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Abstract 20 

Background: This study investigated the effects of hypoxic exercise with and without tart 21 

cherry supplementation on post-exercise hypotension (PEH). Method: In a randomized order, 22 

12 healthy young adults (9 men and 3 women) completed cycle exercise to exhaustion i) in 23 

normoxia without any supplementation (Norm), ii) in hypoxia (13% O2) with placebo (Hypo), 24 

and iii) in hypoxia with tart cherry supplementation (Hypo+TC). Supplements were supplied 25 

for 5 days pre-trial (TC was 200 mg anthocyanin per day for 4 days and 100 mg on day 5). 26 

Results: Cycle exercise total energy expenditure was greater in Norm than Hypo and Hypo+TC 27 

(P<0.001) with no difference between Hypo and Hypo+TC (P=0.41). Mean arterial pressure 28 

(MAP) decreased during recovery in all trials (main effect of time, P<0.001), with no difference 29 

in PEH between the trials (P>0.05, change (Δ) in MAP from pre-exercise at 60 min recovery, 30 

mean difference, Norm Δ-4.4 mmHg, Hypo Δ-6.1 mmHg, and Hypo+TC Δ-5.2 mmHg). 31 

Cardiac baroreflex sensitivity decreased during recovery in all trials (P<0.001) and was lower 32 

in Hypo than Norm and Hypo+TC (main effect of trial, P=0.02). Conclusion: Post-exercise 33 

hypotension was not increased after exercise in hypoxia, with or without tart cherry 34 

supplementation, compared to exercise in normoxia.  35 

 36 

Keywords: baroreflex sensitivity, hypoxic vasodilation, mean arterial pressure, polyphenol 37 

 38 
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Introduction 39 

Arterial blood pressure (BP) is reduced for up to 24 h following a single session of physical 40 

exercise; a phenomenon called “Post Exercise Hypotension (PEH)” (Halliwill et al., 2014). It 41 

is clinically important to investigate factors that enhance PEH as the magnitude of PEH after 42 

acute exercise relates to the beneficial BP-lowering effects of exercise training (Kleinnibbelink 43 

et al., 2020). While various factors such as exercise mode, intensity, and duration, and 44 

environmental temperature may influence PEH, few studies have investigated the effect of 45 

hypoxia on PEH (Halliwill et al., 2014; Horiuchi and Oliver, 2023). PEH follows a decrease in 46 

peripheral vascular resistance (Brito et al., 2014), and as hypoxia enhances vasodilation (Joyner 47 

and Casey, 2014), greater PEH may be anticipated after exercising in hypoxia than normoxia, 48 

which has been confirmed in some (Horiuchi et al., 2016a; 2018; Saito et al., 2019), but not all 49 

previous studies (Fornasiero et al., 2021; Horiuchi et al., 2022; Kleinnibbelink et al., 2020). BP 50 

may not be reduced after exercise in hypoxia due to an attenuation of baroreflex sensitivity 51 

(BRS) and a shift in cardiac autonomic function to sympathetic activity (Bourdillon et al., 2023; 52 

Halliwill et al., 2014).  53 

Tart cherries, and other dark-coloured berries, are rich in antioxidants and polyphenols 54 

including anthocyanins (Keane et al., 2016). In normoxic conditions, anthocyanin-rich 55 

supplements have been shown to increase peripheral artery diameter and blood flow (Barnes et 56 

al., 2020; Cook et al., 2023; Matsumoto et al., 2005), and reduce peripheral vascular resistance 57 
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(Barnes, 2020), which precedes PEH (Halliwill et al., 2014). Moreover, a recent study in 58 

normoxia reported a larger decrease in post-exercise systolic blood pressure, but not diastolic 59 

or mean arterial pressure (MAP), following 7 days of an anthocyanin-rich supplement 60 

compared to a placebo (Shan and Cook, 2023). These vascular effects may be mediated by 61 

polyphenols and circulating metabolites' improving nitric oxide bioavailability (Bell and 62 

Gochenaur, 2006; Xu et al., 2004) and reducing oxidative stress, which is elevated post-exercise 63 

and in hypoxic environments. PEH may also be expected to be greater after hypoxic exercise 64 

and anthocyanin-rich supplementation compared to normoxic or hypoxic exercise alone, as 65 

antioxidant supplementation has previously been shown to restore the imbalance of cardiac 66 

autonomic nervous activity, as assessed by heart rate variability (HRV) in humans (Weggen et 67 

al., 2021), and improve BRS in rats (Alves et al., 2015; Garcia et al., 2017). 68 

Accordingly, this study investigated the effects of tart cherry (TC) supplementation on 69 

PEH after exercising in hypoxia. We hypothesized that the magnitude of PEH would be greater 70 

in hypoxia compared to normoxia, and PEH would be further accentuated with TC 71 

supplementation.  72 

 73 

Methods 74 

Participants 75 

The present report presents additional recovery and normoxia data from previously published 76 
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investigations that examined tart cherry supplementation effects on hypoxic exercise 77 

performance (Horiuchi et al., 2023). This study was approved by the Ethical Committee of 78 

Mount Fuji Research Institute in Japan and was performed following Declaration of Helsinki 79 

guidelines (No. 202001). Of the 13 participants in the previous study, 12 (9 men and 3 women) 80 

performed an additional normoxic exercise and recovery experimental trial. The participants’ 81 

age, height, and body mass were 21 ± 1 years, 169 ± 7 cm, and 62.1 ± 8.9 kg, respectively 82 

(values are mean ± standard deviation [SD]). All participants were non-smokers, had no history 83 

of cardiovascular disease, and had not been exposed to an altitude higher than 1,500 m in the 6 84 

months before the study.  85 

 86 

Study design  87 

This study consisted of three trials (Figure 1): (1) normobaric normoxic exercise without any 88 

supplementation (Norm); (2) normobaric hypoxic exercise (13% O2) with a placebo (Hypo), 89 

and (3) normobaric hypoxic exercise (13% O2) with TC supplementation (Hypo+TC). In a 90 

double-blinded and randomized manner, each participant ingested a placebo or TC capsule (Tart 91 

cherry 1200 mg containing 100 mg of anthocyanin, Nature’s Life, Orem, UT, USA) twice per 92 

day for 4 days before the experimental trial, and once on the day of the experimental trial 2 h 93 

before beginning excise, which is consistent with studies reporting hemodynamic changes after 94 

single doses and 4–7 days of anthocyanin-rich supplementation (Matsumoto et al., 2005). 95 
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Participants were provided a list of antioxidant-rich foods and instructed to avoid these while 96 

in the study.  97 

 98 

Experimental procedure 99 

The exercise was performed on a cycle ergometer (COMBI232-C, COMBI, Japan) in an 100 

environmental chamber (24 C°, 50% relative humidity, TBR-4, 5SA2GX, Tabai Espec Co. Ltd., 101 

Tokyo, Japan). After a 15-minute semi-recumbent rest, participants performed incremental leg 102 

cycling exercise to exhaustion, consisting of three 4 min incremental stages (40-80-120 Watts 103 

[W] for men, and 30-60-90 W for women, with each stage lasting 3 min), followed by an 104 

increase in workload of 20 W (men) or 10 W (women) per min until exhaustion. The pedal 105 

cadence was set at 60 rpm using a metronome. After exhaustion, the participants sat semi-106 

recumbent for 60 minutes in normoxia in all trials.  107 

 108 

Measurements 109 

At rest and during exercise, pulmonary oxygen uptake (V
．

O2) and carbon dioxide output (V
．

CO2) 110 

were measured by a metabolic cart (AE-310S, Minato Medical Science, Osaka, Japan) and beat-111 

by-beat BP was measured using finger photoplethysmography at the middle or index finger 112 

(MUB-101; Medisens Inc., Tokyo, Japan) as the time-averaged from the beat-by-beat pressure 113 

wave (Horiuchi et al., 2016b). Beat-by-beat BP data were stored with a sampling frequency of 114 
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200 Hz by a field data recorder (es8; TEAC, Tokyo, Japan), and transferred to a laptop computer 115 

for further analysis. Based on a previous study (Horiuchi and Thijssen, 2020), heart rate (HR) 116 

was measured using a portable HR monitor (Check-My-Heart, TRYTECH Co., Ltd., Tokyo, 117 

Japan), and HRV was calculated by accompanying HRV analysis software. Participants were 118 

instructed to breathe normally throughout testing. Fingertip blood samples (0.3 μL) were taken 119 

to measure blood lactate concentration (Lactate Pro 2LT-1730; Arkray, Tokyo, Japan) pre-120 

exercise, 5, 20, and 60 min of recovery. Total urine samples were collected pre-exercise and 1 121 

h post-exercise and analyzed for urinary 8-hydro-2’ deoxyguanosine (8-OHdG), an index of 122 

oxidative DNA damage, as described previously (Horiuchi et al., 2023). 123 

  124 

Data Analysis 125 

To calculate spontaneous cardiac BRS (cBRS), the beat-to-beat systolic BP (SBP) time series 126 

and RR interval were analyzed for more than 3 consecutive beats, with increasing or falling 127 

direction from a 5-min steady-state data segment at rest and during recovery (Carrington and 128 

White, 2001; Horiuchi and Oliver, 2023; Ogoh et al., 2005). Linear regression was applied to 129 

each baroreflex sequence, with only sequences with an R2 > 0.85 accepted (Horiuchi and Oliver, 130 

2023; Iellamo et al., 1994). The overall average slope of the SBP–RR interval was calculated 131 

as spontaneous cBRS. Time domain HRV was calculated by the standard deviation of the 132 

normal-to-normal intervals (SDNN) and the root-mean-square of successive differences in R-133 
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R interval (RMSSD). In the frequency domain, the extent of very low-frequency oscillations 134 

(0.0033-0.04 Hz), low-frequency oscillations (LF: 0.04–0.15 Hz), and high-frequency 135 

oscillations (HF: 0.15–0.4 Hz) was quantified using a fast Fourier transformation (Horiuchi and 136 

Thijssen, 2020). Total exercise energy expenditure (EE) was calculated using V
．

O2 and V
．

CO2 137 

as follows: Total EE (J s-1) = (3.869 × V
．

O2) + (1.195 × V
．

CO2) × 4.168 / 60 × 1000 138 

where, the unit of V
．

O2 and V
．

CO2 were liter per minute (Horiuchi et al., 2017).  139 

 140 

Statistics 141 

Data are presented mean ± SD. Statistical analyses were performed using commercial software 142 

(Jamovi, 3.2.3). One-way repeated measures analysis of variance (ANOVA) compared the total 143 

EE across the three trials, and changes in urinary 8OHdG excretion. A two-way (time × trials) 144 

repeated ANOVA compared time course changes in all physiological variables (BPs, HR, HRV, 145 

and blood lactate). For further comparisons, Tukey’s post hoc test was used. Effect size was 146 

calculated as η2, defined as small (η2 = 0.01), medium (η2 = 0.06), and large (η2 = 0.14) (Lakens, 147 

2013). Statistical significance was set at P < 0.05. The normality of the data was examined 148 

using the Bartlett and Levene test. If equal variance failed, logarithmic transformation data were 149 

used for further analysis (HF and LF/HF). 150 

 151 

Results 152 
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Cycle exercise total EE was detected to be different between the trials (F=34.5, P<0.001, 153 

η2=0.21), where total exercise EE in Norm (846±189 J s-1) was greater than Hypo (672±125 J 154 

s-1) and Hypo+TC (692±153 J s-1) (P<0.001, respectively), with no differences detected 155 

between Hypo and Hypo+TC (P=0.41). 156 

 157 

During the 60 min recovery, an interaction effect was found for MAP (F=1.86, P=0.045, 158 

η2=0.013), but not for SBP and DBP (Figure 2). Mean arterial pressure decreased in all trials 159 

(main effect of time, F=14.51, P<0.001, η2=0.15), with no difference detected in PEH between 160 

trials (P>0.05, change (Δ) in MAP from pre-exercise at 60 min recovery, mean difference [95% 161 

confidence interval], Norm Δ–4.4 [–6.0, –2.8] mmHg, Hypo Δ–6.0 [–8.5, –3.7] mmHg, and 162 

Hypo+TC Δ–5.2 [–8.8, –1.6] mmHg, Figure 2A). 163 

 164 

Cardiac BRS was reduced during recovery compared to pre-exercise (main effect of time, 165 

F=59.55, P<0.001, η2=0.62). Moreover, a main effect of trial was detected (F=4.45, P=0.02, 166 

η2=0.02), where overall cBRS was lower in Hypo than Norm (P=0.03) and Hypo+TC (P=0.06), 167 

with no difference between Norm and Hypo+TC (P=0.74, Figure 3A). No trial or time effects 168 

were detected for HR. An interaction was detected for HR due to higher resting HR on Hypo 169 

and Hypo+TC than Norm (F=2.29, P=0.01, η2=0.01) (Figure 3B). There was no interaction or 170 

and trial effects in blood lactate (Figure 3C). For HRV metrics, no interactions or main effects 171 
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of time were detected. However, regardless of the trial, cardiac parasympathetic activity indices 172 

(SDNN, RMSDD, log [HF]) were lower, and cardiac sympathetic activity index (log [LF/HF]) 173 

was higher during recovery compared with pre-exercise (Table 1). At 1 h post-exercise, changes 174 

in urinary 8-OHdG excretion from pre-exercise were 5.2±4.4 in Norm, 5.3±3.1 in Hypo, and 175 

3.4±2.7 ng kg-1 h-1 in Hypo+TC, with a trend for a smaller increase in 8-OHdG excretion on 176 

Hypo+TC than Hypo (P=0.08).   177 

 178 

Discussion 179 

Our study showed that incremental leg cycling until exhaustion leads to reductions in 180 

MAP of 4–6 mmHg after exercise in untrained men, supporting the presence of PEH. These 181 

findings confirm the results of previous studies showing PEH after various exercise intensities, 182 

durations, and types (Jones et al., 2021; Marcal et al., 2021; Pimenta et al., 2019). In contrast 183 

to our hypothesis, PEH was not increased after exercise in hypoxia, with or without tart cherry 184 

supplementation, compared to exercise in normoxia. One possible explanation is the exercise 185 

was performed until exhaustion, which resulted in greater exercise energy expenditure and 186 

absolute work in Norm than Hypo or Hypo+TC. This is consistent with a recent study that 187 

revealed the magnitude of PEH was not different between normoxia and hypoxia when the 188 

absolute work of exercise was matched (Fornasiero et al., 2021). These findings have good 189 

ecological validity as those exercising in hypoxic conditions normally reduce workload due to 190 
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increased perception of effort (Rossetti et al., 2017).  191 

Tart cherry supplementation before exercise in hypoxia did not further accentuate PEH 192 

compared to exercise in hypoxia alone. These unique findings build upon the limited research 193 

in normoxia to examine the effect of anthocyanin-rich supplementation on PEH (Shan and Cook, 194 

2023). Consistent with this previous study we reported no difference in MAP or DBP post-195 

exercise after placebo and anthocyanin-rich supplementation. In contrast, we did not observe a 196 

larger decrease in post-exercise SBP, which may be explained by the different types (tart cherry 197 

vs New Zealand blackcurrant) and dose of anthocyanin-rich supplementation (7 vs 4 days, and 198 

210 vs 100 mg anthocyanin on the final day).  199 

In the present study, HRV indices during recovery indicated a shift in cardiac 200 

autonomic balance compared to pre-exercise, i.e., increased cardiac sympathetic activity and 201 

decreased cardiac parasympathetic activity; however, these indices were not influenced by 202 

hypoxia or tart cherry supplementation. cBRS was lowest during recovery after exercise in 203 

Hypo, which is consistent with previous research indicating hypoxia lowers cBRS (Bourdillon 204 

et al., 2023). cBRS was similar during recovery in Hypo+TC to Norm, suggesting tart cherry 205 

supplementation restored cBRS, lowered by exercise in hypoxia. One possible explanation is 206 

oxidative stress tended to be lower after hypoxic exercise with tart cherry supplementation 207 

compared to a placebo. This explanation is supported by animal research reporting 208 

improvements in baroreflex sensitivity after antioxidant supplementation (Alves et al., 2015; 209 
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Garcia et al., 2017). Improvements in oxidative stress and cBRS sensitivity with tart cherry 210 

supplementation at the same time as similar magnitude of PEH in all trials suggests a limited 211 

regulatory role of oral antioxidants and cBRS in PEH. Previous research has also shown the 212 

intravenous infusion of antioxidants did not influence PEH (Romero et al., 2015). Therefore, 213 

non-antioxidant mechanisms, like increased NO bioavailability, may explain the greater 214 

reductions in post-exercise BP observed after consuming anthocyanin-rich supplements (Shan 215 

and Cook, 2023). 216 

 217 

Conclusion 218 

Post-exercise hypotension was not increased after exercise in hypoxia, with or without 219 

tart cherry supplementation, compared to exercise in normoxia. 220 

 221 

  222 
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Figure legends 387 

Figure 1. Experimental procedure. BP, blood pressure; cBRS, cardiac baroreflex sensitivity; 388 

HRV, heart rate variability; Suppl., supplementation; V
．

O2, oxygen uptake; V
．

CO2, carbon 389 

dioxide output 390 

 391 
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Figure 2. Mean arterial blood pressure (MAP; panel A), systolic blood pressure (SBP: panel 393 

B), and diastolic blood pressure (DBP; panel C) during a 1 h recovery period after exercising 394 

in normoxia (Norm; white circles), hypoxia with placebo (Hypo; black squares), and hypoxia 395 

with antioxidants (Hypo+ TC; gray triangles) trials. Values are mean ± standard deviation (SD). 396 

*†‡ indicates a difference compared with the pre-exercise value in Norm, Hypo, and Hypo+ 397 

TC trials, respectively. 398 
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Figure 3. Cardiac baroreflex sensitivity (cBRS; panel A), heart rate (HR: panel B), and blood 401 

lactate (panel C) during a 1 h recovery period after exercising in Norm (white circles), Hypo 402 

(black squares), and Hypo+TC (gray triangles) trials. Values are mean ± SD. # and $ indicate 403 

differences compared with Norm trial.  404 
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