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Abstract 15 

This study aimed to broaden applicability of KASP for Oryza sativa across diverse genotypes 16 

through incorporation of ambiguous (degenerate) bases into their primer designs and to validate 17 

4000 of them for genotyping applications. A bioinformatics pipeline was used to compare 129 18 

rice genomes from 89 countries with the indica reference genome R498 and generate ~1.6 19 

million KASP designs for the more common variants between R498 and the other genomes. Of 20 

the designs, 98,238 were for predicted functional markers. Up to five KASP each for 1024 21 

breeder-selected loci were assayed in a panel of 178 diverse rice varieties, generating 3366 22 

validated KASP. The 84% success rate was within the normal range for KASP demonstrating 23 

that the ambiguous bases do not compromise efficacy. The 3366-trait-specific marker panel was 24 

applied for population structure analysis in the diversity panel and resolved them into four 25 

expected groups. Target variations in thirteen of the genome sequences used for designs were 26 

compared with the corresponding KASP genotypes of other accessions of the same thirteen 27 

varieties in the diversity panel. There was agreement across 12 varieties for 79% of markers. Ten 28 

varieties had high agreement (>88%) but a variety selected from a landrace had only 46.5% 29 

agreement. Breeders can now search for the validated KASP and >1 million so-far untested 30 
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designs across three alternative reference genomes (including Niponbare MSU7), search for 1 

designs proximal to previously published SSR markers and retrieve the target variations in 129 2 

rice genomes plus their genomic locations with +/-25 bp flanking sequences.  3 

 4 

Keywords 5 

Genetic resources utilisation, InDel, SNP, trait selection 6 

 7 

Introduction 8 

Public and private sector rice breeders require efficient markers for selective breeding to enable 9 

global rice production to sustainably increase. In many rice-dependent regions the benefits of 10 

genomic markers for rice improvement are still to be fully explored (Chakraborti et al., 2021), 11 

yet it has been demonstrated that genomics-derived molecular markers can be effectively 12 

integrated into traditional rice breeding programmes (Cobb et al. 2019).  13 

 14 

Rice genome resequencing and bioinformatics have previously been used to identify large 15 

numbers of useful genomic DNA variants - single nucleotide polymorphism (SNP) and 16 

insertion/deletion (InDel) - that can be of use to breeders (Pariasca-Tanaka, 2015; Cheon et al., 17 

2018; Sandhu et al., 2022). The bioinformatics skills necessary to identify suitable assays 18 

represent a high technology barrier for some breeders. Searchable databases for genomic variants 19 

exist for all major cereals (Thudi et al., 2021). Many rice researchers and breeders use IRRI’s 20 

Rice SNP-Seek Database (snp-seek.irri.org; Mansueto, et al., 2017) and the Chinese Rice 21 

VarMap (ricevarmap.ncpgr.cn; Zhao et al., 2015). Despite this wide availability of variants 22 

associated with genes and QTLs (quantitative trait loci), there has been limited uptake of 23 

genomic breeding tools by public sector and small-scale rice breeders. Many types of marker 24 

technologies have been developed for SNP genotyping, but not all can be adopted readily in 25 

existing laboratories. Some marker technologies are less transferable to marker-assisted selection 26 

applications than others. Some SNP panels are population specific (Heslot et al., 2013) and 27 

markers targeting suitable variants might not be readily identifiable for selection of traits in 28 

specific crosses (Makhoul et al., 2020). Such issues hinder adoption of new marker technologies, 29 

hence, microsatellite (SSR) markers developed in the 1990s remain popular among rice breeders, 30 
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largely due to the readily searchable information in the Gramene markers database 1 

(archive.gramene.org/markers/; Liang et al., 2008).  2 

 3 

KASP is PCR-based genotyping technology ideally suited for small- or large-scale genotyping 4 

applications. However, it is not always easy for breeders to locate useful information about 5 

suitable KASP markers for their uses. This is partly because KASP is a patented technology of 6 

LGC BioSearch Technologies (LGC) and primer sequences constitute intellectual property (IP). 7 

This study resolves this limitation by using the KASP genomic locations and +/-25 bp flanking 8 

sequences so that breeders have sufficient information to either order them from LGC or use the 9 

location and sequence information to design their own primers.  10 

 11 

There are considerable benefits to be gained in moving a marker-assisted breeding programme 12 

from SSRs to a KASP-based approach (Steele et al., 2018; Kim et al., 2021). High-throughput 13 

KASP offer greater cost-effectiveness than SSRs but have similar levels of flexibility and can be 14 

used for population studies (e.g. Shikari et al., 2020), linkage mapping (e.g. Qureshi et al., 2018) 15 

and MAS (Kim et al., 2021).  16 

 17 

There are 2055 KASP in LGC’s original Rice assay search tool, developed by Generation 18 

Challenge Programme (Pariasca-Tanaka et al, 2015). Separately, Lee et al., (2022) developed 19 

2565 KASP from the C7AIR SNP array. KASP are increasing in popularity for quantitative trait 20 

locus (QTL) analysis and marker-assisted selection (MAS) in a range of agriculturally important 21 

species (Cheon et al., 2018; Kaur et al, 2020; Paudel et al 2019; Van Inghelandt et al., 2019; 22 

Kante et al., 2018; Zhang et al., 2020; Devran et al., 2019; Zhao et al., 2021). A valid concern for 23 

QTL mapping with KASP assays is that they may miss many rare variations or common alleles 24 

absent from the samples used to develop the assays (Scott et al., 2020). This can be overcome by 25 

sequencing the parents used by breeders for their crosses under study for de-novo marker 26 

development. However, this step is not practical for many rice breeders, so the goal of this study 27 

was to develop off-the-shelf SNP and InDel markers that should be representative across Oryza 28 

sativa. 29 

 30 
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4 

KASP technology was selected for this study following a successful feasibly study with breeders 1 

from Nepal who incorporated KASP-derived genotyping data into their breeding programmes. 2 

The feasibility study only sampled nine genomes to identify variants and design KASP primers 3 

(Steele et al., 2018). This study used a comparison of 129 genomes to identify suitable target 4 

variants (SNP or InDel) and also identified SNP variation occurring in the flanking regions of 5 

each target variant so that this information could inform the incorporation of degenerate bases in 6 

primers. The addition of degenerate bases was predicted to extend the efficacy of the resultant 7 

KASP assays and thereby broaden their applicability in different varieties. In this study we 8 

selected 4000 KASP assays of potential value for precision trait selection and applied them in 9 

genotyping an independently obtained diverse rice population. The study aimed to (i) determine 10 

if the number or location of ambiguous bases differed between successful and failing designs, (ii) 11 

demonstrate the utility of a ~4K KASP panel for resolving population structure (iii) provide a 12 

database of information for all the new KASP designs including their proximity to existing SSRs 13 

and C6IAR SNPs that can help breeders select them for different applications. 14 

 15 

Materials and Methods 16 

 17 

Rice genome data 18 

 19 

The KASP design and bioinformatics filtering steps were done at Bangor University (BU). In 20 

total 78 indica genomes and 51 non-indica genomes were used for in-silico KASP design (Figure 21 

1). This project incorporated variation from the sequencing data from 118 rice genomes selected 22 

and retrieved from the 3,000 Genomes Project (3K RGP, 2014) alongside the paired -end 23 

sequencing reads for 11 varieties selected by BU’s project partners (nine indica rice genomes 24 

selected by breeders in Nepal (Steele et al., 2018) and two Indian upland varieties (Kalinga III 25 

and Ashoka 200F). File S1 contains the methods used for sequencing these two previously 26 

unpublished genomes. The 118 genomes included at least one line from each of the 89 countries 27 

of origin in the 3K project and all seven rice varietal groups represented in the 3K RGP dataset. 28 

All genome sequences are available in the EBI Sequence Read Archive, accession numbers 29 

PRJNA395505 (for Bangor University genomes) and PRJEB6180 (for 3K RGP genomes). 30 

Tables A and B in File S2 provides further details for all genomes used in this study. 31 
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 1 

Sequence read processing, alignment and variant calling 2 

 3 

Quality trimming of sequencing reads was carried out using Sickle (Joshi and Fass, 2011).  An 4 

average Phred score of 30 was set as the threshold for the trimming window, with sequences 5 

truncated at the position of the first N. Trimmed reads shorter than 20 bp were discarded. 6 

 7 

Trimmed reads were aligned against the Shuhui 498 (R498) indica rice reference genome (Du et 8 

al., 2017).  Version 2 of the genome sequence was downloaded from MBKbase 9 

(http://mbkbase.org/R498/) and this version was used for all subsequent R498 alignments and 10 

positions generated in this study. Sequence read alignment was carried out with Bowtie2 11 

(Langmead and Salzberg, 2012).  Alignments were only reported if both mates of a read pair 12 

aligned in the expected orientation.  A single best alignment was reported for each pair, selected 13 

at random in the case of equally good alternative alignments.  All other alignment, scoring and 14 

reporting options for Bowtie2 were kept as default. 15 

 16 

Genotype likelihood calculation and variant calling was carried out with SAMtools (Li et al., 17 

2009).  SNPs or insertions with a read depth of less than five were filtered out.  Base coverage 18 

was calculated using BEDTools (Quinlan, 2014). 19 

 20 

Bioinformatics filtering for KASP marker design generation 21 

 22 

KASP marker design was carried out utilising the data from 129 rice genomes using custom Perl 23 

scripts through a process of sequential filtering.  For each SNP or InDel variation identified in 24 

one of the resequenced rice lines, the following tests were carried out to determine whether the 25 

variation was suitable for KASP marker design.  Here the term 'target variation' is used to 26 

describe an allele detected in a particular rice line that is different to the allele in the R498 27 

reference genome and under consideration for KASP marker design, and 'alternative variation' 28 

for any other alternative alleles (up to two are possible) at the same genomic site detected in the 29 

other rice lines. 30 
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1. Removal of rare alleles: If an alternative variation (ie. alleles other than the R498 allele 1 

and the most common target variant at that position) was identified in more than 10% of 2 

lines, then the target variation was removed. That is, at least 90% of lines had to possess 3 

either the reference allele or the most common alternative allele.  In the case of multiple 4 

variations fulfilling this criterium for any site, only the most common variant was carried 5 

forward.  Any target variations not demonstrating polymorphism among the resequenced 6 

lines, were also discarded (i.e. where all 129 test lines shared an allele that was different 7 

from the reference allele). 8 

 9 

2. Removal of targets with low base coverage: In the case of the target variation being a 10 

SNP or In/Del the base coverage was checked at the target site.  The resequenced 11 

genomes utilised variable read depths, and a particular genomic site was considered to 12 

have low base coverage if the read depth was less than one tenth of the average read 13 

depth for the genome in question.  If the target variation site was identified as having low 14 

base coverage in more than 10% of the 129 resequenced genomes it was not included. 15 

 16 

3. Removal of targets with low base coverage in flanking sequences: Tests were then 17 

carried out on the 50 bp either side of the target variation, described here as the 'flanking 18 

sequence' with each base referred to as a 'flanking site'.  The same base coverage check 19 

described in check 2 above for each target site at a SNP or insertion was made for each 20 

base position in the flanking sequence, with the target variation being rejected in the case 21 

of a single failure at any base position along the flanking sequence. 22 

 23 

4. Removal of targets with high variation in flanking sequences: For each base position 24 

in the flanking sequence, all 129 genomes were checked for the presence of variations.  If 25 

alternative variations were present at a flanking site then the target variation was rejected 26 

unless: (a) all the alternative variations in the flanking sequence were insertions or 27 

deletions of equal length, there was only one insertion or deletion, no insertion or deletion 28 

was within 5 bp of the target variation, and no more than 10 bases were inserted or 29 

deleted; (b) all the alternative variations were at a single base position, i.e. were SNPs, 30 

and no more than five flanking sites were SNPs.  31 
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 1 

A KASP design sequence consists of the target variation with the 50 bp flanking either side of it. 2 

Preliminary KASP designs were generated for all target variations that had passed the filtering 3 

tests 1-4 (above), with degenerate nucleotides included for flanking sequence variants identified 4 

among the 129 genomes.  SNPs in the flanking sequence were represented using the appropriate 5 

International Union of Pure and Applied Chemistry (IUPAC) nucleotide code, and insertions and 6 

deletions were represented by sequences of Ns (e.g. NNN for a 3 base deletion or insertion).  7 

 8 

The KASP design sequences were checked for the presence of repeats by first removing any Ns 9 

from the design sequence and then creating a set of test sequences that represented all the 10 

possible combinations of SNPs in the design sequence.  If a tandem repeat consisting of more 11 

than five copies of any one to five nucleotide pattern was detected in any member of the test set, 12 

the target variation was excluded. 13 

 14 

To enable end-users to cross-reference marker positions between both indica and japonica 15 

reference genomes, potential KASP design sequences were aligned against the indica rice R498 16 

(version 2, Du et al., 2017) reference genome and the japonica rice Nipponbare reference 17 

genome (version IRGSP-1.0, International Rice Genome Sequencing Project, 2005; downloaded 18 

from https://plants.ensembl.org this version was used for all subsequent Nipponbare alignments 19 

and positions generated in this study) reference genomes using BLAST (Camacho et al., 2009).  20 

Only design sequences that had a single best alignment in both reference genomes were kept. 21 

 22 

A final check for inclusion was for the GC content within a 55 bp window of the KASP design 23 

sequence to be between 35-65%, any that did not meet this criterion were excluded to optimise 24 

their reliability in PCR. 25 

 26 
Cross referencing with the historic indica reference genome 27 

 28 

The KASP marker design sequences derived via the above filtering steps were aligned against 29 

the older indica rice 93-11 reference genome assembly (ASM465v1, Yu et al., 2002: this version 30 

was used for all subsequent 93-11 alignments and positions generated in this study) using 31 
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8 

BLAST (Camacho et al., 2009).  Any best-hit sequences with less than a 90% identity over the 1 

full sequence length, or those having multiple best hits, were given an unknown position in the 2 

93-11 reference genome. This was done to enable subsequent annotation of gene features, 3 

C6IAR SNPs and SSRs to include data from two indica reference genomes. 4 

 5 

Annotating target variation with predicted function 6 

 7 

The gene feature annotations for the same three genomes were downloaded in GFF format: The 8 

R498 genome (version2, Du et al., 2017), Nipponbare (November 2018 release of RAP-DB 9 

(Sakai et al., 2013)), and 93-11 (2010 release of the BGI RISe Rice Information System (Zhao et 10 

al., 2004)).  These files were processed with custom Perl scripts to categorise each target 11 

variation with respect to location within gene features and record information about predicted 12 

effect (e.g. functional/non-functional) for each reference genome. 13 

 14 

Target variations (SNPs or InDels) were classified as either being intergenic, or genic.  Genic 15 

variations located within protein coding genes were further classified according to their location 16 

in the 5'/3' UTR regions, introns, or coding sequences.  SNPs within coding regions were further 17 

categorised according to their predicted effect on the translated amino acid sequence: 18 

synonymous, non-synonymous, premature stop codon, stop codon loss.  Insertions or deletions 19 

overlapping coding regions were classified as either frameshift or non-frameshift and start/stop 20 

codon loss mutations were identified.  The effect on all isoforms was predicted for any variants 21 

located within coding genes with multiple annotated transcript isoforms. 22 

 23 

Determination of C6IAR SNP genomic positions 24 

 25 

This was done so that database users can cross reference KASP designs with SNPs in the Cornell 26 

6K Infinium rice array (C6IAR) (Thomson et al., 2017). C6IAR SNPs were aligned in the same 27 

three reference genomes using the same criteria described above for annotating target variation 28 

with predicted function. Of the 5274 C6IAR SNPs, 94% aligned with a position in at least one 29 

reference genome, with 75% aligning to the same chromosome in all three genomes (Table C in 30 
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File S2). Of the 4569 (86%) C6IAR SNPs that aligned to R498 autosomes only 2099 (46% of 1 

these) fulfilled KASP design criteria (Table D in File S2).   2 

 3 

Determination of SSR markers genomic positions  4 

 5 

This was done so that database users can cross-reference between previously published SSR 6 

markers and the KASP designs in this study. Forward and reverse pairs of primer sequences for 7 

19,475 SSR rice markers were downloaded from www.gramene.org and each primer was aligned 8 

using BLAST (Camacho et al., 2009) against the R498 (Du et al., 2017), Nipponbare 9 

(International Rice Genome Sequencing Project, 2005), and 93-11 (Yu et al., 2002) reference 10 

genome sequences.  11 

 12 

Individual primer alignments were rejected if they had an identity of less than 95% for full 13 

sequence length. In the case of multiple best hits for SSR primers, all combinations of primer 14 

pair alignments were considered. Ninety-eight percent (19,138) of SSR primer pairs used for the 15 

analysis fulfilled the criteria for alignment, of which 16,980 (89% of all SSRs considered) 16 

aligned with a position in at least one of the three reference genomes (Shuhui 498, 93-11 or 17 

Nipponbare). Seventy-three percent of aligned SSRs were positioned on the same chromosome 18 

in all three genomes. Then SSRs were given a known position if both left and right primers 19 

aligned within 10 kb of each other and when only a single pair of best hit alignments fulfilled 20 

these criteria in at least one reference genome (Table E in File S2).   21 

 22 

Selection of 4000 KASP for validation test and population analysis 23 

 24 

The genomic positions of 1080 breeder-specified target genes or SSR markers previously 25 

associated with traits or QTLs were used to identify KASP designs that were situated within 0-26 

19913 bp of a target gene or SSR position (Table F in File S2, where columns B and C, headed 27 

‘Marker/gene’ and ‘Alternative IDs’ give the names or codes used in previous publications or 28 

databases for target genes or markers). When more than five KASP designs were located within 29 

this range, five were selected from them according to predicted functionality, followed by 30 

closeness to the target. One-hundred and forty-three targets had fewer than five KASP designs, 31 
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10 

and for these all targets were included (Table G in File S2). Designs for KASP targeting 1 

variations predicted to result in functional mutations were preferentially selected, while designs 2 

in very close proximity to others in the set were preferentially removed. This resulted in 5,028 3 

KASP designs selected for their proximity to genes or SSRs commonly targeted in rice breeding 4 

programs. This set only included designs that had not been selected for validation in breeding 5 

applications being done in the wider project. These designs (the target sequences including +/- 6 

50 bp flanking either side) were submitted to LGC who tested them in-silico with their 7 

proprietary Kraken™ software for primer design and they rejected 43 designs because they did 8 

not pass the criteria for primer production. 9 

 10 

From the remaining 4,985 KASP designs (targeting >1024 loci), 4,000 were selected by: (i) 11 

removing all that were within 100 bp of another marker with the same predicted genotype for all 12 

varieties; (ii) removing any non-functional markers furthest from its SSR target, starting with the 13 

targets that have the most markers and continuing until 4000 remained. These 4000 designs (for 14 

1024 loci) were submitted to LGC for synthesis of the corresponding KASP primers for use in 15 

genotyping in the rice collection.  16 

 17 

There was no selection for C6IAR loci during selection of the 4000 designs and only 20 of these 18 

submitted designs had C6IAR equivalents. There were 3275 KASP designs selected and 19 

submitted in the vicinity of 635 Cornell SSR markers (maximum of five designs per SSR).  20 

 21 

Development of a diverse rice panel for genotyping 22 

 23 

Diverse rice (O. sativa) genotypes, selected to include a wide range of landraces, modern 24 

varieties and advanced breeding lines, were supplied by breeders or researchers from the 25 

International Rice Research Institute (IRRI), the National Institute for Biotechnology and 26 

Genetic Engineering, Pakistan (NIBGE), the Sheri-e-Kashmir University of Agricultural 27 

Sciences and Technology of Kashmir, India (SKUAST), the Nepal Agriculture Research Council 28 

(NARC), Anamolbiu PVT, Nepal and the Earlham Institute, UK. Modern varieties or advanced 29 

breeding lines (including some for direct seeding in uplands) from Brazil, Bangladesh and 30 

Pakistan were sourced from the International Rice Genebank at IRRI. The collection (Table H in 31 

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkae251/7863403 by Prifysgol Bangor U

niversity user on 04 N
ovem

ber 2024



11 

File S2) included samples originating from 16 countries and eight breeding programmes and 1 

their designations included 132 indica, 22 japonica, 5 boro and 17 basmati (Table I in File S2). 2 

Seed samples were grown at Bangor University’s Henfaes Research Centre, sown either in May 3 

2018 or June 2019. Seeds were sown directly into compost and grown under the glasshouse 4 

conditions described in Note B in File S1.  5 

 6 

Leaf samples for DNA extraction were taken after about 7 weeks growth from a single plant of 7 

each line using BioArk plant sampling kits, with 96 sampled in July 2018 and a further 82 8 

sampled in August 2019. The 178 rice DNA samples were genotyped with KASP by LGC 9 

Biosearch Technologies, Hoddesdon, UK.  10 

Genotype data were converted to a numeric matrix (1 = R498 allele; 0 = target variant; 11 

heterozygotes were run either coded as the most common allele or as 0.5, and results did not 12 

vary) and used for Hierarchical cluster analyses with the FactoMineR and Factoextra libraries in 13 

R (Husson et al., 2020). Distances were calculated using the ‘dist’ function and the ‘euclidean’ 14 

method to give a distance matrix. Clusters were produced from the distance matrix using the 15 

method ‘average’ in the function ‘hclust” and plotted using the function ‘plot’. 16 

 17 

The Wilcoxon rank-sum test was used to test whether various KASP design properties differed 18 

between the designs that produced successful genotyping assays among the 178 rice samples and 19 

those that did not. The tests related to the number and location of ambiguous bases representing 20 

non-target variations, the number and location of InDel bases (only for KASP designs targeting 21 

InDels), and the GC content of the design sequence.  The two flanking sequences of KASP 22 

designs could include either no ambiguous bases or one or more, up to a maximum of five 23 

(according to the filtering step 4 above). The distances in bp between the target SNP or InDel 24 

and the furthest ambiguous base in either or both flanking sequences were used to test properties 25 

relating to the distance to the nth ambiguous base (where n was in the range 0-5). Separate tests 26 

were done for left flank distance, right flank distance, shortest distance in either flank and 27 

longest distance in either flank. Only designs with n or more ambiguous bases in the design the 28 

flanking the target sequence were included in the tests relating to the distance between the design 29 

target and the nth ambiguous base. Only designs with at least n ambiguous bases in both flanks 30 

were included for tests on properties relating to the longest distance to the nth ambiguous base.   31 
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 1 

Database development 2 

 3 

A ‘back-end’ database was constructed at BU to act as a repository for the KASP assays 4 

designed in this study. It contains the bp location of the target variant for each KASP design in 5 

up to three reference genomes (Shuhui498, 93-11 or Nipponbare) and the expected variant 6 

genotype at each KASP design for each of the 129 source data genomes. Options were included 7 

to enable breeders to search for KASP designs, either within a specified region of the genome or 8 

at a specified distance from either a named gene, SSR or a SNP from the C6IAR panel. Each 9 

KASP design from this study was assigned a KASP ID number (pKey) for information 10 

management. This back-end database was provided to LGC for them to use to update their Rice 11 

Assay Search Tool. LGC released a beta version of the search tool which has been tested by the 12 

authors and two independent rice breeders. A user’s manual was written by BU and LGC (File 13 

S3).  14 

 15 

Results 16 

 17 

Sequence read alignment to indica reference genome 18 

 19 

Rates of alignment for 129 rice whole genome sequences with the R498 indica reference genome 20 

(Du et al., 2017) ranged from 52.4% to 95.4%. Genome coverage was between 81.9% and 97.4% 21 

and average read depth ranged from 6.2 to 90.3 (Table B in File S2). Across all 129 genomes, a 22 

total of 15,140,996 variant sites were identified, with an average of one variant site for every 23 

25.8 bases in the 391 Mb R498 genome.  The number of variant sites for each variety against 24 

R498 ranged from 737,046 to 2,343,000. 25 

 26 

Novel KASP marker designs 27 

 28 

Over 1.6 million KASP marker designs were generated in silico by this bioinformatics study. 29 

Based on their positions in relation to the gene models of the japonica Nipponbare and indica 30 

R498 genomes, between ~76,000 to ~98,000 design targets were predicted to be functional 31 
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variations that would cause a change in the expressed proteins (Table 1). The maximum distance 1 

between adjacent KASP marker designs was 573 kb for the indica reference genome and 270 kb 2 

for japonica, with the median distance between designs for both being 55 bp (Figure 2). The 3 

number of KASP targets predicted to be polymorphic between all 8,256 pairs of possible varietal 4 

comparisons ranged between 23,078 (minimum) and 581,415 (maximum), with a median of 5 

328,256 (Figure 3).  6 

 7 

Demonstration of utility of novel KASP panel through genotyping  8 

 9 

Of the 4,000 trait-specific KASP designs tested, 3,371 were passed for wet-lab validation 10 

according to the service provider. But more stringent data analysis revealed that 3366 KASP 11 

gave successful genotype calls in >90% of samples which resulted in successful KASP (Tables I 12 

and J in File S2), hence 3366 were considered as validated. Eleven markers were monomorphic 13 

in this set of rice germplasm so data for the remaining 3355 markers were used in cluster 14 

analysis to reveal separation into four major groups corresponding to indica, japonica, 15 

intermediate and aromatic sub-types. This grouping well-reflects the diverse population tested 16 

which includes diverse landraces as well as breeding lines and modern varieties, many of which 17 

are derived from crosses between sub-types (Figure 4).  18 

 19 

Some 635 designs (15.9%) failed in all samples (Figure Aa in File S1) and for designs with 20 

genotype calls below 90%, the lowest call rate was 17.4%.  For the successful 3,366 markers, 21 

23.5% produced calls in all samples while 81.9% produced calls in >90% of samples (Figure Ab 22 

in File S1). The percentage successful allele calls per variety ranged from 72.5% to 83.8%. There 23 

was no significant difference in success rate of KASP between different rice sub-groups or 24 

countries of origin.  25 

 26 

Comparison between sequenced and genotyped datasets 27 

 28 

Thirteen of the genotyped rice samples had the same names as thirteen of the 129 sequenced 29 

genomes used in the marker design process.  For each of these named lines the genotype calls for 30 

each marker were compared against the sequenced genotypes (Table L in File S2). There were 31 

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkae251/7863403 by Prifysgol Bangor U

niversity user on 04 N
ovem

ber 2024



14 

3389 non-matching calls (7.7%) out of 43,758 datapoints in this subset. Included in non-1 

matching calls are failed calls which were reported in the dataset as either “Bad”, “Uncallable” 2 

and “?”. In the subset of 13 varieties there were three Bad calls (one each in Anmol Masuli, Lok 3 

Tantra and Kalinga III at different loci); two Uncallable (in Loc Tantra and Kalinga III at 4 

different loci); and 501 calls of ?, ranging from 20 to 63 alleles called as ? per line. 5 

 6 

The percentage matching alleles for line ranged from 97% to as low as 46.5%.  However, >77% 7 

of markers had calls matching predicted genotypes in all but one line (Chommrong) and 10 of 8 

the 13 lines had >88% agreement between the genotype data and sequence data.  9 

 10 

There was complete agreement for 1043 (31%) markers and non-agreement for the remaining 11 

69%. Of these, 1610 (48%) did not match in only one line. The number of non-agreements 12 

reduced rapidly for additional lines: 14% in two lines for, 5% in three lines and 0.9% in four 13 

lines. Only nineteen lines had non-matching calls in five or more lines. Only one marker (R498 14 

locus 10:20882568) had no matches in all 13 lines, but all were called as heterozygotes (possibly 15 

an artifact, see discussion).  16 

 17 

Success rates for the 13 lines used in design generation were compared against the 165 that were 18 

not.  They had median success rates of 83.33% and 83.05% respectively and a Wilcoxon rank-19 

sum test showed no significant difference in the distributions of success rates at the 99% 20 

confidence level, with a p-value of 0.035. 21 

 22 

Effect of ambiguous bases in designs on success rate 23 

 24 

Examining the subsets of the 4,000 KASP designs submitted for genotyping showed that KASP 25 

designs with a mean of 2.5 ambiguous bases were significantly more likely to fail than those 26 

with a mean of 1.86 ambiguous bases (Table 2). Several properties of the distance of ambiguous 27 

bases from the target variation also showed significant differences in distribution between the 28 

successful and failed markers (Table 2). KASP designs with higher GC had significantly more 29 

failures. Wilcoxon rank-sum test results for all 29 properties are shown in Table 2. 30 

 31 
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The overall success rates are likely improved by reducing the cut-off for the maximum number 1 

of ambiguous bases permitted in a KASP design. However, this comes at a large cost in the 2 

reduced number of potential designs and hence an increased distance between adjacent markers 3 

(Table 3).   4 

 5 

Proximity of validated KASP to widely used Cornell markers 6 

 7 

All 20 of the KASP designs with a Cornell C6IAR equivalent included in the 4000 designs tested 8 

were successfully validated (Table C in File S2). The success rate of KASP designs located near 9 

to Cornell’s SSRs was 81%, with 620 unvalidated KASP designs in the vicinity of SSR markers 10 

listed on the Gramene database. Breeders can use Table K in File S2 to identify selected designs 11 

for trait selection that are close to previously published SSR loci. 12 

 13 

Rice Assay Search Tool 14 

 15 

Breeders and other end-users can access the database containing details of the  ~1.6 million 16 

KASP assay designs developed in this study through the Rice Assay Search Tool 17 

(www.biosearchtech.com/kasp-assay-search) (Further details and search tips are provided in 18 

Table M in File S2 and File S3).  19 

 20 

 21 

 22 

Discussion 23 

Previous studies have also mined genomic variations within the rice 3K RGP (2014) data to 24 

identify a large number of target SNPs for use by rice researchers (Alexandrov et al., 2015; 25 

Tareke Woldegiorgis et al., 2019). Others have identified KASP for specific traits in rice (e.g. 26 

Addison et al. 2020; Angira et al.,2021; Sandhu et al., 2022).  To our knowledge no large-scale 27 

previous study has designed KASP primers which include ambiguous flanking variation, or 28 

specifically selected thousands of KASP for loci that are relevant to breeding programmes.  29 

 30 
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This study used a bioinformatics pipeline to filter ~15 billion potential target variants detected 1 

among 129 publicly accessible rice genomes and remove those within problematic regions as 2 

well as any with unsuitable non-target variations flanking the target variation. It used the R498 3 

indica reference genome as the baseline for KASP targets, meaning that every KASP we 4 

designed assayed for the R498 allele and the most common alternate allele at that target among a 5 

sampled population of 129 resequenced genomes. Targets having multiple alternate alleles where 6 

they together accounted for >10% of that population were not developed as KASP in this study. 7 

 8 

This pipeline resulted in ~1.6 million KASP assay designs optimised to include IUPAC 9 

nucleotide codes at a maximum of five non-target variations in each region flanking the target 10 

SNP or InDel. The number of KASP assays generated compares well with other rice KASP 11 

development projects (Cheon et al., 2018). Similar numbers of KASP designs were present in 12 

both indica and japonica genomes although indica had more potentially functional markers 13 

(Table 1) and slightly larger gaps between markers (Table 3).  14 

 15 

The frequency of polymorphic sites showed a bi-modal pattern when plotted as a histogram for 16 

pairwise comparisons between genotypes (Figure 3).  A similar bimodal pattern of 17 

polymorphisms observed by Alexandrov et al. (2015) was considered to indicate the absence of a 18 

proportion of mapped reads in some genomes. There were differences in coverage between the 19 

genomes used in this study. However, it was observed that the number of polymorphisms in pairs 20 

was associated with how closely related each pair are to each other, with pairs in the peak on the 21 

left side of the histogram made up of varieties from the same Oryza sub-group group while those 22 

on the right are made up of two varieties from different groups (aus, boro, indica, japonica etc.). 23 

Pairs with intermediate values are the product of lower polymorphic pairs between groups or 24 

higher polymorphic pairs within groups. 25 

Limitations of the design pipeline 26 

 27 

The KASP design algorithm used in this study resulted in fewer designs generated (10.6% of the 28 

~15 million variant sites identified in the sequenced lines) than the 51.9% variation site to KASP 29 

design conversion rate reported in our previous study (Steele et al., 2018).  This was expected 30 

because of the wider range of varieties used in the current study giving many more variant sites 31 
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in the flanking sequences of target SNPs and InDels. The avoidance of potential markers with 1 

excessive variation in flanking sequences has reduced the overall number of successful KASP 2 

designs for targets that are predicted to be polymorphic at target sites. In practical terms, 3 

particular combinations of parental lines may have large genomic regions lacking detectable 4 

polymorphism using the available assay designs.  5 

 6 

When there is polymorphism in regions harbouring specific traits, these markers offer precision 7 

and effectiveness for trait selection. However, if breeders’ populations do not show 8 

polymorphism with any of these markers in specific regions (e.g. for fine mapping) they can 9 

consider de-novo cross-specific marker design generation (without ambiguous bases) which can 10 

be carried out using the KASP design software code provided by Steele et al. (2018).  11 

 12 

Factors affecting success of KASP assays 13 

 14 

Of the assay designs submitted, 99.2% passed the final in-silico step for primer design. Of the 15 

subset of 4000 KASP designs developed into ‘wet lab’ assays, 84% were successfully amplified 16 

with alleles called. This rate was only slightly lower than was obtained for KASP designed from 17 

only nine genomes without the inclusion of ambiguous bases (Steele et al., 2018) and for KASP 18 

designed from previously published rice SNPs by Yang et al (2019). It is higher than the success 19 

rate of 71% validated KASP converted from SNPs derived from RNA-seq in maize (Jagtap et al., 20 

2020). 21 

 22 

Of the 3366 validated KASP, 82% gave allele calls in a panel of 178 diverse varieties, providing 23 

genotypes for >90% of the panel. No significant differences were observed in the genotyping 24 

success rates of 116 not-resequenced lines as compared to 13 genotyped resequenced lines that 25 

were used in the assay design. The rates are within the range of other KASP desing studies in 26 

rice (e.g. 70% reported by Gouda et al., 2021). Overall, this result indicates that these KASP 27 

assays have a high probability of working in a wide range of rice populations and should be 28 

considered widely applicable for breeding. The following discussion considers some of the 29 

reasons that could lead to failure for genotyping.  30 

 31 
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In the thirteen varieties used for both KASP design generation and genotyping, the vast majority 1 

of genotype calls matched those predicted in the design stage, with the percentage of matching 2 

genotypes being within the bounds of normal within-variety variation.  The notable exception 3 

was Chhomrong for which only 46% of genotype calls matched expectations. Clearly there were 4 

genetic differences between the two seed lots of Chhomrong used for genotyping in this study 5 

and for resequencing the 3K RGP (2014). Chhomrong was originally considered a landrace and 6 

subsequent selection and purification produced the released variety with the same name (Joshi et 7 

al., 2017), which was the source of the sample used here for genotyping. Chhomrong did not 8 

have more heterozygote calls than other lines, however the line FL_478 had only 74% agreement 9 

with the sequenced version and the disagreement was exacerbated by numerous heterozygous 10 

calls in the genotyped sample (Table L in File S2).  11 

 12 

Nearly 15.8% of the 4000 marker designs submitted for genotyping failed to result in any 13 

genotype calls in this study. Failures might be explained by the extracted DNA quality, the assay 14 

conditions in a particular genotyping run or they could potentially be due to issues related to 15 

using ambiguous bases in the designs.  16 

 17 

From the KASP assay designs submitted for validation, it was possible to infer the aspects most 18 

likely to influence success rates.  A statistical comparison of various design-related properties 19 

suggested that as the number of ambiguous bases increased to accommodate non-target 20 

variations, the rate of success decreased (Table 3).  The position of ambiguous bases within the 21 

design sequence also affects the chances of success, with a greater distance between target 22 

variations and ambiguous bases resulting in a higher proportion of successful designs. The 23 

distance between ambiguous and target variation did not show significant differences between 24 

successful and unsuccessful marker designs, although there were relatively few designs with a 25 

high number of ambiguous bases so statistical power was reduced (Table 2).  Reducing the 26 

number of permitted ambiguous bases in the KASP designs led to a relatively small increase in 27 

assay success rate (Table 3), but the predicted number of potential designs is reduced 28 

substantially, and there are larger gaps in genome coverage (Table 3). If no ambiguous bases are 29 

permitted in the flanking sequences, then the predicted success rate increases by only ~5%, but 30 
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the median distance between markers is increased by more than 10 times, and the number of 1 

potential designs is reduced by 86% (Figure B in File S1). 2 

 3 

The GC content was also linked to design success rate (Table 2).  If the resultant primers are 4 

leading to failed assays due to non-optimal assay conditions for the primer GC content, then it is 5 

possible that adjusting assay conditions could result in successful genotyping.   6 

 7 

No significant differences were observed between the distributions of the number of inserted or 8 

deleted bases of passing and failing designs, nor in their distance from the target variation (Table 9 

3).  This may be because only a single insertion or deletion was permitted in the design algorithm 10 

and, thus, any InDels could be avoided in primer design. 11 

 12 

Although genotype calls with question marks (?) were rare in the diverse population (0.011%), it 13 

is noteworthy that they often occurred in several different genotypes at the same locus, 14 

suggesting they have a biological cause rather than being an artifact. For example, one marker 15 

(locus R498 position 2:31326133) had 47 ? calls, 55 homozygous A calls (the alternate allele 16 

used in the KASP design) and 76 homozygous T calls (the R498 target allele) in the diverse 17 

population (Table J in File S2). In contrast, the same marker had no calls for the alternate allele 18 

(A) in a different population largely composed of commercial aromatic rice varieties genotyped 19 

by Steele et al. (2020). In that study all genotype calls were either ? or T homozygote. Our 20 

working hypothesis is that the ? calls in both studies may denote presence of an alternate (‘third’) 21 

allele that was not included in the designs (either in a homozygote or heterozygote state) in the 22 

accessions with ? calls. Further work is needed to test this hypothesis either using sequencing of 23 

accessions carrying the ? allele or by querying the genome assemblies of such accessions. An 24 

alternative approach could be to produce alternative KASP assays at these loci with primers 25 

selected to call the rarer alternate allele instead of the most common one, which was our default 26 

strategy during KASP design in this study. Anecdotally, breeders in Nepal, Anmolbiu PVT and 27 

NARC, who used such KASP markers for selective breeding have found that the calls for ? 28 

segregate as expected in some populations, and often can show an identical pattern of 29 

segregation to adjacent, tightly linked, markers with clarity in calls, indicating that data from 30 

such markers can be used, in some circumstances and with caution, to inform selection decisions. 31 
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 1 

Efficacy and value for breeding applications 2 

 3 

The novel panel of 3366 ‘ambiguous base’, trait-specific KASP developed in this study were 4 

validated in a panel of diverse rice, demonstrating the efficacy of such designs for genotyping 5 

use across a wide range of potential varieties. By sampling multiple KASP for 1024 target loci, 6 

we hope to have widened the range of assays available so that breeders can select the ones that 7 

are most useful in their crosses.  8 

 9 

Many of the markers located near to specific targets or genes are relevant to multiple breeding 10 

programmes. Some of the validated trait-specific markers have been functionally confirmed by 11 

breeders to be linked to traits including disease resistance genes Xa5, Piz-t, Pi33 (Arif M., 12 

NIBGE Pers. comm.) and QTL for bakanae foot rot resistance (Shikari A., SKUAST, Pers. 13 

comm.). Nepalese breeders at NARC and Anamolbiu PVT have used KASP designs from this 14 

study in marker-assisted backcrossing to successfully incorporate blast and bacterial leaf blight 15 

resistance genes in Khumal-4, Sunaulo Sugandha, Sugandha-1, and Anmol Mansuli that are 16 

being tested for potential release in Nepal.  17 

 18 

The applied validation of the ~4K KASP panel was demonstrated through their ability to resolve 19 

groups in hierarchical cluster analysis (Figure 4). It is noteworthy that members of the 20 

intermediate group derived through this analysis were two Vietnamese varieties (Khara Ganga 21 

and OM 479 expected to be indica) and the approved Basmati variety Pusa Basmati 1. Two 22 

varieties originally thought to be japonica (SKAU_D40 and SKAU_D54) were confirmed as 23 

indica in this analysis, supporting a similar finding by Shikari et al. (2020) with a different sub-24 

set of our KASP designs. Those authors successfully used 114 (of 213 genotyped loci) of our 25 

marker designs for genotyping and structural analysis of a 470 line population of Himalayan-26 

grown rice. At the same time (in the same LGC project), this sub-set of markers were also 27 

genotyped on the USDA minicore collection and Pakistan landraces and also applied 28 

successfully for population structure analysis (M. Arif, NIBGE, Pakistan, Pers. comm), 29 

supporting the value of the wider set of KASP designs for this application, and also highlighting 30 

their potential high-throughput scalability. With co-ordinated teamwork and careful management 31 
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of resources, a large sub-set of KASP can be used efficiently for screening large populations 1 

including multiple sets of material from different groups to increase efficiency.   2 

 3 

In contrast to SSR markers, which can detect multiple alleles at a single locus, KASP only detect 4 

a maximum of two alternate alleles (SNPs or InDels) at each target locus (although in some cases 5 

a repeatable null allele can be identified (with ? calls) that follows expected Mendelian patterns 6 

of inheritance, and thus inferred as a ‘third’ allele, discussed above). For genetic diversity 7 

studies, estimates suggest that 7-11 times more KASP markers are needed to reveal a similar 8 

amount of diversity (in the form of haplotypes) compared to a single SSR (Hamblin et al. 2007; 9 

Van Inghelandt et al., 2010).  10 

 11 

For breeding applications, Ashfaq et al. (2023) used a sub-set of KASP derived from this study 12 

and found that a similar numbers of foreground or background marker loci are required for 13 

KASP as compared to SSRs when applied for QTL mapping and haplotype discovery, so long as 14 

KASP markers known to be polymorphic in the population were used. The number of assays can 15 

be scaled up for high-throughput applications such as genomic selection or down for marker-16 

assisted backcrossing and panels including more as-yet unvalidated KASP can be selected from 17 

the online rice assay search tool. The rice assay search tool links each marker to genome 18 

annotation information and contains information about predicted gene functionality as well as 19 

alleles in resequenced genomes. The resources in the search tool could be used by researchers to 20 

integrate these KASP with other Omics data. 21 

 22 

 23 

Data Availability 24 

The genome sequences used for KASP design development are publicly available via the EBI 25 

Sequence Read Archive, accession numbers PRJNA395505 for Bangor University genomes 26 

(www.ebi.ac.uk/ena/browser/view/PRJNA395505 ) and PRJEB6180 for 3K RGP genomes ( 27 

www.ebi.ac.uk/ena/browser/view/PRJEB6180 ). Genomic locations of all validated KASP are 28 

available in supplemental files. Genomic locations of KASP target variants for all ~1.6 M KASP 29 

designs generated during this study are available via the BU-LGC_plus rice assay search tool: 30 

www.biosearchtech.com/kasp-assay-search 31 
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 1 
 2 
Table 1.  Total number and number of predicted functional KASP designs generated per 3 

chromosome 4 

 5 

 Indica (Shuhui 498) Japonica (Nipponbare) 

Chromosome Total Functional Total Functional 

1 190,895 12,780 191,156 10,252 

2 166,771 10,565 166,949 8,134 

3 171,281 9,696 170,739 7,128 

4 130,900 8,752 130,880 6,573 

5 141,145 7,210 141,455 5,284 

6 144,269 8,444 144,479 6,573 

7 130,922 7,731 130,778 6,122 

8 122,189 7,147 122,194 5,613 

9 96,906 5,951 96,910 4,491 

10 100,483 5,524 99,552 4,355 

11 116,812 8,119 116,167 6,359 

12 96,040 6,319 95,971 4,830 

Chloroplast 0 0 n/a n/a 

Mitochondrion 5 0 n/a n/a 

Unanchored 

contigs 
n/a n/a 1,388 0 

Total 1,608,618 98,238 1,608,618 75,714 

 6 

  7 
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Table 2. Results of Wilcoxon rank-sum tests (W) of difference between properties of KASP 1 

designs resulting in successful and failing assays. 2 

KASP design property W p-value 

Mean 

Success Failure 

No. of indel bases 2187 0.689 3.67 3.38 

Distance of indel from target variation 2285 0.984 31.24 31.62 

No. of ambiguous bases 1327001 1.20 x 10
-19

*** 1.86 2.5 

No. of ambiguous bases in left flank 1243608.5 7.19 x 10
-10

*** 0.92 1.21 

No. of ambiguous bases in right flank 1263164 5.09 x 10
-12

*** 0.94 1.29 

No. of ambiguous bases in flank with least 1242962.5 1.48 x 10
-11

*** 0.43 0.62 

No. of ambiguous bases in flank with most 1317236 1.01 x 10
-18

*** 1.43 1.87 

Distance to 1
st
 ambiguous base in left flank 371206.5 0.075 20.22 18.58 

Distance to 1st ambiguous base in right flank 372326.5 4.9 x 10-5*** 20.32 17.34 

Shortest distance to 1
st
 ambiguous base in either flank 364947 3.63 x 10

-6
*** 15.44 12.32 

Longest distance to 1
st
 ambiguous base in either flank 164961.5 7.39 x 10

-4 
*** 27.98 25.26 

Distance to 2
nd

 ambiguous base in left flank 90414 0.365 29.61 28.84 

Distance to 2
nd

 ambiguous base in right flank 93176 0.004** 29.98 27.41 

Shortest distance to 2nd ambiguous base in either flank 92249 0.002** 27.65 24.94 

Longest distance to 2
nd

 ambiguous base in either flank 9470 0.014* 39.4 36.9 

Distance to 3
rd

 ambiguous base in left flank 16438 0.937 34.91 34.87 

Distance to 3rd ambiguous base in right flank 13871.5 0.082 35.34 33.28 

Shortest distance to 3
rd
 ambiguous base in either flank 13879 0.083 35.28 33.16 

Distance to 4 th ambiguous base in left flank 741.5 0.007** 39.52 34.81 

Distance to 4 th ambiguous base in right flank 1173.5 0.844 38.77 37.86 

Shortest distance to 4
th
 ambiguous base in either flank 1152 0.734 38.77 37.59 

Distance to 5
th

 ambiguous base in left flank 12.5 0.435 40.67 45 

Distance to 5
th

 ambiguous base in right flank 39 0.456 38 42 

Shortest distance to 5
th
 ambiguous base in either flank 39 0.456 38 42 

%GC content 1192550 9.40 x 10
-5

*** 44.07 45.82 

Left flank %GC content 1210513 4.74 x 10
-6

*** 44.44 46.4 

Right flank %GC content 1165491 3.71 x 10
-3

*** 43.61 45.19 
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Lowest flank %GC content 1184005 3.30 x 10
-4

*** 40.07 41.56 

Highest flank %GC content 1197391 4.35 x 10
-5

*** 44.07 45.82 

P values  <0.05, <0.01 and <0.001 are denoted by one, two or three asterisks (at 99% confidence level)  1 
 2 

Table 3.  Effect of reducing the cut-off for the maximum number of bases permitted in the 3 

flanking sequences of KASP designs on number of available designs and predicted success rates.  4 

Distances between markers are based on their position in the Shuhui 498 indica reference 5 

genome. Predicted success rates are calculated from the subsets that fulfil the cut-off criteria out 6 

of the 4,000 markers submitted for genotyping in 178 rice lines. 7 
 8 

 All potential KASP designs   Genotyped KASP markers 

Maximum 

number of 

ambiguous 

bases 

No. of 

designs 

identified 

 Median distance 

between designs 

(bp) 

 No. of markers 

tested 

% markers 

producing 

genotyping results 

 % 

successful 

assays 

4 1,392,359  68 3,542 85.09  83.76 

3 1,135,654  93 3,121 86.48  85.16 

2 845,121  144 2,527 87.65  86.36 

1 532,572  242 1,787 89.20  87.92 

0 223,783  580 828 88.53  87.44 

  9 
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Figure Legends 1 

 2 

Figure 1. Steps used for incorporation of rice diversity during in-silico design of KASP markers 3 

that should discriminate between a R498 reference allele and the most common alternate allele in 4 

a population of 129 diverse genomes 5 

 6 

Figure 2. Distribution of distances between adjacent KASP designs aligning in the Shuhui 498 7 

indica (Du et al., 2017) and Nipponbare japonica (International Rice Genome Sequencing 8 

Project, 2005) reference genomes.  Horizontal lines represent the 1st quartile, median, and 3rd 9 

quartile 10 

 11 

Figure 3. Number of polymorphic sites identified in the 8,256 possible pairwise crosses of the 12 

129 diverse sequenced rice lines used for KASP design generation 13 

 14 

Figure 4. Hierarchical cluster analysis of 178 genotypes with the 3355 polymorphic KASP 15 

markers. The groups from the PCA are indicated on the y axis (* = indica group, ***=japonica 16 

group, ***** = intermediate group (Int),  *******= aromatic group) 17 

 18 

  19 
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