multi-Layer Radial Basis Functions 

To get around the CSRBFs problems, multi-level interpolation with a point hierarchy 

was proposed by Ohtake, et al [228]. Given a set of points 'Y = { x 1, ... , XN} sampled 

from a smooth surface, the multi-scale hierarchy of point sets {'Y 1, 'Y2, ••• , 'YM = 'Y} is 

first constructed by spatial down sampling. Then the multi -level interpolation proce­

dure proceeds in a coarse-to-fine way with decreasing support sizes. It recursively de­

termines the set of interpolating functions fk(x) = fk - l (x) +ok(x) such that fk(x) = 0 

interpolates 'Yk fork= 1,2, ... ,Mand J°(x) = - 1. The offsetting function ok(x) has 

the form of 

L [gi(x) + wi] </Ja (llx - Pdl) (6.2) 
p;E'.Pk 
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where g;(x) are local polynomial approximations determined via least square fitting to 

J>k and ¢er (llx - p;II) are CSRBFs. The coefficients w; are found by solving a linear 

system 

<l>w=-(f+g) (6.3) 

obtained by the interpolation conditions fk(Pj) = 0 for every point Pj E J>k. The 

point hierarchy is created using octree-based subdivision. It starts with an axis-aligned 

box that encompasses the point set '.J', and is followed by recursive subdivision of the 

space and points into eight octants or cells. '.J' is clustered with respect to the cells by 

computing centroids of the points in each cell. 

Depending on the coordinate system used to represent the points, however, it can 

lead to inconsistent surface reconstruction and geometry. For example, surface cur­

vatures are important for matching and registration tasks and can result in different 

values even with the same point set if represented in different coordinate systems. An 

actual research example, Hadwiger [ I 17], not only uses an octree for hierarchical rep­

resentation of a volume, but also explicitly extracts curvature for visualisation, and it 

is possible the variance problem affects it too. 

The variance, attributed to the coordinate system, is due to the octree subdivision 

such that each side of the cells is parallel to an axis of the coordinate system: rotation 

is especially problematic, whilst the octree is invariant to other coordinate transforms 

such as translation, scaling and flipping. 
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6.3 Consistent Surf ace Reconstruction using PCA 

Ohtake's [228] multi-layer approach does not address the rotation-variance inherent to 

octree down-sampling. Indeed we prove later that an arbitrarily aligned octree results 

in inconsistencies in the surface reconstruction. Such inconsistencies could result in 

difficulty during object mark-up and reconstruction comparison, where consistency is 

vital. 

To solve the problem of rotation-variance we turn to PCA (Principle Component 

Analysis). PCA involves a linear transformation of a data-set, such that the first princi­

ple component is the data-set projection with the greatest variance, the second principle 

component is the second greatest variance and so on. The first three principle compo­

nents can be viewed as the cartesian axis defining the intrinsic orientation of the data. 

The appeal of this method is that any coordinate transformations applied to the data set 

will also effect its intrinsic orientation. 

We arrive at an orthogonal coordinate system (the intrinsic-orientation of the data) 

from calculating the eigenvectors of the covariance matrix 

C = DD7 

where D = [x 1 - x, ... , XN - x] and x = ~ r,7= 1 x;. We then orientate the octree to the 

data using this coordinate system. 

This approach is different than that of Kalaiah [ 148], where PCA is used on a group 

of points structured in an octree and used to determine the local orientation frame of 

the group, as we are re-orientating the entire octree prior to space partitioning and 

centroid calculation. In the work by Kalaiah [ 148] rotation-variance of octrees was not 

addressed either. 
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PCA has been widely used for the representation of shape, appearance and motion 

in the computer graphics field. For example, Sloan [286] compressed the storage, and 

accelerated performance, of pre-computed radiance transfer (PRT), which captures the 

way an object shadows, scatters, and reflects light, using clustered principal component 

analysis. Compressed representation of lighting information was also achieved using 

PCA in the work by Kristensen [167]. Other uses of PCA include, human face recogni­

tion (Feng [93]), and silhouette recognition (Gouaillier [ l 05]). In addition, Torre [297] 

provided Robust PCA (RPCA) for computer vision that improved PCA representation 

of shape, appearance, and motion. 

6.4 Flexible Basis Functions 

For a wider choice of basis functions, we can use an approximation scheme. In the 

aforementioned interpolation approach, the down-sampled points p J E pk serve as both 

the basis centres and the data points as in Eq. 6.2 and 6.3, and only a few types of func­

tions can make the linear system in Eq. 6.3 solvable. In the proposed approximation 

approach, we use pk only for the basis centres and P = { x1, ••• , XN} for the data points. 

In this approximation scheme, we may obtain a linear system equivalent to Eq. 6.3 from 

the conditions fk(x;) = 0. However, it is over-determined since the number of the basis 

functions is less than that of the data points, i.e., I Pk I < IPI. As the least square solu­

tion, instead, we can determine the weights w; by solving the following linear system 

<l>T <l>w = -<PT (f + g). (6.4) 
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In choosing the basis functions, this approximation scheme provides more flexibility 

than the interpolation does since there are more functions making Eq. 6.4 solvable than 

those for Eq. 6.3. 

6.5 Experiments 

In order to show the consistency of our method we analyzed the curvature of the re­

constructed models. We used the curvature calculation method provided by Kindlmann 

[ I 56] to calculate the mean curvature at each center. 

First we formed two copies a 54K point-set, sampled from squirrel a data-set, and 

applied a rotation of 70 degrees around the y-axis to one of them. We then applied 

the PCA-Octree reorientation step on both data sets. After fitting two multi-scale 

CSRBFs, we calculated the mean curvature for each data-set. Figure 6. 1 shows the 

curvature residual of two experiments: one with the PCA-Octree orientation step and 

one without. When the octrees are aligned with the input coordinate systems as in 

[228], they show noticeable discrepancies in these curvature values: 8.2 on average. 

When aligned with the PCA coordinate system as proposed, they show virtually no 

discrepancies: 1.0 * 10- 4, of which attributed to numerical inaccuracy. ; 

We also experiment with the approximation scheme for the reconstruction and 

compare its results with that of the interpolation (Fig. 6.2). In addition to the afore­

mentioned CSRBFs, we use simpler basis functions </>(r) = ( 1 - ~): which would 

be not usable in the interpolation scheme. These basis functions only need to compute 

,2, but not r which would involve expensive computation of sqrt() as in the CSRBFs 

whilst the reconstruction qualities are comparable. 
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6.6 Summary 

This chapter has reviewed the utilization of octrees and PCA in current research. An 

exploration of leading research shown that the rotation-variance inherent to octrees 

when partition a space and spatial data was not being accounted for. By examin­

ing Ohtake's [228] multi-scale CSRBFs surface reconstruction technique a method 

for rotation-invariance by utilizing PCA was presented. It was shown that employing 

the PCA-Octree method produces consistent reconstructions. To evaluate and prove 

the claim, curvature analysis was performed and results compared. It was shown that 

the presented method resulted in consistency in surface reconstruction of arbitrarily­

orientated data. Finally, this chapter also introduced flexibility to multi-scale CSRBFs 

by employing RBF approximation. 

The approach described in this chapter could also be applied to volumetric data. 

For example, multiple CT or MRI scans of a patient may have minor variances in 

regard to rotation. Subsequently, space-division using an Octree or Kd-tree and the 

algorithms which depend on these hierarchy structures may have rotation variance in 

results. The application of PCA to acquire the data-variance and the transformation 

of the volume data such that the 3-principle components are aligned to the axis of the 

regular grid would help ensure more consistent results when comparing patient data. 

A typical scenario might be a patient with a brain tumor and multiple CT scans over 

many months, where minor changes in head position might result in rotation variance. 

Alternatively, 

As CT data is typically reconstructed using the Radon Transform [48], future re­

search might be to analyze the scanned data prior to the application of the inverse 

Radon transform and the discrete storage of the resulting volume in a regular grid. 
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This would help to reduce numerical error, which might be a problem if an existing 

volume was simply re-sampled along new axes; i.e. in order to align the data. 
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yy 

. ~: 

: ,_
1
};:~:;,~?'Y'i.~ · 

r .... 

(a) (b) 

(c) (d) 

Figure 6.1: Surface reconstruction invariant to coordinate transforms. (a) the input data set 
represented by two different coordinate systems; (b) an example of surface reconstruction; (c) 
discrepancies in mean curvatures between the reconstructed surfaces with the octrees aligned 
to the input coordinate systems (the darker, the wider discrepancy); (d) discrepancies when 
aligned to the PCA coordinate system. 
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(a) (b) 

Figure 6.2: Interpolation vs. approximation. Surface reconstructions using (a) the interpola­

tion and (b) the approximation scheme both using <f> (r) = ( 1 - '!i ): ( 4-!i + l) 
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Chapter 7 

Conclusions 

This chapter summarizes the thesis and outlines the original contributions. 

7.1 Kd-Jump 

This thesis has presented Kd-Jump, a stack.Jess traversal of implicit kd-trees for faster 

isosurface raytracing. It was shown that Kd-Jump can outperform both stackless and 

stack-based approaches, while only needing a fraction of memory compared to a stack­

based approach. Further, Kd-Jump exploits the index-based referencing used for im­

plicit kd-trees to achieve traversal-paths equivalent to a stack-based method, without 

incurring the extra node visitation of kd-restart. 

To further strengthen kd-tree, this work introduced Hybrid Kd-Jump. Hybrid Kd­

Jump utilises a volume stepper for leaf testing and a run-time depth threshold to define 

where kd-tree traversal stops and volume stepping occurs. By using both methods one 

gains the benefits of empty-space removal and hardware-based texture interpolation. 

It was shown that Hybrid Kd-Jump performs well at removing empty space and can 

outperform a brute-force ray-tracer. 

Memory usage for an implicit kd-tree may be too large if min/max pairs are stored 
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in each node. This work has shown that, if the conditions for the current isosurface are 

moved out of traversal and into the tree nodes themselves, then significantly less mem­

ory is required. In addition, even with a naive implementation, updating the implicit 

kd-tree for a large volume was shown to be quite fast on modem GPU architecture. 

Further, the usefulness of loading new rays once a warp of threads completes was 

reported and shows promising results for faster ray tracing. Additionally, this work 

discussed and examined the separation of the ray-tracing pipeline into separate kernels, 

and showed that the methodology has some promise for better efficiency. 

7.2 Real-time Segmentation 

A tool for real-time semi-automatic segmentation was presented. The tool utilized a 

support vector machine, which was trained with user generated input. The input was 

captured from a paint plane, whereby the user would paint upon a 2D visualization of a 

volume slice, either classifying voxels as wanted or unwanted features. Painted voxels 

where then converted to input vectors and given to the SVM for training. Once the 

SVM was trained, the remaining volume was segmented into wanted or unwanted by 

using the SVM to predict the volume voxel classes. 

Real-time segmentation was attained by using incremental SVM. Incremental SVM 

allows new inputs to be trained on the fly, without the need to retrain the entire SVM 

with all inputs. This allows a user to progressively define segmentation objects over 

time, without there being a noticeable delay once painting stops. In addition, the work 

included an input labeling mechanism, which allowed for easier management of input 

vectors, such that if a voxel input needed to be unlearned then corresponding support 

vector in the SVM could be found. 

Further, in order to ensure the class prediction of the volume did not cause a large 
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delay, this work utilized the power of GPUs (CUDA). By using CUDA kernels, the 

high-parallel task of performing an SVM evaluation for each voxel was accelerated 

tenfold, when compared to a CPU implementation. There were two aspects accelerated 

by CUDA in regard to voxel class prediction: generation of the input vectors (i.e., 

converting a volume voxel into a test vector for use in the SVM) and the evaluation of 

the voxel vector with the SVM support vectors. 

7.2.1 Context-Preserving Rendering 

A visualization method for context-preservation was introduced for segmentation data. 

By directly visualising the segmentation data, rather than the underlying volume, it was 

shown that anatomical features could be observed. By only requiring the segmentation 

data, memory could be saved as only the boundaries of segmentation objects needed 

to be stored. 

The work focused on the curvature information present at the boundaries and used 

this information for the context-preserving visualisation. By using the curvature infor­

mation, derived from applying PCA to the boundary, it was shown that a user could 

adjust simple parameters in order to see deeper into the volume. For example, it was 

possible to see through the skin and skull of a human head in order to observe the 

brain. However, any features on the skull or skin with high context were still visible. 

7 .3 Consistent Surface Reconstruction 

This work has reviewed the use of octrees and PCA in current research. This thesis 

explored, using a surface reconstruction case-study, how leading research does not ac­

count for the rotation-variance inherent to octrees when partition a space and spatial 

data. It was shown that not accounting for the problem produces inconsistent results 
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within derived techniques. As a case-study, the surface reconstruction approach utiliz­

ing an octree and CSRBFs, was explored .. 

The work examined Ohtake's [228] multi-scale CSRBFs surface reconstruction 

technique and presented a method for rotation-invariance by utilizing PCA. PCA was 

used to re-orientate the scattered data points prior to fitting; in-effect orientating the 

octree to the intrinsic-orientation of the data-set defined by the data variance. It was 

shown that employing the PCA-Octree method produces consistent reconstructions 

and consistent analysis results, such as curvature analysis, of arbitrarily-orientated 

data. In addition the work also introduced flexibility to multi-scale CSRBFs by em­

ploying RBF approximation. This work utilized RBF approximation and provided an 

example of a computationally inexpensive (relatively) compact support radial basis 

function , which was shown to produce similar results as the standard method. 

7.4 Future Work 

This section details two possible methods for future work, based on the work presented 

in this thesis. Also examined is the future direction other researchers have indicted in 

recent work. 

7.4.1 View-Dependent Isosurface Rendering 

One interesting outcome of the work detailed in this thesis, in relation to the Hybrid 

Kd-Jump method presented, is that GPU hardware is so fast that actually performing 

brute-force ray-tracing can be faster than using an acceleration structure; in certain 

situations. Future work based on this thesis will examine whether view dependence 

can lead to building an acceleration structure per-frame that is highly optimized for the 

topology of the local volume regions. Specifically, nodes where the isosurface runs 
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tangential to the view rays and where the majority of rays will pass through empty 

space, can be further sub-divided. On the other hand, if the majority of rays are likely 

to intersect the isosurface, then we do not require sub-dividing the node. The main 

difficulty of this method is performing the BVH tree build in real-time per-frame and 

developing an heuristic to determine (or estimate) whether node-splitting should be 

performed. 

7.4.2 Instantaneous Volumetric Feedback during SVM Training 

The segmentation method detailed in this thesis allows a user to train an SVM using 

paint tools, such that the SVM is actually incrementally learning during the paint pro­

cess. This facilitated far less delays when compared to a batch SVM learner. The 

main draw-back is that the volume cannot be visualised during the paint process, as 

performjng the class prediction for each voxel is computationally expensive, even if 

accelerated by a GPU. 

Future work will exploit the nature of SVMs in order to reduce the number of 

voxels needing SVM predictions. Specifically, by realizing that an SVM builds a hy­

perplane with a margin separating two regions, we can deduce that only the margin 

region will contain changes to the voxel class. As such a GPU-based margin/voxel 

follower could be developed. The method would only perform SVM predictions in the 

likely places that will define the boundary, in the remaining areas, a simple flood fill 

will suffice. Seed points for the algorithm would be the margin-vector set provided by 

the Incremental SVM model. 

With such a method it would be possible to visualize the training process, as the 

user paints training data, using volume rendering. An alternative method would be 

to only concern ourselves with the absolute boundary and not flood-fill the remaining 
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areas. Instead, we can apply the method for context-preserving rendering, as presented 

in this thesis, to visualize the boundary information, as only areas with curvature and 

gradient changes contribute to the visualization; i.e. areas inside the objects, as defined 

by the segmentation ID, have no gradient. 

7 .4.3 Overview of Research Trends 

It is likely that DVR will see further enhancements for speed, with the visual infor­

mation portrayed and accuracy when combining other methods, such as Isosurface 

visualization [162] and Ambient Occlusion [2 14]. Research by Knoll [ 162] already 

provides a method to accurately detect sharp peaks in the transfer function such that 

thin-surfaces are correctly rendered in DVR. Further research may be to incorporate 

affine arithmetic, which is computational expensive, to improve intersection results 

and further improve accuracy. 

Advances in the rendering of implicit surfaces is also likely, as reported in the 

leading research by Singh [285]. In their work they repo1t several research directions, 

ranging from incorporating image-space acceleration techniques and exploiting ray 

coherence using ray beams. Also discussed is the open problem of Ray-tracing para­

metric surfaces, such as the 18th degree polynomial resulting from applying Kajiya's 

[ 145] technique to bicubic surfaces. 

The ray tracing of point-based models has also seen renewed interest. A recent 

paper by Kashyap [150] details an improved method for large data; although at only 

interactive frame rates. Improving speed appears to be an ongoing challenge in this 

area of visualization. The work shows the continued trend to increase data-size and 

visual complexity as computational power also increases. 

Real-time construction of acceleration structures, rather than constructing them as 
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a pre-process, appears to be a current tread for ray tracing. Specifically, animated 

scenes, where the geometry is constantly changing are likely to be further explored as 

a research problem. Recent advancements by Lauterbach [ 183) have shown that GPUs 

can be used for this task and that a robust system for building a scene graph and ray 

tracing it in real-time is achievable. 

It is clear that ray tracing will appear to be useful in more applications, including 

games, in the next decade. NVidia have recently released a ray tracing API for their 

CUDA-enabled GPUs called Optix [224). Like OpenRT [309), it provides a simple 

API for application developers to integrate ray tracing into their software for high­

quality visualization and effects. Future developments are likely to be either integration 

of ray tracing methods into existing graphics APis, such as DirectX or OpenGL, or the 

formation of a new and standardized graphics APL 
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