
Bangor University

DOCTOR OF PHILOSOPHY

Contouring algorithms with terrain mapping applications

Griffiths, Dylan Wyn

Award date:
2010

Awarding institution:
University of Wales, Bangor

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Nov. 2024

https://research.bangor.ac.uk/portal/en/theses/contouring-algorithms-with-terrain-mapping-applications(69bad583-0de9-452f-a0ab-be7e3acd1345).html

CONTOURING ALGORITHMS

WITH TERRAIN MAPPING

APPLICATIONS

Dylan Wyn Griffiths
School of Mathematics, University of Wales, Bangor.

December 2010

PR I FYSGOL

BANGOR
U NIVE R S IT Y

Thesis submitted to the University of Wales, Bangor

in Candidature for the degree of Doctor of Philosophy

Abstract

When studying geological models below the Earth's surface, or indeed the surface

itself, we often wish to concentrate on particular values on the terrain. This is often

visualised be means of contour lines. One of the challenges of producing contour

lines is the estimation of values between data points - especially if data points

are sparse. Another challenge is to produce smooth, 'sensible' contours - contours

which do not cross or have sharp corners or loops.

In this thesis we investigate some of the interpolation methods for contouring,

highlighting their advantages and limitations, and compare the outputs produced.

We propose that our new contouring algorithm described in this thesis will run

faster than existing contouring methods, whilst also being able to contour difficult

areas such as at discontinuities.

We present the main algorithms used in the new contouring program, Amlin,

which utilises the same data structures as TetSim [44] and builds on them to produce

the contour outputs shown in this thesis. This leads to a new method for contouring,

which uses an interpolating subdivisions scheme based on the Butterfly scheme,

which generates C1-continuous surfaces from arbitrary meshes.

The modified butterfly scheme used in the Amlin program expands beyond the

original domain, whilst still respecting the original nodes, including those at the

boundary. This can be seen as either an advantage, or a disadvantage, depending

on the results required. The expansion beyond the boundary enables us to estimate

the nature of the domain, and hence the contour, beyond the boundary. This can

be particularly advantageous if the domain contains missing data and holes, as the

expansion into these holes makes it more straightforward to estimate the values of

the missing data. The problem with this expansion is that if we wished to retain the

original domain we would need to perform some trimming or even retriangulation

near the boundary.

We present a new method of butterfly subdivision which is constrained to the

original boundary. This is especially important when the domain forms part of a

larger data set, where expanding beyond the boundary would cause an overlap of

data.

We discuss the extent to which the hypothesis has been proved within this thesis,

and for the methods implemented, results and outputs are presented, along with

comparisons, suggestions for improvement and further work.

Acknowledgements

I would like to begin by expressing many thanks to my supervisor over the years,

Dr Gareth Roberts, for giving me the opportunity to further my academic research

and for providing motivation when the future of my work was uncertain. Thanks

to my other supervisor, Dr Barrie Wells, for providing the background information

for my research, as well as enabling me to use the data sets used in this thesis.

My thanks also to all of the members of the former Mathematics department,

who have all helped me during my time as an undergraduate. Also, thank you to

my examiners, Dr Nigel John and Prof Horst Holstein, and Prof Holstein's colleague

Dr Alan Reid, for their feedback and suggestions for improvement.

Thanks to Dr Ricki Walker for sharing his knowledge of C++, the TetSim

program, and for sharing room 423 over the last few years, making it a less lonely

place to work.

Many thanks to Liz Du Pre of the Dyslexia Unit, as the study skills and research

strategies I learned whilst helping dyslexic students with their mathematics proved

to be invaluable in my own research. Thank you also to Anna Story, the note-taking

coordinator at the university, for providing me with work when I was short of money

and for giving me the opportunity to attend computing lectures and acquire more

C++ programming skills. I also gratefully acknowledge the financial support I have

received from the ESF for the first three years of my postgraduate studies.

Outside academia, the support of all my family and friends has helped me to

stay the course over the past few years. I would especially like to thank my parents,

Gareth and Susan, for their love and encouragement, and my sister Sian. Thanks

to Matthew, Sam and David for providing me with an occasional break from my

studies, and for helping me to relive my undergraduate days.

Finally, I would like to t hank my fiancee, Jen, who has helped me to keep

focussed on the task at hand and for believing in me when I didn't. She has also

been the person with whom I could swap ideas and discuss some of the problems.

Thank you all, love Dylan.

V

Contents

1 Introduction and Thesis Outline 1

1.1 Introduction 1

1.1.1 Introduction to contouring 1

1.1.2 Thesis motivation . 5

1.2 Thesis outline 7

2 Surface approximation / interpolation 10

2.1 Introduction 10

2.2 Triangle-based interpolation 12

2.2.1 Barycentric coordinates 12

2.2.2 Delaunay triangulation . 14

2.3 Natural Neighbour interpolation . 14

2.3.1 Natural Neighbours . 15

2.3.2 Voronoi Diagrams . 15

2.4 Interpolating functions . . 17

2.4.1 Sibson interpolation 17

2.4.2 Contouring regular grids 20

2.4.3 Contouring irregular grids 28

2.5 Interpolation for Smooth Contours 35

2.6 Bezier Curves 37

2.7 B-Splines 42

2.8 NURBS 46

Vl

2.9 Summary

3 The Worsey-Farin contouring algorithm

3.1 Introduction

3.2 Powell-Sabin Six Triangle Subdivision .

3.3 Bezier Ordinates

3.4 The Worsey-Farin algorithm

3.4.1 Connecting boundary points

3.4.2 The Worsey-Farin algorithm

3.4.3 Estimating normals .

3.5 Contouring

3.6 Comparing contouring methods

3.7 Summary

4 Butterfly Subdivision

4.1 Introduction

4.2 The Polyhedral Scheme .

4.3 The Butterfly Scheme .

4.4 Adaptive subdivision

4.5 Controlling expansion beyond the boundary

4.6 Summary

5 Comparing the contouring methods

5.1 The Amlin Contouring Algorithm

5.2 Results

6 Conclusions

6.1 Summary

6.2 Further work

A A stratigraphic horizon with a discontinuity

B A surface with minor perturbations

Vll

CONTENTS

50

52

52

53

54

56

57

62

65

66

68

71

72

72

76

77

85

86

91

93

93

95

105

105

111

114

119

CONTENTS

C Constrained Butterfly Subdivision 126

D A stratigraphic horizon with a discontinuity containing missing

data 130

E Boomer data 133

Bibliography 138

Vlll

Introduction and Thesis Outline

1.1 Introduction

1.1.1 lntrod uction to contouring

When studying geological models below the Earth's surface, or indeed the surface

itself, it is reasonable to assume that the area we are studying will not all lie on a

fixed plane. For models of the surface of the Earth, we often use the word terrain

to describe the differences in the elevation of the land. The terrain of a region is

particularly important- for environmental, agricultural, geological and many more

research areas, and is usually visualised by means of a perspective drawing or with

contour lines. Contour lines show lines of constant value (or level sets) for some

function f(x, y), which in the case of terrain is the elevation (z-value). Clearly we

do not know the elevation of every point on the Earth; we only know those values

where we have measured. This means that when we are looking at a terrain, we

only know the value of a function z = f(x, y) at a finite set of sample points. If we

wished to find the value of t he elevation at a point which is not in the data set, we

would need to approximate it.

The simplest, and most na'ive form of estimating the values uses the value

nearest to the point we are interested in, although this will certainly produce erratic

values for successful contouring, and the surface will contain discontinuities. Other,

more involved methods use a weighted average of the surrounding points, which,

1

1.1. INTRODUCTION

depending on the weighting used, often produces a smooth, continuous surface.

Once we have a set of points of equal value, the logical step would be to join these

points to produce a contour map of the data. Although the contour lines are an

expression of a continuous and unbroken surface, they are based on measurements

made at the sample points, and so there may be areas between the sample points

that vary greatly, such as a deep canyon that was not recorded. As we do not

know about the areas in-between the data points, we assume that such data are

continuous when we produce the contour map. The contours are also affected by

the way the grid or triangulation is formed, as well as which grid or triangulation

is used, and so the surface that is generated may not be unique.

Surface uniqueness may not be a significant problem since we are already est

imating the positions of the contours, although problems would arise if we required

a unique surface in every occasion.

There are various methods in producing the contours, from hand-drawn to

computer-generated contour maps. A common method for drawing computer

generated contour maps is to interpolate a grid of uniformly spaced values and

then contour this grid. This method is particularly advantageous when it comes to

computation, and most interpolation methods produce meaningful contour maps,

although they do not always respect the original data points. This is particularly

problematic when the data are clustered or has large regions where there is no data.

An alternative to gridding involves joining the data points to form a triangulation.

This has a distinct advantage as it ensures we have the original data in our data

set. As with gridding, we can interpolate between the points to form a contour,

with the added advantage that as we are using the data points as corners of our

triangles and hence guarantee that we respect the data points. Gridding methods

do not always respect the data points, although there are methods to ensure the

original data is retained.

When we are considering contouring methods, the simplest involves drawing

straight lines between the points that are of equal value, although this is not ideal

and often produces contours which appear jagged and have sharp corners. Jagged

and sharp cornered contours, as well as not being aesthetically pleasing, are generally

2

1.1. INTRODUCTION

not a good representation of real data. Most geological data flows smoothly from

one area to another, where rock types, salt concentrations etc. would alter in a

relatively smooth manner. However, there are exceptions to this rule, the main

exception being at a fault, although contours would normally end at a fault line

and continue from a different point at the other side of the fault. For hand-drawn

contours, the contours are usually curves so the problem of jaggedness is not an

issue, although hand-drawing contours is considerably more time consuming. For

computer-generated contour maps, there are many methods used to smooth out the

contours, although this smoothing still may not remove all of the sharp corners and

jagged edges. One such method involves computing finer and finer grids until the

contours appear smooth. The finer grids would require extra points and extra data

- ideally t his would come from the source data, where we would start from a finer

initial grid. Otherwise, some interpolation or approximation to the data would be

required. Another method fits curves to the data points such that the contours are

continuous, do not cross and do not contain loops.

In general, smoothing functions are mathematical interpolators or approximators

that are designed to improve the appearance of contours without introducing errors

such as anomalous curves, loops or crossing contours. If the data we wish to contour

are almost or completely sampled (i.e. the sample data points are the population

data), then the computer is as likely, if not less likely to produce errors in the

contour map, and certainly produces the contours in a shorter space of time than

a human can. If we were to have sparse data, often the hand-drawn contour maps

are considered to be 'more realistic' as the human drawing would normally have

background knowledge of the data and can instinctively reason whether to include

an anomalous data point. Computers, however, would require this 'instinct' to be

programmed in, and this may be unique to the particular data set. In both cases, the

contours are subject to some error, although these errors might be minimal. Hand

drawing contours is a subjective process, and human error can result in misleading

contours, especially when the human 'instinct' is incorrect. Similarly, computer

generated contouring is subject to the stability of the algorithm that is being used,

as well as the accuracy of the programmer responsible for encoding the algorithm.

3

1.1. INTRODUCTION

Algorithm design can be utilised to improve stability in the algorithm, although

this does not remove the risk of human error at the programming stage.

The main contributions of this thesis are:

• Further investigation of natural neighbour bases for interpolation used in

contouring algorithms. This is generally ignored as triangulations are normally

used as the basis. Natural neighbour bases are an invaluable alternative,

especially if the data changes, as natural neighbour bases do not require

retriangulation.

• Implementation of the butterfly subdivision scheme for contouring algorithms.

The butterfly scheme is normally used for subdivision surfaces, but as contours

are level sets on a surface we propose that the butterfly subdivision scheme

can be used for contouring algorithms.

Using the butterfly subdivision contouring algorithm, we have a choice of est

imating points beyond the boundary, or to use the novel constrained butterfly

subdivision scheme to constrain all data points within the original boundaries

of the data set.

• The use of the Worsey-Farin algorithm used over a Powell-Sabin triangle

subdivision, referred to in this thesis as WFPS, as used by Walker in the

TetSim program [44]

• The creation of the Amlin contouring program, which utilises the data struct

ures of Walker's TetSim program.

• Comparisons are made between linear contours, straight line contours over

a Powell-Sabin subdivision, WFPS, contours using the natural neighbour

method, contours over an unconstrained butterfly subdivision and contours

over a constrained butterfly subdivision. Timings for each are also compared.

For all contour methods, timings were performed on a 2GHz Athlon CPU with

768MB of RAM.

4

1.1. INTRODUCTION

1.1.2 Thesis motivation

The problem

When considering geological data, the data are usually in the form of two- or three

dimensional scattered points to which attributes are attached. Unlike datasets from

areas such as mechanical engineering, geoscientific data often have a highly irregular

distribution. For example, bathymetric data are collected at a high sampling rate

along each ship's direction of travel, but there can be a very long distance between

two lines of data. Geological data are gathered from boreholes and therefore usually

has a large amount of data vertically but very little horizontally. In order to model

the data sets, interpolation needs to be performed to estimate the value of an

attribute at unsampled locations.

Geological data often contains faulted surfaces - surfaces containing unknown

discontinuities along lines known a priori, and the surface itself can be folded,

resulting in multi-valued surfaces. Other difficulties appear when the data are

affected by random disturbances. The discontinuity of a faulted surface means that

we may have two or more different values at one point, although when a surface is

faulted, it is not defined beyond the fault. As stated in Bolondi et al. [6]:

A map is completely accurate if the proper contour lines touch the

correspondent data points, even if they do not lie on the grid nodes. At

present, to the knowledge of the authors, the only way of guaranteeing

such a behaviour is to introduce an irregular grid containing among its

nodes all of the data points.

Bolondi et al imply that irregular grids containing all of the data points are more

likely to produce an accurate map of the data.

Alternatively, we could use a method such as kriging [9, 35], which optimises

interpolation between the data points using the statistical nature of the surface.

Measured points are used to describe properties of the surface, which can then

be applied to estimate missing locations. However, kriging has increased time

and computational demands, and is also an approximator or estimator, not an

interpolator since it does not respect the original data points. Since the data points

5

1.1. INTRODUCTION

are often sparse, it would be logical to respect the data where we have values, and

to interpolate between these. Kriging is also unsuitable where we have specific areas

of interest whose results are statistically anomalous and have results which differ

greatly to neighbouring points. This is likely to occur during our investigations so

in order to prevent this from occurring we do not use kriging in this thesis.

Hypothesis. In this thesis we propose that our new contouring algorithm will run

faster than existing contouring methods, whilst also being able to contour difficult

areas such as at discontinuities.

Although we could use gridding and an approximating contour algorithm, as

geological data is often sparse it would be preferential to honour the data wherever

possible. Because of this we will compare our algorithm with contouring algor

ithms that interpolate rather than approximate, and produce smooth contours

with no jagged edges or corners. We also require the contouring algorithms to

agree with Bolondi et al and produce contours which touch the corresponding data

points. We will investigate a selection of current contouring methods, highlighting

their potential benefits and restrictions. We will look at straight-line contours over

the original data, as well as the possibility of using curved contours to produce a

smooth contour map. We will also propose a new contouring method, and compare

the results with other methods to determine whether, using specific criteria, this

new method is faster than existing methods and more versatile in the applications

to which it can be used. Three-dimensional data and irregular sampling are not

specifically covered in this t hesis, although many of the techniques discussed can

be applied to these scenarios. A fictitious discontinuity is introduced for one data

set to investigate and compare the outputs produced by each contouring algorithm.

Again, these algorithms can be applied to data sets where real discontinuities occur,

such as at fault lines.

Applications

Analysing data is notoriously difficult in the geosciences. The main problem facing

the geologist is the impossibility of making continuous observations in the subsurface

6

1.2. THESIS OUTLINE

domain, except for occasional access to drill cores or underground works [23]. Below

surface data collection is an expensive operation and so this often results in sparse

data sets which may include faults and discontinuities. There may also be many

different types of surface below the Earth's surface and so we may wish to compare

the differences between these surfaces, whether it is the varying salt concentrations,

temperatures, pressures, or for any types of data collected.

The most straightforward methods to analyse results is to visualise it. From

this point of view, contouring is the more fundamental operation as it immediately

presents the data in an accessible format. Contours indicate areas which vary

greatly, as well as areas which are relatively uniform. This enables the geologist

to concentrate further analysis in certain regions rather than analysing the data as

a whole, saving valuable time for future analysis.

The TetSim program can be used to read in data as well as the properties

and attributes of the data. After analysis the data can be read by Amlin for

fast contouring using a method decided by the user. Of the methods available

in Amlin, contours over a butterfly subdivided domain show the most potential,

as the butterfly subdivision algorithm can be used either to estimate missing data

from the input and even beyond the boundaries of the data, or to be constrained

within the original data.

1. 2 Thesis outline

We now give a brief description of the contents of each chapter of this thesis. In

Chapter 2, we present a short summary of the background theory which provide the

foundations for the work in later chapters. We introduce the background to inter

polation methods, from basic interpolation which is weighted by a simple average of

the surrounding data, to interpolation based on the natural neighbours and Voronoi

diagrams. Interpolation is required due to the nature of most data sets - we do not

have regularly arranged data points. Even if we do have regularly arranged data

points, we still may wish to consider areas between these points. Obtaining data

for geological models below the Earth's surface is difficult and expensive, and so

7

1.2. THESIS OUTLINE

the data collected is often sparse. In order to produce reliable contoured output,

interpolation is used. The Sibson interpolation function is defined, both over regular

and irregular nodal point arrangements, and will be used in the following chapters.

This is followed by introducing contouring methods which can be used to improve

on linear contours. A few related methods are discussed, along with reasons why

we choose to use Bezier curves as our smooth contouring function.

Chapter 3 introduces the Worsey-Farin algorithm - a contouring algorithm which

produces smooth, continuous, contours over a triangulated data set. The triangu

lation used is subdivided by the six-triangle subdivision as described by Powell and

Sabin [33]. We then utilise Bezier ordinates over the Powell-Sabin subdivision in

order to compute the Worsey-Farin algorithm. The Worsey-Farin algorithm requires

normal vectors at the nodal points, and since we do not have this information in our

data, we discuss different methods to estimate these normals. In TetSim, Walker

[44] chose Nelson Max's method as the preferred method of normal estimation [29],

whereas for the natural neighbour method, it is logical to use the Weighted by

Voronoi area method, since the Voronoi Areas are already calculated. Finally, we

produce contour maps of two data sets and compare the two contouring methods

with each other. We see that both methods produce similar, yet not identical

contour outputs.

We propose a new method of contouring in Chapter 4, this time based on a

subdivision scheme as opposed to the algorithm that is built on the subdivision.

We briefly ment ion a t rivial subdivision scheme, before proceeding to a scheme

known as Butterfly subdivision. The butterfly scheme is named due to the shape of

the map of neighbours used during evaluation. The original scheme devised by Dyn

et al [18] was general in that it could not subdivide in areas where the area does not

look like the butterfly-shaped stencil. In 1996, Zarin et al published an extension to

the butterfly scheme known as the modified butterfly scheme [54], which developed

rules for cases which were not covered by Dyn et al 's original butterfly scheme. We

use Zarin et al's extension to the original butterfly scheme t hroughout the chapter,

highlighting the methods used for when we encounter special cases. We use Zorin et

al's method as a basis to propose a new method of producing contours and produce

8

1.2. THESIS OUTLINE

a contour map of one of the data sets in the previous chapter. This is used to show

that the Butterfly Subdivision scheme can be used for contouring algorithms and

has many benefits over existing methods. The Butterfly Subdivision scheme uses

the data structures of Walker's TetSim program and so it is more straightforward

to compare outputs between the different methods of contouring.

Finally, in Chapter 5 we compare all of the contouring methods we have seen

in previous chapters, using the data sets we have previously seen. We highlight

differences between the contour maps, as well as showing that t he methods we have

investigated can cope with missing data. We also look at real data, taken from the

Irish Sea, and compare the contouring methods from Chapters 2 and 3 with the

hand-drawn contour maps of the data. The different contouring methods produce

similar , although not identical outputs, which satisfy the criteria required and so

often it is up to computational time to decide which method is the preferred one

for given data.

9

Surface approximation / interpolation

2 .1 Introduction

Until the arrival of computers, interpolation for contouring was limited to methods

that could be easily implemented by hand. These algorithms can now be automated

on modern hardware. Apart from the "educated guess" method of drawing contours,

there are many manual methods of interpolating data that allow an estimate of

elevation. Watson [47] describes these manual methods, the simplest of which

involves weighting each of the N data points by 1/ N . This implies that we have a

level plane, at the average height, as a representative surface over the region. If the

height measurement for a vertex (xi, Yi) is F(xi, Yi), then a level plane L over the

region has an elevation

This has poor local agreement with most of the data, although globally it offers

a good estimate of the total volume. Such a surface cannot be contoured, as a

level plane has no variation, and so the variability implied by the data cannot be

displayed.

Distance-based weighted averages offer an alternative solution to this problem.

These methods are probably the easiest to implement and so are the most abundant

in interpolation literature. Various computer adaptations of these methods have

been created, including Inverse Distance Weighted Observations (known as IDWO)

10

2.1. INTRODUCTION

and Inverse Distance Weighted Gradients (IDWG) [31]. Inverse distance weighting

models use the notion that observations further away should have a lower contribution

than those which are near the point of interest. The simplest model involves dividing

each of the observations p(xi, Yi) by its distance dij from the target point, p(xj, Yj),

such as in the following equation:

A lot of imaging software packages use this type of model for interpolation, as it

is straightforward to implement and simple to understand. Due to the availability

of these methods, we will not investigate them further, and so the references can

provide the interested reader with a concise knowledge of the particular methods.

An interpolation method that can improve on the above techniques divides the

region into polygonal prisms centred around each data point. The height of each

prism is determined by the height of its representative point [47]. These polygonal

prisms are piecewise constant and so give perfect local pointwise agreement, although

global values can vary considerably, as the size of each polygon can differ greatly. An

improvement on this would be to use natural neighbour polygons - polygonal regions

whose boundaries form perpendicular bisectors of the straight line join to certain

neighbouring data points, as we will see later. As these polygons are unique for

each data set, they are easily reproducible. The methods described above produce

polygons with flat tops, and so we would be looking for a method that produces

more satisfactory results.

Another method, known as convergent gridding [24], uses a coarse grid which

1s initially assigned to the data, and then refined many times until the surface

converges to a specified smoothness. As the refining process may need to be

performed many t imes, this may not be a favourable method when time is an issue.

A fitted function method, which fits a surface to the data using a least squares

method, is more straightforward to implement when it comes to local support, and

such methods are also used for gradient estimation, which we will see later. Fitted

function methods refer to a class of computer interpolation methods that use a

polynomial expression for a surface that fits the data, either locally or globally.

11

2.2. TRIANGLE-BASED INTERPOLATION

These methods are applied in two stages: first we determine the parameters of the

function, and then we use these parameters to interpolate. Fitted functions can be

applied to either gridded or scattered data, using a linear combination of elemental

surfaces, known as basis functions.

Other methods of computer interpolation include triangle and rectangle-based

methods, as well as neighbourhood-based methods. These are described in the

following sections.

2.2 'Iriangle-based interpolation

2.2.1 Barycentric coordinates

A more continuous solution can be found using a triangulation of the data, which is

equivalent to 'slanting the tops' of the triangular prisms mentioned previously. In

other words, we can use a mesh of planar triangles defined by neighbouring three

dimensional data points. Each vertex of the triangle is anchored at a data point,

enabling exact local agreement , and then we can apply barycentric coordinates

to the data at the vertices of the triangle, giving a weighted average method of

interpolation.

Any point P in the plane can be expressed in terms of barycentric coordinates

with respect to any triangle ABC of a triangulation T

3 3

P(x, y) = L wi(xi, Yi), where L wi = 1.
i=l i=l

This forms a 3 x 3 linear system which has the unique solution

area(P, B , C)
Wi = area(A, B, C)

area(A , P, C)
W2 =

area(A, B , C)
area(A, B, P)

W3 =
area(A, B , C)

Therefore the height of surfaces at a point F(x, y) within a triangle is given by

3

F(x, y) = L wi(x, y)f(xi, Yi), (2.2.1)
i=l

12

2.2. TRIANGLE-BASED INTERPOLATION

where the weight wi(x, y) is the i th barycentric coordinate of the interpolated point

(x, y) with respect to the triangle, and f(xi, yi) the value of f observed at the

i th vertex (xi, Yi)- These triangles enable the construction of an isoline map as

the interpolated surface is piecewise linear. A rectangular grid could be used in a

similar way to the triangulation, giving a fast and easy method of interpolation.

However, the major drawback of both the triangular and rectangular methods is

that in general the slope of the interpolated surface is discontinuous along each

triangle edge [30], so the contouring would contain jagged lines unless the grid was

dense.

The use of barycentric coordinates suggests that for general approaches to the

interpolation, the weight applied to a distant data point should be less than that

for one that is closer. For a set of N points, we could use an inverse data weighting

to find the height of a surface F at a point (x, y) by using the formula

where di(x, y) is the distance from (x, y) to the i th data point (xi, Yi)- This is the

generalisation of Equation (2.2.1) . The surface generated by this method would

touch each data point, forming cone-like peaks and troughs around them. The

slope of the surface is discontinuous at the data points, but continuous everywhere

else. This is a fairly accurate method of interpolating the data - surface accuracy

is lost at the data points although we know the values at the points and so can

manually include them. The price to pay for this accuracy is the large number of

calculations required over a simple domain.

This is one method used in Finite Element interpolation, as we would triangulate

the convex hull of the domain using some triangulation, and then interpolate using

an interpolant on each triangle. A commonly used interpolant is Clough-Tocher

[11, 52, 51, 34], although we will not be using this in this thesis. A Clough

Tocher subdivision of a triangle forms three subtriangles by inserting a vertex

anywhere inside the triangle, then three polynomial patches are determined by

the three data points and their estimated gradients. This construction gives us a

piecewise quadratic approximation to the function, where the function has been

13

2.3. NATURAL NEIGHBOUR INTERPOLATION

approximated by a series of quadratic function pieces. Once the triangulation has

been completed, the interpolation is very efficient. We can also extend t his to higher

dimensions as the triangulations still hold, as well as the computed interpolants.

The triangulation in adaptive or time-evolution Finite Element interpolation can

cause problems, however, as moving the data points may introduce errors in the

interpolant if we do not retriangulate the domain. The repeated triangulations are

a major drawback of Finite Element interpolation, as the triangulation may require

a significant proportion of the computing time, especially for fine meshes.

2. 2. 2 Delaunay triangulation

A commonly used triangulation for Finite Element interpolation is known as a

Delaunay triangulation.

A triangulation T is a Delaunay triangulation of the data set if and only if

the circumcircle of any triangle of T does not contain any point of the data in its

interior. Delaunay triangulations maximise the minimum angle of all the angles of

the triangles in the triangulation and so they tend to avoid thin triangles wherever

possible [39].

In addition to the interpolation methods mentioned here, we can also interpolate

using the dual of the Delaunay triangulation - Voronoi tessellation, which we will

investigate in the next section.

2.3 Natural Neighbour interpolation

Since the Finite Element method was first implemented , it has become one of the

most commonly used numerical methods in engineering and mechanics. This is

mainly due to its versatility and ease with which it can be used to solve otherwise

impossible problems. One main drawback in the use of the Finite Element method is

the time taken for the meshing and remeshing of the domain. Since Finite Element

models rely on a mesh, t his cannot be avoided, and for large sets of data the meshing

algorithm can be very time consuming. Meshes also cause problems for models that

contain cracks, or areas where there is a large change in data concentrated over a

14

2.3. NATURAL NEIGHBOUR INTERPOLATION

small part of the domain. These problems may result in a mesh that gives inaccurate

or even unusable solutions [38, 36].

To eliminate this problem, other methods that do not rely on a triangulation have

been developed. These include the Element Free Galerkin (EFG) [2], Meshless Local

Petrov-Galerkin (MLPG) [27], Moving Least-Squares (MLS) [50], and the Natural

Element Method [10, 39]. These are all members of a class of methods known as

"Meshless Methods" , many of which have been investigated by Belytschko et al [3],

De Vuyst et al [13] and Cueto et al [10]. In the following section we will concentrate

on an interpolation method using natural neighbours [39].

2.3.1 Natural Neighbours

Consider the set of finite distinct points N = { n1, n2 , ... , nM} in !Rm with positions

x 1 , x 2 , ... , XM. Just as neighbours are the people who live around one particular

place, natural neighbour interpolation uses the point (or points) that lie around the

area of interest. The nearest neighbour is the closest point to the area of interest.

In some cases, such as points located on a circle, a point can have more than one

nearest neighbour, although generally there is only one nearest neighbour, where

there can be any number of natural neighbours. A definition in two dimensions

is given below, although it can be altered for n-dimensions by replacing the two

dimensional real domain IR2 with then-dimensional domain !Rn [41].

Definition 2.3.1. Consider a point x E IR2
. The point xi is the nearest neighbour

ofx if

d(x,Xi) < d(x,xj) V j =/- i

where d(Xi , xi) is the Euclidean distance between Xi and xi .

Figure 2.1 demonstrates the nearest neighbours, where the nearest neighbours

to point x are those indicated in green.

2.3.2 Voronoi Diagrams

Consider again the set of distinct points, P = { n1, n2 , ... , nN} in IR2 . The Voronoi

diagram of these points places each point into a separate region, or cell, where each

15

(a) Regularly

points

2.3. NATURAL NEIGHBOUR INTERPOLATION

X . •

arranged (b) 9 randomly placed points

Figure 2.1: Voronoi diagrams for two sets of data. Nearest neighbours are given in

green.

point in that cell is closer to the point of that cell than any other on the diagram.

These regions are called Voronoi cells and mathematically, for each cell 'I';, we have

that

again where d(°Xi,xj) is the Euclidean distance between Xi and Xj- The Voronoi

diagrams for two sets of points are given in Figure 2.1.

If a point x was to fall on a line dividing two regions, then it would not have a

unique nearest neighbour.

Using the Voronoi diagrams and Definition 2.3.1 from t he above, we can complete

the definition of natural neighbours.

Definition 2 .3.2. Any two points are said to be natural neighbours if their Voronoi

cells have a common boundary.

Note from this definition that the natural neighbours of a point are not necessarily

the same as its nearest neighbours, as two points which are close together may not

share a common boundary. In Figure 2.l(a) the points were arranged in a regular

pattern, and so the nearest neighbours and natural neighbours are the same points.

In Figure 2 .1 (b), however, the nearest neighbour for the point x was one point in

16

2.4. INTERPOLATING FUNCTIONS

the diagram, but the natural neighbours include the other three points surrounding

x. Note that some points may be closer to x, but as the Voronoi cells do not share a

boundary they are not considered to be natural neighbours. The natural neighbours

for the points given in Figure 2.1 are given in Figure 2.2.

(a) Regularly

points

arranged (b) 9 randomly placed points

Figure 2.2: Voronoi diagrams for two sets of data. Natural neighbours are given in

green.

If we were to connect each point to its natural neighbours we obtain the Delaw1ay

triangulation. Delaunay triangulations are used in Finite Element meshing, and are

the topological duals of Voronoi diagrams [42] .

Now that we have a way of presenting and interpreting the data, we need an

interpolating function. There are two main interpolating functions [40], known as

Sibson [37, 20] and non-Sibson (Laplace), and we will focus on Sibson interpolation

- this is refered to as natural neighbour interpolation by Watson [47, 48].

2.4 Interpolating functions

2.4.1 Sibson interpolation

Suppose we wish to find the natural neighbour coordinates (or shape function) of

a general point x using the nodal set {n1 , ... ,n9 } in Figure 2.l(b) on page 16. If

17

2.4. INTERPOLATING FUNCTIONS

x was tessellated along with the nine points in the diagram, then a new region

containing x would be created as illustrated in Figure 2.3.

5 6

•
1 .

2 3 4

Figure 2.3: Voronoi diagram for the nine points and x.

The natural neighbour coordinates of x with respect to a natural neighbour I

are defined as the ratio of t he area of overlap of t heir Voronoi cells to the total area

of the Voronoi cell of x , or

M

A(x) = L AJ(x)
J =l

where I ranges from 1 to M , and M is the number of natural neighbours of x. If

x coincides with a point x1 , then Ar(x) = A(x) giving </>J(x) = 1, and zero for all

other shape functions. A visualisation of the shape function is given in Figure 2.4.

The shape function ¢7(x) is shown, where

18

Acdef or--.
A efghi

2.4. INTERPOLATING FUNCTIONS

---h

5 6

.
1 i 3 4

Figure 2.4: Sibson shape function for cf>7 (x).

By the definition of the shape function, we have that [8]

0 ::; 1>r ::; 1 (2.4.1)

1>1(xJ) = bu (2.4.2)

M

I: 1>1(x) = 1. (2.4.3)
l = l

Equation (2.4.2) implies that the natural element interpolant passes directly

through the nodal values, and so in a Galerkin implementation the nodal unknowns

are the nodal displacements. The Natural Element and Finite Element shape

functions both share this same property. This is not the case for approximations in

most other meshless methods, as the nodal unknowns are not necessarily the nodal

displacements.

Natural neighbour shape functions also satisfy the local coordinate property [37],

namely

(2.4.4)
I=l

which means that the shape functions can reproduce the geometrical coordinates

19

2.4. INTERPOLATING FUNCTIONS

exactly. The linear consistency conditions are satisfied by Equations (2.4.3) and

(2.4.4).

In order to calculate A1(x) we are able to choose from many methods available.

Lasserre's method [26] is simple to implement and can be used to calculate volumes

of Voronoi diagrams in n-dimensions for any integer n. The area is calculated around

a given point, and so clearly the point needs to be inside the area to be calculated.

This is acceptable for calculating areas of first-order Voronoi cells, such as those of

5, 6, and 7 in Figure 2.4. It is, however, unsuitable for calculating some areas of

overlap, such as the areas of dcgh and cfg. The algorithm does work for the area

cdef, but only because point x lies inside the area.

Another method is the calculation of the area of each polygon, given by

l N - 1

A1(x) = 2 L (XiYi+l - Xi+1Yi),
i=O

(2.4.5)

where XN x0 and YN = y0 , although this area calculation is only valid in two

dimensions. We are only interested in two dimensional functions, so this restriction

is not a problem. To understand the calculation of the shape function, let us consider

points under two arrangements - regular and irregular. We will first consider points

arranged in a regular grid.

2.4.2 Contouring regular grids

Consider a Voronoi diagram of nine points arranged in a regular grid. The location

of the points and the Voronoi cells are shown in (Figure 2.5(a)). A Sibson shape

function may be associated with each point, denoted ¢1 , ... , ¢9 . The value of a

shape function at a general point p is calculated as a ratio of areas. For example

where A(p) is the area of the new Voronoi cell surrounding the point p and A5 (p)

is its overlap with the original unperturbed Voronoi cell surrounding point 5. The

area A1 (p) of an N-sided polygon can be calculated by

l N - 1

A1(P) = 2 L(XiYi+l - Xi+lYi),
i=O

20

7 ~ 9

1 ~ ~

~ ~ ~

(a) Original Voronoi Diagram

h

7 9

1

(c) Case 2: Quadrilateral created by

a point outside the Voronoi cell 5

2.4. INTERPOLATING FUNCTIONS

7 ~ 9

h

g

1 ~

J
a

~ ~ ~

(b) Case 1: Quadrilateral created by

a point inside the Voronoi cell 5

7 8 9

i h

/1,, ri\
i\ p lg

•
1 ~ ~

a Cl

~ ~ ~

(d) Case 3: Hexagon created by a

point on the boundary of 5 and 8

Figure 2.5: Voronoi Diagrams for use with the Sibson shape function

21

2.4. INTERPOLATING FUNCTIONS

taking i mod N . So for cases 1 and 2 (Figures 2.5(b) and 2.5(c)) we have

<Ps(P) = XcYe - XeYc + XeYJ - XJYe + XJYc - XcYJ

XeYJ - X JYe + X JYg - XgYJ + XgYh - XhYg + XhYe - XeYh
(2.4.6)

and similarly for case 3 (Figure 2.5(d)) we have

(7) () _ XcYd-XdYc+XdYe-YeXd+XeYJ-XJYe+XJYc-XcYJ
S p - XeYJ-XJYe+XJYg - XgYJ+XgYh - XhYg+XhYi-XiYh+x;yj -XjYi+XjYe-XeYj.

(2.4.7)

Assuming the original nine points of the Voronoi diagram are 1 = (0, 0) , 2 =

(1, 0) , 3 = (2, 0), ... , 8 = (1, 2), 9 = (2, 2), then for case 2, a suitable point p is

(1.25, 1.75), and so ¢5(p) can be calculated as follows:

,I.. () - 2.25- 1.125+ .9375-2.25+2.25-1.875 - 0.1875 - 0 1875
'f-'5 p - 0.9375-2.25+2.25- 2.1875+3.9375- 2.25+2.25-l.6875 - -1- - . .

Similarly, for case 1 we can choose p = (1.25, 1.25) to obtain ¢5 (p) = 0.5625 and

case 3 with p = (1, !) gives us ¢5 (p) = ~-

As many methods use triangulations as a basis for producing contoured output,

it is logical t hat the dual of the triangulation could also be used to produce contoured

out put. This has largely been ignored in contouring literature and so we will

investigate this further.

Contouring using the natural ne ighbour algorithm

To determine contours (level sets) of t he slope function ¢5 at height h, it is necessary

to find all points p such that ¢5 (p) = h. For h = o:1875 the point p = (1.25, 1.75)

in case 2 is one possible solution and thus lies on the contour ¢5 (p) = 0.1875.

Due to the number of calculations involved, the other values can be found by

solving t he problem using the Maple mathematical program [28) . Maple, and its

counterpart s enables users to enter formulae in traditional mathematical notation .

There is extensive support for numeric computations, to arbit rary precision, as well

as symbolic computation.

The points e, f , g, and h can be found using the knowledge t hat g is the

circumcent re of 6, 9, and p , his the circumcentre of 8, 9, and p , etc.

Consider cases 1 and 2. Both cases have four natural neighbours, namely 5, 6,

8, and 9. This is because in both cases, p lies in the region given in Figure 2.6.

22

2.4. INTERPOLATING FUNCTIONS

7

Figure 2.6: Region where point p has 5, 6, 8, and 9 as neighbours

The variation of natural neighbours for a regular grid has been found by Sukumar

[39], and Figure 2.7 shows the number of neighbours n for each point located in the

convex hull of the grid.

Figure 2. 7: Variation of n natural neighbours for a regular grid.

To find the contour lines of the shape function, namely all points where the

function ¢5 is equal to some value, then we use either Equation (2.4.6) or Equation

(2.4.7), depending on the position of the point.

Solving ¢5 = 0.1875 using Maple for points with four neighbours provides four

solutions as given in Figure 2.8 and two of the plots for six neighbours are given

in Figure 2.9. For the areas where we have six neighbours, the limitations of the

Maple program results in two of the four plots being unavailable, since these plots

have two y values for each given x value. Due to the regularity and symmetry of

the original grid and resulting plots, it is easy to determine the shape of the missing

23

2.4. INTERPOLATING FUNCTIONS

plots.

...

1.4

, ..

,..__._..,,.~~~~~~~ ,....._ _____ __. __
0 0.2 0,4 0.6 0 6 1 1.2 1,4 1,6 U

0.6 0.6

0.6

,,.

0 .?

0 2 o.4 o.6 o.a 1.2 1."' 1.6 1.6

Figure 2.8: Plots for n = 4 natural neighbours over the domain [O, 2] x [O, 2]

By merging all of the above plots we can obtain a visualisation of the contour

as given in Figure 2.lO(a) below. If we included the two missing plots and removed

the plots at points outside their respective domains, we would have the contour plot

given in Figure 2.lO(b).

Although the contour in Figure 2.lO(b) appears to be circular, it is not a perfect

circle, as shown in Figure 2.11, where the blue contour is drawn on top of a red

circle of the same radius. The red_ circle was a circle as perfect as resolution would

allow - if the blue contour was circular, no part of the red circle should be seen at

identical resolution. We would not, however, expect the blue contour to be a perfect

circle, as the level of ¢5 = 0.1875 may be close enough to zero to be influenced by

neighbouring regions. As the value of c/>5 increases towards 1 (but not equalling 1)

we would expect the contour to approach a perfect circle.

Changing the values of k for c/>5 = k also changes the size of the contour. As

we would expect, a value of k = 1 produces a single point at 5 (= (1, 1)), and as

24

2.4. INTERPOLATING FUNCTIONS

u o.•

00

0.6 o..a 1.2 1,4 0.6 O.& 1.2 1.A

Figure 2.9: Plots for n = 6 natural neighbours over the domain [0.5, 1.5] x [0, 2].

1.6

y 1 y 1

0+-4-~~~~~~~~.-+-,
0 0,5 1.6 0.5 1,5

(a) Merged plots produced by Maple (b) Contour produced from the plots

Figure 2.10: Maple plots for </)5 = 0.1875.

k--+ 0, the contour expands towards the boundary of the support of </)5 . Contours

that move beyond the convex hull of [0, 2] x [0, 2] depend on external points which

were originally ignored in the Maple code. Although these points have zero value,

they are needed to ensure that the calculations of neighbours are correct.

Ignoring the external points for </)5 = 0.0001 produces the contour shown in

Figure 2.12, which is smooth and correct, since we have reached the convex hull

of the data set. As a point approaches the boundary of the convex hull from its

interior, Sibson's interpolant becomes piecewise linear. This is due to the areas in

Sibson's interpolant becoming infinite, reducing to linear interpolation between t he

boundary points.

Since the outer points do exist, these cannot be ignored, and so including these

points produces a different solution.

25

2.4. INTERPOLATING FUNCTIONS

1.S

y 1

0.5

o,....._ ________ _
0 o.s 1.5

Figure 2.11: Comparison between the contour and a circle of the same radius.

).!

y l

.. ,

... J.0

Figure 2.12: Contour map of </>5 = 0.0001.

Figure 2.13 shows the support of the same function, but this time the support

lies totally inside the convex hull of the domain. Using the same coordinates as

before now gives a domain of [- 1, 3] x [- 1, 3], and we can recalculate the shape

function to produce the contour for ¢5 = 0.0001, as seen in Figure 2.14.

For a regular grid, we know from Figure 2. 7 that all points inside the grid have

either four or six natural neighbours, depending on the position of the points in

question. To determine the number of neighbours each point has, we can assume

that all points have four neighbours, apart from ones lying in the lens-shaped regions

- namely those points that lie inside two circumcircles.

In order to test to see whether a point plies between two circumcircles, we need

to know the circumcentres of these circles. Assuming that the centres of circles Q

and R are at q and r respectively, then

26

2.4. INTERPOLATING FUNCTIONS

Figure 2.13: Support of ¢5 for a grid of 25 points.

Figure 2.14: Contour map of ¢5 = 0.0001.

27

2.4. INTERPOLATING FUNCTIONS

if IMI < radius of Q and liitl < radius of R

then p has 6 neighbours

else p has 4 neighbours

As we can now determine the number of neighbours a point has on a regular

grid, the next logical step is to determine the number of neighbours for points on

an irregular grid.

2.4.3 Contouring irregular grids

Consider a Voronoi diagram for a set of nine randomly placed points as given in

Figure 2.15, with coordinates given in Table 2.1.

5

i i 3 4

Figure 2.15: Voronoi Diagram for 9 randomly placed points.

Suppose we wish to calculate the shape function ¢>(p) for one point in the domain,

say point 7. For points arranged in a regular grid, the shape function was calculated

using the knowledge that if the point p is inside two circumcircles then p has

28

2.4. INTERPOLATING FUNCTIONS

Table 2.1: Coordinates of the 9 points.

Point 1 2 3 4 5

Coordinate (-0.5, 0.06) (0, 0) (1.08, 0) (3, 0) (0.9, 1.1)

Point 6 7 8 9

Coordinate (2, 1) (1.25, 2) (2, 2) (0, 4)

six neighbours, and four neighbours otherwise. A similar method is adopted for

randomly placed points, although more consideration is needed for the location of

the point compared to its neighbours, as well as the neighbours themselves, since

the number of neighbours is no longer restricted to only four or six.

In the regular grid, four points lie on each circumcircle, and so any point that

lies exclusively inside that region has four natural neighbours. Where a point lies

inside two circumcircles, that particular point has six neighbours since there are six

points used to make these circumcircles (four points each, two of them occurring

twice). For an irregular grid, again the points make up each circumcircle, and so a

point lying exclusively inside that region would have three natural neighbours. A

point lying inside two circumcircles would have four natural neighbours, since four

distinct points would be used (three points each, two occurring twice) to make the

two circles. Generally, for a randomly placed data set, a point lying inside the union

of n circumcircles has (n+2) natural neighbours. This claim does not hold for some

special cases, such as data points that are all arranged on the same circle. For this

case, each point inside the circle would have all of the data points as neighbours.

Special cases of this type are rare and can be dealt with separately, as and when they

occur. The circumcircles for the data set example and the corresponding number

of neighbours is given in Figure 2.16.

The support of a point is given in a similar manner as for a regular grid, namely

by first looking at all of the points forming circumcircles with the point in question.

These are shown in Figure 2.17, and we can see from Figure 2.17 that the points

used in the calculation of the shape function ¢7 include points 5, 6, 8, and 9.

In addition to these points, points 1 and 2 also need to be included in the shape

function calculations, since there are two circumcircles formed from points 1, 2,

29

2.4. INTERPOLATING FUNCTIONS

/

(a) Circumcircles

Ncighbour5:
•3
•4
•S
•6

(b) Colour-coded Neighbours

Figure 2.16: Voronoi diagrams for the data set.

and 5, and 1, 5, and 9 which overlap the Voronoi region 7. Now that we have the

number of neighbours for a point, in addition to what these neighbours are, we can

calculate the contour at ¢7 = k, where k is some given value.

As there are many small regions within the Voronoi region 7, we will assume

that these regions have insignificant influence over the whole region, and for the

time being, these will be ignored. Our calculations will therefore use points located

in the larger areas given in Figure 2.17.

Inserting the point pinto one of the four areas marked with example points a, b,

c, and don Figure 2.17 produces four possible Voronoi diagrams as given in Figure

2.18. We can now calculate the value of p in these regions using the same ideas and

notation from the calculat ions over regular grids.

The four equations to be solved are as follows:

,I.. (b) = XcYd-Xd!Jc+XdYe-Xe1Jd+XeYc-XcYe = k
'f'7 XdYe -XeYd+XeY 1 -x JYe+x JYg -XgY J +xgyd-XdYg .

cp
7
(c) = XcYd-XdYc+XdYe-XeYd+XeYf -XfYe+XJYc-XcYJ = k.

XeYJ-X JYe+x JY9 - X9YJ+X9Yh -XhYg+XhYe- XeYh

,1.. (d) _ XcYd-XdYc+XdYe-XeYd+XeYJ-XJYe+XJYc-XcYJ k
'f'7 - XeYJ-X JYe+X JYg -XgYJ+XgYh -XhYg+XhYi-XiYh +XiYe-XeYi = ~.

(2.4.8)

(2.4.9)

(2.4.10)

(2.4.11)

These equations correspond to the points in Figures 2.18(a) to (d) respectively.

As the points are arranged irregularly, the solutions to these problems are left in

30

2.4. INTERPOLATING FUNCTIONS

Figure 2.17: Support for point 7.

its simplest form by Maple, resulting in many complex equations. The solut ion to

(2.4.8), however , produces a linear expression , and can be solved with ease. This

occurred since we were comparing the ratio of areas of one triangle to another in

Equation (2.4.8), and for these triangles, two of the three points were the same. If

this was to arise elsewhere over the domain, then it is likely that a similar result

would be produced.

As the Voronoi region for point 7 is not a square domain, we need to use a

domain that includes the whole of the region, thus also including some points from

regions 5, 6 , and 9. Running Maple for two values of c/>7 over this domain produces

graphs given in Figure 2.19.

When cp7 = 1, then as expected, the four curves meet at a single point at 7

(= (1.25, 2)) as given in Figure 2.19(a) . For cp7 = 0.5625, however, the combined

contours appear to give strange results, although these are not necessarily meaning

less for the whole contour. If we were to retain only the curves in their respective

domains around point 7 and remove the remainder , then we would be left with the

31

2.4. INTERPOLATING FUNCTIONS

'I /

/

'· 9.

/ /

---- !
•p

7. l ~
'\

l !_J

t l r

(a) p = (1.25, 2.5) (b) p = (0, 2.25)

/

(c) p = (1.4, 1.6) (d) p = (0.95, 2.5)

Figure 2.18: Point p inserted at various points over the Voronoi cell 7.

32

2.4. INTERPOLATING FUNCTIONS

s

3

'2

·1 0 '2

(a) <h = 1

6

4

3

'2

· 1 0 '2 3

(b) ¢7 = 0.5625

Figure 2.19: Maple plots of ¢7 = k for two different values of k.

33

2.4. INTERPOLATING FUNCTIONS

graph given in Figure 2.20(a). The anomalous spike in the green contour was the

result of a floating-point error, and removing t his enables us to produce a contour

for ¢7 = 0.5625 as given in Figure 2.20(b).

5

4

//

9, /
3

y

2

-1 0 i 1 3

(a) Contours retained around point 7 (b) Contour for point 7

Figure 2.20: Contours for ¢7 = 0.5625.

Although we have a working contour for the shape function, it is possible that

parts of the contour curve may be incorrect. This is because some of the points

can lie outside the convex hull of the domain. Figure 2.21 illustrates this problem,

where points can lie either above the line (8, 9) or to the left of the line (1, 9), whilst

still lying inside the Voronoi region for point 7. When a point reaches the convex

hull, only linear interpolation is necessary, and so the shape function calculations

can be simplified.

Beyond the convex hull, shape function calculations are undefined since the areas

of interest become infinite, and so as the point p in Figure 2.18(b) approaches c,

contours reduce from a polynomial, to linear, to meaningless. This provides one

possible explanation as to why the green contours in Figures 2.19(b) and 2.20 are

spiked, and why the shape function curves around a different area to the point

used for the calculations. Figure 2.22 shows that as k -+ 0 for ¢7 = k, this

problem increases as other points move outside the convex hull. One important

factor that could be addressed to improve the accuracy of the contour concerns the

small regions within the Voronoi diagram. These were assumed to have insignificant

34

2.5. INTERPOLATION FOR SMOOTH CONTOURS

9

Figure 2.21: Convex hull for the nine points of the Voronoi diagram.

influence over the whole region, but if these regions were not ignored, a more realistic

contour diagram would be produced, although more consideration would be needed

to determine the exact location of the points used in the Sibson shape function

calculation. This ensures that the points being calculated would have the correct

number of neighbours at the correct locations.

- 1

Figure 2.22: 'Contours' for ¢7 = 0.01.

2. 5 Interpolation for Smooth Contours

When looking at a standard contour map, such as the one given in Figure 2.23, we

can see that the contours provide information regarding the elevation of the terrain

35

2.5. INTERPOLATION FOR SMOOTH CONTOURS

Figure 2.23: Sample contour map of a typical terrain. In this example, the numbers

represent elevation above sea level. (For illustration purposes only)

we are interested in. As it is not practical to measure every point over the terrain,

the measurement of these elevations would have generally been calculated at specific

points, and smooth lines drawn through those of equal height. The points would

normally be meshed, and elevation values would be interpolated over the mesh. As

we are introducing interpolated values, parts of the terrain may not be accurately

described, and so the contours produced are an estimation of the true data. We

do not know the exact terrain between data points, and so opt ing to use straight

lines to join points of equal value is currently one of the most accurate methods

of displaying the results. This is shown in Figure 2.24, where the blue contour is

drawn using piecewise linear sections around a coarse triangulation.

Figure 2.24: Simple linear contour on a small triangulation.

36

2. 6. BEZIER CURVES

Although piecewise linear contours produce good results for the data, it is not

aesthetically pleasing to the eye, as we are aware that real data rarely has corners

and straight lines, and so it would be preferential if we could smooth the data in

some way.

One method would be to subdivide the triangles into smaller triangles, and to

either measure or estimate the data at the new triangle corners. This produces

smoother contours, but still has corners and straight lines. We could repeat the

subdivision on these sub-triangles to produce smaller triangles, but this produces a

large amount of data which may be estimations derived from estimations. Another

problem arises as to deciding when to stop the subdivision to produce a contour

map which is smooth enough.

Another method would be to assess the data by hand and smooth the lines by

redrawing the contours. This requires human intervention, and so problems may

arise since it is possible for two people to produce two different contour maps from

the same data.

We could also use linear interpolation to estimate the point where the contour

line intersects the triangle sides. A smooth curve is then drawn through these points.

However, doing this can cause problems as it is possible for contours of different

levels to cross each other. A solution to this would be to provide an algorithm to

plot the contours of a function with a continuous first derivative, hence removing

this problem.

In the next section we will investigate methods which produce smooth contours

from the outset, which removes the requirement for further subdivision.

2. 6 Bezier Curves

Bezier curves, as mentioned above, produce smoooth contours and do not require

further subdivision. Because of this, Bezier curves are ideal for contouring algor

ithms and we will use contouring algorithms using Bezier curves to give smooth

derivatives over the interpolation domain.

Bezier curves were invented independently by both de Casteljau and Bezier, who

37

2.6. BEZIER CURVES

were engineers for two different car companies in France in the late 1950s and early

1960s. These curves are relatively easy to describe and control. The idea underlying

Bezier curves lies in the weighting of the parametric functions by the coordinates

of certain intermediate points. These intermediate points enable the formation of

curved triangles, i.e. triangles with curved faces, as opposed to linear triangles, and

improve on the accuracy of Finite Element interpolation.

The curved triangles can be used to interpolate the corner points exactly, as well

as the slopes at these corners, ensuring that the corner slopes match the slopes of

the straight lines between each end point and its nearest intermediate data point.

These curves are known as linear Bezier curves. Quadratic and higher order Bezier

curves are also available, and many applications need true space curves, so we need

to create a general polynomial curve of arbitrary degree n. An n th order Bezier curve

requires n+ 1 control points, so a cubic Bezier curve can be described parametrically

as

x(t) = ax(l - t)3 + 3bx(l - t)2t + 3cx(l - t)t2 + dxt3
,

y(t) = ay(l - t)3 + 3by(l - t)2t + 3ey(l - t)t2 + d11t3,

o ::;t::; 1,

where the coefficients are the coordinates of t he four control points A(ax, ay),

B(bx, by), C(cx, ey), and D(dx, d11) . The points A and D correspond to the end

points of the curve, and the intermediate points B and C determine the tangential

direction at the two end points.

The case for a general polynomial curve of degree n is defined using de Casteljau's

algorithm below.

Algorithm 2.6.1 (de Casteljau).

Given h o, b1 , ... , bn E JR.3 and t ER

Set b Ht) = (1 - t)b;- 1 (t) + t b;.;}(t) and b?(t) = bi,

where r = l, ... , n and i = 0, ... , (n - r) .

Then b0 (t) is the point with parameter t on the B ezier curve bn,

hence bn(t) = b0(t) .

The polygon formed by b0 , ... , bn is called the Bezier polygon or control polygon

38

2.6. BEZIER CURVES

of the curve bn. Similarly, the vertices of the polygon are called Bezier points or

control points.

The intermediate coefficients br(t) can be written as a triangular array of points

known as the de Casteljau scheme. If we were to have a cubic curve, the points

could be arranged as follows:

bo

b 1 b6

b 2 bi b5

b 3 b§ b f bg.

This array design suggests that a two-dimensional array is required for the de

Casteljau algorithm. However, it is possible to use just the left-most column and

to overwrite these values when required.

Using Bezier curves in t he de Casteljau algorithm enables us to infer many of

the important properties of Bezier curves in the algorithm:

• Bezier curves do not change under affine maps or affine parameter trans

formations, and so the order of applying the map or transformation with the

computation of the points bi is not important.

• For t E [O, 1], bn(t) lies in the convex hull of the polygon since each bi is

obtained using a combination of other internal points and so we do not produce

any points outside the convex hull of the bi. This convex hull property gives

us an important consequence that a planar control polygon always generates

a planar curve.

• The Bezier curve passes through b 0 and br, and for the cases t = 0 and t = I ,

we can easily verify that bn(o) = b0 and bn(l) = bn. This means that we can

interpolate the end points exactly, which is essential for most interpolation

domains.

For higher values of n this algorithm is not computationally efficient, although

it is a very stable method as well as an important tool for further investigations.

Typically, we will be using values no higher than n = 2, and so efficiency for higher

39

2.6. BEZIER CURVES

values of n is not an issue. When t = 0, we can write the control points of the

Bezier polygon as a Taylor expansion given by

where 6 i are the forward differences, namely

6°ho = ho

6 1 ho = 6 ho = h1 - ho

6 2 ho = 6 (6h0) = 6h1 - 6ho = h2 - 2h1 + ho

etc.

The Bezier points can also be expanded in terms of Bernstein polynomials Bf(t):

where Bernstein polynomials of degree n are defined by

and t is t he local coordinate of the interpolated curve segment. Similar to de

Casteljau 's algorithm, we have that the B?(t) are invariant under affine transform

ations, lie in the convex hull, and can be created by repeated linear interpolation

since we can also define the Bf (t) as

To find the derivatives wit h respect to a point u of a Bezier curve, we have two

possible directions.

For the de Casteljau scheme we have the first and second derivat ives given

respectively by

__!!_ 6hn- l and
A n - 1 uu0

since the de Casteljau steps commute.

For the case of derivatives of Bernstein polynomials, the r t h derivative is given

by

40

2.6. BEZIER CURVES

At the endpoint u = u0 , t = 0, and so the Bernstein representation reduces to just

n!
(n - r)!

From the above we can deduce that the tangent vector at one end point u = u0

is ll:o (b1 - b0) , and similarly at the other end point u = u1 we have a tangent

vector of ll:o (bn - bn-1). The Bezier polygons therefore provide an idea of the

shape of the curve that they define, and although t he derivatives can be calculated

more efficiently using other methods, the above is sufficient for the time being.

In addition to differentiation, we can also integrate Bezier curves, and it 1s

relatively simple to show that

1
1 1
Bf(t)dt = - ,

0 n+l
for all i .

So for the interval [u0 , u1] over the curve f(u) we have

The above equation implies that the definite integral can be found by multiplying

the interval length by the average of the Bezier points b i.

Just as we can use integers from real numbers to form rational numbers, we are

also able to use Bezier curves to form rational Bezier curves.

A rational Bezier curve can be expressed in terms of Bezier polynomials as

r(u) = (3x(t) = f3o boB0(t) + · · · + f3nbnB~(t)
(3(t) f3oB0(t) + · · · + f3nB~(t) '

(2.6.1)

where (3x (t) is the weighted function of x(t) and again tis the local coordinate of the

interpolated curve segment [21]. The Bezier points b i are each assigned a weight (3i

such that if (3i is large enough compared to f3i-l and (3i+1 , then the curve is skewed

towards bi. The curve lies in the convex hull of the b i if all of the (3i have the same

sign.

As with standard Bezier curves, a rational linear transformation changes the

defining Bezier polygon and weights, but not the shape and degree of a rational

Bezier curve. This transformation can be defined by three arbitrary points on the

curve, together with the corresponding parameter values. In particular, we can

41

2. 7. B-SPLINES

assign the value t = oo to a point at infinity which in turn causes the degree of

the denominator f3(t) to reduce to (n - 1) or less. The point at t = ½ is called

the 'shoulder' s, and we can find this value of s along with the bis by solving a

homogeneous linear system to determine the weights /3i .

For a rational quadratic Bezier curve, Equation (2.6.1) can be simplified to

b(t) = b0B5(t) + wb1B;(t) + b2B~(t)
B5(t) + wB;(t) + B~(t) '

(2.6.2)

where w determines the shape of the quadratic contour. If w < 1, the curve is

an ellipse, if w = 1, it is a parabola, and if w > 1 we have a hyperbola. We can

describe the whole contour using many small Bezier curves, each of which can be

parametrised over the interval [O , 1].

Worsey and Farin [49] described an algorithm which takes advantage of these

properties, and we shall see their method in Section 3.4. The algorithm pieces

together many small rational Bezier curves, controlled using intersections between

triangle edges and their neighbouring incentres as control points, as well as the

incentres themselves. The triangulation surface is smooth and continuous, and

using control points from this surface should produce a continuous set of Bezier

curves.

Before we look into the algorithm, we must first look at other methods which

could be used to interpolate the data. Although these methods will not be investigated

further, they are included for completion and could be used in place of Bezier curves

in the methods described in the next few chapters, although Bezier curves are more

straightforward to code and are sufficient to produce the outputs required.

2. 7 B-Splines

A Spline curve is a piecewise polynomial curve that has certain differentiability

constraints. Spline functions are formed by joining polynomials together at fixed

points called knots. These knots can be thought of in the same way as a knot joining

two different pieces of string together. Clearly they must join at the same point,

and mathematically these two polynomials are required to join smoothly. In the

42

2. 7. B-SPLINES

most common case, this means that the derivatives must match up to the order one

less than the degree. (If they matched up to the derivative whose order equalled

the degree, they would be the same polynomial.) Thus a spline function defined in

this way has one extra degree of freedom than a polynomial defined over the entire

interval.

A B-spline curve (or Basis-spline curve) is a generalisation of Bezier curves,

and has many propert ies derived from Bezier curves, including partit ion of unity,

positivity and local support, as well as being (n-1)-times continuously differentiable

for a given n. A B-spline curve is given by

s(u) = L diNt(u)
i

where the di are the control points or de Boor points of the B-splines Nt (u) forming

the de Boor polygon. The normalised B-splines Nt(u) are piecewise polynomials of

degree n defined recursively by

1 if Ui ::; U < U i+ l

0 otherwise

It is possible that the equations above can yield ~ , and so for completeness this is

defined as zero. Nt(u) is a step function equal to zero everywhere except on the

interval ui ::; u < ui+l. This interval is known as the i th knot span, and can have

zero length since knots do not need to be distinct.

B-spline curves possess the four properties previously mentioned, as well as the

convex hull property, since any point of the curve lies in the convex hull of the

de Boor points defining it. The knot vector uniquely defines the B-spline curves,

as this should be clear from the equations given above. The relation between the

number of knots (p + l), the degree (n) of Nt, and the number of control points

(m + 1) is given by p = m + n + l. The sequence of knots in the knot vector

U is assumed to be non-decreasing, i.e. u i ::; ui+l· Each successive pair of knots

represents an interval [ui, ui+1) for the parameter values to calculate a segment of

a shape.

43

2. 7. B-SPLINES

If p knots ui = · · · = Uj+p-l are equal, then the B-spline curve becomes only

cn- p continuous at Uj, and in order to ensure that a B-spline curve has non

vanishing support we require that p :S n + l. The local support property implies

that a change of one control point di only affects a limited part of the B-spline

curve.

If for example, U = {0, 0, 0, 1, 1, 1}, then we have a B-spline curve of degree 2.

Considering u only in the range [0, 1) we have

No
0

No
1 -

No
2

No
3 -

No
4

0

0

1

0

0

N2
0

N2
1

Nl
0 - u-0 No + 0- v. No

0- 0 0 0 - 0 1 -

Nl
1

u-o No+ 1-u No
0 - 0 1 1-0 2

N:} u- 0 No+ 1-u No
1- 0 2 1-1 3

Nj u-1 No + 1- u No
1-1 3 1- 1 4

u-0 Nl + l - u Nl
0- 0 0 1- 0 1

u-0 Nl + 1- u Nl
1- 0 1 1- 1 2

(1 - u) 2

2u(l - u)

N2 u - 1 Nl + 1- u Nl u2
2 1-1 2 1-1 3

0

1 -u

u

0

These are the Bernstein polynomials as used in Bezier curves. B-splines may be

thought of as a generalisation of the Bezier representation if

U = {O, .. . , 0, 1, .. . , 1}.
------ '-v--' n+ 1 n+l

In the de Casteljau algorithm we used recursion to construct the Bf(t) for the

evaluation of x(u) at a given value t in a Bezier curve. We can do the same for

B-splines using the de Boor algorithm.

The de Boor algorithm is the generalisation of the de Casteljau algorithm. If

x E [u1, u1+1), then all Nt(u) vanish at x except those with l E {l - n, ... , l}. The

point s(x) is found by repeated linear interpolation of

k X - Ui
Cl\=

Ui+n+l-k - Ui

where <l? = di and d~ = s(x) . As with Bezier curves, we can differentiate B-spline

curves of degree n , defined over a partition { uk} to obtain a B-spline curve of degree

(n - 1):

44

2. 7. B-SPLINES

defined over the same part it ion, where

The Dus(x) can be found using the de Boor algorithm, and to differentiate

further , we just repeat the method the required number of times.

We can find all derivatives simult aneously by using Bohm's algorithm [5] and is

given below.

Algorithm 2.7.1 (Bohm).

d1- 1 o , d 1- 1,1

d 1,1

dt-n,n-1

d t- 1,n- l

d 1,n - 1

d z- 1 n ,

Given the array above representing the set of simultaneous equations for the

derivatives, and starting with di,o = di, solve the lower left triangle of the array by

solving

followed by the upper right triangle by solving

This gives us the derivative D~s(x), where

n :s(x) = n· · · (n - r)dt- n+r,n·

We can also find the derivatives using t he Taylor expansion

giving the de Boor points d t- n, ... , d e.

As with Bezier curves, integration can be performed on B-splines, where t he

integrand of a normalised B-spline N;-(u) is given by

1
00 1

Nf(u) du = --(ui+n+l - ui) -
- oo n + l

45

2.8. NURBS

If we make Ua and ub into knots of multiplicity n + l , then for the B-spline

function s(u) = L i diN?(u) we obtain

If we define the shoulder s in a similar manner for B-splines as for Bezier curves,

then we are able to define rational B-splines using s(u) as:

where the algorithms which are previously mentioned are applied simultaneously to

the numerator and denominator.

A special type of rational B-splines, known as Non-Uniform Rational B-Splines

(or NURBS) are seen by many as the most general curve scheme, as they are

extremely powerful and complex. The use of multiple knots, repeated control points

and rational weights all add to the complexity, and we will see the advantages of

using NURBS in the following section.

2.8 NURBS

NURBS are industry-standard tools used to design and display geometrical curves

[32, 43). Since NURBS are generalisations of B-splines, then they should have all

properties of B-splines. These include the following:

• NURBS use one form to mathematically represent standard analytical shapes

and free form shapes.

• They provide the flexibility to design a large variety of shapes.

• Solutions can be evaluated reasonably quickly by accurate and numerically

stable algorithms.

• NURBS are invariant under affine and perspective transforms.

• In addition to being generalisations of B-splines, it follows that NURBS are

also generalisations of non-rational and rational Bezier curves and surfaces.

46

2.8. NURBS

One of the original drawbacks of using NURBS is that extra computer memory is

required to define traditional shapes such as circles and ellipses, although this extra

memory may not be a significant issue in today's hardware. The extra memory

requirement comes from parameters in addition to the control points, although

these are required to allow for the desired flexibility for defining parametric shapes.

NURBS are defined by control points and their necessarily associated weights.

A NU RBS curve C (u) is defined as

C(u) = L Rf(u)pi
i

where Pi are the vector control points and Ri (u) is defined as

R".1() = Nt(u)wi
i U ~ n Nn() ·

u j=O j U Wj

The wi are the weights associated with the control points and Nt(u) are the

normalised B-spline basis functions of degree n as given in Equation (2.7.1) on

page 43.

For NURBS, the knot vectors ui in the B-spline basis functions need not have

the same intervals, i.e. the knot spacing is non-uniform, leading to a non-periodic

knot vector of the form

U = { a, ... ,a,uk+l, ... ,Um-k- 1, b, . .. , b}

where a and b are repeated k + 1 times. The multiplicity of a knot affects t he

continuity of the parameters at this knot. Non-periodic B-splines, such as NURBS,

are C 00 continuously differentiable in the interior of the knot span, and ck- M-l

continuously differentiable at a knot, where M is the multiplicity of the knot. The

end knot points for NURBS (uk, uk+i) with multiplicity k + 1 coincide with the end

control points Po, Pn.

Since it is possible for the knot-spacing to be non-uniform, the B-splines are no

longer the same over each interval (ui, ui+l) and the degree of the B-spline can vary.

If we consider the whole range of parameter values represented by the knot vector,

t he different B-splines build up cont inuous overlapping blending functions Nt(u) as

defined in Equation (2. 7.1) on page 43 over t his range. Similar to previously defined

functions, these blending functions have the following properties:

47

2.8. NURBS

l. Nf(u) ~ 0 for all i, n, u.

2. Nf(u) = 0 if u (j. [ui, ui+1), implying local support of k + 1 knot spans, where

Nf(u) =/= 0.

3. If u is in the interval [ui , ui+1), the non-vanishing blending functions are

NI'-n(u), ... , Nf(u).

4. r.,;=i-n N1(u) = L,~o Nf(u) = 1 (partition of unity).

5. In case of multiple knots, t is defined as zero.

1. and 4. imply the convex hull property, and 2. and 3. suggest that k + 1 successive

control points define a segment of a shape, and a control point is involved in k + 1

neighbouring shape segments defined over the interval given in 2. We can use these

properties in the following example, showing how the shape of a NURBS curve

changes as the weight w changes.

Consider a NURBS curve with a control polygon given by

Po = [O 0] Pl = [1 2] p 3 = [4 2]

Suppose we wish to determine the point at t = ! for the second degree NURBS

curve with weights given by w = [1 1 0 1 l].

The corresponding knot vector is [O O O 1 2 3 3 3], and the curves are comp

osed of three piecewise rational quadratics--one for each of the interior intervals of

the knot vector. As we are looking at t = ! , then the basis functions on the interval

1 < t < 2 are:

Nr(t) - 1

Ni(t) - 2-t N/(t) t-1

Nl(t) - (2-t)2

Nf(t) t(2- t) + (3-t)(t-1) Nf(t) (t-1) 2
-2- 2 2 -2-

48

2.8. NURBS

All other N/ (t) values which are not shown have the value zero. The denominator

of the NURBS basis functions is given by

L NJ"(t)wj = woNJ(t) + w1Nf(t) + w2Ni(t) + w3N}(t) + W4NJ(t)
j

= 0 + (2-t)2 + 0 + (t- 1)2 + 0
2 2

2t2
- 6t + 5

2

Using this denominator, we can calculate the R?(t) to be:

R~(t) = 0

R2() (2 - t)2/2 (2 - t)2
1 t = (2t2 -6t+5)/2-2t2-6t+5

R~(t) = 0

R2 () (t - 1)2 /2
3 t =(2t2 -6t+5)/2

R~(t) = 0,

and so when t =!we have

(t - 1)2

2t2 - 6t + 5

R2(l) = ~
3 2 2

The corresponding point on the NURBS curve is P(!) = ½ [1 2] + ½ [4 2] = rn 2] .

Similarly if we were to change the weights to w = [1 1 5 1 1], we would obtain

a denominator of

(2-t)2 + 5 (t(2- t) + (3-t)(t-1)) + (t-1)2 = -4t2 + 12t - 5
2 2 2 2 '

giving new values of Rf(t):

~(t) = 0

R2(t) - (2 - t)2
1 - 2(-4t2 + 12t - 5)

~(t) = 5t(2 - t) + 5(3 - t)(t - 1) = 5(-2t2 + 6t - 3)
2(-4t2 + 12t - 5) 2(-4t2 + 12t - 5)

R2(t) - (t - 1)2
3 - 2(-4t2 + 12t - 5)

R~(t) = 0.

49

Now when t = !,we have

2(3 1
R1 2) = 32 R2(1) = 30

2 2 32

2.9. SUMMARY

giving a point on the NURBS curve at l2 [1 2] + ~~ rn o] + 3\ [4 2] = [~ ½] .
NURBS curves for the weights [1 1 ¼ 1 1] and [1 1 1 1 1] have also been

calculated, giving respective points of rn ~] and[~ ½]. A graph of the four NURBS

curves can be seen in Figure 2.25.

y

2

2 4 Ps x

Figure 2.25: NURBS curves for weights [1 1 w l 1], where w = 0, ¼, 1, 5.

Although NURBS is the most general method for drawing curves, we will not

be going into this level of generality. We could use B-splines to draw contours,

although the contouring method described in the following chapter only requires

Bezier curves in order to draw smooth contours.

2.9 Summary

In this chapter, we have provided the basis for the methods discussed in the following

chapters. We have reviewed many surface approximation/interpolation methods,

focusing on triangle-based interpolation. Straight-line contours are able to contour

data sets where other methods may not be able to, although often these contours are

jagged and contain sharp corners. This led to investigating natural neighbour bases

50

2.9. SUMMARY

as a new method of interpolation for contouring algorithms. Straight-line contours

using the natural neighbour algorithm improve on straight-line contours over a

standard triangulation, although we will see they can often still appear jagged. If the

mesh is retriangulated with a finer triangulation, the natural neighbour algorithm

produces smoother contours. Although the natural neighbour algorithm acts locally,

resulting in a faster retriangulation, the triangulation process itself must produce

a Delaunay triangulation for the natural neighbour algorithm to work. This means

that any subdivision will not be sufficient for a contour map, and often data which

has been provided already with a triangulation would either need a check to ensure

that the triangulation is Delaunay, or would need to be retriangulated. This could

be seen as an inefficient method since it may discard information which can be

useful, particularly the connectivity between nodes.

We also looked at a standard method of interpolation - Bezier curves, as well

as its generalisations into B-splines and NURBS. As B-splines and NURBS are

not required for the contouring algorithms in this thesis, they are mentioned for

completeness and not investigated further. Worsey and Farin [49] describe an

algorithm which pieces together many small rational Bezier curves, controlled using

intersections between triangle edges and their neighbouring incentres as control

points, as well as the incentres themselves. The triangulation surface is smooth and

continuous, and using control points from this surface should produce a continuous

set of Bezier curves. We shall see this algorithm in action in the following chapter.

51

The Worsey-Farin contouring algorithm

This chapter focuses on a major area of contouring that I have been investigating,

and provides a basis for the contouring methods used in the following chapter.

3 .1 Introduction

Farin in 1986 [19] provided a simple algorithm for describing a contour over a

triangle, where the contour has only one section over that triangle, and the contour

intersects the boundary of the triangle at two points which are not on the same edge

of the triangle. Clearly not all contours are of this form, and so in order to produce

accurate contours for the entire triangulation, it may be necessary to subdivide the

triangulation so that it satisfies the above conditions for each triangle. Worsey and

Farin in 1990 [49] extended Farin's original algorithm to handle all possible contour

types over a triangle, and can also handle closed contours within triangles, cases

where the contour has disjoint sections inside a triangle and therefore more than

two intersections with the boundary, and other degenerate cases.

The algorithm involves subdividing each triangle into six (or twelve) subtriangles

and computing all intersections of the contour with the boundary of each triangle

to provide us with a list of points defining end points of rational quadratic Bezier

curves. The contours are then produced by plotting these Bezier curves, using

normal estimation to decide on the shape of each curve. The methods used for this

contouring are described in the following sections.

52

3.2. POWELL-SABIN SIX TRIANGLE SUBDIVISION

3.2 Powell-Sabin Six Triangle Subdivision

This subdivision is described in Powell and Sabin [33] . Given height values and their

respective first derivatives at all the vertices of a triangulation, it is possible to find

a method of defining the values to be a piecewise quadratic on each triangle which,

when combined with other triangles, produces an approximating function that is

continuous with a continuous first derivative over all triangles. Powell and Sabin

present many methods of constructing such a piecewise quadratic approximation,

and we will see one of these methods put to use. Given a triangulation T of a

point set P, we choose one interior point in each triangle of T so that, if the two

triangles have a common edge, then the line joining their interior points intersects

t he common edge between its vertices. For example, it is adequate to choose the

incentre of each triangle. Given a triangle ABC, let a be the length (Euclidean

distance) of the edge from B to C, b be the length of the edge from C to A, and c

be the length of the edge from A to B. Then the coordinates of the in centre of the

triangles are given by

(
aA[x] + bB[x] + cC[x] aA[y] + bB [y] + cC[y])

a+b+ c ' a+b+c '

where A[x] denotes the x coordinate of the point A, etc. ABC is a typical triangle

of T , and O is the interior point chosen, which in our case is the incentre. Initially,

Powell and Sabin considered using the circumcentre as the interior point, although

it was noted that the circumcentre is only an interior point of a triangle if the

triangle is acute. Further problems arise when the circumcentre lies on an edge of

the triangle, and so the incentre is a better point to consider since it does not suffer

these problems.

The points P , Q and R are the midpoints of the sides of ABC when the sides

are part of t he perimeter of the whole triangulation. Otherwise we let P be the

point where 00' cuts BC, where 0' is t he interior point that has been chosen in

the other triangle of T that has the side BC (and similarly for Q and R).

We now have a triangulation where every triangle is subdivided into six smaller

triangles, as shown in Figure 3.1.

The interpolation method given below is applied on each triangle, and so the

53

3.3. BEZIER ORDINATES

C

Figure 3.1: 6-triangle Powell-Sabin Subdivision.

result is a piecewise quadratic function that is C1 continuous and interpolates the

data.

Although the points P , Q and R could lie anywhere on the sides BC, CA and

AB, it is normal to place them at the mid-points of the sides. The intersection of

00' with BC for our choice of point P (and similarly Q and R) for interior points

normally lie near the midpoints and so we achieve similar results. If we were to

let P lie away from the mid-point, say one third of the way along BC, then the

maximum error when approximating a cubic polynomial increases by a factor of 2
;

[33] . Similar arguments can be made for points Q and R.

3.3 Bezier Ordinates

Consider a triangle T belonging to a triangulation 7 , with function values z =

f(x, y) defined at each vertex. Unit normal vectors at the vertices are also either

known or estimated by some normal vector estimation method, which we shall

consider in Section 3.4.3. A quadratic Bezier control net consists of six Bezier

ordinates - three at the vertices of the triangle, and three at the midpoints of each

edge.

The associated Bezier ordinates to these six control points are of two dist inct

types - ordinates bi whose subscripts contain one 2 and all other zeroes (such as

54

3.4. THE WORSEY-FARIN ALGORITHM

b0,2,0) , or ordinates bi whose subscripts have two ls and one zero (such as b1,1,0).

These ordinates respectively represent the vertices and tangent planes, and hence

are referred to as vertex ordinates and tangent ordinates. The control points and

associated Bezier ordinate values (bi) for a quadratic Bernstein-Bezier triangular

patch are shown in Figure 3.2.

b 2,o,o

b 1.1,0

bo.2.0 b 0,1.1 b o,0,2

Figure 3.2: Quadratic Bernstein-Bezier triangular patch.

The values of the Bezier ordinates at the vertices are simply equal to the function

values at these vertices. The values of t he Bezier ordinates at the midpoints are

calculated as follows:

All the points on a plane satisfy an equation

Ax+By+Cz = D.

The first three plane coefficients A, B and C are simply the respective x, y and z

components of the unit normal vector of the plane. D is then obtained from the

dot product of the normal vector with any point on the plane. The tangent plane

at a vertex is therefore

(3.3.1)

where x and y are the coordinates of the vertex in question. The remaining Bezier

ordinate values come from a projection from the midpoint of the edge to the tangent

plane at the vertex.

55

3.4. THE WORSEY-FARIN ALGORITHM

Figure 3.3: Bezier curve over a triangle.

3.4 The Worsey-Farin algorithm

Consider a quadratic polynomial function Q, defined over a domain triangle T with

vertices p1 , p2 , and p3 as shown in Figure 3.3. Q can be written in terms of Bernstein

polynomials
"""' 2! i . k

Q(b1, b2 , b3) = L..t i ! '!kl Wijkb1~b3,
i+j+k=2 J

(3.4.1)

where (b1 , b2, b3) is a local barycentric coordinate system defined by t hese vertices,

whose barycentric coordinates are (bi,~' bi) and i, j, k ~ 0. The real coefficients

Wijk are the Bezier ordinates. As we would like to contour Q, then we need to solve

for some contour level c. This means that we need to solve the equation

(3.4.2)

again with i, j, k ~ 0. As in Equation (2.6.2) , t he contour can be parametrised as a

rational quadratic of the form

b(t) = boBJ(t) + wb1Bi (t) + b2Bi(t)
BJ(t) + wBf (t) + Bi(t) '

56

3.4. THE WORSEY-FARIN ALGORITHM

where the b i form the Bezier polygon of the curve, the Bf (t) are the quadratic

Bernstein polynomials, and w is the weight associated with the control point b1 ,

and so we now need to find b0 , b1 , b2 , and w. Farin [19] provides a simple algorithm

for describing a contour over a triangle, where the contour has only one section over

that triangle, and the contour intersects the boundary of the triangle at two points

which are not on the same edge of the triangle. This is the contour as shown in

Figure 3.3. Clearly not all contours are of this form, and so in order to produce

accurate contours for the entire triangulation, it may be necessary to subdivide

the triangulation so that it satisfies the above conditions for each triangle. Worsey

and Farin [49] extended Farin's original algorithm to handle all possible contour

types over a triangle, and can also handle closed contours within triangles, cases

where the contour has disjoint sections inside a triangle and therefore more than

two intersections with the boundary, and other degenerate cases.

If we were to compute all intersections of the contour with the boundary of

a triangle, we would be able to use the Worsey-Farin algorithm to decide on the

connectivity of the boundary points. The nature of the connection between the

boundary points are determined in the next section.

3.4.1 Connecting boundary points

Definition 3.4.1 (Worsey and Farin Definition 3.1). Starting at one vertex of the

domain triangle T , and moving anticlockwise around each edge of this triangle, label

the boundary points as c1 , c2 , ... , en; n ::; 6. For each boundary point Ci, label the

barycentric coordinates of this point as (bi, bt b1).

Once we have determined the boundary points, it is necessary to determine

which boundary points are joined by a contour section. Worsey and Farin use the

following lemma to help:

Lemma 3.4.2 (Worsey-Farin Lemma 3.1). The two points ck and c1; k, l E

{1 , 2, ... , n} may be connected by a section of the contour lying in the interior of

the triangle T if and only if the indices k and l are adjacent entries in the cycle

(1,2, ... ,n).

57

3.4. THE WORSEY-FARIN ALGORITHM

The proof of this lemma follows from realising that as the points are arranged in

a cyclic order, joining non-adjacent points would usually require that the contour

sections must not cross each other. Although this lemma rules out this possibility,

it also removes the possibility of contours as given in Figure 3.4. As a result of

Figure 3.4: Contours not possible from Lemma 3.4.2.

Lemma 3.4.2, we will only need to check neighbouring points for connectivity, and

so we only need to consider connectivity for points Cm and Cm+l , where Cn+ l c1 .

The idea is to check and see if a line parallel to the line joining Cm and Cm+i is

tangent to the contour inside the triangle T. If it is, we check to see if it conflicts

with any of the other boundary points c;; i f=. m, m + l. Although the idea is the

same whether or not the adjacent boundary points lie on the same edge, the two

cases will be described separately for ease of reading.

Connecting boundary points on the same edge

As the barycentric coordinates of the edges are parametrised in a cyclic order, then

we only need to consider one of these edges and adjust the parameters for the other

edges accordingly.

Suppose we are testing whether or not two points are connected by a contour

section as given in Figure 3.5.

Assume that the boundary points Cm and Cm+i lie on the edge opposite vertex

p2 . Now consider the line that passes through a point (1 - A2 , A2, 0) with direction

(-1, 0, 1), i.e. lines that are parallel to the edge opposite p2 (the edge p1p§). This

58

3.4. THE WORSEY-FARIN ALGORITHM

1h

JJ:i

Figure 3.5: Connection between two boundary points on the same edge.

line can be parametrised using barycentric coordinates as

.\2(t) = (1 - .\2, .\2, 0) + t(- 1, 0, 1)

= (1 - .\2 - t , .\2, t).

If we were to substitute this parametrisation into Equation (3.4.2), we have

where

at
2 + fJt + 1 = 0,

a = Woo2 + W200 - 2w101

= 2(w101 - W200) + 2(w200 + Won - W110 - W101).\2

,(.\2) ='Yo+ ,1.\2 + ,2.\2

= W200 - C + 2(w110 - W200).\2 + (w200 + Wo20 - 2W110).\2,

and c is the contour level.

The values for each Ai can be found by solving the quadratic equation

fJ2
- 4a1 = 0.

The roots are.\} and .Xf with.\} :::; .\;. We define .x; to be the smallest non-negative

value of .\} and .\f, and we can now use the following lemma to determine whether

there is a contour to be drawn between boundary points Cm and Cm+l·

59

3.4. THE WORSEY-FARJN ALGORITHM

Lemma 3.4.3 (Worsey-Farin Lemma 3.2). The points l;n and l;n+1 on an edge

of the domain triangle are connected by a contour section over the interior of the

triangle iff the following three conditions are satisfied:

1. >.; and >.; are real,

2 . 0 <).* < 1; 0 < (1 -).* - t*) < 1; 0 < t* < 1 where t* = -((3(>.*)/2a), and

3. >.*<bi; jE{l,2, ... ,n}, j=/=m,m+l.

If these conditions are satisfied, then we can parametrise the contour as two

rational quadratic Bezier curves. The end points are Crn and li(t*) for the first

section, and li(t*) and l;-n+1 for the second section. In both cases Ai = >.;.

Connecting boundary points on different edges

The method for checking boundary points on different edges is essentially the same

as for checking on the same edge. However, the tangent lines in this case will

no longer be parallel to an edge. This slightly alters the problem, but as before,

suppose we are checking to see if two boundary points l;-n and l;-n+1 (on different

edges) are connected by a contour section over the interior of T. Without loss of

generality, assume that they lie on the edges of the triangle T opposite vertices p2

and p3 respectively, as shown in Figure 3.6.

P:1

Figure 3.6: Connection between two boundary points on different edges.

60

3.4. THE WORSEY-FARIN ALGORITHM

Consider a line parametrisation of one of the triangle edges, given by

li(t) = (µ1, 0, 1 - µ1) + t(d1, d2, d3)

= (µ1 + td1, td2, 1 - µ1 + td3)

with di defined to be di = bf - bf+l for i = 1, 2, 3. Inserting these boundary

coordinates into Equation (3.4.2) gives

where

a.t2 + /3t + 1 = 0,

= 2(woo2d3 + W101d1 + Wo11d2)

+ 2(- woo2d3 + W2ood1 - Woud2 + W101(d3 - d1) + W11od2)µ1

,(µ,1) = ,o + ,1µ1 + ,2µf

= Woo2 - c + 2(w101 - Woo2)µ1 + (woo2 + W200 - 2w101)µf,

and c is the contour level. Comparing this with the previous case, we can find values

for each µi by solving the quadratic equation

(32
- 4a., = o.

Again the roots are µ} and µ; with µ} ~ µ;, and we define µ; to be the smallest

non-negative value ofµ} andµ;. We can now use the following lemmas to determine

whether there is a contour to be drawn between boundary points Cm and Cm+l ·

Lemma 3.4.4 (Worsey-Farin Lemma 3.3). The straight line connecting Cm and

Cm+1 is part of the contour iff

where k = 1, 2 or 3, k-=/ i,j.

Lemma 3.4.5 (Worsey-Farin Lemma 3.4). If Lemma 3.4.4 above does not hold,

then let µ} and µ; be the roots as defined previously. The points Cm and Cm+1 on

two edges of the triangle are connected by a contour section over the interior of the

triangle if! for µ;" = µi or µi = µi,

61

3.4. THE WORSEY-FARJN ALGORITHM

1. µi and µi are real,

3. 0 < (µi + t*d1) < l; 0 < t*d2 < l ; 0 < (1 - µi + t*d3) < l where t* =

- ((3(µi)/2a), and

4- ~- (~/d2)d3 (/-. [min(µi,b;ri+1),max(µi,b;i+1
)];

j E {1, 2, ... ,n}J j -=f.m,m+ l.

If Lemma 3.4.5 is satisfied, then the contour can again be parametrised as two

rational quadratic Bezier curves. The end points are Cm and li(t*) for the first

section, and li(t*) and Cm+i for the second section. In both cases µi = µ;,

The above case can be repeated for the other two sides of the triangle, with

parametrisations given by l2(t) = (1 - µ 1 + td1 , µ 1 + td2, td3) and l3(t) = (td1 , l -

µ3 + td2, µ3 + td3).

Now that we have these steps, we can use t he Worsey-Farin algorithm to produce

the contours for the domain.

In Worsey and Farin [49], the test to see whether a quadratic Q is elliptic had

some terms omitted. This was highlighted and proved in Bloomquist [4]. The

Worsey-Farin algorithm below has these extra terms included.

This algorithm and subsequent methods have been coded as a joint project

between myself and Walker [44, 45] .

3.4.2 The Worsey-Farin algorithm

Algorithm 3.4.6.

1. Let Q be the quadratic as defined in equation (3.4.1) .

2. Given the six Bezier ordinates of the triangle

W = {w200, Wo20,Woo2, W110,Wo11, W101},

define

Wmin = min(W) Wmax = max(W).

62

3.4. THE WORSEY-FARIN ALGORITHM

For the contour level c, if

is not satisfied, then the plane z = c cannot intersect the quadratic Q, and so

there is no contour to be plotted over the triangle.

3. Flag whether or not Q is elliptic. If the surface is elliptic then it may have

closed contours, otherwise it does not. The surface is elliptic if and only if

W~10 + W~01 + W511 + 2(w200Wo11 + Wo20W101 + Woo2W110)

<w200Woo2 + W200Wo20 + Wo20Woo2 + 2(w110W101 + W110Wo11 + W101Wo11)-

4. Compute all intersections of the contour with the boundary of the triangle.

There are n such intersections, with O :S n :S 6. The intersections are found

by solving a quadratic equation for each edge of the triangle. It is also possible

for the triangle edge to be the tangent of the point lying on that edge. We let

nt (where nl :S 3) denote the total number of points for which this is the case.

We can now analyse the value ofn (and, if required, nt) to determine the type

of contour that is to be produced.

(a) n = 0. Either there is no contour, or it is a closed contour entirely inside

the triangle. If Q is elliptic then we need to check for a closed contour,

and if there is, it can be parametrised.

(b) n = 1. There are two possible solutions. Either it is a single point on

the edge of the triangle, or it is a closed contour that is tangent to the

boundary. Again, if Q is elliptic, we need to check for a closed contour,

and act accordingly. If not, then it is the single point and the contour

has finished over the triangle.

(c) n = nt = 2. This is similar to the above case, where either it is two

single points on the contour, or it is a closed contour that is tangent to

two boundaries.

(d} n = nt = 3. In this case, there must be a closed contour on the triangle.

This is easy to contour since the points of the triangle are the control

points of the curve, and can be used accordingly.

63

3.4. THE WORSEY-FARIN ALGORITHM

(e) This is the most commonly occurring case where the others do not apply.

We start at a vertex of the triangle and move anticlockwise around the

boundary. Label the contour points c1 , c2 , . . . , ½i (n ::; 6) and check

whether point i is connected to point i + 1 (as given in Section 3.4.1))

where i = 1, 2, ... , n and (n + 1) = 1. If they are connected) then we can

parametrise the section as two rational quadratic Bezier curves. ff the

two points are not connected) then proceed with the next consecutive pair

or points. If a point c; is not connected to either Ci-l or Ci+1, then c; is

labelled as a single isolated point.

These cases account for nearly all possibilities, and so the Worsey-Farin algorithm

is an efficient method to produce piecewise quadratic contours over a triangulated

domain. The exceptions would be if we were to have contours shown in Figure

3.4. These are more likely to occur in coarse triangulations. If we suspect that we

may have some of these contours, we could use an alternative contouring method, or

produce a finer t riangulation over the domain. The Powell-Sabin t riangle subdivisions

normally eliminate these cases, although it does not guarantee that these extreme

cases would not occur.

Once t he algorithm is complete, we have a list of points defining end points of

rational quadratic Bezier curves to be plotted. We can now construct the Bezier

curves for each pair of end points.

Label the end points h o and h2 . Estimate the normals at these two end points.

Given that the point ho (or h2) lies on an edge or in the interior of the triangle, we

can estimate the normal as given in Section 3.4.3.

We can now calculate the location of the middle Bezier point h1 . A method

for doing this is described in Worsey and Farin [49], where we can calculate the

intersection of the tangent planes at h0 and h2 with the plane z = c, where c is the

contour level.

For h0 and h2 , we calculate the equations of the tangent planes using the method

64

3.4. THE WORSEY-FARIN ALGORITHM

described in Section 3.3. This gives us the tangent planes

z = Zo + Xox + Yoy

which, comparing with Equation (3.3.1) gives

This results in three quadratic equations of the form Au = b, where

Xo Yo - 1

A= X 2 ½ - 1

0 0 1

X

U= y

z C

This method gives the correct intersection of the two tangent planes with the

contour plane, by consistently providing a satisfactory middle Bezier point b1 .

3.4.3 Estimating normals

As the normal vectors are unknown over the domain, we need to provide reasonable

estimates using one of the many methods available. These vectors need to be

calculated before the Worsey-Farin algorithm, and so the Amlin program calculates

the normal vectors immediately after generating the triangulation. At the nodes of

the triangulation, we can approximate the values by taking an appropriate weighted

average of the normals of the contiguous facets [1]. This results in a normal non a

triangle given by
1

n = - L (wi · 1.li)
INI iEN

where N is the set of indices i such that the unit normal vector neighbouring the

facet of interest u i for the ith facet is weighted by wi.

There are many methods used to determine the weighting wi . For the Weighted

by area method, each ui is weighted by the area of each corresponding facet.

The Weighted by angle method uses the magnitude of the vertex angle of the

corresponding facet. For the Weighted by Voronoi area method, each 1.li is weighted

65

3.5. CONTOURING

by the area of the Voronoi region of the corresponding facet. Nelson Max's method

[29] assigns a weight to each ui by

where o:i is the vertex angle, and ¼ and ¼+1 are the edges of the i th facet extending

from the node n. For an unweighted method, set wi = l for all i E N.

Now that we are able to estimate the normals at the nodes, we need to find

ways of estimating normals at any point on each triangle, including the triangle

edges. The simplest method is linear estimation, where we can use the barycentric

coordinates (u, v, w) of the triangle to get a normal estimation of

N
N(u, v, w) = \\N\\'

where N1 , N2 , and N3 are the normals at the three corners of the t riangle.

For t he triangle as a whole, given N1 , N2 , and N3 as defined above, we can

calculate the normal of the triangle using

Nx = ((Nz3 - NzJ (Ny2 - Ny1)) - ((Nz2 - NzJ(Ny3 - NyJ)

Ny= ((Nz2 - NzJ(Nx3 - Nx1)) - ((Nx2 - NxJ(Nz3 - NzJ)

Nz = ((Nx2 - Nx1)(Ny3 - Nyi)) - ((Ny2 - Nyi)(Nx3 - Nx1)),

where Nx, Ny, and Nz are the respective x, y, and z components of the triangle

normal, and Nxi, NYi' and Nz; are the respective x, y , and z normal components of

the three corners of the triangle.

3. 5 Contouring

The current contouring method, as implemented by Walker [44], uses these methods

to estimate the normals at the nodes and points inside the triangle. The 'TetSim'

program specifically utilises Nelson Max's method for weighting the node normals

[29], before subdividing the triangulation using a method given by Powell and Sabin

[33] . The node and triangle normals then need to be estimated on these subdivided

triangles, and it is these t riangles that are used in the Worsey-Farin algorithm to

calculate the piecewise quadratic contours [49].

66

3.5. CONTOUfilNG

It is also possible to contour the domain using natural neighbours. The Worsey

Farin algorithm favours Nelson Max's node normal weighting method, although

when contouring using natural neighbours, it would be logical to use natural neighbours

to estimate the normals of the triangles. The normals of the triangles are estimated

by finding the natural neighbours of the incentre of the triangle, and calculating the

derivative of the Voronoi areas A1 by differentiating Equation (2.4.5) on page 20 to

give

where again XN = Xo and YN - Yo

As ¢1 is defined to be
A1(x)

¢1(x) = A(x) '

then differentiating <Pf with respect to x and y gives

(3.5.1)

(3.5.2)

,;.. () = A1,x(x) - </>1(x)A,x(x)
'Pl,x X A(x) d ,;.. () _ A1,y(x) - ¢1(x)A,y(x)

an 'PI,y x - A(x) ,

where A1,x and A1,y are defined in Equations (3.5.1) and (3.5.2) respectively. These

can then be used to give gradients in the x, y, and z directions using

l:::,.Y = L z1¢1,y(x)
I

!:::,.z = L Z[- x1!:::,.x - Yil:::,.y,
I

which can then be used to derive the normals for the triangles. As the gradient is not

defined at the nodes in a Voronoi diagram, then we cannot use natural neighbours

to estimate the node normals. Instead we need to rely on the previous method for

normal estimations.

67

3.6. COMPARING CONTOURING METHODS

3.6 Comparing contouring methods

In order to compare the contouring methods we have mentioned, we will consider two

data sets - one is a stratigraphic horizon with a discontinuity (inclined fault) showing

rapid elevation change (subsequently referred to as the "stratigraphic horizon" data

set), and the other is a surface with minor perturbations - this is especially useful

since data sets which are almost flat in the third dimension are notoriously difficult

to contour.

For the stratigraphic horizon data set, we will contour the maximum burial depth

values over the horizon. The original mesh is given in Figure 3.7(a), contours using

straight lines and the natural neighbour method are in Figure 3.7(b), and contours

produced using the Worsey-Farin algorithm over a Powell-Sabin subdivision [44]

is in Figure 3.7(d) . Larger versions of the contour maps are given in Appendix

A. The Worsey-Farin algorithm used over a Powell-Sabin triangle subdivision will

subsequently referred to as WFPS.

Clearly the contours using the natural neighbour algorithm are not as smooth as

those produced over a Powell-Sabin triangle subdivision. If we were to retriangulate

the original data set so that it has a similar number of triangles as the subdivision,

we can see that the natural neighbour contour map produces comparable results.

This is shown in Figure 3.7(c).

For the surface with minor perturbations we are contouring elevation values, as

shown in Figure 3.8. Larger versions of the contour maps are given in Appendix B.

We see from Figure 3.8(b) that a straight line contour map over the subdivided

data set gives improved results over the original coarse t riangulation in Figure 3.8(a),

although Bezier curves over the subdivided triangles improve t his further (3.8(c)).

If we were to consider computational power, then both the WFPS and the

natural neighbour contouring over a finer triangulat ion take a similar amount of

time.

As stated previously, t he locality of the natural neighbour method means that if

we wished to consider only part of the domain, we would only need to retriangulate

a small area, leaving the rest of the domain relatively coarse. This is particularly

68

3.6. COMPARING CONTOURING METHODS

(a) Original Triangulation (b) Contours using the Natural Neighbour

algorithm

(c) Contours using the Natural Neighbour (d) Bezier Curves over a Powell-Sabin Triangle

algorithm over a retriangulated domain Subdivision

Figure 3. 7: Contouring Maximum Burial Depth Values Over A Stratigraphic

Horizon

69

~fir~
)

(a) Linear contours over the original

triangulation

3.6. COMPARING CONTOURING METHODS

)

-I

(b) Straight Line Contours over a

Powell-Sabin Triangle Subdivision

~-~
)

(c) Bezier Curves over a Powell-Sabin

Triangle Subdivision

Figure 3.8: Contouring Elevation Values Over A Surface With Minor Perturbations

70

3. 7. SUMMARY

useful if we know a priori of particular areas that would have many contours.

This retriangulation would result in the natural neighbour contouring method being

faster than WFPS, as the local retriangulation would need to be subdivided again

using Powell-Sabin subdivision to ensure contour continuity.

3.7 Summary

In this chapter we have investigated the Worsey-Farin algorithm and used the

structure in Walker's TetSim program [44) to produce contour outputs via Amlin.

Natural neighbour contours produced using TetSim were not as smooth as WFPS

over the original domain, although this was expected as the triangulation used for

natural neighbour contouring had not been subdivided. When we used a domain

retriangulated to the same density as the Powell-Sabin subdivided triangulation,

the natural neighbour contours were comparable to the WFPS contours.

In the following chapter we shall investigate a third method, which uses a

subdivision surface. The method subdivides triangles using But terfly Subdivision

and is built on the data structures of the TetSim program. Using the existing TetSim

data structures therefore makes it more straightforward to compare the outputs

and computation time of each method to determine the most efficient method for

contouring data.

71

Butterfly Subdivision

4.1 Introduction

Subdivision surfaces are a way to describe a surface using a piecewise polygonal

model. The surface and its piecewise polygonal model can be of any shape or

size, although unlike polygonal models the surface itself can be perfectly smooth.

Subdivision surface schemes allow you to take the original polygonal model and

produce an approximation of the surface by adding vertices and subdividing existing

polygons. Subdivision surfaces are typically used in the gaming and animation

industries. The spread between high and low powered computing forces game

developers to cater for the general public who used low powered computers, whilst

also including features which make the most of the advanced hardware of the

hardcore gamer. Animators such as Pixar require the models on screen to be smooth

without any obvious jagged edges or other flaws. If the camera was to zoom in on

the model, it would be easier to subdivide the polygons of the model than it would

be to create multiple copies of the model with varying resolutions. This has become

even more important with the advent of high definit ion and 3D films. Pixar used

Catmull-Clark surfaces for their animation in Geri's Game and further information

can be found in [14].

This is where subdivision schemes are important, and one important and useful

feature of these schemes is locality, so no global system of equations needs to be

solved.

72

4.1. INTRODUCTION

In this chapter we use subdivision surfaces in a novel way - we use the surfaces

as a basis for contouring algorithms. This method could theoretically be used for

any data over a surface, although in this thesis we will concentrate on geological

surface data.

We now define the basis of subdivision surfaces. Clearly a subdivision surface

is a surface generated through some form of subdivision. Every subdivision surface

starts with an original polygonal surface, or control net. Then the surface is

subdivided into additional polygons and the vertices are moved according to some

set of rules. The rules for moving the vertices are different from scheme to scheme,

and it is these rules that determine the properties of the surface. The rules of

most schemes, including the ones discussed below, involve retaining the original

vertices, optionally moving them, and introducing new vertices. There are schemes

that remove the old vertices at each step, but these are rarely used and will not be

investigated here.

The most common interpolating scheme used in subdivision is based on piecewise

linears. Unfortunately piecewise linear interpolation of the original sparse data is

often not smooth enough for many applications, including contouring, as previously

mentioned in Section 2.5.

With Bezier or B-spline patches, modelling complex surfaces involves trying to

cover them with triangular or rectangular patches. This is not a simple task and

often not possible since some of the patch edges are not allowed to be degenerate.

Furthermore, changing values of the object can make continuity very difficult, and

it is likely that the model will show creases and artefacts near patch seams.

This is where subdivision surfaces can be useful. It is possible to make a

subdivision surface out of any arbitrary (preferably closed) mesh, which means

that subdivision surfaces can consist of arbitrary topology, due to the fact that the

control net and the eventual surface (or limit surface) are topologically the same.

On top of that, since the mesh produces a single surface, it is possible to alter the

control net without worrying about seams or other continuity issues.

Almost every subdivision scheme has C1 continuity everywhere. Some have C2

continuity in some places, but the majority have areas where C1 is the highest

73

4.1. INTRODUCTION

attainable level of continuity. Rigorously proved continuity properties are a major

advantage of some subdivision schemes.

We could theoretically model any surface with as many polygons as we wanted,

although the polygons which have none of the original data points would have inter

polated nodes and edges. These nodes and edges may or may not be interpolated

correctly and so would need some restriction as to how much the interpolated data

can deviate from simple linear interpolation. In the Worsey-Farin algorithm, Walker

[44] used a Powell-Sabin subdivision [33] which estimated normals at the nodes to

determine the location and slope of the new nodes and triangles. The reason for

using a subdivision model is that additional polygons can be added in order to get

closer to the target limit surface, so as to satisfy smoothness or visual criteria.

Subdivision schemes that produce satisfactory contour maps generally have

some, if not all, of the following conditions

• Interpolation: The original mesh vertices are retained and new vertices are

interpolated between these mesh vertices. All vertices are on the limit surface.

• Locality: As stated previously, the neighbourhood used to create new vertices

should be as small as possible to enable fast algorithms with no global system

of equations.

• Symmetry: The scheme should exhibit some type of symmetries as the local

mesh topology.

• Generality: The scheme should work for all triangulations, including triangles

at boundaries.

• Smoothness: For higher-order continuity, we require the scheme to reproduce

polynomials up to some power.

• Simplicity: For ease of use, the scheme should only require simple data struct

ures.

While the degree of continuity is generally the same for all subdivision schemes,

there are a number of characteristics that vary notably between schemes. One

74

4.1. INTRODUCTION

important aspect of a scheme is whether it is an approximating scheme or an

interpolating scheme. If it is an approximating scheme, the vertices of the control

net may not lie on the surface itself. So, at each st ep of subdivision, the existing

vert ices in t he control net are moved closer to the limit surface. The benefit of an

approximating scheme is that the resulting surface tends to be very fair, i.e. having

few undulations and ripples. Even if the control net is of very high frequency with

sharp points, the scheme will tend to smooth it out, as the sharpest points move

the furthest onto the limit surface. On the other hand, this can be a disadvantage,

as it is harder to envision the end result while building a control net. It may be

hard to craft more undulating, rippling surfaces as the scheme attempts to smooth

them out and hence can make the scheme difficult t o work with.

If it is an interpolating scheme, the vertices of the control net actually lie on the

limit surface. This means that at each recursive step, the existing vertices of the

control net are not moved. The benefit of t his is that it can be much more obvious

from a control net what the limit surface will look like, since the control net vertices

are all on the surface. However, it can sometimes be difficult t o get an interpolating

surface to look exactly the way you defined, as the surface can develop unsightly

bulges in areas where it strains to interpolate the vertices and still maintain its

continuity. This is usually not a tremendous problem.

The preferred vertex valence is another property of subdivision schemes. The

valence of a vertex is the number of edges coming out of it, which is usually 6.

Most vertices produced by a scheme during subdivision have the same valence.

Vertices of a valence 6 are the regular vertices of a scheme. Vertices of any other

valence are known as extraordinaiy vertices. Their effect depends on the subdivision

scheme, but historically there have been problems analysing the limit surface near

extraordinary vertices.

Most schemes never produce extraordinary internal vertices during subdivision,

so the number of extraordinary vertices is set by the original control net and never

changes. This is common for t riangular schemes, as they all t end to split the

triangles in the same way- by adding new vertices along the edges and breaking

each triangle into four smaller t riangles. Vertices on the boundary of t he domain

75

4.2. THE POLYHEDRAL SCHEME

usually have valence 4.

4.2 The Polyhedral Scheme

The polyhedral scheme is a simple subdivision scheme, where you subdivide by

adding new vertices along the midpoints of each edge, and then break each existing

triangle into four triangles using the new edge vertices. A simple example is shown

in Figure 4.1. The problem with linear interpolation, of course, is that it does not

produce smooth surfaces, nor does it change the shape of the control net.

Figure 4.1: Two stages of triangle subdivision for the polyhedral scheme

The scheme is clearly interpolating since it does not move the vertices once

created. It is also triangular , since it operates on a triangular mesh. Furthermore,

the scheme is uniform since the edge's location does not affect the rules used to

subdivide it, and stationary since the same midpoint subdivision is used each time.

The surface is only c0 continuous, since along the edges of polygons it does not

have a well-defined tangent plane. The regular vertices of this scheme are of valence

6, which is the valence of new vertices created by the scheme. However, this scheme

is simple enough that it does not suffer due to its extraordinary vertices.

The evaluation of the scheme is fairly trivial and it is possible to evaluate it

recursively using the subdivision rules. No further evaluation is required, since the

points are already on the limit surface.

76

4.3. THE BUTTERFLY SCHEME

4.3 The Butterfly Scheme

The next scheme is known as the butterfly subdivision scheme, or, in its current

form, t he modified but terfly scheme. It shares some similarit ies with the polyhedral

scheme, but has some differences, notably that it is C 1 continuous and therefore

produces a smooth surface.

b C

C C

Figure 4.2: The eight-point stencil for the original butterfly scheme.

The butterfly scheme [15, 18] is named due to the shape of the stencil, or map

of neighbours used during evaluation. This is given in Figure 4.2. The scheme

is interpolating and triangular, and so only adds vertices, v , along the edges of

existing triangles. The rules for adding those vertices are simple, and the support

is compact. For each edge, sum up the vertices in the stencil-shaped area around

that edge, weighting each one by a predetermined weight w. This gives

where

N

z= L wizi,
i=l

The weights used, corresponding to the vertex labelling in Figure 4.2, are

1 1 1
Wa = 2 Wb = 8 + 2w We = - 16 - w

In this case, w is a tension parameter, which controls how "tightly" the limit surface

is pulled towards the control net . If w = - 1
1
6 , then wb, We = 0 and the scheme simply

linearly interpolates the end points and the surface is not smooth.

77

4.3. THE BUTTERFLY SCHEME

In its original form, Dyn et al did not make it clear what happens when the

area around an edge does not look like the butterfly stencil. Specifically, if either

of the edges' end points is of a valence less than 5, then we do not have sufficient

information to use the scheme, leaving no choice but to choose w = -
1
~ near that

area, resulting in a surface that is not smooth near those extraordinary points. This

means that while the surface is smooth almost everywhere, there will be isolated

jagged points which would stand out visually.

If we refer to the conditions given on page 74, we can see that the original

butterfly subdivision scheme satisfies all requirements except for the generality,

since it cannot cope with edges which do not look like t he butterfly stencil.

In 1993, Dyn et al extended the butterfly scheme to use a ten-point stencil [16],

so that the default case was the one shown in Figure 4.3. We now have a new

weighting scheme for v , where the new weights are

1
Wa = - - W

2

1
Wb = S + 2w

1
w =-- - w

C 16

C

Figure 4.3: The ten-point stencil from the modified butterfly scheme.

Note that by adding w to the d points and subtracting it from t he a points,

the stencil's total weighting still adds up to 1 which ensures invariance under affine

transformations. Intuitively, this is important because it means that the new point

will be in the neighbourhood of t he ones used to generate it. If the weights summed

78

4.3. THE BUTTERFLY SCHEME

to a different value, say 2, then the point could be twice as far from the origin as

the points used to generate it, which would be undesirable.

This new scheme also reduces to the old scheme as a subset- choosing w

0 results in the same rule set as the eight-point butterfly stencil. However , this

extension did not address the smoothness problem at extraordinary vertices.

In 1996, Zorin et al published an extension of the butterfly scheme known as

the modified butterfly scheme [54]. The primary intent of their extension was to

develop rules to use for extraordinary vertices, making the surface C 1 continuous

everywhere.

If both of the end points of the edge are regular valence-6 vertices, the scheme

uses the standard butterfly's ten-point stencil with t li-e same weights.

Figure 4.4: The stencil for extraordinary vertices in the modified butterfly scheme.

ea is a regular vertex of valence 3, whereas vertex a has N edges, ea ... eN- l•

If only one of the end points is extraordinary, the new vertex is computed by the

weighted sum of the extraordinary vertex and its neighbours (as shown in Figure

4.4), that is the value of v can be found by calculating

N-1

V = Waa + L Wekek,
k=a

79

4.3. THE BUTTERFLY SCHEME

where given the extraordinary vertex's valence of N , the weights used are:

The full justification for these weights is given in Zorin's thesis [53].

If both end points of the edge are extraordinary, then evaluate the vertex once for

each endpoint using the appropriate weights from above, and average the resulting

two candidates.

Figure 4.5: The one-dimensional four point interpolatory scheme [17].

Boundary edges are subdivided using the I-dimensional four point scheme [17]

(s - 1 = ~i, so = ; 6 , s1 = ; 6 , s2 = ~i). In this case only other edge points participate

in the stencil. A consequence of this rule is that two separate meshes, whose

boundaries are identical, will have a matching boundary curve after subdivision.

Edges which are not on the boundary but which have a vertex which is on the

boundary are subdivided as before while any vertices in the stencil which would be

on the other side of the boundary are replaced with "virtual" vertices. These are

constructed as required by reflecting vert ices across the boundary.

The butterfly scheme is interpolating as points in a control net also lie on the

limit surface-the subdivision process does not move existing vertices. It is also

triangular as it operates on triangular control nets. It is stationary as it uses the

same set of rules every time it subdivides the net , and uniform because every section

of the net is subdivided with the same set of rules.

80

4.3. THE BUTTERFLY SCHEME

10 16 11

Figure 4.6: The stencil used to calculate the normals of a regular vertex.

As with other contouring schemes, we will sometimes need to calculate/estimate

the normals at the nodes. For regular vertices, the process involves the first and

second nearest neighbours of the vertex. This results in 18 vertices, and so the

scalars, corresponding to the indexing shown in Figure 4.6, are:

lo = { 16, - 8, -·8, 16, - 8, - 8, -
8'{3, 4'{3, 4'{3,

8'{3, 4'{3, 4'{3, 1, !, !, 1, !, ! }
Ii { 0, 8, -8, 0, 8, -8, 0, -

4'{3, 4'{3,

o, 4'{3, 4'{3,o, !, !,o, !, ! }
Multiplying the vertices by lo and li gives us two different tangeut vectors. Taking

the normalised cross product of these vectors gives us our normal. For extraordinary

vertices the normal is actually easier to find , as it depends only on the nearest

neighbours of the vertex. The two tangent vectors in this case can be found as

Here, t0 and t1 are t he tangents, N is the vertex valence, and e k is the kth neighbour

point of the vertex in question, where e0 is an arbitrary point with ek+l lying in an

anti-clockwise direction to ek. Crossing the two resulting vectors gives

~ . 2(p - k)1r ~ . 2m1r ~
to x t 1 = ~ sm N ek x ep = ~ sm N ~ en x e(n+m) mod N·

k<p m=O n

81

4.3. THE BUTTERFLY SCHEME

Similar to regular vertices, the cross product is a weighted sum of normals of nodes

which are first or second nearest neighbours to the node. Normalising our result

of the cross product produces the vertex normal. Now that we have the rules for

recursively evaluating the surface and node normals, we can perform the subdivision.

For subdivision: given a net, we need to subdivide it into a more refined net.

Working from the modified butterfly rules, t his is fairly straightforward. We need

to add a vertex along each edge of the net, then split each triangular face into four

faces using the new vertices.

The first step requires us to add new vertices along each edge. There is no fast

and simple way to find all the edges unless we store them explicitly. An edge needs

to be able to tell us about its end points since we need to use those in the butterfly

stencil for computing the new vertex. Furthermore, the stencil extends to the end

points' neighbours, so the end point vertices need to know about the edges they are

connected to.

The second step, breaking existing faces into new faces, requires that the faces

know about their vertices, and such information is already present. The faces also

need to know about their edges. While this is possible by looking through the

face vertices for all their edges and fishing through t hose, t hat would require a fair

amount more work for every lookup, and so the edge data are also explicitly stored

with each face. This leads to increased computer memory requirement. Our data

structure now has arrays of vertices, edges, and faces. Vertices know about their

edges, edges know about their vertices, and faces know about their vertices and

edges.

The data structure we will be using is based wholly on locality, so that the time

it takes to find one vertex given another is proportional to the number of edges

between them. The complete subdivision steps are given below.

• Tessellate the surface.

• Create an edge-vertex map so that we can locate new vertices along edges.

• Create an edge-edge map so that we can pair the half-edges made when the

edge is split.

82

4.3. THE BUTTERFLY SCHEME

• Tessellate the edges.

• Build the new faces.

• Once the subdivision process is complete, generate the normals at the vertices

if required.

For the edge subdivision we iterate over the edges. At each edge, check the valences

of the end point vertices to determine which subdivision rules to use, then apply

the relevant rules, produce the new vertex and add it to the vertices array.

Constructing the new faces is more involved, as it requires more work to ensure

that when creating the four new faces their vertices are all arranged in anti-clockwise

order and have the correct edges. Each face contains the data for its corner vertices

and edges. From the lookup tables created while subdividing edges, we also know

the new vertices and new edges.

We can now use these steps to subdivide as many times as required. Each

subdivision increases the polygon count by a factor of four. Only after we complete

the subdivision do we calculate the vertex normals. Iterating over the vertices with

the equations for the tangent vectors given previously finds our normals.

The butterfly subdivision method as a basis for contouring has not been utilised

in the literature, and so we believe that this forms a contribution to contouring

methods - providing an additional method to use as the main contouring algorithm,

or an algorithm to use when the preferred method fails.

As we have the steps to perform the subdivision, we can produce contour maps

of the stratigraphic horizon data sets given in the previous chapter. This is given

in Figure 4.7. Larger versions of the contour maps are given in Appendix A.

Table 4.1 shows the run time taken to produce each of the contours given in

figure 4. 7. Timings were performed on a 2GHz Athlon CPU with 768MB of RAM.

We can see in Figure 4. 7 that subdividing the triangulation many times increases

the appearance of the smoothness of the contours, although beyond a subdivision

level, the extra triangles slow down the algorithm significantly with little improvement

over the contour map. The meshing algorithm could be sped up by improved

algorithm design, although subdividing beyond the third recursion shows no obvious

83

4.3. THE BUTTERFLY SCHEME

(a) First Recursion (b) Second Recursion

(c) T hird Recursion (d) Fourth Recursion

(e) Fifth Recursion

Figure 4.7: Contour Maps of Maximum Burial Depth Values Over A Stratigraphic

Horizon, Produced Over Successive Recursions of the Butt erfly Subdivision

Algorithm

84

4.4. ADAPTIVE SUBDIVISION

Table 4.1: Run times of the contouring methods used for Figure 4.7.
Recursion Level No. of Nodes Meshing Time Contouring Time Total Time

a) First 224 0.241 s 0.047 s 0.288 s

b) Second 835 0.865 s 0.071 s 0.936 s

c) Third 3221 2.148 s 0.156 s 2.304 s

d) Fourth 12649 7.262 s 0.231 s 7.493 s

e) Fifth 50115 18.064 s 0.497 s 18.561 s

improvement in the contouring. Comparing the subdivisions with the WFPS method

in the previous chapter we see that recursively subdividing to the third level is

usually sufficient to produce a comparable contour map.

In the next chapter we shall examine whether this novel scheme can run at

a speed comparable to the other methods in this thesis. For the remainder of

this chapter we will discuss further areas of research into the butterfly subdivision

scheme.

4.4 Adaptive subdivision

As the subdivision scheme described so far in this chapter subdivides the whole

domain, it may be worth considering whether we can adaptively subdivide based

on the number of data points in a specific area.

The problem with adaptive solutions for subdivision surfaces is that they do not

easily present a closed-form parametrisation. The only easy way to tessellate them

is through recursion. As we recurse, we are converging on a limit surface - the same

limit surface regardless of which tessellation method used.

If we tessellate adaptively, we have changed the control net. Some of the control

net may be at a higher level of tessellation than the rest, and so our net is no longer

converging on the same surface so the underlying surface is now fundamentally

different.

Furthermore, although this issue could be resolved in some way, the motivation

to do so may be lacking. As we have already seen, recursively subdividing to the

third level is usually sufficient to produce a comparable contour map. If this is the

case when using adaptive subdivision we may often end up with a data set that

85

4.5. CONTROLLING EXPANSION BEYOND THE BOUNDARY

has been subdivided to the second or third recursion in some areas, with a third

or fourth level of recursion in others - the extra work to adaptively subdivide may

have negligible benefits.

When we have data sets with a large concentration of data in some areas more

than others, we could start with an adaptive triangulation and then use the Butterfly

Subdivision scheme on that triangulation. This could be a mid-point between

Butterfly Subdivision and full adaptive subdivision.

4.5 Controlling expansion beyond the boundary

We can improve t he butterfly subdivision further by controlling the expansion of the

nodes beyond the original boundary. Due to the nature of the butterfly subdivision

algorithm, the expansion will always occur, and so the simplest method to solve

this is to perform a constrained subdivision and project any outlying points back

onto the boundary. The projection onto the boundary is as follows.

a

Figure 4.8: Constraining the outlying points to lie on the boundary.

During the subdivision, the triangle pqr is subdivided into four triangles, pba,

abc, qcb and rac, as shown in Figure 4.8. At each boundary edge, point a lies

beyond the boundary. Denote the (x, y, z) components of point a as ax, ay and

az respectively. Let m be t he mid-point of points b and c. Put u = m - a and

v = r - p so that the equation of the line am is L = a+ cm and the equation of the

line pr is L = p + /3v for some values a , /3 E IR. We are considering the triangle in

two dimensions and so we project onto the x , y-plane and solve for the intersection

86

4.5. CONTROLLING EXPANSION BEYOND THE BOUNDARY

of the lines am and pr. For am,

For pr,

X = Px + O'.Vx and y = Py + O:Vy .

Where the lines intersect we have two simultaneous equations

which can be rearranged to

These have solut ions

ax + O'.Ux = Px + f3vx

ay + m1,y = Px + /3v11

UxO'. + Vx/3 = Px + ax

UyO: + Vy/3 =Py+ a11 •

O: = (-vx(P11 - ay) + Vy(Px - ax))/ (-uxVy + UyVx)

/3 = (Ux(Py - ay) + Uy(Px - ax))/ (-UxVy + UyVx)

This gives the required point A, where

A = a + o:u or A = p + /3v.

We then replace a by A in the subdivision, which gives a subdivision that lies within

the x, y projection of the original subdivision.

T his is shown in Figure 4.9, where we start off with a 9-point data set and

subdivide whilst constraining the subdivision.

Applying the constrained butterfly subdivision algorithm to our data sets gives

us the results shown in Figure 4.10. Larger versions of the contour maps are given

in Appendix D. Note that if a boundary triangle changes during the constraining

process, then as a result any contour lying on that triangle also changes. This

may be undesirable to the user, who can easily revert to unconstrained butterfly

subdivision if required.

87

4.5. CONTROLLING EXPANSION BEYOND THE BOUNDARY

(a) Original mesh of the

nine-point data set

(b) First level of subdivision,

unconstrained

(d) Second level of

subdivision, unconstrained

/

/

(c) First level of subdivision,

constrained

(e) Second level of

subdivision, constrained

Figure 4.9: Constraining a nine-point data set when subdividing.

88

4.5. CONTROLLING EXPANSION BEYOND THE BOUNDARY

(a) Stratigraphic Horizon, unconstrained (b) Stratigraphic Horizon, constrained

~-~ ~-~
))

(c) Surface With Minor Perturbations, (d) Surface With Minor Perturbations,

unconstrained constrained

Figure 4.10: Second level of constrained subdivision for our two data sets.

89

4.5. CONTROLLING EXPANSION BEYOND THE BOUNDARY

A constrained butterfly subdivision is preferable to an unconstrained butterfly

subdivision if we wished to retain the original domain, especially if the domain

forms part of a larger data set, where expansion beyond the boundary would cause

an overlap of data. The main cost for this advantage is the computational time

taken to find the nodes which lie outside t he boundary, and the algorithm used to

constrain them.

For the Stratigraphic Horizon data set, the run times for the five steps of both

unconstrained and constrained butterfly subdivision schemes are given in Table 4.2.

We can see from the table that the current constraining algorithm increases the

Table 4.2: Run times of the contouring methods used for the Stratigraphic Horizon

data set.

Unconstrained Butterfly Subdivision

Recursion Level No. of Nodes Meshing Time Contouring Time Total Time

a) First 224 0.241 s 0.047 s 0.288 s

b) Second 835 0.865 s 0.071 s 0.936 s

c) Third 3221 2.148 s 0.156 s 2.304 s

d) Fourth 12649 7.262 s 0.231 s 7.493 s

e) Fifth 50115 18.064 s 0.497 s 18.561 s

Constrained Butterfly Subdivision

Recursion Level No. of Nodes Meshing Time Constraining Time Contouring Time Total

a) First 224 0.241 s 0.368 s 0.047 s 0.656 s

b) Second 835 0.865 s 1.422 s 0.071 s 2.358 s

c) Third 3221 2.148 s 3.269 s 0.156 s 5.573 s

d) Fourth 12649 7.262 s 11.070 s 0.231 s 18.563 s

e) Fifth 50115 18.064 s 28.518 s 0.497 s 47.079 s

computational t ime significantly - more than doubling the total run time at each

stage. This is mainly due to the constraining algorithm searching through every

edge and node to see whether the nodes could potentially lie outside the boundary.

Once these nodes are determined, the algorithm can then constrain them to the

boundary. It is possible that during the subdivision process, the boundary nodes

could be stored as a separate list of nodes, so that the constraining algorithm could

check just these nodes and constrain them when necessary. This would significant ly

reduce the computational time and enable the constrained butterfly subdivision to

be a viable candidate for contouring.

90

4.6. SUMMARY

4.6 Summary

In this chapter we have investigated a selection of subdivision schemes, concentrating

on the butterfly subdivision scheme. The original subdivision scheme devised by

Dyn et al [18] was restricted to a finite number of triangulations and so we discussed

Dyn et al 's extended butterfly scheme, and then Zorin et al's modified butterfly

scheme. This enabled us to obtain C1 continuous surfaces, including at the bound

ary. Once we had C1 continuous surfaces, we used the butterfly subdivision method

to produce a contour map of our data sets. This has not previously been done in

the available literature, and so this thesis gave a new method for contouring data.

When we compared the contour maps of the third and fourth recursions of the

stra tigraphic horizon data (Figure 4.7), we only noticed a minor difference in the

contours, and comparing the fourth and fifth recursion contour maps we noticed

that there is no real difference in output. For general use, the third recursion is

usually sufficient to produce a smooth contour, with the fourth recursion being

used when we observe any remaining jagged contours.

We have seen that the butterfly subdivision in its original form is different to the

other contouring methods as the boundary expands beyond the original domain,

whilst still respecting the original nodes, including those at the boundary. This

can be seen as either an advantage, or a disadvantage, depending on the results

required. The expansion beyond the boundary enables us to estimate the nature of

the domain, and hence the contour, beyond the boundary. This can be particularly

advantageous if the domain contains missing data and holes, as the expansion into

these holes makes it more straightforward to estimate the values of the missing

data. The problem with this expansion is that if we wished to retain the original

domain we would need to perform some trimming or even retriangulation near the

boundary. This is especially important when the domain forms part of a larger data

set, where expanding beyond the boundary would cause an overlap of data.

Constraining the boundary removes this problem, although the computational

t ime taken to find and move the nodes which lie beyond the boundary is significantly

higher - especially when performing a constrained butterfly subdivision over many

91

4.6. SUMMARY

recursions.

The current constraining algorithm increases the computational time significantly

- more than doubling the total run time at each stage. It is possible to significantly

reduce the computational time during the subdivision process, by storing the bound

ary nodes as a separate list of nodes, so that the constraining algorithm could

check just these nodes and constrain them when necessary. This would enable the

constrained butterfly subdivision to be a viable candidate for contouring. However,

the current data structures do not allow for this scenario, and so to improve on

algorithm efficiency a new data structure would need to be devised.

In addition to constraining the boundary, we could also adaptively subdivide

based on areas of interest. The problem with adaptive solutions for subdivision

surfaces is that, unlike patches such as Bezier patches, subdivision surfaces do not

easily provide a closed-form parametrisation. The only easy way to tessellate them

is through recursion. We rely on the fact that as we recursively subdivide, we

are converging on a limit surface. Regardless of how we tessellate, we should be

converging on the same limit surface.

If we were to adaptively tessellate, we have changed the control net. Some of

the net might be at a higher level of tessellation than the rest, which means that

our net is no longer converging to the same surface.

Now that we have studied some ways of subdividing and contouring data, we

can compare the results of each method with the methods discussed in previous

chapters. We shall see this in the following chapter.

92

Comparing the contouring methods

5.1 The Amlin Contouring Algorithm

In this thesis we have used the data structures in Walker's TetSim program [44] to

produce contour outputs via the Amlin contouring program, devised as part of this

thesis. The relevant parts of TetSim are described in the following section, along

with the additional structures required by Amlin.

The Amlin data structure

In the TetSim program, calculations are completed over TINs - Triangulated Ir

regular Networks. A TIN model represents a surface as a set of contiguous, non

overlapping triangles. Within each triangle the surface is represented by a plane.

For the purposes of contouring, TetSim contains an additional data structure

known as a ContourMap. This is an unused part of TetSim, required by Amlin, in

order to calculate and produce contours over a surface. The ContourMap class

copies the data from the TINs in the data ready for contouring. In addition,

the ContourMap class contains the options for each contour map, such as which

method to use and which attributes to assign, as well as a class for the Powell-Sabin

Subdivision (PSSubdivision) and Butterfly Subdivision (ButterflySurface). The

ContourMap class also contains the list of normals used to calculate the contours,

as well as the algorithms used in the contouring.

Each TIN stores the list of triangles, nodes and edges, and the maximum and

93

5.1. THE AMLIN CONTOURING ALGORITHM

minimum values of all nodes within the TIN. If required, each PSSubdivision and

ButterflySurface stores its TIN inside the class, which is then a separate TIN stored

in the ContourMap. Each of the subdivision classes contain the algorithm required

to perform the relevant subdivision, and each ButterflySurface contains its own

unique control net.

If we were to produce a contour output for a Butt erfly Subdivided contour map,

the program would complete the following steps:

1. Read in data and contour options.

2. Generate TIN (using TetSim algorithms) and store in ContourMap.

3. For each level of the Butterfly subdivision:

(a) Subdivide the surface using the TIN stored in ContourMap, as described

in Section 4.3.

(b) Create an edge-vertex map so that we can locate new vertices along

edges.

(c) Create an edge-edge map so that we can pair the half-edges made when

the edge is split.

(d) Tessellate the edges.

(e) Build the new faces.

(f) Once the subdivision process is complete, generate the normals at the

vertices if required.

(g) If required, constrain the output to the original surface.

(h) Replace the original TIN stored in ContourMap with this new triangu

lation.

4. Calculate the contours over the surface and output to a file.

As we can see from the list above, there is some inefficiency in the programming,

which may result in the algorithms running slower than optimal. We shall see this

effect more clearly in the following section.

94

5.2. RESULTS

5.2 Results

For our given data sets, we have contour maps using the natural neighbour method,

the Worsey-Farin method over a Powell-Sabin subdivision (WFPS) and straight-line

contours over a butterfly subdivision. Larger versions of the contour maps are given

in the appendices. The various contour maps for the stratigraphic horizon data are

given in Figure 5.1, and the run times of the methods are given in Table 5.1.

(a) Contours using the Natural Neighbour

method over a retriangulated domain

(c) Contours over a Butterfly Subdivision

(b) Contours using the WFPS method

(d) First Step of Butterfly Subdivision

Figure 5.1: Comparison of the Butterfly Subdivision with the WFPS and Natural

Neighbour contouring methods

Clearly there are differences between the contour diagrams, especially in the

looped contour in the upper half of the diagram and on the sides of the lower half.

In the lower half of the figures, the algorithms come to differing conclusions as

to how the contours should be joined. This is made clearer in the first step of t he

butterfly subdivision (Figure 5. l (d)) , where t he algorithm produces two loops. In

95

5.2. RESULTS

Table 5.1: Run times of the contouring methods used for Figure 5.1.
Contouring Method No. of Nodes Meshing Time Contouring Time Total T ime

a) Natural Ne.ighbour 305 0.601 s 0.291 s 0.892 s

b) WFPS 329 0.617 s 0.306 s 0.923 s

c) Unconstrained Bu tterfly, Third Step 3221 2.148 s 0.156 s 2.304 s

d) Unconstrained Butterfly, First Step 224 0.241 s 0.047 s 0.288 s

producing a smoother contouring, WFPS decides that these are separate contour

lines to the main contour, whereas recursive butterfly subdivisions include them

with the main contour.

The looped contours produced by the different contouring methods again are

not ident ical, due to the locations and values of the added vertices. The differing

algorithms introduce new vertices by estimating or interpolating the intermediate

values, and the contour is drawn considering these vertex values. As contours are

subject to interpretation, we can not surmise that any of the contours are incorrect.

For this particular data, however, the WFPS or Natural Neighbour contour maps

may be preferred as they may appear to be more aesthetically pleasing. In contrast

to this, the wavy contour at the centre of the surface may not appear to be as

realistic as the equivalent contour over the butterfly-subdivided surface. This is

due to the values of the vertices on the original triangulation oscillating between

different values. The butterfly subdivision smooths this oscillation, whereas the

WFPS algorithm reproduces it. Both methods produce areas which are arguably

'more realistic' and areas which are 'less realistic' than hand-contoured data, and

so preference to either of the algorithms is subject to the user's prior knowledge.

Comparing the timings of the methods, clearly contours over the first step of the

unconstrained butterfly subdivision run faster, although we can see from Figure 5.1

this contouring has jagged edges and sharp corners. After the third subdivision, the

contours are smoother and sharp corners are minimised. The cost of this smoothing

is the time taken to run the algorithm - almost two and a half times longer than

the WFPS method. This is due to the increased number of nodes created by the

algorithm. If we were to compare the numbers of nodes, WFPS takes almost a

second to run through and calculate 329 nodes whereas the third step of the butterfly

subdivision calculates ten times as many nodes in 2.3 seconds. After this example

96

5.2. RESULTS

it is clear that we would have to balance between smooth, aesthetically pleasing

contours and a contouring algorithm that runs in the shortest time. Before we

compare the run times of the algorithms any further, we must next investigate how

the algorithms deal with missing data.

If we were to receive a data set which contains missing data such as holes.

or areas where data should have been collected but instead the data was missing

or had to be rejected (for example, where the measuring instrument failed and

produced clearly anomalous data) , the algorithms are able to cope with this and

the respective contours are given in Figure 5.2. We can see that the hole appears

to be smaller in the butterfly subdivision, and when we overlay the original triangle

on the subdivision (Figure 5.2(d)), we see that this is, in fact, true. This is due

to the smoothing nature of the subdivision process, as described previously. This

could either be used as an advantage where we can estimate contours over missing

data and effectively 'fill in the gaps', or we could trim the contours where they no

longer lie inside the original domain and hence produce a completed contour map

over the original triangulation.

The surface with minor perturbations dataset, shown in Figure 5.3, highlights

the difference between the coarseness of the mesh, along with the differences between

straight line and Bezier curved contours. The run times of the methods are given

in Table 5.2.

Table 5.2: Run times of the contouring methods used for Figure 5.3.
Contouring Method No. of Nodes Meshing Time Contouring Time Total Time

a) Natural Neighbour 1589 2.894 s 0.385 s 3.279 s

b) Straight Line over PS subdivision 1673 3.017 s 0.981 s 3.998 s

c) WFPS 1673 3.017 s 0.726 s 3.743 s

d) Unconstrained Butterfly, First Step 1137 1.089 s 0.203 s 1.292 s

e) Unconstrained Butterfly, Third Step 4417 9.476 s 0.510 s 9.986 s

In Figure 5.3(a), we can clearly see that straight-line contours over a triangu

lation which has not been subdivided produces the least realistic contours, as

this contains many jagged contours which often taper off to a point. Doing a

simple subdivision, such as Powell-Sabin in Figure 5.3(b) , improves the straight

line contours somewhat , with a reduced number of contours with sharp corners.

97

(a) Natural Neighbour Contours over the

original triangulation

(c) Contours over a Butterfly Subdivision

5.2. RESULTS

(b) Contours using the WFPS method

(d) Contours over a Butterfly Subdivision, with

the original hole overlaid

Figure 5.2: Contour Maps of Altitude Values Over A Stratigraphic Horizon,

Produced Over Successive Recursions of the Butterfly Subdivision Algorithm

98

5.2. RESULTS

~w~~~~ ~'.~~

)))

(a) Contours using the (b) Straight Line Contours (c) Contours using the WFPS

Natural Neighbour method over a Powell-Sabin Triangle method

over a retriangulated domain Subdivision

~Nii@)~
)

[d
I

(d) Contours over the first (e) Contours over the third

level of Butterfly Subdivision level of Butterfly Subdivision

Figure 5.3: Comparison of the Butterfly Subdivision with the WFPS and Natural

Neighbour contouring methods

99

5.2. RESULTS

Performing the Worsey-Farin algorithm over this triangle subdivision smooths

the contours, producing a satisfactory contour map of the data. When using a

butterfly subdivision, however, the first level of subdivision produces contours which

differ to the other contouring methods (Figure 5. 3 (d)). This is particularly true in

the lower-left area of the diagram where originally we have two contours which

pass close to each other, but by the third level of subdivision we see that the

connection between these two contours changes, producing different contour lines

(Figure 5.3(e)). Comparing the final contour map with the WFPS contours we can

see that both contours are similar, and so both of these methods produce comparable

outputs.

Comparing the timings of the methods, again contours over the first step of the

unconstrained butterfly subdivision run faster, although we can see from Figure 5.3

this contouring still has jagged edges and sharp corners. As the data sets get more

complex and the number of nodes increase, we can see that the first stage of the

butterfly subdivision algorithm outperforms the other algorithms when it comes to

speed. After the third subdivision, however, the contours are again smoother and

sharp corners are minimised, although again there is extra run time for the third

subdivision.

In addition to these sample data sets, we can also compare the contouring

methods to a hand-drawn contour map. The data set is from Boomer data taken

in the Irish Sea. There are two sets of data which have been contoured- the depth

of the seabed below datum sea-level and the depth to first reflector, i. e. the first

discontinuity in wave velocity (after the sea bed) . The method of data collection

involved taking measurements from the rear of a boat travelling on the surface of

the water. The boat travelled in a series of almost parallel lines, resulting in many

data points parallel to the boat, but few perpendicular to the direction of travel.

This is common in geological modelling and repeats the importance of interpolation

between data points.

The WFPS and straight-line contours over a butterfly subdivision are in Figure

5.4, and the hand-drawn contours are in Figure 5.5. Comparing the contour methods

with t he hand-drawn contours, we see that both t he butterfly subdivision and WFPS

100

5.2. RESULTS

methods produce contour maps which are visually similar to each other, and each

have 11 contour levels. The hand-drawn contour maps only have 6 contour levels

and so it is more difficult to directly compare with the computerised contour maps,

although we can see that the contour maps are comparable, particularly the contours

for the depth to first reflector. The contours for the depth of the seabed below datum

sea-level, however, differs in a few places. On the hand-drawn contour map we have

points in a region which have similar values, apart from one point lying within this

region which has a value significantly different to the rest. This is not unusual

with real data, and so it is up to the user to decide whether this is significant or

erroneous data with respect to the area where the data was collected. When using

the data to produce computerised contours, it was impractical to use the whole

data set. As the data are arranged primarily in rows, the resulting triangulations

would consist mainly of thin triangles with very little change in data values from

one triangle to the next. Node reduction was performed on the data, which removed

a high proportion of the nodes that provided no extra information, as well as some

of the 'erroneous' nodes. This is reflected in the contour maps as some of the

contours drawn in the hand-drawn contour maps are not present in the computerised

contours. Both computerised contours contain extra contours on the left-hand side

of the diagram. These are represented on the hand-drawn contours by isolated

contour sections, and as we do not have the data between these sections, either

contour is acceptable. From the data sets we have investigated, there is evidence

to show that both WFPS and butterfly subdivision-based contouring algorithms

produce smoother, improved contours compared to straight-line contours on the

original domain. From the Boomer data we can see that these contouring methods

are comparable to hand-drawn contours, producing similar, but not identical results.

It is almost impossible for the contouring methods to produce results which are

identical to hand-drawn contours, as often the person who is producing the hand

drawn contours has prior knowledge of the area where the data were collected, and

may interpret the data differently to the computer methods.

When comparing the timings of the algorithms, again butterfly subdivision takes

around two and a half times longer to run than WFPS.

101

5.2. RESULTS

Table 5.3: Run times of the contouring methods used for Figure 5.4.
Contouring Method No. of Nodes Meshing Time Contouring Time Total Time

a) WFPS, depth of seabed 371 0.705 s 0.349 s 1.054 s

b) WFPS, depth to first reflector 371 0.705 s 0.337 s 1.042 s

c) Bu tterfly, depth of seabed 3801 2.443 s 0.181 s 2.624 s

d) Butterfly, depth to first reflector 3801 2.443 s 0.175 s 2.618 s

In all of the examples given, butterfly subdivision contouring methods takes a

significantly longer than the other methods which have been investigated. However,

if we were to consider the first level of recursion the algorithm in fact runs significantly

fast er , at a cost of smoothness of contours. This supports the hypothesis which

claims that the new butterfly algorithm runs faster than existing contouring al

gorithms. If we are concerned about producing smooth contours, then we must

consider further recursions of the butterfly subdivision algorithm. In its current

state, further recursions are time-consuming, meaning we can no longer claim that

the algorithm is faster than other methods.

The meshing for butterfly subdivision appears to be the cause of this extra time,

and so it would be helpful to investigate the code behind the meshing algorithm to

see whether any improvements could be made. We will comment on this further in

the next chapter.

102

5.2. RESULTS

(a) WFPS contour map for the depth of the seabed

j::::::::;=.

(b) WFPS contour map for the depth to first reflector

(c) Butterfly subdivision contour map for the depth of the seabed

(d) Butterfly subdivision contour map for the depth to first reflector

Figure 5.4: WFPS and Butterfly subdivision contour maps of the Boomer data

103

(a) Depth of the seabed

+ I Willi

.. .,,.
. . .. \ .

(b) Depth to first reflector

C 8

5.2. RESULTS

. - ,..

Figure 5.5: Hand-drawn contour maps of the Boomer data

104

Conclusions

6.1 Summary

In this thesis, we have analysed various methods that are u_sed to produce contour

maps over a given data set. In this chapter, we aim to summarise the achievements

of this thesis and highlight how they contribute to the literature on contouring

algorithms. We also discuss areas for further research. All contouring methods

have some restrictions or undesirable effects, and these have been highlighted in the

chapters.

In chapter 2, we reviewed many surface approximation/interpolation methods,

such as triangle based interpolation. This led to investigating natural neighbour

bases as a new method of interpolation for contouring algorithms. We also looked at

a standard method of interpolation - Bezier curves, as well as its generalisations into

B-splines and NURBS. As B-splines and NURBS are not required for the contouring

algorithms, they are mentioned for completeness and not investigated further. This

chapter provided the basis for the methods discussed in the future chapters.

Straight-line contours are able to contour data sets where other methods may

not be able to, although often these contours are jagged and contain sharp corners.

Straight-line contours using the natural neighbour algorithm improve on straight

line contours over a standard triangulation, but can often still appear jagged. If the

mesh is retriangulated with a finer triangulation, the natural neighbour algorithm

produces smoother contours. Although the natural neighbour algorithm acts locally,

105

6.1. SUMMARY

resulting in a faster retriangulation, the triangulation process itself must produce

a Delaunay triangulation for the natural neighbour algorithm to work. This means

that any subdivision will not be sufficient for a contour map, and often data which

has been provided already with a triangulation would either need a check to ensure

that the triangulation is Delaunay, or would need to be retriangulated. This could

be seen as an inefficient method since it may discard information which can be

useful, particularly the connectivity between nodes.

In chapter 3 we began to examine contouring algorithms, starting with the

Worsey-Farin contouring algorithm. This algorithm produces a C 1 continuous inter

polation if the input triangulation has been subdivided. For simplicity, we chose

the Powell-Sabin six triangle subdivision, using the incentre as the interior point.

The choice of incentre guaranteed that the interior point would indeed lie inside the

interior of each triangle, which was not always the case when using the circumcentre.

We then gave a definition of Bezier ordinates used for the Worsey-Farin algorithm.

We then investigated the nature of the connection between boundary points on

each triangle, giving a sketch proof of Lemma 3.1 from Worsey and Farin [49]. In

order to make the algorithm more readable the two cases of connecting the boundary

points are reproduced in a different format to the original, as well as reproducing

the orignal lemmas required for the algorithm.

The Worsey-Farin algorithm has been reproduced, including the correction by

Bloomquist [4], later in the chapter. The original lemmas and full algorithm is

provided for completeness and for the main reason that the contours produced by

the Worsey-Farin algorithm are the major source of comparison to the butterfly

subdivision.

Due to the nature of the Worsey-Farin algorithm, some contouring combinations

cannot be drawn. Some examples of these are given in Figure 6.1. If these cases

do occur, the data can be subdivided again so that the contours lie in different

triangles , although it is difficult to detect when we would need to do this.

At the end of chapter 3 we compared the contours given by three different

methods, and we saw that the contours produced using the Worsey-Farin algorithm

were smooth. This was a significant improvement over both the straight line

106

6.1. SUMMARY

Figure 6.1: Contours not possible using WFPS.

contours and contours using the Natural Neighbour algorithm, although once the

domain was retriangulated to produce triangles of a similar size to that of the

Powell-Sabin subdivision, the Natural Neighbour contours were almost identical.

This showed that the Natural Neighbour algorithm can produce similar results for

similar data sets.

Chapter 4 concentrated on investigating the butterfly subdivision method. The

original subdivision scheme devised by Dyn et al [18] was restricted to a finite

number of triangulations and so we investigated Dyn et al's extended butterfly

scheme, and then Zarin et al's modified butterfly scheme. This enabled us to obtain

C1 continuous surfaces, including at the boundary. Once we had C1 continuous

surfaces, we used the butterfly subdivision method to produce a contour map of our

data sets. This has not previously been done in the available literature, and so this

thesis gave a different method for contouring data.

When we compared the contour maps of the third and fourth recursions of the

stratigraphic horizon data (Figure 6.2) , we only noticed a minor difference in the

contours. Comparing the fourth and fifth recursion contour maps we noticed that

there is no real difference in output. For general use, the third recursion is usually

sufficient to produce a smooth contour, with the fourth recursion being used when

we observe any remaining jagged contours.

The butterfly subdivision in its original form is different to the other contouring

methods as the boundary expands beyond the original domain, whilst still respecting

the original nodes, including those at the boundary. This can be seen as either an

advantage, or a disadvantage, depending on the results required. The expansion

107

6.1 . SUMMARY

beyond the boundary enables us to estimate the nature of the domain, and hence

the contour, beyond the boundary. This can be particularly advantageous if the

domain contains missing data and holes , as the expansion into these holes makes

it more straightforward to estimate the values of the missing data. The problem

with this expansion is that if we wished to retain the original domain we would

need to perform some trimming or even retriangulation near the boundary. This

is especially important when the domain forms part of a larger data set, where

expanding beyond the boundary would cause an overlap of data.

Constraining the boundary removes this problem, although the computational

time taken to find and move the nodes which lie beyond the boundary is significantly

higher - especially when performing a constrained butterfly subdivision over many

recursions.

The current constraining algorithm increases the computational time significantly

- more than doubling the total run time at each stage. This is mainly due to the

constraining algorithm searching through every edge and node to see whether the

nodes could potentially lie outside the boundary. Once these nodes are determined,

the algorithm can then constrain them to the boundary. It is possible that during

the subdivision process, the boundary nodes could be stored as a separate list of

nodes, so that the constraining algorithm could check just these nodes and constrain

them when necessary. This would significant ly reduce the computational time and

enable the constrained butterfly subdivision to be a viable candidate for contouring.

However, the current data structures do not allow for this scenario, and so to improve

on algorithm efficiency a new data structure would need to be devised.

In addition to constraining the boundary, we could also adaptively subdivide

based on areas of interest. The problem with adaptive solutions for subdivision

surfaces is that, unlike patches such as Bezier patches, subdivision surfaces do not

easily provide a closed-form parametrisation. The only easy way to tessellate them

is through recursion. We rely on the fact that as we recursively subdivide, we

are converging on a limit surface. Regardless of how we tessellate, we should be

converging on the same limit surface.

If we were to adaptively tessellate, we have changed the control net. Some of

108

6.1. SUMMARY

the net might be at a higher level of tessellation than the rest, which means that

our net is no longer converging to the same surface. This is a worst-case scenario

for scalable geometry as it produces errors which cannot be simply avoided.

(a) Third Recursion (b) Fourth Recursion

(c) Fifth Recursion

Figure 6.2: Contour Maps of Maximum Burial Depth Values Over A Stratigraphic

Horizon, Produced Over Successive Recursions of the Butterfly Subdivision

Algorithm

The main aim of this thesis was to prove that our new butterfly subdivision

contouring algorithm will run faster than existing contouring methods, whilst also

being able to contour difficult areas such as at discontinuit ies.

We have seen in the five examples of this thesis that on the same number of

nodes the Butterfly subdivision algorithm is faster t han natural neighbour contours,

straight line contours over a Powell-Sabin subdivision and the WFPS contouring

algorithm, proving the hypothesis to some extent. However, the drawback is that

the contours do not appear to be as smooth as the other methods. In order for the

109

6.1. SUMMARY

contours to be as smooth as the other methods, further subdivisions are required

and so in its current form this is the time-consuming part of the algorithm. If

smoothness is used as a requirement for contouring, then we cannot currently prove

the hypothesis to be completely true. This falls short of demonstrating universal

improvement for the algorithm, but is consistent with the state aims within the

confines of PhD research. However, on this result we may have one (or both) of the

following scenarios:

• The current subdivision algorithm is inefficient, with many areas of code which

can be streamlined. This could be the main cause of the time-consuming part

of the algorithm. Improved algorithm design will decrease the runtime of the

program, and may result in completely proving the hypothesis.

• There may not be one algorithm which can produce smooth contours over all

a data sets, and run faster than all other contouring algorithms. If this is the

case then the original aims may not be realisable, and so the way forward may

be t o develop fast codes for specific classes of problems, rat her than seek one

algorithmic solution that excels in all contouring problems.

In addition to the main aims, the following contributions have been made:

• We have investigated natural neighbour bases for interpolation for contouring

algorithms. This is generally ignored since triangulations are normally used

as the basis. Natural neighbour bases provide a reasonable alternative since

natural neighbours arise from the dual of the Delaunay triangulation, and

provide comparable results. If the data changes and requires retriangulation

in specific regions, the natural neighbour algorithm proves invaluable as a

retriangulation is not required - saving computing time over interpolations

that require a mesh.

• We also investigated and implemented the butterfly subdivision scheme for

contouring algorithms. The butterfly scheme is normally used for surface

approximation, but as contours are level sets on a surface it follows that

contouring algorithms could be used on a butterfly subdivided surface. These

110

6.2. FURTHER WORK

contours are comparable to other contouring algorithms, and due to the nature

of the subdivision, contours over the butterfly scheme enable us to estimate

contours beyond the boundary as well as over areas where we have missing

data.

• If the expansion beyond the boundaries is not required, we have derived and

implemented a novel constrained butterfly subdivision scheme for contouring

algorithms. This offers the same flexibility as the standard, unconstrained

subdivision scheme, with the additional property that it respects the original

boundaries of the input data. We believe that the results obtained in this

thesis will be of use to persons wishing to use a contouring algorithm to

estimate beyond the boundary, as well as within the original constraints of

t he boundary. We also offer an alternative method of contouring which can be

used when other methods fail. We are confident t hat both the unconstrained

and constrained butterfly subdivisions would cope with general surfaces in

three dimensions, although we have not proven that this will be the case for

all surfaces.

• The main contouring algorithms mentioned in this thesis, namely contours

using natural neighbour bases, the WFPS contouring algorithm, and both the

unconstrained and constrained butterfly subdivisions can be found as part of

the Amlin contouring program.

6.2 Further work

Following the investigations described in this thesis, a number of projects could be

taken up, including the following listed below:

• Adaptive tessellation - the current adaptive tessellation changes the original

triangulation, and does not converge to the same surface as recursive subdivision.

This is because we have changed the control net. Some of the net might be

at a higher level of tessellation than the rest, which means that our net is no

longer converging to the same surface. It is likely that an algorithm could be

111

6.2. FURTHER WORK

produced to either counteract the changing of the control net, or to prevent

it changing from the outset, although as discussed in this thesis the benefits

of adaptive Butterfly Subdivision may outweigh the cost of doing so.

• The Butterfly Subdivision schemes described here have not been used over

folded surfaces. It has yet to be proven whether Butterfly Subdivided surfaces

can (or indeed cannot) cope with folded surfaces.

• The expansion in the unconstrained Butterfly Subdivision was shown to give

a good estimate in the data containing a manually introduced hole. The

interesting part would be to investigate whether the Butterfly Subdivision

always gave a good estimate beyond the original data boundary, and whether

the expansion could be used for data which is significantly further than the

original data set.

• The current code for constraining the boundaries of t he data set is inefficient

as it searches through all edges (internal and external) to see which external

edges have been expanded beyond the boundary. This search happens at

each stage of the subdivision and so clearly there is scope for increasing the

efficiency of the program at this point.

• In its current form, the butterfly subdivided contouring algorithm runs slower

than the other algorithms, although t his is due to the inefficiency of the

computer coding rather than the algorithm itself. This is further slowed when

constraining all nodes to the boundary of the data set, as the current coding

searches through the complete data rather than just the edges and nodes which

could potentially lie beyond the boundary. If this part of the coding was made

more efficient the program would run significantly faster - especially on large

data sets and fine meshes.

• Even if program efficiency is improved, there may not be one algorithm which

can produce smooth contours over all a data sets, and run faster than all

other contouring algorithms. If this is the case then the next stage would be

112

6.2. FURTHER WORK

to develop fast codes for specific classes of problems, rather t han seek one

algorithmic solution that excels in all contouring problems.

113

A stratigraphic horizon with a

discontinuity

Figure A. l: Original Triangulation

114

Figure A.2: Contours using the Natural Neighbour method

Figure A.3: Contours using the Natural Neighbour method over a retriangulated

domain

115

Figure A.4: Contours using the WFPS method

Figure A.5: First Recursion of the Butterfly Subdivision Algorithm

116

Figure A.6: Second Recursion of the Butterfly Subdivision Algorithm

Figure A. 7: Third Recursion of t he Butterfly Subdivision Algorithm

117

Figure A.8: Fourth Recursion of the Butterfly Subdivision Algorit hm

Figure A.9: Fifth Recursion of t he Butterfly Subdivision Algorit hm

118

A surface with minor perturbations

119

Figure B. l: Linear contours over the original triangulation

120

"'~ . ~ ~ ~

Figure B.2: Straight Line Contours over a Powell-Sabin Triangle Subdivision

121

Figure B.3: Contours using the WFPS method

122

Figure B.4: First Recursion of the Butterfly Subdivision Algorit hm

123

Figure B.5: Second Recursion of t he Butterfly Subdivision Algorithm

124

\

Figure B.6: Third Recursion of the Butterfly Subdivision Algorithm

125

Constrained Butterfly Subdivision

Figure C. l: Unconstrained Second Recursion of the Butterfly Subdivision Algorithm

for a Stratigraphic Horizon with a discontinuity

126

Figure C.2: Constrained Second Recursion of t he Butterfly Subdivision Algorithm

for a Stratigraphic Horizon with a discontinuity

127

Figure C.3: Unconstrained Second Recursion of the Butterfly Subdivision Algorithm

for a Surface With Minor Perturbations

128

Figure C.4: Constrained Second Recursion of the Butterfly Subdivision Algorithm

for a Surface With Minor Perturbations

129

A stratigraphic horizon with a

discontinuity containing missing data

Figure D.1: Natural Neighbour Contours over the original triangulation

130

Figure D.2: Contours using the WFPS method

Figure D.3: Contours over a Butterfly Subdivision

131

Figure D.4: Contours over a Butterfly Subdivision, with the original hole overlaid

132

Boomer data

133

I-'
c;;i
.i::,..

(a) WFPS contour map for the depth of the seabed below datum sea-level

, " ----------;;_

' I ·./ \.J,.___ I -==--~--~ 'v;,

(b) WFPS contour map for the depth to first reflector

Figure E.l: WFPS contour maps of Boomer data

""""' w
c.n

---- -.;::,-- -
-:- ---~~--

(a) Butterfly subdivision contour map for t he depth of t he seabed below datum sea-level

.-
= -- --

-::

(b) Butterfly subdivision contour map for t he depth to first reflector

Figure E.2: Butterfly subdivision contour maps of Boomer data

f--'

"" 0.,

...
~

\ ·, .

,.

••

\
\
\ .,. .. J

,.

"

.. -~---·· r- ---

M

,:

'ii'

r
c: __ , ,,

------..,~f"': ~ . IS

- - - '~"':=-::,
t__ ,, (,,~ ,,

t, , >!. ..
'iisSf ----

~ --- .. / lf
(-·
·---"'\

,. "· ~ ...
~ \

,....:
,,

" u

tl
,J

n ~
"

,~ ... °"
) ,;;

/
,., .,-t, _____ _,

.. ... r.,

..
I.

('.. -!', "ifn, V

.,
1
I "·

,.,
n_,,,..,...

"
"~ "·

~ _, ,,,,r- ,~.. 'FV , ~ l . • ' -~ __ t,~,.• ~- ,a,1ca .. coo•:11-a,1m:m:1C1-••
L~

t

r,

D cs
ll \,.,1

~
..,

-,.,, ,.
.. n 7'.o_
IJ - 11)u , n,, f<!:'. ~l'h: ,._

I,. ~,, , _,

, _,J ,, ._ .Jl•
u, ?!' ,,, ,,,

,.,

, v---·
,,, ,,. ,,,

" ' ,. --n ~- ... ~ ,.,,,
n, C_) lf

,, .,,

.,

"• r
•~ I• ·\ \ -~- ..

,,,

"·
11,

u

Th ~•
,,. ~·n-.

.. , ,,. ..

,,, ,,,,., u , ..
,,.

...

"'· 4, IC,,

11, ,,
11,

.,
,,)

.. ..

u, ('_tb

..
.~f:;~1
-'L~,.

1:r-:- " 1'\ ~

~·-

:l'i'I m:. ,i
,.,. I I
,. -t:i

;i:-

1 ,._
.

'
lln ~

,'7./-- ~
~

3
• , ,.
1(

., 0 1:i: I.

..
~

u,

11,

ill
&J

11,

,:~•

,,.

,,

..

Figure E.3: Hand-drawn contour maps of the depth of the seabed values of the Boomer data

......
w
-..:i

'" \

!--•. --

,. --,; ~-
\...:--

.

..,, '~ _~.,I ,,. :, / ,,. ')
,, - ' : "

-':I_ H.... , .. ,:I., ,.,
/') <..~--- - • ~-~
_,, .. ~, ~

~ . . ;u~ . -~, ,r
, D ,: ,) "Ip .n, ..,

~lJ.1'!';_ .,
,i ,1(\J (;.e ;~-. ~-1.l

U , 1 ! 11
1

iA O

,. ,.

..... ,.,

...
...

...

't3,,

•
·~

....

..

.., \ "· i _,::-:- ~E',.___,._ ..-
'1:

,. .., __ _
..,

..
"'

'..,
~-

.,,

I -- ,,
):, \

n, \ .,,,. ,,_ ,,, ,,.

u, .. _ -~ . " ,,.~\ _"\ ,,, . 0,

'ad1,

,-__,, .,

·-"
'

.,· ,,
• I ., ... _....... 11

- - t ' ... _,~,,.---~ ~ ,

In

~-~-» L JS

r, I JI_/ __ ,,,--..,,-,--~'>

}i"

,,

"

" ,.,_

"

,,

,, ..

,.,

-- -
'-

i -;u~{ "' ""
.) ',,

n

.,

,,

' -v---

..

,

~1@1
~ ~

:±!
1
-

'-

~
~
m
uli:I
~
I"'! q

.... r~ ____ r "·
;,;,

~ 1
"·

~--- - ,.

~--
...

~

:1111:1:

,,

-~ ,,

I
.. ,,, ,.,v

I !!
•;•

1 • ,, •
"'

,,
ma:,

,.,

"' ,..,.,.

ll,

,su,u ,,,

~ ,,., ..,.,
r,:
~
~

ID,

-·~
'·~~~ i
D,

,,_

..
,. ,. ~- . .,. ., ,.,,,_

.;--~ i:.
~\J,"·:_

'-·:·c

Figure E.4: Hand-drawn contour maps of the depth to first reflector values of t he Boomer data

Bibliography

[1] M. Ando. Estimating normal vectors of triangulated spaces. See

http://web.mit.edu/ ~mando/www /Papers/phase2.pdf, February 2005.

[2] S. Beissel and T . Belytschko. Nodal integration of the element-free Galerkin

method. Computer Methods in Applied Mechanics and Engineering, 139(1):49-

74, 1996.

[3] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless

methods: An overview and recent developments. Computer Methods in Applied

Mechanics and Engineering, 139:3- 47, 1996.

[4] B. K. Bloomquist. Contouring trivariate surfaces. Master's thesis, Computer

Science Department, Arizona State University, 1990.

[5] W. Bohm, G. Farin, and J. Kahmann. A survey of curve and surface methods

in CAGD. Computer Aided Geometric Design, 1(1):1- 60, 1984.

[6] G. Bolondi, F. Rocca, and S. Zanoletti. Automatic contouring of faulted

subsurfaces. Geophysics, 41(6):1377- 1393, October 1976.

[7] I. C. Briggs. Machine contouring using minimum curvature. Geophysics,

39(1):39-48, February 1974.

[8] Y. Cai and H. Zhu. A meshless local natural neighbour interpolation method

for stress analysis of solids. Engineering Analysis with Boundary Elements,

28:607-613, 2004.

138

BIBLIOGRAPHY

[9] N. A. C. Cressie. Statistics for spatial data. Wiley Blackwell, 1993.

[10] E. Cueto, N. Sukumar , B. Calvo, M.A. Martfnez, J. Cegofiino, and M. Doblare.

Overview and recent advances in natural neighbour Galerkin methods. Archives

of Computational Methods in Engineering, 10(4):307- 384, 2003.

[11] A. J . Davies. The finite element method: a first approach. Clarendon Press,

1980.

[12] J. C. Davis. Statistics and Data Analysis in Geology. John Wiley and Sons,

1973.

[13] T. De Vuyst, R. Vignjevic, and J.C. Campbell. Coupling between meshless and

finite element methods. International Journal of Impact Engineering, 31:1054-

1064, 2005.

[14] T. DeRose, M. Kass, and T. Trurong. Subdivision surfaces m character

animation. Siggraph, pages 85- 94, 1998.

[15] N. Dyn. Subdivision schemes in CAGD. Advances in Numerical Analysis,

2:36-104, 1992.

[16] N. Dyn , S. Hed, and D. Levin. Subdivision schemes for surface interpolation. In

Workshop in Computational Geometry, pages 97- 118. World Scientific, 1993.

[17] N Dyn, D. Levin, and J. A. Gregory. A 4-point interpolatory subdivision

scheme for curve design. Computer Aided Geometric Design, 4:257- 268, 1987.

[18] N Dyn , D. Levin, and J. A. Gregory. A butterfly subdivision scheme for surface

interpolation with tension control. ACM Transactions on Graphics, 9:160- 169,

April 1990.

[19] G. Farin. Triangular Bernstein-Bezier patches. Computer Aided Geometric

Design, 3(2):83-127, 1986.

[20] G. Farin. Surfaces over Dirichlet t essellations. Computer Aided Geometric

Design, 7:281- 292, 1990.

139

BIBLIOGRAPHY

[21] G. Farin. Handbook of Computer Aided Geometric Design, chapter l: A History

of Curves and Surfaces in CAGD, pages 1- 23. North Holland, August 2002.

[22] D. W. Griffiths. Report on the natural element method. Internal report , School

of Informatics, University Of Wales, Bangor, June 2006.

[23] A. Guillen, P. Calcagno, G. Courrioux, A. Joly, and P. Ledru. Geological

modelling from field data and geological knowledge, part ii - modelling

validation using gravity and magnetic data inversion. Physics of the Earth

and Planetary Interiors, 171(1- 4):147- 157, December 2008.

[24] M.A. Haecker. Convergent gridding: A new approach to surface reconstruction.

Geobyte, 7(3):48- 53, June 1992.

[25] C. Hirsch. Numerical Computation of Internal and External Flows:

Fundamentals of Numerical Discretization, volume 1. John Wiley and Sons,

1989.

[26] J. B. Lasserre. An analytical expression and an algorithm for the volume of a

complex polyhedron in JR.n. Journal of Optimization Theory and Applications,

39(3):363- 377, 1983.

[27] Q. W. Ma. Meshless local Petrov-Galerkin method for two-dimensional

nonlinear water wave problems. Journal of Computational Physics, 205:611-

625, 2005.

[28] Waterloo Maple Inc. Maple v9.5, 2004.

[29] N. Max. Weights for computing vertex normals from facet normals. Journal

of Graphics Tools, 4(2):1- 6, 1999.

[30] G. M. Philip and D. F. Watson. Triangle based interpolation. Mathematical

Geology, 16(8):779- 795, 1984.

[31] G. M. Philip and D. F. Watson. A refinement of inverse distance weighted

interpolation. Geo-Processing, 2(4):315- 327, 1985.

140

BIBLIOGRAPHY

[32] L. Piegl and W. Tiller. The NURBS book. Monographs in Visual

Communication. Springer-Verlag Berlin and Heidelberg GmbH & Co. KG,

second edition, November 1996.

[33] M. J . D. Powell and M. A. Sabin. Piecewise quadratic approximations

on triangles. ACM Transactions on Mathematical Software, 3(4):316- 325,

December 1977.

[34] J. N. Reddy. Introduction to the Finite Element Method. McGraw, 1984.

[35] J. E. Robinson. Computer Applications in Petroleum Geology. Hutchinson

Ross, 1983.

[36] K. C. Rockey, H. R. Evans, D. W. Griffiths, and D. A. Nethercot. The Finite

Element Method. Collins, second edition, 1985.

[37] R. Sibson. A vector identity for the Dirichlet tessellation. Mathematical

Proceedings of the Cambridge Philosophical Society, 87:151- 155, 1980.

[38] G. Strang and G. Fix. Analysis of the Finite Elements Method. Prentice-Hall,

1973.

[39] N. Sukumar. The Natural Element Method in Solid Mechanics. PhD thesis,

Northwestern University, June 1998.

[40] N. Sukumar. Sibson and non-Sibsonian interpolants for elliptic partial

differential equations. in Proceedings of the First MIT Conference on Fluid

and Solid Mechanics, 2:1665- 1667, 2001.

[41] N. Sukumar, B. Moran, and T. Belytschko. The natural element method in

solid mechanics. International Journal for Numerical Methods in Engineering,

43(5) :839- 887, November 1998.

[42] L. Traversoni. An algorithm for natural spline interpolation. Numerical Algor

ithms, 5(1):63- 70, 1993.

141

BIBLIOGRAPHY

[43] C. Turnbull and S. Cameron. Computing distances between NURBS-defined

convex objects. IEEE International Conference On Robotics And Automation,

4:3685- 3690, 1998.

[44] R. P. Walker. TetSim. Internal report, School of Computer Sciences, Bangor

University, 2007.

[45] R. P. Walker, D. W. Griffiths, G. W. Roberts, B. T. Wells, and J . Leonard.

Creating earth models capable of supporting mathematical analyses: the grids

and contours required to completely define a model. In PETEX 08 Conference

Proceedings, November 2008.

[46] R. P. Walker, D. W. Griffiths, and B. T. Wells. 3D geological models: What we

should have learnt from 2D and how to avoid expensive conceptual mistakes

and numerical errors in 3D. In Geoindia 08 Conference Proceedings, September

2008.

[47] D. F. Watson. Contouring: a guide to the analysis and display of spatial data.

Pergamon, 1992.

[48] D. F. Watson. nngridr - An implementation of Natural Neighbour interpolation.

Watson, 1994.

[49] A. J. Worsey and G. Farin. Contouring a bivariate quadratic polynomial over

a triangle. Computer Aided Geometric Design, 7(1- 4):337- 352, 1990.

[50] X. K. Zhang, K.-C. Kwon, and S.-K. Youn. The least-squares meshfree method

for the steady incompressible viscous flow. Journal of Computational Physics,

206:182- 207, 2005.

[51] 0 . C. Zienkiewicz. The Finite Element Method, volume 3. Butterworth

Heinemann, third edition, 1977.

[52] 0 . C. Zienkiewicz and K. Morgan. Finite elements and approximation. John

Wiley and Sons, 1983.

142

BIBLIOGRAPHY

[53] D. Zorin. Stationary Subdivision and Multiresolution Surface Representations.

PhD thesis, California Institute of Technology, 1998.

[54] D. Zorin, P. Schroder , and W. Sweldens. Interpolating subdivision for meshes

with arbitrary topology. In Computer Graphics Proceedings (SIGGRAPH 96),

pages 189- 192, 1996.

143

