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Abstract 

When studying geological models below the Earth's surface, or indeed the surface 

itself, we often wish to concentrate on particular values on the terrain. This is often 

visualised be means of contour lines. One of the challenges of producing contour 

lines is the estimation of values between data points - especially if data points 

are sparse. Another challenge is to produce smooth, 'sensible' contours - contours 

which do not cross or have sharp corners or loops. 

In this thesis we investigate some of the interpolation methods for contouring, 

highlighting their advantages and limitations, and compare the outputs produced. 

We propose that our new contouring algorithm described in this thesis will run 

faster than existing contouring methods, whilst also being able to contour difficult 

areas such as at discontinuities. 

We present the main algorithms used in the new contouring program, Amlin, 

which utilises the same data structures as TetSim [44] and builds on them to produce 

the contour outputs shown in this thesis. This leads to a new method for contouring, 

which uses an interpolating subdivisions scheme based on the Butterfly scheme, 

which generates C1-continuous surfaces from arbitrary meshes. 

The modified butterfly scheme used in the Amlin program expands beyond the 

original domain, whilst still respecting the original nodes, including those at the 

boundary. This can be seen as either an advantage, or a disadvantage, depending 

on the results required. The expansion beyond the boundary enables us to estimate 

the nature of the domain, and hence the contour, beyond the boundary. This can 

be particularly advantageous if the domain contains missing data and holes, as the 

expansion into these holes makes it more straightforward to estimate the values of 

the missing data. The problem with this expansion is that if we wished to retain the 

original domain we would need to perform some trimming or even retriangulation 

near the boundary. 

We present a new method of butterfly subdivision which is constrained to the 

original boundary. This is especially important when the domain forms part of a 



larger data set, where expanding beyond the boundary would cause an overlap of 

data. 

We discuss the extent to which the hypothesis has been proved within this thesis, 

and for the methods implemented, results and outputs are presented, along with 

comparisons, suggestions for improvement and further work. 
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Introduction and Thesis Outline 

1.1 Introduction 

1.1.1 lntrod uction to contouring 

When studying geological models below the Earth's surface, or indeed the surface 

itself, it is reasonable to assume that the area we are studying will not all lie on a 

fixed plane. For models of the surface of the Earth, we often use the word terrain 

to describe the differences in the elevation of the land. The terrain of a region is 

particularly important- for environmental, agricultural, geological and many more 

research areas, and is usually visualised by means of a perspective drawing or with 

contour lines. Contour lines show lines of constant value ( or level sets) for some 

function f(x, y), which in the case of terrain is the elevation (z-value). Clearly we 

do not know the elevation of every point on the Earth; we only know those values 

where we have measured. This means that when we are looking at a terrain, we 

only know the value of a function z = f(x, y) at a finite set of sample points. If we 

wished to find the value of t he elevation at a point which is not in the data set, we 

would need to approximate it. 

The simplest, and most na'ive form of estimating the values uses the value 

nearest to the point we are interested in, although this will certainly produce erratic 

values for successful contouring, and the surface will contain discontinuities. Other, 

more involved methods use a weighted average of the surrounding points, which, 
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1.1. INTRODUCTION 

depending on the weighting used, often produces a smooth, continuous surface. 

Once we have a set of points of equal value, the logical step would be to join these 

points to produce a contour map of the data. Although the contour lines are an 

expression of a continuous and unbroken surface, they are based on measurements 

made at the sample points, and so there may be areas between the sample points 

that vary greatly, such as a deep canyon that was not recorded. As we do not 

know about the areas in-between the data points, we assume that such data are 

continuous when we produce the contour map. The contours are also affected by 

the way the grid or triangulation is formed, as well as which grid or triangulation 

is used, and so the surface that is generated may not be unique. 

Surface uniqueness may not be a significant problem since we are already est

imating the positions of the contours, although problems would arise if we required 

a unique surface in every occasion. 

There are various methods in producing the contours, from hand-drawn to 

computer-generated contour maps. A common method for drawing computer

generated contour maps is to interpolate a grid of uniformly spaced values and 

then contour this grid. This method is particularly advantageous when it comes to 

computation, and most interpolation methods produce meaningful contour maps, 

although they do not always respect the original data points. This is particularly 

problematic when the data are clustered or has large regions where there is no data. 

An alternative to gridding involves joining the data points to form a triangulation. 

This has a distinct advantage as it ensures we have the original data in our data 

set. As with gridding, we can interpolate between the points to form a contour, 

with the added advantage that as we are using the data points as corners of our 

triangles and hence guarantee that we respect the data points. Gridding methods 

do not always respect the data points, although there are methods to ensure the 

original data is retained. 

When we are considering contouring methods, the simplest involves drawing 

straight lines between the points that are of equal value, although this is not ideal 

and often produces contours which appear jagged and have sharp corners. Jagged 

and sharp cornered contours, as well as not being aesthetically pleasing, are generally 
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1.1. INTRODUCTION 

not a good representation of real data. Most geological data flows smoothly from 

one area to another, where rock types, salt concentrations etc. would alter in a 

relatively smooth manner. However, there are exceptions to this rule, the main 

exception being at a fault, although contours would normally end at a fault line 

and continue from a different point at the other side of the fault. For hand-drawn 

contours, the contours are usually curves so the problem of jaggedness is not an 

issue, although hand-drawing contours is considerably more time consuming. For 

computer-generated contour maps, there are many methods used to smooth out the 

contours, although this smoothing still may not remove all of the sharp corners and 

jagged edges. One such method involves computing finer and finer grids until the 

contours appear smooth. The finer grids would require extra points and extra data 

- ideally t his would come from the source data, where we would start from a finer 

initial grid. Otherwise, some interpolation or approximation to the data would be 

required. Another method fits curves to the data points such that the contours are 

continuous, do not cross and do not contain loops. 

In general, smoothing functions are mathematical interpolators or approximators 

that are designed to improve the appearance of contours without introducing errors 

such as anomalous curves, loops or crossing contours. If the data we wish to contour 

are almost or completely sampled (i.e. the sample data points are the population 

data), then the computer is as likely, if not less likely to produce errors in the 

contour map, and certainly produces the contours in a shorter space of time than 

a human can. If we were to have sparse data, often the hand-drawn contour maps 

are considered to be 'more realistic' as the human drawing would normally have 

background knowledge of the data and can instinctively reason whether to include 

an anomalous data point. Computers, however, would require this 'instinct' to be 

programmed in, and this may be unique to the particular data set. In both cases, the 

contours are subject to some error, although these errors might be minimal. Hand

drawing contours is a subjective process, and human error can result in misleading 

contours, especially when the human 'instinct' is incorrect. Similarly, computer

generated contouring is subject to the stability of the algorithm that is being used, 

as well as the accuracy of the programmer responsible for encoding the algorithm. 
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1.1. INTRODUCTION 

Algorithm design can be utilised to improve stability in the algorithm, although 

this does not remove the risk of human error at the programming stage. 

The main contributions of this thesis are: 

• Further investigation of natural neighbour bases for interpolation used in 

contouring algorithms. This is generally ignored as triangulations are normally 

used as the basis. Natural neighbour bases are an invaluable alternative, 

especially if the data changes, as natural neighbour bases do not require 

retriangulation. 

• Implementation of the butterfly subdivision scheme for contouring algorithms. 

The butterfly scheme is normally used for subdivision surfaces, but as contours 

are level sets on a surface we propose that the butterfly subdivision scheme 

can be used for contouring algorithms. 

Using the butterfly subdivision contouring algorithm, we have a choice of est

imating points beyond the boundary, or to use the novel constrained butterfly 

subdivision scheme to constrain all data points within the original boundaries 

of the data set. 

• The use of the Worsey-Farin algorithm used over a Powell-Sabin triangle 

subdivision, referred to in this thesis as WFPS, as used by Walker in the 

TetSim program [44] 

• The creation of the Amlin contouring program, which utilises the data struct

ures of Walker's TetSim program. 

• Comparisons are made between linear contours, straight line contours over 

a Powell-Sabin subdivision, WFPS, contours using the natural neighbour 

method, contours over an unconstrained butterfly subdivision and contours 

over a constrained butterfly subdivision. Timings for each are also compared. 

For all contour methods, timings were performed on a 2GHz Athlon CPU with 

768MB of RAM. 
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1.1. INTRODUCTION 

1.1.2 Thesis motivation 

The problem 

When considering geological data, the data are usually in the form of two- or three

dimensional scattered points to which attributes are attached. Unlike datasets from 

areas such as mechanical engineering, geoscientific data often have a highly irregular 

distribution. For example, bathymetric data are collected at a high sampling rate 

along each ship's direction of travel, but there can be a very long distance between 

two lines of data. Geological data are gathered from boreholes and therefore usually 

has a large amount of data vertically but very little horizontally. In order to model 

the data sets, interpolation needs to be performed to estimate the value of an 

attribute at unsampled locations. 

Geological data often contains faulted surfaces - surfaces containing unknown 

discontinuities along lines known a priori, and the surface itself can be folded, 

resulting in multi-valued surfaces. Other difficulties appear when the data are 

affected by random disturbances. The discontinuity of a faulted surface means that 

we may have two or more different values at one point, although when a surface is 

faulted, it is not defined beyond the fault. As stated in Bolondi et al. [6]: 

A map is completely accurate if the proper contour lines touch the 

correspondent data points, even if they do not lie on the grid nodes. At 

present, to the knowledge of the authors, the only way of guaranteeing 

such a behaviour is to introduce an irregular grid containing among its 

nodes all of the data points. 

Bolondi et al imply that irregular grids containing all of the data points are more 

likely to produce an accurate map of the data. 

Alternatively, we could use a method such as kriging [9, 35], which optimises 

interpolation between the data points using the statistical nature of the surface. 

Measured points are used to describe properties of the surface, which can then 

be applied to estimate missing locations. However, kriging has increased time 

and computational demands, and is also an approximator or estimator, not an 

interpolator since it does not respect the original data points. Since the data points 
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1.1. INTRODUCTION 

are often sparse, it would be logical to respect the data where we have values, and 

to interpolate between these. Kriging is also unsuitable where we have specific areas 

of interest whose results are statistically anomalous and have results which differ 

greatly to neighbouring points. This is likely to occur during our investigations so 

in order to prevent this from occurring we do not use kriging in this thesis. 

Hypothesis. In this thesis we propose that our new contouring algorithm will run 

faster than existing contouring methods, whilst also being able to contour difficult 

areas such as at discontinuities. 

Although we could use gridding and an approximating contour algorithm, as 

geological data is often sparse it would be preferential to honour the data wherever 

possible. Because of this we will compare our algorithm with contouring algor

ithms that interpolate rather than approximate, and produce smooth contours 

with no jagged edges or corners. We also require the contouring algorithms to 

agree with Bolondi et al and produce contours which touch the corresponding data 

points. We will investigate a selection of current contouring methods, highlighting 

their potential benefits and restrictions. We will look at straight-line contours over 

the original data, as well as the possibility of using curved contours to produce a 

smooth contour map. We will also propose a new contouring method, and compare 

the results with other methods to determine whether, using specific criteria, this 

new method is faster than existing methods and more versatile in the applications 

to which it can be used. Three-dimensional data and irregular sampling are not 

specifically covered in this t hesis, although many of the techniques discussed can 

be applied to these scenarios. A fictitious discontinuity is introduced for one data 

set to investigate and compare the outputs produced by each contouring algorithm. 

Again, these algorithms can be applied to data sets where real discontinuities occur, 

such as at fault lines. 

Applications 

Analysing data is notoriously difficult in the geosciences. The main problem facing 

the geologist is the impossibility of making continuous observations in the subsurface 
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1.2. THESIS OUTLINE 

domain, except for occasional access to drill cores or underground works [23]. Below 

surface data collection is an expensive operation and so this often results in sparse 

data sets which may include faults and discontinuities. There may also be many 

different types of surface below the Earth's surface and so we may wish to compare 

the differences between these surfaces, whether it is the varying salt concentrations, 

temperatures, pressures, or for any types of data collected. 

The most straightforward methods to analyse results is to visualise it. From 

this point of view, contouring is the more fundamental operation as it immediately 

presents the data in an accessible format. Contours indicate areas which vary 

greatly, as well as areas which are relatively uniform. This enables the geologist 

to concentrate further analysis in certain regions rather than analysing the data as 

a whole, saving valuable time for future analysis. 

The TetSim program can be used to read in data as well as the properties 

and attributes of the data. After analysis the data can be read by Amlin for 

fast contouring using a method decided by the user. Of the methods available 

in Amlin, contours over a butterfly subdivided domain show the most potential, 

as the butterfly subdivision algorithm can be used either to estimate missing data 

from the input and even beyond the boundaries of the data, or to be constrained 

within the original data. 

1. 2 Thesis outline 

We now give a brief description of the contents of each chapter of this thesis. In 

Chapter 2, we present a short summary of the background theory which provide the 

foundations for the work in later chapters. We introduce the background to inter

polation methods, from basic interpolation which is weighted by a simple average of 

the surrounding data, to interpolation based on the natural neighbours and Voronoi 

diagrams. Interpolation is required due to the nature of most data sets - we do not 

have regularly arranged data points. Even if we do have regularly arranged data 

points, we still may wish to consider areas between these points. Obtaining data 

for geological models below the Earth's surface is difficult and expensive, and so 

7 



1.2. THESIS OUTLINE 

the data collected is often sparse. In order to produce reliable contoured output, 

interpolation is used. The Sibson interpolation function is defined, both over regular 

and irregular nodal point arrangements, and will be used in the following chapters. 

This is followed by introducing contouring methods which can be used to improve 

on linear contours. A few related methods are discussed, along with reasons why 

we choose to use Bezier curves as our smooth contouring function. 

Chapter 3 introduces the Worsey-Farin algorithm - a contouring algorithm which 

produces smooth, continuous, contours over a triangulated data set. The triangu

lation used is subdivided by the six-triangle subdivision as described by Powell and 

Sabin [33]. We then utilise Bezier ordinates over the Powell-Sabin subdivision in 

order to compute the Worsey-Farin algorithm. The Worsey-Farin algorithm requires 

normal vectors at the nodal points, and since we do not have this information in our 

data, we discuss different methods to estimate these normals. In TetSim, Walker 

[44] chose Nelson Max's method as the preferred method of normal estimation [29], 

whereas for the natural neighbour method, it is logical to use the Weighted by 

Voronoi area method, since the Voronoi Areas are already calculated. Finally, we 

produce contour maps of two data sets and compare the two contouring methods 

with each other. We see that both methods produce similar, yet not identical 

contour outputs. 

We propose a new method of contouring in Chapter 4, this time based on a 

subdivision scheme as opposed to the algorithm that is built on the subdivision. 

We briefly ment ion a t rivial subdivision scheme, before proceeding to a scheme 

known as Butterfly subdivision. The butterfly scheme is named due to the shape of 

the map of neighbours used during evaluation. The original scheme devised by Dyn 

et al [18] was general in that it could not subdivide in areas where the area does not 

look like the butterfly-shaped stencil. In 1996, Zarin et al published an extension to 

the butterfly scheme known as the modified butterfly scheme [54], which developed 

rules for cases which were not covered by Dyn et al 's original butterfly scheme. We 

use Zarin et al's extension to the original butterfly scheme t hroughout the chapter, 

highlighting the methods used for when we encounter special cases. We use Zorin et 

al's method as a basis to propose a new method of producing contours and produce 
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1.2. THESIS OUTLINE 

a contour map of one of the data sets in the previous chapter. This is used to show 

that the Butterfly Subdivision scheme can be used for contouring algorithms and 

has many benefits over existing methods. The Butterfly Subdivision scheme uses 

the data structures of Walker's TetSim program and so it is more straightforward 

to compare outputs between the different methods of contouring. 

Finally, in Chapter 5 we compare all of the contouring methods we have seen 

in previous chapters, using the data sets we have previously seen. We highlight 

differences between the contour maps, as well as showing that t he methods we have 

investigated can cope with missing data. We also look at real data, taken from the 

Irish Sea, and compare the contouring methods from Chapters 2 and 3 with the 

hand-drawn contour maps of the data. The different contouring methods produce 

similar , although not identical outputs, which satisfy the criteria required and so 

often it is up to computational time to decide which method is the preferred one 

for given data. 
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Surface approximation / interpolation 

2 .1 Introduction 

Until the arrival of computers, interpolation for contouring was limited to methods 

that could be easily implemented by hand. These algorithms can now be automated 

on modern hardware. Apart from the "educated guess" method of drawing contours, 

there are many manual methods of interpolating data that allow an estimate of 

elevation. Watson [47] describes these manual methods, the simplest of which 

involves weighting each of the N data points by 1/ N . This implies that we have a 

level plane, at the average height, as a representative surface over the region. If the 

height measurement for a vertex (xi, Yi) is F(xi, Yi), then a level plane L over the 

region has an elevation 

This has poor local agreement with most of the data, although globally it offers 

a good estimate of the total volume. Such a surface cannot be contoured, as a 

level plane has no variation, and so the variability implied by the data cannot be 

displayed. 

Distance-based weighted averages offer an alternative solution to this problem. 

These methods are probably the easiest to implement and so are the most abundant 

in interpolation literature. Various computer adaptations of these methods have 

been created, including Inverse Distance Weighted Observations (known as IDWO) 

10 



2.1. INTRODUCTION 

and Inverse Distance Weighted Gradients (IDWG) [31]. Inverse distance weighting 

models use the notion that observations further away should have a lower contribution 

than those which are near the point of interest. The simplest model involves dividing 

each of the observations p(xi, Yi) by its distance dij from the target point, p(xj, Yj), 

such as in the following equation: 

A lot of imaging software packages use this type of model for interpolation, as it 

is straightforward to implement and simple to understand. Due to the availability 

of these methods, we will not investigate them further, and so the references can 

provide the interested reader with a concise knowledge of the particular methods. 

An interpolation method that can improve on the above techniques divides the 

region into polygonal prisms centred around each data point. The height of each 

prism is determined by the height of its representative point [47]. These polygonal 

prisms are piecewise constant and so give perfect local pointwise agreement, although 

global values can vary considerably, as the size of each polygon can differ greatly. An 

improvement on this would be to use natural neighbour polygons - polygonal regions 

whose boundaries form perpendicular bisectors of the straight line join to certain 

neighbouring data points, as we will see later. As these polygons are unique for 

each data set, they are easily reproducible. The methods described above produce 

polygons with flat tops, and so we would be looking for a method that produces 

more satisfactory results. 

Another method, known as convergent gridding [24], uses a coarse grid which 

1s initially assigned to the data, and then refined many times until the surface 

converges to a specified smoothness. As the refining process may need to be 

performed many t imes, this may not be a favourable method when time is an issue. 

A fitted function method, which fits a surface to the data using a least squares 

method, is more straightforward to implement when it comes to local support, and 

such methods are also used for gradient estimation, which we will see later. Fitted 

function methods refer to a class of computer interpolation methods that use a 

polynomial expression for a surface that fits the data, either locally or globally. 

11 



2.2. TRIANGLE-BASED INTERPOLATION 

These methods are applied in two stages: first we determine the parameters of the 

function, and then we use these parameters to interpolate. Fitted functions can be 

applied to either gridded or scattered data, using a linear combination of elemental 

surfaces, known as basis functions. 

Other methods of computer interpolation include triangle and rectangle-based 

methods, as well as neighbourhood-based methods. These are described in the 

following sections. 

2.2 'Iriangle-based interpolation 

2.2.1 Barycentric coordinates 

A more continuous solution can be found using a triangulation of the data, which is 

equivalent to 'slanting the tops' of the triangular prisms mentioned previously. In 

other words, we can use a mesh of planar triangles defined by neighbouring three

dimensional data points. Each vertex of the triangle is anchored at a data point, 

enabling exact local agreement , and then we can apply barycentric coordinates 

to the data at the vertices of the triangle, giving a weighted average method of 

interpolation. 

Any point P in the plane can be expressed in terms of barycentric coordinates 

with respect to any triangle ABC of a triangulation T 

3 3 

P(x, y) = L wi(xi, Yi), where L wi = 1. 
i=l i=l 

This forms a 3 x 3 linear system which has the unique solution 

area( P, B , C) 
Wi = area(A, B, C) 

area( A , P, C) 
W2 = 

area(A, B , C) 
area(A, B, P) 

W3 = 
area(A, B , C) 

Therefore the height of surfaces at a point F(x, y) within a triangle is given by 

3 

F(x, y) = L wi(x, y)f(xi, Yi), (2.2.1) 
i=l 
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2.2. TRIANGLE-BASED INTERPOLATION 

where the weight wi(x, y) is the i th barycentric coordinate of the interpolated point 

(x, y) with respect to the triangle, and f(xi, yi) the value of f observed at the 

i th vertex (xi, Yi)- These triangles enable the construction of an isoline map as 

the interpolated surface is piecewise linear. A rectangular grid could be used in a 

similar way to the triangulation, giving a fast and easy method of interpolation. 

However, the major drawback of both the triangular and rectangular methods is 

that in general the slope of the interpolated surface is discontinuous along each 

triangle edge [30], so the contouring would contain jagged lines unless the grid was 

dense. 

The use of barycentric coordinates suggests that for general approaches to the 

interpolation, the weight applied to a distant data point should be less than that 

for one that is closer. For a set of N points, we could use an inverse data weighting 

to find the height of a surface F at a point (x, y) by using the formula 

where di(x, y) is the distance from (x, y) to the i th data point (xi, Yi)- This is the 

generalisation of Equation (2.2.1) . The surface generated by this method would 

touch each data point, forming cone-like peaks and troughs around them. The 

slope of the surface is discontinuous at the data points, but continuous everywhere 

else. This is a fairly accurate method of interpolating the data - surface accuracy 

is lost at the data points although we know the values at the points and so can 

manually include them. The price to pay for this accuracy is the large number of 

calculations required over a simple domain. 

This is one method used in Finite Element interpolation, as we would triangulate 

the convex hull of the domain using some triangulation, and then interpolate using 

an interpolant on each triangle. A commonly used interpolant is Clough-Tocher 

[11, 52, 51, 34], although we will not be using this in this thesis. A Clough

Tocher subdivision of a triangle forms three subtriangles by inserting a vertex 

anywhere inside the triangle, then three polynomial patches are determined by 

the three data points and their estimated gradients. This construction gives us a 

piecewise quadratic approximation to the function, where the function has been 
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approximated by a series of quadratic function pieces. Once the triangulation has 

been completed, the interpolation is very efficient. We can also extend t his to higher 

dimensions as the triangulations still hold, as well as the computed interpolants. 

The triangulation in adaptive or time-evolution Finite Element interpolation can 

cause problems, however, as moving the data points may introduce errors in the 

interpolant if we do not retriangulate the domain. The repeated triangulations are 

a major drawback of Finite Element interpolation, as the triangulation may require 

a significant proportion of the computing time, especially for fine meshes. 

2. 2. 2 Delaunay triangulation 

A commonly used triangulation for Finite Element interpolation is known as a 

Delaunay triangulation. 

A triangulation T is a Delaunay triangulation of the data set if and only if 

the circumcircle of any triangle of T does not contain any point of the data in its 

interior. Delaunay triangulations maximise the minimum angle of all the angles of 

the triangles in the triangulation and so they tend to avoid thin triangles wherever 

possible [39]. 

In addition to the interpolation methods mentioned here, we can also interpolate 

using the dual of the Delaunay triangulation - Voronoi tessellation, which we will 

investigate in the next section. 

2.3 Natural Neighbour interpolation 

Since the Finite Element method was first implemented , it has become one of the 

most commonly used numerical methods in engineering and mechanics. This is 

mainly due to its versatility and ease with which it can be used to solve otherwise 

impossible problems. One main drawback in the use of the Finite Element method is 

the time taken for the meshing and remeshing of the domain. Since Finite Element 

models rely on a mesh, t his cannot be avoided, and for large sets of data the meshing 

algorithm can be very time consuming. Meshes also cause problems for models that 

contain cracks, or areas where there is a large change in data concentrated over a 
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small part of the domain. These problems may result in a mesh that gives inaccurate 

or even unusable solutions [38, 36]. 

To eliminate this problem, other methods that do not rely on a triangulation have 

been developed. These include the Element Free Galerkin (EFG) [2], Meshless Local 

Petrov-Galerkin (MLPG) [27], Moving Least-Squares (MLS) [50], and the Natural 

Element Method [10, 39]. These are all members of a class of methods known as 

"Meshless Methods" , many of which have been investigated by Belytschko et al [3], 

De Vuyst et al [13] and Cueto et al [10]. In the following section we will concentrate 

on an interpolation method using natural neighbours [39]. 

2.3.1 Natural Neighbours 

Consider the set of finite distinct points N = { n1, n2 , ... , nM} in !Rm with positions 

x 1 , x 2 , ... , XM. Just as neighbours are the people who live around one particular 

place, natural neighbour interpolation uses the point ( or points) that lie around the 

area of interest. The nearest neighbour is the closest point to the area of interest. 

In some cases, such as points located on a circle, a point can have more than one 

nearest neighbour, although generally there is only one nearest neighbour, where 

there can be any number of natural neighbours. A definition in two dimensions 

is given below, although it can be altered for n-dimensions by replacing the two 

dimensional real domain IR2 with then-dimensional domain !Rn [41]. 

Definition 2.3.1. Consider a point x E IR2
. The point xi is the nearest neighbour 

ofx if 

d(x,Xi) < d(x,xj) V j =/- i 

where d(Xi , xi) is the Euclidean distance between Xi and xi . 

Figure 2.1 demonstrates the nearest neighbours, where the nearest neighbours 

to point x are those indicated in green. 

2.3.2 Voronoi Diagrams 

Consider again the set of distinct points, P = { n1, n2 , ... , nN} in IR2 . The Voronoi 

diagram of these points places each point into a separate region, or cell, where each 

15 



(a) Regularly 

points 
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X . • 

arranged (b) 9 randomly placed points 

Figure 2.1: Voronoi diagrams for two sets of data. Nearest neighbours are given in 

green. 

point in that cell is closer to the point of that cell than any other on the diagram. 

These regions are called Voronoi cells and mathematically, for each cell 'I';, we have 

that 

again where d(°Xi,xj) is the Euclidean distance between Xi and Xj- The Voronoi 

diagrams for two sets of points are given in Figure 2.1. 

If a point x was to fall on a line dividing two regions, then it would not have a 

unique nearest neighbour. 

Using the Voronoi diagrams and Definition 2.3.1 from t he above, we can complete 

the definition of natural neighbours. 

Definition 2 .3.2. Any two points are said to be natural neighbours if their Voronoi 

cells have a common boundary. 

Note from this definition that the natural neighbours of a point are not necessarily 

the same as its nearest neighbours, as two points which are close together may not 

share a common boundary. In Figure 2.l(a) the points were arranged in a regular 

pattern, and so the nearest neighbours and natural neighbours are the same points. 

In Figure 2 .1 (b), however, the nearest neighbour for the point x was one point in 
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the diagram, but the natural neighbours include the other three points surrounding 

x. Note that some points may be closer to x, but as the Voronoi cells do not share a 

boundary they are not considered to be natural neighbours. The natural neighbours 

for the points given in Figure 2.1 are given in Figure 2.2. 

(a) Regularly 

points 

arranged (b) 9 randomly placed points 

Figure 2.2: Voronoi diagrams for two sets of data. Natural neighbours are given in 

green. 

If we were to connect each point to its natural neighbours we obtain the Delaw1ay 

triangulation. Delaunay triangulations are used in Finite Element meshing, and are 

the topological duals of Voronoi diagrams [42] . 

Now that we have a way of presenting and interpreting the data, we need an 

interpolating function. There are two main interpolating functions [40], known as 

Sibson [37, 20] and non-Sibson (Laplace), and we will focus on Sibson interpolation 

- this is refered to as natural neighbour interpolation by Watson [47, 48]. 

2.4 Interpolating functions 

2.4.1 Sibson interpolation 

Suppose we wish to find the natural neighbour coordinates ( or shape function) of 

a general point x using the nodal set {n1 , ... ,n9 } in Figure 2.l(b) on page 16. If 
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x was tessellated along with the nine points in the diagram, then a new region 

containing x would be created as illustrated in Figure 2.3. 

5 6 

• 
1 . 

2 3 4 

Figure 2.3: Voronoi diagram for the nine points and x. 

The natural neighbour coordinates of x with respect to a natural neighbour I 

are defined as the ratio of t he area of overlap of t heir Voronoi cells to the total area 

of the Voronoi cell of x , or 

M 

A(x) = L AJ(x) 
J =l 

where I ranges from 1 to M , and M is the number of natural neighbours of x. If 

x coincides with a point x1 , then Ar(x) = A(x) giving </>J(x) = 1, and zero for all 

other shape functions. A visualisation of the shape function is given in Figure 2.4. 

The shape function ¢7(x) is shown, where 
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---h 

5 6 

. 
1 i 3 4 

Figure 2.4: Sibson shape function for cf>7 (x). 

By the definition of the shape function, we have that [8] 

0 ::; 1>r ::; 1 (2.4.1) 

1>1(xJ) = bu (2.4.2) 

M 

I: 1>1(x) = 1. (2.4.3) 
l = l 

Equation (2.4.2) implies that the natural element interpolant passes directly 

through the nodal values, and so in a Galerkin implementation the nodal unknowns 

are the nodal displacements. The Natural Element and Finite Element shape 

functions both share this same property. This is not the case for approximations in 

most other meshless methods, as the nodal unknowns are not necessarily the nodal 

displacements. 

Natural neighbour shape functions also satisfy the local coordinate property [37], 

namely 

(2.4.4) 
I=l 

which means that the shape functions can reproduce the geometrical coordinates 
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exactly. The linear consistency conditions are satisfied by Equations (2.4.3) and 

(2.4.4). 

In order to calculate A1(x) we are able to choose from many methods available. 

Lasserre's method [26] is simple to implement and can be used to calculate volumes 

of Voronoi diagrams in n-dimensions for any integer n. The area is calculated around 

a given point, and so clearly the point needs to be inside the area to be calculated. 

This is acceptable for calculating areas of first-order Voronoi cells, such as those of 

5, 6, and 7 in Figure 2.4. It is, however, unsuitable for calculating some areas of 

overlap, such as the areas of dcgh and cfg. The algorithm does work for the area 

cdef, but only because point x lies inside the area. 

Another method is the calculation of the area of each polygon, given by 

l N - 1 

A1(x) = 2 L (XiYi+l - Xi+1Yi), 
i=O 

(2.4.5) 

where XN x0 and YN = y0 , although this area calculation is only valid in two 

dimensions. We are only interested in two dimensional functions, so this restriction 

is not a problem. To understand the calculation of the shape function, let us consider 

points under two arrangements - regular and irregular. We will first consider points 

arranged in a regular grid. 

2.4.2 Contouring regular grids 

Consider a Voronoi diagram of nine points arranged in a regular grid. The location 

of the points and the Voronoi cells are shown in (Figure 2.5(a)). A Sibson shape 

function may be associated with each point, denoted ¢1 , ... , ¢9 . The value of a 

shape function at a general point p is calculated as a ratio of areas. For example 

where A(p) is the area of the new Voronoi cell surrounding the point p and A5 (p) 

is its overlap with the original unperturbed Voronoi cell surrounding point 5. The 

area A1 (p) of an N-sided polygon can be calculated by 

l N - 1 

A1(P) = 2 L(XiYi+l - Xi+lYi), 
i=O 

20 



7 ~ 9 

1 ~ ~ 
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(a) Original Voronoi Diagram 

h 

7 9 

1 

(c) Case 2: Quadrilateral created by 

a point outside the Voronoi cell 5 

2.4. INTERPOLATING FUNCTIONS 

7 ~ 9 

h 

g 

1 ~ 

J 
a 

~ ~ ~ 

(b) Case 1: Quadrilateral created by 

a point inside the Voronoi cell 5 

7 8 9 

i h 

/1,, ri\ 
i\ p lg 

• 
1 ~ ~ 

a Cl 

~ ~ ~ 

(d) Case 3: Hexagon created by a 

point on the boundary of 5 and 8 

Figure 2.5: Voronoi Diagrams for use with the Sibson shape function 
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taking i mod N . So for cases 1 and 2 (Figures 2.5(b) and 2.5(c)) we have 

<Ps(P) = XcYe - XeYc + XeYJ - XJYe + XJYc - XcYJ 

XeYJ - X JYe + X JYg - XgYJ + XgYh - XhYg + XhYe - XeYh 
(2.4.6) 

and similarly for case 3 (Figure 2.5(d) ) we have 

(7) ( ) _ XcYd-XdYc+XdYe-YeXd+XeYJ-XJYe+XJYc-XcYJ 
S p - XeYJ-XJYe+XJYg - XgYJ+XgYh - XhYg+XhYi-XiYh+x;yj -XjYi+XjYe-XeYj. 

(2.4.7) 

Assuming the original nine points of the Voronoi diagram are 1 = (0, 0) , 2 = 

(1, 0) , 3 = (2, 0), ... , 8 = (1, 2), 9 = (2, 2), then for case 2, a suitable point p is 

(1.25, 1.75), and so ¢5(p) can be calculated as follows: 

,I.. ( ) - 2.25- 1.125+ .9375-2.25+2.25-1.875 - 0.1875 - 0 1875 
'f-'5 p - 0.9375-2.25+2.25- 2.1875+3.9375- 2.25+2.25-l.6875 - -1- - . . 

Similarly, for case 1 we can choose p = (1.25, 1.25) to obtain ¢5 (p) = 0.5625 and 

case 3 with p = (1, !) gives us ¢5 (p) = ~-

As many methods use triangulations as a basis for producing contoured output, 

it is logical t hat the dual of the triangulation could also be used to produce contoured 

out put. This has largely been ignored in contouring literature and so we will 

investigate this further. 

Contouring using the natural ne ighbour algorithm 

To determine contours (level sets) of t he slope function ¢5 at height h, it is necessary 

to find all points p such that ¢5 (p) = h. For h = o:1875 the point p = (1.25, 1.75) 

in case 2 is one possible solution and thus lies on the contour ¢5 (p) = 0.1875. 

Due to the number of calculations involved, the other values can be found by 

solving t he problem using the Maple mathematical program [28) . Maple, and its 

counterpart s enables users to enter formulae in traditional mathematical notation . 

There is extensive support for numeric computations, to arbit rary precision, as well 

as symbolic computation. 

The points e, f , g, and h can be found using the knowledge t hat g is the 

circumcent re of 6, 9, and p , his the circumcentre of 8, 9, and p , etc. 

Consider cases 1 and 2. Both cases have four natural neighbours, namely 5, 6, 

8, and 9. This is because in both cases, p lies in the region given in Figure 2.6. 
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7 

Figure 2.6: Region where point p has 5, 6, 8, and 9 as neighbours 

The variation of natural neighbours for a regular grid has been found by Sukumar 

[39], and Figure 2.7 shows the number of neighbours n for each point located in the 

convex hull of the grid. 

Figure 2. 7: Variation of n natural neighbours for a regular grid. 

To find the contour lines of the shape function, namely all points where the 

function ¢5 is equal to some value, then we use either Equation (2.4.6) or Equation 

(2.4.7), depending on the position of the point. 

Solving ¢5 = 0.1875 using Maple for points with four neighbours provides four 

solutions as given in Figure 2.8 and two of the plots for six neighbours are given 

in Figure 2.9. For the areas where we have six neighbours, the limitations of the 

Maple program results in two of the four plots being unavailable, since these plots 

have two y values for each given x value. Due to the regularity and symmetry of 

the original grid and resulting plots, it is easy to determine the shape of the missing 
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plots. 

... 

1.4 

, .. 

,..__._..,,.~~~~~~~ ,....._ _____ __. __ 
0 0.2 0,4 0.6 0 6 1 1.2 1,4 1,6 U 

0.6 0.6 

0.6 

,,. 

0 .? 

0 2 o.4 o.6 o.a 1.2 1."' 1.6 1.6 

Figure 2.8: Plots for n = 4 natural neighbours over the domain [O, 2] x [O, 2] 

By merging all of the above plots we can obtain a visualisation of the contour 

as given in Figure 2.lO(a) below. If we included the two missing plots and removed 

the plots at points outside their respective domains, we would have the contour plot 

given in Figure 2.lO(b). 

Although the contour in Figure 2.lO(b) appears to be circular, it is not a perfect 

circle, as shown in Figure 2.11, where the blue contour is drawn on top of a red 

circle of the same radius. The red_ circle was a circle as perfect as resolution would 

allow - if the blue contour was circular, no part of the red circle should be seen at 

identical resolution. We would not, however, expect the blue contour to be a perfect 

circle, as the level of ¢5 = 0.1875 may be close enough to zero to be influenced by 

neighbouring regions. As the value of c/>5 increases towards 1 (but not equalling 1) 

we would expect the contour to approach a perfect circle. 

Changing the values of k for c/>5 = k also changes the size of the contour. As 

we would expect, a value of k = 1 produces a single point at 5 (= (1, 1)), and as 
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u o.• 

00 

0.6 o..a 1.2 1,4 0.6 O.& 1.2 1.A 

Figure 2.9: Plots for n = 6 natural neighbours over the domain [0.5, 1.5] x [0, 2]. 

1.6 

y 1 y 1 

0+-4-~~~~~~~~.-+-, 
0 0,5 1.6 0.5 1,5 

(a) Merged plots produced by Maple (b) Contour produced from the plots 

Figure 2.10: Maple plots for </)5 = 0.1875. 

k--+ 0, the contour expands towards the boundary of the support of </)5 . Contours 

that move beyond the convex hull of [0, 2] x [0, 2] depend on external points which 

were originally ignored in the Maple code. Although these points have zero value, 

they are needed to ensure that the calculations of neighbours are correct. 

Ignoring the external points for </)5 = 0.0001 produces the contour shown in 

Figure 2.12, which is smooth and correct, since we have reached the convex hull 

of the data set. As a point approaches the boundary of the convex hull from its 

interior, Sibson's interpolant becomes piecewise linear. This is due to the areas in 

Sibson's interpolant becoming infinite, reducing to linear interpolation between t he 

boundary points. 

Since the outer points do exist, these cannot be ignored, and so including these 

points produces a different solution. 
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o,....._ ________ _ 
0 o.s 1.5 

Figure 2.11: Comparison between the contour and a circle of the same radius. 

).! 

y l 

.. , 

... J.0 

Figure 2.12: Contour map of </>5 = 0.0001. 

Figure 2.13 shows the support of the same function, but this time the support 

lies totally inside the convex hull of the domain. Using the same coordinates as 

before now gives a domain of [- 1, 3] x [- 1, 3], and we can recalculate the shape 

function to produce the contour for ¢5 = 0.0001, as seen in Figure 2.14. 

For a regular grid, we know from Figure 2. 7 that all points inside the grid have 

either four or six natural neighbours, depending on the position of the points in 

question. To determine the number of neighbours each point has, we can assume 

that all points have four neighbours, apart from ones lying in the lens-shaped regions 

- namely those points that lie inside two circumcircles. 

In order to test to see whether a point plies between two circumcircles, we need 

to know the circumcentres of these circles. Assuming that the centres of circles Q 

and R are at q and r respectively, then 
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Figure 2.13: Support of ¢5 for a grid of 25 points. 

Figure 2.14: Contour map of ¢5 = 0.0001. 
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if IMI < radius of Q and liitl < radius of R 

then p has 6 neighbours 

else p has 4 neighbours 

As we can now determine the number of neighbours a point has on a regular 

grid, the next logical step is to determine the number of neighbours for points on 

an irregular grid. 

2.4.3 Contouring irregular grids 

Consider a Voronoi diagram for a set of nine randomly placed points as given in 

Figure 2.15, with coordinates given in Table 2.1. 

5 

i i 3 4 

Figure 2.15: Voronoi Diagram for 9 randomly placed points. 

Suppose we wish to calculate the shape function ¢>(p) for one point in the domain, 

say point 7. For points arranged in a regular grid, the shape function was calculated 

using the knowledge that if the point p is inside two circumcircles then p has 
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Table 2.1: Coordinates of the 9 points. 

Point 1 2 3 4 5 

Coordinate (-0.5, 0.06) (0, 0) (1.08, 0) (3, 0) (0.9, 1.1) 

Point 6 7 8 9 

Coordinate (2, 1) (1.25, 2) (2, 2) (0, 4) 

six neighbours, and four neighbours otherwise. A similar method is adopted for 

randomly placed points, although more consideration is needed for the location of 

the point compared to its neighbours, as well as the neighbours themselves, since 

the number of neighbours is no longer restricted to only four or six. 

In the regular grid, four points lie on each circumcircle, and so any point that 

lies exclusively inside that region has four natural neighbours. Where a point lies 

inside two circumcircles, that particular point has six neighbours since there are six 

points used to make these circumcircles ( four points each, two of them occurring 

twice). For an irregular grid, again the points make up each circumcircle, and so a 

point lying exclusively inside that region would have three natural neighbours. A 

point lying inside two circumcircles would have four natural neighbours, since four 

distinct points would be used ( three points each, two occurring twice) to make the 

two circles. Generally, for a randomly placed data set, a point lying inside the union 

of n circumcircles has (n+2) natural neighbours. This claim does not hold for some 

special cases, such as data points that are all arranged on the same circle. For this 

case, each point inside the circle would have all of the data points as neighbours. 

Special cases of this type are rare and can be dealt with separately, as and when they 

occur. The circumcircles for the data set example and the corresponding number 

of neighbours is given in Figure 2.16. 

The support of a point is given in a similar manner as for a regular grid, namely 

by first looking at all of the points forming circumcircles with the point in question. 

These are shown in Figure 2.17, and we can see from Figure 2.17 that the points 

used in the calculation of the shape function ¢7 include points 5, 6, 8, and 9. 

In addition to these points, points 1 and 2 also need to be included in the shape 

function calculations, since there are two circumcircles formed from points 1, 2, 
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/ 

(a) Circumcircles 

Ncighbour5: 
•3 
•4 
•S 
•6 

(b) Colour-coded Neighbours 

Figure 2.16: Voronoi diagrams for the data set. 

and 5, and 1, 5, and 9 which overlap the Voronoi region 7. Now that we have the 

number of neighbours for a point, in addition to what these neighbours are, we can 

calculate the contour at ¢7 = k, where k is some given value. 

As there are many small regions within the Voronoi region 7, we will assume 

that these regions have insignificant influence over the whole region, and for the 

time being, these will be ignored. Our calculations will therefore use points located 

in the larger areas given in Figure 2.17. 

Inserting the point pinto one of the four areas marked with example points a, b, 

c, and don Figure 2.17 produces four possible Voronoi diagrams as given in Figure 

2.18. We can now calculate the value of p in these regions using the same ideas and 

notation from the calculat ions over regular grids. 

The four equations to be solved are as follows: 

,I.. (b) = XcYd-Xd!Jc+XdYe-Xe1Jd+XeYc-XcYe = k 
'f'7 XdYe -XeYd+XeY 1 -x JYe+x JYg -XgY J +xgyd-XdYg . 

cp
7
(c) = XcYd-XdYc+XdYe-XeYd+XeYf -XfYe+XJYc-XcYJ = k. 

XeYJ-X JYe+x JY9 - X9YJ+X9Yh -XhYg+XhYe- XeYh 

,1.. (d) _ XcYd-XdYc+XdYe-XeYd+XeYJ-XJYe+XJYc-XcYJ k 
'f'7 - XeYJ-X JYe+X JYg -XgYJ+XgYh -XhYg+XhYi-XiYh +XiYe-XeYi = ~. 

(2.4.8) 

(2.4.9) 

(2.4.10) 

(2.4.11) 

These equations correspond to the points in Figures 2.18(a) to (d) respectively. 

As the points are arranged irregularly, the solutions to these problems are left in 
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Figure 2.17: Support for point 7. 

its simplest form by Maple, resulting in many complex equations. The solut ion to 

(2.4.8), however , produces a linear expression , and can be solved with ease. This 

occurred since we were comparing the ratio of areas of one triangle to another in 

Equation (2.4.8), and for these triangles, two of the three points were the same. If 

this was to arise elsewhere over the domain, then it is likely that a similar result 

would be produced. 

As the Voronoi region for point 7 is not a square domain, we need to use a 

domain that includes the whole of the region, thus also including some points from 

regions 5, 6 , and 9. Running Maple for two values of c/>7 over this domain produces 

graphs given in Figure 2.19. 

When cp7 = 1, then as expected, the four curves meet at a single point at 7 

(= (1.25, 2)) as given in Figure 2.19(a) . For cp7 = 0.5625, however, the combined 

contours appear to give strange results, although these are not necessarily meaning

less for the whole contour. If we were to retain only the curves in their respective 

domains around point 7 and remove the remainder , then we would be left with the 
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(c) p = (1.4, 1.6) (d) p = (0.95, 2.5) 

Figure 2.18: Point p inserted at various points over the Voronoi cell 7. 
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(b) ¢7 = 0.5625 

Figure 2.19: Maple plots of ¢7 = k for two different values of k. 
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graph given in Figure 2.20(a). The anomalous spike in the green contour was the 

result of a floating-point error, and removing t his enables us to produce a contour 

for ¢7 = 0.5625 as given in Figure 2.20(b). 

5 

4 

// 

9, / 
3 

y 

2 

-1 0 i 1 3 

(a) Contours retained around point 7 (b) Contour for point 7 

Figure 2.20: Contours for ¢7 = 0.5625. 

Although we have a working contour for the shape function, it is possible that 

parts of the contour curve may be incorrect. This is because some of the points 

can lie outside the convex hull of the domain. Figure 2.21 illustrates this problem, 

where points can lie either above the line (8, 9) or to the left of the line (1, 9), whilst 

still lying inside the Voronoi region for point 7. When a point reaches the convex 

hull, only linear interpolation is necessary, and so the shape function calculations 

can be simplified. 

Beyond the convex hull, shape function calculations are undefined since the areas 

of interest become infinite, and so as the point p in Figure 2.18(b) approaches c, 

contours reduce from a polynomial, to linear, to meaningless. This provides one 

possible explanation as to why the green contours in Figures 2.19(b) and 2.20 are 

spiked, and why the shape function curves around a different area to the point 

used for the calculations. Figure 2.22 shows that as k -+ 0 for ¢7 = k, this 

problem increases as other points move outside the convex hull. One important 

factor that could be addressed to improve the accuracy of the contour concerns the 

small regions within the Voronoi diagram. These were assumed to have insignificant 
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9 

Figure 2.21: Convex hull for the nine points of the Voronoi diagram. 

influence over the whole region, but if these regions were not ignored, a more realistic 

contour diagram would be produced, although more consideration would be needed 

to determine the exact location of the points used in the Sibson shape function 

calculation. This ensures that the points being calculated would have the correct 

number of neighbours at the correct locations. 

- 1 

Figure 2.22: 'Contours' for ¢7 = 0.01. 

2. 5 Interpolation for Smooth Contours 

When looking at a standard contour map, such as the one given in Figure 2.23, we 

can see that the contours provide information regarding the elevation of the terrain 
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Figure 2.23: Sample contour map of a typical terrain. In this example, the numbers 

represent elevation above sea level. (For illustration purposes only) 

we are interested in. As it is not practical to measure every point over the terrain, 

the measurement of these elevations would have generally been calculated at specific 

points, and smooth lines drawn through those of equal height. The points would 

normally be meshed, and elevation values would be interpolated over the mesh. As 

we are introducing interpolated values, parts of the terrain may not be accurately 

described, and so the contours produced are an estimation of the true data. We 

do not know the exact terrain between data points, and so opt ing to use straight 

lines to join points of equal value is currently one of the most accurate methods 

of displaying the results. This is shown in Figure 2.24, where the blue contour is 

drawn using piecewise linear sections around a coarse triangulation. 

Figure 2.24: Simple linear contour on a small triangulation. 
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Although piecewise linear contours produce good results for the data, it is not 

aesthetically pleasing to the eye, as we are aware that real data rarely has corners 

and straight lines, and so it would be preferential if we could smooth the data in 

some way. 

One method would be to subdivide the triangles into smaller triangles, and to 

either measure or estimate the data at the new triangle corners. This produces 

smoother contours, but still has corners and straight lines. We could repeat the 

subdivision on these sub-triangles to produce smaller triangles, but this produces a 

large amount of data which may be estimations derived from estimations. Another 

problem arises as to deciding when to stop the subdivision to produce a contour 

map which is smooth enough. 

Another method would be to assess the data by hand and smooth the lines by 

redrawing the contours. This requires human intervention, and so problems may 

arise since it is possible for two people to produce two different contour maps from 

the same data. 

We could also use linear interpolation to estimate the point where the contour 

line intersects the triangle sides. A smooth curve is then drawn through these points. 

However, doing this can cause problems as it is possible for contours of different 

levels to cross each other. A solution to this would be to provide an algorithm to 

plot the contours of a function with a continuous first derivative, hence removing 

this problem. 

In the next section we will investigate methods which produce smooth contours 

from the outset, which removes the requirement for further subdivision. 

2. 6 Bezier Curves 

Bezier curves, as mentioned above, produce smoooth contours and do not require 

further subdivision. Because of this, Bezier curves are ideal for contouring algor

ithms and we will use contouring algorithms using Bezier curves to give smooth 

derivatives over the interpolation domain. 

Bezier curves were invented independently by both de Casteljau and Bezier, who 
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were engineers for two different car companies in France in the late 1950s and early 

1960s. These curves are relatively easy to describe and control. The idea underlying 

Bezier curves lies in the weighting of the parametric functions by the coordinates 

of certain intermediate points. These intermediate points enable the formation of 

curved triangles, i.e. triangles with curved faces, as opposed to linear triangles, and 

improve on the accuracy of Finite Element interpolation. 

The curved triangles can be used to interpolate the corner points exactly, as well 

as the slopes at these corners, ensuring that the corner slopes match the slopes of 

the straight lines between each end point and its nearest intermediate data point. 

These curves are known as linear Bezier curves. Quadratic and higher order Bezier 

curves are also available, and many applications need true space curves, so we need 

to create a general polynomial curve of arbitrary degree n. An n th order Bezier curve 

requires n+ 1 control points, so a cubic Bezier curve can be described parametrically 

as 

x(t) = ax(l - t)3 + 3bx(l - t)2t + 3cx(l - t)t2 + dxt3
, 

y(t) = ay(l - t)3 + 3by(l - t)2t + 3ey(l - t)t2 + d11t3, 

o ::;t::; 1, 

where the coefficients are the coordinates of t he four control points A(ax, ay), 

B(bx, by), C(cx, ey), and D(dx, d11 ) . The points A and D correspond to the end 

points of the curve, and the intermediate points B and C determine the tangential 

direction at the two end points. 

The case for a general polynomial curve of degree n is defined using de Casteljau's 

algorithm below. 

Algorithm 2.6.1 (de Casteljau). 

Given h o, b1 , ... , bn E JR.3 and t ER 

Set b Ht) = (1 - t)b;- 1 (t) + t b;.;}(t) and b?(t) = bi, 

where r = l, ... , n and i = 0, ... , (n - r) . 

Then b0 ( t) is the point with parameter t on the B ezier curve bn, 

hence bn(t) = b0(t) . 

The polygon formed by b0 , ... , bn is called the Bezier polygon or control polygon 
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of the curve bn. Similarly, the vertices of the polygon are called Bezier points or 

control points. 

The intermediate coefficients br(t) can be written as a triangular array of points 

known as the de Casteljau scheme. If we were to have a cubic curve, the points 

could be arranged as follows: 

bo 

b 1 b6 

b 2 bi b5 

b 3 b§ b f bg. 

This array design suggests that a two-dimensional array is required for the de 

Casteljau algorithm. However, it is possible to use just the left-most column and 

to overwrite these values when required. 

Using Bezier curves in t he de Casteljau algorithm enables us to infer many of 

the important properties of Bezier curves in the algorithm: 

• Bezier curves do not change under affine maps or affine parameter trans

formations, and so the order of applying the map or transformation with the 

computation of the points bi is not important. 

• For t E [O, 1], bn(t) lies in the convex hull of the polygon since each bi is 

obtained using a combination of other internal points and so we do not produce 

any points outside the convex hull of the bi. This convex hull property gives 

us an important consequence that a planar control polygon always generates 

a planar curve. 

• The Bezier curve passes through b 0 and br, and for the cases t = 0 and t = I , 

we can easily verify that bn(o) = b0 and bn(l) = bn. This means that we can 

interpolate the end points exactly, which is essential for most interpolation 

domains. 

For higher values of n this algorithm is not computationally efficient, although 

it is a very stable method as well as an important tool for further investigations. 

Typically, we will be using values no higher than n = 2, and so efficiency for higher 
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values of n is not an issue. When t = 0, we can write the control points of the 

Bezier polygon as a Taylor expansion given by 

where 6 i are the forward differences, namely 

6°ho = ho 

6 1 ho = 6 ho = h1 - ho 

6 2 ho = 6 (6h0) = 6h1 - 6ho = h2 - 2h1 + ho 

etc. 

The Bezier points can also be expanded in terms of Bernstein polynomials Bf(t): 

where Bernstein polynomials of degree n are defined by 

and t is t he local coordinate of the interpolated curve segment. Similar to de 

Casteljau 's algorithm, we have that the B?(t) are invariant under affine transform

ations, lie in the convex hull, and can be created by repeated linear interpolation 

since we can also define the Bf ( t) as 

To find the derivatives wit h respect to a point u of a Bezier curve, we have two 

possible directions. 

For the de Casteljau scheme we have the first and second derivat ives given 

respectively by 

__!!_ 6hn- l and 
A n - 1 uu0 

since the de Casteljau steps commute. 

For the case of derivatives of Bernstein polynomials, the r t h derivative is given 

by 
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At the endpoint u = u0 , t = 0, and so the Bernstein representation reduces to just 

n! 
(n - r)! 

From the above we can deduce that the tangent vector at one end point u = u0 

is ll:o (b1 - b0) , and similarly at the other end point u = u1 we have a tangent 

vector of ll:o (bn - bn-1). The Bezier polygons therefore provide an idea of the 

shape of the curve that they define, and although t he derivatives can be calculated 

more efficiently using other methods, the above is sufficient for the time being. 

In addition to differentiation, we can also integrate Bezier curves, and it 1s 

relatively simple to show that 

1
1 1 
Bf(t)dt = - , 

0 n+l 
for all i . 

So for the interval [u0 , u1] over the curve f(u) we have 

The above equation implies that the definite integral can be found by multiplying 

the interval length by the average of the Bezier points b i. 

Just as we can use integers from real numbers to form rational numbers, we are 

also able to use Bezier curves to form rational Bezier curves. 

A rational Bezier curve can be expressed in terms of Bezier polynomials as 

r(u) = (3x(t) = f3o boB0(t) + · · · + f3nbnB~(t) 
(3(t) f3oB0(t) + · · · + f3nB~(t) ' 

(2.6.1) 

where (3x (t) is the weighted function of x(t) and again tis the local coordinate of the 

interpolated curve segment [21]. The Bezier points b i are each assigned a weight (3i 

such that if (3i is large enough compared to f3i-l and (3i+1 , then the curve is skewed 

towards bi. The curve lies in the convex hull of the b i if all of the (3i have the same 

sign. 

As with standard Bezier curves, a rational linear transformation changes the 

defining Bezier polygon and weights, but not the shape and degree of a rational 

Bezier curve. This transformation can be defined by three arbitrary points on the 

curve, together with the corresponding parameter values. In particular, we can 
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assign the value t = oo to a point at infinity which in turn causes the degree of 

the denominator f3(t) to reduce to (n - 1) or less. The point at t = ½ is called 

the 'shoulder' s, and we can find this value of s along with the bis by solving a 

homogeneous linear system to determine the weights /3i . 

For a rational quadratic Bezier curve, Equation (2.6.1) can be simplified to 

b(t) = b0B5(t) + wb1B;(t) + b2B~(t) 
B5(t) + wB;(t) + B~(t) ' 

(2.6.2) 

where w determines the shape of the quadratic contour. If w < 1, the curve is 

an ellipse, if w = 1, it is a parabola, and if w > 1 we have a hyperbola. We can 

describe the whole contour using many small Bezier curves, each of which can be 

parametrised over the interval [O , 1]. 

Worsey and Farin [49] described an algorithm which takes advantage of these 

properties, and we shall see their method in Section 3.4. The algorithm pieces 

together many small rational Bezier curves, controlled using intersections between 

triangle edges and their neighbouring incentres as control points, as well as the 

incentres themselves. The triangulation surface is smooth and continuous, and 

using control points from this surface should produce a continuous set of Bezier 

curves. 

Before we look into the algorithm, we must first look at other methods which 

could be used to interpolate the data. Although these methods will not be investigated 

further, they are included for completion and could be used in place of Bezier curves 

in the methods described in the next few chapters, although Bezier curves are more 

straightforward to code and are sufficient to produce the outputs required. 

2. 7 B-Splines 

A Spline curve is a piecewise polynomial curve that has certain differentiability 

constraints. Spline functions are formed by joining polynomials together at fixed 

points called knots. These knots can be thought of in the same way as a knot joining 

two different pieces of string together. Clearly they must join at the same point, 

and mathematically these two polynomials are required to join smoothly. In the 
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most common case, this means that the derivatives must match up to the order one 

less than the degree. (If they matched up to the derivative whose order equalled 

the degree, they would be the same polynomial.) Thus a spline function defined in 

this way has one extra degree of freedom than a polynomial defined over the entire 

interval. 

A B-spline curve ( or Basis-spline curve) is a generalisation of Bezier curves, 

and has many propert ies derived from Bezier curves, including partit ion of unity, 

positivity and local support, as well as being ( n-1 )-times continuously differentiable 

for a given n. A B-spline curve is given by 

s(u) = L diNt(u) 
i 

where the di are the control points or de Boor points of the B-splines Nt ( u) forming 

the de Boor polygon. The normalised B-splines Nt(u) are piecewise polynomials of 

degree n defined recursively by 

1 if Ui ::; U < U i+ l 

0 otherwise 

It is possible that the equations above can yield ~ , and so for completeness this is 

defined as zero. Nt(u) is a step function equal to zero everywhere except on the 

interval ui ::; u < ui+l. This interval is known as the i th knot span, and can have 

zero length since knots do not need to be distinct. 

B-spline curves possess the four properties previously mentioned, as well as the 

convex hull property, since any point of the curve lies in the convex hull of the 

de Boor points defining it. The knot vector uniquely defines the B-spline curves, 

as this should be clear from the equations given above. The relation between the 

number of knots (p + l), the degree ( n) of Nt, and the number of control points 

( m + 1) is given by p = m + n + l. The sequence of knots in the knot vector 

U is assumed to be non-decreasing, i.e. u i ::; ui+l· Each successive pair of knots 

represents an interval [ui, ui+1) for the parameter values to calculate a segment of 

a shape. 
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If p knots ui = · · · = Uj+p-l are equal, then the B-spline curve becomes only 

cn- p continuous at Uj, and in order to ensure that a B-spline curve has non

vanishing support we require that p :S n + l. The local support property implies 

that a change of one control point di only affects a limited part of the B-spline 

curve. 

If for example, U = {0, 0, 0, 1, 1, 1}, then we have a B-spline curve of degree 2. 

Considering u only in the range [0, 1) we have 

No 
0 

No 
1 -

No 
2 

No 
3 -

No 
4 

0 

0 

1 

0 

0 

N2 
0 

N2 
1 

Nl 
0 - u-0 No + 0- v. No 

0- 0 0 0 - 0 1 -

Nl 
1 

u-o No+ 1-u No 
0 - 0 1 1-0 2 

N:} u- 0 No+ 1-u No 
1- 0 2 1-1 3 

Nj u-1 No + 1- u No 
1-1 3 1- 1 4 

u-0 Nl + l - u Nl 
0- 0 0 1- 0 1 

u-0 Nl + 1- u Nl 
1- 0 1 1- 1 2 

(1 - u) 2 

2u(l - u) 

N2 u - 1 Nl + 1- u Nl u2 
2 1-1 2 1-1 3 

0 

1 -u 

u 

0 

These are the Bernstein polynomials as used in Bezier curves. B-splines may be 

thought of as a generalisation of the Bezier representation if 

U = {O, .. . , 0, 1, .. . , 1}. 
------ '-v--' n+ 1 n+l 

In the de Casteljau algorithm we used recursion to construct the Bf(t) for the 

evaluation of x( u) at a given value t in a Bezier curve. We can do the same for 

B-splines using the de Boor algorithm. 

The de Boor algorithm is the generalisation of the de Casteljau algorithm. If 

x E [u1, u1+1), then all Nt(u) vanish at x except those with l E {l - n, ... , l}. The 

point s(x) is found by repeated linear interpolation of 

k X - Ui 
Cl\= 

Ui+n+l-k - Ui 

where <l? = di and d~ = s(x) . As with Bezier curves, we can differentiate B-spline 

curves of degree n , defined over a partition { uk} to obtain a B-spline curve of degree 

(n - 1): 
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defined over the same part it ion, where 

The Dus(x) can be found using the de Boor algorithm, and to differentiate 

further , we just repeat the method the required number of times. 

We can find all derivatives simult aneously by using Bohm's algorithm [5] and is 

given below. 

Algorithm 2.7.1 (Bohm). 

d1- 1 o , d 1- 1,1 

d 1,1 

dt-n,n-1 

d t- 1,n- l 

d 1,n - 1 

d z- 1 n , 

Given the array above representing the set of simultaneous equations for the 

derivatives, and starting with di,o = di, solve the lower left triangle of the array by 

solving 

followed by the upper right triangle by solving 

This gives us the derivative D~s(x ), where 

n :s(x) = n· · · (n - r)dt- n+r,n· 

We can also find the derivatives using t he Taylor expansion 

giving the de Boor points d t- n, ... , d e. 

As with Bezier curves, integration can be performed on B-splines, where t he 

integrand of a normalised B-spline N;-(u) is given by 

1
00 1 

Nf(u) du = --(ui+n+l - ui) -
- oo n + l 
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If we make Ua and ub into knots of multiplicity n + l , then for the B-spline 

function s(u) = L i diN?(u) we obtain 

If we define the shoulder s in a similar manner for B-splines as for Bezier curves, 

then we are able to define rational B-splines using s(u ) as: 

where the algorithms which are previously mentioned are applied simultaneously to 

the numerator and denominator. 

A special type of rational B-splines, known as Non-Uniform Rational B-Splines 

( or NURBS) are seen by many as the most general curve scheme, as they are 

extremely powerful and complex. The use of multiple knots, repeated control points 

and rational weights all add to the complexity, and we will see the advantages of 

using NURBS in the following section. 

2.8 NURBS 

NURBS are industry-standard tools used to design and display geometrical curves 

[32, 43). Since NURBS are generalisations of B-splines, then they should have all 

properties of B-splines. These include the following: 

• NURBS use one form to mathematically represent standard analytical shapes 

and free form shapes. 

• They provide the flexibility to design a large variety of shapes. 

• Solutions can be evaluated reasonably quickly by accurate and numerically 

stable algorithms. 

• NURBS are invariant under affine and perspective transforms. 

• In addition to being generalisations of B-splines, it follows that NURBS are 

also generalisations of non-rational and rational Bezier curves and surfaces. 
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One of the original drawbacks of using NURBS is that extra computer memory is 

required to define traditional shapes such as circles and ellipses, although this extra 

memory may not be a significant issue in today's hardware. The extra memory 

requirement comes from parameters in addition to the control points, although 

these are required to allow for the desired flexibility for defining parametric shapes. 

NURBS are defined by control points and their necessarily associated weights. 

A NU RBS curve C ( u) is defined as 

C(u) = L Rf(u)pi 
i 

where Pi are the vector control points and Ri (u) is defined as 

R".1( ) = Nt(u)wi 
i U ~ n Nn() · 

u j=O j U Wj 

The wi are the weights associated with the control points and Nt(u) are the 

normalised B-spline basis functions of degree n as given in Equation (2.7.1) on 

page 43. 

For NURBS, the knot vectors ui in the B-spline basis functions need not have 

the same intervals, i.e. the knot spacing is non-uniform, leading to a non-periodic 

knot vector of the form 

U = { a, ... ,a,uk+l, ... ,Um-k- 1, b, . .. , b} 

where a and b are repeated k + 1 times. The multiplicity of a knot affects t he 

continuity of the parameters at this knot. Non-periodic B-splines, such as NURBS, 

are C 00 continuously differentiable in the interior of the knot span, and ck- M-l 

continuously differentiable at a knot, where M is the multiplicity of the knot. The 

end knot points for NURBS ( uk, uk+i) with multiplicity k + 1 coincide with the end 

control points Po, Pn. 

Since it is possible for the knot-spacing to be non-uniform, the B-splines are no 

longer the same over each interval ( ui, ui+l) and the degree of the B-spline can vary. 

If we consider the whole range of parameter values represented by the knot vector, 

t he different B-splines build up cont inuous overlapping blending functions Nt(u) as 

defined in Equation (2. 7.1) on page 43 over t his range. Similar to previously defined 

functions, these blending functions have the following properties: 
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l. Nf(u) ~ 0 for all i, n, u. 

2. Nf(u) = 0 if u (j. [ui, ui+1), implying local support of k + 1 knot spans, where 

Nf(u) =/= 0. 

3. If u is in the interval [ui , ui+1), the non-vanishing blending functions are 

NI'-n(u), ... , Nf(u). 

4. r.,;=i-n N1(u) = L,~o Nf(u) = 1 (partition of unity). 

5. In case of multiple knots, t is defined as zero. 

1. and 4. imply the convex hull property, and 2. and 3. suggest that k + 1 successive 

control points define a segment of a shape, and a control point is involved in k + 1 

neighbouring shape segments defined over the interval given in 2. We can use these 

properties in the following example, showing how the shape of a NURBS curve 

changes as the weight w changes. 

Consider a NURBS curve with a control polygon given by 

Po = [O 0] Pl = [1 2] p 3 = [4 2] 

Suppose we wish to determine the point at t = ! for the second degree NURBS 

curve with weights given by w = [1 1 0 1 l]. 

The corresponding knot vector is [O O O 1 2 3 3 3], and the curves are comp

osed of three piecewise rational quadratics--one for each of the interior intervals of 

the knot vector. As we are looking at t = ! , then the basis functions on the interval 

1 < t < 2 are: 

Nr(t) - 1 

Ni(t) - 2-t N/(t) t-1 

Nl(t) - (2-t)2 

Nf(t) t(2- t) + (3-t)(t-1) Nf(t) (t-1) 2 
-2- 2 2 -2-
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All other N/ (t) values which are not shown have the value zero. The denominator 

of the NURBS basis functions is given by 

L NJ"(t)wj = woNJ(t) + w1Nf(t) + w2Ni(t) + w3N}(t) + W4NJ(t) 
j 

= 0 + (2-t)2 + 0 + (t- 1)2 + 0 
2 2 

2t2 
- 6t + 5 

2 

Using this denominator, we can calculate the R?(t) to be: 

R~(t) = 0 

R2( ) (2 - t)2/2 (2 - t)2 
1 t = (2t2 -6t+5)/2-2t2-6t+5 

R~(t) = 0 

R2 ( ) ( t - 1 )2 /2 
3 t =(2t2 -6t+5)/2 

R~(t) = 0, 

and so when t =!we have 

(t - 1)2 

2t2 - 6t + 5 

R2(l) = ~ 
3 2 2 

The corresponding point on the NURBS curve is P(!) = ½ [1 2] + ½ [4 2] = rn 2] . 

Similarly if we were to change the weights to w = [1 1 5 1 1], we would obtain 

a denominator of 

(2-t)2 + 5 ( t(2- t) + (3-t)(t-1) ) + (t-1)2 = -4t2 + 12t - 5 
2 2 2 2 ' 

giving new values of Rf(t): 

~(t) = 0 

R2(t) - (2 - t)2 
1 - 2(-4t2 + 12t - 5) 

~(t) = 5t(2 - t) + 5(3 - t)(t - 1) = 5(-2t2 + 6t - 3) 
2(-4t2 + 12t - 5) 2( -4t2 + 12t - 5) 

R2(t) - (t - 1)2 
3 - 2( -4t2 + 12t - 5) 

R~(t) = 0. 
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Now when t = !,we have 

2(3 1 
R1 2) = 32 R2(1) = 30 

2 2 32 

2.9. SUMMARY 

giving a point on the NURBS curve at l2 [1 2] + ~~ rn o] + 3\ [4 2] = [~ ½] . 
NURBS curves for the weights [ 1 1 ¼ 1 1] and [1 1 1 1 1] have also been 

calculated, giving respective points of rn ~] and[~ ½]. A graph of the four NURBS 

curves can be seen in Figure 2.25. 

y 

2 

2 4 Ps x 

Figure 2.25: NURBS curves for weights [1 1 w l 1], where w = 0, ¼, 1, 5. 

Although NURBS is the most general method for drawing curves, we will not 

be going into this level of generality. We could use B-splines to draw contours, 

although the contouring method described in the following chapter only requires 

Bezier curves in order to draw smooth contours. 

2.9 Summary 

In this chapter, we have provided the basis for the methods discussed in the following 

chapters. We have reviewed many surface approximation/interpolation methods, 

focusing on triangle-based interpolation. Straight-line contours are able to contour 

data sets where other methods may not be able to, although often these contours are 

jagged and contain sharp corners. This led to investigating natural neighbour bases 
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as a new method of interpolation for contouring algorithms. Straight-line contours 

using the natural neighbour algorithm improve on straight-line contours over a 

standard triangulation, although we will see they can often still appear jagged. If the 

mesh is retriangulated with a finer triangulation, the natural neighbour algorithm 

produces smoother contours. Although the natural neighbour algorithm acts locally, 

resulting in a faster retriangulation, the triangulation process itself must produce 

a Delaunay triangulation for the natural neighbour algorithm to work. This means 

that any subdivision will not be sufficient for a contour map, and often data which 

has been provided already with a triangulation would either need a check to ensure 

that the triangulation is Delaunay, or would need to be retriangulated. This could 

be seen as an inefficient method since it may discard information which can be 

useful, particularly the connectivity between nodes. 

We also looked at a standard method of interpolation - Bezier curves, as well 

as its generalisations into B-splines and NURBS. As B-splines and NURBS are 

not required for the contouring algorithms in this thesis, they are mentioned for 

completeness and not investigated further. Worsey and Farin [49] describe an 

algorithm which pieces together many small rational Bezier curves, controlled using 

intersections between triangle edges and their neighbouring incentres as control 

points, as well as the incentres themselves. The triangulation surface is smooth and 

continuous, and using control points from this surface should produce a continuous 

set of Bezier curves. We shall see this algorithm in action in the following chapter. 
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The Worsey-Farin contouring algorithm 

This chapter focuses on a major area of contouring that I have been investigating, 

and provides a basis for the contouring methods used in the following chapter. 

3 .1 Introduction 

Farin in 1986 [19] provided a simple algorithm for describing a contour over a 

triangle, where the contour has only one section over that triangle, and the contour 

intersects the boundary of the triangle at two points which are not on the same edge 

of the triangle. Clearly not all contours are of this form, and so in order to produce 

accurate contours for the entire triangulation, it may be necessary to subdivide the 

triangulation so that it satisfies the above conditions for each triangle. Worsey and 

Farin in 1990 [49] extended Farin's original algorithm to handle all possible contour 

types over a triangle, and can also handle closed contours within triangles, cases 

where the contour has disjoint sections inside a triangle and therefore more than 

two intersections with the boundary, and other degenerate cases. 

The algorithm involves subdividing each triangle into six (or twelve) subtriangles 

and computing all intersections of the contour with the boundary of each triangle 

to provide us with a list of points defining end points of rational quadratic Bezier 

curves. The contours are then produced by plotting these Bezier curves, using 

normal estimation to decide on the shape of each curve. The methods used for this 

contouring are described in the following sections. 
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3.2 Powell-Sabin Six Triangle Subdivision 

This subdivision is described in Powell and Sabin [33] . Given height values and their 

respective first derivatives at all the vertices of a triangulation, it is possible to find 

a method of defining the values to be a piecewise quadratic on each triangle which, 

when combined with other triangles, produces an approximating function that is 

continuous with a continuous first derivative over all triangles. Powell and Sabin 

present many methods of constructing such a piecewise quadratic approximation, 

and we will see one of these methods put to use. Given a triangulation T of a 

point set P, we choose one interior point in each triangle of T so that, if the two 

triangles have a common edge, then the line joining their interior points intersects 

t he common edge between its vertices. For example, it is adequate to choose the 

incentre of each triangle. Given a triangle ABC, let a be the length (Euclidean 

distance) of the edge from B to C, b be the length of the edge from C to A, and c 

be the length of the edge from A to B. Then the coordinates of the in centre of the 

triangles are given by 

(
aA[x] + bB[x] + cC[x] aA[y] + bB [y] + cC[y]) 

a+b+ c ' a+b+c ' 

where A[x] denotes the x coordinate of the point A, etc. ABC is a typical triangle 

of T , and O is the interior point chosen, which in our case is the incentre. Initially, 

Powell and Sabin considered using the circumcentre as the interior point, although 

it was noted that the circumcentre is only an interior point of a triangle if the 

triangle is acute. Further problems arise when the circumcentre lies on an edge of 

the triangle, and so the incentre is a better point to consider since it does not suffer 

these problems. 

The points P , Q and R are the midpoints of the sides of ABC when the sides 

are part of t he perimeter of the whole triangulation. Otherwise we let P be the 

point where 00' cuts BC, where 0' is t he interior point that has been chosen in 

the other triangle of T that has the side BC ( and similarly for Q and R). 

We now have a triangulation where every triangle is subdivided into six smaller 

triangles, as shown in Figure 3.1. 

The interpolation method given below is applied on each triangle, and so the 
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C 

Figure 3.1: 6-triangle Powell-Sabin Subdivision. 

result is a piecewise quadratic function that is C1 continuous and interpolates the 

data. 

Although the points P , Q and R could lie anywhere on the sides BC, CA and 

AB, it is normal to place them at the mid-points of the sides. The intersection of 

00' with BC for our choice of point P ( and similarly Q and R) for interior points 

normally lie near the midpoints and so we achieve similar results. If we were to 

let P lie away from the mid-point, say one third of the way along BC, then the 

maximum error when approximating a cubic polynomial increases by a factor of 2
; 

[33] . Similar arguments can be made for points Q and R. 

3.3 Bezier Ordinates 

Consider a triangle T belonging to a triangulation 7 , with function values z = 

f( x, y) defined at each vertex. Unit normal vectors at the vertices are also either 

known or estimated by some normal vector estimation method, which we shall 

consider in Section 3.4.3. A quadratic Bezier control net consists of six Bezier 

ordinates - three at the vertices of the triangle, and three at the midpoints of each 

edge. 

The associated Bezier ordinates to these six control points are of two dist inct 

types - ordinates bi whose subscripts contain one 2 and all other zeroes (such as 
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b0,2,0 ) , or ordinates bi whose subscripts have two ls and one zero (such as b1,1,0 ). 

These ordinates respectively represent the vertices and tangent planes, and hence 

are referred to as vertex ordinates and tangent ordinates. The control points and 

associated Bezier ordinate values (bi) for a quadratic Bernstein-Bezier triangular 

patch are shown in Figure 3.2. 

b 2,o,o 

b 1.1,0 

bo.2.0 b 0,1.1 b o,0,2 

Figure 3.2: Quadratic Bernstein-Bezier triangular patch. 

The values of the Bezier ordinates at the vertices are simply equal to the function 

values at these vertices. The values of t he Bezier ordinates at the midpoints are 

calculated as follows: 

All the points on a plane satisfy an equation 

Ax+By+Cz = D. 

The first three plane coefficients A, B and C are simply the respective x, y and z 

components of the unit normal vector of the plane. D is then obtained from the 

dot product of the normal vector with any point on the plane. The tangent plane 

at a vertex is therefore 

(3.3.1) 

where x and y are the coordinates of the vertex in question. The remaining Bezier 

ordinate values come from a projection from the midpoint of the edge to the tangent 

plane at the vertex. 
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Figure 3.3: Bezier curve over a triangle. 

3.4 The Worsey-Farin algorithm 

Consider a quadratic polynomial function Q, defined over a domain triangle T with 

vertices p1 , p2 , and p3 as shown in Figure 3.3. Q can be written in terms of Bernstein 

polynomials 
"""' 2! i . k 

Q(b1, b2 , b3) = L..t i ! '!kl Wijkb1~b3, 
i+j+k=2 J 

(3.4.1) 

where (b1 , b2, b3) is a local barycentric coordinate system defined by t hese vertices, 

whose barycentric coordinates are (bi,~' bi) and i, j, k ~ 0. The real coefficients 

Wijk are the Bezier ordinates. As we would like to contour Q, then we need to solve 

for some contour level c. This means that we need to solve the equation 

(3.4.2) 

again with i, j, k ~ 0. As in Equation (2.6.2) , t he contour can be parametrised as a 

rational quadratic of the form 

b(t) = boBJ(t) + wb1Bi (t) + b2Bi(t) 
BJ(t) + wBf (t) + Bi(t) ' 
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where the b i form the Bezier polygon of the curve, the Bf (t) are the quadratic 

Bernstein polynomials, and w is the weight associated with the control point b1 , 

and so we now need to find b0 , b1 , b2 , and w. Farin [19] provides a simple algorithm 

for describing a contour over a triangle, where the contour has only one section over 

that triangle, and the contour intersects the boundary of the triangle at two points 

which are not on the same edge of the triangle. This is the contour as shown in 

Figure 3.3. Clearly not all contours are of this form, and so in order to produce 

accurate contours for the entire triangulation, it may be necessary to subdivide 

the triangulation so that it satisfies the above conditions for each triangle. Worsey 

and Farin [49] extended Farin's original algorithm to handle all possible contour 

types over a triangle, and can also handle closed contours within triangles, cases 

where the contour has disjoint sections inside a triangle and therefore more than 

two intersections with the boundary, and other degenerate cases. 

If we were to compute all intersections of the contour with the boundary of 

a triangle, we would be able to use the Worsey-Farin algorithm to decide on the 

connectivity of the boundary points. The nature of the connection between the 

boundary points are determined in the next section. 

3.4.1 Connecting boundary points 

Definition 3.4.1 (Worsey and Farin Definition 3.1). Starting at one vertex of the 

domain triangle T , and moving anticlockwise around each edge of this triangle, label 

the boundary points as c1 , c2 , ... , en; n ::; 6. For each boundary point Ci, label the 

barycentric coordinates of this point as ( bi, bt b1). 

Once we have determined the boundary points, it is necessary to determine 

which boundary points are joined by a contour section. Worsey and Farin use the 

following lemma to help: 

Lemma 3.4.2 (Worsey-Farin Lemma 3.1). The two points ck and c1; k, l E 

{1 , 2, ... , n} may be connected by a section of the contour lying in the interior of 

the triangle T if and only if the indices k and l are adjacent entries in the cycle 

(1,2, ... ,n). 
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The proof of this lemma follows from realising that as the points are arranged in 

a cyclic order, joining non-adjacent points would usually require that the contour 

sections must not cross each other. Although this lemma rules out this possibility, 

it also removes the possibility of contours as given in Figure 3.4. As a result of 

Figure 3.4: Contours not possible from Lemma 3.4.2. 

Lemma 3.4.2, we will only need to check neighbouring points for connectivity, and 

so we only need to consider connectivity for points Cm and Cm+l , where Cn+ l c1 . 

The idea is to check and see if a line parallel to the line joining Cm and Cm+i is 

tangent to the contour inside the triangle T. If it is, we check to see if it conflicts 

with any of the other boundary points c;; i f=. m, m + l. Although the idea is the 

same whether or not the adjacent boundary points lie on the same edge, the two 

cases will be described separately for ease of reading. 

Connecting boundary points on the same edge 

As the barycentric coordinates of the edges are parametrised in a cyclic order, then 

we only need to consider one of these edges and adjust the parameters for the other 

edges accordingly. 

Suppose we are testing whether or not two points are connected by a contour 

section as given in Figure 3.5. 

Assume that the boundary points Cm and Cm+i lie on the edge opposite vertex 

p2 . Now consider the line that passes through a point (1 - A2 , A2, 0) with direction 

(-1, 0, 1), i.e. lines that are parallel to the edge opposite p2 (the edge p1p§). This 
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1h 

JJ:i 

Figure 3.5: Connection between two boundary points on the same edge. 

line can be parametrised using barycentric coordinates as 

.\2(t) = (1 - .\2, .\2, 0) + t( - 1, 0, 1) 

= (1 - .\2 - t , .\2, t). 

If we were to substitute this parametrisation into Equation (3.4.2), we have 

where 

at
2 + fJt + 1 = 0, 

a = Woo2 + W200 - 2w101 

= 2(w101 - W200) + 2(w200 + Won - W110 - W101).\2 

,(.\2) ='Yo+ ,1.\2 + ,2.\2 

= W200 - C + 2(w110 - W200).\2 + (w200 + Wo20 - 2W110).\2, 

and c is the contour level. 

The values for each Ai can be found by solving the quadratic equation 

fJ2 
- 4a1 = 0. 

The roots are.\} and .Xf with.\} :::; .\;. We define .x; to be the smallest non-negative 

value of .\} and .\f, and we can now use the following lemma to determine whether 

there is a contour to be drawn between boundary points Cm and Cm+l· 
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Lemma 3.4.3 (Worsey-Farin Lemma 3.2). The points l;n and l;n+1 on an edge 

of the domain triangle are connected by a contour section over the interior of the 

triangle iff the following three conditions are satisfied: 

1. >.; and >.; are real, 

2 . 0 < ).* < 1; 0 < (1 - ).* - t*) < 1; 0 < t* < 1 where t* = -((3(>.*)/2a), and 

3. >.*<bi; jE{l,2, ... ,n}, j=/=m,m+l. 

If these conditions are satisfied, then we can parametrise the contour as two 

rational quadratic Bezier curves. The end points are Crn and li(t*) for the first 

section, and li(t*) and l;-n+1 for the second section. In both cases Ai = >.;. 

Connecting boundary points on different edges 

The method for checking boundary points on different edges is essentially the same 

as for checking on the same edge. However, the tangent lines in this case will 

no longer be parallel to an edge. This slightly alters the problem, but as before, 

suppose we are checking to see if two boundary points l;-n and l;-n+1 ( on different 

edges) are connected by a contour section over the interior of T. Without loss of 

generality, assume that they lie on the edges of the triangle T opposite vertices p2 

and p3 respectively, as shown in Figure 3.6. 

P:1 

Figure 3.6: Connection between two boundary points on different edges. 
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Consider a line parametrisation of one of the triangle edges, given by 

li(t) = (µ1, 0, 1 - µ1) + t(d1, d2, d3) 

= (µ1 + td1, td2, 1 - µ1 + td3) 

with di defined to be di = bf - bf+l for i = 1, 2, 3. Inserting these boundary 

coordinates into Equation (3.4.2) gives 

where 

a.t2 + /3t + 1 = 0, 

= 2(woo2d3 + W101d1 + Wo11d2) 

+ 2(- woo2d3 + W2ood1 - Woud2 + W101(d3 - d1) + W11od2)µ1 

,(µ,1) = ,o + ,1µ1 + ,2µf 

= Woo2 - c + 2(w101 - Woo2)µ1 + (woo2 + W200 - 2w101)µf, 

and c is the contour level. Comparing this with the previous case, we can find values 

for each µi by solving the quadratic equation 

(32 
- 4a., = o. 

Again the roots are µ} and µ; with µ} ~ µ;, and we define µ; to be the smallest 

non-negative value ofµ} andµ;. We can now use the following lemmas to determine 

whether there is a contour to be drawn between boundary points Cm and Cm+l · 

Lemma 3.4.4 (Worsey-Farin Lemma 3.3). The straight line connecting Cm and 

Cm+1 is part of the contour iff 

where k = 1, 2 or 3, k-=/ i,j. 

Lemma 3.4.5 (Worsey-Farin Lemma 3.4). If Lemma 3.4.4 above does not hold, 

then let µ} and µ; be the roots as defined previously. The points Cm and Cm+1 on 

two edges of the triangle are connected by a contour section over the interior of the 

triangle if! for µ;" = µi or µi = µi, 
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1. µi and µi are real, 

3. 0 < (µi + t*d1) < l; 0 < t*d2 < l ; 0 < (1 - µi + t*d3) < l where t* = 

- ((3(µi)/2a), and 

4- ~- (~/d2)d3 (/-. [min(µi,b;ri+1),max(µi,b;i+1
)]; 

j E {1, 2, ... ,n}J j -=f.m,m+ l. 

If Lemma 3.4.5 is satisfied, then the contour can again be parametrised as two 

rational quadratic Bezier curves. The end points are Cm and li(t*) for the first 

section, and li(t*) and Cm+i for the second section. In both cases µi = µ;, 

The above case can be repeated for the other two sides of the triangle, with 

parametrisations given by l2(t) = (1 - µ 1 + td1 , µ 1 + td2, td3 ) and l3(t) = (td1 , l -

µ3 + td2, µ3 + td3). 

Now that we have these steps, we can use t he Worsey-Farin algorithm to produce 

the contours for the domain. 

In Worsey and Farin [49], the test to see whether a quadratic Q is elliptic had 

some terms omitted. This was highlighted and proved in Bloomquist [4]. The 

Worsey-Farin algorithm below has these extra terms included. 

This algorithm and subsequent methods have been coded as a joint project 

between myself and Walker [44, 45] . 

3.4.2 The Worsey-Farin algorithm 

Algorithm 3.4.6. 

1. Let Q be the quadratic as defined in equation (3.4.1) . 

2. Given the six Bezier ordinates of the triangle 

W = {w200, Wo20,Woo2, W110,Wo11, W101}, 

define 

Wmin = min(W) Wmax = max(W). 
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For the contour level c, if 

is not satisfied, then the plane z = c cannot intersect the quadratic Q, and so 

there is no contour to be plotted over the triangle. 

3. Flag whether or not Q is elliptic. If the surface is elliptic then it may have 

closed contours, otherwise it does not. The surface is elliptic if and only if 

W~10 + W~01 + W511 + 2(w200Wo11 + Wo20W101 + Woo2W110) 

<w200Woo2 + W200Wo20 + Wo20Woo2 + 2(w110W101 + W110Wo11 + W101Wo11)-

4. Compute all intersections of the contour with the boundary of the triangle. 

There are n such intersections, with O :S n :S 6. The intersections are found 

by solving a quadratic equation for each edge of the triangle. It is also possible 

for the triangle edge to be the tangent of the point lying on that edge. We let 

nt (where nl :S 3) denote the total number of points for which this is the case. 

We can now analyse the value ofn (and, if required, nt) to determine the type 

of contour that is to be produced. 

( a) n = 0. Either there is no contour, or it is a closed contour entirely inside 

the triangle. If Q is elliptic then we need to check for a closed contour, 

and if there is, it can be parametrised. 

(b) n = 1. There are two possible solutions. Either it is a single point on 

the edge of the triangle, or it is a closed contour that is tangent to the 

boundary. Again, if Q is elliptic, we need to check for a closed contour, 

and act accordingly. If not, then it is the single point and the contour 

has finished over the triangle. 

(c) n = nt = 2. This is similar to the above case, where either it is two 

single points on the contour, or it is a closed contour that is tangent to 

two boundaries. 

(d} n = nt = 3. In this case, there must be a closed contour on the triangle. 

This is easy to contour since the points of the triangle are the control 

points of the curve, and can be used accordingly. 
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(e) This is the most commonly occurring case where the others do not apply. 

We start at a vertex of the triangle and move anticlockwise around the 

boundary. Label the contour points c1 , c2 , . . . , ½i (n ::; 6) and check 

whether point i is connected to point i + 1 (as given in Section 3.4.1)) 

where i = 1, 2, ... , n and (n + 1) = 1. If they are connected) then we can 

parametrise the section as two rational quadratic Bezier curves. ff the 

two points are not connected) then proceed with the next consecutive pair 

or points. If a point c; is not connected to either Ci-l or Ci+1, then c; is 

labelled as a single isolated point. 

These cases account for nearly all possibilities, and so the Worsey-Farin algorithm 

is an efficient method to produce piecewise quadratic contours over a triangulated 

domain. The exceptions would be if we were to have contours shown in Figure 

3.4. These are more likely to occur in coarse triangulations. If we suspect that we 

may have some of these contours, we could use an alternative contouring method, or 

produce a finer t riangulation over the domain. The Powell-Sabin t riangle subdivisions 

normally eliminate these cases, although it does not guarantee that these extreme 

cases would not occur. 

Once t he algorithm is complete, we have a list of points defining end points of 

rational quadratic Bezier curves to be plotted. We can now construct the Bezier 

curves for each pair of end points. 

Label the end points h o and h2 . Estimate the normals at these two end points. 

Given that the point ho ( or h2) lies on an edge or in the interior of the triangle, we 

can estimate the normal as given in Section 3.4.3. 

We can now calculate the location of the middle Bezier point h1 . A method 

for doing this is described in Worsey and Farin [49], where we can calculate the 

intersection of the tangent planes at h0 and h2 with the plane z = c, where c is the 

contour level. 

For h0 and h2 , we calculate the equations of the tangent planes using the method 
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described in Section 3.3. This gives us the tangent planes 

z = Zo + Xox + Yoy 

which, comparing with Equation (3.3.1) gives 

This results in three quadratic equations of the form Au = b, where 

Xo Yo - 1 

A= X 2 ½ - 1 

0 0 1 

X 

U= y 

z C 

This method gives the correct intersection of the two tangent planes with the 

contour plane, by consistently providing a satisfactory middle Bezier point b1 . 

3.4.3 Estimating normals 

As the normal vectors are unknown over the domain, we need to provide reasonable 

estimates using one of the many methods available. These vectors need to be 

calculated before the Worsey-Farin algorithm, and so the Amlin program calculates 

the normal vectors immediately after generating the triangulation. At the nodes of 

the triangulation, we can approximate the values by taking an appropriate weighted 

average of the normals of the contiguous facets [1]. This results in a normal non a 

triangle given by 
1 

n = - L ( wi · 1.li) 
INI iEN 

where N is the set of indices i such that the unit normal vector neighbouring the 

facet of interest u i for the ith facet is weighted by wi. 

There are many methods used to determine the weighting wi . For the Weighted 

by area method, each ui is weighted by the area of each corresponding facet. 

The Weighted by angle method uses the magnitude of the vertex angle of the 

corresponding facet. For the Weighted by Voronoi area method, each 1.li is weighted 
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by the area of the Voronoi region of the corresponding facet. Nelson Max's method 

[29] assigns a weight to each ui by 

where o:i is the vertex angle, and ¼ and ¼+1 are the edges of the i th facet extending 

from the node n. For an unweighted method, set wi = l for all i E N. 

Now that we are able to estimate the normals at the nodes, we need to find 

ways of estimating normals at any point on each triangle, including the triangle 

edges. The simplest method is linear estimation, where we can use the barycentric 

coordinates (u, v, w) of the triangle to get a normal estimation of 

N 
N(u, v, w) = \\N\\' 

where N1 , N2 , and N3 are the normals at the three corners of the t riangle. 

For t he triangle as a whole, given N1 , N2 , and N3 as defined above, we can 

calculate the normal of the triangle using 

Nx = ((Nz3 - NzJ (Ny2 - Ny1)) - ((Nz2 - NzJ(Ny3 - NyJ) 

Ny= ((Nz2 - NzJ(Nx3 - Nx1)) - ((Nx2 - NxJ(Nz3 - NzJ ) 

Nz = ((Nx2 - Nx1)(Ny3 - Nyi)) - ((Ny2 - Nyi)(Nx3 - Nx1)), 

where Nx, Ny, and Nz are the respective x, y, and z components of the triangle 

normal, and Nxi, NYi' and Nz; are the respective x, y , and z normal components of 

the three corners of the triangle. 

3. 5 Contouring 

The current contouring method, as implemented by Walker [44], uses these methods 

to estimate the normals at the nodes and points inside the triangle. The 'TetSim' 

program specifically utilises Nelson Max's method for weighting the node normals 

[29], before subdividing the triangulation using a method given by Powell and Sabin 

[33] . The node and triangle normals then need to be estimated on these subdivided 

triangles, and it is these t riangles that are used in the Worsey-Farin algorithm to 

calculate the piecewise quadratic contours [49]. 
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It is also possible to contour the domain using natural neighbours. The Worsey

Farin algorithm favours Nelson Max's node normal weighting method, although 

when contouring using natural neighbours, it would be logical to use natural neighbours 

to estimate the normals of the triangles. The normals of the triangles are estimated 

by finding the natural neighbours of the incentre of the triangle, and calculating the 

derivative of the Voronoi areas A1 by differentiating Equation (2.4.5) on page 20 to 

give 

where again XN = Xo and YN - Yo

As ¢1 is defined to be 
A1(x) 

¢1(x) = A(x) ' 

then differentiating <Pf with respect to x and y gives 

(3.5.1) 

(3.5.2) 

,;.. ( ) = A1,x(x) - </>1(x)A,x(x) 
'Pl,x X A(x) d ,;.. ( ) _ A1,y(x) - ¢1(x)A,y(x) 

an 'PI,y x - A(x) , 

where A1,x and A1,y are defined in Equations (3.5.1) and (3.5.2) respectively. These 

can then be used to give gradients in the x, y, and z directions using 

l:::,.Y = L z1¢1,y(x ) 
I 

!:::,.z = L Z[ - x1!:::,.x - Yil:::,.y, 
I 

which can then be used to derive the normals for the triangles. As the gradient is not 

defined at the nodes in a Voronoi diagram, then we cannot use natural neighbours 

to estimate the node normals. Instead we need to rely on the previous method for 

normal estimations. 
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3.6 Comparing contouring methods 

In order to compare the contouring methods we have mentioned, we will consider two 

data sets - one is a stratigraphic horizon with a discontinuity (inclined fault) showing 

rapid elevation change (subsequently referred to as the "stratigraphic horizon" data 

set), and the other is a surface with minor perturbations - this is especially useful 

since data sets which are almost flat in the third dimension are notoriously difficult 

to contour. 

For the stratigraphic horizon data set, we will contour the maximum burial depth 

values over the horizon. The original mesh is given in Figure 3.7(a), contours using 

straight lines and the natural neighbour method are in Figure 3.7(b), and contours 

produced using the Worsey-Farin algorithm over a Powell-Sabin subdivision [44] 

is in Figure 3.7(d) . Larger versions of the contour maps are given in Appendix 

A. The Worsey-Farin algorithm used over a Powell-Sabin triangle subdivision will 

subsequently referred to as WFPS. 

Clearly the contours using the natural neighbour algorithm are not as smooth as 

those produced over a Powell-Sabin triangle subdivision. If we were to retriangulate 

the original data set so that it has a similar number of triangles as the subdivision, 

we can see that the natural neighbour contour map produces comparable results. 

This is shown in Figure 3.7(c). 

For the surface with minor perturbations we are contouring elevation values, as 

shown in Figure 3.8. Larger versions of the contour maps are given in Appendix B. 

We see from Figure 3.8(b) that a straight line contour map over the subdivided 

data set gives improved results over the original coarse t riangulation in Figure 3.8( a), 

although Bezier curves over the subdivided triangles improve t his further (3.8(c)). 

If we were to consider computational power, then both the WFPS and the 

natural neighbour contouring over a finer triangulat ion take a similar amount of 

time. 

As stated previously, t he locality of the natural neighbour method means that if 

we wished to consider only part of the domain, we would only need to retriangulate 

a small area, leaving the rest of the domain relatively coarse. This is particularly 
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(a) Original Triangulation (b) Contours using the Natural Neighbour 

algorithm 

(c) Contours using the Natural Neighbour (d) Bezier Curves over a Powell-Sabin Triangle 

algorithm over a retriangulated domain Subdivision 

Figure 3. 7: Contouring Maximum Burial Depth Values Over A Stratigraphic 

Horizon 
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(a) Linear contours over the original 

triangulation 
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) 

-I 

(b) Straight Line Contours over a 

Powell-Sabin Triangle Subdivision 

~-~ 
) 

( c) Bezier Curves over a Powell-Sabin 

Triangle Subdivision 

Figure 3.8: Contouring Elevation Values Over A Surface With Minor Perturbations 
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useful if we know a priori of particular areas that would have many contours. 

This retriangulation would result in the natural neighbour contouring method being 

faster than WFPS, as the local retriangulation would need to be subdivided again 

using Powell-Sabin subdivision to ensure contour continuity. 

3.7 Summary 

In this chapter we have investigated the Worsey-Farin algorithm and used the 

structure in Walker's TetSim program [44) to produce contour outputs via Amlin. 

Natural neighbour contours produced using TetSim were not as smooth as WFPS 

over the original domain, although this was expected as the triangulation used for 

natural neighbour contouring had not been subdivided. When we used a domain 

retriangulated to the same density as the Powell-Sabin subdivided triangulation, 

the natural neighbour contours were comparable to the WFPS contours. 

In the following chapter we shall investigate a third method, which uses a 

subdivision surface. The method subdivides triangles using But terfly Subdivision 

and is built on the data structures of the TetSim program. Using the existing TetSim 

data structures therefore makes it more straightforward to compare the outputs 

and computation time of each method to determine the most efficient method for 

contouring data. 
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Butterfly Subdivision 

4.1 Introduction 

Subdivision surfaces are a way to describe a surface using a piecewise polygonal 

model. The surface and its piecewise polygonal model can be of any shape or 

size, although unlike polygonal models the surface itself can be perfectly smooth. 

Subdivision surface schemes allow you to take the original polygonal model and 

produce an approximation of the surface by adding vertices and subdividing existing 

polygons. Subdivision surfaces are typically used in the gaming and animation 

industries. The spread between high and low powered computing forces game 

developers to cater for the general public who used low powered computers, whilst 

also including features which make the most of the advanced hardware of the 

hardcore gamer. Animators such as Pixar require the models on screen to be smooth 

without any obvious jagged edges or other flaws. If the camera was to zoom in on 

the model, it would be easier to subdivide the polygons of the model than it would 

be to create multiple copies of the model with varying resolutions. This has become 

even more important with the advent of high definit ion and 3D films. Pixar used 

Catmull-Clark surfaces for their animation in Geri's Game and further information 

can be found in [14]. 

This is where subdivision schemes are important, and one important and useful 

feature of these schemes is locality, so no global system of equations needs to be 

solved. 
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In this chapter we use subdivision surfaces in a novel way - we use the surfaces 

as a basis for contouring algorithms. This method could theoretically be used for 

any data over a surface, although in this thesis we will concentrate on geological 

surface data. 

We now define the basis of subdivision surfaces. Clearly a subdivision surface 

is a surface generated through some form of subdivision. Every subdivision surface 

starts with an original polygonal surface, or control net. Then the surface is 

subdivided into additional polygons and the vertices are moved according to some 

set of rules. The rules for moving the vertices are different from scheme to scheme, 

and it is these rules that determine the properties of the surface. The rules of 

most schemes, including the ones discussed below, involve retaining the original 

vertices, optionally moving them, and introducing new vertices. There are schemes 

that remove the old vertices at each step, but these are rarely used and will not be 

investigated here. 

The most common interpolating scheme used in subdivision is based on piecewise 

linears. Unfortunately piecewise linear interpolation of the original sparse data is 

often not smooth enough for many applications, including contouring, as previously 

mentioned in Section 2.5. 

With Bezier or B-spline patches, modelling complex surfaces involves trying to 

cover them with triangular or rectangular patches. This is not a simple task and 

often not possible since some of the patch edges are not allowed to be degenerate. 

Furthermore, changing values of the object can make continuity very difficult, and 

it is likely that the model will show creases and artefacts near patch seams. 

This is where subdivision surfaces can be useful. It is possible to make a 

subdivision surface out of any arbitrary (preferably closed) mesh, which means 

that subdivision surfaces can consist of arbitrary topology, due to the fact that the 

control net and the eventual surface (or limit surface) are topologically the same. 

On top of that, since the mesh produces a single surface, it is possible to alter the 

control net without worrying about seams or other continuity issues. 

Almost every subdivision scheme has C1 continuity everywhere. Some have C2 

continuity in some places, but the majority have areas where C1 is the highest 
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attainable level of continuity. Rigorously proved continuity properties are a major 

advantage of some subdivision schemes. 

We could theoretically model any surface with as many polygons as we wanted, 

although the polygons which have none of the original data points would have inter

polated nodes and edges. These nodes and edges may or may not be interpolated 

correctly and so would need some restriction as to how much the interpolated data 

can deviate from simple linear interpolation. In the Worsey-Farin algorithm, Walker 

[44] used a Powell-Sabin subdivision [33] which estimated normals at the nodes to 

determine the location and slope of the new nodes and triangles. The reason for 

using a subdivision model is that additional polygons can be added in order to get 

closer to the target limit surface, so as to satisfy smoothness or visual criteria. 

Subdivision schemes that produce satisfactory contour maps generally have 

some, if not all, of the following conditions 

• Interpolation: The original mesh vertices are retained and new vertices are 

interpolated between these mesh vertices. All vertices are on the limit surface. 

• Locality: As stated previously, the neighbourhood used to create new vertices 

should be as small as possible to enable fast algorithms with no global system 

of equations. 

• Symmetry: The scheme should exhibit some type of symmetries as the local 

mesh topology. 

• Generality: The scheme should work for all triangulations, including triangles 

at boundaries. 

• Smoothness: For higher-order continuity, we require the scheme to reproduce 

polynomials up to some power. 

• Simplicity: For ease of use, the scheme should only require simple data struct

ures. 

While the degree of continuity is generally the same for all subdivision schemes, 

there are a number of characteristics that vary notably between schemes. One 
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important aspect of a scheme is whether it is an approximating scheme or an 

interpolating scheme. If it is an approximating scheme, the vertices of the control 

net may not lie on the surface itself. So, at each st ep of subdivision, the existing 

vert ices in t he control net are moved closer to the limit surface. The benefit of an 

approximating scheme is that the resulting surface tends to be very fair, i.e. having 

few undulations and ripples. Even if the control net is of very high frequency with 

sharp points, the scheme will tend to smooth it out, as the sharpest points move 

the furthest onto the limit surface. On the other hand, this can be a disadvantage, 

as it is harder to envision the end result while building a control net. It may be 

hard to craft more undulating, rippling surfaces as the scheme attempts to smooth 

them out and hence can make the scheme difficult t o work with. 

If it is an interpolating scheme, the vertices of the control net actually lie on the 

limit surface. This means that at each recursive step, the existing vertices of the 

control net are not moved. The benefit of t his is that it can be much more obvious 

from a control net what the limit surface will look like, since the control net vertices 

are all on the surface. However, it can sometimes be difficult t o get an interpolating 

surface to look exactly the way you defined, as the surface can develop unsightly 

bulges in areas where it strains to interpolate the vertices and still maintain its 

continuity. This is usually not a tremendous problem. 

The preferred vertex valence is another property of subdivision schemes. The 

valence of a vertex is the number of edges coming out of it, which is usually 6. 

Most vertices produced by a scheme during subdivision have the same valence. 

Vertices of a valence 6 are the regular vertices of a scheme. Vertices of any other 

valence are known as extraordinaiy vertices. Their effect depends on the subdivision 

scheme, but historically there have been problems analysing the limit surface near 

extraordinary vertices. 

Most schemes never produce extraordinary internal vertices during subdivision, 

so the number of extraordinary vertices is set by the original control net and never 

changes. This is common for t riangular schemes, as they all t end to split the 

triangles in the same way- by adding new vertices along the edges and breaking 

each triangle into four smaller t riangles. Vertices on the boundary of t he domain 
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usually have valence 4. 

4.2 The Polyhedral Scheme 

The polyhedral scheme is a simple subdivision scheme, where you subdivide by 

adding new vertices along the midpoints of each edge, and then break each existing 

triangle into four triangles using the new edge vertices. A simple example is shown 

in Figure 4.1. The problem with linear interpolation, of course, is that it does not 

produce smooth surfaces, nor does it change the shape of the control net. 

Figure 4.1: Two stages of triangle subdivision for the polyhedral scheme 

The scheme is clearly interpolating since it does not move the vertices once 

created. It is also triangular , since it operates on a triangular mesh. Furthermore, 

the scheme is uniform since the edge's location does not affect the rules used to 

subdivide it, and stationary since the same midpoint subdivision is used each time. 

The surface is only c0 continuous, since along the edges of polygons it does not 

have a well-defined tangent plane. The regular vertices of this scheme are of valence 

6, which is the valence of new vertices created by the scheme. However, this scheme 

is simple enough that it does not suffer due to its extraordinary vertices. 

The evaluation of the scheme is fairly trivial and it is possible to evaluate it 

recursively using the subdivision rules. No further evaluation is required, since the 

points are already on the limit surface. 
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4.3 The Butterfly Scheme 

The next scheme is known as the butterfly subdivision scheme, or, in its current 

form, t he modified but terfly scheme. It shares some similarit ies with the polyhedral 

scheme, but has some differences, notably that it is C 1 continuous and therefore 

produces a smooth surface. 

b C 

C C 

Figure 4.2: The eight-point stencil for the original butterfly scheme. 

The butterfly scheme [15, 18] is named due to the shape of the stencil, or map 

of neighbours used during evaluation. This is given in Figure 4.2. The scheme 

is interpolating and triangular, and so only adds vertices, v , along the edges of 

existing triangles. The rules for adding those vertices are simple, and the support 

is compact. For each edge, sum up the vertices in the stencil-shaped area around 

that edge, weighting each one by a predetermined weight w. This gives 

where 

N 

z= L wizi, 
i=l 

The weights used, corresponding to the vertex labelling in Figure 4.2, are 

1 1 1 
Wa = 2 Wb = 8 + 2w We = - 16 - w 

In this case, w is a tension parameter, which controls how "tightly" the limit surface 

is pulled towards the control net . If w = - 1
1
6 , then wb, We = 0 and the scheme simply 

linearly interpolates the end points and the surface is not smooth. 
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In its original form, Dyn et al did not make it clear what happens when the 

area around an edge does not look like the butterfly stencil. Specifically, if either 

of the edges' end points is of a valence less than 5, then we do not have sufficient 

information to use the scheme, leaving no choice but to choose w = -
1
~ near that 

area, resulting in a surface that is not smooth near those extraordinary points. This 

means that while the surface is smooth almost everywhere, there will be isolated 

jagged points which would stand out visually. 

If we refer to the conditions given on page 74, we can see that the original 

butterfly subdivision scheme satisfies all requirements except for the generality, 

since it cannot cope with edges which do not look like t he butterfly stencil. 

In 1993, Dyn et al extended the butterfly scheme to use a ten-point stencil [16], 

so that the default case was the one shown in Figure 4.3. We now have a new 

weighting scheme for v , where the new weights are 

1 
Wa = - - W 

2 

1 
Wb = S + 2w 

1 
w =-- - w 

C 16 

C 

Figure 4.3: The ten-point stencil from the modified butterfly scheme. 

Note that by adding w to the d points and subtracting it from t he a points, 

the stencil's total weighting still adds up to 1 which ensures invariance under affine 

transformations. Intuitively, this is important because it means that the new point 

will be in the neighbourhood of t he ones used to generate it. If the weights summed 
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to a different value, say 2, then the point could be twice as far from the origin as 

the points used to generate it, which would be undesirable. 

This new scheme also reduces to the old scheme as a subset- choosing w 

0 results in the same rule set as the eight-point butterfly stencil. However , this 

extension did not address the smoothness problem at extraordinary vertices. 

In 1996, Zorin et al published an extension of the butterfly scheme known as 

the modified butterfly scheme [54]. The primary intent of their extension was to 

develop rules to use for extraordinary vertices, making the surface C 1 continuous 

everywhere. 

If both of the end points of the edge are regular valence-6 vertices, the scheme 

uses the standard butterfly's ten-point stencil with t li-e same weights. 

Figure 4.4: The stencil for extraordinary vertices in the modified butterfly scheme. 

ea is a regular vertex of valence 3, whereas vertex a has N edges, ea ... eN- l• 

If only one of the end points is extraordinary, the new vertex is computed by the 

weighted sum of the extraordinary vertex and its neighbours (as shown in Figure 

4.4), that is the value of v can be found by calculating 

N-1 

V = Waa + L Wekek, 
k=a 

79 



4.3. THE BUTTERFLY SCHEME 

where given the extraordinary vertex's valence of N , the weights used are: 

The full justification for these weights is given in Zorin's thesis [53]. 

If both end points of the edge are extraordinary, then evaluate the vertex once for 

each endpoint using the appropriate weights from above, and average the resulting 

two candidates. 

Figure 4.5: The one-dimensional four point interpolatory scheme [17]. 

Boundary edges are subdivided using the I-dimensional four point scheme [17] 

( s - 1 = ~i, so = ; 6 , s1 = ; 6 , s2 = ~i). In this case only other edge points participate 

in the stencil. A consequence of this rule is that two separate meshes, whose 

boundaries are identical, will have a matching boundary curve after subdivision. 

Edges which are not on the boundary but which have a vertex which is on the 

boundary are subdivided as before while any vertices in the stencil which would be 

on the other side of the boundary are replaced with "virtual" vertices. These are 

constructed as required by reflecting vert ices across the boundary. 

The butterfly scheme is interpolating as points in a control net also lie on the 

limit surface-the subdivision process does not move existing vertices. It is also 

triangular as it operates on triangular control nets. It is stationary as it uses the 

same set of rules every time it subdivides the net , and uniform because every section 

of the net is subdivided with the same set of rules. 
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10 16 11 

Figure 4.6: The stencil used to calculate the normals of a regular vertex. 

As with other contouring schemes, we will sometimes need to calculate/estimate 

the normals at the nodes. For regular vertices, the process involves the first and 

second nearest neighbours of the vertex. This results in 18 vertices, and so the 

scalars, corresponding to the indexing shown in Figure 4.6, are: 

lo = { 16, - 8, -·8, 16, - 8, - 8, -
8'{3, 4'{3, 4'{3, 

8'{3, 4'{3, 4'{3, 1, !, !, 1, !, ! } 
Ii { 0, 8, -8, 0, 8, -8, 0, -

4'{3, 4'{3, 

o, 4'{3, 4'{3,o, !, !,o, !, ! } 
Multiplying the vertices by lo and li gives us two different tangeut vectors. Taking 

the normalised cross product of these vectors gives us our normal. For extraordinary 

vertices the normal is actually easier to find , as it depends only on the nearest 

neighbours of the vertex. The two tangent vectors in this case can be found as 

Here, t0 and t1 are t he tangents, N is the vertex valence, and e k is the kth neighbour 

point of the vertex in question, where e0 is an arbitrary point with ek+l lying in an 

anti-clockwise direction to ek. Crossing the two resulting vectors gives 

~ . 2(p - k)1r ~ . 2m1r ~ 
to x t 1 = ~ sm N ek x ep = ~ sm N ~ en x e(n+m) mod N· 

k<p m=O n 
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Similar to regular vertices, the cross product is a weighted sum of normals of nodes 

which are first or second nearest neighbours to the node. Normalising our result 

of the cross product produces the vertex normal. Now that we have the rules for 

recursively evaluating the surface and node normals, we can perform the subdivision. 

For subdivision: given a net, we need to subdivide it into a more refined net. 

Working from the modified butterfly rules, t his is fairly straightforward. We need 

to add a vertex along each edge of the net, then split each triangular face into four 

faces using the new vertices. 

The first step requires us to add new vertices along each edge. There is no fast 

and simple way to find all the edges unless we store them explicitly. An edge needs 

to be able to tell us about its end points since we need to use those in the butterfly 

stencil for computing the new vertex. Furthermore, the stencil extends to the end 

points' neighbours, so the end point vertices need to know about the edges they are 

connected to. 

The second step, breaking existing faces into new faces, requires that the faces 

know about their vertices, and such information is already present. The faces also 

need to know about their edges. While this is possible by looking through the 

face vertices for all their edges and fishing through t hose, t hat would require a fair 

amount more work for every lookup, and so the edge data are also explicitly stored 

with each face. This leads to increased computer memory requirement. Our data 

structure now has arrays of vertices, edges, and faces. Vertices know about their 

edges, edges know about their vertices, and faces know about their vertices and 

edges. 

The data structure we will be using is based wholly on locality, so that the time 

it takes to find one vertex given another is proportional to the number of edges 

between them. The complete subdivision steps are given below. 

• Tessellate the surface. 

• Create an edge-vertex map so that we can locate new vertices along edges. 

• Create an edge-edge map so that we can pair the half-edges made when the 

edge is split. 
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• Tessellate the edges. 

• Build the new faces. 

• Once the subdivision process is complete, generate the normals at the vertices 

if required. 

For the edge subdivision we iterate over the edges. At each edge, check the valences 

of the end point vertices to determine which subdivision rules to use, then apply 

the relevant rules, produce the new vertex and add it to the vertices array. 

Constructing the new faces is more involved, as it requires more work to ensure 

that when creating the four new faces their vertices are all arranged in anti-clockwise 

order and have the correct edges. Each face contains the data for its corner vertices 

and edges. From the lookup tables created while subdividing edges, we also know 

the new vertices and new edges. 

We can now use these steps to subdivide as many times as required. Each 

subdivision increases the polygon count by a factor of four. Only after we complete 

the subdivision do we calculate the vertex normals. Iterating over the vertices with 

the equations for the tangent vectors given previously finds our normals. 

The butterfly subdivision method as a basis for contouring has not been utilised 

in the literature, and so we believe that this forms a contribution to contouring 

methods - providing an additional method to use as the main contouring algorithm, 

or an algorithm to use when the preferred method fails. 

As we have the steps to perform the subdivision, we can produce contour maps 

of the stratigraphic horizon data sets given in the previous chapter. This is given 

in Figure 4.7. Larger versions of the contour maps are given in Appendix A. 

Table 4.1 shows the run time taken to produce each of the contours given in 

figure 4. 7. Timings were performed on a 2GHz Athlon CPU with 768MB of RAM. 

We can see in Figure 4. 7 that subdividing the triangulation many times increases 

the appearance of the smoothness of the contours, although beyond a subdivision 

level, the extra triangles slow down the algorithm significantly with little improvement 

over the contour map. The meshing algorithm could be sped up by improved 

algorithm design, although subdividing beyond the third recursion shows no obvious 
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(a) First Recursion (b) Second Recursion 

( c) T hird Recursion ( d) Fourth Recursion 

( e) Fifth Recursion 

Figure 4.7: Contour Maps of Maximum Burial Depth Values Over A Stratigraphic 

Horizon, Produced Over Successive Recursions of the Butt erfly Subdivision 

Algorithm 
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Table 4.1: Run times of the contouring methods used for Figure 4.7. 
Recursion Level No. of Nodes Meshing Time Contouring Time Total Time 

a) First 224 0.241 s 0.047 s 0.288 s 

b) Second 835 0.865 s 0.071 s 0.936 s 

c) Third 3221 2.148 s 0.156 s 2.304 s 

d) Fourth 12649 7.262 s 0.231 s 7.493 s 

e) Fifth 50115 18.064 s 0.497 s 18.561 s 

improvement in the contouring. Comparing the subdivisions with the WFPS method 

in the previous chapter we see that recursively subdividing to the third level is 

usually sufficient to produce a comparable contour map. 

In the next chapter we shall examine whether this novel scheme can run at 

a speed comparable to the other methods in this thesis. For the remainder of 

this chapter we will discuss further areas of research into the butterfly subdivision 

scheme. 

4.4 Adaptive subdivision 

As the subdivision scheme described so far in this chapter subdivides the whole 

domain, it may be worth considering whether we can adaptively subdivide based 

on the number of data points in a specific area. 

The problem with adaptive solutions for subdivision surfaces is that they do not 

easily present a closed-form parametrisation. The only easy way to tessellate them 

is through recursion. As we recurse, we are converging on a limit surface - the same 

limit surface regardless of which tessellation method used. 

If we tessellate adaptively, we have changed the control net. Some of the control 

net may be at a higher level of tessellation than the rest, and so our net is no longer 

converging on the same surface so the underlying surface is now fundamentally 

different. 

Furthermore, although this issue could be resolved in some way, the motivation 

to do so may be lacking. As we have already seen, recursively subdividing to the 

third level is usually sufficient to produce a comparable contour map. If this is the 

case when using adaptive subdivision we may often end up with a data set that 
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has been subdivided to the second or third recursion in some areas, with a third 

or fourth level of recursion in others - the extra work to adaptively subdivide may 

have negligible benefits. 

When we have data sets with a large concentration of data in some areas more 

than others, we could start with an adaptive triangulation and then use the Butterfly 

Subdivision scheme on that triangulation. This could be a mid-point between 

Butterfly Subdivision and full adaptive subdivision. 

4.5 Controlling expansion beyond the boundary 

We can improve t he butterfly subdivision further by controlling the expansion of the 

nodes beyond the original boundary. Due to the nature of the butterfly subdivision 

algorithm, the expansion will always occur, and so the simplest method to solve 

this is to perform a constrained subdivision and project any outlying points back 

onto the boundary. The projection onto the boundary is as follows. 

a 

Figure 4.8: Constraining the outlying points to lie on the boundary. 

During the subdivision, the triangle pqr is subdivided into four triangles, pba, 

abc, qcb and rac, as shown in Figure 4.8. At each boundary edge, point a lies 

beyond the boundary. Denote the (x, y, z) components of point a as ax, ay and 

az respectively. Let m be t he mid-point of points b and c. Put u = m - a and 

v = r - p so that the equation of the line am is L = a+ cm and the equation of the 

line pr is L = p + /3v for some values a , /3 E IR. We are considering the triangle in 

two dimensions and so we project onto the x , y-plane and solve for the intersection 
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of the lines am and pr. For am, 

For pr, 

X = Px + O'.Vx and y = Py + O:Vy . 

Where the lines intersect we have two simultaneous equations 

which can be rearranged to 

These have solut ions 

ax + O'.Ux = Px + f3vx 

ay + m1,y = Px + /3v11 

UxO'. + Vx/3 = Px + ax 

UyO: + Vy/3 =Py+ a11 • 

O: = (-vx(P11 - ay) + Vy(Px - ax))/ (-uxVy + UyVx) 

/3 = ( Ux(Py - ay) + Uy(Px - ax))/ (-UxVy + UyVx) 

This gives the required point A, where 

A = a + o:u or A = p + /3v. 

We then replace a by A in the subdivision, which gives a subdivision that lies within 

the x, y projection of the original subdivision. 

T his is shown in Figure 4.9, where we start off with a 9-point data set and 

subdivide whilst constraining the subdivision. 

Applying the constrained butterfly subdivision algorithm to our data sets gives 

us the results shown in Figure 4.10. Larger versions of the contour maps are given 

in Appendix D. Note that if a boundary triangle changes during the constraining 

process, then as a result any contour lying on that triangle also changes. This 

may be undesirable to the user, who can easily revert to unconstrained butterfly 

subdivision if required. 
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(a) Original mesh of the 

nine-point data set 

(b) First level of subdivision, 

unconstrained 

(d) Second level of 

subdivision, unconstrained 

/ 

/ 

( c) First level of subdivision, 

constrained 

(e) Second level of 

subdivision, constrained 

Figure 4.9: Constraining a nine-point data set when subdividing. 
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(a) Stratigraphic Horizon, unconstrained (b) Stratigraphic Horizon, constrained 

~-~ ~-~ 
) ) 

(c) Surface With Minor Perturbations, (d) Surface With Minor Perturbations, 

unconstrained constrained 

Figure 4.10: Second level of constrained subdivision for our two data sets. 
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A constrained butterfly subdivision is preferable to an unconstrained butterfly 

subdivision if we wished to retain the original domain, especially if the domain 

forms part of a larger data set, where expansion beyond the boundary would cause 

an overlap of data. The main cost for this advantage is the computational time 

taken to find the nodes which lie outside t he boundary, and the algorithm used to 

constrain them. 

For the Stratigraphic Horizon data set, the run times for the five steps of both 

unconstrained and constrained butterfly subdivision schemes are given in Table 4.2. 

We can see from the table that the current constraining algorithm increases the 

Table 4.2: Run times of the contouring methods used for the Stratigraphic Horizon 

data set. 

Unconstrained Butterfly Subdivision 

Recursion Level No. of Nodes Meshing Time Contouring Time Total Time 

a) First 224 0.241 s 0.047 s 0.288 s 

b) Second 835 0.865 s 0.071 s 0.936 s 

c) Third 3221 2.148 s 0.156 s 2.304 s 

d) Fourth 12649 7.262 s 0.231 s 7.493 s 

e) Fifth 50115 18.064 s 0.497 s 18.561 s 

Constrained Butterfly Subdivision 

Recursion Level No. of Nodes Meshing Time Constraining Time Contouring Time Total 

a) First 224 0.241 s 0.368 s 0.047 s 0.656 s 

b) Second 835 0.865 s 1.422 s 0.071 s 2.358 s 

c) Third 3221 2.148 s 3.269 s 0.156 s 5.573 s 

d) Fourth 12649 7.262 s 11.070 s 0.231 s 18.563 s 

e) Fifth 50115 18.064 s 28.518 s 0.497 s 47.079 s 

computational t ime significantly - more than doubling the total run time at each 

stage. This is mainly due to the constraining algorithm searching through every 

edge and node to see whether the nodes could potentially lie outside the boundary. 

Once these nodes are determined, the algorithm can then constrain them to the 

boundary. It is possible that during the subdivision process, the boundary nodes 

could be stored as a separate list of nodes, so that the constraining algorithm could 

check just these nodes and constrain them when necessary. This would significant ly 

reduce the computational time and enable the constrained butterfly subdivision to 

be a viable candidate for contouring. 
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4.6 Summary 

In this chapter we have investigated a selection of subdivision schemes, concentrating 

on the butterfly subdivision scheme. The original subdivision scheme devised by 

Dyn et al [18] was restricted to a finite number of triangulations and so we discussed 

Dyn et al 's extended butterfly scheme, and then Zorin et al's modified butterfly 

scheme. This enabled us to obtain C1 continuous surfaces, including at the bound

ary. Once we had C1 continuous surfaces, we used the butterfly subdivision method 

to produce a contour map of our data sets. This has not previously been done in 

the available literature, and so this thesis gave a new method for contouring data. 

When we compared the contour maps of the third and fourth recursions of the 

stra tigraphic horizon data (Figure 4.7), we only noticed a minor difference in the 

contours, and comparing the fourth and fifth recursion contour maps we noticed 

that there is no real difference in output. For general use, the third recursion is 

usually sufficient to produce a smooth contour, with the fourth recursion being 

used when we observe any remaining jagged contours. 

We have seen that the butterfly subdivision in its original form is different to the 

other contouring methods as the boundary expands beyond the original domain, 

whilst still respecting the original nodes, including those at the boundary. This 

can be seen as either an advantage, or a disadvantage, depending on the results 

required. The expansion beyond the boundary enables us to estimate the nature of 

the domain, and hence the contour, beyond the boundary. This can be particularly 

advantageous if the domain contains missing data and holes, as the expansion into 

these holes makes it more straightforward to estimate the values of the missing 

data. The problem with this expansion is that if we wished to retain the original 

domain we would need to perform some trimming or even retriangulation near the 

boundary. This is especially important when the domain forms part of a larger data 

set, where expanding beyond the boundary would cause an overlap of data. 

Constraining the boundary removes this problem, although the computational 

t ime taken to find and move the nodes which lie beyond the boundary is significantly 

higher - especially when performing a constrained butterfly subdivision over many 
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recursions. 

The current constraining algorithm increases the computational time significantly 

- more than doubling the total run time at each stage. It is possible to significantly 

reduce the computational time during the subdivision process, by storing the bound

ary nodes as a separate list of nodes, so that the constraining algorithm could 

check just these nodes and constrain them when necessary. This would enable the 

constrained butterfly subdivision to be a viable candidate for contouring. However, 

the current data structures do not allow for this scenario, and so to improve on 

algorithm efficiency a new data structure would need to be devised. 

In addition to constraining the boundary, we could also adaptively subdivide 

based on areas of interest. The problem with adaptive solutions for subdivision 

surfaces is that, unlike patches such as Bezier patches, subdivision surfaces do not 

easily provide a closed-form parametrisation. The only easy way to tessellate them 

is through recursion. We rely on the fact that as we recursively subdivide, we 

are converging on a limit surface. Regardless of how we tessellate, we should be 

converging on the same limit surface. 

If we were to adaptively tessellate, we have changed the control net. Some of 

the net might be at a higher level of tessellation than the rest, which means that 

our net is no longer converging to the same surface. 

Now that we have studied some ways of subdividing and contouring data, we 

can compare the results of each method with the methods discussed in previous 

chapters. We shall see this in the following chapter. 
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Comparing the contouring methods 

5.1 The Amlin Contouring Algorithm 

In this thesis we have used the data structures in Walker's TetSim program [44] to 

produce contour outputs via the Amlin contouring program, devised as part of this 

thesis. The relevant parts of TetSim are described in the following section, along 

with the additional structures required by Amlin. 

The Amlin data structure 

In the TetSim program, calculations are completed over TINs - Triangulated Ir

regular Networks. A TIN model represents a surface as a set of contiguous, non

overlapping triangles. Within each triangle the surface is represented by a plane. 

For the purposes of contouring, TetSim contains an additional data structure 

known as a ContourMap. This is an unused part of TetSim, required by Amlin, in 

order to calculate and produce contours over a surface. The ContourMap class 

copies the data from the TINs in the data ready for contouring. In addition, 

the ContourMap class contains the options for each contour map, such as which 

method to use and which attributes to assign, as well as a class for the Powell-Sabin 

Subdivision (PSSubdivision) and Butterfly Subdivision (ButterflySurface). The 

ContourMap class also contains the list of normals used to calculate the contours, 

as well as the algorithms used in the contouring. 

Each TIN stores the list of triangles, nodes and edges, and the maximum and 
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minimum values of all nodes within the TIN. If required, each PSSubdivision and 

ButterflySurface stores its TIN inside the class, which is then a separate TIN stored 

in the ContourMap. Each of the subdivision classes contain the algorithm required 

to perform the relevant subdivision, and each ButterflySurface contains its own 

unique control net. 

If we were to produce a contour output for a Butt erfly Subdivided contour map, 

the program would complete the following steps: 

1. Read in data and contour options. 

2. Generate TIN (using TetSim algorithms) and store in ContourMap. 

3. For each level of the Butterfly subdivision: 

(a) Subdivide the surface using the TIN stored in ContourMap, as described 

in Section 4.3. 

(b) Create an edge-vertex map so that we can locate new vertices along 

edges. 

(c) Create an edge-edge map so that we can pair the half-edges made when 

the edge is split. 

( d) Tessellate the edges. 

(e) Build the new faces. 

(f) Once the subdivision process is complete, generate the normals at the 

vertices if required. 

(g) If required, constrain the output to the original surface. 

(h) Replace the original TIN stored in ContourMap with this new triangu

lation. 

4. Calculate the contours over the surface and output to a file. 

As we can see from the list above, there is some inefficiency in the programming, 

which may result in the algorithms running slower than optimal. We shall see this 

effect more clearly in the following section. 
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5.2 Results 

For our given data sets, we have contour maps using the natural neighbour method, 

the Worsey-Farin method over a Powell-Sabin subdivision (WFPS) and straight-line 

contours over a butterfly subdivision. Larger versions of the contour maps are given 

in the appendices. The various contour maps for the stratigraphic horizon data are 

given in Figure 5.1, and the run times of the methods are given in Table 5.1. 

(a) Contours using the Natural Neighbour 

method over a retriangulated domain 

( c) Contours over a Butterfly Subdivision 

(b) Contours using the WFPS method 

( d) First Step of Butterfly Subdivision 

Figure 5.1: Comparison of the Butterfly Subdivision with the WFPS and Natural 

Neighbour contouring methods 

Clearly there are differences between the contour diagrams, especially in the 

looped contour in the upper half of the diagram and on the sides of the lower half. 

In the lower half of the figures, the algorithms come to differing conclusions as 

to how the contours should be joined. This is made clearer in the first step of t he 

butterfly subdivision (Figure 5. l (d)) , where t he algorithm produces two loops. In 
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Table 5.1: Run times of the contouring methods used for Figure 5.1. 
Contouring Method No. of Nodes Meshing Time Contouring Time Total T ime 

a) Natural Ne.ighbour 305 0.601 s 0.291 s 0.892 s 

b) WFPS 329 0.617 s 0.306 s 0.923 s 

c) Unconstrained Bu tterfly, Third Step 3221 2.148 s 0.156 s 2.304 s 

d) Unconstrained Butterfly, First Step 224 0.241 s 0.047 s 0.288 s 

producing a smoother contouring, WFPS decides that these are separate contour 

lines to the main contour, whereas recursive butterfly subdivisions include them 

with the main contour. 

The looped contours produced by the different contouring methods again are 

not ident ical, due to the locations and values of the added vertices. The differing 

algorithms introduce new vertices by estimating or interpolating the intermediate 

values, and the contour is drawn considering these vertex values. As contours are 

subject to interpretation, we can not surmise that any of the contours are incorrect. 

For this particular data, however, the WFPS or Natural Neighbour contour maps 

may be preferred as they may appear to be more aesthetically pleasing. In contrast 

to this, the wavy contour at the centre of the surface may not appear to be as 

realistic as the equivalent contour over the butterfly-subdivided surface. This is 

due to the values of the vertices on the original triangulation oscillating between 

different values. The butterfly subdivision smooths this oscillation, whereas the 

WFPS algorithm reproduces it. Both methods produce areas which are arguably 

'more realistic' and areas which are 'less realistic' than hand-contoured data, and 

so preference to either of the algorithms is subject to the user's prior knowledge. 

Comparing the timings of the methods, clearly contours over the first step of the 

unconstrained butterfly subdivision run faster, although we can see from Figure 5.1 

this contouring has jagged edges and sharp corners. After the third subdivision, the 

contours are smoother and sharp corners are minimised. The cost of this smoothing 

is the time taken to run the algorithm - almost two and a half times longer than 

the WFPS method. This is due to the increased number of nodes created by the 

algorithm. If we were to compare the numbers of nodes, WFPS takes almost a 

second to run through and calculate 329 nodes whereas the third step of the butterfly 

subdivision calculates ten times as many nodes in 2.3 seconds. After this example 

96 



5.2. RESULTS 

it is clear that we would have to balance between smooth, aesthetically pleasing 

contours and a contouring algorithm that runs in the shortest time. Before we 

compare the run times of the algorithms any further, we must next investigate how 

the algorithms deal with missing data. 

If we were to receive a data set which contains missing data such as holes. 

or areas where data should have been collected but instead the data was missing 

or had to be rejected (for example, where the measuring instrument failed and 

produced clearly anomalous data) , the algorithms are able to cope with this and 

the respective contours are given in Figure 5.2. We can see that the hole appears 

to be smaller in the butterfly subdivision, and when we overlay the original triangle 

on the subdivision (Figure 5.2(d)), we see that this is, in fact, true. This is due 

to the smoothing nature of the subdivision process, as described previously. This 

could either be used as an advantage where we can estimate contours over missing 

data and effectively 'fill in the gaps', or we could trim the contours where they no 

longer lie inside the original domain and hence produce a completed contour map 

over the original triangulation. 

The surface with minor perturbations dataset, shown in Figure 5.3, highlights 

the difference between the coarseness of the mesh, along with the differences between 

straight line and Bezier curved contours. The run times of the methods are given 

in Table 5.2. 

Table 5.2: Run times of the contouring methods used for Figure 5.3. 
Contouring Method No. of Nodes Meshing Time Contouring Time Total Time 

a) Natural Neighbour 1589 2.894 s 0.385 s 3.279 s 

b) Straight Line over PS subdivision 1673 3.017 s 0.981 s 3.998 s 

c) WFPS 1673 3.017 s 0.726 s 3.743 s 

d) Unconstrained Butterfly, First Step 1137 1.089 s 0.203 s 1.292 s 

e) Unconstrained Butterfly, Third Step 4417 9.476 s 0.510 s 9.986 s 

In Figure 5.3(a), we can clearly see that straight-line contours over a triangu

lation which has not been subdivided produces the least realistic contours, as 

this contains many jagged contours which often taper off to a point. Doing a 

simple subdivision, such as Powell-Sabin in Figure 5.3(b) , improves the straight

line contours somewhat , with a reduced number of contours with sharp corners. 
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(a) Natural Neighbour Contours over the 

original triangulation 

(c) Contours over a Butterfly Subdivision 

5.2. RESULTS 

(b) Contours using the WFPS method 

( d) Contours over a Butterfly Subdivision, with 

the original hole overlaid 

Figure 5.2: Contour Maps of Altitude Values Over A Stratigraphic Horizon, 

Produced Over Successive Recursions of the Butterfly Subdivision Algorithm 
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(a) Contours using the (b) Straight Line Contours (c) Contours using the WFPS 

Natural Neighbour method over a Powell-Sabin Triangle method 

over a retriangulated domain Subdivision 
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( d) Contours over the first ( e) Contours over the third 

level of Butterfly Subdivision level of Butterfly Subdivision 

Figure 5.3: Comparison of the Butterfly Subdivision with the WFPS and Natural 

Neighbour contouring methods 
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Performing the Worsey-Farin algorithm over this triangle subdivision smooths 

the contours, producing a satisfactory contour map of the data. When using a 

butterfly subdivision, however, the first level of subdivision produces contours which 

differ to the other contouring methods (Figure 5. 3 ( d)). This is particularly true in 

the lower-left area of the diagram where originally we have two contours which 

pass close to each other, but by the third level of subdivision we see that the 

connection between these two contours changes, producing different contour lines 

(Figure 5.3(e)). Comparing the final contour map with the WFPS contours we can 

see that both contours are similar, and so both of these methods produce comparable 

outputs. 

Comparing the timings of the methods, again contours over the first step of the 

unconstrained butterfly subdivision run faster, although we can see from Figure 5.3 

this contouring still has jagged edges and sharp corners. As the data sets get more 

complex and the number of nodes increase, we can see that the first stage of the 

butterfly subdivision algorithm outperforms the other algorithms when it comes to 

speed. After the third subdivision, however, the contours are again smoother and 

sharp corners are minimised, although again there is extra run time for the third 

subdivision. 

In addition to these sample data sets, we can also compare the contouring 

methods to a hand-drawn contour map. The data set is from Boomer data taken 

in the Irish Sea. There are two sets of data which have been contoured- the depth 

of the seabed below datum sea-level and the depth to first reflector, i. e. the first 

discontinuity in wave velocity (after the sea bed) . The method of data collection 

involved taking measurements from the rear of a boat travelling on the surface of 

the water. The boat travelled in a series of almost parallel lines, resulting in many 

data points parallel to the boat, but few perpendicular to the direction of travel. 

This is common in geological modelling and repeats the importance of interpolation 

between data points. 

The WFPS and straight-line contours over a butterfly subdivision are in Figure 

5.4, and the hand-drawn contours are in Figure 5.5. Comparing the contour methods 

with t he hand-drawn contours, we see that both t he butterfly subdivision and WFPS 
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methods produce contour maps which are visually similar to each other, and each 

have 11 contour levels. The hand-drawn contour maps only have 6 contour levels 

and so it is more difficult to directly compare with the computerised contour maps, 

although we can see that the contour maps are comparable, particularly the contours 

for the depth to first reflector. The contours for the depth of the seabed below datum 

sea-level, however, differs in a few places. On the hand-drawn contour map we have 

points in a region which have similar values, apart from one point lying within this 

region which has a value significantly different to the rest. This is not unusual 

with real data, and so it is up to the user to decide whether this is significant or 

erroneous data with respect to the area where the data was collected. When using 

the data to produce computerised contours, it was impractical to use the whole 

data set. As the data are arranged primarily in rows, the resulting triangulations 

would consist mainly of thin triangles with very little change in data values from 

one triangle to the next. Node reduction was performed on the data, which removed 

a high proportion of the nodes that provided no extra information, as well as some 

of the 'erroneous' nodes. This is reflected in the contour maps as some of the 

contours drawn in the hand-drawn contour maps are not present in the computerised 

contours. Both computerised contours contain extra contours on the left-hand side 

of the diagram. These are represented on the hand-drawn contours by isolated 

contour sections, and as we do not have the data between these sections, either 

contour is acceptable. From the data sets we have investigated, there is evidence 

to show that both WFPS and butterfly subdivision-based contouring algorithms 

produce smoother, improved contours compared to straight-line contours on the 

original domain. From the Boomer data we can see that these contouring methods 

are comparable to hand-drawn contours, producing similar, but not identical results. 

It is almost impossible for the contouring methods to produce results which are 

identical to hand-drawn contours, as often the person who is producing the hand

drawn contours has prior knowledge of the area where the data were collected, and 

may interpret the data differently to the computer methods. 

When comparing the timings of the algorithms, again butterfly subdivision takes 

around two and a half times longer to run than WFPS. 

101 



5.2. RESULTS 

Table 5.3: Run times of the contouring methods used for Figure 5.4. 
Contouring Method No. of Nodes Meshing Time Contouring Time Total Time 

a) WFPS, depth of seabed 371 0.705 s 0.349 s 1.054 s 

b) WFPS, depth to first reflector 371 0.705 s 0.337 s 1.042 s 

c) Bu tterfly, depth of seabed 3801 2.443 s 0.181 s 2.624 s 

d) Butterfly, depth to first reflector 3801 2.443 s 0.175 s 2.618 s 

In all of the examples given, butterfly subdivision contouring methods takes a 

significantly longer than the other methods which have been investigated. However, 

if we were to consider the first level of recursion the algorithm in fact runs significantly 

fast er , at a cost of smoothness of contours. This supports the hypothesis which 

claims that the new butterfly algorithm runs faster than existing contouring al

gorithms. If we are concerned about producing smooth contours, then we must 

consider further recursions of the butterfly subdivision algorithm. In its current 

state, further recursions are time-consuming, meaning we can no longer claim that 

the algorithm is faster than other methods. 

The meshing for butterfly subdivision appears to be the cause of this extra time, 

and so it would be helpful to investigate the code behind the meshing algorithm to 

see whether any improvements could be made. We will comment on this further in 

the next chapter. 
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(a) WFPS contour map for the depth of the seabed 

j::::::::;=. 

(b) WFPS contour map for the depth to first reflector 

(c) Butterfly subdivision contour map for the depth of the seabed 

( d) Butterfly subdivision contour map for the depth to first reflector 

Figure 5.4: WFPS and Butterfly subdivision contour maps of the Boomer data 
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Figure 5.5: Hand-drawn contour maps of the Boomer data 
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Conclusions 

6.1 Summary 

In this thesis, we have analysed various methods that are u_sed to produce contour 

maps over a given data set. In this chapter, we aim to summarise the achievements 

of this thesis and highlight how they contribute to the literature on contouring 

algorithms. We also discuss areas for further research. All contouring methods 

have some restrictions or undesirable effects, and these have been highlighted in the 

chapters. 

In chapter 2, we reviewed many surface approximation/interpolation methods, 

such as triangle based interpolation. This led to investigating natural neighbour 

bases as a new method of interpolation for contouring algorithms. We also looked at 

a standard method of interpolation - Bezier curves, as well as its generalisations into 

B-splines and NURBS. As B-splines and NURBS are not required for the contouring 

algorithms, they are mentioned for completeness and not investigated further. This 

chapter provided the basis for the methods discussed in the future chapters. 

Straight-line contours are able to contour data sets where other methods may 

not be able to, although often these contours are jagged and contain sharp corners. 

Straight-line contours using the natural neighbour algorithm improve on straight

line contours over a standard triangulation, but can often still appear jagged. If the 

mesh is retriangulated with a finer triangulation, the natural neighbour algorithm 

produces smoother contours. Although the natural neighbour algorithm acts locally, 
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resulting in a faster retriangulation, the triangulation process itself must produce 

a Delaunay triangulation for the natural neighbour algorithm to work. This means 

that any subdivision will not be sufficient for a contour map, and often data which 

has been provided already with a triangulation would either need a check to ensure 

that the triangulation is Delaunay, or would need to be retriangulated. This could 

be seen as an inefficient method since it may discard information which can be 

useful, particularly the connectivity between nodes. 

In chapter 3 we began to examine contouring algorithms, starting with the 

Worsey-Farin contouring algorithm. This algorithm produces a C 1 continuous inter

polation if the input triangulation has been subdivided. For simplicity, we chose 

the Powell-Sabin six triangle subdivision, using the incentre as the interior point. 

The choice of incentre guaranteed that the interior point would indeed lie inside the 

interior of each triangle, which was not always the case when using the circumcentre. 

We then gave a definition of Bezier ordinates used for the Worsey-Farin algorithm. 

We then investigated the nature of the connection between boundary points on 

each triangle, giving a sketch proof of Lemma 3.1 from Worsey and Farin [49]. In 

order to make the algorithm more readable the two cases of connecting the boundary 

points are reproduced in a different format to the original, as well as reproducing 

the orignal lemmas required for the algorithm. 

The Worsey-Farin algorithm has been reproduced, including the correction by 

Bloomquist [4], later in the chapter. The original lemmas and full algorithm is 

provided for completeness and for the main reason that the contours produced by 

the Worsey-Farin algorithm are the major source of comparison to the butterfly 

subdivision. 

Due to the nature of the Worsey-Farin algorithm, some contouring combinations 

cannot be drawn. Some examples of these are given in Figure 6.1. If these cases 

do occur, the data can be subdivided again so that the contours lie in different 

triangles , although it is difficult to detect when we would need to do this. 

At the end of chapter 3 we compared the contours given by three different 

methods, and we saw that the contours produced using the Worsey-Farin algorithm 

were smooth. This was a significant improvement over both the straight line 
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Figure 6.1: Contours not possible using WFPS. 

contours and contours using the Natural Neighbour algorithm, although once the 

domain was retriangulated to produce triangles of a similar size to that of the 

Powell-Sabin subdivision, the Natural Neighbour contours were almost identical. 

This showed that the Natural Neighbour algorithm can produce similar results for 

similar data sets. 

Chapter 4 concentrated on investigating the butterfly subdivision method. The 

original subdivision scheme devised by Dyn et al [18] was restricted to a finite 

number of triangulations and so we investigated Dyn et al's extended butterfly 

scheme, and then Zarin et al's modified butterfly scheme. This enabled us to obtain 

C1 continuous surfaces, including at the boundary. Once we had C1 continuous 

surfaces, we used the butterfly subdivision method to produce a contour map of our 

data sets. This has not previously been done in the available literature, and so this 

thesis gave a different method for contouring data. 

When we compared the contour maps of the third and fourth recursions of the 

stratigraphic horizon data (Figure 6.2) , we only noticed a minor difference in the 

contours. Comparing the fourth and fifth recursion contour maps we noticed that 

there is no real difference in output. For general use, the third recursion is usually 

sufficient to produce a smooth contour, with the fourth recursion being used when 

we observe any remaining jagged contours. 

The butterfly subdivision in its original form is different to the other contouring 

methods as the boundary expands beyond the original domain, whilst still respecting 

the original nodes, including those at the boundary. This can be seen as either an 

advantage, or a disadvantage, depending on the results required. The expansion 
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beyond the boundary enables us to estimate the nature of the domain, and hence 

the contour, beyond the boundary. This can be particularly advantageous if the 

domain contains missing data and holes , as the expansion into these holes makes 

it more straightforward to estimate the values of the missing data. The problem 

with this expansion is that if we wished to retain the original domain we would 

need to perform some trimming or even retriangulation near the boundary. This 

is especially important when the domain forms part of a larger data set, where 

expanding beyond the boundary would cause an overlap of data. 

Constraining the boundary removes this problem, although the computational 

time taken to find and move the nodes which lie beyond the boundary is significantly 

higher - especially when performing a constrained butterfly subdivision over many 

recursions. 

The current constraining algorithm increases the computational time significantly 

- more than doubling the total run time at each stage. This is mainly due to the 

constraining algorithm searching through every edge and node to see whether the 

nodes could potentially lie outside the boundary. Once these nodes are determined, 

the algorithm can then constrain them to the boundary. It is possible that during 

the subdivision process, the boundary nodes could be stored as a separate list of 

nodes, so that the constraining algorithm could check just these nodes and constrain 

them when necessary. This would significant ly reduce the computational time and 

enable the constrained butterfly subdivision to be a viable candidate for contouring. 

However, the current data structures do not allow for this scenario, and so to improve 

on algorithm efficiency a new data structure would need to be devised. 

In addition to constraining the boundary, we could also adaptively subdivide 

based on areas of interest. The problem with adaptive solutions for subdivision 

surfaces is that, unlike patches such as Bezier patches, subdivision surfaces do not 

easily provide a closed-form parametrisation. The only easy way to tessellate them 

is through recursion. We rely on the fact that as we recursively subdivide, we 

are converging on a limit surface. Regardless of how we tessellate, we should be 

converging on the same limit surface. 

If we were to adaptively tessellate, we have changed the control net. Some of 

108 



6.1. SUMMARY 

the net might be at a higher level of tessellation than the rest, which means that 

our net is no longer converging to the same surface. This is a worst-case scenario 

for scalable geometry as it produces errors which cannot be simply avoided. 

(a) Third Recursion (b) Fourth Recursion 

( c) Fifth Recursion 

Figure 6.2: Contour Maps of Maximum Burial Depth Values Over A Stratigraphic 

Horizon, Produced Over Successive Recursions of the Butterfly Subdivision 

Algorithm 

The main aim of this thesis was to prove that our new butterfly subdivision 

contouring algorithm will run faster than existing contouring methods, whilst also 

being able to contour difficult areas such as at discontinuit ies. 

We have seen in the five examples of this thesis that on the same number of 

nodes the Butterfly subdivision algorithm is faster t han natural neighbour contours, 

straight line contours over a Powell-Sabin subdivision and the WFPS contouring 

algorithm, proving the hypothesis to some extent. However, the drawback is that 

the contours do not appear to be as smooth as the other methods. In order for the 
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contours to be as smooth as the other methods, further subdivisions are required 

and so in its current form this is the time-consuming part of the algorithm. If 

smoothness is used as a requirement for contouring, then we cannot currently prove 

the hypothesis to be completely true. This falls short of demonstrating universal 

improvement for the algorithm, but is consistent with the state aims within the 

confines of PhD research. However, on this result we may have one ( or both) of the 

following scenarios: 

• The current subdivision algorithm is inefficient, with many areas of code which 

can be streamlined. This could be the main cause of the time-consuming part 

of the algorithm. Improved algorithm design will decrease the runtime of the 

program, and may result in completely proving the hypothesis. 

• There may not be one algorithm which can produce smooth contours over all 

a data sets, and run faster than all other contouring algorithms. If this is the 

case then the original aims may not be realisable, and so the way forward may 

be t o develop fast codes for specific classes of problems, rat her than seek one 

algorithmic solution that excels in all contouring problems. 

In addition to the main aims, the following contributions have been made: 

• We have investigated natural neighbour bases for interpolation for contouring 

algorithms. This is generally ignored since triangulations are normally used 

as the basis. Natural neighbour bases provide a reasonable alternative since 

natural neighbours arise from the dual of the Delaunay triangulation, and 

provide comparable results. If the data changes and requires retriangulation 

in specific regions, the natural neighbour algorithm proves invaluable as a 

retriangulation is not required - saving computing time over interpolations 

that require a mesh. 

• We also investigated and implemented the butterfly subdivision scheme for 

contouring algorithms. The butterfly scheme is normally used for surface 

approximation, but as contours are level sets on a surface it follows that 

contouring algorithms could be used on a butterfly subdivided surface. These 
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contours are comparable to other contouring algorithms, and due to the nature 

of the subdivision, contours over the butterfly scheme enable us to estimate 

contours beyond the boundary as well as over areas where we have missing 

data. 

• If the expansion beyond the boundaries is not required, we have derived and 

implemented a novel constrained butterfly subdivision scheme for contouring 

algorithms. This offers the same flexibility as the standard, unconstrained 

subdivision scheme, with the additional property that it respects the original 

boundaries of the input data. We believe that the results obtained in this 

thesis will be of use to persons wishing to use a contouring algorithm to 

estimate beyond the boundary, as well as within the original constraints of 

t he boundary. We also offer an alternative method of contouring which can be 

used when other methods fail. We are confident t hat both the unconstrained 

and constrained butterfly subdivisions would cope with general surfaces in 

three dimensions, although we have not proven that this will be the case for 

all surfaces. 

• The main contouring algorithms mentioned in this thesis, namely contours 

using natural neighbour bases, the WFPS contouring algorithm, and both the 

unconstrained and constrained butterfly subdivisions can be found as part of 

the Amlin contouring program. 

6.2 Further work 

Following the investigations described in this thesis, a number of projects could be 

taken up, including the following listed below: 

• Adaptive tessellation - the current adaptive tessellation changes the original 

triangulation, and does not converge to the same surface as recursive subdivision. 

This is because we have changed the control net. Some of the net might be 

at a higher level of tessellation than the rest, which means that our net is no 

longer converging to the same surface. It is likely that an algorithm could be 
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produced to either counteract the changing of the control net, or to prevent 

it changing from the outset, although as discussed in this thesis the benefits 

of adaptive Butterfly Subdivision may outweigh the cost of doing so. 

• The Butterfly Subdivision schemes described here have not been used over 

folded surfaces. It has yet to be proven whether Butterfly Subdivided surfaces 

can ( or indeed cannot) cope with folded surfaces. 

• The expansion in the unconstrained Butterfly Subdivision was shown to give 

a good estimate in the data containing a manually introduced hole. The 

interesting part would be to investigate whether the Butterfly Subdivision 

always gave a good estimate beyond the original data boundary, and whether 

the expansion could be used for data which is significantly further than the 

original data set. 

• The current code for constraining the boundaries of t he data set is inefficient 

as it searches through all edges (internal and external) to see which external 

edges have been expanded beyond the boundary. This search happens at 

each stage of the subdivision and so clearly there is scope for increasing the 

efficiency of the program at this point. 

• In its current form, the butterfly subdivided contouring algorithm runs slower 

than the other algorithms, although t his is due to the inefficiency of the 

computer coding rather than the algorithm itself. This is further slowed when 

constraining all nodes to the boundary of the data set, as the current coding 

searches through the complete data rather than just the edges and nodes which 

could potentially lie beyond the boundary. If this part of the coding was made 

more efficient the program would run significantly faster - especially on large 

data sets and fine meshes. 

• Even if program efficiency is improved, there may not be one algorithm which 

can produce smooth contours over all a data sets, and run faster than all 

other contouring algorithms. If this is the case then the next stage would be 
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6.2. FURTHER WORK 

to develop fast codes for specific classes of problems, rather t han seek one 

algorithmic solution that excels in all contouring problems. 
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A stratigraphic horizon with a 

discontinuity 

Figure A. l: Original Triangulation 
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Figure A.2: Contours using the Natural Neighbour method 

Figure A.3: Contours using the Natural Neighbour method over a retriangulated 

domain 
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Figure A.4: Contours using the WFPS method 

Figure A.5: First Recursion of the Butterfly Subdivision Algorithm 
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Figure A.6: Second Recursion of the Butterfly Subdivision Algorithm 

Figure A. 7: Third Recursion of t he Butterfly Subdivision Algorithm 
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Figure A.8: Fourth Recursion of the Butterfly Subdivision Algorit hm 

Figure A.9: Fifth Recursion of t he Butterfly Subdivision Algorit hm 
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A surface with minor perturbations 
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Figure B. l: Linear contours over the original triangulation 
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Figure B.2: Straight Line Contours over a Powell-Sabin Triangle Subdivision 
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Figure B.3: Contours using the WFPS method 
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Figure B.4: First Recursion of the Butterfly Subdivision Algorit hm 
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Figure B.5: Second Recursion of t he Butterfly Subdivision Algorithm 
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Figure B.6: Third Recursion of the Butterfly Subdivision Algorithm 
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Constrained Butterfly Subdivision 

Figure C. l: Unconstrained Second Recursion of the Butterfly Subdivision Algorithm 

for a Stratigraphic Horizon with a discontinuity 
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Figure C.2: Constrained Second Recursion of t he Butterfly Subdivision Algorithm 

for a Stratigraphic Horizon with a discontinuity 
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Figure C.3: Unconstrained Second Recursion of the Butterfly Subdivision Algorithm 

for a Surface With Minor Perturbations 
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Figure C.4: Constrained Second Recursion of the Butterfly Subdivision Algorithm 

for a Surface With Minor Perturbations 
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A stratigraphic horizon with a 

discontinuity containing missing data 

Figure D.1: Natural Neighbour Contours over the original triangulation 
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Figure D.2: Contours using the WFPS method 

Figure D.3: Contours over a Butterfly Subdivision 
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Figure D.4: Contours over a Butterfly Subdivision, with the original hole overlaid 
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Boomer data 
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(a) WFPS contour map for the depth of the seabed below datum sea-level 
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(b) WFPS contour map for the depth to first reflector 

Figure E.l: WFPS contour maps of Boomer data 
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(a) Butterfly subdivision contour map for t he depth of t he seabed below datum sea-level 
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(b) Butterfly subdivision contour map for t he depth to first reflector 

Figure E.2: Butterfly subdivision contour maps of Boomer data 
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Figure E.3: Hand-drawn contour maps of the depth of the seabed values of the Boomer data 
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