
Bangor University

DOCTOR OF PHILOSOPHY

Kd-Jump: a path-preserving stackless traversal for faster isosurface raytracing on
GPUs

Hughes, David Meirion

Award date:
2010

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Nov. 2024

https://research.bangor.ac.uk/portal/en/theses/kdjump-a-pathpreserving-stackless-traversal-for-faster-isosurface-raytracing-on-gpus(dd8597fe-e08e-47f3-a14c-4f511e0aac76).html

Kd-Jump: a Path-Preserving Stackless

Traversal for Faster Isosurf ace

Raytracing on GPUs

David Meirion Hughes

School of Computer Science

Bangor University

A thesis accepted for the degree of

Doctor of Philosophy

July 2010

I dedicate this work, the culmination of two decades of schooling and

study, to my parents Wendy and Meirion. Without their support and

determination to see me succeed I would not have had the opportunity to

go to university. I thank Ruth for being a wonderful sister and a source of

inspiration by dedicating her life to a dream and working each day to

realise it.

Lots of thanks go my very good friends: Lee, Nigel, Tom, Andy, Jen and

Kirsty for keeping me sane over the years. Without them my path through

life would be very lonely and I'm very privileged to have them as friends.

I also wish to thank my partner Tracy for helping me pass the final hurdle

to complete my PhD. The final months were the most stressful and her

support was at a time when it mattered the most.

Acknowledgements

I would like to acknowledge my supervisor Dr 1k Soo Lim for his support

and patience during my PhD research. I also acknowledge and thank Prof.

Nigel John and Dr 1k Soo Lim for giving me the opportunity to study at

Bangor University.

I would also like to acknowledge my office friends; James, Rhys, Catrin

and Tom for making our office an enjoyable and friendly place to work in.

Abstract

Advances in Graphical Processing Units (GPUs) bring both opportunities

and challenges for the acceleration of volumetric visualisation. Many re­

searchers have highlighted these problems, such as GPU memory access

and _ low computation-throughput bottlenecks. For raytracing, stackless

traversal techniques are often used to circumvent memory bottlenecks by

avoiding the use of a stack and instead replacing return traversal with ex­

tra computation. This thesis addresses whether the stackless traversal ap­

proaches are useful on newer hardware and technology (such as CUDA).

In addition this work explores the possibility of accelerating volumetric

segmentation to allow real-time user interaction. As segmentation meth­

ods, especially those based on machine-learning, will typically examine

all the voxels of a volume, they are ideally suited to the parallel nature

of GPU computation. Further, context-preserving volume rendering is ex­

plored for segmentation data in order to see if rendering the segmentation

information of a volume can be useful for users.

In order to explore usefulness of stackless traversal on modern GPUs this

thesis presents a novel stack]ess approach called kd-jump. Kd-jump ex­

ploits the benefits of index-based node traversal and formulates a return

mechanism based on applying an inverse. Kd-Jump allows traversal to

immediately return to the next valid node, when required, without having

to backtrack one node at a time or perform additional node testing, as the

case is with Kd-Backtrack. This allows kd-jump to avoid incurring extra

node visitation, which will typically incur a greater amount of redundant

work. The stackless method is achieved by the addition of a single 32-bit

integer, which is stored within a fast GPU register, and an accumulation

matrix that is stored in constant memory. In addition ray clipping to the

bounds of a node is required upon return. It is shown that Kd-Jump out­

performs a stack-based approach by an average range of 10% to 20%.

This thesis presents a context-preserving visualization method for segmen­

tation data derived from volumetric medical images. A segmented volu­

metric image contains a number of anatomical objects which are important

features to be visualized. The context preserving rendering algorithm uti­

lizes the curvature at the surfaces of the segmentation objects to modulate

the opacity contribution during rendering. This results in the areas of high

curvature, typically the most important features, being opaque and visible

and everything else being transparent.

A segmentation tool utilizing support vector machines (SVM) is also pre­

sented. This segmentation tool utilizes incremental SVM to allow for real­

time learning and unlearning of input data and background training. This

enables the SVM to train on previous input while the user continues to pro­

vide further input. The theory for such a system is that the complex task

of training an SVM does not incur a noticeable delay, specificalJy after the

user has finished inputting data and requires the results. Further, in order

to expedite the class prediction of the remaining volume, using the trained

SVM, GPUs are employed. CUDA-kernels are utilized to predict the class

of each volume voxel and then store the result in a class volume. This first

entails transposing the voxel into the higher dimensional space used in the

SVM and then computing the weighted-kernel sum. These tasks are com­

pletely parallel in respect to the voxels and are perfectly suited for GPU

acceleration.

The main contributions of this thesis can be summarized as the following;

• A novel stackless traversal approach for balanced, or left-balanced

binary trees, which provides a theorized and proven performance im­

provement compared to a stack-based approach.

• A volume visualisation method for context-preservation specifically

tailored for segmentation data.

• A segmentation tool, which utilizes incremental SVM training, fast

GPU-based volume prediction and fast GPU-based segmentation ren­

dering, to enable a user to segment volumetric data in real-time with

fewer delays.

Contents

1

2

Introduction

1.1 Problem Description

1.2 Hypothesis

1.3 Objectives . . .

l.4 Papers

1.5 Thesis Format .

Background

2.1 Volumetric Visualization

2.1 .1

2.1 .2

2.1.3

Surface Contouring . .

Isosurface Raytracing .

2.1 .2.1 History . . .

Direct Volume Rendering

2.1.3.1 Modeling Light Transportation

2.1.3.2

2.1.3.3

2.1.3.4

The Volume Rendering Pipeline .

Volume Rendering Integral and Composition .

History .

2.2 Rendering Techniques

2.2.1 Ray tracing

2.2.1.1 Volume Ray tracing

2.2.1.2 Volume Ray tracing on GPUs

2.2.1.3 Stackless Ray tracing

2.2.2 Texture Slicing

2.2.3 Cell Projection

2.2.4 Splatting . . .

Vil

1

3

4

4

5

5

7

7

8

l1

12

14

15

16

19

19

23

23

25

27
29

31

32

32

2.2.5 Shear-warp . .

2.3 Acceleration Structures

2.3 .1 Grid .. .

2.3.2 Kd-Tree

2.3.3 Octree

2.3.4 Bounding Volume Hierarchy

2.4 Graphics Hardware Programming

2.4.1 Early Hardware Programming

2.4.2 Compute Unified Device Architecture (CUDA)

2.5 Classification and Context

2.5.1 Transfer Functions

2.5.2 Context/Importance-Driven Rendering .

2.6 Segmentation

2.6.1 Overview

2.6.2

2.6.3

2.6.4

2.6.5

2.6.6

2.6.7

2.6.1. 1 Manual Segmentation . .

2.6. l .2 Automatic Segmentation

2.6.1.3 Semi-Automatic Segmentation

Region Growing

Watershed

Level-Set Methods . . .

Deformable Models I Atlas .

Neural Networks

Clustering .

3 Previous Work

3.1 Stackless Raytracing

3. 1.1 Kd-Restart and Kd-Backtrack

3.1.2 Kd-Shortstack

3.1.3 Ropes

3. 1.4 Link-Map

3.1.5 Sparse Matrix Tree

3.2 Volume Visualization .. .

3.2. 1 Isosurface Visualization

viii

CONTENTS

33

35

36

36

37

38

39

39

40
40
41

42

43

43

44
44

45
45

45
46

47

47

47

49

49

so
51

52

53

54
54

54

3.2.2 Illustrative and Context-Preserving Volume Rendering

3.2.2.1 Demand driven Raytracing

3.3 Volume Segmentation and Classification

3.3.1 Segmentation

3.3.1.1 Machine Learning Approaches

3.3.1.2 GPU-based Segmentation ...

3.3.2 Classification and Transfer Function Design .

4 Kd-Jump

4.1 Background

4.1.1 Building Implicit Kd-Tree

4.1.1.1 Initial Building .

4.1.1.2 Computing Node Data .

4.1.2 Traversing Implicit Kd-Trees .

4.2 Stackless Traversal with Kd-Jump ...

4.2.1 Traversing to Child

4.2.2 Returning to Immediate Parent .

4.2.3 Returning to Arbitrary Parent

4.2.4 Completing Jump

4.2.5 Making Return Flags

4.3 Faster Traversal with Hybrid Kd-Jump

4.3.1 Hybrid Traversal

4.3.2 Dynamic Update

4.4 Results

Limiting Factors

Hybrid Kd-Jump

4.4.1

4.4.2

4.4.3

4.4.4

Multiple Rays Per Thread

Separating Kernels

4.5 Discussion

4.5.1 Multiple Kernels versus Single Kernel .

4.5.2 Alternative To Accumulation Matrix .

4.5.3 Limitations and Scope of Kd-Jump

4.6 Summary

IX

CONTENTS

56

57

57

58

58

59

60

63

65

65

66
68

69

71

72

72

73

74
77

78

78

79

81

86

86

88

88

89

90
91

92
92

5 Real time Semi-Automatic Volume Segmentation

5.1 Support Vector Machines

5.1.1 Incremental SVM

5.2 Fast Segmentation Using Incremental SVM and CUDA

5.2.1 Integration of CUDA

5.2.2 GUI Overview ...

5.2.3 Handling User Input

5.2.4 Generation of Training input

5.2.5 Visualization Backbone

5.3 Volume Classification .

5.4 Segmentation Results .

5.5 Discussion

5.6 Context-Preserving Rendering

5.6.1 Curvature-Based Context Preservation .

5.6.2 Focus Region

5.6.3 Implementation and Results

5.7 Summary

6 Consistent Reconstruction of Surfaces

6.1 Introduction

6.1.1 Previous Work

6.2 Surface reconstruction

6.2.1 Radial Basis Functions

6.2.2 Multi-Layer Radial Basis Functions

6.3 Consistent Smface Reconstruction using PCA

6.4 Flexible Basis Functions

6.5 Experiments .

6.6 Summary

7 Conclusions

7.1

7.2

Kd-Jump

Real-time Segmentation .

7.2.1 Context-Preserving Rendering

7.3 Consistent Surface Reconstruction ..

X

CONTENTS

97

98

101

104

107

107

109

110

112

112

114

116

117

118

119

121

121

128

128

129

130

131

132

134

135

136

137

141

141

142

143

143

CONTENTS

7.4 Future Work . 144

7.4.1 View-Dependent Isosurface Rendering 144

7 .4.2 Instantaneous Volumetric Feedback during SVM Training 145

7.4.3 Overview of Research Trends 146

References 148

XI

List of Figures

1.1 Doctor examining patient CT scans 2

2.1 The Marching-Cubes voxel cases and resulting polygons. 9

2.2 Discrete storage of volumetric data and representation as voxels. 15

2.3 Example of reconstruction filters 17

2.4 Visualization of the Ray casting process. 25

2.5 Example of Texture Slicing. 31

2.6 Example of the Volume Splatting Process. 32

2.7 The Shear-warp volume rendering process. . 34

2.8 Transfer Functions allow for varied visualisations of volumetric data. . 42

2.9 Example of the level-set method. 46

3 .1 Example of a Kd-Tree 50

3.2 Example of Ropes for a Kd-Tree 52

4.1 Schematic illustration of additional nodes tested . 64

4.2 Building an Implicit Kdtree 67

4.3 The three cases of traversal. 70

4.4 A two-dimensional example illustrating the two-stage process of find-

ing the indices of the next node to test.

4.5 Hybrid traversal

4.6 Theoretical performance between stack and Kd-Jump

4.7 FPS for Kd-Jump and stack traversal with different core frequency and

memory frequency settings

4.8 Isosurface rendering results for Bonsai and Foot . . .

4.9 Isosurface rendering results for Skull and Aneurysm .

Xll

76

76

83

83

84

85

LIST OF FIGURES

4 .10 Bonsai Tree rendered with a 1024 2 screen buff er 94

4.11 FPS for Aneurism using Hybrid Kd-Jump in 5 122 and 10242 screen

resolutions . 95

4.1 2 The results for loading multiple-rays per-thread once a warp terminates 95

4.13 The difference in FPS (%) between separate kernels and the whole

Kd-Jump kernel 96

5. 1 Overview of hyperplane-based classifiers 98

5.2 Forming a nonlinear SVM classifier 100

5.3 SVM with soft-margins 102

5.4 Incremental SVM updates 104

5.5 3D-printed objects based on segmentation data 105

5.6 Comparison of previous SVM-segmentation approach against the new

approach . 106

5.7 Screen capture of the segmentation GUI in use I 08

5.8 Illustration of an input vector as used for segmentation 111

5.9 Basic overview of SVM evaluation CUDA-kernel 114

5.10 Segmentation examples using the SVM tool . . . 123

5.1 1 Classification results for test case. 124

5.12 Focus region opacity modulation with context-preserving rendering 125

5.13 Context-preserving volume rendering of volumetric segmentation data 126

5.14 Renderings from different view points showing the context-preserving

rendering of segmentation data

6.1 Surface reconstruction invariant to coordinate transforms.

6.2 Interpolation vs. approximation.

Xlll

127

139

140

List of Tables

4.1 Average FPS across multiple views and multiple isovalues. Bonsai, Foot and

Skull are of 2563 in size while Aneurism is of 5123. • • • . . • • 8 1

4.2 Memory usage (per kernel) for traversal schemes with 10242 screen

resolution 8 1

4.3 FPS for Hybrid Kd-Jump versus brute-force 87

5.1 Statistics for results shown in Fig.5.10. 11 5

xiv

Chapter 1

Introduction

Since the advent of imaging technology and its digital storage much research has been

dedicated to creating and improving new ways to analyze such data. Imagining tech­

nology has many forms; a digital camera records the reflected light to produce a two­

dimensional image of the subject object(s). Computed tomography records multiple

X-ray images or the subject and reconstructs a three-dimensional volume reconstruc­

tion. Regardless of the input source, the data requires a method for analysis. Analysis

can be achieved by many methods; however, the typical solution is to simply reproduce

the input such that is can be displayed on a visualization device, such as a computer

monitor.

In the case of a two-dimensional image, the data is easily projected onto a monitor

with very little effort. However, with volumetric data, the three-dimensional space

must be projected onto the two-dimensional screen. Such a problem is not trivial and

there are many different methods which produce (at times) vastly different outcomes.

Medical professionals often work and think in terms of 3D space; for example,

diagnostic examinations have to take into account not only the size and the shape of

Figure 1.1: Doctor examining patient CT scans

pathologies of interest, but also their spatial position and vicinity to other anatomical

structures. Hence, 3D visualization techniques have huge potential in aiding medical

professionals to better understand patient anatomy and pathology.

The two main methods for the visualization of volumetric data are direct-volume

rendering and isosurface visualization. For both of these visualization approaches there

exist numerous algorithms to produce the end result; for example, slice-based projec­

tion, surface splatting, and raytracing.

Apart from the visualization of data, other methods for analysis attempt to seg­

ment the recorded data into separate regions. Typically for medical data, segmentation

means separating organs from other organs. Combining the output of a segmented vol­

ume and using it during visualization allows specific regions to be rendered uniquely,

or even completely made hidden. These techniques allow for better understanding of

how an object relates to its sun-oundings, or simply to allow a user to observe the object

without obstruction.

Segmentation of volumetric data has a vast research following, not least because of

the importance of the work for medical applications and practitioners. However, pro­

ducing an interface which is simple and desirable for use is again not a trivial problem.

2

1.1 Problem Description

1.1 Problem Description

Producing a GUI for the segmentation of volumetric data, and the visualization of re­

sults therein, has a number of challenges. Firstly the software must provide a simple,

yet robust interface such that new users can easily use it. On the other-hand experi­

enced users should be able to acquire the results they desire quickly. Secondly, the

underlying computations performed by the software must not impede the usability of

the program; i.e. the user is does not have to wait long periods of time for results, nor

should the user witness delays while providing the input data used for directing the

segmentation.

There are two features of segmentation software which can suffer from the afore­

mentioned problems. The segmentation computation itself can be slow, especially if

machine learning methods are utilized. Not only would machine learning-based seg­

mentations require some form of training the entire volume would also need to be

classified in order to arrive at the complete segmentation. Secondly, visualization of

the segmentation data must be fast and useful to the user.

To summarise, these problems are;

• Slow segmentation, where the user must wait for results.

• Slow visualization, where the users experience interacting with the visualization

is slow and frustrating.

• Difficulty in understanding the context of a segmentation in relation to the sur­

rounding features.

3

1.2 Hypothesis

1.2 Hypothesis

This thesis hypothesizes that with the utilization of Graphical Processing Units, vol­

ume visualization can be performed faster by catering to the strengths of GPUs while

also avoiding their weaknesses. Specifically, avoiding access to GPU memory and

favouring computation can yield faster results for ray tracing. Further, that segmenta­

tion of volumetric data can be made faster by utilizing the power of GPUs. Finally,

that segmentation data can be directly visualized using context preserving rendering.

1.3 Objectives

In order to prove the hypothesis this thesis will explore the three areas of research and

present new work. These objectives are;

• To research the field of segmentation and volume visualization

• To provide a visualization method, which is not only fast and robust, but also

tailored to avoid GPU weaknesses.

• To develop a segmentation tool, which is fast yet robust enough to cope with

complex segmentations.

• To develop visualization methods for segmentation data, which preserve context

and improve understanding of data.

4

1.4 Papers

1.4 Papers

The following are the published (or accepted for publication) research papers relevant

to this thesis.

D. M. Hughes, L S. Lim. "Kd-Jump: a Path-Preserving Stackless Traversal for

Faster Isosurface Raytracing on GPUs". IEEE Transactions on Visualization and Com­

puter Graphics, 15(6), 2009, pp 1555- 1562.

D.M. Hughes, LS. Lim, "Context-Preserving Rendering of Medical Segmentation

Data", Proc of 29th International Conference of the IEEE Engineering in Medicine and

Biology Society, August 2007, pp. 5521-5524.

D.M. Hughes, LS. Lim, "A case-study of inconsistent surface reconstruction in

recent literature resulting from Octree rotation-variance", Proc. of Theory and Practice

of Computer Graphics 2007, Bangor, pp. 195-200.

1.5 Thesis Format

Chapters are organized as follows:

• Chapter 2 outlines the background techniques in the fields of visualization and

segmentation.

• Chapter 3 outlines the previous research most relevant to the work contained in

this thesis.

• Chapter 4 outlines isosurface and volume rendering approach utilizing an im­

plicit kd-tree specifically tailored for use on GPUs. This chapter also introduces

a stackJess traversal approach for balanced binary-trees, which swaps memory

access for computation.

5

1.5 Thesis Format

• Chapter 5 presents a segmentation tool using incremental SVM powered by mul­

tiple cores and GPUs. Also presented is a context-preserving rendering tech­

nique for segmentation data.

• Chapter 6 presents a method for consistent surface-reconstruction when using

methods derived from object-space subdivision; such as an Octree.

• Chapter 7 finalizes with the conclusions of the thesis.

6

Chapter 2

Background

This chapter outlines the history of volume rendering and the methods developed; from

the initial research through to the modern methods being employed today.

2.1 Volumetric Visualization

With the advent of the digital age, many forms of three-dimensional data-sets began to

be recorded. The most common was scanned data from Computed Tomography (CT)

or Magnetic Resonance Imaging (MRI), and scientific simulations such as fluid flow.

These three-dimensional data-sets are formed from two-dimensional slices and can

hold information on whatever has been scanned; be it humans, animals of inanimate

objects. The main problem was visualizing the data so that it could be analyzed.

Volume visualization is the process of representing a given volume, whether it is

three-dimensional or four-dimensional (animated), such that a human can observe it

in a meaningful manner. There are two principle disciplines in volume visualization;

realistic rendering [333, 28 1, 126] and scientific visualization (or non-photorealistic

7

2.1 Volumetric Visualization

rendering) [113, 199, 87]. Realistic rendering attempts to recreate the visual look of

something as it is in real life, such as how light interacts with materials, while scientific

visualization simply tries to give a visual insight into the data with more emphases on

portraying the information.

2.1.1 Surface Contouring

Early volume visualization during the 1960s and 1970s was limited by the computa­

tional power available at the time. The simple solution for viewing three-dimensional

data was to examine it one slice at a time. However, examining volume slices one at

a time does not easily allow an observer to recreate the three-dimensional look and

feel in their imagination; in addition it does not enable a doctor to analyze anatomy

from all angles. As a result, researchers began to find methods of rendering the data in

three-dimensions, from arbitrary view points.

Initial research into (general) computer graphics took the form of vector rasteriza­

tion; whereby dots, lines and curves are rendered to a two-dimensional buffer, which

was then viewed on a display, or printed with a plotter [13]. As vector rasterization was

well established, at the time, the initial visualization of volumetric data exploited these

techniques; specifically, surface contouring or isosurfacing. Surface contouring is the

process of finding and extracting a contour, or multiple contours, from a volumetric

data-set and then rasterizing it; [330, 2 13, 329, 304]. This form of visualization was

not ideal because of problems in interpreting the output, as noted by Stevens [291].

The next research step was to polygonize the surface contours and visualize the

resulting triangle mesh. Early work in this field attempted to connect contours of a

slice with the contours of the next; for instance, by using methods from graph theory;

8

2.1 Volumetric Visualization

[I 54]. However, most early solutions suffered from problems; such as inaccuracy

and ambiguities [98). The most notable algorithm to emerge, in the field of contour

extraction, was marching cubes [197).

The marching cubes algorithm moves through the volume and examines one voxel

at a time; a voxel is an imaginary cube situated between the volume data points. The

goal of the marching cubes algorithm is to examine the voxel-corner intensities and to

arrive at a suitable polygonal-mesh to represent the isosurface. By examining whether

the corner intensities are above or below the desired isovalue, cases can be formed.

Specifically, the state of each corner intensity in relation to the chosen isovalue is con­

verted to a boolean bit in an 8-bit integer; where each bit represents a corner. The naive

approach is to consider that there are 28 cases and thus 28 possible polygonal config­

urations; although, when considering reflection and rotation, there are only IS-unique

cases. There are, however, ambiguities with the original algorithm [86). Marching

cubes was, and still is, infamous because it was patented. As a result of these prob­

lems, marching tetrahedra [I 08, 56) was introduced, where a voxel is dissected into 6

tetrahedrons. This makes the number of cases shrink to 16 and removes any ambiguity,

while also bypassing the patent.

Figure 2.1 : The Marching-Cubes voxel cases and resulting polygons. Image source http:
//users.pol ytech .unice.fr/~lingrand/MarchingCubes/algo .html

9

2.1 Volumetric Visualization

Employing isosurface extraction and visualizing the resulting polygonal mesh is

still popular today. Almost every piece of software that can visualize volumetric data

will employ isosurface extraction; for example Matlab [2 11).

During the early I 990s, focus moved away from how to extract polygonal isosur­

faces and moved towards how to find valid regions of the volume quickly. Originally

Marching Cubes was designed to march through the entire data-set, which was not

ideal for larger data-sets with much empty space.

An important development in speeding up isosurface generation was the space­

efficient pointerless octree by [325]. In this work, the volume was subdivided using an

octree, with each node containing a minimum and maximum value for the sub-volume

the node represented. The research showed that by employing an octree acceleration

structure not only could the valid regions of the volume be found very quickly, and

thus generate the isosurface much faster than the marching method, but the structure

could also be memory efficient.

The Span-Space technique was introduced by Livnat [196) to as another possible

solution to the valid-voxel search problem. In a span-space each voxel is mapped

to a two-dimensional grid. The dimensions of the grid are the mjnimum and maxi­

mum value stored within a voxel. For memory efficiency the span-space is divided

into memory buckets. Data-points (voxels) are then quantized and stored within these

buckets. For fast lookup, a kd-tree is also built over the span-space. When searching

for given an isovalue, the kd-tree can rapidly find the buckets which contain voxels

with the desired isovalue passing through them. The main drawback of the work was

the considerable amount of overhead, i.e. voxels checked but not contributing to the

final isosurface, due to use of memory buckets.

With researchers solving the search time bottleneck by using acceleration struc-

10

2.1 Volumetric Visualization

tures focus moved once more toward making the whole process of extraction and vi­

sualisation more accurate (220] and faster [196, 64]; of particular interest is the work

by Livnat [195] where the isosurface extraction process is accelerated by exploiting

view-dependence.

With consumer graphics hardware becoming more widespread, researchers began

to exploit them for isosurface visualization (320, 90, 321]. With the work of Rottger

[263] an improved Projected Tetrahedra algorithm was presented for isosurface vi­

sualization. The work utilized 3D Textures, a multiple pass renderer and exploited

OpenGL-hardware boolean operations to speed up the projection and shading of the

tetrahedra polygons. Further work with the rendering of tetrahedral cells was presented

by Weiler (319], who implemented a ray casting system using a programmable shading

language. This removed the need to project the cells using polygons and directly ray

traced the tetrahedrons with scene traversal and intersection testing performed on the

GPU itself.

2.1.2 Isosurface Raytracing

Unlike surface contouring, which typically extracts the surface to geometry primitives

and then renders the geometry with rasterization, ray tracing directly accesses the vol­

ume data and immediately renders the isosurface to the screen. The typical method is

to shoot rays into the volume and find the first isosurface intersection.

Intersection testing is an important aspect of isosurface raytracing and has vari­

ous methods available to balance accuracy versus speed (208]. The analytic method

[241 , 280], employing schwarze's cubic solver (275], is accurate but computationally

expensive. Linear interpolation between the entry and exit points of a voxel is the most

11

2.1 Volumetric Visualization

basic and fastest numerical approach for intersection, but is not accurate. Neubauer's

Method [222] uses repeated linear interpolation to anive at the correct intersection

location; however, several iterations are required. Finally, the correct root finding

method, introduced by Marmitt, et al [208], is able to reproduce the same results as the

analytic method in a numeric fashion.

2.1.2.1 History

It was Parker [24 1] who introduced interactive isosurface ray tracing. The work demon­

strated that it was feasible to directly ray trace the isosurface, rather than extract a ge­

ometric mesh from the volume. The algorithm employed was a brute-force raytracer

with three-steps: traverse the rays through the volume cells, analytically compute the

isosurface-ray intersections upon finding a valid cell and, upon a successful intersec­

tion, shade the screen pixel. Of interest is the use of bricking and a two-level hierarchy,

to help reduce the overhead of empty space and improve memory caching. In addition

the use of an analytical-solver for the intersection test provided high accuracy. Finally,

the paper itself was popular and served as a generalization of previous work and a base

for further work.

During the late 1990s, consumer hardware for computer networking saw vast im­

provements, allowing for very fast and high-bandwidth communications between ma­

chines. Researchers exploited fast and cheap networking to separate the visualization

of a data-set across multiple machines [63, 20, 62]. While employing multiple ma­

chines was the norm many years previously, these new out-of-core methods provided

for real-time visualisation and interactive manipulation.

An important milestone was the introduction of an implicit kd-tree for isosurface

rendering on CPUs, by Wald [312]. The work was further improved upon by Grob

12

2.1 Volumetric Visualization

[I 07] to include MIP rendering. The implicit kd-tree was designed to keep a low

memory footprint, while also enabling high quality rendering of medium sized vol­

umes, at interactive frame rates on consumer CPUs. The implicit kd-tree method is

further explored in Chapter 2.

The rendering of discrete isosurfaces (distance fields) was explored by [118] for

massive data-sets. Accelerated by an Octree for space skipping and an OpenGL-shader

based raytracing mechanism, interactive rendering with advanced surface-shading was

achieved. Specifically, surface curvature was exploited for non-photo realistic render­

ing, which allowed for highlighting of interesting features on surfaces that would have

normally have been hidden. In similar work, Stegmaier [290] presented a ray tracing

system for distance fields with more emphasis on ray tracing effects, such as reflection

and refraction. Also of note in this work was the ability to combine rendering meth­

ods, such as isosurface rendering and direct volume rendering with advanced effects

and tone-shading. Finally, work with distance fields also gave rise to methods for con­

verting geometry to volume data, such that volume rendering techniques could be used

[142].

A major advancement in progress isosurface came with the interactive isosurface

ray tracing of time-varying tetrahedral volumes [311]. This work focused purely

on a CPU-based implementation, exploiting SIMD for small-packet and large-packet

traversal. For raytracing arbitrary isovalues, an implicit BVH was introduced, much

like in the previous work of Wald [312].

With data-set size growing ever larger, research focused on solving the mem­

ory problems and rendering speed shortcomings, as was the case with the work by

Friedrich [96]. An LOD system was utilized, whereby, upon traversal into a region,

the volume data and sub-tree would be loaded into main memory from the hard-drive.

13

2.1 Volumetric Visualization

Interactive frame rates were achieved for the isosurface rendering of multi-gigabyte

volumes, so large they could not be directly loaded into main memory. In addition,

the work did not require Out-of-core methods, unlike the previous research by Chiang

[63].

As GPUs improved over time, with far better architecture to provide general pro­

gramming, the distinction between research into isosurface visualisation and direct

volume rendering began to break down. Specifically, it was becoming possible to ren­

der isosurfaces with direct volum~ rendering, simply by choosing a transfer function

to highlight the isovalue [90]. Of particular interest was the work of Hadwiger [11 8]

which showed a robust and comprehensive rendering application could accommodate

a multitude of rendering techniques and effects, including direct volume rendering and

isosurface rendering. However, early isosurface-like transfer functions simply assumed

all values above an isovalue should be rendered. Actual isosurface transfer functions

require very nan-ow peaks for a single isosurface, rather than isobands. The main

problem with this was discussed and solved by Knoll [I 62]. The simple solution was

to include a peak-finding algorithm into the direct volume rendering integral, such that

nan-ow peaks in the transfer function (isosurfaces) are not missed due to the numerical

sampling rate employed by the volume ray tracer.

2.1.3 Direct Volume Rendering

Direct volume rendering reconstructs how light interacts with a gaseous medium and

how the light is transported to the viewer's eye. The techniques employed typically can

be separated into two fields, photo-realistic rendering and non-photo realistic render­

ing. For example, a realistic rendering of a volume might be the modelling of radiation

14

2.1 Volumetric Visualization

through the medium, such as X-Ray, while a non-photo reali stic rendering may involve

the use of a transfer function to map data values to arbitrary colours and opacities.

The goal in volume rendering is the mapping of information contained in a volu­

metric medium such that it can be represented on display devices, or printed. Typically,

the volume data is stored in a discrete form, as illustrated in Fig.2.2. There are several

factors governing the final result, such as: how light propagates through the medium;

what the physical properties of the medium are; and what kind of information is being

visualized.

2.1.3.1 Modeling Light Transportation

Figure 2.2: Discrete storage of volumetric data and representation as voxels. Image source
and copyright: SIGGRAPH 2009 Course Notes [207]

The human eye detects light as it hits the retina. Light, either from the sun or

from artificial lighting, must travel from its source through the world before arriving

at the eye. As light travels through the world it is altered by the various mediums,

whether they are gaseous or solid, that are present. Basic interactions that can occur

are absorption, reflection, refraction.

A computer simulation may or may not model all these interactions and indeed

may not simulate light as it occurs in the real world. For the sake of speed it is typical

15

2.1 Volumetric Visualization

to reverse the model such that we only compute the light which enters the eye and not

all the light given from a light-source. The most important optical models used today

in volume rendering were reported in the survey paper by Max[212] and have been

summarized by Engel [89):

Absorption only: is where the volume medium is assumed to be full of light absorb­

ing gas. No light is emitted.

Emission only: is where the gas within the volume emits light, but is completely

transparent.

Absorption plus emission: is a combination of the previous two optical models and

is the typicaJly used method. The gas not only emits light, but also absorbs incoming

light also.

Scattering and shading/shadowing: is another popular optical method, whereby

light is scattered within the volume as it passes through. This method can also consider

whether the light between the source and voxel is impeded by the volume, and therefore

cast a shadow upon the voxel in question.

For a comprehensive look into the simulation and modelling of light see the two­

volume work by Glassner [I 00).

2.1.3.2 The Volume Rendering Pipeline

There are several stages in a typical volume rendering pipeline [89):

16

2.1 Volumetric Visualization

Data Traversal The data of the volume must be traversed in the sense of acquiring

the data necessary to compute the volume rendering integral. Traversal of the data may

be accelerated using an acceleration structure; i.e. to avoid empty space [78]. A basic

approach is to simply step along rays in discrete steps, accessing the volume along the

way. The step-size can also be made adaptive [185].

Interpolation Due the fact volume data is typically in discrete form, it is required to

reconstruct the original volume function using filters [2 10]. The most common filter

is simply linear interpolation in three-dimensional space (trilinear). This is especially

true for GPU volume renderers as trilinear-interpolation is hardware accelerated.

A B - 1

-1 -0.5 O 0.5
1 -1 0

I I

Figure 2.3: Example of reconstruction filters (one-dimensional), where A) is the box-filter, B)
is the linear-filter and C) is the cosine-filter. Source: SIGGRAPH 2009 Course Notes [207]

Gradient Computation It is typical to compute the local gradient of data when ap­

plying local illumination. Typically, central-differences is used for reconstructing the

first-derivative in a numerical manner. It is also common to increase the distance pa­

rameter in order to acquire smoother results and limit the visual effect of the discrete

nature of the data. Alternative methods may employ the first-derivative of the trilinear­

interpolant [241], or tricubic-interpolant [I 44] or indeed other reconstruction filters

where an analytical derivative is available.

17

2.1 Volumetric Visualization

Classification Classification, in the sense of the the volume rendering pipeline, is the

process of altering the visual properties of specific data or regions within the volume.

Typically, this involves applying a transfer function, where the volume data is mapped

to a colour and opacity contribution and is in-turn used during composition. Alterna­

tively, a second volume may be utilized that defines a segmentation class for volume

regions. Such segmentation classes may represent individual anatomy and as such

may be rendered with different optical properties. Pre-classification is the term used

when the volume samples are classified prior to interpolation, while post-classification

is when the interpolated value is used in the transfer function instead. Pre-integrated

classification is when the integral between two values of a transfer function are pre­

computed. Pre-integration provides the best rendering quality, while pre-classification

the worst [90]. See Section 2.5.

Illumination Local-illumination is the typical lighting method used during volume

rendering, which computes the first bound in relation to the scene lights and viewing

camera. With additional ray casting, shadowing can be achieved. Global-illumination

tracks all light rays, throughout a scene, as they bounce multiple-times until arriving at

the camera.

Composition Composition is the process of iteratively stepping along a ray, either

in back-to-front or front-to-back ordering, and numerically integrating the volume­

integral.

18

2.1 Volumetric Visualization

2.1.3.3 Volume Rendering Integral and Composition

Simulating the propagation of light through a medium requires computing the volume

rendering integral, i.e. , the integration of the medium and optical properties as they

travel to the eye.

The typically used optical model is the emission-absorption model and leads to the

following volume-rendering integral, as described by Engel [89]:

D D D
- .f K(1)d1 J -f' K(r)dl

l (D) = foe "0 + q(s)e :, ds

so

where K is the absorption coefficient and q is the source term (emission). Integration

is from the entry point s = so to the exit location s = D. It is common practice to

compute the volume rendering integral in an iterative fashion. This leads to the front­

to-back (from the camera into the volume) composition scheme, with the assumption

that non-associated colours are used:

where Cdsi and a dsi are the accumulated results of the previous computations, and

where Csrc and <Xsrc are the source terms, typically given by the transfer function.

2.1.3.4 History

Early research focused on the reprojection of the volume to allow the data to be viewed

from arbitrary view angles. Specifically, the additive reprojection technique simulated

19

2.1 Volumetric Visualization

an x-ray image by averaging the intensities of voxels, situated along parallel rays,

from the rotated volume to the image plane [259, 129]. Simular work involved source­

attenuation reprojection [139, 273], which assigns a strength and attenuation (opacity)

coefficient to each source voxel. This technique allowed for hiding uninteresting areas

and to obscure certain objects from view, while highlighting more important features.

Another interesting development was depth cueing [304], whereby the volume opacity

contribution is inversely-proportional to the distance from the camera to the voxel.

This has the effect of giving the perception of depth, which is especially useful when

employing parallel projection; i.e. , a lack of perspective.

During the early 1980s colour displays became more readily available, which re­

sulted in volume rendering exploiting the benefits of coloured rendering. Specifically,

Farrell [92] introduced colour transfer functions by classifying volume intensity ranges

to a 9-bit colour (3 bits per colour). This work also reported difficulties in distinguish­

ing the seperate regions when using more than four colours.

An important milestone was the work by Drebin [84], who introduced a basic form

of utilizing multiple transfer functions for multiple materials. Specifically, the work

analyzed the volume histogram and classified intensity ranges as being one or more

materials. For example, very low intensities would be defined as air, while very high

intensities would be defined as bone. Rather than illustrate the entire volume with a

single colour and opacity, each material was coloured differently and materials could

overlap one another. The research is also notable for the composition of multiple

input-sources; i.e., the material boundaries, the partial-derivatives for each axis and

the individual material volumes.

With desktop computers becoming more readily available to researchers during the

late 1980s and early I 990s, there was an explosion of new research. New techniques

20

2.1 Volumetric Visualization

emerged employing more computationally expensive algorithms while reducing the

algorithm complexity. Notable is the work of Levoy [189] which utilized ray tracing

and trilinear interpolation in a generalized and simple algorithm; one typically used

today. Levoy's [189] approach is further described in section 2.2.1.1.

Optimization of volume rendering became a focus of the work by Levoy [190]. The

ray casting method employed was a grid traverser and two methods for performance

optimization were described. Firstly an octree-like pyramid of sub-volume cells was

built over the original volume space. This structure had the purpose of defining empty­

space, such that when the ray traversed into empty cells, the space could be avoided.

If the cell was valid, the ray would traverse down the pyramid-tree into a finer volume

grid. The technique was further refined in later work by Levoy[191], where a mip­

map was employed for gaze-directed rendering. The second optimization employed

was early ray termination, which had been researched previously by Whitted[324]. As

the ray traverses from front-to-back, colour and opacity is accumulated accordingly.

Once the ray accumulation is fully opaque, further traversal is not required (and thus

terminated) as no further contribution to the volume integral is possible.

Another major milestone for direct volume rendering was high-quality pre-integration

by Engel [90]. Pre-integrated classification, as reported earlier by Rottger [263] for

cell-projected tetrahedra rendering of isosurfaces, provides for a substantive improve­

ment to image quality compared to post-classification methods. One of the main draw­

backs to direct volume rendering is the need for numerical integration of the volume

rendering integral. The problem arises when the sampling rate (along the viewing ray)

is too large, resulting in visible artifacts in the final output. Direct volume rendering

with pre-integration of the transfer function, forms a lookup into a two-dimensional

table, given the volume values at the entry and exit points (i.e. [t , t + sample rate]), and

2 1

2.1 Volumetric Visualization

uses the value for colour and opacity accumulation. The table itself is populated with

the correct integration of all possible value combinations; i.e. the integration of the

transfer function from any value, to any value. As a result of using pre-integrated clas­

sification, larger sampling distances can be employed. This greatly reduces the render

time, without compromising the rendering quality.

The work by Kruger [170] is an example of early work with GPU acceleration of

volume rendering. This work was performed on older hardware, where rasterization

shaders were employed. The approach had the benefit of being easily integrated with

OpenGl or DirectX rendered scenes.

An interesting development was the work by Hadwiger [11 4] for volume rendering

of segmented data sets. The work focused on working with the segmentation data di­

rectly, rather than the original volume and facilitated the merger of multiple visualiza­

tion techniques, such as direct volume rendering and maximum intensity projection.

The interesting factor of this work was the trilinear interpolation within the voxels.

Due to voxel corners having segmentation IDs rather than intensity values, direct tri­

linear interpolation is not possible. Instead multiple trilinear interpolations, at least

one for each unique segmentation ID within the voxel is required. For each unique

segmentation ID, a binary-valued voxel is formed. The interpolated values for each

ID case is then stored. The segmentation case with the highest value is chosen and

the segmentation ID returned to the shader program. Using this system, high-quality

post-classification was possible, as well as pre-integrated classification.

With advancements being made toward more optimal visualization algorithms, as

well as further computational power for researchers to exploit, more focus was directed

to the visual information portrayed by the rendering; such as multi-dimensional trans­

fer functions as reported by Kniss [159] and the context-preserving rendering approach

22

2.2 Rendering Techniques

by Bruckner [37]. These techniques are discussed further in Section 2.5.

The latest research in direct volume rendering suggests that solving the problem

of visualizing massive volumes is the current research trend. Of note is the research

by Crassin [73], which employs a LOD system, similar to that of Friendrich [96],

and load-on-demand bricking. For a broad overview of current techniques the book

by Engel [89] is an invaluable survey of real-time rendering methods. In addition the

SigGraph course-notes [207] details the cutting-edge research and practical discussions

for the implementation of latest visualization methods.

2.2 Rendering Techniques

While ray tracing had always been of interest to researchers, alternate algorithms for

volume rendering began to be published in the 1990s, such as those reported in the sur­

vey paper by Elvins [88]. These algorithms could be divided into two groups, image­

order and object-order. With image-order rendering each pixel is only concerned with

the data that the ray of light passes through as it travels from the camera, through the

pixel and into the scene. With object-order rendering, individual objects are projected

to the screen to determine the pixels that the object contributes to.

The following section outlines the most notable volume rendering techniques to

have emerged; these being Ray Tracing, Shear Warp Transform, Texture Slicing, Splat­

ting and Cell Projection.

2.2.1 Ray tracing

Ray tracing projects a ray from an origin (typically the camera) into a scene and can

be used for a number of purposes. In relation to graphics, ray tracing typically refers

23

2.2 Rendering Techniques

to finding intersections with geometry and/or determining the interaction of the ray of

light with a volumetric medium. Ray tracing and ray casting are very similar, except

for subtle differences. With ray casting, new directions for the ray are not computed,

as they are with ray tracing upon intersecting with geometry. This means effects such

as refraction and reflection are only possible with ray tracing. In recent years the term

"ray tracing" has been more widely employed to describe both methods.

Ray casting, for computer graphics, was first pioneered by Appel [13] for the ren­

dering of solid geometry, however, it was not until the work of Roth [262] before the

term "Ray Casting" was coined. Initial focus was directed toward ray tracing solid

geometry and improving the shading model to include more effects, such as shadows

[I 3, 35], specular reflection [315], transparency [223], global illumination [324], and

improved realism [18, 29, 3 1, 151, 328]. With a research foundation for ray tracing

solid geometry formed (and later generalized by Kajiya [146]), focus moved toward

the ray tracing of volumetric densities and volumetric effects. The work of Blinn [30]

focused on improving the lighting models for computer rendering, with specific focus

on clouds and how they scatter the light (reflection and diffusion).

An alternative technique to Ray Tracing is Path Tracing, which is a technique used

to simulate the physical behaviour of light as closely as possible. Originally described

by the rendering equation introduced by Kajiya [146], Path Tracing was later refined by

Lafortune [178] to include bidirectional path tracing; i.e. tracing the path of light both

from the camera and from the light at the same time. Path Tracing belongs to a group

of algorithms able to simulate global illumination (indirect lighting). Other techniques

for global illumination include photon mapping [14 1], radiosity [104], beam tracing

[128], cone tracing [5] and ambient occlusion [44].

24

2.2 Rendering Techniques

2.2.1.1 Volume Ray tracing

3D Voxel Intersection
2D image pixel

t I

Figure 2.4: Visualization of the Ray casting process. Image source: volviz.com

Work dedicated to ray tracing of volumetric data saw much pioneering research in

the mid-to-late 1980s. Of note is the rendering equation described by Kajiya [147],

which improved upon Blinn 's [30] light scattering model. In addition, the work de­

scribed a method for ray tracing density models, which, for example, could be used to

simulate clouds.

Improvements and generalization of the ray tracing of volume data came with the

work by Levoy [189], whose work is notable for the non-binary classification of the

data, much like the research published in the same year by Drebin [84]. Levoy 's [189]

work is also interesting for using a ray stepping algorithm and employing trilinear inter­

polation within volume voxels. Unlike modern volume ray tracing methods, whereby

the classification is typically performed prior to interpolation, Levoy prepared and clas­

sified the data prior to rendering. The general pipeline presented first feeds the CT data

set into a shading program, which outputs a colour volume. The CT data is then sent

to separate classification program, which outputs a volume of opacities. This results

25

2.2 Rendering Techniques

in two separate pre-processed volume arrays. The final step of the pipeline casts rays

into both volumes and uses trilinear interpolation to sample the data. This process of

applying a classification routine before interpolation is referred to as pre-classification,

whereas interpolating the data before classifying it is referred to as post-classification.

Grid traversal was an important method for the earlier research into volume ray

tracing. Typically there are two methods for tracing a ray through a volume. First we

can progress along the ray at constant distances (sampling rate), which requires floating

point arithmetic to compute the new location within the volume. The alternative is

to traverse the ray using a DDA line algorithm, which is useful when only integer

arithmetic is feasible. Initial use of DDA ray traversal focused on traversing polygon

scenes that had been space-partitioned into grids, as detailed by Fujimoto [99] and

Amanatides [6]. Later these techniques were used for interactive ray tracing of volume

data [190]. In modern times, grid traversal methods showed favourable results for the

rendering of animated scenes, as well as providing efficiency due to ray coherence, in

work by Wald [313].

Exploration of volume data and providing multiple visualization options, such as

surface clipping, was the focus of the work by Hohne [130]. A generalized voxel

model was introduced by this work, which enabled the introduction of a second imag­

ing modality; i.e. combining CT and MRI data. Ray casting was utilized for the

rendering of segmented surfaces from the volume. The work also computed the sur­

face normal from the original volume data using central differences, which produced

superior image quality.

Ray tracing, typically being a naturally parallel process, exhibits coherence among

primary rays. This is to say that rays traversing through the same areas of the scene

can exploit caching, such that data need only be loaded once for a group (or packet)

26

2.2 Rendering Techniques

of rays. Initial research into exploiting ray coherence came with the work by Kaplan

[149]. It was further explored by Yagel [332], who solved the problem of using DDA

algorithms without artefacts. Later, other researchers would exploit coherence for other

visualization methods, such as Wilhelms [326], who outlined a coherent method for

cell projection.

Ray coherence was again exploited by Wald [3 14] to enable interactive ray tracing

of large polygon scenes and later introduced for animated scenes [313]. The work is

also notable for introducing ray packets, which could exploit SIMD technology for

considerable performance gains. In general, coherence algorithms typically have used

a DDA grid traversal, with packets of rays. The latest research by Knoll [163] contin­

ues this trend using a multi-resolution grid for the ray tracing of isosurfaces at interac­

tive frame-rates on CPUs.

As consumer hardware technology advanced, the speed with which volume render­

ing could be achieved was significantly improved as reported by Westermann [321].

2.2.1.2 Volume Ray tracing on GPUs

With the advent of programmable shader languages, ray tracing pipelines could be

implemented purely in the GPU, as was presented by Purcell [252, 253]. Alterna­

tively, the GPU could be exploited only for the computationally intensive aspects of

the ray tracing pipeline to create a hybrid CPU/GPU rendering system [52]. However,

while the power of GPUs is undeniable for certain functions (typically those of high

computation and low thread-branching), an on-going battle has been waged between

CPU-based ray tracers and GPU-based ray tracers, as to which is the fastest and best.

Ray tracing on GPUs introduces new challenges for researchers (as reported by

Aila [4]), not only from an implementation perspective but also in determining which

27

2.2 Rendering Techniques

algorithm can best fully utilizes the device hardware. Many previous ray tracing ap­

proaches were designed for CPU-based ray tracing and as such may not have the same

benefits when implemented on GPUs. Ray tracing algorithms can be divided into two

categories; those that reduce the overall workload and those that optimize the traver­

sal. For instance packet traversal [312] is where a group of rays are represented and

traversed as a packet. Packet traversal reduces the amount of work for the group of

rays by performing the common traversal steps once. Coherent traversal [164] at­

tempts to exploit the fact that rays typically traverse the same nodes most of the time

by forcing convergence after ray divergence. Optimization algorithms cater for spe­

cific strengths and drawbacks of targeted architecture, for example, stackless traversal

[94, 248, 73, 133].

A major contribution to GPU-based volume ray casting was the stream framework

proposed by Kruger [171]. While the framework utilized standard acceleration tech­

niques, such as empty-space skipping and early ray termination, the method by which

the rendering method integrated into the GPU was unique. The proposed method ren­

ders a cube, which has its RBG colours set to its XYZ values. The initial rendering pass

only renders the back-facing polygons of the cube. The resulting image is stored in a

GPU texture. Next a ray tracing shader is attached to the GPU and the cube is rendered

again, except this time showing the front faces. Both rendered images (front and back

faces) provide the start and end positions for the rays. Each front-face fragment (pixel)

then becomes a ray and is shaded by the GPU using the attached ray tracing shader.

The shader simply subtracts the RGB values of the front face from the back face, which

results in a view direction vector. The ray tracer then steps along the ray, samples the

volume, which is stored in a 3D-Texture, and computes the volume integral.

The multi-pass rendering framework by Kruger [17 1] proved useful for researchers,

28

2.2 Rendering Techniques

with Hadwiger [118] extending the idea for larger volumes. In Hadwiger's [11 8] work

the volume was divided into bricks, typically 83 in size. Rather than render a cube, for

computing the start and end points to ray trace, each valid brick was rendered. This

enabled a far better system for empty space skipping than the previous work. In addi­

tion the ray tracer did not sample the original volume, but rather a compacted volume

of bricks. This ensured that no empty-space was uploaded to the GPU, thus saving

time and memory space. Also of note is that bricks could be uploaded asynchronously,

such that the ray tracer could render one brick (and read the data) while another brick

was being uploaded. This facilitated the rendering of large volumes without the data

transfer becoming a bottleneck.

An alternative framework for GPU-based volume rendering, by Stegmaier [290],

was similar to Hadwiger's [17 1] work in that the front-faces of a cube were rendered

with a custom fragment-shader attached to enable ray tracing. However, the later work

used a single-pass and omitted the rendering of the back buffer. Ray directions were

computed on-the-fly by subtracting the polygon-fragment location from the camera lo­

cation. This work is also notable for implementing a wide variety of advanced effects,

such as shadows, reflection and refraction.

2.2.1.3 Stackless Ray tracing

In general, ray tracing of an acceleration structure requires a stack to record tree nodes

which cannot be immediately traversed, but which should be returned to if required.

Due to shared-memory limitations of GPUs, such an approach typically requires the

stack to be stored in the GPU's main memory (global memory). However, since the

slowest aspect of most cmTent GPUs is accessing the global memory, a stack-based

approach can induce a memory bottleneck.

29

2.2 Rendering Techniques

Foley [94] highlighted that a stack-based traversal approach on GPUs induced such

a performance bottleneck. Their solution was to completely remove the need for a

stack and resort to extra computation for correct traversal. The two approaches they

introduced for general kd-trees were kd-restart and kd-backtrack. kd-restart, upon

requiring to return, restarted traversal from the root node, while also moving the ray's

segment-range ahead of previously visited areas. kd-backtrack dealt with returning by

backtracking up the tree one node at a time until a valid continuation point was found.

Both approaches require a considerable amount of additional work to find valid nodes

into which to continue traversal.

Further exploration of stackless traversal was the focus of the work by Popov [248]

with the rediscovery of Ropes [270, 271 , 202]. The Ropes technique adds additional

neighbour information to each node of a tree, which allows a traversal mechanism

to traverse into a neighbour cell/region upon discovering that the current sub-tree has

no ray/geometry intersection. Unlike a stack though, intermediate nodes above the

neighbour node can also be avoided, resulting in less nodes being visited in general;

subsequently making the method faster than a stack anyway. However, the massive

memory cost of requiring pointers for each plane of the bound is a disadvantage.

Stackless approaches are typically a game of balance, such that by avoiding a stack

either more memory is required [248] in the tree, or more computation and iterations

of the traversal mechanism is needed [94]. The work of Horn [133] focused on the

balance aspect of designing a stackless method by introducing kd-shortstack. Rather

than completely remove the stack, a very small one is used. This short stack can be

made small enough to fit in the fast (but limited) shared-memory available on the GPU

multiprocessors. If the stack overflows the slower global memory can be used instead

[200], or the algorithm can revert to kd-restart [133, 94].

30

2.2 Rendering Techniques

2.2.2 Texture Slicing

~.> Dlr.ct':'on'\

Figure 2.5: Example of Texture Slicing. Image source: equalizergraphics.com

Texture slicing, depicted in Fig. 2.5 is a very simple, yet effective approach for

visualizing volumetric data. Several two-dimensional slices are placed within the vol­

ume, facing the observer, at regular intervals. The underlying volume is then sampled

on the slices. These slices are then composed together by the graphics card to form the

final image. This approach is especially useful for graphics hardware as all sampling

and composition can be accelerated by purpose-made hardware components.

The use of 3D texture mapping for volume rendering was explored simultaneously

by Cullip [74] and Crabal [48), implemented on the RealityEngine workstation with

OpenGL extensions. Two variants were discussed, one where planes were parallel to

the observer and another with planes parallel to one of the volume's axis. Later work

by Rezk [257) enhanced the slicing technique to overcome accuracy problems when

using 2D Texture mapping on consumer hardware where 3D Texture mapping was not

available. An alternative to placing 2D planes within the volume's Cartesian domain

was the spherical-domain based approach of Westermann [320].

31

2.2 Rendering Techniques

2.2.3 Cell Projection

Like splatting, cell projection is an object-order approach. However, unlike splatting,

the cell is typically polygonized and the polygons projected to the screen. Early work

by Shirley[282] decomposed volumes into tetrahedral cells. These were then polygo­

nized and rendered (typically with hardware graphics cards) with transparent triangles.

The rendered triangles were composed to form the final volumetric rendering. In sim­

ilar work, Wilhelms [326] projected the visible cell faces directly (rather than using

tetrahedral calls), using triangles or quadrilaterals, and improve image quality with

improved volume integration methods. Renewed interest in cell projection by Rottger

[263] exploited new graphics hardware to further improve the rendering quality and

speed for direct volume rendering and isosurfacing.

2.2.4 Splatting

w

Volume EWA volume resampling filter Pk

® t Convolution

r.

Figure 2.6: Example of the Volume Splatting Process. Image source: [61]

Splatting is a method whereby the volume, in the form of three-dimensional recon­

struction kernels or splatting primitives, is projected to the image plane; see Fig. 2.7.

These projected kernels are first sorted, then evaluated and finally composed to form

32

2.2 Rendering Techniques

the final image. The method is very flexible and only requires some form of sorting to

ensure correct composition ordering is met. The first publication for volume splatting

was by Westover [322, 323].

A hierarchical approach was presented by Laur [182], where a pyramid structure

was used to refine the splat cell size based on local data variance. Also the pyramid

structure allowed rendering to be flexible so that lower resolution could be chosen to

meet a desired frame-rate.

A new splatting primitive, called the EWA (elliptical weighted average) volume

resampling filter, was introduced by Zwicker [343]. This filter combined an elliptical

Gaussian reconstruction kernel with a Gaussian low-pass fi lter to deliver reconstruction

of both surface (isosurfacing) and volume data for perspective-based visualization with

improved anti-aliasing. The work was extended by Ren [256] with a new object-space

fo1mulation of EWA splatting for irregular point samples and an efficient implementa­

tion on graphics hardware. Hardware acceleration was again the focus of Chen [6 1],

who introduced an adaptive EWA splatting method without reduction in quality, and

Neophytou [221] who introduced RBF-based (Radial Basis Function) splatting primi­

tives for irregular grids.

2.2.5 Shear-warp

Shear-warp volume rendering, introduced by Lacroute [176] is closely related to tex­

ture slicing in that two-dimensional slices are placed within the volume, however, these

slices are axis-aligned rather than aligned toward the camera. This gives the benefit of

the slice-sampling being completely linear and subsequently very optimized for mem­

ory access. The approach does, however, require an additional step to correct the visu-

33

voxel
scanline

voxel slice

2.2 Rendering Techniques

3. warp & cesam~•g
t

Intermediate image final image

Figure 2.7: The Shear-warp volume rendering process. Image source: [176]

alization for proper composition. Specifically, once the volume slices have been ren­

dered to an intermediate base-plane, the base-plane must be transformed using shearing

to match the view perspective. While the method allows for much optimized memory

access, the shear-warp transformation means certain regions of the image-plane may

be under-sampled (poor quality). As such, it is typical to super-sample during the vi­

sualization so that the base-plane is larger than the output screen. This then allows for

better quality after the shear-warp transform. The shear-warp method is depicted in

Fig. 2.7

A number of advancements were published in the years after the original work.

Utilization of shared-memory multiprocessors by Lacroute [175] facilitated real-time

rendering. In independent work, Amin [9] also presented a parallel implementation

of the shear-warp algorithm for faster results. Later work by Sweeney [294], short­

comings with image quality were addressed using body-centered cubic grids, while

34

2.3 Acceleration Structures

other research by Schulze [274] combined the shear-warp method with pre-integrated

classification. The effectiveness of the algorithm was also highlighted for the visu­

alization of 4D (time varying) datasets in the work by Anagnostou [10]. Finally, the

technique saw renewed interest for modern graphics hardware with the work by Guo

[111]. As modern GPUs are most optimized when global memory is accessed linearly,

shear-warp was shown to exploit the hardware texture caching quite well.

2.3 Acceleration Structures

As rendering techniques became more advanced and more complicated scenes could

be rendered, researchers began to highlight the need for efficient acceleration structures

both for geometry ray tracing [152, 17, 265] and volumetric visualization [I 90].

Acceleration structures are now an important aspect of modern volume rendering

approaches, especially so if large regions of the volume are unimportant or empty. In

most rendering approaches the empty space within a volume never contributes to the

volume integral. If the empty-space is avoided completely, and assuming the mecha­

nism for avoiding the empty space is faster than examining it in the first place, faster

rendering can be achieved.

There are many acceleration structures available and each is typically designed for

specific purposes or to have specific properties; be it faster lookup, or a low mem­

ory footprint. Object-space and domain-space splitting is also a defining attribute of

acceleration structures.

35

2.3 Acceleration Structures

2.3.1 Grid

The most basic acceleration structure available is the sub-division of a volume (or

space) into a regular grid. Early ray tracers, such as those by Kajiya [147) and Levoy .

[I 90), traversed grids for volume rendering, while Amanatides [6] and Fujimoto [99]

also used them for polygon ray tracing.

The work of Parker [241] introduced a multi-level hierarchy grid, where the vol­

ume is divided into equally sized cells. These cells were referred to as macrocells as

they also contained a min/max value to describe the range of volume values contained

within it. Also utilized in the work was bricking, which had been introduced by Cox

[72).

Bricking is typically performed as a solution to when the volume is too large to be

completely stored in memory, as reported by Westermann [320). Rather than render the

entire volume, each brick is rendered individually. While one brick is being rendered,

others can be prepared and loaded, i.e., from the hard-drive to memory. Modem ray

tracers have exploited grid traversal for ray coherence resulting in better performance

due to optimized memory access upon groups of rays [163, 3 14].

Gobbetti [IO l] presented a method for out-of-core volume rendering of massive

data-sets. By decomposing the volume into small bricks, asynchronously transferring

data to the GPU, and the removal of empty space, the work allowed for real-time

visualization of very large volumes at interactive frame rates.

2.3.2 Kd-Tree

A kd-tree, introduced by Bentley [22], is a spatial splitting structure. Given a root node,

which encompasses the entire volume, the space is split by an axis-aligned plane. The

36

2.3 Acceleration Structures

splitting typically occurs along the axis corresponding to the largest dimension. By

recursively splitting nodes, and forming two children, a hierarchical tree is created.

Examples of kd-trees being used for visualisation, include storing sampled points dur­

ing image reconstruction [235], dividing a volume with a balanced kd-tree for isosur­

face and direct volume ray tracing [312] and for ray tracing of polygonal scenes [95].

Further work has focused on improving the build quality of kd-tree to optimize for

ray traversal [I 02, 202, 123, 137] and to facilitate building (or updating) in real-time

[340, 247, 279, 137] on GPUs.

2.3.3 Octree

An octree is another favourite acceleration structure researchers have used for acceler­

ating visualization, such as the work by Meagher [2 17, 2 l 8] and Samet [272]. Given a

root node, which represents the entire volume, the space is separated into eight octant

children. With an octree, nodes are split along all the axes and when the space can no

longer be divided a leaf is formed. Because all three of the axes are split at a node, the

depth of octrees is typically quite shallow, when compared to a kd-tree. A survey of

Octree methods was reported by Knoll [160].

Octrees have been utilized by many researchers for various visualization prob­

lems, such as isosurface visualisation [325], representation of three-dimensional ob­

jects [138], simplifying object neighbour finding for collision detection [219], hidden

surface removal during volume rendering [83, 3 16], and overcoming volume mem­

ory requirements using octree-based compression [180, 11 2]. Knoll [166] used a

lossless-compression octree representation to store compressed volume data for fast

iso-surfacing, while Hadwiger [117] described a two-level hierarchical representation

37

2.3 Acceleration Structures

utilizing a form of octree, which allowed object-order and image-order empty space

skipping for real-time ray-casting of discrete isosurfaces.

An interesting development was the branch-on-need octree, where the nodes were

only further split if needed, i.e. if that region was visible and needed to be rendered.

Originally introduced by Wilhelms [325] the method was further refined by Sutton

[292] for temporal data-sets.

2.3.4 Bounding Volume Hierarchy

Bounding Volume Hierarchies (BVH) have been quite popular for many years (used

in the work by Kay [152]) due to their simplicity and more favourable properties than

Kd-trees or Octrees. Most notable is the fact that a BVH is an object-order hierarchy

rather than a space-order hierarchy. This is to say that a BVH splits a node by the data

it represents, rather than the space. Because of the absence of splitting planes, nodes

store a boundary, which encompasses the space within which the objects reside. In

addition, the traversal of a BVH requires rays to check for intersections with the bound

of each node. BVH can be used for volumetric data, however, they are typically better

suited for irregular grids, tetrahedral volumes [311] or polygonal data [11 0, 109].

The basic structure has seen little change over the years, except for two notable

cases. Firstly, instead of having three bounds it is possible to only store the bounds for

a single axis in each node to form a bounding interval tree, as shown by Wchter [317];

these forms of trees are also referred to as range-trees [23]. Secondly, the work by

Dammertz (77] compacted the BVH tree, such that a node was split into four children

rather than the typical two, which generally reduced the number of traversal iterations

during ray tracing allowing for better performance. Real-time construction of BVHs

38

2.4 Graphics Hardware Programming

has also been a focus for researchers, either exploring refitting of existing BVHs [181,

310, 334] or completely building a new BVH from scratch [308, 183]

2.4 Graphics Hardware Programming

Over the years computers saw the introduction of dedicated hardware to accelerate 2D

rasterization and then, in later years, 3D graphics acceleration. Initially, hardware was

expensive and limited to specialized research workstations. However, in modern times

consumer-based hardware that can operate in desktop computers has becoming the de

facto standard for performing wide-impact research upon [233).

2.4.1 Early Hardware Programming

In order to allow developers (primarily game developers) the option for more control

over how 3D geometry was rendered, shader languages were introduced [26 l, 32).

These shader programs worked primarily on the input geometry and the screen frag­

ments (pixels). Early development of hardware-based visualization methods utilized

these shaders in order to accelerate the volume rendering process [171 , 11 4, 192, I 40,

278). However, as shader languages were not designed for general usage program­

ming, much work was dedicated to getting the programs to work in the first place.

This typically entailed packing general variables into textures (within the red, green,

blue and alpha components). In addition, loops were not available with earlier shader

languages.

39

2.5 Classification and Context

2.4.2 Compute Unified Device Architecture (CUDA)

Recently a new GPU programming language has been developed called CUDA [225].

CUDA is designed to facilitate general usage programming on GPUs, while also pro­

viding the mechanisms for parallel processing. While other languages are in devel­

opment and have been explored for use with visualization, notably OpenCL [42] and

Brook [43], CUDA still remains the most developed and has been shown to be efficient

for interactive ray tracing [200]. Parallelization of algorithms has been a difficult en­

deavor, and while automatic methods have been proposed [342], it typically requires

extensive research and a great deal of time.

CUDA allows for code, in the form of kernels, to be uploaded to the GPU and to

operate directly on the hardware. In addition, CUDA also allows for simple integration

with existing CIC++ code. What is interesting about this integration is that while

shader languages may require a great deal of initialization code before work can even

begin, most of the low-level operations required to initiate CUDA kernels are hidden.

In fact, apart from a minor difference in the calling convention, CUDA kernels can be

called much like a normal C function.

CUDA has had a far reaching impact on research in many fields, not just visualiza­

tion. For example with N-Body simulation [226], SQL Database acceleration [21] and

fast detection of humans in videos [26].

2.5 Classification and Context

Volume data acquired from CT or MRI are typically recorded as single value intensi­

ties. As colour displays became more readily available researchers began to exploit the

benefits for coloured volume rendering. By classifying the input data, it became pos-

40

2.5 Classification and Context

sible to render different intensities with different colours and opacities. This section

details the work with classification and transfer functions. Additionally, research into

the segmentation of volume data is also explored. Volume segmentation is the process

of defining and separating one or more regions within the volume. Different to clas­

sification, which is typically performed during the rendering cycle, segmentation also

considers anatomical features, locality, a priori knowledge and directed user input.

2.5.1 Transfer Functions

In standard direct volume rendering, visual distinction of objects is usually achieved

with a transfer function that assigns optical properties such as colours and opacities

to data values [84, 302]. During composition of the volume rendering integral, these

colours and opacities are accumulated as the ray passes through the volume and finally

rendered to the screen pixels.

Developing methods for the design of transfer functions is a difficult task, as re­

ported by Pfister [244]. For certain image modalities, data intensities can have an

intrinsic meaning, such as bone being high-valued, while air being low valued; in

such a case, simple transfer function can be easily achieved [84]. However, soft tis­

sue typically has a uniform set of values (for example in CT data) which makes visual

distinction hard to achieve.

Marks [206] presented an automatic systems where a variety of transfer functions

are automatically generated with various colours and opacities given to various ranges

of data. The resulting volume renderings for each automatically generated transfer

function are previewed to the user who is then able to choose which to use. Kindlmann

[155] presented a novel technique for semi-automatic generation of opacity functions

41

2.5 Classification and Context

to visualize boundary relations between materials of near-constant value. The work

explored designing transfer function over 2D and 3D histograms based upon the scalar

value and the first and second derivatives. Kniss [158, 159] expanded upon the work

with multidimensional transfer functions and GUI improvements to aid users to ma­

nipulate multidimensional transfer functions.

2.5.2 Context/Importance-Driven Rendering

Figure 2.8: Transfer Functions allow for varied visualisations of volumetric data. Image
source: Bruckner [40]

Given a large range of possible settings, constructing an appropriate transfer func­

tion is often a daunting and frustrating task that involves adjusting a lot of non-intuitive

parameters. A solution to this problem is context-preserving rendering, which is where

the opacity of samples is modulated to reflect its perception importance to the viewer.

Context-preserving volume rendering, as introduced by Bruckner [37], utilizes the

intrinsic information of a volume, such as gradient, and view dependent information,

such as camera location, to provide context cues for the viewer. By employing context­

preservation the user is typically able to perceive the make-up of many more anatomi­

cal objects when compared to standard DVR.

Context-preserving rendering has an artistic background. Many illustrative and

technical drawings of medical organs use an artistic method called ' ghosting' to hide

surfaces which obscure the details behind them; for example a drawing of the palm

42

2.6 Segmentation

of a hand may be made transparent to allow the viewer to see inside. Indeed many

researchers have attempted to mimic illustrative techniques [87]. Bruckner's [37] re­

search on context-preserving rendering is able to automatically simulate the 'ghost'

effect. However, their approach does not use segmentation data and must simulate the

transparency effect outlined by Diepstraten [81]. Similar work by Viola [307] utilized

segmentation data in an importance-driven rendering technique to compose images

based on the importance of user selected objects; i.e. to create a transparency window

on the skin to reveal anatomy within.

2.6 Segmentation

Segmentation is essentially the act of differentiating a specific feature from the re­

maining features and space. Although segmentation has some roots in early volume

and image visualization, i.e., classification, it has now become an enormous research

field of its own [97, 266, 236, 337, 66, 203] and has shown importance in preopera­

tive planning [36]. A simple example would be the visualization of a human skull as

recorded and stored by a CT scan. This would essentially entail removing the flesh

and only leaving the bone structure. There are many ways that segmentation can be

accomplished.

2.6.1 Overview

The task of segmenting a volume data-set can be achieved manually by hand, automat­

ically, where the user does not initially direct the segmentation, or semi-automatically

which requires initialization and/or direction from the user.

43

2.6 Segmentation

2.6.1.1 Manual Segmentation

Manual segmentation, i.e. performed by hand, of scientific data can still be a com­

monly exercised task [I 22, 174, 58). Manual-segmentation could be manually drawing

on images, manual thresholding or the outlining of shapes or tissue [153, 67]. Typi­

cally, manual segmentation is performed by experts who have extensive knowledge of

the data recorded. As such there is an element of trust that the results of an expert's

segmentation will be correct. Even for two-dimensional data, such as slides, this can

be a difficult task to perform especially if there are several features to differentiate. For

three-dimensional and four-dimensional data, the task of manually segmenting each

slice would be an extremely long endeavour, even at low resolutions [130). Not only

would manual segmentation be time consuming, it could be subject to errors.

2.6.1.2 Automatic Segmentation

Automatic segmentation is typically utilized where a priori knowledge of an object

leads to an automatic method to segment that object or feature from any data-set. For

example, for the automatic segmentation of the brain [19, 69, 41], lungs [135, 15, 16],

heart [338, 243] and cancer tumors [251 , 14].

Automatic segmentation techniques, which do not require previous knowledge of

the objects present in the data-set, are also possible. These methods typically segment

the entire space and result in the separation of all unique objects present in a data-set.

Examples include the contour-tree method [303, 269, 50], which typically also make

use of thresholding or level-set methods [23 1] with random seed locations [143].

Kuhnigk [173) presented an automatic, real-time segmentation approach for le­

sions. In addition, the approach presented a method to analyze the resulting segmenta-

44

2.6 Segmentation

tion for accuracy, called segmentation-based partial volume analysis (SPVA).

2.6.1.3 Semi-Automatic Segmentation

Semi-automatic segmentation schemes are methods whereby information is given by a

user [229] to the segmentation algorithm in order to direct it toward a custom segmen­

tation [177, 49]. For example, a user may define seed points for a level-set algorithm,

or region-growing algorithm [246]. By altering the seed locations, or adding multiple

source, different segmentations could be possible. Other examples of semi-automatic

segmentation algorithms are machine-learning methods. Machine-learning methods

typically ' learn' a small number of training examples. Once trained these machines,

when given an arbitrary input, attempt to predict whether the input is part of the desired

segmentation.

2.6.2 Region Growing

Region growing is a simple technique where upon being given a seed (starting location)

the algorithm will expand the segmentation outward if the neighbouring pixels/voxels

have a similar property. Further interaction is possible by the user, by defining con­

straints such as edges the region cannot expend into. Effective segmentation can be

achieved by this popular approach [341, 2, 242, 298, 131].

2.6.3 Watershed

The watershed algorithm considers the volume or image to be a topographic relief. A

simple analogy is to consider a drop of water as it falls into a surface. The drop will

flow down a path reach a local minimum, or water-basin. Further raindrops will expand

45

2.6 Segmentation

the water-basins until regions overflow and merge with one another. The approach has

been found to be useful for segmentation of volumetric data [283, 91, 27]. Automatic

segmentation using an iterative watershed has also been reported by Mancas [205].

2.6.4 Level-Set Methods

The Level-Set method [232, 276] is a technique used to define shapes, curves and

boundaries from functions. An example of how a simple shape is formed in this fashion

is shown in Fig. 2.9. Segmentation is achieved by the evolution of the level-set function

itself, rather than of the contours, i.e. like region-growing. By using a signed-distance

function, inside a shape, the zero-level set will form a boundary. Numerous research

has utilized level-set methods for the segmentation of anatomy [238], with specific

interest in directing the level-set by using shape priors, as reported by Rousson [264]

and Chen [60].

• •

Figure 2.9: Example of the level-set method. Image source: Wikipedia [230]

46

2.6 Segmentation

2.6.5 Deformable Models/ Atlas

Segmentation using deformable models involves using 3D shapes with forces acting

upon them, which deform the surface towards a shape. These forces typically attempt

to constrain the original model, or to contract/expand it toward detected edges or fea­

tures. The approach is popular for the segmentation of anatomy in medical images

[68, 2 16, 2 15].

A similar method is Atlas, where an atlas-image is chosen, i.e. an image of the

brain, and the system attempts to register that shape in the subject-image. This is

achieved by transformation of the Atlas image. While simple, the method has been

shown to be very useful [12 1, 204, 198].

2.6.6 Neural Networks

Neural networks [124] are used to learn patterns [85] based on training-sets, either

supervised or unsupervised, and then predict the probability [288] that further input­

data matches the trained model. Applications for image and volume segmentation have

much interest and success [3, 120, 234, 237].

2.6.7 Clustering

Clustering methods are a broad selection of techniques which subdivide a data-set,

where data elements in clusters are expected to be similar and the union of clusters

results in the original whole data-set. Hard clustering divides the data into a single

cluster only, while fuzzy clustering [25] assigns a membership value of each data-point

for each cluster. Clustering methods have been used for image and volume segmenta­

tion, for example, Clark [65] segmented MRI volumes while Zhang [336] presented an

47

2.6 Segmentation

application of a fuzzy c-means method for segmenting brain grey-matter tissue in MRI

images. Shen [277] addressed the noisy nature of results from MRI's and developed

a fussy c-means clustering algorithm. The proposed approach focused on neighbour

attraction, which considered the location and features of neighbouring voxels. Sub­

sequently, the work showed more accurate segmentation results, of brain ti ssue from

MRI data.

48

Chapter 3

Previous Work

This chapter details and compares the major research that is relevant to the work un­

dertaken in this thesis.

3.1 Stackless Raytracing

Numerous ray tracers are based on using e ither a kd-tree, such as the interactive Kd­

Tree ray tracers by Horn [133] and Shevtsov [279], or a BVH, such as the BVH ray­

tracer for deformable scenes by Wald [3 10]. Both Kd-Trees and BVHs are a form of

binary-tree, such that nodes partition their represented space or object into two groups.

In the case of a kd-tree the space is split using a split-plane, as shown in Fig. 3.1.

Ray tracing algorithms that employ a kd-tree, traverse through the acceleration

structure to fi nd geometry, or voxels, likely to intersect the ray. If a ray intersects the

splitting plane node, then both children are valid and possibly need to be traversed into.

BVHs are much the same, except splitting planes are not used and computing which is

the nearest node is done differently.

49

3.1 Stackless Raytracing

Figure 3.1: Example of a Kd-Tree. Image source: Foley [94]

With a depth-first traversal mechanism, where the algorithm tries to find the first

intersection along the ray, the closest node is traversed into first. If the traversal of the

first node does not result in the ray termination, then the second node will have to be

traversed into. Maintaining the list of other nodes to return to is typically achieved with

a stack. However, a stack implementation on GPUs typically requires using the slow

global-memory. Ultimately, accessing this memory repeatedly results in a slowdown

of the ray tracer.

Problems with employing a stack have been addressed by exploring semi-stackless

or completely-stackless approaches, such as those described below.

3.1.1 Kd-Restart and Kd-Backtrack

The initial work that focused on stackless ray tracing, on modern GPUs, was under­

taken by Foley [94]. In their work two methods were devised for ray tracing general

kd-trees without a stack; Kd-Restart and Kd-Backtrack. Both methods where based on

the principle of moving the valid ray segment ahead of previously visited nodes.

During ray tracing of kd-trees, a ray segment {t11ear,t1ar} is maintained. This

segment is used to determine whether a ray intersects a split plane, or whether the

50

3.1 Stackless Raytracing

intersection of the ray and plane at td occurs before (td < t11ear) or after (td > t 1ar)

the ray segment. When a return is needed by the traversal mechanism, Kd-Restart sets

t11 ear = t 1ar so as to avoid the current node. The mechanism then returns to the root

node of the tree and resumes traversal. The effect is that the traversal mechanism will

travel down the same path as until it reaches the parent of the node just returned from.

As the ray segment now lies completely on other side of the split plane, the previously

visited node will not be valid and only the alternative node will be traversed to.

Kd-Backtrack works in much the same way as Kd-Restart, except rather than restart

from the root node, the traversal mechanism (after progressing the ray segment for­

ward, returns to the immediate parent of the current node. Kd-Backtrack was reported

by Foley [94] as being faster than Kd-Restart, however, both approaches will result in

previously-visited nodes being tested at least one more time.

Refinement of kd-restart by Horn [133], by moving the root node (the point where

traversal restarts from) deeper if possible, reduced the number of extraneous nodes

revisited because of traversal restarts. This approach also improved the performance

over the original Kd-Restart in the work by Crassin [73], who employ the bricking

method for volume rendering of massive data-sets. The work is also of additional

interest for partially using indices for traversing their acceleration structure; the stack­

less approach presented in Chapter 3 is based upon using index numbers, rather than

pointers, to traverse a kd-tree.

3.1.2 Kd-Shortstack

Kd-Shortstack, or simply short stack, was a method introduced by Horn [133] that used

a small stack rather than a full one. This stack was a fixed-size list, stored in the fast

51

3.1 Stackless Raytracing

shared-memory onboard the GPU processors; this effectively bypasses the use of the

slow global-memory. To compensate for stack overflows the use of Kd-Restart can be

used. Specifically, when new nodes are pushed into an already full stack, the bottom

most entry is discarded. This has the effect of storing the newest return-points, but

forgetting the older ones. To compensate for the lost data, when popping from an

empty stack the traversal mechanism will revert to Kd-Restart. The shortstack method

was reported by Horn (133] as being more than twice as fast when compared to the

original Kd-Restart by Foley (94].

3.1.3 Ropes

An alternative and novel approach to stackless traversal was the re-introduction of

ropes by Popov (248] for GPU based ray tracing. Ropes are additional memory point­

ers that link a node to its neighbour nodes. This allows the traversal, when needing

to return the next valid node, to simply travel along the rope into the neighbour node.

The approach comes at the cost of additional memory pointers per node as well as

additional computation to build and optimize the ropes prior to rendering.

3

5

6

Figure 3.2: Example of Ropes for a Kd-Tree. Nodes are linked to neighbouring nodes via
memory pointers (Ropes), once traversal required testing other parts of the tree, the mechanism
follows the link for the face the ray intersects. Image source: Popov [248]

52

3.1 Stackless Raytracing

The traversal mechanism my Popov [248] is depth first until a sub-branch becomes

invalid, at which point the traversal is much like grid-traversal. Each node has 6 faces ..

The first task is to determine which face the ray exits through and once determined,

the node link of that face, linking the node to its neighbour, is followed. This give

an advantage over normal kd-tree traversal in that less intermediate nodes are visited

in comparison. Thus, not only is the Ropes technique stackless, it will also have less

traversal iterations; both of these factors for GPU-base ray tracing.

The main disadvantage of this method is that a pre-processing step is required to

build the face-links before they can be used. This may main that real time building

and optimization of the links is not feasible, say for large animated scenes. The other

disadvantage is the massive memory requirement; un-optimized each node will require

6 32-bit memory pointers. For example, Popov reported, that on average, the memory

overhead was a factor of 3.

3.1.4 Link-Map

The Link-Map method [284] is a stackless traversal mechanism for BVH trees. In

essence this method stores the traversal order, top-to-bottom then left-to-right of a

BVH, rather than the BVH itself. The method requires building a fixed-order traversal

route through the scene. While leading to a stackless stream-like traversal, the method

generally does not account for the ray direction and can have pathological cases where

the mechanism traverses for a long time [95]. The method by Carr [53] introduced

building a BVH for geometry images, using the Link-Map method, which enabled

GPU ray tracing of rasterized geometry.

53

3.2 Volume Visualization

3.1.5 Sparse Matrix Tree

The sparse Matrix Tree method presented by Andrysco [I 2] is a novel way to effi­

ciently store trees without memory pointers. The method can be thought of as placing

a regular grid over the space. However, as the data is stored sparsely, cells with no data

do not require any space in the tree. In addition, index-based referencing of nodes and

node children is used in the method, allowing for stackless traversal. The research by

Andrysco [12] was published after the work undertaken and published in this thesis.

3.2 Volume Visualization

Volume visualization plays an important role in modern science, medicine and indus­

try. From the exploration of gaseous phenomena [340] and the analysis of industrial

CTs [I I 6], to virtual endoscopy of the sinus [168]. Visualization of volumetric medical

data has seen much research over many years. The two prominent approaches typically

employed are direct volume rendering [306, 90, 240, 38] and isosurface visualization.

3.2.1 Isosurface Visualization

Isosurface rendering is a simple and effective approach for the visualization the differ­

ent intensities present in the data. Many methods for isosurface visualization have been

presented ranging from direct volume rendering using isosurface transfer-functions

[240], rasterization of isosurfaces extracted to polygonal data [197], or direct ray trac­

ing [312, 165, 161].

Implicit kd-trees were presented by Wald [3 I 2] for single and multiple isosurface

ray tracing on CPUs. The implicitness of Wald's method is that the kd-tree is actually

54

3.2 Volume Visualization

built over the entire space and all possible values. As such the tree is an implicit

acceleration structure for each isosurface, by storing the minimum and maximum value

present within a node and its sub-branch. During traversal each node is tested against

the desired value to see whether a ray-isosurface intersection will be possible within

the node's region. In addition, implicit kd-trees were shown to be useful in the work

by Grob [107] for Maximum Intensity Projection rendering. Wald further explored the

use of an implicit acceleration structure with implicit BVH for tetrahedral grids [3 11].

Recently Knoll [162] introduced a peak-finding algorithm for Direct Volume Ren­

dering. This method is useful when very narrow peaks in the transfer function are

present, such as when a single isovalue is highlighted for isosurfacing. The approach

is important in the sense that it is now possible to accurately render isosurfacee, in

combination with DVR, in a robust and comprehensive manner.

An interesting method for isosurface rendering is the representation of volumes

as Bezier Tetrahedra, as reported by Kloetzli [I 57]. The method involves dividing a

cuboid volume into a tetrahedral grid and using BT to define density within each grid

point. The BT volume allows any isosurface to be rendered quickly and at higher­

quality (especially when super-sampling) than standard representation. The work was

also implemented on a GPU for interactive framerates.

Object-order methods for isosurface visualisation have also been explored recently

for GPU-based solutions. For example, Liu [193] presented a cell-projection method

on modem GPUs, while in further work Liu [194] presented a multi-layer depth peel­

ing approach for isosurface raytracing using single-pass hardware rasterization. Mar­

roqium [209] also accelerated cell-projection using GPU hardware for DVR and iso­

surface rendering.

55

3.2 Volume Visualization

3.2.2 Illustrative and Context-Preserving Volume Rendering

Illustrative volume rendering does not attempt to produce realistic renderings of vol­

umes. Rather, the main goal of illustrative and non-photo realistic volume rendering is

the transfer of additional visual information to the observer. Basic approaches modify

the local shading model; for example the Phong-Blinn [28) lighting model. The sim­

plest and most known method is tone shading, an example being the work by Gooch

[103). Cartoon shading [179) attempts to mimic the artistic style of cartoonists. More

complex modifications map information, such as the dot-product, to programmable

look-up tables, such as the work by Bruckner [39].

Context-preservation typically modulates the opacity and colour of volume sam­

ples during the integration of rays by the gradient, the distance from the screen, the

shade due to light and the accumulated opacity of the last sample along the ray. The

approach they described was implemented on graphics hardware. Typically graphics

hardware has limited memory to store information. As such their proposed method

by fell short of being able to use the desirable curvature information of the volume

samples and instead utilised what was already available to them on graphics hardware.

Namely these were gradient and shading intensity. Using these two quantities they

simulated the curvature.

Zhou [339) introduced a focus point and radius to DVR that allows a user to specify

a region of interest. The rendering then enhances the focus region by modulating

the opacity of each sample during rendering. Kruger [169) extended the work by

introducing curvature into the focus region. By choosing the greatest opacity, between

distance modulation or curvature modulation, they were able to have a focus region

whereby the user would be able to 'see' into the volume but also get context cues

56

3.3 Volume Segmentation and Classification

because of the curvature. However, this method was localized and outside the region

everything had high opacity.

Other methods for providing illustrative rendering include the work by Rautek

(254] who used fuzzy logic and interaction-dependent rules to allow for more expres­

sive illustrative rendering in real-time, while Rezk (258] provided opacity peeling to

view through surfaces at the anatomy beneath.

3.2.2.1 Demand driven Raytracing

Demand driven (255, 245] ray tracing divides the complex tasks involved in raytracing

to separate processes. This takes into account that parallel computing devices operate

fully when performing the same task. The cost of such systems is additional workload

to organize rays and the work queue prior to parallel computation.

The work by Foley (94] utilized multiple GPU shaders, where each shader was

tasked with a separate stage of the ray-tracing pipeline; down-traversal, returns, shad­

ing, etc. This approach, i.e. rather than having a single shader for the entire pipeline,

appears to be due to the limitations of GPUs at the time. Nonetheless it details a system

whereby kernels are utilized in a demand driven manner, when needed.

3.3 Volume Segmentation and Classification

Volumetric data is usually comprised of intensity values. Segmentation and Classifica­

tion are used to give meaning to data-values, or local features such that they can either

be rendered differently or extracted from the data. Typically, classification is the real­

time mapping of data-values, or derived attributes, to alternative colour and opacity

contributions during visualization. Segmentation on the other hand is the separate task

57

3.3 Volume Segmentation and Classification

of defining a complex shape using a tool, such that it can be stored, extracted or used

later to enhance the visualization. In effect, segmentation and classification are two

sides of the same coin.

3.3.1 Segmentation

There are many methods that can be used for segmentation, as detailed in the previous

chapter. However, this thesis focuses on using machine learning methods, specifically

support vector machines, and GPU-based acceleration of segmentations.

3.3.1.1 Machine Learning Approaches

Machine learning methods are based on learning a set problem and then trying to pre­

dict whether new information matches the learned pattern. Both Neural Networks and

Support Vector Machines are machine learning methods. An example of a Neural Net­

work for segmentation was the work by Tzeng [301]. The work utilized both Neural

Networks and Support Vector Machines (SVM) to deliver a method to classify higher­

dimensional data. Their work incorporated a GUI, based on earlier work [300], where

the user could paint training data onto the volume. This paint information was then

converted into the higher-dimensional input vectors needed to train the learning sys­

tem. Once trained, it was used to predict the classes of the remaining volume data.

The SVM used in Tzeng's [301] work was implemented on CPU and as such suffered

from slow classification of the volume. In addition, the SVM was trained after all input

was gathered. This required that if input was changed the SVM had to be completely

retrained with all inputs. Another method, presented by Song [287], utilized a proba­

bilistic neural network for the partial segmentation of Brain MRI's. The approach also

58

3.3 Volume Segmentation and Classification

included a soft-labeling method to allow supervised learning using user input.

Further uses of SVM for segmentation and pattern recognition have been reported

in the survey papers of Bryn [46] and Hai [119]. Of interest is the work by Lempitsky

[188], who utilized a random forests technique for SVMs to allow for the real-time

automatic segmentation and quantification of anatomical features; specifically accurate

delineations of the myocardium present in real-time 3D echocardiography. Other uses

of random forest SVM were reported by Statnikov [289]. Finally, Zawadzki [335]

applied a support vector machine algorithm for the segmentation and visualization of

retinal structures in volumetric optical coherence tomography data sets.

3.3.1.2 GPU-based Segmentation

With the advent of GPU programming languages researchers have utilized the compu­

tational power of GPUs to accelerate segmentation methods, as reported by Hadwiger

[115]. For example, Lefohn [187] presented an interactive deformation and visualiza­

tion of level-set surfaces that was 10 to 15 times faster than a CPU-based alternative. In

addition the work provided a detailed user study to show the ease at which users could

segment anatomy and effectiveness compared to a ground-truth manual segmentation.

In similar work, Cates [54] accelerated level-set based segmentation using a sparse

level-set GPU solver. Their work also provided an interface to allow hand-contouring

to direct the segmentation. With the use of an ATI Radeon 9700 Pro, results showed a

10 fold increase in performance when compared to a CPU-based solver.

An important milestone was the work by Sherbondy [278] who presented a seg­

mentation algorithm based on seeded region growing, accelerated with the use of GPU

shader languages. The results for completing a segmentation of a 1283 volume was

approximately 6 seconds. The work was carried out on an ATI Radeon 9800 Pro and

59

3.3 Volume Segmentation and Classification

is notable for having a centralized structure, whereby the segmentation and volume

visualization where carried out directly on the GPU, without the need to transfer any

data from the GPU to CPU. The approach also allowed the real-time visualisation of

the progression of the segmentation as the regions grew.

In a recent paper Chen [59] presented a tool-kit for volume sculpting and segmen­

tation accelerated by GPUs. The work is interesting in that the took-kit, using seeded

region-growing and region-shrinking methods, allowed a user to interactively, by way

of a paint tool, adapt a segmentation in a variety of ways. For instance, the example

presented in the work was to allow a user to peel away portions of the skull by painting

a region on the screen first. Then the user could explore within the head, through the

hole on the skull, and perform further segmentations on the brain itself.

3.3.2 Classification and Transfer Function Design

Classification and Transfer function design enables users to interactively explore vol­

ume data by allowing customisation of the rendering process. For example, Salma

[268] presented a high-level user-interface for transfer function design, which allowed

experts to design transfer functions for difficult tasks, but allow non-experts to eas­

ily adjust. This method was shown to be particularly useful in exploring anatomical

features without the complexity normally associated with such a task. Other methods

include the work by Zhou [339] who applied distance-based enhancement to volume

rendering to allows the user to specify a region of interest and highlight that region

during the visualisation.

In other work, Caban [47] utilized texture-based transfer functions, whereby a user

specifies several textures with unique features, such as a portion of the brain. The input

60

3.3 Volume Segmentation and Classification

images are then analyzed and a transfer function is automatically designed to visualize

similar features within the volume. This approach was shown to be able to classify

regions of interest without prior knowledge of the specific of each volume.

Scale-space was utilized by Lum (201] for a novel classification system and user

interface. The method transformed the volume in 4D scale-space. The work utilized

filter banks and a novel interface to allow the user to easily control the classification

process during rendering.

Coerrea (70] introduced size-based transfer functions. The work involved creating

a scale-space of the original volume and tracking extrema. Relative sizes of features

in the original volume could then be computed. Subsequently, transfer functions based

on this information could automatically visualize the anatomical features present in the

original volume, based on their size.

A method to automatically setup multi-dimensional transfer functions was pre­

sented by Roettger [260]. This was achieved by adding spatial information into a

histogram and then classifying the histogram to form a transfer function with unique

colours assigned to each class. Further, the work allowed user interaction with the abil­

ity to select classes in the histogram and customizing their properties. In addition, the

work compared to other methods such as segmented volume rendering and showed in

its ability to automatically highlight tumours with the proposed spatial transfer func­

tions.

A number of recent advancements in the segmentation rendering have been made.

Rendering of either the segmentation volume alone, or in combination with the in­

tensity volume allows for improved visualization of specific anatomy. Hadwiger [1 14]

renders segmentation data on consumer hardware and applies filtering of object bound­

aries. This work enabled high-quality, pre-integrated classification of segmentation

61

3.3 Volume Segmentation and Classification

objects without the need for the original intensity volume. Weber [318] renders seg­

mented data using specialized transfer functions, where segmentations are defined by

a contour-tree. The contour-tree contained detailed information on the topology of the

volume.

A shape-based approach in extracting and rendering thin structures, such as lines

and sheets, from three-dimensional volumetric data was presented by Huang [136].

Lee [186] developed a precise 3D image processing method to discriminate clearly the

edges of segmentations by employing entropy maximization. The work by Kadosh

[144] dealt with the reconstruction of segmented data, by applying a tricubic filter on

distance fields. Finally, Hadwiger [11 8] rendered high-quality implicit surfaces on

regular grids, for example, distance fields or medical CT scans, in real-time and could

be applicable for segmented data.

62

Chapter 4

Kd-Jump

In this chapter a stackless traversal approach is presented. This approach is referred

to as kd-jump, and is designed to traverse an implicit kd-tree to achieve an immediate

return, much like a stack, without additional redundant node testing; as illustrated in

Fig. 4.1. Also implemented is an enhanced form of the implicit kd-tree by Wald et al

[3 I 2] where child nodes are tested prior to traversing into them. This has the potential

to remove two iterations if a child is invalid; a down-traverse step and a return step.

Finally, a hybrid kd-jump algorithm is presented, which utilises a volume-stepper for

leaf testing and a run-time depth threshold to define where kd-tree traversal stops and

volume-stepping occurs. By using both methods the benefits of empty-space removal

and fast texture-caching can be attained.

63

~, \,,-··----,\,·,•,,
: '~ ' \ ' : ✓--------✓"-.

I
I

I
,' Return Step ,

(a) Our Kd-Jump approach

(c) Kd-restart

Downward
Step

(b) Stack-based

(d) Kd-backtrack

Figure 4.1: Schematic illustration of additional nodes tested to achieve a correct return among
different approaches. Kd-Jump does not need to re-test previously visited nodes.

64

4.1 Background

4.1 Background

This work employs and builds upon the implicit kd-tree by Wald, et al [312]. This

section details how an implicit kd-tree is formed and traversed.

4.1.1 Building Implicit Kd-Tree

A kd-tree is a binary tree where, starting with a root, each node is divided into two

children by an axis-aligned splitting-plane. When a node cannot be split, it represents

one voxel and is referred to as a leaf. The split axis is typically chosen based upon

which dimension is currently largest for the node, as illustrated by Fig. 4.2.

Implicit kd-trees are required to be balanced-trees, such that all leaves of the tree

are on the same depth. To achieve this balance, the voxel dimensions must be a power­

of-two, although each dimension need not be identical. Implicit kd-trees define actual­

dimensions and virtual-dimensions; where the actual-dimensions are for voxels that

actually exist while the virtual-dimensions are used purely to ensure that a balanced

kd-tree is built, as illustrated by Fig. 4.2. Even though the kd-tree is built upon a larger

virtual-volume, the non-existent nodes and voxels are never visited; nor are they stored.

There are two stages to building the implicit kd-tree, both of which are iterative

processes. The first stage involves determining the number of levels for the tree, com­

puting the level information from top-to-bottom and allocating the node memory per

level. The second stage involves calculating the node information from bottom-to-top.

The initial building process is required to be run on the CPU in order to allocate GPU

memory, while the more labour-intensive job of computing the node information can

be performed in parallel on the GPU itself.

65

4.1 Background

4.1.1.1 Initial Building

Given a volume and its actual voxel dimensions R = [Rx ,Ry, RzJ. we first compute the

virtual dimensions V = [2"1, 2'1, 2P] where 2111
-

1 < Rx ~ 2m, etc. The number of levels

in the kd-tree is then defined as k = m + n + p.

Each level of the kd-tree has real dimensions R1 and virtual dimensions V1• During

the process of tree building, the algorithm also needs to maintain the current range

of nodes as V1
• We use V1 to determine the largest dimension and the split takes

place along the axis a1 E {x,y,z} of the largest dimension on level l. Thus, starting

with v0 = V and v0 = [1 , 1, 1], the virtual-dimensions for each level are defined by

V1t 1 = 2V1
,, while V1t ' = V1, /2. The actual-dimensions of each level can then be a a a a

found by R1 = ceil (V1 (R/V)) . Finally, the number of nodes which are required per

level is M1 = Ri x Rt x R~.

Unlike general kd-trees using memory pointers, nodes are addressed using indices

and a map is used to convert the indices to a location in memory. For three-dimensional

data, a node has three indices U = [x,y, z], which are non-negative integers. Converting

these indices, for a node on level l, to a memory location is achieved with offset +

(Ux+ (Uy x Ri) + (Uz x Ri x R~1)) x sizeof(node), where the offset is the start of data

for the level.

Implicit kd-trees do not store a split-plane within each node. For each level of the

kd-tree, the number of shared split-locations is R1
1 rather than M1; see Fig. 4.2. In fact,

a

the split plane for a node can be computed, for any node, during traversal so as to avoid

using global memory.

66

► Actual Voxel Dimensions ◄

------ Virtual Voxel Dimensions ◄

[0,0]

[0, 1]

[1 ,0] [2,0] [3,0]

'

[1 , 1] [2, 1] [3, 1]

\ I
Common Split Planes

(a)

(b)

4.1 Background

F ig ure 4 .2: Wald 's, et al [3 12] implicit kd-tree. A balanced kd-tree is formed by building the
tree upon the virtual-voxel dimensions, while only actual nodes and leaf data are stored. Also,
note that split planes can be shared.

67

4.1 Background

4.1.1.2 Computing Node Data

Once the memory for the kd-tree is allocated, the node data and dimension splits for

each level can be computed. Wald, et al [312] defined that each node contained the

minimum and maximum (min/max) value for all data held within the node sub-tree.

This min/max value is used to determine whether any child contains the cun-ent iso­

value and whether traversal should continue.

This thesis defines that each node contains the two sets of min/max values; one

for each child; rather than just one min/max value encompassing both. By storing the

min/max of both children, faster traversal can be achieved. Specifically, the method

can store both sets so that referencing of the data can be achieved by mapping the in­

dices to memory once and loaded in one transaction. In addition, by checking whether

both children are valid (contains the isosurface) before traversing into them, we can

potentially eliminate two redundant iterations (down-traversal and return) if a child is

invalid.

Starting from the last node level, the min/max values are computed by evaluating

the children. In the case of the last level, this requires checking the eight corner values

of a voxel. For the remaining node levels, the min/max sets are computed from the

min/max sets held by the child nodes. As nodes are only dependent on their own

children, all nodes on a tree-level can be computed in parallel. Finally, if memory

overhead is a concern, the final level of nodes can be omitted and computed on the fly

[3 I 2]. Special care must be taken if the volume is accessed via CUDA textures, as data

is typically aligned to texels, rather than voxels; i.e., the data value is at the centre of a

volume cell, rather than at the corners.

68

4.1 Background

4.1.2 Traversing Implicit Kd-Trees

Determining whether a ray intersects the isosurface is achieved by traversing the nodes

which both intersect the ray and contain the isosurface. Starting from an origin, a ray

is projected along a direction and a ray segment, defined by fnear and t Jar, is used to

mark the valid portions along the ray where ray tracing can occur. Each node has

two children, denoted first-child and second-child. During traversal, the children are

also tagged as near-node and far-node, although the conventions are not synonymous.

Like Wald, et al [3 12], a boolean NearFirst = ra, > 0 is defined, where r is the ray

direction vector. Traversal from the parent into a child node is performed by updating

the indices; we update Ud = 2Ud + (l -NearFirst) for the near-node and Ud = 2Ud +

(Near First) for the far-node. By traversing the near-node initially, we ensure that the

first intersection along the ray is found, at which point traversal can terminate.

69

4.1 Background

~Ray
I I

Near Node tfa r I

Split plane

Far Node tnead
I I

60 .. ng1n 6
(a) f11ear < fd < fJar (b) l.far < ld

Near Node

' ' ' ' ' '

Far Node
' ' ' '
' ' 0

(c) lnear > ld

Figure 4 .3: The three cases of traversal. (a) the ray-plane intersection distance td is within the
ray segment Unear, !Jar), (b) the ray segment lies completely on the near side of the split plane,
(c) the ray segment lies completely on the far side of the split plane.

70

4.2 Stackless Traversal with Kd-Jump

Testing a node initially requires computing the intersection distance td from the ray

origin to the split plane. Determining which children to traverse into is subject to where

td is in relation to tnear and t Jar, as shown in Fig. 4.3. If tnear > td then the near-node

is traversed and the far-node is culled. If t f ar < td then the far-node is traversed. A

common case is when tnear < td < fJar and both child nodes are valid and (potentially)

must be traversed. In this case, the near-node is initially traversed into and, if the ray

does not find a valid intersection in that sub-tree, the algorithm returns to the far-node.

The typical solution for storing the far-node is to use a stack to record the indices

and the td and tJar values. However, a stack is not ideal for use on a GPU and this

thesis explores a stackless approach.

4.2 Stackless Traversal with Kd-Jump

The basic traversal method of the traditional kd-tree is to store a return point when both

children of a node are valid. Utilising a stack is a simple method to store the return

information. However, a stack approach requires that the (currently) slowest part of the

GPU pipeline is utilized; i.e., the global-memory. To avoid using the global-memory,

one must remove the stack. There are two main stackless methods currently available

(without requiring additional node memory); kd-restart and kd-backtrack. Both are

trivial to implement for implicit kd-trees, but lead to additional workload compared to

a stack-based approach. The extra work comes in the form of redundant node testing

to find a continuation point.

With kd-backtrack, the return mechanism is replaced by traversing back up the tree

node-by-node until a valid node is found, at which point downward traversal contin­

ues. Once a valid parent node is found, the far-child is traversed. The approach was

71

4.2 Stackless Traversal with Kd-Jump

originally envisaged for use with arbitrary kd-trees and therefore required additional

parent-pointers to work.

Traversal of implicit kd-trees does not involve memory pointers and all nodes for

all levels are entirely referenced by indices. As a result, it is possible to forgo the need

to backtrack one node at a time and simply jump immediately to the next valid node.

A novel approach for this is now explained and referred to as Kd-Jump.

4.2.1 Traversing to Child

Traversal of the kd-tree involves tracking and updating three indices, so as to allow

addressing of nodes. The indices of a node, at level l, are defined as U1 = [x1 ,yf , z1] and

the indices of the next level are uL+ 1• The algorithm first initializes the child indices

with those of the parent; u1+1 = U1. Then traversal, from parent to child, is achieved

by altering the index-component corresponding to the axis a1 that splits the l'th level

ut+ I = 2U1 +c C = {
0

1

a1 a1
'

first child
(4.1)

second child

4.2.2 Returning to Immediate Parent

Like a stack-based approach, the best scenario is to return to the next immediate node to

test. The current node and the node to return to will always share a common parent. As

such, the first step is to arrive at that parent (see Fig. 4 .1 (a) or Fig. 4.4). The trivial case,

given ut+ 1, is to return to the immediate parent U1. Again, for this simple case, the

algorithm initializes the indices with U1 = u1+ 1 and then apply an operation equivalent

72

4.2 Stackless Traversal with Kd-Jump

to the inverse of Eq.(4.1).

(uL+') u~, =floor + (4.2)

4.2.3 Returning to Arbitrary Parent

Returning from U1 to Uj (j < l) potentially requires different divisions of each ele­

ment of the index set. To achieve an immediate jump, we must deduce the number of

iterations of Eq.(4.1) that have been performed to each element of the index set.

We define a k-by-3 matrix S, which stores the accumulation of the number of axis­

splits, for each level. The matrix is formed in a recursive manner. Each row is ini­

tialized with the previous row values; SI+ 1 = S1. This is then followed by altering the

vector-component corresponding to the axis a1 that splits the l'th level

(4.3)

where Sm,n represents the matrix element at the m' th row and n'th column, and

So= [0,0,0] (4.4)

is the initialization vector for the root level. Note that S is formed only once during

kd-tree construction. Thus, storing and accessing this matrix on GPUs can be made

quite fast by using cached constant-memory.

Given the accumulation matrix S, the current depth land the depth j of the common­

parent node, we can find the numbers of iterations, denoted N , of Eq .(4.1) applied to

73

4.2 Stackless Traversal with Kd-Jump

each index element between levels j and l as

(4.5)

where N = [Nx,Ny, Nz].

Finally, the algorithm is able to restore the index-set for the parent node being

returned to by altering Eq.(4.2) to acknowledge the number of power-of-2 multiplica­

tions that have been applied (Eq.(4.5)). Thus, returning to the index-set Uj, given U1,

is achieved using

. (u') U1 = floor 2N , (4.6)

where 2N = [2Nx, 2Nv , 2Nz]. So long as c :S 1, Eq.(4.6) will correctly find the integer

indices without having to re-determine c for each level. Also note, all divisions in

Eq.(4.6) are a power-of-two and, therefore, they can be implemented using rightward

bit-shifting.

4.2.4 Completing Jump

Once we have returned to the parent node, we can simply reapply Eq.(4.1) in order

to traverse into the next child. However, the unknown element is the offset c, which

we need to apply in order to arrive at the far-child. Assuming a nearest-first traversal

ordering, this can be deduced by redetermining whether the first-node is the near­

facing node, which is quickly performed by examining the ray direction; such that if

ra1 2: 0 then c = 1 else c = 0. The complete Kd-Jump method is illustrated by Fig. 4.4

for a simple two-dimensional case.

74

4.2 Stackless Traversal with Kd-Jump

After returning into the next node, the final step is to re-clip the ray to the bounds

of the node and recompute the t-near and t-far intervals. The bounds can be computed

on-the-fly, which avoids global-memory usage as well. See the work by Williams [327)

for efficient Ray-Bound intersection methods.

75

4.2 Stackless Traversal with Kd-Jump

Flags Node Indices Accumulation Buffer

I 2 2 I
I 0 I [2,1]

[21,22t -1 2

=
[1 ,0]

T
I
I
'---+ Set to far child

T

♦
[1,2x0+1]

[1 ,1]

Figure 4.4: A two-dimensional example illustrating the two-stage process of finding the in­
dices of the next node to test.

..
Kd-tree ••••
Traversal

[....... , ..

(a) Hybrid Traversal

Min: 30 Min: 90 Min: 20 Min: 10
Max: 90 Max 130 Max: 130 Max: 20

(b) Dynamic Update

Figure 4 .5: With hybrid traversal, the kd-tree is traversed until a variable threshold is met
after which volume stepping occurs. With Dynamic update, nodes are updated with binary
conditions as to whether chi ldren contain any part of the target isosurface.

76

4.2 Stackless Traversal with Kd-Jump

4.2.5 Making Return Flags

Our detailed Kd-Jump mechanism facilitates a return, but does not yet include how

much to jump by. To return immediately during the course of ray traversal, we require

a flag to specify whether a level along the traversal path has a node that requires testing.

One should note that, for the current traversal path, only one possible node will be

required to be returned to for each level. As such, we only require a single memory-bit

per level to store a possible return. We define a 32-bit integer-register DepthFlags to

store these flags. As the typical size of volumes used on GPUs today (without out-of­

core methods) is less than 10243, a 32-bit integer can hold the depth-flags. However,

64-bit integers can be utilized to faci litate kd-trees of up-to 64 levels in the future;

indeed CUDA devices already provide 64-bit hardware functionality.

Given the DepthFlags register, we set whether a level should be returned to using

bitwise operators; DepthFlags I= 1 « (31 - /) . Note that we store the bits in most­

significant ordering, such that the bit-index of the /'th level is 31 - l. We can determine

whether there are return positions by checldng if DepthFlags > 0. Assuming that

DepthFlags is non-zero, finding the first-set depth flag is akin to counting the consec­

utive number of zero-bits, starting from the least-significant bit; we denote this opera­

tion CountBits. Hence, the actual depth j to return to is 31 -CountBits(DepthFlags).

Upon a successful return to a level, it is important to clear the j'th level flag bit to

zero; again using bit manipulation. In CUDA CountBits can be accomplished using

the built-in function ffs (however it is offset by plus 1). For an alternative to CUDA's

f fs, see Andersons's 'Bit Twiddling Hacks' [11].

77

4.3 Faster Traversal with Hybrid Kd-Jurnp

4.3 Faster Traversal with Hybrid Kd-Jump

An acceleration method for ray-tracing serves one primary purpose of removing the

extraneous memory access affiliated with empty or invalid space. However, it is en­

tirely possible that an acceleration method might under-perform or even perform worse

than a brute-force ray tracer, for example, when the acceleration method is complex or

is utilized for too long. Thus, it is very important to be able to determine when and

where an acceleration method is useful. For this purpose, we present hybrid traversal

and dynamic update.

4.3.1 Hybrid Traversal

Each node in a kd-tree represents a sub-region of the complete volume. With each

level of the kd-tree, this region is made ever smaller until a node represents a single

voxel on the final level. This thesis employs a simple method, whereby we introduce a

real-time depth threshold parameter to the traversal kernel. Once rays traverse past this

threshold, we switch to the volume stepper and iteratively step along the ray from tnear

to t far • The volume stepping is performed until the isosurface is crossed, or until t far

is reached, after which a return is issued. Fig. 4.S(a) depicts where volume stepping

within a volume region is used after traversal of the implicit kd-tree.

The purpose of this hybrid system is two-fold; firstly, to gain the benefit of the

fast texture-cache and, secondly, to allow the adjustment of the threshold in order to

maximize the usefulness of the kd-tree. Although combining an acceleration structure

with volume stepping methods is not entirely new [241], we present it here in order to

show that a kd-tree can perform well and can be adjusted easily for dynamic situations.

In addition, with a variable threshold, the point when the acceleration structure is useful

78

4.3 Faster Traversal with Hybrid Kd-Jump

and when it is not (slower) can be analyzed.

By building a complete kd-tree and then introducing a run-time depth threshold a

user can alter the threshold, during ray tracing, in order to find the optimism setting.

For instance, the optimal threshold is subject to several factors, primarily the volume

size, the complexity of the data itself, the isosurface location and the view direction.

Further, if the volume stepping distance is reduced, say to acquire better intersection

results while zoomed in, then a larger threshold (traversing further down the kd-tree)

would be more efficient.

Also, the threshold depends on the complexity of the data-interpolation being per­

formed. If tri-linear interpolation is used, it would be more beneficial to switch to the

volume stepper sooner. However, if tri-cubic interpolation is used, as is the case for

discrete binary-volume rendering [144], then there is far more incentive for the kd­

tree to traverse for as long as possible, because of the lack of hardware acceleration.

The same argument applies for complex intersection methods such as the con-ect root

finding method [208].

4.3.2 Dynamic Update

With the original implicit kd-tree work by Wald et al, each node contained a min/max

pair; the minimum and maximum values within the region represented by the node. As

described in the previous section, both child min/max pairs are loaded prior to traversal

into children. Hence, during traversal, these two sets of values must be loaded from

memory. For 8-bit data, this requires a 32-bit transaction while, for 16-bit data, the

size of the node is 64-bits. The cost of loading this data, plus the cost of comparing the

node value range with the target isosurface, may add additional complexity.

79

4.3 Faster Traversal with Hybrid Kd-Jump

A better alternative is to move the node validity test out of the traversal stage and

into the kd-tree update stage. Thus, instead of a node having two min/max pair's for

each child, it simply has two boolean bits to specify if the children are currently valid

for traversal. Upon a change in isovalue, this would require updating every node on

every level starting from the original volume itself, as depicted in Fig. 4.5(b). This is

already quite fast (less than 0.25 seconds) for 5123 volumes, even with a naive imple­

mentation. Much of this efficiency can be attributed to CUDA's cached texture-access,

which not only applies to accessing three-dimensional volume, but also accessing the

node data.

With hybrid traversal, several deep-levels of the kd-tree may be avoided all to­

gether. It is shown, in the results, that the deeper levels are not particularly useful in

our implementation. Therefore, the dynamic update can be made more efficient by

only updating levels of the tree which may be traversed. This can be accomplished by

introducing a separate sub-volume of min/max pairs. This sub-volume would represent

the node information for a kd-tree level and would be considered the absolute cut-off

depth. During traversal, the cutoff depth would have to override the depth threshold if

the later is greater.

Choosing whether to employ node-conditions or traversal-conditions depends on

several factors. If memory size is an issue, or the isovalue is changed irregularly, then

node-conditions would be more suited. In contrast, if the isovalue is altered every

frame, then traversal-conditions would be better suited.

80

4.4 Results

4.4 Results

This work performed several comparative tests and recorded the timing information

for the kernels using CUDA's high-resolution timers. The results presented here where

averaged over multiple passes. Table 4.1 gives the results for the average frames-per­

second (FPS) spanning a wide range of the isosurfaces and multiple view directions

for the test data. Fig. 4.8 and Fig. 4 .9 show the rendered results.

Table 4.1: Average FPS across multiple views and multiple isovalues. Bonsai , Foot and Skull
are of2563 in size while Aneurism is of 5123 .

5121 10241

stack kd-restart Kd-Jump stack kd-restart Kd-Jump
Bonsai 58.3 34.2 65.6 17.3 10.0 18.9
Foot 43.1 25.7 48.8 12.3 7.2 13.6
Skull 52.9 32.1 59.7 15.5 7.1 16.8
Aneurism 42.9 25.5 50.2 11.7 6.5 12.9

Memory usage is an important factor for GPUs, due to limited resources. It is

shown the typical memory usage in Table 4.2 for a 10242 screen, as would be the case

with sjngle ray-tracing kernel. The table shows a stack requires considerable amount of

global memory to accommodate all rays, while Kd-Jump requires only a small matrix

in fast constant-memory. Although kd-restart uses the least resources, the redundant

node visitation severely reduces performance as shown in Table 4 .1 .

Table 4.2: Memory usage (per kernel) for traversal schemes with I 0242 screen resolution
and maximum depth of 27. It assumes that CUDA will allocate all device memory for all
threads (rays). Kd-Jump needs only a small amount of constant-memory (cached) and no
device memory, while a stack requires a considerable amount of device memory.

stack kd-restart Kd-Jump
Device 405MB 0 0
Constant 0 0 0.0003MB

To further compare the performance of Kd-Jump, this work evaluates the theoret-

81

4.4 Results

ical performance, as shown in Fig. 4.6. In this evaluation, this work only tests the

relevant code to store and retrieve a return position. A kernel with 10242 threads or­

ganized into 128-thread blocks, was set up, to achieve full occupancy. Both the stack

and Kd-Jump kernels were tasked with storing and then retrieving n number of returns.

The result clearly shows that Kd-Jump potentially has considerable speed gains. When

cross-referenced with Table 4.1, however, it is evident the theorized gains of Kd-Jump

over stack, in a complete ray-tracer, do not show as great of a speed gain. It is believed

that it is due to the fact the memory accesses in the stack kernel are hidden better by

the other computation; i.e. the general traversal loop, ray splitting computations and

leaf testing.

82

-g 2000
0 u
J; 1500 ...
Cl

-; 1000
C:
0 500
~
Q. 0
E
8 1 3

- - •Stack

- Kd-Jum

5 7 9 11 13 15 17 19

Number of Store & Returns

4.4 Results

Figure 4 .6: Theoretical performance (number of computations possible per second) between
stack and Kd-Jump for increasing number of returns. 10242 threads perform n storages and
then n returns.

55 55

so so ,
45 ,

45 ,
40

40 - Kd-Jump 35
FPS FPS

525 576 612 800 1000 1200
Core Frequency Memory Frequency

(a) Core Clock (b) Memory Clock

Figure 4.7: FPS for Kd-Jump and stack traversal with different core frequency and mem­
ory frequency settings, rendering Foot (2563) with 5 I 22 resolution. It shows that Kd-Jump is
computationally limited whereas stack is memory-latency Jjmited.

83

4.4 Results

(a) (b)

(c) (d)

Figure 4 .8: Isosurface rendering results of the (a,b) Bonsai (2563) and (c,d) Foot (2563) Data­
sets

84

4.4 Results

(a) (b)

(c) (d)

Figure 4.9: lsosurface rendering results of the (a,b) Skull (2563) and (c,d) Aneurysm (51 23)

Data-sets

85

4.4 Results

4.4.1 Limiting Factors

We can test both the Kd-Jump and stack-based kernels with different settings for the

core and memory frequencies, as shown in Fig.4.7. This allows us to examine which

factor (computation or memory access) is limiting performance for each kernel. The

results clearly show that Kd-Jump is computationally limjted while the stack-based ap­

proach is memory limited. This quick test can also be quite useful during development

and implementation of ray tracing kernels, as it can indicate which factors should be

optimized.

4.4.2 Hybrid Kd-Jump

In order to gain in pe1formance as much as possible and thus give merit for using a

kd-tree in the first place, a comparison of a hybrid kd-tree kernel (using the presented

Kd-Jump method) versus a pure brute-force ray tracing kernel was preformed. While

these kernels are not optimized particulary well, both share the same code for stepping

through the volume and detecting an isosurface crossing.

For the Hybrid Kd-Jump kernel, this work incorporated a number of optimizations,

specifically the hybrid traversal and dynamic update described in section 4.3. I and

4.3.2. In addition, the Hybrid Kd-Jump kernel accesses node information from the

texture cache rather than directly from global memory, which results in faster access.

Table 4.3 shows the results for Hybrid Kd-Jump versus a brute-force volume­

stepper; showing multiple isosurfaces, data-sizes and screen sizes. For the sake of

examining the effect of data-size on the performance, up-sampled (linear interpolation)

versions of the bonsai, skull and foot data-sets were created, as well as a down-sampled

(averaged) version of the Aneurism data-set; On average the rendering of 2563 sized

86

4.4 Results

Table 4.3: FPS for Hybrid Kd-Jump versus brute-force averaged across multiple views per
isovalue. Hybrid threshold is chosen to maximize performance in each case. It clearly shows
that Hybrid Kd-Jump outperforms a brute-force volume-stepper for most cases. The volume­
stepping is faster only when there is very little empty space and the isosurface is found quite
quickly (i.e., close to the bounds of the data).

5121 10241

data size isovalue brute Hybrid brute Hybrid

2563 40 132.0 123.0 41.8 37.3

Bonsai
100 90.2 130.3 31.5 38.0

5123 40 36.3 64.7 16.9 21.6
100 22.1 81.6 10.4 26.3

2563 40 117.0 126.6 36.3 39.0
100 78.5 124.8 27.0 40.2

Foot
5123 40 41.0 71.1 15.9 25.3

100 21.1 66.9 8.8 22.4

2563 40 155.0 100.3 51.8 30.0

Skull
150 68.9 261.2 26.7 75.4

5123 40 41.0 71.1 15.9 25.3
150 21.1 66.9 8.8 22.4

2563 40 76.0 126.1 26.9 34.5

Aneurism
100 67.6 282.4 24.1 76.5

5123 40 20.1 53.2 8.9 16.1
100 16.0 164.6 7.1 46.6

volumes was twice as fast than the rendering of the 5123 volumes. Also of interest,

in Table 4 .3, are the cases where brute-force outperforms Hybrid Kd-Jump. In these

cases, two conditions are (always) present. Firstly, the isosurface covers much of the

screen and secondly, the isosurface is close to the bounds of the data. Hence, a simple

volume stepper only operates for a short period of time before detecting an isosurface.

With more complex isosurfaces, longer distances from the bounds to the isosurface

and larger screen resolutions, however, brute force is slower than Hybrid Kd-Jump.

Fig. 4 . 11 shows the performance change for various threshold values and indicates the

degree to which using a kd-tree is beneficial.

87

4.4 Results

4.4.3 Multiple Rays Per Thread

A bottleneck affecting all methods can occur when only one thread of a warp is active,

or only one warp of a block is so. If CUDA allocates a block worth of resources (shared

memory, registers) and operates that block until completion, it is logical to assume that,

if only one warp is actually active, then the three remaining inactive warps will actually

limit computation throughput.

We can test this by altering the kernel to include an outer-loop, whereby new rays

are loaded and initialized, once a warp has finished. It is doubtful that loading a new

ray when a single-thread terminates will be effective. Indeed, during the initial de­

velopment, loading a new ray when each thread terminated induced much slower per­

formance. It is believed that this is due to the result of more code-branching during

traversal, as well as the removal of the initial ray coherence. On the other hand, a

warp terminates when all threads terminate. Thus loading a new batch of rays across

the 32 threads of the warp will maintain the initial coherency of a group of rays while

ensuring that as many warps are active throughout the lifetime of the kernel. This work

implemented the multiray kernel as an extension of the Kd-Jump kernel. As seen in

Fig. 4.12, we show positive benefits.

4.4.4 Separating Kernels

The basic approach to parallel ray tracing is to dedicate one thread per ray and to

develop a single-kernel containing the entire rendering pipeline; node traversal, leaf

testing and pixel shading. However, as a single-kernel, the pipeline will not fully

exploit the GPU and may well indeed create performance bottlenecks. For instance,

shading is a branchless process and hence should perform very well in parallel. In a

88

4.5 Discussion

single-kernel ray tracer, however, some threads may begin shading prior to others; this

causes thread divergence and serialization events. Thus, separating out the shading

portion (as well as other portions) of the pipeline and placing it in a different kernel

should result in better performance, at least in theory [245, 255]. That being said,

launching multiple kernels can carry an overhead. Fig. 4.13 shows this theory has at

least some merit. However, the performance improvement is small and only attained if

a lot of shading occurs to begin with; the rendering of lower isovalues occupy a large

portion of the screen.

4.5 Discussion

CUDA devices contain multiple processing units. Each processing unit is capable of

operating many threads in parallel, although only a small number (a warp) actually

work at any given moment. Currently, CUDA devices operate warps of 32 threads

in size. With branchless code, all threads in a warp operate the same instruction of

code and fully utilize the SIMD (Single Instruction, Multiple Data) functionality. If

conditional branching occurs, then the threads branching into the statement are eval­

uated first and any thread not following the branch is masked inactive and forced to

wait. Once the branch is evaluated, a serialization occurs and threads in the warp are

re-synchronized automatically. Apart from the fact that divergent branching and serial­

ization incurs slowdown, the SIMD functionality might not be used to the fullest. Also,

note that SIMD efficiency is dependent on limited code-branching and not necessarily

ray-coherence.

Currently, a maximum number of 1024 threads can be active on each multi-processor.

While only a single warp (group of 32 threads) ever works at any given moment for

89

4.5 Discussion

a multi-processor, CUDA is able to switch between warps waiting for instructions

to complete and effectively ensure maximum throughput. For example, if one warp

requests global memory, it will essentially have to wait for that request to complete

and, during that time, other warps can operate. Thus, maximum occupancy ensures

that costly instructions (such as memory access) are better hidden, by the GPu thread

scheduler, and do not pose a bottleneck; this observation can be made by comparing

Fig. 4.6 and Table 4. 1 where additional computation better masks the memory latency.

In Fig. 4. 12, it is shown that further performance improvements can be gained with

load-balancing (multiple rays per thread).

Concern for maximum occupancy should be the first priority for researchers. De­

vice occupancy is determined by two factors, the number of registers and the amount

of shared memory used by the kernel. Unfortunately, the limited amount of these

factors makes full occupancy improbable to have the entire traversal pipeline as a sin­

gle kernel (on current architecture). To achieve full occupancy, without extensive and

time-consumjng optimization, the traversal mechanism must be separated into multiple

kernels.

4.5.1 Multiple Kernels versus Single Kernel

Separating kernels into multiple stages presents a new challenge; how should we orga­

nize the work for them? For example, let us assume that we have an Intersect-Kernel

which detects ray-geometry intersections and a Shader-Kernel. Not all rays will have

intersections and, therefore, they will not require shading. Cropping out the rays which

do not require shading so that we can pass only valid rays to the Shader-Kernel requires

an intermediate step to organize the memory.

90

4.5 Discussion

A simple solution is to have the Intersect-Kernel to store a hit-flag specifying

whether the ray has hit geometry. A separate kernel can then examine rays to find

those with valid hits and create a work-list for the Shade-Kernel. This approach can

also be performed in parallel (as a minimizing problem [I 06]), where each thread is

responsible for checking the state of a set number of rays. Regardless of how it is

implemented, however, the additional step to organize the work requires extra com­

putation and memory access, and is therefore only useful if the benefit outweighs this

cost.

Simply separating kernels without organization of the input workload, for the shad­

ing kernel (i.e., simply having 1 thread per pixel), is shown in Fig. 4 .1 3. However, what

remains to be seen is whether it is possible to reorganize workload between kernel calls,

without it becoming a bottleneck in itself.

4.5.2 Alternative To Accumulation Matrix

The accumulation matrix approach, while simple, still requires constant-memory for

storage. Different architectures may not provide fast caching features. An alternative

to the accumulation matrix is to utilize more registers; one per-dimension. Each bit

represents a level of the kd-tree. We store a TRUE, in the relevant register, to spec­

ify whether a dimension has been split on a particular level. The registers would be

propagated with the correct split information during the kd-tree build stage, or actually

during traversal.

Determining N of Eq.(4.5) using the accumulation registers involves counting the

number of TRUE bits between the cmTent depth and the return depth. Firstly, this

requires masking the accumulation registers for only the levels in question and a bit-

91

4.6 Summary

counter. In CUDA, this can be achieved using the __ po pc function (see Anderson [11]

for an alternative using right-ward zero-bit counting).

4.5.3 Limitations and Scope of Kd-Jump

While Kd-Jump exploits the indexing method for implicit kd-trees, pointers are used

for general kd-trees. As such, Kd-Jump in the current form cannot be readily used

for a general kd-tree. In order to apply Kd-Jump to a general tree, one should be able

to transpose a general kd-tree onto a 'virtual' balanced kd-tree and build a suitable

memory map to reference node data. In practice, however, any additional computation

for the map could lower the performance.

When Kd-Jump is employed for isosurface ray-tracing or direct volume render­

ing, the traversal-orders are pre-defined and are quickly recomputed upon return. For

MIP (Maximum Intensity Projection) rendering, however, re-determining the traversal­

order would require additional memory look-ups and testing, which could lower the

performance.

The Kd-Jump approach would be applicable for use with other binary trees, if

nodes can be referenced with indices and index-updates can also be invertible. In

theory, this approach could be used with BVH [184] if indices are employed and a

sufficient method for mapping the indices to memory (without excess) is available.

Since a BVH is not a spatial-splitting structure, tree-balancing is applicable.

4.6 Summary

This chapter has presented Kd-Jump, a stackless traversal of implicit kd-trees for faster

isosurface ray tracing. It was shown that Kd-Jump can outperform both stackless and

92

4.6 Summary

stack-based approaches, while only needing a fraction of memory compared to a stack­

based approach. Further, Kd-Jump exploits the index-based referencing used for im­

plicit kd-trees to achieve traversal-paths equivalent to a stack-based method, without

incurring the extra node visitation of kd-restart.

To further strengthen kd-tree, Hybrid Kd-Jump was introduced. Hybrid Kd-Jump

utilises a volume stepper for leaf testing and a run-time depth threshold to define where

kd-tree traversal stops and volume stepping occurs. By using both methods it was pos­

sible to gain the benefits of empty-space removal and hardware-based texture interpo­

lation. It was shown that Hybrid Kd-Jump performs well at removing empty space and

can outperform a brute-force ray-tracer.

Memory usage for an implicit kd-tree may be too large if min/max pairs are stored

in each node. This work showed that, if the conditions for the current isosurface are

moved out of traversal and into the tree nodes themselves, then significantly less mem­

ory is required. In addition, even with a naive implementation, updating the implicit

kd-tree for a large volume was shown to be quite fast.

Finally this chapter showed the usefulness of loading new rays once a warp of

threads completes and report that such an approach yields promising results for faster

ray tracing. In addition, this chapter also discussed and examined the separation of the

ray-tracing pipeline into separate kernels, and showed that the methodology has some

promise for better efficiency.

93

4.6 Summary

(a) S: 27.1, KJ: 35.2, MR: 35.6 (b) S: 12.0, KJ: 16.2, MR: 20.8

(c) S: 7.4, KJ: 10.7, MR: 12.8 (d) S: 4.3, KJ: 6.9, MR: 7.9

Figure 4.10: Bonsai Tree rendered with a 10242 screen buffer, using a stack (S), Kd-Jump (KJ)
and MultiRay (MR); MultiRay was based on the Kd-Jump Kernel. Full traversal of the implicit
kd-tree is performed. Kd-Jump maintains a performance improvement for scenes of variable­
complexity. Additionally, load balancing rays with MultiRay shows improved performance

94

50

0

FPS o 2 4 6 s 10 12 14 16 18 20 22 24 26

Threshold

4.6 Summary

Screen
--512

--1024

F igure 4. 11: FPS for Aneurism (5123) using Hybrid Kd-Jump (with dynamic-update) in 5122

and l 0242 screen resolutions, over all thresholds. Threshold of l is a special case where a pure
volume-stepper kernel is used. The last threshold represents a complete downward traversal of
the kd-tree. The graph clearly shows that the Hybrid Kd-Jump is able to remove empty space
and gain in performance by reducing redundant traversal steps into deeper levels.

160

140
- 1 Batch

120
• • • • 2 Batch ,

100 -- 4 Batch ,. • •

- 8 Batch 80

60

40

20

0

fps 0 0 0 0 0 0 0 0 0 0
,:::t- Lf) I.D " 00 0) 0 rl N ('I')

rl rl rl rl
I so-value

Figure 4. 12: The results for loading multiple-rays per-thread once a warp terminates. Balanc­
ing workload (i.e., keeping CUDA warps as active as possible) can improve performance.

95

4.6 Summary

3.5

3
- Seperate, no Shade

Cl
IO .. 2.5 - Seperate, with Shade ..
i 2
u
~ 1.5

Q.
Cl 1 u
C
Cl 0.5
~

li: 0
Q

-0.5

-1

lsovalue

Figure 4.13: The difference in FPS (%) between separate kernels and the whole Kd-Jump
kernel. For each isovalue, the FPS is averaged over different views. It shows that the separate
kernels lead to only a minor improvement.

96

Chapter 5

Real time Semi-Automatic Volume

Segmentation

Segmentation of volumetric data, whether it is medical or simulated, is the separation

of a feature from the remaining space. The process of segmentation can be performed

by-hand or aided by a computer. Computer aided segmentation can then be separated

into two sub-topics, automatic and semi-automatic computer-aided segmentation.

A segmentation tool of volumetric data must balance between ease-of-use for the

user and effectiveness of the results. While some segmentations are fully automatic, or

are designed for specific anatomy or features, some users may wish to segment the data

themselves. Indeed many segmentations are still required to be manually performed by

an expert. A trade off is to allow a user to still direct the segmentation, but with far less

input. The usefulness of being able to segment a volume, in near real time, has been

shown to be useful in a clinical environment in the clinical survey by Saiviroonporn

[267]. In addition the power of GPUs has been shown to improve performance of

GPU-based segmentation methods, as reported by Hadwiger [115].

97

5.1 Support Vector Machines

This chapter details a semi-automatic segmentation interface utilizing Support Vec­

tor Machines and acceleration techniques, such as incremental SVM and the utilization

of a GPU for computationally intensive tasks. The hypothesis is that the training delay,

after a user has stopped painting input data, can be hidden by the use of Incremental

SVM, rather than be a noticeable delay if batch-training SVM was used.

5.1 Support Vector Machines

Machine learning methods, well detailed by Vapnik [305], are used to learn patterns

and then predict whether new input matches those patterns; typically this involves

classifying a domain based on a set of inputs. Fig. 5.1 illustrates a simple case where

the domain has been divided by a line in order to separate the two classes of inputs;

circles and squares. Inputs are referred to as feature vectors, where each vector element

is an attribute. Thus, in Fig.5.1 there are two attributes, the x-position and y-position.

Typically, applications of machine learning methods utilize feature vectors with many

attributes.

H
■ ■ B ■

■ ■ y • •
A • ■

• • •
X

Figure 5.1: The goal of a classifier (one based on a hyperplane decision function) is to find a
hyperplane which will pass in-between the class clusters.

Classifiers themselves are typically estimation functions of the form f:]RN -+ ± l ,

98

5.1 Support Vector Machines

which are trained to a set of N-dimensional feature vectors Xi with corresponding class

labels Yi=± I, where= (x1 ,YI) .. . (xe,Ye) E JRN x ± 1 [127]. A function is chosen such

that when given a new example (x,y),

J(x) = y.

A good set of learning functions [45] for f, which Support Vector Machines are based

on [127], are the class of hyperplanes

with corresponding decision functions

/(x) = sign((w·<l>(x)) +b)

As illustrated in Fig. 5. 1, the data can be linearly classified by a simple line. How­

ever, in a general case it is not the situation that a linear line, plane or hyperplane

can separate the two classes in the input space; for example Fig. 5.2(a). To do this,

nonlinear classifiers are needed.

To solve the problem of finding a nonlinear hyperplane by which to separate (for

classification) two classes, the input vectors can (theoretically) be nonlinearly mapped

to a feature-space using <I>. It is then possible to find a linear optimal hyperplane in

the feature-space, which will then correspond to a nonlinear decision function in the

input-space; as illustrated in Fig. 5.2. The novelty of SVMs is that the map to feature­

space need not be computed directly and is implicitly defined by the use of kernels.

Specifically, Boser [34] showed that a hyperplane can be computed while working in

99

5.1 Support Vector Machines

• H

■ •
■ ■ ~ • ■ • • •

• • •
(a) inpul space (b) feature space (c) input space

Figure 5.2: Forming a nonlinear SVM classifier is achieved by implicitly mapping the input
space (a) to the higher-dimensional feature-space (b) and finding a linear optimal hyperplane
there. The resulting hyperplane results in nonlinear classification back in input space (c)

the kernel dot-product space (so long as it is positive-definite) and that mapping of

the input vectors into higher dimensional-space is implicitly achieved [127]. Thus, the

map <t> can be replaced with a kernel to define standard SVM decision function for

classification:
e

f(x) = sign(E v; • k(x,xi) +b)
i

where k is the kernel function. A common kernel for pattern recognition, and used in

this thesis, is the RBF kernel:

The hyperplane is constructed such that it maximizes the margin between the con­

vex hulls of the two input classes, as detailed by Hearst [127]. It is typically computed

by solving a constrained quadratic programming problem, the solution of which will

be w, with the expansion

where input vectors with non-zero coefficients v; are a subset of the original training

100

5.1 Support Vector Machines

data called support vectors. Alternatively, methods using Least-Squares in SVM clas­

sifiers solve the problem by finding a solution for a set of linear equations, as detailed

by Suykens and Vendewalle [293].

Support vectors lie on the margin hyperplane and contain all the information needed

to reproduce the problem during prediction. The remaining input-vectors (those that

are not support vectors) will not contribute to the decision function when predicting

the class of new examples.

Early SVM methods were based on a hard-margin hyperplane, where a hyperplane

is found for all input-vectors. A common problem is how to find an optimal hyperplane

if there are errors or noise in the training data. The solution is to use the soft-margin

approach detailed by Cortes [7 1], where an error function and a regularization parame­

ter Care introduced. The attribute C can be viewed as the cost of fitting the hyperplane

to inputs with high error. Those inputs with high error will generally not influence the

hyperplane, as illustrated in Fig. 5.3.

To summarize, standard Support Vector Machines are learning functions that are

trained once with set of labeled inputs, in order to find a separating hyperplane, which

maximize the margin between two classes, such that when a new example is given the

SVM decision function will estimate its class label.

5.1.1 Incremental SVM

Support vector machines, as detailed by Vapnik [305), require training before they can

be used to predict the class of new examples. If all input data is known then there

is no problem (in the context of this thesis) as the SVM model can be trained once

and then used. However, if the input is not known a priori and/or is altered then this

101

W•X; + b= + l

w • x; + b = 0

W· X; + b = - 1

5.1 Support Vector Machines

□

□

□

Figure 5.3: SVM with soft-margins. A hyperplane that maximizes the margin between input
classes is found, but inputs too costly to fit are (effectively) ignored as errors. Input-vectors on
the margin are support vectors as they limit the margin width. Others input vectors not on the
margin will have no impact in the standard SVM decision function.

would require re-training the SVM model again, with all input vectors. In the context

of a segmentation tool, where the user is likely to make mistakes and alter their input,

constant re-training could easily result in a notable delay whenever the SVM model is

required for classification. This would be especially so if the number of input vectors

ranges in the thousands.

Incremental SVM, also known as Online SVM is a way to train very large data­

sets one example at a time. Initially introduced by Syed [295], it was not until the

work by Cauwenberghs [55] that an accurate method for incremental and decremental

SVM learning was developed. Due to the nature of learning one example at a time,

additional input vectors can be added very quickly. Also of high importance, especially

for interactive segmentation, is the ability to unlearn training examples. Decremental

learning is a method to accurately remove (or unlearn) one example from an already

102

5.1 Support Vector Machines

trained SVM model.

The method by Cauwenberghs [55, 80] (derivations partially reproduced for com­

pleteness in this thesis) employs an SVM of the form f (x) = :£~ 1 Yiai · k(xi ,x) + b,

which is trained to the inputs (xi ,Yi) E IR111 x ±1\li E 1, ... ,N by solving the dual form

quadratic program

1 N N N
min W = - L aiQijaj- E ai+b L Yiai

O<a;<C 2 . . I · I · I - - l ,J= I = I=

(5. 1)

with Lagrange multiplier (and offset) band Qij = YiY jk(xi ,Xj), The Kuhn-Tucker [172]

conditions uniquely define the solution of the dual parameters { a , b} that minimize the

above problem:

h

ai = 0
0 ~ ai ~ C
Oai = C

Cauwenberghs [55] groups trained input-vectors into three sets; margin-vectors;

error-vectors; and reserve-vectors, where the value 8i dete1mines which set the train­

ing input belongs to. With 8i > 0 the input lies outside the margin and is added to

a set of reserve vectors that do not influence the decision function. If 8i = 0 then

the input-vector is on the margin hyperplane, is a support vector and is added to the

margin-vector group. Finally, if 8i < 0 then the input is within the margin, or clas­

sified incorrectly, and is added to the error-vector group. Fig.5.4 illustrated a basic

classification of feature space using Incremental SVM using a soft-margin hyperplane.

103

5.2 Fast Segmentation Using Incremental SVM and CUDA

Due to the nature of Incremental learning all input-vectors are maintained and can

be moved into other sets during the course of training. By maintaining the Kuhn­

Tucker conditions for all inputs, incremental SVM can successfully update a trained

model to incorporate new training examples - the derivations for Incremental SVM

learning are beyond the scope of this thesis; please see the work by Diehl and Cauwen-

berghs [80).

0
0

□
■

•
■

(a) Existing Model

□
0
0
•

□
■

t····-
L..l

I
Margin to Error

Reserved to Margin

I
■

• ·~ ~ Added Inputs

(b) Incrementally Re-trained Model

Figure 5.4: Incremental SVM updates an already trained model by learning new examples
and updating previous examples. For example, the new inputs added in (b) change a previously
learned input in (a) from being a margin-vector to an error-vector, while a previous reserve­
vector becomes a margin-vector

5.2 Fast Segmentation Using Incremental SVM and CUDA

Segmentation, in its most basic form, is the process of defining a region within a vol­

ume. This region can be classed as the wanted region, while the remaining space can

be classed as the unwanted region. As detailed in the previous section, an SVM can

be used to classify a domain into two classes. This thesis introduces a tool based on

incremental SVM, where training inputs are provided by a user. To provide training

data, the user paints onto a two-dimensional plane, which is aligned to one of the vol-

104

5.2 Fast Segmentation Using Incremental SVM and CUDA

ume dimensions and displays the volume data it passes through. Fig. 5.7 shows the

introduced tool, where training inputs (shown as red and green) have been painted onto

the input-plane.

The segmentation software is divided into several distinct parts; user input, train­

ing, classification and visualization. All parts must be as fast as possible and to this

end various methods and techniques can be employed. Specifically, there are low-level

software-enhancements and high-level algorithm-enhancements utilized. The primary

means by which the software is accelerated is with the incorporation of CUDA, multi­

CPUs, OpenGL and Incremental SVM. The segmentation software utilizes the incre­

mental SVM implementation described by Diehl and Cauwenberghs [80], which is

available as Matlab code[79].

Motivation for the work was originally to provide a simplified version of an exist­

ing segmentation tool, presented previously by Tzeng [301 , 300], such that school chil­

dren could use it to interactively learn about anatomy. Children were able to segment

anatomy from a variety of data-sets. The best results were then sent to a 3D-printing

company to be made into solid objects, as shown in Fig. 5.5.

Figure 5.5: Photo of 3D-printed objects based on segmentation data

5.2 Fast Segmentation Using Incremental SVM and CUDA

Originally, the software developed (that later became the basis for this work) for in­

teractive learning of anatomy used a batch SVM software library called LibSVM [57].

In addition, the whole volume classification was performed using LibSVM, which typ­

ically required approximately 50-60 seconds to calculate. In order to reduce this time,

the developed software was made to incorporate a GPU-based SVM decision function.

Rather than use LibSVM, the new CUDA-based code predicted the class of each vol­

ume voxel. Originally, the classified volume would be downloaded from the GPU and

used in a CPU-based volume renderer. Finally, due to noticeable delays to train and

retrain SVM models during segmentation, especially when difficult problems arose,

incremental SVM was incorporated. The culmination of these improvements led to the

new software implementation described in the following sections.

Old Approach
30 Sec 2 Sec 50 Sec

User Input

New Approach
30 Sec 1 Sec

Ill fll Ill fll Ill
- 0.01 Sec - 0.01 Sec

Figure 5.6: Comparison of previous approach (top) against the new approach (bottom). With
the new approach there is no noticeable delay because of SVM training, once the user has fin­
ished supplying input. The delay waiting for volume classification is also significantly reduced
by utilizing GPU's

In the work by Tzeng [300] a novel interface was presented which allowed a user to

paint on a 2D volume slice. Once painting was complete, the software would convert

the painted inputs into training data, train a Neural Network and then apply the trained

106

5.2 Fast Segmentation Using Incremental SVM and CUDA

model to predict the full volume class values. In later work, Tzeng [301] replaced the

Neural Network learner with an SVM. In addition, a GPU-based volume classifier and

renderer was introduced for the Neural Network method, but not for the SVM method;

due of its complexity. The Neural Network shader was able to classify and render a

2563 volume in under 0.75 seconds. Training of the Neural Network was, however,

reportedly much slower than with the SVM trainer.

5.2.1 Integration of CUDA

CUDA [225] is a GPU programming architecture for GPUs. The segmentation soft­

ware utilizes the GPU resources and computation-power throughout to enhance the

performance. Specifically, the volume data is stored directly in the GPU memory

rather than in the system memory. The main reason for this design decision is that

most of the segmentation software, i.e. those functions which require access to the

volume, can be accelerated by CUDA kernels; whether they be parallel tasks or simply

one-thread tasks. For example, generation of the input-vectors is done on the GPU

directly and passed to the SVM trainer.

5.2.2 GUI Overview

The segmentation software GUI developed for this thesis, as seen in Fig.5.7, has func­

tionality similar to the software presented by Tzeng [300]. Specifically, an area for

the user to paint training data, an ability to alter the depth of the slice on the cuJTent

view plane, and an ability to observe the result. Results are visualized as either a clas­

sification plane or as a direct-volume rendering with only the segmentation regions

visible.

107

5.2 Fast Segmentation Using Incremental SVM and CUDA

Paint Tools Current Slice Result Visualization Type

Figure 5.7: Screen capture of the segmentation GUI in use

User input is required to produce the necessary training data for the SVM. User

input is acquired using a two-dimensional slice-plane and paint-brush tools, where the

view shows a single slice of the original volume, at a set depth. The depth can be

adjusted by the user using a slide control, which is situated below the viewing area.

The user selects a paint brush from the toolbar, selects a depth within the volume along

one of three viewing axis and then clicks on the slice-plane to begin painting.

The user is required to paint two groups, a region of green-paint that is the desired

object or region, and a second region of red-paint, which typically encompasses the

green-paint in order to limit the region size; as depicted in Fig. 5.11 . If the segmenta­

tion is incorrect, then the user must erase paint information from the areas the user has

108

5.2 Fast Segmentation Using Incremental SVM and CUDA

determined are incorrect and repaint new inputs. Alternatively, if a segmentation is to

be refined, the user may simply add new paint information without needing to over­

ride previous input. An example may be when a user is segmenting a complex object

through 3D-space. In such a case they may be required to pick a new depth within

the volume to add new paint information, such that the system correctly segments the

object as it changes shape through the volume.

5.2.3 Handling User Input

Internally, once paint-events occur, the software tool, developed for this thesis, first

checks the existing paint information for the voxel(s) the user specified. If no paint

data already exists for the voxel then a training-input event is triggered. There are

several features of the input painting which could see a slowdown if implemented

naively. Firstly, once it is determined the paint information either adds or alters input

to the SVM, the SVM must be updated accordingly. If this process was performed

with a single system-thread (and subsequently within a single CPU) then there would

be a noticeable minor slowdown in the speed with which the user is able to paint, as

the SVM incrementally learns the input.

To ensure the computational aspects of adding or altering an input point does not

hinder the speed of the system, as perceived by the user, we can incorporate multi­

ple threads. The first thread is tasked with running the GUI, the basic handling of

the events as they occur and low-level OpenGL render updates. The second thread is

charged with managing the queue of paint events, testing for input changes and updat­

ing the SVM with incremental changes.

With multiple threads the user is free to paint as much input as they wish with-

109

5.2 Fast Segmentation Using Incremental SVM and CUDA

out any noticeable delay (during painting). As a paint event occurs (mouse click and

mouse move) the paint location is stored within a paint event queue. This queue is

shared between the primary and secondary threads and locked whenever either access

it. As the information (paint location and event type) is relatively small the queue

need only be locked for a small duration as the threads update it. Once the data has

been inserted/removed the threads are free to continue operating and the queue can

be unlocked ready for further access by any thread. This is especially important as

the secondary thread is tasked with retrieving paint events and then performing a large

amount of computation to update the SVM. In a single-thread scenario, if the user had

to wait for the SVM to be updated each time they clicked to add paint information there

would be significant delays noticeable; especially if the SVM has difficulty finding a

solution for a particular input.

5.2.4 Generation of Training input

The training input is comprised of several features that make up the multi-dimensional

input-vector for the SVM utilized in this thesis software. As illustrated by Fig.5.8,

these are:

• Position - the three-dimensional cartesian-axis position of the training point

within the volume, given as normalised X, Y and Z. Makes up the first 3 di­

mensions of the training vector.

• Value - the normalized volume-value of the training point. Makes up the 4th

dimension of the training vector

• Neighbour Value - the normalised volume-values for the immediate 6-point

neighbors of training point. Makes up dimensions 5 to 11.

110

5.2 Fast Segmentation Using Incremental SVM and CUDA

• Gradient Magnitude - the un-normalized first-derivative at the input point. De­

rived from the normalised volume, using central-difference. Makes up dimen­

sions I 2 to 14.

The volume, stored on the GPU, is bound to a texture reference. This enables

cached-access to the data (using the texture-access functions), which is specifically

useful if access is localized in a specific region. In the case of producing the training

vector, there are several localized memory accesses, which will utilize the texture­

caching feature.

Point Value Position

+
[x,y.z)

ffx,y ,zj [x,y,z]

Neighbour
Values

f(y+1)

f(x-1) f(x+1)

f(y-1)

ff x+h,y,z), ...

Partial 1st
Derivatives

f()'

dx/dff x,y,zj, ...

Figure 5.8: Illustration of an input vector as used for segmentation

Creating the training vector is performed by a specialized kernel, which is initial­

ized with the training point and a pointer to the output vector for storage. The kernel

is programmed to set the vector with the relevant data; as listed previously. The po­

sition dimensions of the training vector are immediately stored and the volume value

at this position is also accessed and stored. The 6-neighbour volume-values are then

accessed using offsets to the original training point. By setting the texture reference

to clip texture-accesses, no additional code is required to test for out-of-bounds cases.

111

5.3 Volume Classification

Finally, with the neighbour values accessed and stored, the gradient vector is computed

with central-difference.

5.2.5 Visualization Backbone

There are several visualizations occurring in the segmentation software; either being

two-dimensional or three-dimensional. The basic approach for incorporating these

visualizations in the software has been to utilize the Tao framework [l]. The Tao

framework allows for OpenGL controls to be incorporated into the .Net software UI.

Not only does this ensure fast rendering, but vastly simplifies the code by allowing

OpenGL to automatically manage the screen rendering and view resizing. The other

reason for utilizing OpenGL is to allow CUDA inter-operability. By supplying the

OpenGL context to CUDA, CUDA can directly bind to a Pixel Buffer Object, which

then allows CUDA kernels to directly render to the screen output. The user can specify

the render mode for the output screen as either being a 2D texture showing the classi­

fication results for the currently-selected volume slice or the DVR visualization of the

classified volume.

5.3 Volume Classification

Once an SVM has been trained it can be used to classify the remaining volume into

two-classes; wanted and unwanted. The process of classifying the volume is com­

pletely parallel and does not require conditional branching at all; thus is ideal for GPU

computation. To classify the volume there are several steps which must be accom­

plished. Firstly, the relevant SVM information, such as support vectors and SVM

parameters, must be uploaded to the GPU. Secondly, each voxel of the volume must

112

5.3 Volume Classification

be converted to an N-dimensional input-vector. Finally, the SVM is evaluated for each

voxel vector and the predicted class stored.

Volume classification is separated into two kernels, generation of the test vectors

and SVM evaluation. These two tasks are separated in order to maximize the efficiency

of each kernel. As previously detailed, it is favorable to utilize light-weight kernels as

results in maximum occupancy of the GPU multiprocessors.

Conversion of each voxel into a test vector is quite simple and nearly identical to

the generation of training input (as described in section 5.2.4). However, the kernel

for volume classification must produce a test vector for each voxel. Due to limited

resources, only a finite number of vectors can be tested at any given moment. As a

result, computation is divided into several batches, where only a small sub-set of the

volume is tested at a time. The batch size is rather arbitrary and completely determined

by the amount of available memory on the GPU. However, for thi s work a batch size

of 256 x 1024 (number-of-threads x number-of-blocks) was chosen. With the 13-

dimensional feature space utilized, this approximately requires 13MB of GPU memory

to store the test vectors. Once the test vectors have been created and stored, they are

passed to the SVM evaluation kernel.

The SVM evaluation kernel is designed such that each thread is responsible for

evaluating a single test vector, as well as storing the predicted class for the correspond­

ing voxel. Due to the limited resources of CUDA kernels, and the fact SVM support

vectors require a considerable amount of memory, SVM evaluation must be imple­

mented with care. Specifically, the kernel is designed such that each support vector is

loaded once into shared memory, as shown in Fig. 5.9. By transferring one support

vector at a time into shared memory and forcing all threads to operate synchronously

with the currently loaded support vector, redundant access to global memory can be

113

5.4 Segmentation Results

Support Vectors

thread 0

float sum = svmBias;

n-1

II

n+1

float x[13] = Load Test Vector (0)

For Each Support Vector, n

if(thread is first)

Load Support Vector (n)

Synchronize=

sum+= Svm Kernel(x, y)

thread i

float sum = svmBias;
float x[13] = Load Test Vector (i)

For Each Support Vector, n

if(thread is first)

Load Support Vector (n)

=synchronize=

sum + = Svm Kernel(x, y)

thread i+1
...

.. ,.

Figure 5.9: Basic overview of SVM evaluation CUDA-kernel. All threads load their own test
vector, while only the first thread loads support vectors into shared memory. Threads must wait
(at the synchronization point) for the first thread to complete loading the support vector.

avoided and the maximum efficiency can be attained.

5.4 Segmentation Results

For all testing the SVM was set to use a Gaussian RBF kernel with a scale (gamma)

of 0.1 and C set to 1000. All values for all dimensions in the feature space were

normalized between 0 and 1. For volume prediction, the timing results were recorded

using CUDA's high resolution timers. Any delays observed during test, after the final

input was painted, are given as approximations.

A test was performed which resulted in many support vectors being required to fit

the hyperplane, the result of which is given in Fig.5.11 . This represents a complex case

due to the locality of the segmentation in only 2 of the 13 feature dimensions, which

114

5.4 Segmentation Results

ultimately results in many support vectors. In contrast, generally, segmentation of

objects from volume data will not result in as many support vectors. The results show

that with approximately 500 support vectors, prediction of the entire 2563 volume was

accomplished in 2.12 seconds, while training of the final inputs (after painting had

ceased) required approximately 0.25 seconds.

The results for segmentation tests are shown in Table 5.1 with the corresponding

screen captures shown in Fig.5.10. lnterestly, when segmenting a specific object, the

number of support vectors is much lower than in the previous test case. As a result a

noticeably smaller time (less than a second) was needed for the full volume prediction.

Table 5. I: Statistics for results shown in Fig.5.10.

Prediction SVM vectors
size time margin error reserve

Bonsai basin 256j 0.62 (sec) 159 0 2632
Engine Cap 2562 X 128 0.66 (sec) 163 0 1230
Skull side 2563 0.58 (sec) 137 0 3000

115

5.5 Discussion

5.5 Discussion

Using incremental SVM, rather than a standard non-incremental SVM, has advantages

and disadvantages. With a normal SVM, where the input is gathered first and then sent

for training at the same time, the GUI does not have to manage the SVM. Specifically,

with incremental SVM, care has to be given to ensure that if input needs to be removed

or changed, then the correct vector is unlearned. While this does require additional

work and maintenance, an incremental SVM is much faster than a standard SVM. This

is especially so for the user, as assuming paint operations are not delayed when adding

new input to the SVM, the user is oblivious to the fact the SVM is being trained.

It is questionable whether using 13 features for segmentation is useful. The initial

hypothesis would be that with more features present in the input-vectors, that an SVM

would more easily predict the volume classes. However, this was not the observed case

during testing, contrary to the di scussion given by Tzeng [30 I].

Segmentation typically entails the separation of an object or group of objects from

the remaining space. These objects are easily distinguished by their location and in­

tensity. Thus, including the position and volume intensity, as features, is of the great­

est importance. However, whether including the neighbor values or local normal is

useful is not clear. What is certainly clear is the problem these features can cause.

Specifically, what was observed was small areas outside the desired spatial area being

predicted as desired.

In most cases, the incorrectly predicted areas corresponded to edges or areas with

high gradient. Subsequently, one could deduce that the SVM was improperly trained

by the user, and that local gradient and/or local neighbor features caused undesired

predictions outside (spatially) the wanted object.

11 6

5.6 Context-Preserving Rendering

5.6 Context-Preserving Rendering

A segmentation-volume defines unique regions within a volume of intensities (CT

or MRI data for example). Typically the segmentation-volume is used to customize

the rendering of the intensity-volume. However, it is possible to directly render the

segmentation-volume without considering the intensity-volume as was shown in the

work by Hadwiger [11 4].

This section details a context-preserving visualization method for segmentation

data, utilizing curvature information. Whilst this method is not incorporated into the

segmentation GUI described in this chapter, it may prove useful in future work; see

Section 5.7.

A standard DVR approach is to project rays into the volume and compute the dis­

creet approximation of the DVR integral using the front-to-back formulation of the

over-operator (249, 37]. Given a point along a ray P, an integer volume can be ac­

cessed f(P) to obtain a segmentation ID. Using front-to-back composition, it is pos­

sible to compute the opacity a; and colour c; contribution of each sample at each step

along the ray:

c; (5.2)

where a (P;) and c(P;) is the opacity and colour contributions at P;, and where a;_1

and c;_ 1 are the previously accumulated opacity and colour values along the view ray.

117

5.6 Context-Preserving Rendering

5.6.1 Curvature-Based Context Preservation

Rendering the segmentation volume using purely DVR would result in large regions

appearing largely opaque. Even with the use of transfer functions it would be hard to

simultaneously remove regions obscure interesting features and preserve the important

visual cues of those regions. In the approach described below the idea is to make

areas with little or no curvature transparent, while having features with high curvature

more opaque; for segmentation data only. It is also interesting to consider the distance

of the sample point from the camera, such that samples closer to the view are more

transparent. Additionally this work also considers the previously accumulated opacity

along each ray such that it wilJ reduce the contribution of subsequent samples if a high

amount of opacity has already been accumulated.

In order to incorporate curvature and surface angle quantities into the proposed

composition scheme, a volumetric scalar-field of normalized curvature values is de­

fined as k(P;) E [O .. 1], where kr; is the mean curvature value at P;. Also defined is the

normalized gradient of a sample gP;•

The combination of the curvature, distance, accumulated opacity and angle quan­

tities leads to the following new opacity equation for all samples P;:

(5.3)

with

(5.4)

where d = I IP; - El I is the normalised distance between the sample point and the cam­

era E, is a;_ 1 is the previously accumulated opacity, I IV· gp; 11 is the absolute of the dot

11 8

5.6 Context-Preserving Rendering

product between the surface normal and the view direction and ke controls view angle

effect. The I - (kr;) [o .. J] term factors in the curvature for a second time and has the ef­

fect of ensuring lower opacity for samples with low curvature. The term I IP; - E 11 [O .. I]

factors in the di stance of the sample at P; from the view location E. The distance quan­

tity is also normalised to the range [O .. I] such that I I Po - El I = 0 represents a point at

the view location and I I PN -El I = I represents the sample point furthest away from the

camera. The term I IV· gp; 11 has the effect of ensuring surfaces viewed side-on to the

camera will be more opaque and gives important view-dependent edge cues. Finally,

the term 1 - a;_, factors the previously accumulated opacity such that the opacity

contribution of the cun-ent sample is reduced.

There are two adjustable parameters available in Eq.5.4, ks and k1• k1 controls the

the amount of opacity reduction and relates to the distance factor. With high values

for k1 the opacity of samples closer to the camera are reduced, as shown in Figure 2.

The ks parameter controls the sharpness of transition between high and low opacity

contribution. A low value for ks will result in a smooth transition while a high value

for ks will result in a sudden transition between low and high opacity, as shown in

Figure 2.

5.6.2 Focus Region

Being able to specify a location of interest and rendering that area differently can be

important for users. Our approach is derived from the work by Kruger [169] who

chose between the unit distance and curvature value of a sample point to modulate the

opacity contribution of a sample.

We define a region of interest by defining a focus point S and a focus radius h. The

119

5.6 Context-Preserving Rendering

opacity of a sample using a focus region is:

(5 .5)
otherwise

with

(5.6)

where clamp (IIShP;II) computes the unit distance of the sample to the focus point. All

sample points outside the radius are clamped to one I using the clamp function. The

p<irameter kd controls the transition between the low and high opacity within the region

of interest. The opacity modulation defined in Eq.5.5 has the effect of reducing opacity

in a localized region such that if the curvature based modulation if greater than t then

it is chosen instead, as shown in Figure 5.12(a). An obvious derivation of the equation

is to invert the effect of the distance such that the focus point is opaque, as shown in

Figure 5.12(b):

(5.7)

however this rendering on may not be useful on its own. An additional method is a

combination of both effects to give a supporting perception cue for a user:

with

120

if /3 > m(P;)

otherwise

if t = 1

otherwise

(5.8)

(5.9)

5.7 Summary

where t is defined in Eq.5.6. The effect is to have the focus point and the area outside

double the focus radius rendered using the feature modulation, while the area inside

double the focus radius is rendered using the distance modulation if it is greater than

the feature-based modulation. The result of Eq.5.9 is shown in Figure 5.12(c).

5.6.3 Implementation and Results

The work implemented the context-preserving rendering purely in software and on

CPU. The normals and curvature at the segmentation object boundaries were pre­

computed. We store the normals and curvature only for segment boundaries by util­

ising an index volume. The curvature and normals for each boundary position were

pre-calculated and stored prior to rendering. For each boundary position we exam­

ined its neighbor boundary points (of the same segment) and extracted them as spacial

points. We then apply principle component analysis on the found points and calculate

the curvature and normal, for the current boundary point, from the eigen vectors and

values.

The context-preserving rendering was tested using an altered version of the seg­

mented Visible Human head. The size of the head volume is 573 x 330 x 220 and the

results are shown in Fig. 1 and 2.

5.7 Summary

This chapter has presented a semi-automatic segmentation tool accelerated by GPUs.

The segmentation GUI allows a user to paint wanted and unwanted markers directly

onto the volume. These markers then correspond to input data for a support vector

machine. Once trained the SVM is utilized to predict the class of each voxel in the

121

5.7 Summary

volume, which in turn can be visualized with DVR such that only the segmented object

is visible.

The main contribution of this work can be summarized as being;

• The use of incremental SVM to hide the training process while the user supplies

the input.

• The addition of vector labels to simplify the process of finding and unlearning

trained vectors.

• The use of CUDA to accelerate the generation of input vectors.

• The use of CUDA to accelerate the class prediction for each volume voxel.

The results showed that by using Incremental SVM, no noticeable delays where ob­

served after painting of training data. However, while the GPU-based volume classifier

was able to compute the class-predictions for an entire 2563 volume in under a second,

for the general cases, it is not ideal for a truly interactive segmentation. If a user wished

to see a how a segmentation developed, by viewing the whole volume prediction, as

they painting inputs, then a new system would be required. Specifically, SVMs divide

the space with a hyperplane that maximizes the margin between class clusters. As such

we need only attempt to predict the class of volume voxels within the SVM margin,

as only within this area are we to find the hyperplane. Outside of the SVM Margin

a system could simply flood-fill the areas after the boundary between the classes has

been found. With such a system, the number of voxel predictions needed could be

dramatically reduced, so much so as potentially allow real-time volume prediction and

rendering as the user incrementally updates the SVM model.

122

5.7 Summary

(a) (b) (c)

a

(d) (e) (f)

(g) (h) (i)

Figure 5 .10: The left column show the user input data on one volume slice. The middle
column shows the predicted c lass on the same slice, while the right column shows the full
volume prediction with volume rendering. Images (a,b,c) show the segmentation of the basin
from the bonsai data-set. In images (d,e,f) a portion of the engine data-set has been segmented,
while in images (g,h,i) half of the skull data-set as been removed (in addition to the air).

123

5.7 Summary

(a)

(b)

Figure 5.11: Classification results for test case. Prediction time for 2563 voxels: 2. 12 seconds.
Number of vectors 491 (margin), 30 (error), 1377 (reserve). Feature space dimensions: 13

124

5.7 Summary

(a) (b)

(c)

Figure 5.12: Focus region opacity modulation with context-preserving rendering. The focus
point is the left eye. (a) samples become more opaque further away from the focus point in
(a) while they become more transparent in (b). (c) is a combination of both (a) and (b) were
the opacity increase the further away from the focus point, but then decrease outside the focus
region.

125

5.7 Summary

k1 = 1.0 k, = 4.0

ks= 0.4

ks= 0.8

ks = 1.2

Figure 5.13: Context-preserving volume rendering of volumetric segmentation data using
different values fork, and ks

126

5.7 Summary

(a) (b)

(c) (d)

Figure 5.14: Renderings from different view points showing the context-preserving rendering
of segmentation data

127

Chapter 6

Consistent Reconstruction of Surfaces

6.1 Introduction

Consistent results are a fundamental aspect of computer science. Indeed without a

robust method, research may not be entirely reproducible in a consistent and reliable

manner. For many years octrees have been employed for a magnitude of tasks, ranging

from space partitioning to data down-sampling. For such an important tool it is vital

that its use is consistent and reliable. However, as we show in this chapter, it apparent

that even recent research can overlook inconsistencies due to rotation variance resulting

from the use of an octree.

By design the octree is used to partition space into octants, which can recursively

be subdivided. Typically, when applied to a space with some form of spatial data,

the octree is centered and bound to that data; this ensures efficiency, and is widely

practiced. While the sampling of an octree that has been centered and bound to the

data is both position- and scale-invariant, it is not rotation-invariant. This is to say that

if the data was scaled or translated, the octree results would be identical but not if the

128

6.1 Introduction

data was rotated.

In this thesis we explore the important field of surface reconstruction and highlight

recent research where the rotation-variance of octrees has not been addressed. We

provide a method utilizing PCA (Principle Component Analysis) by which rotation­

invariance can be achieved for an octree employed for surface reconstruction. In ad­

dition we show the inconsistency of the previous method and the consistency of our

approach using curvature analysis. Finally, a discussion is given as to how this method

could be applied to volumetric data.

6.1.1 Previous Work

Octrees are have been used extensively in surface reconstruction, from simply pre­

processing input data as done by Kalaiah [148], to allowing efficient handling of large

data-set for smface reconstruction as reported by Kindlmann [I 56]. While this thesis

only explores and proves one example of inconsistency resulting from the use of an oc­

tree, it is possible -but in no way asserted or proven here- that other methods employing

an octree may be rotation-variant and subsequently inconsistent. The method explored

in this thesis (as the case study) was reported by Ohtake [228], who used an an octree

to build a hierarchy of points-sets for use in multi-scale RBF surface reconstruction.

Other examples of Octrees being used for surface reconstruction include the work

by Dalmasso [76], who describes a volumetric approach to surface reconstruction from

nonuniform data. The data volume is split and classified at different scales of spatial

resolution into surface, internal and external voxels and hierarchically described using

an octree.

An automatic and interactive system to repair both the shape and appearance of

129

6.2 Surface reconstruction

defective point sets by utilizing an octree was presented by Park [239]. Octree-based

subdivision was employed by Ohtake [227) for large point sets to reconstruct surface

models using multi-level partition of unity implicit surfaces, while Tabor [296) re­

constructed multi-scale implicit surfaces with attributes, given discrete attributed point

sets. Xie [33 1] organized sample points using an octree for a surface reconstruction

and was able to recover high-quality surfaces from noisy and defective data sets with­

out any normal or orientation information. Finally, Hornung [134] used a octree in

a volumetric method for reconstructing watertight triangle meshes from arbitrary, un­

oriented point clouds.

6.2 Surface reconstruction

Smface reconstruction from unorganized point clouds is an important problem, espe­

cially for the recreation of real world objects that have been digitally scanned. Most

object scanning technologies do not, by design, provide a surface model to be used in­

stantly, but rather supply data by which a surface or an object can be recreated. There

are a variety of sources from which data is obtained. Contour slices, where an object

has been scanned using a CT scanner and an iso-surface has been defined, it a typi­

cal source. Another source is interactive tools, where data is created in real-time by a

user. However, most prominent is range-data, where an object has been scanned using

a laser to measure distances to the areas of an object.

There have been numerous solutions to the surface reconstruction problem. For

examplem Hoppe [132) used an implicit surface model were surface reconstruction

was defined as the zero set of an estimated signed distance function, while Bernardini

[24) used a the rolling ball technique and Curless [75) used a volumetric approach.

130

6.2 Surface reconstruction

Radial Basis Functions were used by Carr [51] to solve a scattered data interpolation

problem and reconstruct surfaces. Alternatively, Nina Amenta [8, 7] used Voronoi

vertices and Delaunay triangulation to create a piece-wise linear approximation of a

smooth surface with better noise reduction.

Typically the problem of reconstructing a surface requires that the input data be

converted to an unorganized point cloud in three-dimensional space. In this paper we

are exploring an approach whereby the surface reconstruction task is cast as a scattered

data interpolation problem and the reconstruction is defined as an implicit surface.

A surface that is not explicitly defined, but rather is embedded within another prop­

erty, is called an implicit surface. A distance field is an example of an implicit surface.

The surface of a distance field is typically defined as zero and all space exterior or in­

terior to the surface is non-zero. Su1face reconstructions based on implicit surfaces is

a popular approach due to a number of advantages it has over other representations. A

particularly noteworthy advantage is the ability of implicit surfaces to easily represent

models of complex topology.

A well known approach for solving the scattered data interpolation problem is a

RBF (Radial Basis Function) Network.

6.2.1 Radial Basis Functions

For the scattered data point interpolation, a RBF network is defined as [250, 125]

N

f (x) = L, wi</J (llx - Xi II) (6.1)
i= I

which satisfies the interpolation conditions f(xi) = Yi where Xi E JR3 are data points,

and Yi E JR are function values. Unlike height-function interpolation, a surface embed-

131

6.2 Surface reconstruction

ded in three-dimensional space is often defined as a zero-level set f(x) = 0.

To avoid the trivial solution that f is zero everywhere, off-surface points are typ­

ically appended to the input data and are given non-zero values Yi i= 0 whilst the on­

surface points are defined with Yi = 0 [82, 299]. The coefficients Wi are determined

by solving a linear system Gw = y which is obtained by inserting the interpolation

conditions into Eq. 6. 1.

If the matrix G is ful1, however, this approach is limited to a small data set; ap­

proximately a thousand points or so. Given a large data set, a naive approach is to

use a small subset of it and discard the remaining data points [82]. A better approach

is to use CSRBFs (Compactly Supported RBFs) since their compact supports lead to

a sparse linear system suitable for a large data set [33]. However, it is sensitive to

the density of scattered data and, therefore, a careful selection of the support size for

CSRBFs is required in surface reconstruction [33].

6.2.2 Multi-Layer Radial Basis Functions

To get around the CSRBFs problems, multi-level interpolation with a point hierarchy

was proposed by Ohtake, et al [228]. Given a set of points 'Y = { x 1, ... , XN} sampled

from a smooth surface, the multi-scale hierarchy of point sets {'Y 1, 'Y2, ••• , 'YM = 'Y} is

first constructed by spatial down sampling. Then the multi -level interpolation proce­

dure proceeds in a coarse-to-fine way with decreasing support sizes. It recursively de­

termines the set of interpolating functions fk(x) = fk - l (x) +ok(x) such that fk(x) = 0

interpolates 'Yk fork= 1,2, ... ,Mand J°(x) = - 1. The offsetting function ok(x) has

the form of

L [gi(x) + wi] </Ja (llx - Pdl) (6.2)
p;E'.Pk

132

6.2 Surface reconstruction

where g;(x) are local polynomial approximations determined via least square fitting to

J>k and ¢er (llx - p;II) are CSRBFs. The coefficients w; are found by solving a linear

system

<l>w=-(f+g) (6.3)

obtained by the interpolation conditions fk(Pj) = 0 for every point Pj E J>k. The

point hierarchy is created using octree-based subdivision. It starts with an axis-aligned

box that encompasses the point set '.J', and is followed by recursive subdivision of the

space and points into eight octants or cells. '.J' is clustered with respect to the cells by

computing centroids of the points in each cell.

Depending on the coordinate system used to represent the points, however, it can

lead to inconsistent surface reconstruction and geometry. For example, surface cur­

vatures are important for matching and registration tasks and can result in different

values even with the same point set if represented in different coordinate systems. An

actual research example, Hadwiger [I 17], not only uses an octree for hierarchical rep­

resentation of a volume, but also explicitly extracts curvature for visualisation, and it

is possible the variance problem affects it too.

The variance, attributed to the coordinate system, is due to the octree subdivision

such that each side of the cells is parallel to an axis of the coordinate system: rotation

is especially problematic, whilst the octree is invariant to other coordinate transforms

such as translation, scaling and flipping.

133

6.3 Consistent Surface Reconstruction using PCA

6.3 Consistent Surf ace Reconstruction using PCA

Ohtake's [228] multi-layer approach does not address the rotation-variance inherent to

octree down-sampling. Indeed we prove later that an arbitrarily aligned octree results

in inconsistencies in the surface reconstruction. Such inconsistencies could result in

difficulty during object mark-up and reconstruction comparison, where consistency is

vital.

To solve the problem of rotation-variance we turn to PCA (Principle Component

Analysis). PCA involves a linear transformation of a data-set, such that the first princi­

ple component is the data-set projection with the greatest variance, the second principle

component is the second greatest variance and so on. The first three principle compo­

nents can be viewed as the cartesian axis defining the intrinsic orientation of the data.

The appeal of this method is that any coordinate transformations applied to the data set

will also effect its intrinsic orientation.

We arrive at an orthogonal coordinate system (the intrinsic-orientation of the data)

from calculating the eigenvectors of the covariance matrix

C = DD7

where D = [x 1 - x, ... , XN - x] and x = ~ r,7= 1 x;. We then orientate the octree to the

data using this coordinate system.

This approach is different than that of Kalaiah [148], where PCA is used on a group

of points structured in an octree and used to determine the local orientation frame of

the group, as we are re-orientating the entire octree prior to space partitioning and

centroid calculation. In the work by Kalaiah [148] rotation-variance of octrees was not

addressed either.

134

6.4 Flexible Basis Functions

PCA has been widely used for the representation of shape, appearance and motion

in the computer graphics field. For example, Sloan [286] compressed the storage, and

accelerated performance, of pre-computed radiance transfer (PRT), which captures the

way an object shadows, scatters, and reflects light, using clustered principal component

analysis. Compressed representation of lighting information was also achieved using

PCA in the work by Kristensen [167]. Other uses of PCA include, human face recogni­

tion (Feng [93]), and silhouette recognition (Gouaillier [l 05]). In addition, Torre [297]

provided Robust PCA (RPCA) for computer vision that improved PCA representation

of shape, appearance, and motion.

6.4 Flexible Basis Functions

For a wider choice of basis functions, we can use an approximation scheme. In the

aforementioned interpolation approach, the down-sampled points p J E pk serve as both

the basis centres and the data points as in Eq. 6.2 and 6.3, and only a few types of func­

tions can make the linear system in Eq. 6.3 solvable. In the proposed approximation

approach, we use pk only for the basis centres and P = { x1, ••• , XN} for the data points.

In this approximation scheme, we may obtain a linear system equivalent to Eq. 6.3 from

the conditions fk(x;) = 0. However, it is over-determined since the number of the basis

functions is less than that of the data points, i.e., I Pk I < IPI. As the least square solu­

tion, instead, we can determine the weights w; by solving the following linear system

<l>T <l>w = -<PT (f + g). (6.4)

135

6.5 Experiments

In choosing the basis functions, this approximation scheme provides more flexibility

than the interpolation does since there are more functions making Eq. 6.4 solvable than

those for Eq. 6.3.

6.5 Experiments

In order to show the consistency of our method we analyzed the curvature of the re­

constructed models. We used the curvature calculation method provided by Kindlmann

[I 56] to calculate the mean curvature at each center.

First we formed two copies a 54K point-set, sampled from squirrel a data-set, and

applied a rotation of 70 degrees around the y-axis to one of them. We then applied

the PCA-Octree reorientation step on both data sets. After fitting two multi-scale

CSRBFs, we calculated the mean curvature for each data-set. Figure 6. 1 shows the

curvature residual of two experiments: one with the PCA-Octree orientation step and

one without. When the octrees are aligned with the input coordinate systems as in

[228], they show noticeable discrepancies in these curvature values: 8.2 on average.

When aligned with the PCA coordinate system as proposed, they show virtually no

discrepancies: 1.0 * 10- 4, of which attributed to numerical inaccuracy. ;

We also experiment with the approximation scheme for the reconstruction and

compare its results with that of the interpolation (Fig. 6.2). In addition to the afore­

mentioned CSRBFs, we use simpler basis functions </>(r) = (1 - ~): which would

be not usable in the interpolation scheme. These basis functions only need to compute

,2, but not r which would involve expensive computation of sqrt() as in the CSRBFs

whilst the reconstruction qualities are comparable.

136

6.6Summary

6.6 Summary

This chapter has reviewed the utilization of octrees and PCA in current research. An

exploration of leading research shown that the rotation-variance inherent to octrees

when partition a space and spatial data was not being accounted for. By examin­

ing Ohtake's [228] multi-scale CSRBFs surface reconstruction technique a method

for rotation-invariance by utilizing PCA was presented. It was shown that employing

the PCA-Octree method produces consistent reconstructions. To evaluate and prove

the claim, curvature analysis was performed and results compared. It was shown that

the presented method resulted in consistency in surface reconstruction of arbitrarily­

orientated data. Finally, this chapter also introduced flexibility to multi-scale CSRBFs

by employing RBF approximation.

The approach described in this chapter could also be applied to volumetric data.

For example, multiple CT or MRI scans of a patient may have minor variances in

regard to rotation. Subsequently, space-division using an Octree or Kd-tree and the

algorithms which depend on these hierarchy structures may have rotation variance in

results. The application of PCA to acquire the data-variance and the transformation

of the volume data such that the 3-principle components are aligned to the axis of the

regular grid would help ensure more consistent results when comparing patient data.

A typical scenario might be a patient with a brain tumor and multiple CT scans over

many months, where minor changes in head position might result in rotation variance.

Alternatively,

As CT data is typically reconstructed using the Radon Transform [48], future re­

search might be to analyze the scanned data prior to the application of the inverse

Radon transform and the discrete storage of the resulting volume in a regular grid.

137

6.6 Summary

This would help to reduce numerical error, which might be a problem if an existing

volume was simply re-sampled along new axes; i.e. in order to align the data.

138

6.6 Summary

yy

. ~:

: ,_
1
};:~:;,~?'Y'i.~ ·

r

(a) (b)

(c) (d)

Figure 6.1: Surface reconstruction invariant to coordinate transforms. (a) the input data set
represented by two different coordinate systems; (b) an example of surface reconstruction; (c)
discrepancies in mean curvatures between the reconstructed surfaces with the octrees aligned
to the input coordinate systems (the darker, the wider discrepancy); (d) discrepancies when
aligned to the PCA coordinate system.

139

6.6 Summary

(a) (b)

Figure 6.2: Interpolation vs. approximation. Surface reconstructions using (a) the interpola­

tion and (b) the approximation scheme both using <f> (r) = (1 - '!i): (4-!i + l)

140

Chapter 7

Conclusions

This chapter summarizes the thesis and outlines the original contributions.

7.1 Kd-Jump

This thesis has presented Kd-Jump, a stack.Jess traversal of implicit kd-trees for faster

isosurface raytracing. It was shown that Kd-Jump can outperform both stackless and

stack-based approaches, while only needing a fraction of memory compared to a stack­

based approach. Further, Kd-Jump exploits the index-based referencing used for im­

plicit kd-trees to achieve traversal-paths equivalent to a stack-based method, without

incurring the extra node visitation of kd-restart.

To further strengthen kd-tree, this work introduced Hybrid Kd-Jump. Hybrid Kd­

Jump utilises a volume stepper for leaf testing and a run-time depth threshold to define

where kd-tree traversal stops and volume stepping occurs. By using both methods one

gains the benefits of empty-space removal and hardware-based texture interpolation.

It was shown that Hybrid Kd-Jump performs well at removing empty space and can

outperform a brute-force ray-tracer.

Memory usage for an implicit kd-tree may be too large if min/max pairs are stored

141

7.2 Real-time Segmentation

in each node. This work has shown that, if the conditions for the current isosurface are

moved out of traversal and into the tree nodes themselves, then significantly less mem­

ory is required. In addition, even with a naive implementation, updating the implicit

kd-tree for a large volume was shown to be quite fast on modem GPU architecture.

Further, the usefulness of loading new rays once a warp of threads completes was

reported and shows promising results for faster ray tracing. Additionally, this work

discussed and examined the separation of the ray-tracing pipeline into separate kernels,

and showed that the methodology has some promise for better efficiency.

7.2 Real-time Segmentation

A tool for real-time semi-automatic segmentation was presented. The tool utilized a

support vector machine, which was trained with user generated input. The input was

captured from a paint plane, whereby the user would paint upon a 2D visualization of a

volume slice, either classifying voxels as wanted or unwanted features. Painted voxels

where then converted to input vectors and given to the SVM for training. Once the

SVM was trained, the remaining volume was segmented into wanted or unwanted by

using the SVM to predict the volume voxel classes.

Real-time segmentation was attained by using incremental SVM. Incremental SVM

allows new inputs to be trained on the fly, without the need to retrain the entire SVM

with all inputs. This allows a user to progressively define segmentation objects over

time, without there being a noticeable delay once painting stops. In addition, the work

included an input labeling mechanism, which allowed for easier management of input

vectors, such that if a voxel input needed to be unlearned then corresponding support

vector in the SVM could be found.

Further, in order to ensure the class prediction of the volume did not cause a large

142

7 .3 Consistent Surface Reconstruction

delay, this work utilized the power of GPUs (CUDA). By using CUDA kernels, the

high-parallel task of performing an SVM evaluation for each voxel was accelerated

tenfold, when compared to a CPU implementation. There were two aspects accelerated

by CUDA in regard to voxel class prediction: generation of the input vectors (i.e.,

converting a volume voxel into a test vector for use in the SVM) and the evaluation of

the voxel vector with the SVM support vectors.

7.2.1 Context-Preserving Rendering

A visualization method for context-preservation was introduced for segmentation data.

By directly visualising the segmentation data, rather than the underlying volume, it was

shown that anatomical features could be observed. By only requiring the segmentation

data, memory could be saved as only the boundaries of segmentation objects needed

to be stored.

The work focused on the curvature information present at the boundaries and used

this information for the context-preserving visualisation. By using the curvature infor­

mation, derived from applying PCA to the boundary, it was shown that a user could

adjust simple parameters in order to see deeper into the volume. For example, it was

possible to see through the skin and skull of a human head in order to observe the

brain. However, any features on the skull or skin with high context were still visible.

7 .3 Consistent Surface Reconstruction

This work has reviewed the use of octrees and PCA in current research. This thesis

explored, using a surface reconstruction case-study, how leading research does not ac­

count for the rotation-variance inherent to octrees when partition a space and spatial

data. It was shown that not accounting for the problem produces inconsistent results

143

7.4 Future Work

within derived techniques. As a case-study, the surface reconstruction approach utiliz­

ing an octree and CSRBFs, was explored ..

The work examined Ohtake's [228] multi-scale CSRBFs surface reconstruction

technique and presented a method for rotation-invariance by utilizing PCA. PCA was

used to re-orientate the scattered data points prior to fitting; in-effect orientating the

octree to the intrinsic-orientation of the data-set defined by the data variance. It was

shown that employing the PCA-Octree method produces consistent reconstructions

and consistent analysis results, such as curvature analysis, of arbitrarily-orientated

data. In addition the work also introduced flexibility to multi-scale CSRBFs by em­

ploying RBF approximation. This work utilized RBF approximation and provided an

example of a computationally inexpensive (relatively) compact support radial basis

function , which was shown to produce similar results as the standard method.

7.4 Future Work

This section details two possible methods for future work, based on the work presented

in this thesis. Also examined is the future direction other researchers have indicted in

recent work.

7.4.1 View-Dependent Isosurface Rendering

One interesting outcome of the work detailed in this thesis, in relation to the Hybrid

Kd-Jump method presented, is that GPU hardware is so fast that actually performing

brute-force ray-tracing can be faster than using an acceleration structure; in certain

situations. Future work based on this thesis will examine whether view dependence

can lead to building an acceleration structure per-frame that is highly optimized for the

topology of the local volume regions. Specifically, nodes where the isosurface runs

144

7.4 Future Work

tangential to the view rays and where the majority of rays will pass through empty

space, can be further sub-divided. On the other hand, if the majority of rays are likely

to intersect the isosurface, then we do not require sub-dividing the node. The main

difficulty of this method is performing the BVH tree build in real-time per-frame and

developing an heuristic to determine (or estimate) whether node-splitting should be

performed.

7.4.2 Instantaneous Volumetric Feedback during SVM Training

The segmentation method detailed in this thesis allows a user to train an SVM using

paint tools, such that the SVM is actually incrementally learning during the paint pro­

cess. This facilitated far less delays when compared to a batch SVM learner. The

main draw-back is that the volume cannot be visualised during the paint process, as

performjng the class prediction for each voxel is computationally expensive, even if

accelerated by a GPU.

Future work will exploit the nature of SVMs in order to reduce the number of

voxels needing SVM predictions. Specifically, by realizing that an SVM builds a hy­

perplane with a margin separating two regions, we can deduce that only the margin

region will contain changes to the voxel class. As such a GPU-based margin/voxel

follower could be developed. The method would only perform SVM predictions in the

likely places that will define the boundary, in the remaining areas, a simple flood fill

will suffice. Seed points for the algorithm would be the margin-vector set provided by

the Incremental SVM model.

With such a method it would be possible to visualize the training process, as the

user paints training data, using volume rendering. An alternative method would be

to only concern ourselves with the absolute boundary and not flood-fill the remaining

145

7.4 Future Work

areas. Instead, we can apply the method for context-preserving rendering, as presented

in this thesis, to visualize the boundary information, as only areas with curvature and

gradient changes contribute to the visualization; i.e. areas inside the objects, as defined

by the segmentation ID, have no gradient.

7 .4.3 Overview of Research Trends

It is likely that DVR will see further enhancements for speed, with the visual infor­

mation portrayed and accuracy when combining other methods, such as Isosurface

visualization [162] and Ambient Occlusion [2 14]. Research by Knoll [162] already

provides a method to accurately detect sharp peaks in the transfer function such that

thin-surfaces are correctly rendered in DVR. Further research may be to incorporate

affine arithmetic, which is computational expensive, to improve intersection results

and further improve accuracy.

Advances in the rendering of implicit surfaces is also likely, as reported in the

leading research by Singh [285]. In their work they repo1t several research directions,

ranging from incorporating image-space acceleration techniques and exploiting ray

coherence using ray beams. Also discussed is the open problem of Ray-tracing para­

metric surfaces, such as the 18th degree polynomial resulting from applying Kajiya's

[145] technique to bicubic surfaces.

The ray tracing of point-based models has also seen renewed interest. A recent

paper by Kashyap [150] details an improved method for large data; although at only

interactive frame rates. Improving speed appears to be an ongoing challenge in this

area of visualization. The work shows the continued trend to increase data-size and

visual complexity as computational power also increases.

Real-time construction of acceleration structures, rather than constructing them as

146

7.4 Future Work

a pre-process, appears to be a current tread for ray tracing. Specifically, animated

scenes, where the geometry is constantly changing are likely to be further explored as

a research problem. Recent advancements by Lauterbach [183) have shown that GPUs

can be used for this task and that a robust system for building a scene graph and ray

tracing it in real-time is achievable.

It is clear that ray tracing will appear to be useful in more applications, including

games, in the next decade. NVidia have recently released a ray tracing API for their

CUDA-enabled GPUs called Optix [224). Like OpenRT [309), it provides a simple

API for application developers to integrate ray tracing into their software for high­

quality visualization and effects. Future developments are likely to be either integration

of ray tracing methods into existing graphics APis, such as DirectX or OpenGL, or the

formation of a new and standardized graphics APL

147

References

[l] The tao framework. http://sourceforge.net/projects/taoframework/,
2008. 112

[2] R. Adams and L. Bischof. Seeded region growing. IEEE Transactions on Pat­
tern Analysis and Machine Intelligence, pages 641- 647, 1994. 45

[3] M. Ahmed and A. Farag. Two-stage neural network for volume segmentation of
medical images. Pattern Recognition Letters, 18(11-13): 1143- 115 l , 1997. 47

[4] T. Aila and S. Laine. Understanding the efficiency of ray traversal on GPUs.
In Proc. 1st ACM conference on High Pe,formance Graphics, pages 145- 149.
ACM, 2009. 27

[5] J. Amanatides. Ray tracing with cones. In ACM SIGGRAPH Computer Graph­
ics, pages 129- 135. ACM, 1984. 24

[6] J. Amanatides and A. Woo. A fast voxel traversal algorithm for ray tracing. In
Eurographics, volume 87, pages 3- 10, 1987. 26, 36

[7] N. Amenta and M. Bern. Surface reconstruction by voronoi filtering. Discrete
and Computational Geometry, 22:481- 504, 1999. 131

[8] N. Amenta, M. Bern, and M. Kamvysselis. A new voronoi-based surface recon­
struction algorithm. In ACM SIGGRAPH Computer Graphics, pages 415-421,
1998. 131

[9] M. Amin, A. Orama, and V. Singh. Fast volume rendering using an efficient,
scalable parallel formulation of the shear-warp algorithm. In Proc. IEEE Sym­
posium on Parallel Rendering, pages 7- 14. ACM, 1995. 34

[1 OJ K. Anagnostou, T. Atherton, and A. Waterfall. 4D volume rendering with the
Shear Warp factorisation. In IEEE Transactions on Visualization and Computer
Graphics, pages 129 - 137. ACM, 2000. 35

148

REFERENCES

[11] S. Anderson. Bit twiddling hacks. http://graphics.stanford.edu/
~seander/bithacks.html,2005. 77, 92

[12] N. Andrysco and X. X Tricoche. Matrix Trees. In To Appear:
Eurographics/IEEE-VGTC Symposium on Visualization, volume 29. 54

[13] A. Appel. Some techniques for shading machine renderings of solids. In Pro­
ceedings of the April 30-May 2, 1968, spring joint computer conference, pages
37-45. ACM, 1968. 8, 24

[14] S. Armato, F. Li, M. Giger, H. MacMahon, S. Sone, and K. Doi. Lung Cancer:
Performance of Automated Lung Nodule Detection Applied to Cancers Missed
in a CT Screening Program. Radiology, 225(3):685-692, 2002. 44

[15] S. Armato III, M. Giger, and H. MacMahon. Automated detection of lung nod­
ules in CT scans: preliminary results. Medical Physics, 28(8): 1552- 1561 , 2001.
44

[16] S. Armato III and W. Sensakovic. Automated lung segmentation for thoracic
CT:: Impact on computer-aided diagnosis. Academic radiology, I 1 (9): 1011-
1021 , 2004. 44

[17] J. Arvo and D . Kirk. A Survey of Ray Tracing Acceleration Techniques. pages
201-262, 1989. 35

[18] P. Atherton, K. Weiler, and D. Greenberg. Polygon shadow generation. ACM
SIGGRAPH Computer Graphics, 12(3):275-28 1, 1978. 24

[19] M. Atkins and B. Mackiewich. Fully automatic segmentation of the brain in
MRI. IEEE Transactions on Medicallmaging, 17(1):98- 107, 1998. 44

[20] C. Bajaj, V. Pascucci, D. Thompson, and X. Zhang. Parallel accelerated iso­
contouring for out-of-core visualization. In Proc. IEEE symposium on Parallel
visualization and graphics, pages 97-104. IEEE Computer Society, 1999. 12

[21] P. Bakkum and K. Skadron. Accelerating SQL Database Operations on a GPU
with CUDA. pages 94- 103, 20 I 0. 40

[22] J. Bentley. Multidimensional binary search trees used for associative searching.
CommunicationsoftheACM, 18(9):509- 517, 1975. 36

[23] J. Bentley and J. Friedman. Data structures for range searching. ACM Comput­
ing Surveys, 11 (4):397-409, 1979. 38

149

REFERENCES

[24] F. Bernardini, J. Mittleman, H. Rushmeir, and C. Silva. The ball-pivoting algo­
rithm for surface reconstruction. IEEE Transactions on Vision and Computer
Graphics,5(4), 1999. 130

[25] J. Bezdek, R. Ehrlich, et al. FCM: The fuzzy c-means clustering algorithm.
Computers & Geosciences, 10(2-3):191-203, 1984. 47

[26] B. Bilgi~. Fast Human Detection with Cascaded Ensembles. PhD thesis, Mas­
sachusetts Institute of Technology, 20 l 0. 40

[27] A. Bleau and L. Leon. Watershed-based segmentation and region merging.
Computer Vision and Image Understanding, 77(3):317-370, 2000. 46

[28] J. Blinn. Models of light reflection for computer synthesized pictures. ACM
SIGGRAPH Computer Graphics, 11 (2): 192 - 198, 1977. 56

[29] J. Blinn. Simulation of wrinkled surfaces. In ACM SIGGRAPH Computer
Graphics, pages 286-292. ACM, 1978. 24

[30] J. Blinn. Light reflection functions for simulation of clouds and dusty surfaces.
In ACM SIGGRAPH Computer Graphics, pages 21-29. ACM, 1982. 24, 25

[31] J. Blinn and M . Newell. Texture and reflection in computer generated images.
Communications of the ACM, 19(10):542- 547, 1976. 24

[32] D. Blythe. The direct3d 10 system. In ACM SIGGRAPH Computer Graphics,
page 734. ACM, 2006. 39

[33] B.Morse, T.Yoo, and D.Chen. Interpolating implicit surfaces from scattered sur­
face data using compactly supported radial basis functions. In Shape Modeling
& Applications, pages 89-98, 2001. 132

[34] B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin
classifiers. In Workshop on Computational Learning Theory, pages 144- 152.
ACM, 1992. 99

[35] J. Bouknight and K. Kelley. An algorithm for producing half-tone computer
graphics presentations with shadows and movable light sources. In Proceedings
of the May 5-7, 1970, spring joint computer conference, pages 1- 10. ACM,
1970. 24

[36] H. Bourquain, A. Schenk, F. Link, B. Preim, G. Prause, and H. Peitgen. Hep­
a Vision2: A software assistant for preoperative planning in living-related liver
transplantation and oncologic liver surgery. Computer Assisted Radiology and
Surgery,pages341-346, 2002. 43

150

REFERENCES

[37] S. Bruckner, S. Grimm, and A. Kanitsar. Illustrative Context-Preserving Ex­
ploration of Volume Data. IEEE Transactions on Visualization and Computer
Graphics, 12(6): 1559- 1569, 2006. 23, 42, 43, 117

[38] S. Bruckner, S . Grimm, A. Kanitsar, and M. Gremer. Illustrative context­
preserving volume rendering. In Proc. of Euro Vis 05, pages 69-76, 2005. 54

[39] S. Bruckner and M. Grolier. Volumeshop: An interactive system for direct vol­
ume illustration. In IEEE Transactions on Visualization and Computer Graph­
ics, volume 5, pages 671-678, 2005. 56

[40] S. Bruckner and M. Grolier. Style transfer functions for illustrative volume
rendering. In Computer Graphics Forum, volume 26, pages 715-724. Blackwell
Publishing, 2007. 42

[41] M. Brummer, R. Mersereau, R. Eisner, and R. Lewine . Automatic Detection
of Brain Contours in MRI Data Sets. In Proceedings of the 12th International
Conference on Information Processing in Medical Imaging, page 204. Springer­
Verlag, 1991. 44

[42] D. Bucciarelli. Smallptcpu vs smallptgpu. http: //davibu. interfree. it/
opencl/smallptgpu/smallptGPU.html,2010. 40

[43] I. Buck, T. Foley, D . Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Han­
rahan. Brook for GPUs: stream computing on graphics hardware. In ACM
SIGGRAPH Computer Graphics, page 786. ACM, 2004. 40

[44] M. Bunnell. Dynamic ambient occlusion and indirect lighting. GPU Gems,
2:223- 233, 2005. 24

[45] C. Burges. A tutorial on support vector machines for pattern recognition. Data
mining and knowledge discovery, 2(2): 121- 167, 1998. 99

[46] H. Byun and S. Lee. Applications of support vector machines for pattern recog­
nition: A survey. Pattern Recognition with Support Vector Machines, 2002. 59

[47] J. Caban and P. Rheingans. Texture-based Transfer Functions for Direct Vol­
ume Rendering. IEEE Transactions on Visualization and Computer Graphics,
14(6):1364-1371, 2008. 60

[48] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and tomo­
graphic reconstruction using texture mapping hardware. In Proc. Volume Visu­
alization, pages 91- 98. ACM, 1994. 31 , 137

151

REFERENCES

[49] P. Campadelli and E. Casiraghi. Liver Segmentation from CT Scans: A Survey.
In Proc. 7th international workshop on Fuzzy Logic and Applications, pages
520-528. Springer-Verlag, 2007. 45

[50] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions.
Computational Geometry: Theory and Applications, 24(2):75-94, 2003. 44

[51] J. C. Carr and R. K. Beatson. Reconstruction and representation of 3d objects
with radial basis functions. In ACM SIGGRAPH Computer Graphics, pages
67-76, 2001. 131

[52] N. Carr, J. Hall, and J. Hart. The ray engine. In Proc. ACM SIG-
GRAPH/EUROGRAPHICS Graphics hardware, pages 37-46. Eurographics As­
sociation, 2002. 27

[53] N . Carr, J. Hoberock, K. Crane, and J. Hart. Fast GPU ray tracing of dynamic
meshes using geometry images. In Proceedings of Graphics Interface 2006,
pages 203-209. Canadian Info1mation Processing Society, 2006. 53

[54] J. Cates, A. Lefohn, and R. Whitaker. GIST: an interactive, GPU-based level set
segmentation tool for 3D medical images. Medical Image Analysis, 8(3):217-
231, 2004. 59

[55] G. Cauwenberghs and T. Poggio. Incremental and decremental support vector
machine learning. Advances in neural information processing systems, pages
409-415, 2001. 102, 103

[56] S. Chan and E. Purisima. A new tetrahedral tesselation scheme for isosurface
generation. Computers & Graphics, 22(1):83-90, 1998. 9

[57] C. Chang and C. Lin. LIBSVM: a library for support vector machines. http :
//www . csie . ntu. edu . tw/-cjlin/libsvm/, 2001. 106

[58] J. Charles, L. Kuncheva, B. Wells, and I. Lim. Stability of Kerogen Clas­
sification with Regard to Image Segmentation. Mathematical Geosciences,
41 (4):475-486, 2009. 44

[59] H. Chen, F. Samavati, and M. Sousa. GPU-based point radiation for interac­
tive volume sculpting and segmentation. The Visual Computer, 24(7):689-698,
2008. 60

(60] S. Chen and R. Radke. Level Set Segmentation with Both Shape and Intensity
Priors. In Proc. International Conference on Computer Vision, 2009. 46

152

REFERENCES

[61] W. Chen, L. Ren, M. Zwicker, and H. Pfister. Hardware-accelerated adaptive
EWA volume splatting. In Proceedings of IEEE Visualization 2004, Oct. 2004.
32, 33

[62] Y. Chiang. Out-of-core isosurface extraction of time-varying fields over i1Teg­
ular grids. IEEE Transactions on Visualization and Computer Graphics, pages
217-224, 2003. 12

[63] Y. Chiang, C. Silva, and W. Schroeder. Interactive out-of-core isosurface ex­
traction. In IEEE Transactions on Visualization and Computer Graphics, pages
167-174. IEEE Computer Society Press, 1998. 12, 14

[64] P. Cignoni, P. Marino, C. Montani, E. Puppo, and R. Scopigno. Speeding up
isosurface extraction using interval trees. IEEE Transactions on Visualization
and Computer Graphics, 3(2):158-170, 1997. 11

[65] M. Clark, L. Hall, D. Goldgof, L. Clarke, R. Velthuizen, and M. Silbiger. MRI
segmentation using fuzzy clustering techniques. IEEE Engineering in Medicine
and Biology Magazine, 13(5):730- 742, 1994. 47

[66] L. Clarke, R. Velthuizen, M. Camacho, J. Heine, M. Vaidyanathan, L. Hall,
R. Thatcher, and M. Silbiger. MRI segmentation: methods and applications.
Magnetic Resonance Imaging, 13(3):343-368, 1995. 43

[67] H. Cline, W. Lorensen, R. Kikinis, and F. Jolesz. Three-dimensional segmen­
tation of MR images of the head using probability and connectivity. Journal of
Computer Assisted Tomography, 14(6): 1037, 1990. 44

[68] I. Cohen, L. Cohen, and N. Ayache. Using deformable surfaces to segment 3-D
images and infer differential structures. In Computer Vision, pages 648-652.
Springer. 47

[69] D. Collins, C. Holmes, T. Peters, and A. Evans. Automatic 3-D model-based
neuroanatomical segmentation. Human Brain Mapping, 3(3):190-208, 2004.
44

[70] C. Correa and K. Ma. Size-based Transfer Functions: A New Volume Explo­
ration Technique. IEEE Transactions on Visualization and Computer Graphics,
14(6):1380- 1387, 2008. 61

[71] C. Cortes and V. Vapnik. Support-vector networks. Machine learning,
20(3):273-297, 1995. 101

153

REFERENCES

[72] M. Cox and D. Ellsworth. Application-controlled demand paging for out-of­
core visualization. In IEEE Transactions on Visualization and Computer Graph­
ics, pages 235-243. IEEE Computer Society Press, 1997. 36

[73) C . Crassin, F. Neyret, S. Lefebvre, and E. Eisemann. Gigavoxels : Ray-guided
streaming for efficient and detailed voxel rendering. In ACM SIGGRAPH Sym­
posium on Interactive JD Graphics and Games, Boston, MA, Etats-Unis, feb
2009. ACM, ACM Press. 23, 28, 51

[74] T. Cullip and U. Neumann. Accelerating volume reconstruction with 3d texture
hardware. Technical report, 1994. 31

[75) B. Curless and M. Levoy. A volumetric method for building complex models
from range images. In ACM SIGGRAPH Computer Graphics, pages 303 - 312,
1996. 130

[76) P. Dalmasso and R. Nerino. Hierarchical 3d surface reconstruction based on
radial basis functions. In JD Data Processing, Visualization and Transmission,
pages 574- 579, September 2004. 129

[77) H. Dammertz, J. Hanika, and A. Keller. Shallow bounding volume hierarchies
for fast SIMD ray tracing of incoherent rays. In Computer Graphics Forum,
volume 27, pages 1225- 1233. Blackwell Publishing, 2008. 38

[78] J. Danskin and P. Hanrahan. Fast algorithms for volume ray tracing. In Proc.
1992 workshop on Volume visualization, pages 91-98. ACM, 1992. 17

[79) C. Diehl and G. Cauwenberghs. Incremental svm learning. http ://www.
cpdiehl.org/incrementalSVM.html,2003. 105

[80) C. Diehl and G. Cauwenberghs. SVM incremental learning, adaptation and
optimization. In Proceedings of the 2003 International Joint Conference on
Neural Networks, pages 2685-2690, 2003. I 03, 104, I 05

[81] J. Diepstraten, D. Weiskopf, and T. Ertl. Transparency in Interactive Technical
Illustrations. Computer Graphics Forum, 21(3):317-325, 2002. 43

[82) H. Q. Dinh, G. Turk, and G. Slabaugh. Reconstructing surfaces by volumet­
ric regularization using radial basis functions. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(10): 1358-1371, October 2002. 132

[83) L. Doctor and J. Torborg. Display techniques for octree-encoded objects. IEEE
Computer Graphics and Applications, I (3):29- 38, 1981. 37

154

REFERENCES

[84] R. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. In ACM SIG­
GRAPH Computer Graphics, pages 65-74. ACM New York, NY, USA, 1988.
20, 25, 41

[85] R . Duda, P. Hart, and D. Stork. Pattern classification. Wiley Interscience, 2001.
47

[86] M. Durst. Letters: Additional reference to marching cubes. Computer Graphics,
22(2):72-73, 1988. 9

[87] D. Ebert and P. Rheingans. Volume illustration: Non-photorealistic rendering of
volume models. IEEE Visualization 2000 Proceedings, pages 195-202, 2000.
8,43

[88] T. Elvins. A survey of algorithms for volume visualization. ACM SIGGRAPH
Computer Graphics, 26(3): 194-201 , 1992. 23

[89] K. Engel, M . Hadwiger, C. Rezk-Salama, and J. Kniss. Real-time volume graph­
ics. AK Peters Ltd, 2006. 16, 19, 23

[90] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated volume
rendering using hardware-accelerated pixel shading. In Proc. ACM SIG­
GRAPHIEUROGRAPHICS workshop on Graphics hardware, pages 9-16.
ACM New York, NY, USA, 2001. 11 , 14, 18, 2 1, 54

[91] A. Falcao and F. Bergo. Interactive volume segmentation with differential im­
age foresting transforms. IEEE Transactions on Medical Imaging, 23(9): I 100-
1108, 2004. 46

[92] E. Farrell . Color display and interactive interpretation of three-dimensional data.
IBM Journal of Research and Development, 27(4):356-366, 1983. 20

[93] G. C. Feng, P. C. Yuen, and D. Q. Dai. Human face recognition using pea on
wavelet subband. Journal of Electronic Imaging, 9(2):362, 2000. 135

[94] T. Foley and J. Sugerman. Kd-tree acceleration structures for a gpu raytracer. In
Proc. ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,
pages 15-22. ACM, 2005. 28, 30, 50, 51, 52, 57

[95] T. Foley and J. Sugerman. KD-tree acceleration structures for a GPU raytracer.
In ACM SIGGRAPH Computer Graphics, pages 15-22. ACM, 2005. 37, 53

[96] H. Friedrich, I. Wald, J. Gunther, G. Marmitt, and P. Slusa!Jek. Interactive Iso­
Surface Ray Tracing of Massive Volumetric Data Sets. In Proc. Eurographics
Symposium on Parallel Graphics and Visualization, 2007. 13, 23

155

REFERENCES

[97] K. Fu and J. Mui. A survey on image segmentation. Pattern recognition,
13(1):3- 16, 1981. 43

[98] H. Fuchs, Z. Kedem, and S. Uselton. Optimal surface reconstruction from planar
contours. Communications of the ACM, 20(I 0):693-702, 1977. 9

[99] A. Fujimoto, T. Tanaka, and K. Iwata. Arts: Accelerated ray-tracing system.
IEEE Computer Graphics and Applications, pages 16- 26, 1986. 26, 36

[100] A. Glassner. Principles of digital image synthesis. Morgan Kaufmann, I 995.
16

[I 01] E. Gobbetti, F. Marton, and J. Iglesias Guitian. A single-pass GPU ray casting
framework for interactive out-of-core rendering of massive volumetric datasets.
The Visual Computer, 24(7):797-806, 2008. 36

[I 02] J. Goldsmith and J. Salmon. Automatic creation of object hierarchies for ray
tracing. IEEE Computer Graphics and Applications, 7(5):14- 20, 1987. 37

[103] A. Gooch, B. Gooch, P. Shirley, and E. Cohen. A non-photorealistic light­
ing model for automatic technical illustration. In ACM SIGGRAPH Computer
Graphics, pages 447-452, 1998. 56

[104] C. Goral, K. Ton-ance, D. Greenberg, and B. Battaile. Modeling the interac­
tion of light between diffuse surfaces. ACM SIGGRAPH Computer Graphics,
18(3):213- 222, 1984. 24

[105] V. Gouaillier, L. Gagnon, and G. T. Andrew. Ship silhouette recognition using
principal components analysis. In Applications of digital image processing,
volume 3164, pages 59-69, 1997. 135

[106] N. Govindaraju, S. Larsen, J. Gray, and D . Manocha. A memory model for
scientific algorithms on graphics processors. Proc. IEEE/ACM Supercomputing,
pages 89- 99, 2006. 91

[l 07] M. Grob, C. Lojewski, M. Bertram, and H. Hagen. Fast implicit kd-trees: Accel­
erated isosurface ray tracing and maximum intensity projection for large scalar
fields. In Computer Graphics and Imaging, pages 67-74, 2007. 13, 55

[108] A. Gueziec and R. Hummel. Exploiting triangulated surface extraction using
tetrahedral decomposition. IEEE Transactions on Visualization and Computer
Graphics, 1(4):328 - 342, 1995. 9

156

REFERENCES

[109] J. Gunther, S. Popov, H. Seidel, and P. Slusallek. Real time ray tracing on GPU
with BVH-based packet traversal. In IEEE Symposium on Interactive Ray Trac­
ing, pages 113-118, 2007. 38

[110] J. Gtinther, S. Popov, H.-P. Seidel, and P. Slusallek. Real time ray tracing on GPU
with BVH-based packet traversal. In Proceedings of the IEEE/Eurographics
Symposium on Interactive Ray Tracing 2007, pages 113-118, Sept. 2007. 38

[111] L. Guo and X. Mei. Implementation and Improvement Based on Shear-Warp
Volume Rendering Algorithm. In Computer Engineering and Technology, vol­
ume 1, 2009. 35

[1 l 2] S. Guthe, M . Wand, J. Gonser, and W. Strasser. Interactive rendering of large
volume data sets . IEEE Transactions on Visualization and Computer Graphics,
pages53-60,2002. 37

[113] R. Haber and D. McNabb. Visualization idioms: A conceptual model for scien­
tific visualization systems. Visualization in Scientific Computing, pages 74-93,
1990. 8

[114) M. Hadwiger, C. Berger, and H. Hauser. High-Quality Two-Level Volume Ren­
dering of Segmented Data Sets on Consumer Graphics Hardware. IEEE Com­
puter Society Washington, DC, USA, 2003. 22, 39, 61 , 117

[115] M. Hadwiger, C. Langer, H. Scharsach, and K. Bhler. State of the Art Re­
port 2004 on GPU-Based Segmentation. Technical Report TR-VRVis-2004-017,
pages 409-415,2004. 59, 97

[116] M. Hadwiger, F. Laura, C. Rezk-Salama, T. Hollt, G. Geier, and T. Pabel. In­
teractive Volume Exploration for Feature Detection and Quantification in In­
dustrial CT Data. IEEE Transactions on Visualization and Computer Graphics,
14(6):1507- 1514, 2008. 54

[117) M. Hadwiger, C. Sigg, H. Scharsach, and K. Bhler. Real-time ray-casting and
advanced shading of discrete isosurfaces. In Eurographics, year = 2005, pages
= 303-312,. 37, 133

[I 18] M. Hadwiger, C. Sigg, H. Scharsach, K. Blihler, and M. Gross. Real-Time Ray­
Casting and Advanced Shading of Discrete Isosurfaces. Computer Graphics
Forum, 24(3):303-312, 2005. 13, 14, 29, 62

[119) L. Hai-liang. Research on Digital Image Segmentation Techniques [J]. Com­
puter Knowledge and Technology, 9, 2009. 59

157

REFERENCES

[120] L. Hall, A. Bensaid, L. Clarke, R. Velthuizen, M. Silbiger, and J. Bezdek. A
comparison of neural network and fuzzy clustering techniques insegmenting
magnetic resonance images of the brain. IEEE Transactions on Neural Net­
works, 3(5):672-682, 1992. 47

[I 21] M. Hardisty, L. Gordon, P. Agarwal, T. Skrinskas, and C. Whyne. Quantitative
characterization of metastatic disease in the spine. Part I. Semiautomated seg­
mentation using atlas-based deformable registration and the level set method.
Medical physics, 34:3127-3179, 2007. 47

[122] G. HaITis, P. Barta, L. Peng, S. Lee, P. Brettschneider, A. Shah, J. Renderer,
T. Schlaepfer, and G. Pearlson. MR volume segmentation of gray matter
and white matter using manual thresholding: dependence on image brightness.
American Journal of Neuroradiology, 15(2):225-230, 1994. 44

[123] V. Havran and J. Bittner. On improving kd-trees for ray shooting. Journal of
WSCG, 10(1):209-216, 2002. 37

[124] S. Haykin. Neural networks: a comprehensive foundation . Prentice Hall PTR
Upper Saddle River, NJ, USA, 1994. 47

[125] S. Haykin. Neural networks:a comprehensive foundation, chapter 5, page
280284. Prentice Hall inc., 2nd. edition edition, 1999. 13 1

[126] X. He, K. ToITance, F. Sillion, and D. Greenberg. A comprehensive physical
model for light reflection. In ACM SIGGRAPH Computer Graphics, pages 175-
186. ACM, 1991. 7

[127] M. Hearst, S. Dumais, E. Osman, J. Platt, and B. Scholkopf. SVMs - a practical
consequence of learning theory. IEEE Intelligent Systems and Applications,
13(4):18-21, 1998. 99, 100

[128] P. Heckbert and P. Hanrahan. Beam tracing polygonal objects. In ACM SIG­
GRAPH Computer Graphics, page 127. ACM, 1984. 24

[129] K. Hoehne, R. Delapaz, R. Bernstein, and R. Taylor. Combined surface display
and reformatting for the three-dimensional analysis of tomographic data. Invest
Radio[, 22:658- 664, 1987. 20

[130] K. Hohne, M. Bomans, A. Pommert, M. Riemer, C. Schiers, U. Tiede, and
G. Wiebecke. 3D visualization of tomographic volume data using the general­
ized voxel model. The Visual Computer, 6(1):28-36, 1990. 26, 44

[131] S. Hojjatoleslami and J. Kittler. Region growing: A new approach. IEEE Trans­
actions on Image Processing, 7(7): 1079- 1084, I 998. 45

158

REFERENCES

[132] H. Hoppe, T.Derose, T. Duchamp, and J. Mcdonald. Surface reconstruction
from unorganized points. In ACM SIGGRAPH Computer Graphics, pages 71 -
78, 1992. 130

[133] D. Horn, J. Sugerman, M. Houston, and P. Hanrahan. Interactive kd tree GPU
raytracing. In Proceedings of the 2007 symposium on Interactive 3D graphics
and games, pages 167- 174. ACM New York, NY, USA, 2007. 28, 30, 49, 51 ,
52

[134] A. Hornung and L. Kobbelt. Robust reconstruction of watertight 3d models
from non-uniformly sampled point clouds without normal information. In Eu­
rographics Symposium on Geometry Processing, pages 41- 50, 2006). 130

[135] S. Hu, E. Hoffman, J. Reinhardt, et al. Automatic lung segmentation for accurate
quantitation of volumetric X-ray CT images. IEEE Transactions on Medical
Imaging, 20(6):490-498, 2001. 44

[136] A. Huang and G. Nielson. Thin structure segmentation and visualization in
three-dimensional biomedical images: a shape-based approach. IEEE Transac­
tions on Visualization and Computer Graphics, 12(1):93- 102, 2006. 62

[137] W. Hunt and W. Mark. Adaptive acceleration structures in perspective space. In
IEEE Symposium on Interactive Ray Tracing, pages 11 - 17, 2008. 37

[138] C. Jackins and S. Tanimoto. Oct-trees and their use in representing three­
dimensional objects. Computer Graphics and Image Processing, 14(3):249-
270, 1980. 37

[139] S. Jaffey and K. Dutta. Digital perspective con-ection for cylindrical holographic
stereo grams. Processing and display of three-dimensional data, pages 130- 140,
1983. 20

[140] T. Jansen, B. von Rymon-Lipinski , N. Hanssen, and E. Keeve . Fourier vol­
ume rendering on the GPU using a split-stream-FFT. In Vision, Modeling and
Visualization, pages 395-403, 2004. 39

[141] H. Jensen. Global illumination using photon maps. Rendering Techniques,
96:21 - 30, 1996. 24

[142] M. Jones. The production of volume data from triangular meshes using voxeli­
sation. In Computer Graphics Forum, volume 15, pages 311-318. John Wiley
& Sons, 1996. 13

[143] T. Kadir and M. Brady. Unsupervised non-parametric region segmentation using
level sets. In Proc. Computer Vision, pages 1267- 1274, 2003. 44

159

REFERENCES

[144] A. Kadosh, D. Cohen-Or, R. Yagel, G. CommerceZone, and I. Jerusalem. Tricu­
bic interpolation of discrete surfaces for binary volumes. IEEE Transactions on
Visualization and Computer Graphics, 9(4):580-586, 2003. 17, 62, 79

[145] J. Kajiya. Ray tracing parametric patches. ACM SIGGRAPH Computer Graph­
ics, 16(3):254, 1982. 146

[146] J. Kajiya. The rendering equation. In ACM SIGGRAPH Computer Graphics,
pages 143- 150. ACM, 1986. 24

[147] J. Kajiya and B. Von Herzen. Ray tracing volume densities. ACM SIGGRAPH
Computer Graphics, 18(3):165- 174, 1984. 25, 36

[148] A. Kalaiah and V. A. Statistical point geometry. In Euro graphics Symposium
on Geometry Processing, pages 107 - 115, 2003. 129, 134

[149] M. Kaplan. The use of spatial coherence in ray tracing. Techniques for Computer
Graphics, pages 173- 193, 1987. 27

[150] S. Kash yap, R. Goradia, P. Chaudhuri, and S. Chandran. Real time ray tracing
of point-based models. In To Appear: ACM SIGGRAPH Computer Graphics.
ACM, 2010. 146

[151] D. Kay and D. Greenberg. Transparency for computer synthesized images. ACM
SIGGRAPH Computer Graphics, 13(2):158-164, 1979. 24

[152] T. Kay and J. Kajiya. Ray tracing complex scenes. ACM SIGGRAPH Computer
Graphics, 20(4):269-278, I 986. 35, 38

[153] D. Kennedy, P. Filipek, and V. Caviness. Anatomic segmentation and volumet­
ric calculations in nuclear magnetic resonance imaging. IEEE Transactions on
Medical Imaging, 8(1):1- 7, 1989. 44

[154] E. Keppel. Approximating complex surfaces by triangulation of contour lines.
IBM Journal of Research and Development, 19(1):2-11, 1975. 9

[155] G. Kindlmann and J. Durkin. Semi-automatic generation of transfer functions
for direct volume rendering. In Proc. Volume Visualization, pages 79-86. ACM,
1998. 41

[156) G. Kindlmann, R.Whitaker, T. Tasdizen, and T. Moller. Curvature-based transfer
functions for direct volume rendering: methods and applications. IEEE Trans­
actions on Vision and Computer Graphics, 5(4):513- 520, 2003. 129, 136

160

REFERENCES

[157] J. Kloetzli, M. Olano, and P. Rheingans. Interactive volume isosurface rendering
using BT volumes. In Proc. Symposium on Interactive 3D graphics and games,
pages 45-52. ACM, 2008. 55

[158] J. Kniss, G. Kindlmann, and C. Hansen. Interactive volume rendering using
multi-dimensional transfer functions and direct manipulation widgets. In IEEE
Transactions on Visualization and Computer Graphics, pages 255-262. IEEE
Computer Society, 2001. 42

[159] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer functions
for interactive volume rendering. IEEE Transactions on Visualization and Com­
puter Graphics, pages 270- 285, 2002. 22, 42

[160] A. Knoll. A Survey of Octree Volume Rendering Methods. Scientific Computing
and Imaging Institute, University of Utah, 2006. 37

[161] A. Knoll, Y. Hijazi, C. Hansen, I. Wald, and H. Hagen. Interactive ray tracing
of arbitrary implicits with simd interval arithmetic. In IEEE Symposium on
Interactive Ray Tracing, 2007. RT'07, pages 11- 18, 2007. 54

[162] A. Knoll, Y. Hijazi, R. Westerteiger, M. Schott, C. Hansen, and H. Hagen. Vol­
ume Ray Casting with Peak Finding and Differential Sampling. IEEE Transac­
tions on Visualization and Computer Graphics, 15(6): 1571- 1578, 2009. 14, 55,
146

[163] A. Knoll, I. Wald, and C. Hansen. Coherent multiresolution isosurface ray trac­
ing. The Visual Computer, 25(3):209-225, 2009. 27, 36

[164] A. KnolJ, I. Wald, and C. Hansen. Coherent multiresolution isosurface ray trac­
ing. The Visual Computer, 25(3):209-225, 2009. 28

[165] A. Knoll, I. Wald, S. Parker, and C. Hansen. Interactive isosurface ray tracing
of large octree volumes. In IEEE Symposium on Interactive Ray Tracing 2006,
pages 115-124,2006. 54

[166] A. Knoll, I. Wald, S.Parker, and C.Hansen. Interactive isosurface ray tracing of
large octree volumes. In IEEE Symposium on Interactive Ray Tracing (2006),
pages 115- 124,2006. 37

[167] A. W. Kristensen, T. Akenine-Mller, and H. W. Jensen. Precomputed local ra­
diance transfer for real-time lighting design. In ACM SIGGRAPH Computer
Graphics, pages 1208-1215, 2005. 135

161

REFERENCES

[168] A. Krueger, C. Kubisch, B. Preim, and G. Strauss. Sinus Endoscopy-
Application of Advanced GPU Volume Rendering for Virtual Endoscopy. IEEE
Transactions on Visualization and Computer Graphics, 14(6): 1491-1498, 2008.
54

[169] J. Kruger, J. Schneider, and R. Westermann. ClearView: An interactive context
preserving hotspot visualization technique. IEEE Transactions on Visualization
and Computer Graphics (Proc. Visualization/Information Visualization 2006),
12(5), 2006. 56, 119

[170] J. Kruger and R. Westermann. Acceleration techniques for GPU-based volume
rendering. IEEE Visualization, 2003. VIS 2003, pages 287- 292, 2003. 22

[171] J. Kruger and R. Westermann. Acceleration techniques for GPU-based volume
rendering. IEEE Visualization, 2003. VIS 2003, pages 287- 292, 2003. 28, 29,
39

[172] H . Kuhn and A. Tucker. Nonlinear programming. ACM SIGMAP Bulletin, pages
6- 18, 1982. 103

[173] J. Kuhnigk, V. Dicken, L. Bornemann, A. Bakai, D. Wormanns, S. Krass, and
H. Peitgen. Morphological segmentation and partial volume analysis for vol­
umetry of solid pulmonary lesions in thoracic CT scans. IEEE transactions on
medical imaging, 25(4):417-434, 2006. 44

[174] L. Kuncheva, J. Charles, N. Miles, A. Collins, B. Wells, and I. Lim. Automated
kerogen classification in microscope images of dispersed kerogen preparation.
Mathematical Geosciences, 40(6):639-652, 2008. 44

[175] P. Lacroute. Real-time volume rendering on shared memory multiprocessors
using the shear-warp factorization. In Proc. IEEE Symposium on Parallel Ren­
dering, pages 15-22. ACM, 1995. 34

[176] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp factoriza­
tion of the viewing transformation. In ACM SIGGRAPH Computer Graphics,
pages 451-458. ACM New York, NY, USA, l 994. 33, 34

[177] H. Ladak, J. Thomas, J. Mitchell, B. Rutt, and D. Steinman. A semi-automatic
technique for measurement of arterial wall from black blood MRI. Medical
Physics, 28(6):1098- 1107, 2001. 45

[178] E. Lafortune. Mathematical models and monte car lo algorithms for physically
based rendering. Technical report, Cornell University)., I 996. 24

162

REFERENCES

[179] A. Lake, C. Marshall, M. Harris, and M. Blackstein. Stylized rendering tech­
niques for scalable real-time 3d animation. In Proc. 1st international symposium
on Non-photo realistic animation and rendering, pages I 3-20. ACM, 2000. 56

[180] E. LaMar, B. Hamann, and K. Joy. Multiresolution techniques for interactive
texture-based volume visualization. In IEEE Transactions on Visualization and
Computer Graphics, pages 355-361. IEEE Computer Society Press, 1999. 37

[181] T. Larsson and T. Akenine-Moller. A dynamic bounding volume hierarchy for
generalized collision detection. Computers & Graphics, 30(3):450-459, 2006.
39

[182] D. Laur and P. Hanrahan. Hierarchical splatting: A progressive refinement algo­
rithm for volume rendering. ACM SIGGRAPH Computer Graphics, 25(4):288,
1991. 33

[183] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha. Fast
BVH construction on GPUs. In Computer Graphics Forum, volume 28, pages
375-384. Blackwell Publishing, 2009. 39, 147

[184] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha. Fast
BVH Construction on GPUs. Computer Graphics Forum, 28:375-384, 2009.
92

[185] C. Ledergerber, G. Guennebaud, M. Meyer, M. Bacher, and H. Pfister. Volume
MLS ray casting. IEEE Transactions on Visualization and Computer Graphics,
14(6):1372- 1379, 2008. 17

[186] T. Lee, M. Cho, C. Shieh, P. Chao, and H. Chang. Precise Segmentation Ren­
dering for Medical Images Based on Maximum Entropy Processing. LECTURE
NOTES IN COMPUTER SCIENCE, 3683:366, 2005. 62

[187] A. Lefohn, J. Cates, and R. Whitaker. Interactive, gpu-based level sets for 3d
segmentation. Medical Image Computing and Computer-Assisted Intervention,
pages564-572,2003. 59

[188] V. Lempitsky, M. Verhoek, A. Noble, A. Blake, and A. Blake. Random For­
est Classification for Automatic Delineation of Myocardium in Real-Time 3D
Echocardiography. echocardiography, 2009. 59

[189] M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics
and Applications, 8:29-37, 1988. 2 1, 25

[190] M. Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics
(TOG), 9(3):245- 261, 1990. 21, 26, 35, 36

163

REFERENCES

[191] M. Levoy and R. Whitaker. Gaze-directed volume rendering. In Proc. Sympo­
sium on Interactive JD graphics, pages 217-223. ACM, 1990. 21

[192] W. Li, K. Mueller, and A. Kaufman. Empty space skipping and occlusion clip­
ping for texture-based volume rendering. In IEEE Transactions on Visualization
and Computer Graphics, pages 42- 50. IEEE Computer Society, 2003. 39

[193] B. Liu, G. Clapworthy, and F. Dong. Fast Isosurface Rendering on a GPU by
Cell Rasterization. In Computer Graphics Forum, volume 28, pages 2l51-2164.
John Wiley & Sons, 2009. 55

[194] B. Liu, G. J. Clapworthy, and F. Dong. Multi-layer Depth Peeling by Single­
Pass Hardware Rasterisation for Faster Isosurface Raytracing on a GPU. In To
Appear: Eurographics/IEEE-VGTC Symposium on Visualization, volume 29.
55

[195] Y. Livnat and C. Hansen. View dependent isosurface extraction. In IEEE Trans­
actions on Visualization and Computer Graphics, pages 175- 180. IEEE Com­
puter Society Press, 1998. 11

[196] Y. Livnat, H. Shen, and C. Johnson. A near optimal isosurface extraction algo­
rithm using the span space. IEEE Transactions on Visualization and Computer
Graphics, 2(1):73-84, 1996. 10, 11

[197] W. Lorensen and H. Cline. Marching cubes: A high resolution 3D surface
construction algorithm. In ACM SIGGRAPH Computer Graphics, pages 163-
169. ACM New York, NY, USA, 1987. 9, 54

• [I 98] M . Lorenzo-Valdes, G . Sanchez-Ortiz, R. Mohiaddin, and D. Rueckert. Seg-
mentation of 4D cardiac MR images using a probabilistic atlas and the EM al­
gorithm. Medical Image Computing and Computer-Assisted Intervention, pages
440-450,2003. 47

[l 99] A. Lu, C. Morris, D. Ebert, P. Rheingans, and C. Hansen. Non-photorealistic
volume rendering using stippling techniques. IEEE Transactions on Visualiza­
tion and Computer Graphics, pages 211-218, 2002. 8

[200] D. Luebke and S. Parker. Interactive ray tracing with cuda. In NVIDIA Technical
Presentation, SIGGRAPH. NVIDIA, 2008. 30, 40

[201] E. Lum, J. Shearer, and K. Ma. Interactive multi-scale exploration for volume
classification. The Visual Computer, 22(9):622- 630, 2006. 61

[202] J. MacDonald and K. Booth. Heuristics for ray tracing using space subdivision.
The Visual Computer, 6(3): 153-166, 1990. 30, 37

164

REFERENCES

[203] J. Maintz and M. Viergever. A survey of medical image registration. Medical
image analysis, 2(1):1-36, 1998. 43

[204] J. Maldjian, P. Laurienti, R. Kraft, and J. Burdette. An automated method
for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data
sets. Neuroimage, 19(3):1233- 1239, 2003. 47

[205] M. Mancas and B. Gosselin. Towards an automatic tumor segmentation using
iterative watersheds. Medicallmaging, pages 14- 19, 2004. 46

[206] J. Marks, B. Andalman, P. Beardsley, W. Freeman, S. Gibson, J. Hodgins,
T. Kang, B. Mirtich, H. Pfister, W. Ruml, et al. Design galleries: A general
approach to setting parameters for computer graphics and animation. In ACM
SIGGRAPH Computer Graphics, pages 389-400. ACM, 1997. 41

[207] H. Markus, P. Ljung, C. R. Salama, and T. Ropinski. Advanced illumination
techniques for gpu-based volume raycasting, 2009. 15, 17, 23

[208] G. Marmjtt, H. Friedrich, A. Kleer, I. Wald, and P. Slusallek. Fast and accurate
ray-voxel intersection techniques for iso-surface ray tracing. In Proc. Vision,
Modeling, and Visualization, pages 429-435, 2004. 11 , 12, 79

[209] R . Marroquim, A. Maximo, R. Farias, and C. Esperanc;:a. Volume and Isosur­
face Rendering with GPU-Accelerated Cell Projection. In Computer Graphics
Forum, volume 27, pages 24-35. Amsterdam: North Holland, 1982-, 2008. 55

[210] S. Marschner and R. Lobb. An evaluation of reconstruction filters for vol­
ume rendering. In IEEE Transactions on Visualization and Computer Graphics,
pages I 00-107. IEEE Computer Society Press, 1994. 17

[21 1] I. Math Works. MATLAB: the language of technical computing. Desktop tools
and development environment, version 7. M ath works, 2005. 10

[212] N. Max. Optical models for direct volume rendering. IEEE Transactions on
Visualization and Computer Graphics, 1(2):99108, June 1995. 16

[213] J. C. Mazziotta and H. K. Huang. Thread (three-dimensional reconstruction and
display) with biomedical applications in neuron ultrastructure and computerized
tomography. In AF/PS '76: Proceedings of the June 7-10, 1976, national com­
puter conference and exposition, pages 241-250, New York, NY, USA, 1976.
ACM. 8

[214] M . McGuire. Ambient occlusion volumes. In To Appear: ACM SIGGRAPH
symposium on Interactive JD Graphics and Games. ACM, 2010. 146

165

REFERENCES

[215] T. Mclnemey and D. Terzopoulos. Topology adaptive deformable surfaces for
medical image volume segmentation. IEEE Transactions on Medical Imaging,
18(10):840-850, 1999. 47

[216] T. Mclnerney and D. Terzopoulos. Deformable models in medical image anal­
ysis. In Mathematical Methods in Biomedical Image Analysis Workshop, pages
171- 180, 1996. 47

[217] D. Meagher. Octree encoding: A new technique for the representation, manipu­
lation and display of arbitrary 3-d objects by computer. Technical report, 1980.
37

[218] D. Meagher. Geometric modeling using octree encoding. Computer Graphics
andimageProcessing, 19(2):129-147, 1982. 37

[219] M. Moore and J. Wilhelms. Collision detection and response for computer ani­
mation. In ACM SIGGRAPH Computer Graphics, pages 289-298. ACM, 1988.
37

[220] B. Natarajan. On generating topologically consistent isosurfaces from uniform
samples. The Visual Computer, 11(1):52- 62, 1994. 11

[221] N. Neophytou, K. Mueller, K. McDonnell, W. Hong, X. Guan, H. Qin, and
A. Kaufman. GPU-accelerated volume splatting with elliptical RBFs. In Proc.
Eurographics/IEEE-VGTC Symposium on Visualization. ACM, 2006. 33

[222] A. Neubauer, L. Mroz, H. Hauser, and R. Wegenkittl. Cell-based first-hit ray
casting. In Proc. Symposium on Data Visualisation, pages 77-87, 2002. 12

[223] M. Newell, R. Newell, and T. Sancha. A solution to the hidden surface problem.
In Proceedings of the ACM annual conference-Volume 1, pages 443-450. ACM,
1972. 24

[224] NVidia. Nvidia optix. http://www. nvidia. com/obj ect/optix. html, 20 10.
147

[225] C. NVIDIA. Compute Unified Device Architecture Programming Guide.
Nvidia, June, 2007. 40, 107

[226] L. Nyland, M. Harris, and J. Prins. Fast n-body simulation with CUDA. GPU
gems, 3:677- 695, 2007. 40

[227] Y. Ohtake, A. Belyaev, and G. T. M. Alexa. Multi-level partition of unity im­
plicits. In ACM SIGGRAPH Computer Graphics, pages 463 - 470, 2003. 130

166

REFERENCES

[228] Y. Ohtake, A. Belyaev, and H. Seidel. 3d scattered data interpolation and ap­
proximation with multilevel compactly supported RBFs. Graphical Models,
67:150-165, 2005. 129, 132, 134, 136, 137, 144

[229] S. Olaban-iaga and A. Smeulders. Interaction in the segmentation of medical
images: A survey. Medical Image Analysis, 5(2): 127-142, 2001 . 45

[230] Olegalexandrov. Level set method. http:// en. wikipedia. org/wiki/File:
Level_set_method . jpg,2004. 46

[231] S. Osher and R. Fedkiw. Level set methods: an overview and some recent
results. Computational Physics, 169(2):463-502, 2001. 44

[232] S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed:
algorithms based on Hamilton-Jacobi formulations. Computational Physics,
79(1): 12-49, 1988. 46

[233] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. Lefohn, and
T. Purcell. A survey of general-purpose computation on graphics hardware. In
Computer Graphics Forum, volume 26, pages 80- 113. Blackwell Publishing,
2007. 39

[234] M. Ozkan, B. Dawant, and R. Maciunas. Neural-network-based segmentation
of multi-modal medical images: acomparative and prospective study. IEEE
Transactions on Medical Imaging, 12(3):534- 544, 1993. 47

[235] J. Painter and K. Sloan. Antialiased ray tracing by adaptive progressive refine­
ment. In ACM SIGGRAPH Computer Graphics, pages 281- 288. ACM, 1989.
37

[236] N. Pal and S. Pal. A review on image segmentation techniques. Pattern Recog­
nition, 26(9): 1277-1294, 1993. 43

[237] M. Paliwal and U. Kumar. Neural networks and statistical techniques: A review
of applications. Expert Systems with Applications, 36(1):2- 17, 2009. 47

[238] N. Paragios. A level set approach for shape-driven segmentation and tracking
of the left ventricle. IEEE Transactions on Medical Imaging, 22(6):773-776,
2003. 46

[239] S. Park, X. Guo, H. Shin, and H. Qin. Surface completion for shape and appear­
ance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22: 168
- 180, March 2006. 130

167

REFERENCES

[240] S. Parker, M. Parker, Y. Livnat, P. Sloan, C. Hansen, and P. Shirley. Interactive
ray tracing for volume visualization. In ACM SIGGRAPH Computer Graphics.
ACM New York, NY, USA, 2005. 54

[241] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan. Interactive ray tracing
for isosurface rendering. In IEEE Transactions on Visualization and Computer
Graphics, pages 233-238. IEEE Computer Society Press, 1998. 11 , 12, 17, 36,
78

[242] T. Pavlidis and Y. Liaw. Integrating region growing and edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pages 225-233,
1990. 45

[243] J. Peters, 0. Ecabert, C. Meyer, H. Schramm, R. Kneser, A. Groth, and J. Weese.
Automatic whole heart segmentation in static magnetic resonance image vol­
umes. In Medical image computing and computer-assisted intervention, vol­
ume 10, pages 402-410. Springer, 2007. 44

[244] H. Pfister, B. Lorensen, C. Bajaj, G. Kindlrnann, W. Schroeder, L. Avila,
K. Raghu, R. Machiraju, and J. Lee. The transfer function bake-off. IEEE
Computer Graphics and Applications, 21 (3): 16-22, 2001. 41

[245] T. Plachetka. Perfect load balancing for demand-driven parallel ray tracing.
Lecture Notes in Computer Science, pages 410-419, 2002. 57, 89

[246] R. Pohle and K. Toennies. Segmentation of medical images using adaptive
region growing. In Proc. SPIE Medical Imaging, volume 4322, pages I 337-
46, 2001 . 45

[247] S. Popov, J. Gunther, H. Seidel, and P. Slusallek. Experiences with streaming
construction of SAH KD-trees. In IEEE Symposium on Interactive Ray Tracing
2006,pages89- 94,2006. 37

[248] S. Popov, J. Gunther, H.-P. Seidel, and P. Slusallek. Stackless kd-tree traversal
for high performance GPU ray tracing. Computer Graphics Forum, 26(3):415-
424, Sept. 2007. 28,30,52, 53

[249] T. Porter and T. Duff. Compositing digital images. ACM SIGGRAPH Computer
Graphics, pages 253-259, 1984. 117

[250] M. Powell. Radial basis functions for multivariable interpolation: a review. In
Clarendon Press Institute Of Mathematics And Its Applications, pages 143 -
167, 1987. 131

168

REFERENCES

[251] M. Prastawa, E. Bullitt, N. Moon, K. Van Leemput, and G. Gerig. Automatic
brain tumor segmentation by subject specific modification of atlas priors. Aca­
demic radiology, 10(12): 1341-1348, 2003. 44

[252] T. Purcell, I. Buck, W. Mark, and P. Hanrahan. Ray tracing on programmable
graphics hardware. In ACM SIGGRAPH Computer Graphics, pages 703- 712.
ACM, 2002. 27

[253] T. Purcell, I. Buck, W. Mark, and P. Hanrahan. Ray tracing on programmable
graphics hardware. In ACM SIGGRAPH 2005 Courses, page 268. ACM, 2005.
27

[254] P. Rautek, S. Bruckner, and M. Grolier. Interaction-Dependent Semantics for
Illustrative Volume Rendering. In Computer Graphics Forum, volume 27, pages
847-854. Blackwell Publishing, 2008. 57

[255] E. Reinhard and F. W. Jansen. Hybrid scheduling for efficient ray tracing of
complex images. In High Performance Computing for Computer Graphics and
Visualisation, pages 78-87. Springer-Verlag, July 1995. 57, 89

[256] L. Ren, H. Pfister, and M. Zwicker. Object space EWA surface splatting: A
hardware accelerated approach to high quality point rendering. In Computer
Graphics Forum, volume 21 , pages 461-470. Blackwell Publishing, 2002. 33

[257] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive volume
on standard PC graphics hardware using multi-textures and multi-stage raster­
ization. In Proc. ACM SIGGRAPHIEUROGRAPHICS workshop on Graphics
hardware, pages 109- 118. ACM, 2000. 31

[258] C. Rezk-Salama and A. Kolb. Opacity peeling for direct volume rendering. In
Computer Graphics Forum, volume 25, pages 597-606. John Wiley & Sons,
2006. 57

[259] L. Robb, T. Yuen, and E. Ritman. Noninvasive Numerical Dissection And Dis­
play Of Anatomic Structure Using Computerized X-Ray Tomography. Recent
& future developments in medical imaging, August 28-29, 1978, San Diego,
California, page 10, 1978. 20

[260] S. Roettger, M. Bauer, and M. Stamminger. Spatialized transfer functions. In
Proc. of IEEE/Euro graphics Symposium on Visualization (Euro Vis) , pages 271-
278, 2005. 61

[261] R. Rost. OpenGL (R) Shading Language. Addison Wesley Longman Publishing
Co., Inc. Redwood City, CA, USA, 2004. 39

169

REFERENCES

[262] S. Roth. Ray casting for modeling solids* 1. Computer Graphics and Image
Processing, 18(2):109-144, 1982. 24

[263] S. Rottger, M. Kraus, and T. Ertl. Hardware-accelerated volume and isosurface
rendering based on cell-projection. In Proc. conference on Visualization, pages
109- 116. IEEE Computer Society Press, 2000. 11 , 2 I , 32

[264] M. Rousson and N. Paragios. Shape priors for level set representations. Com­
puter Vision, pages 416-418, 2002. 46

[265] S. Rubin and T. Whitted. A 3-dimensional representation for fast rendering
of complex scenes. In ACM SIGGRAPH Computer Graphics, pages 110- 116.
ACM, 1980. 35

[266] P. Sahoo, S. Soltani , and A. Wong. A survey of thresholding techniques* 1.
Computer Vision, 41 (2):233-260, 1988. 43

[267] P. Saiviroonporn, A. Robatino, J. Zahajszky, R. Kikinis, and F. Jolesz. Real-time
interactive three-dimensional segmentation. Academic Radiology, 5(1):49- 56,
1998. 97

[268] C. Salama, M. Keller, and P. Kohlmann. High-level user interfaces for trans­
fer function design with semantics. IEEE Transactions on Visualization and
Computer Graphics, 12(5): 1021- 1028, 2006. 60

[269] P. Salembier and L. Garrido. Binary partition tree as an efficient representation
for imageprocessing, segmentation, and information retrieval. IEEE Transac­
tions on Image Processing, 9(4):561-576, 2000. 44

[270] H. Samet. The quadtree and related hierarchical data structures. ACM Comput­
ing Surveys, 16(2): 187- 260, 1984. 30

[271] H. Samet. Implementing ray tracing with octrees and neighbor finding. Com­
puters & Graphics, 13(4):445-460, 1989. 30

[272] H. Samet. Applications of spatial data structures: Computer graphics, image
processing, and GIS. Addison-Wesley Longman Publishing Co., Inc., 1990. 37

[273] D. Schlusselberg, W. Smith, and D. Woodward. Three-dimensional display
of medical image volumes. In Proceedings of the Seventh Annual Conference
and Exposition, Anaheim Convention Center, Anaheim, California, May 11-15,
1986: 7th Conference: Papers., page 114. National Computer Graphics Associ­
ation, 1986. 20

170

REFERENCES

[274] J. Schulze, M. Kraus, U. Lang, and T. Ertl. Integrating pre-integration into the
shear-warp algorithm. In Proc. Euro graphics/IEEE TVCG Workshop on Volume
Graphics, pages 109-118. ACM, 2003. 35

[275] J. Schwarze. Cubic and quartic roots. pages 404-407. Academic Press Profes­
sional, Inc., 1990. 1 I

[276] J. Sethian et al. Level set methods and fast marching methods, volume I 8.
Cambridge university press Cambridge, 1999. 46

[277] S. Shen, W. Sandham, M. Granat, and A. Sten-. MRI fuzzy segmentation of
brain tissue using neighborhood attraction with neural-network optimization.
IEEE Transactions on Information Technology in Biomedicine, 9(3):459-467,
2005. 48

[278] A. Sherbondy, M. Houston, and S. Napel. Fast volume segmentation with si ­
multaneous visualization using programmable graphics hardware. In Proc. 14th
IEEE Visualization, pages 23 - 30. IEEE Computer Society, 2003. 39, 59

[279] M. Shevtsov, A. Soupikov, and A. Kapustin. Highly parallel fast kd-tree con­
struction for interactive ray tracing of dynamic scenes. In Computer Graphics
Forum, volume 26, pages 395-404. Blackwell Publishing, 2007. 37, 49

[280] P. Shirley and S. Marschner. Fundamentals of computer graphics. AK Peters,
Ltd., 2009. 11

[281] P. Shirley and R. Morley. Realistic ray tracing. AK Peters, Ltd., 2003. 7

[282] P. Shirley and A. Tuchman. A polygonal approximation to direct scalar volume
rendering. Proc. Workshop on Volume Visualization, 24(5):63-70, 1990. 32

[283] J. Sijbers, P. Scheunders, M. Verhoye, A. Van der Linden, D. Van Dyck, and
E. Raman. Watershed-based segmentation of 3D MR data for volume quantiza­
tion. Magnetic Resonance Imaging, 15(6):679- 688, 1997. 46

[284] N. Simonsen and N. Thrane. A comparison of acceleration structures for GPU
assisted ray tracing. Master's thesis, University of Aarhus, 2005. 53

[285] J. Singh and P. Narayanan. Real-time ray-tracing of implicit surfaces on the
GPU. IEEE Transactions on Visualization and Computer Graphics, 99(I), 2009.
146

[286] P.-P. Sloan, J. Hall, J. Hart, and J. Snyder. Clustered principal components for
precomputed radiance transfer. In ACM SIGGRAPH Computer Graphics, pages
382 - 391,2003. 135

171

REFERENCES

[287] T. Song, M. Jamshidi, R. Lee, and M. Huang. A modified probabilistic neural
network for partial volume segmentation in brain MR image. IEEE Transactions
on Neural Networks, 18(5): 1424-1432, 2007. 58

[288] D. Specht. Probabilistic neural networks. Neural networks, 3(1):109-118, 1990.
47

[289] A. Statnikov, L. Wang, and C. Aliferis. A comprehensive comparison of random
forests and support vector machines for microarray-based cancer classification.
BMC bioinformatics, 9(1):319, 2008. 59

[290] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A simple and flexible vol­
ume rendering framework for graphics-hardware-based raycasting. In Volume
Graphics, 2005. Fourth International Workshop on, pages 187-241, 2005. 13,
29

[291] K. Stevens. The visual interpretation of surface contours. Artificial Intelligence,
17(1-3):47- 73, 1981. 8

[292] P. Sutton and C. Hansen. Isosurface extraction in time-varying fields using a
temporal branch-on-need tree (T-BON). In IEEE Transactions on Visualization
and Computer Graphics, volume 99, pages 147- 153. 38

[293] J. Suykens and J. Vandewalle. Least squares support vector machine classifiers.
Neural processing letters, 9(3):293-300, 1999. 101

[294] J. Sweeney and K. Mueller. Shear-warp deluxe: The shear-warp algorithm re­
visited. In Proc. symposium on Data Visualisation, pages 95- 102. Eurographics
Association, 2002. 34

[295] N. Syed, H. Liu, and K. Sung. Handling concept drifts in incremental learning
with support vector machines. In Knowledge discovery and data mining, page
321. ACM, 1999. 102

[296] I. Tobor, P. Reuter, and C. Schlick. Reconstructing multi-scale variational parti­
tion of unity implicit surfaces with attributes. Graphical Models, 68(1):25 - 41 ,
2006. 130

[297] F. Torre and M. J. Black. Robust principal component analysis for computer
vision. In Computer Vision, volume 1, pages 59-69, 2001. 135

[298] A. Tremeau and N. Borel. A region growing and merging algorithm to color
segmentation. Pattern Recognition, 30(7): 1191- 1203, 1997. 45

172

REFERENCES

[299] G. Turk and J. F. O'brien. Modelling with implicit surfaces that interpolate.
ACM Trans. Graph. , 21(4):855-873, 2002. 132

[300] F. Tzeng, E. Lum, and K. Ma. A novel interface for higher-dimensional classi­
fication of volume data. 2003. 58, 105, l 06, 107

[301] F.-Y. Tzeng, E. Lum, and K.-L. Ma. An intelligent system approach to higher­
dimensional classification of volume data. Visualization and Computer Graph­
ics, IEEE Transactions on, 11 (3):273-284, May-June 2005. 58, 105, 107, 11 6

[302] C. Upson and M. Keeler. V-buffer: visible volume rendering. In ACM SIG­
GRAPH Computer Graphics, pages 59 - 64. ACM, 1988. 41

[303] M. Van Kreveld, R. Van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. Con­
tour trees and small seed sets for isosurface traversal. In Proc. 13th symposium
on Computational geometry, pages 2 I 2- 220. ACM, 1997. 44

[304] M. Vannier, J. Marsh, and J. Warren. Three dimensional computer graphics for
craniofacial surgical planning and evaluation. In Proc. 10th annual conference
on Computer graphics and interactive techniques, pages 263-273. ACM, 1983.
8, 20

[305] V. Vapnik. The nature of statistical learning theory. Springer Verlag, 2000. 98,
101

[306] I. Viola, A. Kanitsar, and M. Grolier. Importance-driven volume rendering. In
IEEE Visualization, 2004, pages I 39-145, 2004. 54

[307] I. Viola, A. Kanitsar, and M. Grolier. Importance-driven feature enhancement
in volume visualization. IEEE Transactions on Visualization and Computer
Graphics, 11(4):408-418, 2005. 43

[308] I. Wald. On fast construction of SAH-based bounding volume hierarchies. In
IEEE Symposium on Interactive Ray Tracing, pages 33-40, 2007. 39

[309] I. Wald and C. Benthin. Openrt - a flexible and scalable rendering engine for
interactive 3d graphics. Technical report, 2002. 147

[31 O] I. Wald, S. Boulos, and P. Shirley. Ray tracing deformable scenes using dynamic
bounding volume hierarchies. ACM Transactions on Graphics, 26(1):6 - 24,
2007. 39, 49

[311] I. Wald, H. Friedrich, A. Knoll, and C. Hansen. Interactive Isosurface Ray Trac­
ing of Time-Varying Tetrahedral Volumes. IEEE Transactions on Visualization
and Computer Graphics, 13(6): 1727-1734, 2007. I 3, 38, 55

173

REFERENCES

[312] I. Wald, H. Friedrich, G. Marmitt, and H.-P. Seidel. Faster isosurface ray trac­
ing using implicit kd-trees. IEEE Transactions on Visualization and Computer
Graphics, 11(5):562-572, 2005. 12, 13, 28, 37, 54, 63, 65, 67, 68, 69

[313] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. Parker. Ray tracing animated scenes
using coherent grid traversal. ACM Transactions on Graphics, 25(3):485-493,
2006. 26, 27

[314] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive rendering with
coherent ray tracing. In Computer Graphics Forum, volume 20, pages 153- 165.
Blackwell Publishing, 2001. 27, 36

[315] J. Warnock. A Hidden Line Algorithm for Halftone Picture Representation.,
1968. 24

[316] A. Watt. Fundamentals of three-dimensional computer graphics. Addison­
Wesley Longman Publishing Co., Inc., I 990. 37

[317] C. W chter and A. Keller. Instant ray tracing: The bounding interval hierarchy.
In Proc. 17th Eurographics Symposium On Rendering, pages 139- 149, 2006.
38

[318] G. Weber, S. Dillard, H. Carr, V. Pascucci, and B. Hamann. Topology­
Controlled Volume Rendering. Visualization and Computer Graphics, IEEE
Transactions on, 13(2):330-341, 2007. 62

[319] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based ray casting for tetra­
hedral meshes. In Proceedings of the 14th IEEE Visualization 2003 (VIS'03),
page 44. IEEE Computer Society, 2003. 11

[320] R. Westermann and T. Ertl. Efficiently using graphics hardware in volume ren­
dering applications. In ACM SIGGRAPH Computer Graphics, volume 32, pages
169- 179. ACM, 1998. 11 , 31, 36

[321] R. Westermann and B. Sevenich. Accelerated volume ray-casting using texture
mapping. In Proc. 1st IEEE Visualization, pages 271-278. IEEE Computer
Society, 2001. 11 , 27

[322] L. Westover. Interactive volume rendering. In Proc. Chapel Hill workshop on
Volume visualization, pages 9-16. ACM, 1989. 33

[323] L. Westover. Splatting: a parallel, feed-forward volume rendering algorithm.
Technical report, 1991. 33

[324] T. Whitted. An improved illumination model for shaded display. 1980. 21, 24

174

REFERENCES

[325] J. Wilhelms and A. V. Gelder. Octrees for faster isosurface generation. ACM
Transactions on Graphics, 11 (3):201 - 227, 1992. 10, 37, 38

[326] J. Wilhelms and A. Van Gelder. A coherent projection approach for direct vol­
ume rendering. Technical report, 1991. 27, 32

[327] A. Williams, S. Barrus, R. Morley, and P. Shirley. An efficient and robust ray­
box intersection algorithm. Journal of graphics tools, 10(1):49-54, 2005. 75

[328] L. Williams. Casting curved shadows on curved surfaces. ACM SIGGRAPH
Computer Graphics, 12(3):270-274, 1978. 24

[329] T. Williams. A man-machine interface for interpreting electron density maps.
PhD thesis, 1982. 8

[330] W. V. Wright. An interactive computer graphic system for molecular studies.
PhD thesis, 1972. 8

[331] H. Xie, K. T. McDonnell, and H. Qin. Surface reconstruction of noisy and
defective data sets. In IEEE Visualization, pages 259 - 266, 2004. 130

[332] R. Yagel and A. Kaufman. Template-based volume viewing. In Computer
Graphics Forum, volume 11 , pages 153- 167. Blackwell Publishing, 1992. 27

[333] R. Yagel, A. Kaufman, and Q. Zhang. Reali stic volume imaging. In VIS '91:
Proceedings of the 2nd conference on Visualization '91, pages 226-231, Los
Alamitos, CA, USA, 1991. IEEE Computer Society Press. 7

[334] S. Yoon, S. Curtis, and D. Manocha. Ray tracing dynamic scenes using selective
restructuring. In Proc. of Euro graphics Symposium on Rendering, pages 73-84,
2007. 39

[335] R. Zawadzki, A. Fuller, D. Wiley, B. Hamann, S. Choi, and J. Werner. Adap­
tation of a support vector machine algorithm for segmentation and visualiza­
tion of retinal structures in volumetric optical coherence tomography data sets.
Biomedical Optics, 12:041206, 2007. 59

[336] D. Zhang and S. Chen. A novel kernelized fuzzy c-means algorithm with ap­
plication in medical image segmentation. Artificial Intelligence in Medicine,
32(1):37- 50, 2004. 47

[337] Y. Zhang. A survey on evaluation methods for image segmentation* 1. Pattern
Recognition, 29(8): 1335- 1346, I 996. 43

175

REFERENCES

[338] Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Comaniciu. Fast
automatic heart chamber segmentation from 3D CT data using marginal space
learning and steerable features. In Proc. /CCV, volume 18, pages 31-94. Cite­
seer, 2007. 44

[339] J. Zhou, A. Doring, and K. Tonnies. Distance based enhancement for focal
region based volume rendering. Proceedings of Bildverarbeitung fur die Medi­
zin04, pages 199-203, 2004. 56, 60

[340] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time kd-tree construction on
graphics hardware. In ACM SIGGRAPH Asia, pages 1- 11. ACM, 2008. 37, 54

[341] S. Zhu, T. Lee, and A. Yuille. Region competition: unifying snakes, region
growing, energy/Bayes/MDL for multi-band image segmentation. In iccv, page
416, June 1995. 45

[342] H. Zima, H. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic
MIMD/SIMD parallelization. Parallel Computing, 6(1): 1-18, 1988. 40

[343] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. EWA volume splatting. In
Proc. conference on Visualization, pages 29- 36. IEEE Computer Society, 2001.
33

176

