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Summary 

The techniques necessary for the hardware implementation of systems which 
would traditionally be implemented in software are investigated, with regard to 
two systems: an image processor and an electronic neuron model. The latter is 
developed in detail and it is shown that a simplified and space-efficient model can 
perform the functions of more complex models. Interesting results are shown and 
novel methods of building with these models are demonstrated. 
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Chapter 1: Introduction 

This work is an investigation into the processes involved in implementing systems 

in custom hardware which have previously been implemented in software. In 

particular, the aim was to investigate Field-Programmable Gate Array (FPGA) 

implementations, looking at the particular challenges inherent in the use of these 

devices. Two major projects were undertaken, the first was an implementation of 

an image filtering system, and the second was an implementation of digital neuron 

models. The image processing system was a reimplementation of a software

based system, and its development provides an insight into the process of 

converting a software algorithm to hardware, resulting in a hardware-based 

system which performs the same sequence of operations. The neuron models are 

different in that they were not based on software implementations but instead 

designed for hardware from the start. In both cases, various issues and difficulties 

were encountered and overcome, and these are discussed, along with extensive 

test result analysis. 

1.1: Structure of the Thesis 

Chapter 2 provides an introduction to FPGAs and their current uses, both in 

general-purpose logic implementation and prototyping, and in more specialised 

processing systems. The internal structure of the FPGA is discussed, looking 

specifically at Altera's Apex series FPGAs, which were used for the subsequent 

work. The use of hardware description languages and some of the issues 

associated with hardware compilation are also discussed. This chapter summarises 

many of the issues encountered during the development of the hardware described 

in chapters 3, 4 and 5. 

Chapter 3 describes the first body of experimental work, an investigation into 

implementing a simple image processing function in an FPGA, looking at the 

issues involved in the implementation and the possible performance of the system. 

Current implementations in this field are discussed at the start of the chapter, with 

the new work being introduced from section 3.2 onwards. 

Two filtering systems are developed and optimised for efficient operation in the 

FPGA. A range of test results is presented to show the operation of the filters and 
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the differences between the two types. The specific issues associated with making 

efficient and effective use of the hardware resources available in the FPGA are 

revealed and discussed, as are the issues associated with implementing fast and 

accurate arithmetic circuitry in the hardware. The trade-off between hardware size 

and processing speed is demonstrated and discussed. 

Following from the development of the image processor, a cellular automaton 

processor using very similar hardware is also presented, demonstrating the 

flexibility of the design. 

Chapter 4 describes the development and implementation of a simple 

microprocessor which was intended to provide good performance with low 

hardware cost. The use of the processor is further explored in chapter 5. The 

design is shown to be versatile and capable, even though it lacks many of the 

features of conventional microprocessors, and to have a high performance for its 

size. The optimisation of the design to make the hardware cost as low as possible 

is also discussed. 

Chapter 5 describes the major body of work, looking at implementations of digital 

spiking neuron models in the FPGA. The existing work in this field is discussed in 

section 5.4, with the project work beginning in section 5.5. Various neuron 

models are introduced, along with simple networks in which the neurons are 

tested. The response of the neurons to input spikes is demonstrated and a range of 

test results are presented covering the two major models constructed. Some simple 

neural circuits are presented, showing interesting functions being performed by 

the neuron models in novel ways, and a network of these neurons is demonstrated 

showing complex dynamics due to feedback. 

This chapter also includes some discussion of the trade-offs between the size and 

complexity of the models and their abilities, and analysis of the importance of 

choosing the register sizes and parameter ranges carefully to avoid erroneous 

operation. 

The conclusions from the previous chapters are finally summarised in chapter 6. 
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1.2: Contributions 

The major contributions in this thesis are summarised below. 

Image processing systems have been developed and it has been shown that there 

is a definite trade-off between performance and hardware complexity. The image 

processors presented show a large difference in both performance and complexity, 

with the faster version showing a good performance / area ratio. 

The issues associated with the efficient implementation of hardware image 

processing systems have been discussed and methods for making the most 

efficient use of the FPGA hardware have been considered. 

The extension of the image processing hardware to cater for different algorithms 

and processing of cellular automata has been shown, and a versatile cellular 

automaton processor has been demonstrated. 

A simple microprocessor for FPGA implementation has been developed, and has 

been shown to be versatile and capable despite lacking much of the complexity of 

conventional microprocessors. Its simple hardware is shown to yield a relatively 

high performance - area ratio. 

Hardware-based digital spiking neuron models have been developed and these 

have been shown to be capable of performing complex functions with relatively 

simple internal hardware. 

Networks of simplified neuron models have been demonstrated and have been 

shown to be capable of complex and possibly chaotic dynamics, replicating the 

oscillatory behaviour seen in small networks of neurons in biological tissue. 

Novel neural circuits have been developed which can perform functions not 

normally associated with neurons. These building blocks have shown promising 

results and the potential for future development. 
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Chapter 2: FPGA Technology 

This chapter is intended to give a brief overview of the FPGA, its hardware and its 

uses in accelerating signal processing. Detailed reviews of the use of FPGAs in 

the three fields of image processing, microprocessor implementation and neuron 

modelling can be found in sections 3.1, 4.1 and 5.5 respectively. 

2.1: Reconfigurable Logic - The FPGA 

The Field Programmable Gate Array (FPGA) allows large-scale digital circuitry 

to be implemented without the cost of producing a fully-custom VLSI device. The 

configurability of the FPGA architecture means that prototype circuits can be 

built, tested and debugged rapidly, without requiring experience in VLSI layout 

on the part of the designer. The reconfigurability of the device can provide a 

useful benefit for consumer appliances such as set-top boxes, where the hardware 

digital signal processor which performs the decoding of the signals can be 

upgraded in much the same way as firmware is upgraded, without having to 

physically replace the part. In fact, the circuit can be considered to actually be 

firmware, as the FPGA will usually read its configuration data from external 

storage into internal SRAM at power-up, therefore if the data held in this external 

storage is changed, the next time the appliance is powered up, its hardware will be 

updated. 

The FPGA is typically composed of a number of logic cells connected together by 

a switching and routing matrix. In a fine-grained FPGA, each logic cell will 

typically have a small number of inputs feeding a look-up table based logic block, 

which in turn feeds a register, usually implemented with a D-type flip-flop. A 

coarse-grained device, such as a CPLD (Complex Programmable Logic Device) 

will tend to consist of a smaller number of much larger cells, called macrocells, 

each of which may have 30 - 40 inputs feeding an AND-OR array. In either case, 

a series of SRAM cells hold the configuration data which in turn sets the state of 

switches - MOS transistors in most cases, which configure the internal operation 

of the block. A four input logic cell' s logic block can perform one of 24 = 16 
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different operations, so the block can be implemented as a I 6 x I bit SRAM where 

the inputs to the block form the address. 

The structure of the logic element of an Altera Apex 20K series FPGA [2.1] is 

shown in Figure 1. The look-up table has additional carry and cascade logic 

attached, which allows wider functions to be implemented with a smaller speed 

penalty than would be the case if the function was implemented with a number of 

LEs in series. The registered part of the LE consists of a flip-flop and logic to 

allow synchronous or asynchronous operation. 

dom1 ____. 
do:a2 ____. 
d':tita3 
doto4 

Loo~-Up 
T3bte 
(LUT) 

Carry-In 

LA5 ... ;ce LAS..,.ice 
S)n chrooous S;nchrooow. 

Lrod Clear 

Cascade-In 

lo\lclr1 _.., Asynchrooouo t-+---+-----~ 
lo\Jclr2 _.., Cleor/l'resetl 

Chip-Wice Load Log C 1-+---+--------H---' 
Res~ 

kll:clk2 

Clock& 
C ock Enable 
Select 

Corry.Qu1 Cascade-OU\ 

To Filsffrack Interconnect, 
MegolA3 ln:erconnec~ 
or Loe.di Interconnect 

To FastTmck Interconnect, 
MegaLAB- ln~erconnec=., 
or Lero Interconnect 

Figure 1: Logic Element layout of the Apex 20K FPGA (From Altera's Apex datasheet) 

It can be seen from the figure that since the LE has two outputs, it is possible to 

use the register and the LUT separately, with the input ' data3 ' feeding the 

register, which feeds one output, and the other three inputs feeding the LUT, 

which can then feed the other output. Thus, it is possible to make more efficient 

use of the logic space in the device than it would be if the LUT's output had to go 

through the register, and it is also possible to obtain higher speeds than if the 

register's input had to come through the LUT. 
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The LEs in the Apex series are grouped into larger blocks called Logic Array 

Blocks (LABs) which each contain 10 LEs. Within the LAB connections between 

LEs are very fast, allowing small logic structures to operate efficiently. Any 

processing or register structure which require more than 10 bits will need to use 

more than one LAB, which can reduce speed slightly, but the LABs are joined 

together to form MegaLABs, which vary slightly across the range of devices 

within the Apex 20K series. The 300,000 gate 20K300E device used for the 

experiments described in the following chapters has 16 LABs to each MegaLAB, 

with 72 MegaLABs in total. Some of the larger devices in the series have 24 

LABs per MegaLAB, while the smallest one, the 20K30, has 10. 

-- . ,. . ' ~ .. .. : u ,. -
I I I i "I H I "l I I I I ! ! 

I I I ! ! !! ! ! ! ! ! ! 

I • • ii • • I i i ~ s s s I I 

I I I 1! I ! ! 
I I I I I I I 

~ I I t ! H t I I I I I ! 1 1 1 • ¥ y y ~ ~ y y ¥ ~ ~ 

' 0 I I j_ ID I D I D D D 
♦ ◊ D D DD D .....!!_ D D D D 

i-....,_...._ .a-11:110 0 MegaLAB --- --a 
VO Cells 

C 

ia--........ •-'ICl~O 0

~TITITITITITITITITITITITITITITii , 
i,-,-- - ca 

p p 

I I I I I I I l I 'I I ·1 'I 'I ·1 
LEs .. 

i'--,..~ I i,-,-- - c,g 0 ,i-... .......... --a 
-
□ □ □ r-, □ □ □ □ □ r-, □ r-, □ □ □ 8 

i::i,.., j::::i- p,..., i::1,-, i::i,-, 1:1,.., iir-i 15,..., ii...-,&,..., i:1.-, ii,-, ii,-, i:!i,.., p,.., i:i.-, 1::$-; I 

Figure 2: Section of Quartos floorplan view showing FPGA structures 

These structures are shown graphically in Figure 2, which shows a screenshot of a 

section of the Quartus software's floorplanner window, with the various structures 

either open or closed. The coloured blocks are those which have been used by the 

compiled design, the white blocks are unused. For completeness, Figure 3 shows 

the full chip view, with the section in Figure 2 visible in the top left hand corner. 

Although the scale of the image makes it difficult to see the coloured LEs, the 
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long carry chains used in counter and adders can be seen in the lower right hand 

section of the chip, shown as dark lines. When joining two or more LABs in a 

carry chain, the fitter usually skips alternate LABs, so a chain starting in LAB 1 

will continue in LAB 3 rather than LAB 2. 
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Figure 3: Quartos floorplan view of entire FPGA 

Each MegaLAB also contains an Embedded System Block (ESB), which in the 

Apex 20K devices is a 2048 bit RAM block that can be configured as RAM or 

ROM. The use of these blocks is further discussed in the microprocessor design of 

chapter 4 and the neuron designs in chapter 5. 

For comparison purposes, the Virtex series from Xilinx [2.2], being 

approximately equivalent to the Apex series in terms of age and capabilities, uses 

a slightly different arrangement. The basic block is still the Logic Cell, consisting 

of a LUT and flip-flop, but these are grouped in pairs to form 'slices', with each 

slice containing extra circuitry which can allow the LUTs to be grouped together 

efficiently to implement functions of up to 9 inputs. The slices are then grouped in 
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pairs to form Configurable Logic Blocks (CLBs), which are arranged in a regular 

lattice. Although the basic Logic Cell is similar to the LE of the Apex device, the 

slight differences mean that in many cases a similar circuit implemented in the 

two FPGA families will have quite different logic cell requirements. Some of the 

more advanced Altera devices have multiple LUTs and registers in each LE, and 

this will be noted where necessary, but the convention adopted in this thesis for 

comparisons between the two FPGA types is that a CLB and slice in the Xilinx 

devices are equivalent to 4 LEs and 2 LEs respectively in the Altera Apex device. 
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2.2: Hardware Compilation 

The mapping of a design to the logic-cell structure of the FPGA is generally 

performed by software, usually software provided by the device manufacturer. For 

Altera's FPGAs the software is Altera' s own Quartus II software [2.3], which 

contains a sophisticated logic synthesiser and fitter, allowing the design to be 

entered as a schematic or in some form of hardware description language (HDL). 

The use of a HDL allows a much more complex system to be generated easily, as 

a single line of code could potentially represent a great deal of hardware, 

especially where mathematical functions are required. The language used for the 

systems in this work was VHDL [2.4], an industry standard which allows the 

hardware to be defined in a manner similar to software, though with some 

important differences. Firstly, the hardware description does not define an 

algorithm, but rather a series of independent pieces of circuitry, all of which will 

operate in parallel. lf an algorithm is to be implemented in hardware, it must be 

broken down into a sequence of operations, so that the operations can be 

implemented as blocks of hardware, and the sequence implemented by a state 

machine or similar. The convolution-based image processor presented in chapter 3 

was originally based on a simple software implementation, and the state machine 

used to control it shows the flow of events that would take place if software was 

used. 

ln some cases the logic synthesiser can be put to use to avoid having to design a 

complex piece of hardware, as demonstrated in chapter 3 where the image 

processor developed there required a divide-by-81 circuit. The fastest arithmetic 

circuit is one that is built from purely combinatorial logic, rather than using any 

form of repetitive bit-by-bit algorithm, and this can be made even faster if built as 

the hardware form of a look-up-table. The divider was therefore defined by a long 

block of VHDL that explicitly stated the desired output for all possible inputs. 

With a 15-bit input, this necessitated over 32,000 lines of code, which 

demonstrates another useful feature of a hardware description language such as 

VHDL, in that it can be written by machine, in this case being generated by a 

simple program written in QBasic, which calculated the desired output for each 

possible input, and created the VHDL code accordingly. The logic analyser and 

synthesiser were then able to simplify this code to produce something relatively 
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small. This is a useful aspect of the hardware compilation which can save a lot of 

time. 

In addition to producing VHDL descriptions of simple blocks such as a divider or 

look-up-table, much work has been done in allowing implementations of complete 

DSP functions in software packages such as MATLAB to be converted 

automatically to VHDL [2.5][2.6], which can then be processed with the FPGA 

vendor' s own tools to produce an FPGA implementation. It is also possible to 

compile from programming languages directly to hardware. One such language is 

Handel-C [2. 7], which is much like C apart from its output. In either of these 

cases the compiler will automatically generate the necessary hardware to perform 

the coded algorithms, and the language contains some extensions to make use of 

the parallelism possible with a hardware implementation. 

While this approach may be useful in converting existing implementations, the 

work presented in this thesis was coded either in VHDL or in a mixture of VHDL 

for the functional blocks and schematic entry for their interconnections. 
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2.3: FPGA Performance 

With the signals passing through a series of routing switches between logic cells, 

there is always a speed penalty associated with using programmable logic rather 

than full-custom devices. As is shown in the later chapters, if a design contains a 

lot of logic spread out over many LABs this can limit the possible clock rates to a 

few tens of megahertz, whereas a well laid-out design implemented in full-custom 

VLSI could achieve many times this speed, as is apparent in the modem 

generation of PC processors. 

It is this reduction in performance that makes parallelism so important. In addition 

to this, a hardware algorithm can often outperform a software algorithm without 

using parallelism, as it doesn't have to fetch and decode instructions, and 

intermediate results can be stored in registers rather than being written back to 

memory for later retrieval. Local parallelism can also be used, for instance if 

complex numbers are used, the real and imaginary parts must be handled 

separately by a software algorithm, while hardware can handle them in parallel. 

Complex multiplication requires four multiplications, an addition and a 

subtraction, and performing these in parallel could provide a significant 

performance increase. [2.8] 

11 



2.4: Digital Signal Processing with FPGAs 

Since it is possible in many cases to gain a performance increase over traditional 

software by using hardware, the usefulness ofFPGAs in this field has been known 

for some time. [2.9][2. l O] In particular, the reconfigurable aspects of FPGAs 

[2.11] and their ability to mix hardware and software [2.12] have been shown to 

be useful for DSP acceleration. A method for mixing hardware and software in the 

FPGA with a novel low-footprint embedded processor is discussed in chapter 4. 

In DSP applications, the FPGA can be useful either in implementing the entire 

DSP system on a single chip, or as a co-processor in conventional PC-based 

systems. [2.13] In systems such as these, the functions which can be adapted to 

make use of parallelism are implemented on the FPGA, with the rest of the 

processing performed by the software. The high-performance GPUs found on 

modem PC video cards are a good example of how custom hardware can provide 

a significant performance boost compared with a software implementation. 

Many of the more complex modem FPGA families contain additional DSP blocks 

alongside the logic elements and embedded memory. The DSP blocks are 

designed to support the implementation of digital filters, FFTs and DCTs, and 

other similar functions. These functions tend to require multiplication, and so the 

DSP blocks contain configurable multipliers which are usually much faster than 

the logic elements. Taking Altera's Stratix 2 series [2.14] as an example, there are 

up to 96 DSP blocks available (in the largest device), and each block can be 

configured to support either a single 36 bit x 36 bit multiplier, four 18 x 18 

multipliers or eight 9 x 9 bit multipliers. Theoretically then, the largest device in 

the series could potentially provide the capacity to perform 768 9-bit 

multiplications in parallel, before any of the logic elements are used. It has been 

shown that high performance can be achieved with relatively low clock rates if 

parallelism is exploited [2.8] and it can be assumed that the DSP blocks will be 

able to perform much faster than the equivalent blocks built with logic elements 

as their internal structure does not suffer from the reduction in speed due to the 

configurable routing circuitry. 
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2.5: The Experimental Hardware 

The hardware implementations of the systems discussed in this thesis were done 

with a Digilab 20Kx240 FPGA development kit, from El Camino (2.15]. The 

Digilab was fitted with an Altera Apex 20KE series FPGA, of type 

EP20K300EQC240-IX, providing the equivalent of approximately 300,000 logic 

gates. 

The Digilab board pictured in Figure 4 provides the means for powering and 

configuring the FPGA, and also provides a range of additional devices, many of 

which were used in the prototype systems. There are two banks of high-speed 

asynchronous static RAM, arranged as 512K x 16-bit, along with a serial 

EEPROM for non-volatile storage. Four push buttons provide simple on-board 

command inputs, while four bi-colour LEDs and a four digit 7-segment display 

provide output capability. In addition to this, facilities are provided to attach 

external hardware to the FPGA, allowing additional I/0 devices to be used. The 

use of such devices is shown in chapter 3, with a communications system, and 

chapter 5, with a variety of input and output systems. 

Figure 4: Photograph of Digilab 20Kx240 FPGA development kit 
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There is a clock oscillator on the board, providing a 48MHz clock, and the -1 X 

speed grade FPGAs have PLL-based frequency synthesisers on board which can 

be used to multiply or divide the frequency to provide alternative clocks. These 

PLLs were used to generate a 25MHz clock for the VGA timing logic used in 

some of the experimental work. It was found that a video display could be useful 

when a large quantity of low bandwidth status signals needed to be displayed, and 

because the reconfigurable logic made it a simple process to tailor a display 

controller to fit the exact needs of the system, VGA video displays were used on 

some occasions to provide a user interface. 

The Altera Apex 20K series were state-of-the-art when the work was started, 

though technology moved on rather quickly, and just a couple of years later it was 

possible to fit at least ten times the amount of logic into an FPGA as the 300k-gate 

20K300 device allows. However, unless otherwise specified, throughout this 

document it is assumed that any references to the architecture of the FPGA or its 

logic cell functions refer to the Apex 20K series. The results obtained and the 

architectures presented are still valid, as the systems presented in this thesis are all 

implemented in VHDL and can be migrated to newer devices with little 

modification. 
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Chapter 3: Image Processing with an FPGA 

This chapter describes a series of image processing systems implemented in an 

FPGA, for the purpose of performing high-pass filtering on an image in order to 

extract details for further processing. Two main processing algorithms are 

presented, along with a cellular automaton processor based on a reworking of the 

same hardware. 

3.1 Theory and Review 

It has been shown [3.1][3.2] that an analysis of the surface texture of a skin lesion 

can be useful in determining whether the lesion is benign or malignant. The skin 

has a natural pattern of lines, which generally tend to flow in one overall 

direction. As new skin develops and replaces the old, it will usually conform to 

this same pattern, preserving the skin line structure. However, an uncontrolled 

growth of cells, such as that displayed by cancerous cells, will not follow the same 

pattern and will lead to a disruption of the pattern on the skin above. Therefore, as 

shown in [3. l], it is possible to gauge the likelihood of a skin lesion being 

cancerous by examining the skin lines. Figure 5 shows a comparison of a 

malignant lesion and a benign one, and their skin line patterns. 

Figure 5: Comparison of lesions and their skin line patterns 

Sections 1 and 2 show the malignant lesion, and it can be seen that the pattern in 

the lower left hand comer of section 2, corresponding to the inside of the lesion, is 
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much more irregular than in the upper right hand comer. By contrast, sections 3 

and 4 show a benign lesion, and it can be seen that the skin lines do not noticeably 

change direction between the inside and outside of the lesion. 

This skin line analysis can be done by computer, but it is necessary to first extract 

the pattern of skin lines from an image of the lesion before they can be analysed. 

This can be done by a number of methods, which all essentially involve a high

pass filtering operation. This operation removes the more gradual changes in 

intensity, leaving just the fine details, such as the skin lines. With good enough 

contrast in the source image, an edge detection algorithm could also be used. 

A widely used method of filtering in image processing is convolution, where each 

pixel in the output image is computed from the pixels within a mask centred on 

the corresponding pixel in the source image. Each cell within the mask has a 

weight by which the pixel under that cell is multiplied, and then the weighted 

pixels are summed, usually divided by the sum of the mask weights if this is non

zero, and the new pixel is stored in the result image. This is a simple and 

configurable process, as the mask weights can be changed to implement a range of 

different functions. The function of interest, based on the work in [3.1, 3.2], is a 

high-pass filter operation implemented by isolating the low-frequency 

components via a low-pass averaging filter and subtracting these from the original 

image. The averaging filter is a simple filter to implement with convolution, as all 

mask weights are 1, and therefore no multiplication is required. In the case of this 

particular type of filter, the size of the mask determines the cut-off frequency of 

the filter, with a larger mask allowing coarser details through. 

With convolution being a widely used image processing function, many VLSI 

implementations of the process have been made, in both custom VLSI and 

reconfigurable logic. 

Vega-Rodriguez et al. present an optimised architecture for image convolution 

[3.3], focusing on convolving an image with a fixed 3x3 mask. The 

implementation presented accelerates the process by performing the processing 

for four pixels in parallel, with pipelining. On each clock cycle four rows of the 

image data under the mask are read, allowing three pixels to be partially computed 
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and the fourth to be fully computed. Each cycle also finishes the three partial 

computations from the previous cycle. 

The filter mask is implemented as 9 parallel multipliers and an adder tree, with 

optimisations applied to the latter such that each adder is built with only as many 

bits as are required, thus reducing hardware usage. The multiplications are 

decomposed into a series of summed multiplications by powers of two, 

implemented with shifters and an adder tree. In the case of a low-pass filter, where 

the centre column of the mask has coefficients which are twice that of the other 

columns, the same hardware is used for all columns, with the result of the 

computation of the centre partial result being multiplied by two, again by shifting, 

thus reducing the hardware usage still further. It is shown that with a clock of 

16MHz the system is capable of processing 30 images in less than 900ms, and is 

therefore capable of real-time processing of video information. 

The approach of simplifying multiplications by restricting them to powers of two 

is also adopted by Hsiao et al. in the implementation of an edge detection system 

[3.4] which incorporates a noise removal filter with a Gaussian mask. The mask is 

approximated with powers of two, such that each mask coefficient is either a 

power of two or the sum of no more than two such numbers. 

Torres-Huitzil et al. present another architecture for convolution in which 

processing is accelerated by re-using partially computed pixels [3.5]. This design 

recognises that each pixel in the source image will be used in the computation of 

several output pixels, and so for each pixel read a series of processors compute 

that pixel 's contribution to each of the output pixels dependant on it. A mask size 

of 7 x 7 pixels is used, and so 49 processors compute partial results for the same 

pixel, each processor using the mask co-efficient for a different position within 

the mask. Thus, each pixel need only be read once. The partial results are collated 

and used to generate the output pixels once enough input pixels have been read. 

The system is stated to take 8.35ms to process a 512x512 pixel greyscale image 

with a 7x7 mask. 

Bosi et al. present an architecture for a convolution co-processor intended to work 

alongside a conventional DSP, which handles the high-level transfer of image 

data. The intent of this implementation is to increase the speed of processing, and 
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it is stated that a TMS320C40 DSP requires around 20 instruction cycles per pixel 

with a 3x3 mask. This co-processor [3.6] is based on shift-registers, which hold 

the previously read pixels, so that each pixel need only be read once. The 

processor holds two complete image lines plus 3 pixels of a third line, starting at 

the pixel under the top-left comer of the mask and extending across and down the 

image to the opposite comer of the mask. For the example presented, in which the 

processor is handling subsections of the image 68 pixels wide, a total of 139 

pixels are held in the shift register. With the register full, an output pixel is 

produced on every clock cycle. The principle of storing pixels so that they can be 

used in subsequent mask operations without being re-read from memory is a 

simple and widely used way of speeding up the process [3 .7][3.8][3.9]. The 

reduction in logic usage brought about by implementing some of the shift register 

stages with the FPGA's RAM rather than logic elements is also shown in the work 

by Hsiao et al. [3.4] This usage of the internal RAM as a shift-register is possible 

on some of the more modern FPGAs. 

It is also shown in [3.6] that convolution with a larger mask can be broken down 

into a series of convolution operations using 3x3 masks. A 3x3 ' elementary' 

convolution engine architecture is shown, along with the method by which four of 

these can be used to perform a convolution with a 5x5 mask. This elementary 

convolver is one which can take in partial sums from other convolvers, thus 

allowing several to be used together. This method has the advantage of reducing 

the complexity of the design, as all that is required is a simple 3x3 elementary 

convolver repeated several times, but it does increase hardware usage, as many 

operations are carried out twice where the convolution windows overlap. A third 

alternative shown is to break the convolution down into a series of 1-D 

convolutions, which has the benefit of being easier to scale as the image or mask 

size is changed, though with the drawback of increased hardware usage over a 

single 2-D convolver as partial sums must be passed between stages. For a fixed 

mask size a single 2-D convolver is the optimum choice, but the more complex 

methods involving breaking the convolution up into smaller processes allows for 

better scalability when the mask is of variable size. Consideration is also given to 

multiplexing the processing hardware between two shift-registers, allowing two 

image lines to be processed simultaneously with the same hardware, though 

reducing the throughput from one result pixel per clock cycles to one per two 
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cycles. However, this is a reduction in the quantity of multipliers only, and a large 

number of shift register stages are required for large images. A total of 962 CLBs 

in a pair of Xilinx XC4013s are required for the implementation, the majority 

being used to implement the shift registers. This is equivalent to 1924 LEs in an 

Apex device. 

Addressing the issue of shift-register requirement, Cardells-Tormo et al. present a 

series of alternative shift-register-based architectures [3.1 O], intended for 

processing the large quantities of image data required for high-resolution printing. 

The first of the architectures presented holds as many pixels within the shift

register as there are pixels in the mask, and thus allows the output pixel to be 

computed using only the data from the shift-register, while not requiring any more 

shift register stages than the minimum necessary. More complex architectures are 

also presented, which use several shift registers operating in parallel, or move a 

larger block of image data through the register with each cycle, to further enhance 

the speed of the processing. It is shown that there is a trade-off between 

performance and hardware cost; although the methods presented use fewer shift 

register stages than the earlier work [3.6] the performance decreases and it is no 

longer possible to produce a new result on each clock cycle, as to produce a row 

of output data, 2s+ 1 complete rows must be read from the source image, where s 

is the mask size. 

In order to further reduce the amount of hardware required, Zhang et al. noted that 

many of the most frequently used convolution kernels have some degree of 

symmetry, and indeed many are quadrant-symmetric, so a reduction in hardware 

can be achieved by implementing only a quarter of the kernel, and using this to 

process the pixels from all four quadrants, with suitable co-ordinate 

transformation [3.11 ]. A reduction of 75% in the number of multipliers and nearly 

50% reduction in the number of adders is claimed, when compared with a 

hardware system in which all kernel cells are processed by separate hardware. 

Taking the other route of performance over hardware cost, Perri et al. have shown 

that if minimising the hardware is not an issue, greatly improved performance and 

flexibility can result from employing an array of 3 x 3 convolvers, each built with 
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its multipliers implemented in parallel [3.12]. This implementation allows 

processing at different word lengths depending on configuration signals, and can 

use arbitrary mask coefficients, in contrast with the architecture in [3.6] where the 

mask coefficients were restricted to certain values to save hardware. This design 

takes 4.6ms to process an image of 1024 x 1024 pixels with a 5 x 5 mask, 

operating at around 28MHz. 

The benefits arising from parallel processing are demonstrated in work by Rosas 

et al. where a convolution engine designed to implement edge detection with a 

Sobel mask operation is implemented with 30 parallel processing elements [3.13]. 

The overall processor works on a 32 pixel wide column of the source image, 

repeating as necessary across the image, and stores the read pixels in memory 

internal to each of the processing elements, which produce their outputs in 

parallel. The resultant processor can process a 640x480 image in 23ms, fast 

enough for real-time processing. This is compared with 3.6 seconds for the same 

processing carried out on a SPARC-20 CPU. 

In a similar fashion, Saldana et al. present an image processor using 49 parallel 

processing elements [3 .14 ], which also makes use of local caching of pixels to 

reduce the number of source pixel accesses, as has been seen to be the case in 

many works. In this case around 200 images of 640x480 pixels can be processed 

each second at 66MHz, an increase in speed of 8 x compared with a software 

implementation on a 1.5GHz Pentium 4. This is indicative of the power of parallel 

processing, as most if not all FPGA implementations operate at significantly 

lower clock speeds than their software counterparts, and still achieve a 

performance increase. 

While many of the above implementations are of general-purpose convolution 

systems, much work has been done specifically on edge detection 

[3.15][3.4][3.16][3.17], which, though less flexible than full convolution, is 

perhaps suited to the task at hand, i.e. the extraction of the skin lines from the 

image. Indeed, edge detection is widely used enough that Altera produce an IP 

block for this purpose [3.18], which can be implemented through a plug-in to the 

Quartus software. This is a convolution-based system operating with the Sobel 
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masks, and in the reference design is connected to the Nios processor core (see 

section 4.1 ), which handles the transfer of data between the core and memory. The 

vast majority of the edge detection systems use the Sobel masks, as these require 

just a 3x3 convolution with coefficients which are powers of two, and as the 

previous work shows, can be implemented efficiently. 

Convolution is the simplest method of implementing image filtering, but there are 

other more complex methods such as FFTs which can provide more flexibility or 

better performance. The FFT, and its close relative the Discrete Fourier 

Transform, have been widely implemented in hardware. [3.19] An alternative, the 

Discrete Hartley Transform, which uses only real numbers, has also been 

implemented. [3.20] 

Uzun et al. describe a system using an FPGA as a co-processor [3.21] in a 

frequency-domain image filtering environment. The FFT in this case is performed 

by several parallel processing elements, with each processing element containing 

a 7 stage pipeline and implementing a 1-D FFT. The 2-D FFT for image 

processing is composed of separate 1-D FFTs performed on each row and column 

of the image. The system is built using the Handel-C language, and shows a 

performance increase when compared with software implementations. 

The FFT hardware does however tend to be very complex, due to the large 

number of multiplications required when computing with complex numbers, 

especially when using floating-point number representation. An example given in 

[3.21] uses 45% of the logic space in a Xilinx XCV2000E, which equates to 4320 

CLBs, functionally equivalent to 17,280 LEs in an Altera Apex device. 

This large-scale hardware usage is typical of many of the systems presented in 

this section, as in general high performance is more important than efficient logic 

cell usage in these image processing applications. 
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3.2: Image Processor Implementation 

It was decided that the initial implementation would be a direct hardware 

translation of the basic flow of the operation, i.e. reading the pixels in turn and 

computing the result when all the required pixels had been read. The aim of this 

initial implementation was to determine if any speed-up could be achieved 

without optimising the architecture for hardware implementation. Once a working 

system was developed, future implementations would be more highly optimised to 

achieve maximum performance. 

It was clear that an implementation using shift-registers to hold entire image lines 

would be significantly more costly in terms of logic element usage than one which 

holds only the data required to compute one output pixel. 

The shift register design as used by Bosi [3.6] which holds M image lines for a 

mask size of M x Mis feasible when a 3 x 3 mask is used, but becomes unfeasible 

for FPGA implementation with a 9 x 9 mask, as the number of shift register cells 

exceed the number of LEs available in the FPGA. Since a 9 x 9 mask was 

required, as this was the size used in the original work, a shift-register design was 

not used. The implementation was based on the flow of the software algorithm for 

the filter, reading the pixels one at a time and keeping a running sum, before 

dividing. 

A memory-to-memory design was used, constrained by the features of the FPGA 

development kit introduced in section 2.5. Two banks of memory were used, one 

for the source image and the other for the result image. The image size was set to 

256 x 256 pixels (65536 pixels total), though the hardware could easily be 

changed to accommodate larger or smaller images, with 512 x 512 being the 

largest square power-of-two dimensioned image which could fit into the memory 

on the board. If a square image was not required, it could be expanded to 512 x 

1024 or 1024 x 512, to use all available memory. The dimensions do not 

necessarily need to be powers of two, but this makes the most efficient use of the 

memory, as the X and Y co-ordinates each fill a certain number of address bits 

completely, and the complete address can be produced merely by joining the X 

and Y addresses without needing to perform addition. 
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The overall form of the processor is shown in Figure 6. There are three main 

functional elements: the data processor (named DATAPATH in the VHDL code), 

the address processor (ADDRESSPROC) and the control unit (CSM). These are 

explained in detail below. 

Read data----

Clock 

Reset---"'.i 

Go 

DATAPATH 

CSM 

----• Write address 

Done 

Ready 

jOIIII~;::::=: Write control 

Write address 

ADDRESSPROC t-----• Read address 

Figure 6: Block Diagram of the Convolution Image Processor 

3.2.1: Data processor 

This section performs the arithmetic on the image. Recalling the basic description 

of the process, the required processing consists of summing the pixel values over 

the mask area, dividing the sum by the number of pixels in the mask, and 

subtracting this value from the original pixel value. Making the assumption that 

an image of skin will not usually contain extremely sharp changes in brightness, 

we can see that this will usually yield a low value for the output pixel, so the 

image is then brightened using a gamma correction process. Figure 7 shows the 

layout of this hardware. 

23 



Data In Accumulator 
Gamma 

COf'T8Ctk>n 

Figure 7: Block diagram of the data processing section 

Data Out 

The incoming data is 8 bits wide, but the accumulator and adders must be wider to 

accommodate the accumulated values. The maximum possible input value will be 

255, and since the original test system used a mask of 9 x 9 pixels, up to 81 such 

pixels can be accumulated, yielding a maximum possible accumulator value of 

20655. This can be accommodated with 15 bits, so the accumulator, the first adder 

and the divider were built 15 bits wide. The output of the divider, which divided 

by 81 in this case, would never be greater than 255, so the subtractor and gamma 

corrector were built 8 bits wide. 

Incoming 8-bit pixel data is padded to 15 bits by filling the upper seven bits with 

zeroes, and fed to the adder. This outputs the sum of the current accumulator 

value and the incoming data, which is clocked into the accumulator for each 

incoming pixel. A special case is when the pixel at the centre of the mask is read, 

in which case it is also clocked into a second storage register. Once all required 

pixels have been read, the result is available at the output of the data path without 

any further clocking. Only a short delay of 30-50ns is required to allow the data to 

propagate through the chain of processing elements. 

The divider was built for speed rather than compactness, and as such is simply a 

large combinatorial logic circuit with I 5 inputs and 8 outputs, whose VHDL 

definition was computer-generated. The code which generated this is shown in 

appendix A. 1. Some code space and compilation time was saved by exploiting the 

fact that the maximum number which the divider would have to divide is less than 

the maximum number supported by 15 bits, in the case of the 9 x 9 mask this was 

20655 vs. 32767, saving 12112 lines of code. 

A physically smaller divider could have been used in place of this, though at the 

expense of speed, since the smallest dividers are generally those which use an 

iterative process or repeated shift-and-subtract. 
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These dividers would require several clock cycles to complete a division, although 

a pipelined system would be able to perform these while reading in and 

integrating the source pixels for the next output pixel, saving time. 

Gamma correction is provided by a look-up table (LUT) consisting of a 256x8 bit 

ROM. The data from the subtractor is fed to the address inputs of the ROM, 

which provides the corrected data at its outputs. This allows quick changes of the 

correction curve during testing, as even though the ROM contents were fixed at 

compile-time, changing the ROM required only that the final assembly of the 

programming file was carried out, with no new logic synthesis or fitting being 

necessary. 

The correction curve is shown in Figure 8. Input values are shown on the X axis, 

output value on the Y axis. This curve was determined experimentally, using Jase 

Software ' s Paint Shop Pro [3.22] to apply gamma correction to an uncorrected 

image produced by an early test system. Once a correction curve had been found 

which produced an image in which the skin lines were clearly visible, the curve 

was programmed into the ROM, and was then used for all subsequent tests. 

192 

0 .,-....,_,_.-++-++++->-+-+-+-+-++-+-+--H-+-+-1-+-+--+-+-<>-+-,-l 

0 64 128 192 

Figure 8: Gamma correction curve. 

3.2.2: Address Processor 

The address processor generates the read address from the pixel address and the 

mask count. The read address is calculated by adding an offset to the pixel 
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address, based on the currently selected mask pixel. For a 9 x 9 mask, the top left 

comer's co-ordinates will be (x - 4, y - 4), where (x,y) is the target pixel co

ordinate. Since the pixel address is a single binary number, it must first be split 

into X and Y co-ordinate components. The image size was chosen to be a power 

of two to make this split very simple. With an image of 256 x 256 pixels, or 28 

pixels on each axis, the two bytes which make up the 16-bit address contain the 

two co-ordinates. In order to retain compatibility with standard computer image 

formats, the image is scanned horizontally, line by line, therefore the high order 

byte is the Y co-ordinate and the low order byte is the X co-ordinate. 

For performance reasons, the original approach chosen to perform the offset was 

to split the incoming address into X and Y, and generate all offsets in parallel, 

selecting the appropriate pair with a pair of multiplexers, as depicted in Figure 9. 

This approach has the advantages of speed and coding simplicity, but generates a 

large amount of logic. 

X co-ordinate out 

Multiplexer 

Figure 9: Example of a co-ordinate transforming multiplexer 

A simpler approach which was used later replaced the multiple adders with a 

single 16-bit adder, which adds a single offset onto the address to produce the 

same result. Since the image size is fixed at 256 x 256, we can see that the pixel 

immediately above the target pixel will have an address which is 256 lower than 

the address of the target pixel. More generally, the pixel at (x + a, y + b) will have 
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an address of P + (w x b )+a, where Wis the image width and Pis the address of 

the pixel at (x, y). For an image 256 pixels wide, with a 9 x 9 mask, the full set of 

mask offsets is shown in table n. 

-1028 -1027 -1026 -1025 -1024 -1023 -1022 -1021 -1020 
-772 -771 -770 -769 -768 -767 -766 -765 -764 
-516 -515 -514 -513 -512 -511 -510 -509 -508 
-260 -259 -258 -257 -256 -255 -254 -253 -252 

-4 -3 -2 -1 0 1 2 3 4 
252 253 254 255 256 257 258 259 260 
508 509 510 511 512 513 514 515 516 
764 765 766 767 768 769 770 771 772 
1020 1021 1022 1023 1024 1025 1026 1027 1028 

Table 1: Mask offsets for a 256 pixel wide image 

The offset is generated by a look-up table (LUT) which is implemented as a small 

block of VHDL-coded ROM. The address for the ROM is the mask co-ordinate 

generated by the mask counter in the control unit. It should be noted that the two 

versions of the address processor perform slightly differently when used at the 

very edges of the image. Processing the X and Y co-ordinates separately means 

that if the mask moves off the edge of the image, for example if the centre pixel is 

on the right-hand edge of the image, the section of the mask which has left the 

image area will in fact 'wrap' around to the opposite edge, remaining aligned 

vertically with the rest of the mask. This is because there is no carry from the X 

co-ordinate to the Y co-ordinate, so as the X co-ordinate rolls over through zero, 

the Y co-ordinate is unchanged. Adding a single offset to the pixel address will 

cause the mask cells which have moved off the edge of the image to reappear on 

the opposite edge one row down (assuming it is the right-hand edge into which the 

mask is moving). This difference doesn' t matter in the case of the convolution 

filters, as the mask is never placed anywhere where it would have pixels outside 

the image boundary, but for the cellular automaton processor in section 3.8 correct 

wrapping at the edges is essential and so two individual co-ordinate transformers 

must be used. 

An additional logic circuit checks the current pixel address for validity. An invalid 

pixel is defined as one which is close enough to the edge of the image that the 
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mask could not be placed around it without some of the mask pixels being outside 

the image boundary. These pixels are not processed by the system, and so the 

output from this validity-checker is used by the state machine to decide whether to 

proceed with the inner processing loop. If the pixel is invalid, it is skipped to save 

processing time and a black pixel is written to the processed image. 

This checker splits the pixel address into X and Y co-ordinates and checks that 

both co-ordinates are greater than 3 and less than 252, for a 9 x 9 mask. 

3.2.3: Control Unit 

The control unit consists of a state machine and a pair of counters which generate 

the memory addresses and control signals for the system. The master pixel 

counter generates the address of the target pixel which is to be processed. The 

mask counter is used to count mask pixels, so for a 9 x 9 mask this counts from 0 

to 80. The mask count is used by the address processor to modify the pixel 

address to fetch the correct group of source pixels. 

PIXa< FFFF 

Figure 10: State transition diagram for the control unit 

28 



Figure 10 shows the state transition diagram for the control unit. When reset is 

asserted, the system enters the idle state, where it will remain until the active-low 

GO input is asserted. The supporting logic issues a clear signal to the address 

counter when the state machine is in the idle state, to ensure that the processing 

operation begins at the correct point. 

Upon receiving the GO signal, the system enters the main processing loop with a 

transition to the CLEAR state. While in this state signals are issued to clear the 

accumulator and mask counter, and the next state is chosen by looking at the 

VALID signal from the address processor. If the pixel is valid, the next state will 

be ACCUM, starting a new integration cycle. For invalid pixels the next states 

will be the chain consisting of WW AITI, WRITE and WW AIT2, which write the 

accumulator to memory at the currently selected pixel address. 

After writing a pixel, the state machine will either enter the DONE state, if the 

pixel address is FFFF 16, or go to the !PIXEL state, during which the pixel address 

is incremented. After IPIXEL the state machine returns to the CLEAR state. 

The pixel processing is performed by the states inside the dashed box in Figure 

10. Starting in the ACCUM state, with the accumulator cleared and the mask 

count at zero, the state machine passes through states Q, !MASK and RDW AIT 

until the mask count reaches 80 and all pixels in the mask have been read and 

accumulated. The exception occurs when the mask count reaches 40, when an 

additional state, BCLOCK, is used to write the centre pixel into the centre pixel 

register. 
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3.3: Alternative Filter Masks 

3.3.1: Second - order High-Pass Filter 

The high pass filter is an effective method of extracting the skin lines, but it can 

be costly in terms of processing time and logic element usage due to its large 

mask size and the need for a divider. Therefore some speed increase could 

theoretically be obtained through the use of a filter requiring fewer source pixels 

to be read. One such simpler filter is the second-order or Laplacian filter [3.9], 

which uses a mask of 3 x 3 pixels, of which only five need to be read. 

Figure 11: Second-order filter mask 

Since the mask weights are either 1 or -4, this is a simple function to implement in 

digital hardware. A multiplication by four can be performed with a left - shift of 

two bits while the negation can be performed by using a subtractor rather than an 

adder. The remaining hardware is very similar to the averaging filter. The pixels 

read from the source image are either added to the accumulator or multiplied by 

four and subtracted from the accumulator. No division is required as the sum of 

the weights is zero. 

This filter essentially performs a high-pass or edge detection operation, and 

whereas after performing the low-pass filtering with the averaging filter, it is 

necessary to subtract these filtered components from the original image, there is 

no such requirement with the second-order filter. Also, while the averaging filter, 

by subtracting one image from an essentially similar one, will generally produce 

low pixel values, the lack of such subtraction in the second order filter means that 

the gamma-correction is not necessary and can be removed. These simplifications 

mean that this filter has the advantage of requiring much less hardware than the 

filter of section 3.2, while also exhibiting higher performance. 
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3.3.2: Gaussian Blur filter 

The Gaussian blur filter is a low-pass filter that performs the same function as the 

averaging filter, but produces a weighted output average of the neighbourhood of 

each pixel. This tends to preserve edges more than the averaging filter, and has a 

gentler response for a given mask size. 

The Gaussian coefficients are shown in Table 2. For a mask size of N x N, row N 

is taken from the table, and the outer product is found with the transpose. 

1 
1 1 

1 2 1 
1 3 3 1 

1 4 6 4 1 
1 5 10 10 5 1 

1 6 15 20 15 6 1 
1 7 21 35 35 21 7 1 

1 8 28 56 70 56 28 8 1 

Table 2: Gaussian coefficients 

It can be seen from the values in the table that these approximate a Gaussian 

distribution for large N. [3.23] 

From the table of coefficients, we see that for a 3 x 3 mask, the final mask values 

w ill be: 

The mask coefficients sum to 16, so this must be followed by a division by 16. 

This is trivial to implement in hardware, as a division by 2" is a right shift of n 

bits. It is similarly easy to implement the multiplications by two and four required 

when weighting the pixels according to the mask values using left-shifts. For a 5 x 

5 mask, the coefficients are: 
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1 1 4 6 4 1 

4 4 16 24 16 4 

6 [1 4 6 4 1] = 6 24 36 24 6 

4 4 16 24 16 4 

1 1 4 6 4 l 

The sum of these coefficients is 256, which is again simple to implement, but the 

multiplications by the mask values are more difficult to implement, as not all are 

powers of two. However, these multiplications, by 24 or by 36, can be broken 

down into multiplications and additions which can be achieved as follows: 

24n=8n+l6n 

36n = 4n+ 32n 

Reducing these multiplications to bit-shifts and additions usually results in a faster 

or less complex logic circuit, especially in cases where only one addition is 

required. In those cases when several shifted terms must be added, the adder will 

have to be broken down into a tree of two-input adders, which will multiply the 

propagation delay of a single adder by log2 N, for N inputs, where N > 2. 

The final divisor required for a mask of size m x m is 2 2111
-

2
, so for the 9 x 9 mask 

used by the test system the divisor will be 65536. This implies that the data buses 

carrying the sum of the weighted pixels will need to be at least 17 bits wide, 

compared with the 15-bit bus used with the averaging filter. However, the division 

by a power of two is simple to implement and removes the need for the hugely 

complex divider as used in section 3.2. 

3.3.3: Median Filter 

The median filter produces the average of the pixel values within each pixels 

neighbourhood by taking the median of these values, i.e. by taking the middle 

value when the pixels are sorted by brightness. This has the advantage of 

preserving edges more accurately, but is much more computationally intensive 

than the simpler averaging functions, as it requires that the pixels under the mask 

be sorted. In a hardware implementation, this sorting would be carried out by a 
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sorting network [3.24] consisting of several 2-input compare-and-swap blocks, 

each of which can sort two values. These sorting networks quickly grow in size as 

the number of inputs grows. For example the odd-even transposition sort, which is 

one of the simpler ones, requires n stages for n inputs, as shown in Figure 12 for 

an 8-input network. For a 9 x 9 mask this network would be 81 stages long, 

though as the stages repeat it would be possible to implement a partial network of 

two stages and apply this 41 times, feeding the outputs back to the inputs each 

time. 

t Comparator 

Figure 12: Odd-Even Transposition Sorting Network 
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3.4: Alternative Implementation: Second-order Filter 

The second-order filter described above was implemented as an alternative to the 

standard blur filter. It was decided to implement the second-order filter because 

the processing is very simple, with only 5 pixels being read per output pixel, and 

there being only two values of mask weights and no requirement for a divider. 

This makes the second-order filter much simpler than the Gaussian filter or 

Median filter implementations would be, as the arithmetic requirements for the 

second order filter are minimal. 

The complete system is depicted in Figure 13. This was implemented as a single 

unit which is externally compatible with the convolution filter, and can replace it 

in a test system without any further changes being necessary. 

Data In 

Clock and control 

Accumulator f----1-- Data Out 

Control State Machine t---- - Status signals 

Address 
Processor 

I----_. Read Address 
Write Address 

Figure 13: Layout of the second order filter processor 

The simplified processing section consists of a series of simple functions joined 

by multiplexers. The first of these multiplexers selects either the raw input data, or 

the output of a multiply-by-four circuit that shifts the incoming data left by two 

bits. The output of this multiplexer is fed to an adder and a subtractor, both of 

which take their other input from the accumulator. The second multiplexer thus 

selects whether the output from the first is to be added to or subtracted from the 

accumulator. The third multiplexer is used to select whether the accumulator is to 

be updated or not, which is required because the accumulator is clocked on every 

cycle, to avoid having to feed its clock through logic, ensuring glitch-free 

operation. The state machine is clocked on the opposite edge of the clock from the 
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registers, so that its multiplexer controlling outputs are stable when the registers 

are clocked. 

The pixel and mask counters are also built synchronous, and are clocked at the 

same time as the accumulator. An additional pair of multiplexers are used to 

ensure that these are only incremented when required. 

The state machine controlling this filter system is also a little simpler than the 

convolution controller. The state diagram is shown in Figure 14. 

GO= 1 

Figure 14: Control State Machine for the Second-Order Filter Processor 

Processing begins in the CLRALL state, which clears the registers and sets the 

pixel counter to 010 I ,6. This is the top-left-hand corner of the valid area of the 

image. During the ACCUM state the accumulator is updated, and the arithmetic 

circuitry before it ensures that the correct operation is performed on the incoming 

data, either an addition or a subtraction, and either shifted or not, based on the 

mask counter value. The mask is checked in the MCHECK state, and if there are 

still pixels to be read, the process repeats. When the mask counter reaches 4, the 

last of the required pixels have been read, and so the mask counter is reset, the 

result pixel is written, and if the current pixel isn' t the last valid one, the pixel 

counter is incremented in state INCPIXEL. If the validity checking logic in the 
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address processing section determines that the pixel is invalid, the system remains 

in state INCPIXEL until a valid pixel is reached. Thus, with a border of 1 invalid 

pixel down each edge of the image, two extra cycles are required at the end of 

each row, to skip the border pixels at the end of the row and the start of the next 

one. For pixels at the end of a row, 19 cycles are required, for all others, 17 are 

required. 
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3.5: A Test-bed System 

In order to test the image processors, a system was required which could place a 

source image in one memory bank, allow the processor to perform its operation, 

and then retrieve the processed image from the second memory bank. Originally 

the reconfigurability of the FPGA was exploited and these three jobs were 

performed by three individual designs. The FPGA's internal circuit could be 

changed without disturbing the images in the RAM, as the RAM is external to the 

chip. However, it was quickly found that this was a time-consuming way to 

process the images, and the three processes were combined into a single test-bed 

system. 

An overview of the system is shown in Figure 15. 

Left RAM ______ ___._ __ 

bank 

Control State Machine 

Right 
RAM 
bank 

Figure 15: Overview of the image processing test bed 

The test bed was built to fit the arrangement of components on the Digilab board. 

The two RAM banks on the board itself are 512K x 16 bits, wired as two 512K x 

8 SRAM chips. The processor uses 8-bit greyscale image data, thus leaving one 

half of each physical data bus free. 

In the case of the left-hand (source) memory bank, this unused half was left 

unused, but with the right-hand bank there is an extra socket connected to one half 

of the bus which allows ROM devices to be fitted. This socket was used to 

provide the interface to the host PC, using the data lines for communication, 
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leaving the address lines untouched so they, together with the other 8 data lines, 

could be used to access the memory. The electrical side of the interface was an 

Altera ByteBlaster MV [3.25] JTAG interface, which would normally be used to 

configure the FPGA. This provides the level translation between the FPGA's 3.3V 

CMOS l/0 pins and the 5V TTL compatible parallel port of the PC, allowing 

high-speed transmission. In practice, due to problems with noise and with the 

software on the PC, data rates were somewhat limited, requiring nearly 30 

seconds to transfer an image. This gives a calculated data rate of around 

17Kbits/sec. Clearly something faster is required for any practical application, but 

no further developments were made. This is not a problem as there are plenty of 

ready-made communication controller solutions [3.26] available for inclusion in 

future FPGA designs. These include fast RS232 serial and USB protocols. 

The downloader and uploader were designed to be compatible with the image 

processor in terms of the control and status signals, so when the chip is reset, each 

block will present a 'ready' signal once it has performed any necessary 

initialisation, then wait for a 'go' signal. Once given this signal it will perform its 

function, usually outputting a ' busy' signal as it does so. When finished, it 

removes the ' busy' signal, and asserts a 'done' signal to indicate that it no longer 

needs control of the bus. 

The overall operation of the system is controlled by a master state machine which 

sends out the triggering signals and monitors the status lines. A second state 

machine consisting of five states tracks the progress of the first, and is used to 

remove glitches from the bus control outputs. The state diagrams for these are 

shown in Figure 16. The bus control outputs from the control block are 

responsible for controlling the multiplexers and tri-state buffers which set up the 

data path between the downloader, processor and uploader, and the two memory 

banks. Since the master state machine goes through several states for each of the 

three stages, these control lines would need to be active for several states, and 

glitches may occur at the transitions from one state to the next. The second state 

machine removes these glitches by representing each phase with a single state, 

and moving from one to the next as the master state machine does. 
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Figure 16: State machines for the test-bed controller 

For each process (DownLoad, ConVolution, UpLoad) there are five main states. 

The SEL (Select) state is used to move the second state machine to the correct 

phase, and it is in this state that an additional reset pulse is given to the relevant 

unit to ensure that it is working correctly. Following this the WT (Wait) state 

allows time for the buses to settle and the selected unit to initialise, before the 

TRG (Trigger) state issues the command to start it. The SYN (Synchronise) state 

wastes some time before any of the status signals are checked, to ensure that the 

current phase is in action before its status is checked. The RUN state is entered, 

and it is here that the system will remain until the ' done' signal is issued. 
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3.6: Testing the Image Processor 

In order to be able to perform the task for which it was designed, the system must 

be able to detect sharp changes in brightness from one pixel to the next, 

corresponding to the skin lines, while ignoring the more gradual changes 

corresponding to areas of skin colouration or shadow. It must also be able to 

detect these changes regardless of the average colour of the image, as it may be 

required to process images of a wide range of different skin tones. A number of 

test images were created which were processed by the two image processors. 

These were intended to reveal any flaws in the processing and to provide a view 

of the performance of the two systems relative to each other. Many of the test 

images were designed to replicate features which would be found in the real

world skin images. 

Note that when images are presented, the source image is on the left, with the 

high-pass filtered result in the centre and the second order filtered result on the 

right. In some cases, though it may not be noticeable in print, there may be a I

pixel wide border of random noise around the edges of the second-order result 

images, as the second-order filter completely skips the invalid pixels and doesn' t 

write anything into the second memory bank for these, leaving the random data 

which was present at power-up. 

3.6.1: Basic Edge Detection Tests 

Since the system works by high-pass filtering, a sharp change in brightness should 

result in a strong output, i.e. a brighter pixel in the output image. A gentler change 

in brightness should result in a dimmer pixel. The aim of this basic test was 

therefore to determine that the system responds correctly to changes in brightness, 

and that it can distinguish between sudden and gentle changes. Figure 17 shows a 

test image consisting of a grey half and a black to white gradient half. The grey 

half has a brightness value of 128, half way between the black and white values. 

There should therefore be no difference in brightness between the grey half and 

the middle of the gradient and an increasing difference above and below this 

point. The expected outcome was that the detected 'edge' would be stronger at the 

top and bottom of the image where the brightness step is greater, diminishing to 
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nothing in the middle, and that although the gradient half of the image has a 

continuous change in brightness from top to bottom, it should be gentle enough 

that it would not be detected as an edge. 

Figure 17: Gradient test image, high-pass result and 2nd order result 

The processed results are shown in the centre and right images. As expected both 

systems found no edge in the centre of the image, while the strongest edges were 

found at the top and bottom, where the colour difference is greatest. It can also be 

seen that while the high-pass filter places its line on the lighter side of the edge, 

the second order filter places its line on the darker side, an effect which is more 

noticeable in the case of the high pass filter due to its much wider output line. 

This effect can be seen more clearly in Figure 18, which shows an extract from a 

checkerboard pattern with 16-pixel wide squares. 

Figure 18: Enlarged section of checkerboard test pattern and result images 

Both filters have found the edges of the white squares, but the second order filter 

has placed its output pixels outside these squares, which gives the appearance of 

having detected the edges of the black squares. 
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The reason for the second order filter's line placement can be seen if we consider 

a section of an image at an edge, as depicted in Figure 19. 

255 255 255 
255 255 255 

0 0 0 
0 0 0 

Figure 19: Pixel values for a small image section 

The two pixels to consider are shaded. When processing the upper pixel, the 

second order fi lter will read three pixels with values 255, one with value 0, and 

the centre pixel with weighted value -1020. The sum of these is -255, which is 

clipped to zero, and results in a black pixel. For the lower shaded pixel, the sum of 

the five pixels read by the fi lter is 255, resulting in a white pixel. Therefore, 

wherever a bright section of the image appears, the second order filter will tend to 

place bright pixels around but not inside its boundary. 

The high-pass filter applies a low-pass filter to the image then subtracts this from 

the original image pixel. So, if the centre pixel under the mask is darker than the 

average of those around it, as would happen in the case of the lower shaded pixel 

in the image section, the result of the subtraction will be negative, and will be 

clipped to zero. The high-pass filter will therefore not place output pixels on the 

darker side of such an edge. 

A second test of the edge detection capability was performed with an image 

consisting of a white half and a black half, with an increasingly blurred edge 

between them. The aim was to determine that the edge detector could tell the 

difference between a sharp edge and a softer edge. In this case, in contrast with 

the first test shown in Figure 17, the edges in this test are always between areas of 

maximum contrast, so it is the slope of the change in brightness which is varied, 

rather than the magnitude. The expectation is that because the magnitude of the 

change is the same in all cases, the system will be able to detect the edge all the 

way along, despite the softening of the edge from top to bottom. 
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Figure 20: Blurred boundary test image and result images 

The result of th is second test of the edge detection capabilities is shown in Figure 

20. For the high-pass filter, the resulting image, in the centre, shows that the 

detected edge is darker and weaker in the areas with a slower brightness change 

than in areas with a sharp change. The edge line curves slightly because the 

detected line lies in the brighter half of the source image's gradients rather than on 

the centre line. 

In the 2nd order filter's case, the detected edge is placed at the darker edge of the 

transition, and short horizontal lines indicate that edges have been detected 

between the sections of differing blur. 

It is clear from this image that the 2nd order filter is more suitable for simple edge 

detection than for extracting small features in an image. 

3.6.2: Low-frequency test 

The purpose of the filtering hardware is to pick out parts of the image with a high 

spatial frequency, ignoring slow or gentle changes in background intensity. The 

low-frequency test is therefore intended to check that the system doesn't detect 

spurious edges within images consisting only of slow changes in brightness. The 

test image was created by applying a heavy blur to an image consisting of solid 

blocks of different grey levels. This resulted in an image in which the brightness 

changed smoothly between the centres of these blocks. The expected result of the 

test was that the image would not contain any detected edges, being completely 

dark. 

Figure 21 shows the test image which was used, along with the results produced 

by the two systems. The result images are inverted and contrast-enhanced. 
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Figure 21: Low spatial frequency test and result images 

The results of this test were almost completely black, with a very faint pattern of 

lines corresponding to the step changes in brightness due to the quantization, both 

spatially and intensity-wise, of the image. The second order filter showed a finer 

pattern of quantization noise, due to its smaller mask size and correspondingly 

higher sensitivity. Although both contrast-enhanced images appear to have similar 

levels of noise, the high-pass filter' s output produced a noise pattern consisting of 

broader bands at a lower intensity than those produced by the 2nd order filter. This 

shows that there would be less noise in the output of the high-pass filter, making it 

more suitable for processing the skin lines. 

3.6.3: Line Detection 

The low-frequency test image was overlaid with faint lines to test the processor' s 

ability to extract the details with a non-constant background. A test image was 

created which consisted of a series of lines drawn onto the image from section 

3.6.2. The expectation was that the result would contain a depiction of the lines 

but not the varying background, the latter varying too slowly to be detected by the 

system. The results of these tests are shown in Figure 22. 
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Figure 22: Line test image and result images 

The results of this test show that while both systems detected the lines, the output 

from the high-pass filter can be said to be the more accurate one, as it shows the 

lines themselves, whereas the second-order filter has placed lines around the 

positions of the lines in the source image. Referring back to the grey gradient test 

above, it was seen that the high-pass filter tends to place its output on the lighter 

side of the detected edge, and with the lines in this test image being generally 

brighter than the background, this filter will tend to produce output inside the 

lines, while the second order filter will tend to place output outside the lines. The 

larger mask size and correspondingly wider output lines of the high-pass filter can 

also clearly be seen. 

It should be noted that the lines placed onto the background in this test were of 

constant brightness, which resulted in the detected lines being stronger in areas 

where the background was darker, and therefore the contrast was greater. A pair 

of new test images were created in which the difference between the lines and the 

background was more constant, i.e. the lines either lighten or darken the 

background by a constant amount. 

Figure 23: Bright line test and result images 
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The first of these test images is shown in Figure 23. In this image the lines are 

narrower and more detailed, and are overlaid in such a way that they brighten the 

background rather than replacing it, producing a more constant difference in 

brightness. This is reflected in the result images, in which the variation in line 

intensity is smaller, as was expected. Again, the second-order filter produced 

outlines of the detected details, which, due to the narrow lines, gives the image an 

out-of-focus appearance. However, both filters have successfully extracted the 

lines. 

The same combination of background and lines was used in a third test, but with 

the lines slightly darker than the background. The test image and the two results 

are shown in Figure 24. 

Figure 24: Dark line test image 

Here, the second-order filter, due to its particular result placement, produces the 

better result, though both processors have identified the lines, the lines are much 

better defined in the second-order output. 
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3.6.4: Skin Image Tests 

The system was tested further with a range of images of skin lesions taken during 

the work in [3.1]. The particular set of images presented were chosen to 

demonstrate the system's response to a variety of different patterns and lighting 

conditions, covering the range of images which the system would be likely to 

encounter. A selection of these and their processed results are presented below. 

Figure 25 : Sample skin lesion and processing results 

Figure 25 shows a section of a lesion with well-defined lines, and the two 

processed result images. It is clear that the high-pass filtered image, shown in the 

centre, shows the skin lines much more clearly than the 2nd order filtered image, 

which shows a much finer level of detail in which the relatively coarse skin lines 

are lost. This was found to be the case for most of the skin images, and is a result 

of the difference in mask sizes between the two filters. With its 9 x 9 mask, the 

high-pass filter is less sensitive to the small details and tends to extract the larger 

skin lines only. 

The higher sensitivity of the second order filter could be a problem if the image is 

noisy. Such noise in the image could arise from noise in the image sensor, or from 

quantisation or encoding noise. To test this, a sample skin lesion image obtained 

from the internet [3.27] was used, which had a reasonable degree of distortion due 

to JPEG compression artefacts. JPEG compression divides the image into 8 x 8 

pixel squares before performing DCT functions, and it is at the edges of these 

squares that subtle discontinuities in the image can occur. It was expected, based 

on the quantisation noise exposed by the low-frequency test (Figure 21) that the 
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step changes at these boundaries would appear in the processed image as faint 

edges. The results of the test are shown in Figure 26. 

Figure 26 : Skin line test image with JPEG artefacts 

The distortion is visible as a grid-like pattern of noise from the more sensitive 

second-order filter, while the high-pass filter has largely ignored this and 

extracted the larger features. In this case another problem with the filtering is 

revealed, as both filters have picked up the hairs lying across the lesion much 

more strongly than the skin texture. It is assumed that the following analysis of 

the processed image would include some function which could detect and ignore 

the longer lines produced by the hairs. [3.28] 

A test was carried out with an image exhibiting poor contrast and detail, to 

determine how well the systems could extract the skin lines when they were not 

clearly visible with the naked eye. An image was used in which the skin lines 

were very faint, with the expected outcome being that the system would fail to 

detect any strong lines. Following on from the previous results, the second-order 

filter was expected to show more detail in its output pattern, but it was not 

expected that this detail would include the skin lines. 

Figure 27 shows the source image and the two test results. Neither result image 

shows much detail, and the results are unlikely to be of much use to the 

subsequent processing systems. 
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Figure 27 : Skin line test image with low detail 

The high-pass filtered image does show the skin lines very faintly, but with a lot 

of noise, while the second order filtered image is almost entirely noise. The 

expectation is that this case would be rare, as if the images are to be processed 

based on the skin texture, an imaging system will be employed which shows the 

texture properly. 

If the image has clearly visible skin lines, it is expected that the result image will 

be much clearer. An example of such an image is shown in Figure 28. 

Figure 28 : Skin line test image with good detail 

Here, both filters show the skin lines clearly, but as with most cases there is less 

noise in the high-pass filtered output. The difference in the form of the skin lines 

between the inside and outside of the lesion can also be seen. It is this difference 

which forms the basis of the work in (3.1 , 3.2], and would be the focus of the 

system which uses the result image. 
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3.6.5: Test Conclusions 

Overall, the tests have shown that the two systems work, in that they are capable 

of extracting details from the source images, and that they perform as expected. 

The edge detection tests also showed that the arithmetic was being performed 

correctly, so that negative results were clipped to zero rather than simply being 

written as spurious positive values. The gamma correction is functioning 

correctly, as shown by the bright and clear output lines. 

It was seen that the second-order filter tended to produce an output with more 

detail than the high-pass filter, due to its smaller mask size, though when tested 

with real images of skin lesions this smaller mask size tended to make it more 

susceptible to noise. With these lesion images the high-pass filter gave an output 

which was visually clearer than the second-order filter's output, Therefore it is 

concluded that the high-pass filter would be more suitable for the processing 

carried out by the subsequent systems (referenced at the start of this chapter). 

The importance of a good quality source image was shown, as the image must 

have good contrast and an absence of noise. 
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3. 7: Analysis of Designs 

Since the convolution engine is controlled by a state machine, which perfonns a 

fixed series of operations to process each pixel, it is possible to calculate the total 

number of steps required to process the entire image. 

Assuming a square image ofN x N pixels, and a square mask ofM x M pixels, we 

can calculate the following: 

First, the image pixels can be classified into two types: Valid and Invalid. An 

invalid pixel is one which falls outside the area to which the centre of the mask 

can be moved. This invalid area is a border of JNT(M/2) pixels width around the 

entire image, where the INT function rounds down to the nearest integer. 

An invalid pixel will always take 5 states to process, since this is the number 

required to check a pixel for validity and advance the address counter if it is 

invalid. A valid pixel will require a larger number of states, dependant on the 

mask size. 

In the integrating loop, four states are required for each pixel in the mask, except 

the centre pixel which requires five. Therefore each output pixel calculation 

requires 4M2+ 1 cycles for a mask of M x M pixels. 

Adding the states required to complete the processing and write the result to 

memory, the total number of states required for the image is: 

V(4M 2 + 8) + SN 

Where V is the total number of valid pixels and N is the total number of invalid 

pixels. For an image of size P x P pixels, the number of valid pixels is 

V = (P-(M - 1))2 

The number of invalid pixels is then 

N= P 2 -V 
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or 

The total cycle count for a range of different image and mask sizes is shown in 

Table 3. 

Mask size 
lmaQe size 3 5 7 9 

32 40220 85872 139644 193472 
64 170396 391280 689916 1045952 

128 701084 1665648 3043836 4790720 
256 2843804 6868592 12765180 20439488 
512 11454620 27891312 52261884 84373952 

1024 45977756 112404080 211471356 342790592 

Table 3: Clock cycles required for various combinations of image and mask size 

Knowing the number of cycles required to process an image allows the total 

processing time to be calculated, provided that the clock frequency is known. The 

Quartus II software provides detailed timing analysis, allowing the maximum 

clock frequency to be determined. The propagation delays of each part of the data 

path will inevitably depend on the layout of logic elements in the compiled and 

fitted FPGA, and this can vary slightly with each compilation as changes are made 

to the other hardware around the image processor, but it is possible to obtain an 

estimate of the maximum time required to perform each step of the processing. 

The basic convolution image processor requires 1586 LEs, 48 of which are 

registers, and 860 of which are used in the data processor. The address processor 

accounts for 430 LEs. 2048 ROM bits are required to hold the gamma correction 

table. This large LE usage is due to the simple ways in which the divider and 

address processor are built; the divider is a plain combinatorial logic circuit which 

takes a single clock cycle to perform a division, but in doing so takes up a lot of 

space as it is essentially a look-up table synthesised using LEs. The address 

processor generates the addresses of all of the pixels under the mask 

simultaneously, then selects one based on the mask counter's output. 

52 



This inefficient address processor was replaced as described in section 3.2.6, with 

one which contains a single adder and adds an offset to the address. This reduced 

the logic element count for the address processor section to 77, or 71 when the 

convolution engine is merged with external test-bed hardware. In this case the 

offset table was implemented in the same way as the divider, as a look-up table 

generated using LEs. If the table was implemented using the FPGA's embedded 

memory, the estimated LE count would be around 32, consisting of the adder and 

validity checking logic. 

It was also found that merging the convolution processor with the test-bed 

hardware reduced the logic element count quite considerably. When compiled on 

its own, there were an additional 255 logic cells used in implementing the top

level part of the design, whose function is merely to connect the state machine, 

data processor and address processor together. These cells were not present in the 

hierarchy when the processor was used in the test-bed and so the total logic 

element usage for the processor was 995, compared with 1233 when compiled 

alone (with the more efficient address processor). These extra cells represent logic 

which was merged with the rest of the test-bed when compiled in this way, and so 

were not counted as being explicitly part of the processor. 

A further large reduction in logic element usage could be made by replacing the 

divider with one based on repeated shifting and subtraction, though this would 

also increase the number of clock cycles required to perform the division. 

The adder and subtractor were found to require a maximum of 15ns to perform 

their functions, with the divider and gamma corrector taking up to 30ns. The 

longest delay quoted by Quartus for the address processor was around 23ns. These 

values will depend on the target FPGA architecture, and these particular results 

were obtained for an Apex 20KB device of the fastest speed grade. 

Experimentation with different FPGA families suggested that further speed 

improvements were possible, but not necessarily significant, with no more than a 

2-3ns reduction in general. Hence it has been further confirmed that the results 

obtained for the Apex 20KB are still relevant even in the light of more recent 

developments in FPGA technology. 

From the state dfagram for the control unit, it can be seen that three states, 

SUBW AIT, EQW AIT and WW AITl are executed before the processed pixel is 
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written to the memory. Therefore the time taken up by these three allows the 

divider, subtractor and equaliser to perform their functions. The total processing 

time for these three units, and therefore the minimum time these three states can 

take, is around 75ns, or 25ns per state. This corresponds to a clock frequency of 

40MHz, and for the test system, using a 256 x 256 image and a 9 x 9 mask, a total 

processing time of 51 lms. 

The second order filter, with its simplified state machine, requires 17 cycles for 

most pixels, or 19 if the pixel is at the end of the row, within the 254 x 254 pixel 

' valid' area. Thus, there are 64262 pixels requiring 17 cycles and 254 requiring 

19. This results in a total of 1,097,280 cycles required to process the image. 

When compiled on its own, this system uses 173 logic elements, and Quartus 

estimates a maximum clock frequency of 114MHz, assuming the target device is 

an Apex 20KE FPGA with a - 1 speed grade. This higher clock speed is due to the 

absence of the divider and gamma correction LUT, which add a delay to the data 

processor. 

If operated at 114MHz, the system would require 9.6ms to process an image. For 

comparison with the high-pass convolution filter, if operated at 40MHz the 

second-order filter would require 27.4ms to process the image. This is 18. 7 times 

the speed of the high-pass filter, due to the smaller mask size and simpler state 

machine. 

A comparison of the two designs is shown in Table 4. Area-time products are also 

shown, in terms of both Fmax and the time taken to process the image. In both 

cases a larger number represents a better system. ln the last column the numbers 

show the image area divided by the area-time product of the processor, to make it 

consistent with the results shown in Table 5. 

System LEs Fmax Time (ms) Fmax/ LEs P/(Time * LEs) 
HPF (first) 1586 40 511 0.03 0.08 

HPF (smaller) 995 40 511 0.04 0.13 
Second-order (same speed) 173 40 27.4 0.23 13.83 
Second-order (max. speed) 173 114 9.6 0.66 39.46 

Table 4: Performance Comparison of Image Processors 
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It is clear from the table that the second-order filter has a major advantage over 

the high-pass filter, with a significant increase in the area-time product, even 

when operated at the same clock frequency as the high-pass filter. Both the 

reduced LE count and the more efficient processing are responsible for this 

increase. 

Comparing with a software implementation, the DSP implementation described in 

[3.6] requires 20 instruction cycles per pixel when using a 3x3 mask, making use 

of advanced features of the DSP such as parallel instructions. For a 256 x 256 

image this would therefore require 1,310,720 cycles. The fastest 320C40 DSP has 

an instruction cycle time of 33ns, therefore this would require 43ms to process the 

image. Given that the DSP can perform parallel operations and is optimised for 

signal processing, it is certain that a general-purpose processor would require 

many more cycles. 

The second-order filter is faster than this DSP implementation, requiring fewer 

cycles to complete an image, and also being capable of operating faster. This is 

however a specialised architecture compared with the general-purpose one in the 

DSP implementation. The second-order filter derives some of its speed by only 

reading 5 pixels per output pixel, as the corners of the mask are not used. If all 

nine pixels were read, using the same state machine, 29 cycles would be required 

and so performance would decrease, though the higher clock speed would 

alleviate some of this disadvantage. 

We can see from the analysis of the number of cycles required by the first 

convolution processor that a 3x3 mask would require 4(3)2+ 1 = 37 cycles per 

output pixel. This is less efficient than the software implementation, and even 

with the slightly shorter cycle time of 25ns compared with 33ns for the DSP, this 

system would take longer to process the image. 
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Design Size (LEs) lmaaesize Mask size Time (ms) Score 
New HPF 995 256x 256 9x9 511 0.13 

New 2nd order 173 256 X 256 3x3 9.6 39.46 
Bosi [3.6] 1924 1024 X 1024 3x3 42 12.98 

Muthukumar [3.8] 958 256 X 256 3x3 1.31 52.22 
Benkrid (3.9] 756 720 X 576 3x3 37 14.83 
Zhang (3.11] 2606 1024 X 1024 14 X 14 17.5 22.99 
Perri [3.12) 29048 1024 X 1024 3x3 4.6 7.85 

Table 5: Comparison of various image processor designs 

The two designs presented in this chapter are compared with various examples 

from the literature in Table 5. The table shows the processing times quoted in the 

literature, and the image sizes for which these are given. The score of each is 

taken by dividing the number of image pixels by the product of LE count and 

processing time. The scores are therefore scaled to take the image size into 

account. The LE counts from the literature are approximate, as all of these designs 

were implemented with Xilinx devices. 

It is clear that the design in [3 .8] has the highest score, due primarily to its very 

fast processing time. This design takes the shortest time of any of the designs in 

the table to process the image, though its image size is smaller than many of the 

others. 

The new high-pass filter design achieves the lowest score, due to its large 

hardware size and relatively slow processing. If the divider was replaced with a 

smaller one, the score could increase quite significantly, even if the new divider 

requires several clock cycles to perform the division. It is possible that pipelining 

could be used to overcome any increase in processing time of this nature, by 

performing the division and equalisation for each pixel while the data for the next 

pixel is being read, then outputting the finished pixel when the corresponding 

mask pixel for the next target pixel is read, allowing the same address to be used. 

The second-order filter achieves the second-highest score in the table, despite the 

apparent inefficiency of its algorithm, due mainly to the great reduction in 

hardware size compared with the shift-register based designs. This is important as 

the smaller hardware allows parallelism to be employed, with multiple copies of 

the processor operating in parallel. For a simple example, four of the second-order 

processors operating in parallel on a 1024 x 1024 image would take the same time 

56 



to process it as a single one takes for 256 x 256 (ignoring considerations of 

overlap at the edges of the sub-images for this simple example). With four times 

the LE count and 16 times the number of pixels processed in the same time, this 

system would obtain a score of 157.84 by the scoring system used in the table, 

significantly higher than any of the other systems. In reality it may be even higher 

than this, as the four processors could share a common address bus, fetching four 

pixels at a time through a 32-bit data bus. There would therefore only need to be 

one address processor, controlling four data processors, reducing the LE count 

still further. Theoretically, even without shared address processors, over 65 copies 

of the second-order filter could be implemented in parallel in the FPGA on the test 

system, though as this would require two 520-bit data buses it is unlikely that so 

many processors would be used. 

It is clear from these results that while a shift-register design as described in [3.6] 

will be capable of performing the image processing more quickly, it will also 

require much more hardware. The shift-register holds M complete lines plus M 

pixels of the next line, for a mask of M x M pixels. For a 256-pixel wide image 

with a 3x3 mask, this would require 4120 bits of storage, or at least 4120 LEs. For 

a 9x9 mask on the same image size, a total of 18,504 LEs would be required for 

the shift register alone. The major advantage of the second-order design presented 

in this chapter then is its small size. 
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3.8: Further Uses of the Convolution Engine - A Cellular Automaton 
Processor 

The Cellular automaton Processor described in this section is a development of 

the basic convolution image processor, in which the convolution operation is 

replaced with a CA rule. This was intended to explore possible other uses for a 

general-purpose convolution engine, rather than as a highly optimised CA 

processor. 

3.8.1: Background 

A cellular automaton (CA) can be thought of as an artificial universe, divided in 

space into 'cells' and in time into 'generations'. At the transition from one 

generation to the next, each cell adopts a new state based on both its own current 

state and those of the cells surrounding it. The automaton can theoretically have 

any number of spatial dimensions, and the cells can have any finite number of 

possible states, but all cells share not only the same set of states but also the same 

rules determining the transitions between these states. 

The ability of the cellular automaton to produce very complex behaviours and 

patterns from a set of simple rules is well known and has been widely studied. 

Von Neumann showed that a CA with 29 states could be used to implement a 

universal computer [3.29], while Zuse postulated that the universe itself could be 

modelled as a large CA [3.30]. 

More recently, with the advent of fast computers which have allowed cellular 

automata to be studied in detail, the complex dynamics of the cellular automata 

have been studied in great depth, and have been found to be useful in a wide rang 

of applications, from biological modelling [3.31] [3.32] and neuromorphic 

processing [5.32] to video compression [3.33]. 

One of the most widely known cellular automata is Conway' s Game of Life 

[3.34], a two-dimensional CA in which the cells can be either 'alive' or 'dead', 

changing state according to two simple rules: -

If a dead cell has exactly three live neighbours, it will become alive. 
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If a living cell has two or three living neighbours it will remain alive, otherwise it 

will die. 

Patterns of great complexity can arise from these two simple rules. It has been 

demonstrated that a certain pattern of cells acts as a 'life cell', and a grid of these 

cells simulates the 'universe' in which they exist, the state of each cell being 

shown by the presence or absence of a particular pattern at particular times. [3.35] 

A complete Turing Machine [3.36] has also been demonstrated. [3.37] The wide 

range of behaviours which are possible with this single CA rule shows that even a 

very simple system can behave in very complex ways, and so there is much 

interest in these simple 2-state CAs, though the investigation of the Game of Life 

is often thought of as a recreational pursuit. 

The complex and often chaotic dynamics exhibited by this and similar cellular 

automata were not discovered fully until it became possible to use a computer to 

simulate the system, and the complexity of the patterns which can be investigated 

grows as the simulation speed increases. There is therefore a requirement to make 

the processing of the CA as efficient as possible, and as with the image processing 

systems described earlier, hardware-based processors can offer high-speed 

processing beyond the capabilities of software implementations. 

Halbach & Hoffmann showed that an FPGA implementation of a CA could 

achieve a speed increase over a software implementation, if properly optimised. 

[3.38] This implementation uses 16 parallel processors which operate on a 4 x 4 

pixel window which is moved over the image. It was also shown in this work that 

a benefit of a hardware implementation over a software one is that the hardware 

implementation will perform its calculations at the same rate for a variety of rules 

of different complexity, whereas a more complex rule will result in a slower 

software implementation. A software implementation of a 256 x 256 CA was 

stated as achieving 455 generations per second, with the FPGA implementation 

achieving at best a speed increase of 13.8 times, or 6279 generations per second, 

though it is not clear whether this reflects the sustained speed over the whole 

' universe' or merely over the 4 x 4 window. 

Shackleford et al. present an implementation of a small CA for random number 

generation in which there are just 64 cells. [3 .39] These are connected toroidally, 
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and all cells are independent and implemented in parallel. This results in a very 

time-efficient implementation, where a single clock cycles is all that is required to 

compute a generation. The maximum clock rate achieved was 230MHz, or 230 

million generations per second. 

Kobori et al. present a method of implementing the CA [3.40] which makes heavy 

use of distributed RAM within the FPGA to store a subset of the overall universe, 

implementing a moving window inside which computations are carried out very 

quickly by parallel processors. This implementation also makes use of a wide 

memory bus to fetch and store 8 cells simultaneously. A speed increase of 250 

times over a software implementation is quoted. 
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3.8.2: Implementation of the CA processor 

During development of the convolution engine, it was realised that a version using 

a 3x3 mask could be modified with little difficulty to perform the processing 

required by a two dimensional cellular automaton. Since each outputted pixel has 

a value determined mathematically from the values of the equivalent pixel in the 

source image, and its eight immediate neighbours, a general-purpose cellular 

automaton processor could be made by simply replacing the mathematical 

function with a rule-based system. Much of the system remains unchanged, with 

the address processor and control state machine being re-used almost unchanged 

from the convolution engine. The major change is to the data path, which is 

modified such that the target pixel and its eight neighbours are formed into a 9-bit 

binary word, which is then presented to a look-up table, built in a manner similar 

to the gamma-correction table of the convolution engine. The table contains 512 

bits, determining the value of the output pixel for each of the 29 possible 

combinations of input pixels. Thus, by changing the table, the cellular automaton 

rule is changed. The tables are generated from a rule description by a QBasic 

program, as shown in appendix A.2. 

The ' next generation' value of each pixel is derived from the current value by 

N(x,y) = F(P(x,y)) 

where F represents the look-up table and C is a bit-vector determined by 

P(x,y) = 28 C(x + 1,y + 1) + 27 C(x,y + I)+ 26 C(x- l,y + 1) + 25 C(x + l,y) 

+ 24 C(x, y) + 23 C(x - 1,y) + 22 C(x+ l,y -1) + 21C(x,y-1) + 2°C(x-1,y- 1) 

with C being the current state of a pixel. 

The particular mapping of co-ordinates to bit positions within the word is 

arbitrary, but the above order is the one which was used in the implementation. 
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Figure 29: Cellular Automaton Processor 

The FPGA implementation of this system is shown in Figure 29. The address 

generation logic and control state machine are nearly identical to those used in the 

second-order filter based image processor. The major difference is that all cells 

are processed rather than just the area where the mask is valid. At the edges of the 

image the mask addresses wrap around to the corresponding pixels on the other 

edge, thus the 'universe' has a finite size but no edges, and is toroidal. This 

requires a slight change to the address processor, as it must be ensured that when 

wrapping at the end of the line, the carry generated in the rollover of the X co

ordinate does not affect the Y co-ordinate. Thus, the two co-ordinates are 

processed separately. 

Each pixel is processed in 33 clock cycles. In order to reuse much of the test-bed 

logic from the image processor, the image size was set at 256 x 256 pixels, though 

each RAM byte could only take on the values O or 255, and only one of the eight 

bits was read. 

The demultiplexer is a 9-bit addressable latch, which captures the nine pixels read 

by the state machine and assembles them into a 9-bit word, which is fed to the 

look-up table to determine the cell ' s next state. Two memory banks are used, as in 

the image processor, ensuring that the assembly of the ' next' generation does not 

interfere with the stored ' current' generation. It would be possible to use 

additional multiplexers so that when a generation is completed, the data runs 

through the machine the other way for the next generation, i.e. from what was the 
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destination memory bank to what was the source bank, thus avoiding the need to 

copy the new generation over the old one. 

3.8.3: Cellular Automaton Test results 

The cellular automaton processor was tested with a few sample images, including 

skin line images outputted by the image processor. A few CA rules sets were 

used, these being Conway' s Life, Simulated Annealing, Majority Rule and 

Hourglass. Conway' s Life is detailed above, and is one of the most widely known 

and implemented cellular automata, and so provides a good basis for checking 

that the processor behaves as required. 

Simulated Annealing and Majority Rule are quite similar. In the case of Majority 

Rule, a cell takes on whichever state the majority of its neighbourhood have. The 

neighbourhood includes the cell itself, so there are nine in the group. If the sum of 

these cells is 5 or more, the cell will be on, otherwise it will be off. 

Simulated annealing works in a similar way, but the cell will be on if the sum of 

the active cells in the neighbourhood is exactly 4 or greater than 5. Table 6 shows 

the difference between the rules in terms of the activation function for the cell 

based on the number of active cells within its neighbourhood. 

Active cells in nei2hbourhood 0 1 2 3 4 5 6 7 8 9 
Next state (Majority) 0 0 0 0 0 ] 1 ] I 1 
Next state (Sim. Annealing) 0 0 0 0 1 0 l 1 I I 
Next state (Life) 0 0 I I 0 0 0 0 0 0 

Table 6: Comparison of cellular automaton rules 

One thing that links the three rules shown in Table 6 is that they are based purely 

on the number of active cells, not on any consideration of which particular cells 

are active. By contrast the hourglass rule is based on specific patterns of activity 

and inactivity, and considers only five cells - the target cell and its north, south, 

east and west neighbours. Figure 30 shows the nine combinations of these that 

will lead to a cell being active in the next generation. In each case, a shaded cell 

represents an active one, and the centre cell is the target. 
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Figure 30: Combinations leading to an active cell in the Hourglass CA. 

The life, majority and simulated annealing rules were tested using result images 

from tests run on the image processor which had been converted to black and 

white. These provided a good test, with bands of active and inactive cells, though 

any source image would have been sufficient. 

Figure 31: Generations 0-3 of a life rule test 

The first four generations of the Conway' s Life rule test are shown in Figure 31, 

where generation 0 is the source image. Although in the generated images active 

cell.s were white, in the figure they are black in order to display more clearly. The 

life rule was tested for 1000 generations, and the ' chaos' generated was compared 

with that produced by existing implementations [3.41]. The same patterns were 

found in both, with the well-known and common stable, oscillating and moving 

patterns being produced. 

The majority rule was found to reach a stable pattern very quickly, as shown in 

Figure 32, where the right-hand image shows generation 10, beyond which there 

was no change in the pattern of live and dead cells. The finer features tended to 

either disappear or merge together to form larger areas of either active or inactive 

cells, and this would invariably happen within the first few generations. 
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Figure 32: Generations O and 10 of the majority rule test 

Simulated annealing was found to merge the groups of cells, but the function's 

changed response to the 4-active and 5-active cases tended to produce instability 

in the edges of these groups, which meant that the groups would generally not 

crystallise as with the majority rule and would instead gradually shrink and 

become rounder, with narrow protrusions and small groups disappearing 

completely. 

Figure 33: Generations 0, JO, 50 and 100 of the simulated annealing test 

The hourglass rule was tested with a different initial pattern - a continuous sheet 

of active cells with a small group of inactive ones in the middle to act as a 'seed' . 

The directional nature of the rule was evident in the patterns produced, an 

example of which is shown in Figure 34. This image is inverted, as with the life 

results, so that active cells are black. The complex branching pattern was not 

static - the section which appears to be stretched vertically was in fact made up of 

groups of cells moving downwards, building up on top of the compacted branches 

below, and gradually pulling down the branches above. The wrapping of the 

universe at the edges of the image is also evident. 
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Figure 34: 500th generation of the hourglass rule 

The test results showed that the CA processor is capable of correctly 

implementing cellular automata, producing the correct result for a set of widely 

known automata. The four different types of automata demonstrated showed that 

the look-up table based system is capable of implementing automata in which the 

cell state is based on either the number of surrounding ' live' cells or the positions 

of these. In fact, the look-up table system can implement any CA in which the 

cell' s state is based on those of its eight neighbours, and in which there are only 

two states. If more than two states are required, the rule table and the input 

demultiplexer could be adapted easily, though for two bits per cell (4 states) the 

nine inputted cells would take up 18 bits, requiring a table of 262,144 x 2-bit 

words, which is not feasible in any of the Apex devices, though is possible with 

later FPGA families. 

3.8.4: Performance of the CA processor 

To process a cell, the system must read the nine cells under the mask, allow some 

time for the delay in the look-up table, then write the result. The implemented 

system completed these operations in 33 clock cycles using the state machine 

from the convolution image processor, and so required 2,162,688 clock cycles to 

process all 65,536 cells. At 25MHz in the test-bed, this takes 86.5ms, or a rate of 

11.5 generations per second. The processor was not, however, intended to be a 

fast solution, it was merely intended to demonstrate the flexibility of the basic 

66 



image processor design. The maximum speed estimated by Quartus was 

131.63MHz, at which speed it would take 16.4ms to process a generation, or 60.9 

generations per second. 

Comparing this with the implementations discussed in section [3.8.1] we see that 

Halbach's implementation [3.38] is capable of 6279 generations per second, 

though this may be only for the local window of 4x4 cells. The implementation by 

Shackleford et al. [3.39] is capable of 230 million generations per second, for 64 

cells. This is however a fully parallel implementation and so the 65536 cells of a 

256x256 universe would require an enormous amount of hardware. 

By comparison, the Life32 CA engine [3.41] running on a 2.25GHz PC takes 

around 280µs to process each generation of a 256 x 256 toroidal universe using 

the Life rule. To obtain even this performance with the simplified hardware 

implementation presented in this chapter would require a clock rate of 7. 7GHz. 

It is clear then that the fastest way to implement a cellular automaton would be to 

implement all of the cells together in parallel, though it is also apparent that this 

would be the least efficient method in terms of the size of the logic required. A 

cellular automaton cell designed for this operation consists of a 9-input look-up 

table as described above, feeding the data input of a flip-flop which is clocked to 

yield the next generation. This is shown in Figure 35. All cells within the CA are 

clocked simultaneously, and the set and clear inputs on the flip-flop are used to set 

up an initial pattern. 

Cell On 

LUT Q i-----output 

R 

Clock 
Cell Off 

Figure 35: A single cell for a hardware cellular automaton. 
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The arrangement of a look-up table feeding a single-bit register is similar to the 

internal arrangement of a logic element within an FPGA, the difference with the 

CA processor being the connections between the cells. Rather than using a global 

switching network, the look-up table inputs would be hard-wired to the outputs of 

the surrounding cells. For FPGA implementation, this is relatively inefficient, as a 

nine input look-up table would either have to be implemented using the embedded 

system RAM blocks, or with a large number of logic cells. Even for the simplest 

case where the system is built specifically for a single cellular automaton and 

programmability is not required, the look-up table would require at least three 

logic cells to cater for its nine inputs. The implementation in [3.39] used only 

inputs from four neighbouring cells, and since a logic element within the FPGA is 

a 4-input LUT feeding a single-bit register, each CA cell maps directly onto one 

logic element. 

The fully parallel design does have the advantage of being able to operate much 

faster than the serial implementation in this chapter, as even if it were clocked at 

the same rate, it would only require one clock cycle per generation, and so would 

be able to produce 2,162,688 generations in the time taken to produce a single one 

with the serial implementation. 

In addition to this type of implementation, a line-at-once implementation such as 

the shift-register approach described in [3.6] could offer a performance increase 

without such a major increase in size. Care would have to be taken however to 

ensure that the edges of the grid of cells are handled correctly, as with the 'target' 

cell at the edge of the image, the cells within the shift register which represent the 

other edge of the image would represent pixels which are vertically misaligned. 

This is not a problem for the image processor as the pixels in places where the 

mask is not completely within the image are not processed, and the edges do not 

wrap, but in the case of a CA the wrapping of the edges to form a toroidal 

universe would have to be considered. If a shift register is to be used, it could take 

the form of a register which stores the three most recently read lines of the image, 

and into which a complete new line is read before processing begins. This would 

require more register cells than the implementations in [3.6] but this seems 

unavoidable if the edges are to be processed correctly. 
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3.9: Conclusions 

3.9.1: Image Processor 

The image processing system was originally designed as part of an experiment 

into replacing the software-based experimental processing system with hardware, 

to obtain a performance boost. The image processing systems presented in this 

chapter represent only the initial steps towards implementing a high-performance 

image processor, and the project was discontinued before any further progress was 

made. 

The overall outcome of this project is that two working image processing systems 

have been produced and demonstrated, showing a major difference in their 

performance. Both have been seen to be capable of extracting the skin lines from 

the source images, with differing levels of detail. 

Although the chosen implementations have been shown to be relatively inefficient 

in processing time, taking longer than alternative implementations to process the 

image due to the large number of memory reads which must be performed, it has 

been shown that they have the advantage of using much less hardware to perform 

the processing. It was shown that the shift-register based designs used for 

comparison would require a great deal more hardware if built for the same sized 

image as the systems presented in this chapter. Thus, these new designs trade off 

performance for a large reduction in hardware size. 

The area-time product comparison gives a better score for the second-order filter 

than for similar shift-register based designs, despite the slower processing, 

because of the smaller LE count. It has been shown that a shift-register based 

design with a 9 x 9 mask, as is the case with the high-pass filter, would require 

many tens of thousands of LEs, and so it is likely that a system built in this way 

would achieve a lower area-time score than the new high-pass filter design, even 

if it could process the image more quickly. 

Ultimately, the advantage of the implementations described in this chapter is their 

relatively small hardware size compared with more time-efficient 
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implementations. This smaller size enables the use of parallel processors to make 

up for the slower processing speed. 

3.9.2: Cellular Automaton Processor 

The cellular automaton processor demonstrates the flexibility of the basic 

convolution image processor, showing that a small change in the hardware can 

produce a quite different system. Like the image processor, the CA processor's 

performance suffers due to the inefficient method used for the implementation. 

However, like the image processor it can be improved by using one of the more 

efficient implementations seen in section 3.1, making use of the parallelism which 

is possible with a hardware implementation. It has been shown that the hardware 

of the CA processor has some similarities with the underlying fabric of the FPGA 

itself, and that an implementation based on full parallelism of the processing 

elements would be capable of very fast processing. Finally, it has been shown that 

a simple look-up-table based design such as this is a versatile system and can 

implement any CA in which the cells have two states with no change in 

architecture. 

The ability of the cellular automaton, a regular grid of identical processing 

elements, to produce chaotic output has been shown in the case of the Life 

automaton, and will be seen again in a smaller form in the grid-like neural 

network of section 5.17. 
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Chapter 4: A Simple VHDL Microprocessor 

The processor described in this chapter was born out of the necessity to 

implement functions within the FPGA which were sufficiently complex that it 

would have been too time-consuming or awkward to implement them in pure 

hardware. The original aim was to develop a simple processor which would be 

capable enough to perform a range of useful tasks but small enough that it could 

be used alongside other hardware, even in a relatively small FPGA. It was 

originally intended to oversee the transfer of data between the host PC and the 

convolution image processor, but it has since been used in a variety of 

applications. Its relatively small footprint and straightforward architecture make it 

suitable for any application where embedded software is required, and like any 

embedded processor, it can be augmented with external custom DSP hardware if 

higher performance is required. 

4.1: Existing Designs 

There are many existing embedded processor designs available, ranging in 

complexity from simple microcontrollers to full RISC processors for which 

operating systems are available. One obvious choice for implementation in the 

Altera FPGA is Altera' s own Nios Embedded Processor (4.1], which can be 

implemented using a plug-in for the Quartus Software. Nios is a pipelined RISC 

implementation which can be built in 16 or 32 bit versions. Its architecture and 

instruction set are intended to allow efficient compilation of the control structures 

in high-level languages, a feature which many of the VHDL RISC 

implementations have in common. It can however be programmed in assembly 

language if necessary. 

Nios is available only as an FPGA implementation built from the reconfigurable 

logic, and Altera do not currently produce any FPGAs with hard-wired processor 

cores built-in. Some types of FPGA, such as the Xilinx Virtex-II Pro and Virtex 4 

types, include embedded processor cores (4.2], which are fabricated as part of the 

chip rather than implemented with VHDL. The Virtex 4 is available with up to 

two IBM power PC 405 cores, capable of 450MHz operation and delivering 700 

DMIPS (Dhrystone MIPS). The Nios II high performance variant, by comparison, 
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is stated by Altera as being approximately equal in performance to an ARM9T 

core [4.3] and can deliver over 250 DMIPs. The 'economy' variant is in the same 

cost class as an 8051 core, delivering up to 30 DMIPs at up to 200MHz in fewer 

than 700 logic elements. The Nios core will generally be slower than the Virtex' s 

PPC core, as the latter is hard-wired and is not subject to the speed limitations of 

the interconnections between the logic elements. Both types of processor can be 

extended with custom co-processors such as FPUs or specialist DSPs, or with 

extra instructions. In the case of the Virtex implementation, this extra hardware is 

connected directly to the processor' s pipelines, but implemented with the FPGA's 

reconfigurable hardware, while in the case of Nios, it is possible to modify the 

core itself. 

These approaches represent the top-end processors, intended for high performance 

in very large embedded systems, and are supported by software suites available 

from the FPGA manufacturers. For smaller and simpler applications, Xilinx also 

provide a soft-core microcontroller with a very small footprint, PicoBlaze [4.4]. 

This is a simple 8-bit microcontroller architecture with internal IK program 

memory, 64 byte scratchpad RAM, stack and 16 registers. The core takes 2 clock 

cycles per instruction, and will run at 200MHz (l00MIPs) in a suitable Xilinx 

FPGA. 

The application in which the processor is to be used plays an important part in the 

choice of processor, as in many cases existing code must be re-used, and therefore 

an implementation of a standard processor core is required. Sometimes a standard 

operating system is required, in which case a processor architecture must be used 

for which there is an implementation of the particular OS. 

Implementations of existing commercially available processors are provided by a 

variety of companies, such as CAST inc. [4.5] and HiTech Global [4.6]. These 

implementations, along with non-commercial implementations, cover a range of 

processor types, from the popular microcontrollers such as the PIC series or the 

8051 to ' classic' microprocessors such as the 6500 [ 4. 7] and 6800 series and the 

Z80 [4.8]. More powerful or advanced devices such as the 68000 [4.9] and the 

Intel Itanium [4.10] have also been developed, both commercially and as non

commercial or academic projects. 
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These 'real-world' processors are often implemented in an attempt to emulate 

legacy systems [4.8] [4.11], and if this is the case are generally built with no speed 

optimisations beyond a higher overall clock speed. Processors that are built for 

code compatibility only can be optimised with pipelining and more efficient 

design to provide more instructions per second for a given clock speed than the 

original commercial implementations. 

Custom processors which are not based on 'classic' designs are also available in 

both commercial and free forms [4.12] with a wide range of features and 

performance ratings. Many of these began life as experiments or as practice 

projects when learning VHDL [4.13], or are intended as educational examples 

[4.14]. The Edulent processor described by Mezei and Malbasa [4.15] is an 

example of a simple educational processor, with a simple accumulator architecture 

and 40 instruction types, capable of running at 12.5MHz. Romero-Troncoso et al. 

present a more complex educational processor [4.16], with a larger register set, 

more complex architecture and microcode, allowing the instruction set to be 

customised easily. 

Gustin and Bulic describe a novel architecture [4.17], again intended for 

educational purposes, in which every possible instruction is a MOVE instruction 

and the operand is the output of the ALU. It is shown that this allows the same 

ALU to be used for address calculation and instruction execution, saving 

hardware. 

Paul Stoffregen' s OSU8 [4.18] is a relatively simple 8-bit microprocessor with 

two accumulators, two pointer registers, microcode, and an instruction set similar 

to that found in the 6502 or its contemporaries. This design has two ALUs, one 

for instruction execution and a second 16-bit one for address computations. The 

design is a little more complex than many of the simple architectures such as 

Edulent, as described above, and the processor was designed to be implemented as 

a standalone processor in an FPGA rather than an embedded processor as part of a 

larger system. 

An alternative class of custom processors is those which are designed to support 

particular compilers or high-level languages, such as JOP [4.19], a hardware 

implementation of the Java Virtual Machine. This is a RISC stack machine which 
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is essentially a direct hardware implementation of the NM, with a few 

optimisations, and is intended for use in embedded and real-time systems, 

achieving a speed increase of 250 times over the performance of compiled Java on 

an embedded microcontroller. Around 1800 LEs are required and the processor is 

capable of running at 101MHz. 

Mattos and Carro [4.20] present an alternative Java processor called Femtojava, in 

which the instruction set, though not extensible, can be pruned to exclude those 

instructions which are not used by a given program, making the hardware as small 

as possible for a given task. 

Forth-based processor cores have also been implemented, with features that make 

efficient translation of Forth programs easy. Haskell and Hanna [4.21] present a 

Forth core which runs Forth code which has been converted to fit the processor's 

instruction set, which is tailored to suit the requirements of the language. This 

design, using 734 slices of a Xilinx Spartan II FPGA, is intended to be used where 

microcontrollers would traditionally be used, and is shown to be nearly 30 times 

faster than the equivalent compiled Forth programs running on a 68HC12 

microcontroller. An alternative implementation is presented by Frank Buss [4.22] 

using simpler hardware and requiring 432 LEs of an Altera Cyclone device. 

4.2: Architecture 

The processor was originally based on an experimental reworking of the 

Manchester Small-Scale Experimental Machine, [4.23] (1948), a machine which 

was intended to be the simplest possible computer which could perform general

purpose applications. This was an extremely simple machine, as the high cost of 

hardware at the time, not just in monetary terms but also in terms of size and 

power consumption, meant that the design had to be kept as simple as possible. As 

a result the machine had just seven instructions, but it was shown that these were 

sufficient for any computation, given sufficient time and memory. 

The VHDL processor was intended to be the simplest implementation of a 

general-purpose processor, but with a range of functions similar to modern 

processors. The overall aim was to produce a processor which could be used for a 

variety of applications but which used little enough hardware that it wouldn't have 
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a major impact on the space left in the chip for other devices. Although the range 

of functions is comparable with some of the simpler modern processors, the 

architecture and some of the operating methods are more similar to the SSEM. 

The instruction set was inspired by the simpler 8-bit microprocessors of the 70s 

and 80s, in particular the 6502, which has a similar set of instructions and just a 

single accumulator rather than a set of several general-purpose registers. As the 

processor was intended to be used for transferring data it was decided that an 

index or pointer register was essential, allowing indexed addressing modes. 

Rather than using two 8-bit index registers as in the 6502 it was decided to use a 

single 16-bit pointer register, the implementation of which was made simpler by 

the 16-bit architecture. 

The processor uses a 16-bit data word, and requires two of these to form an 

instruction, the first being the instruction code itself, the second being the 

operand. In order to simplify the hardware, there is no instruction decoder or 

microcode, and the two words are read for each operation, regardless of whether 

an operand is required. With no instruction decoder, each bit in the op-code 

directly controls some part of the processor, and thus there is no explicitly 

hardware-defined instruction set. Only the ALU has a decoder, decoding the four 

least significant bits of the op-code in order to select a function. It was this 

instruction coding method which dictated the width of the processor's registers 

and data bus, as the words had to be wide enough to include all the required 

control signals in a single op-code. 

There are two working registers which can be accessed by software, named A 

(accumulator) and P (pointer). All functions available in the ALU can be applied 

to either A or P, and in addition, the contents of P can replace the address used to 

fetch or store the operand, allowing for easy implementation of arrays. This means 

that any operation which is performed on data can also be performed on 

addresses. In this respect the architecture differs from many earlier processors, as 

in general registers which could be used for memory addressing were not also 

available as general-purpose data registers. Although it would be useful to have 

more than one accumulator and more than one pointer register, the method by 

which the instructions operate makes this impractical, as many more bits would be 

75 



required in the op-code, not just extra register enable bits but also extra 

multiplexer control bits. 

The structure of the processor is shown in Figure 36, with the names of the VHDL 

blocks shown. The data bus is shown divided into an output bus and an input bus, 

though the control unit does generate the necessary bus control signals to allow 

these to form a single three-state bi-directional bus, as there is no point in the 

processor's operation where data needs to flow through both buses 

simultaneously. 

~--------+-_. Dout 
A 

p 
ALU 

Din--...,_- INSlREG CONlROL 

SKIP 

ADDREG 
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Figure 36: Simplified overview of the VHDL microprocessor 
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4.2.1: ALU and Registers 

The ALU and registers form the data processing section. One input to the ALU 

always comes from memory, while the other can be taken from either A or P. The 

data output from the processor also comes from this multiplexer, allowing either 

of the registers to be outputted. This means that the result of an operation can only 

be written to a register and not directly to memory. If the latter is required the data 

must be written to the register first, then the register written to memory with a 

second instruction. In practice this is not a major limitation and has not been 

found to cause problems. This architecture was based on the architecture of the 

SSEM, though this earlier machine had just a single subtractor rather than a full 

ALU, and only one accumulator, though many more modem processors such as 

the 6502 have this arrangement, and the load-store architecture, where instructions 

either load data, store data or perform an operation on a register, is one of the 

characteristics of a RISC processor. 

The ALU's operation is selected by the lower four bits of the op-code. The 

operations available are shown in Table 7. The operations included in the ALU 

were chosen to give the processor a useful range of abilities, though in order to 

keep the ALU as small as possible multiplication and division were not included. 

If these are required they must be implemented in software, though as the 

processor is intended to be included in an FPGA, it is possible to include external 

multiplication or division logic. This logic would have to take the form of a 

peripheral device, where the operands are written to registers and the result read 

after the required operation is performed. 

The addition can be performed either with or without carry-in, if carry-in is 

selected the stored C flag is added to the LSB of the adder, allowing numbers 

wider than 16 bits to be added. 

In addition to these, Boolean logic, shift and rotate operations are included, with 

an option to perform an extended rotate, where the C (carry) flag is included in the 

operation as the I 7'11 bit. The last implemented code simply feeds the memory 

input through to the output, allowing the memory contents to be read into a 

register. 
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Code ALU Output 
0000 register + memory 
0001 register - memory 
0010 register + memory + cflag 
0011 register AND memory 
0100 register OR memory 
0101 NOT register 
0110 register XOR memory 
0111 register shifted left by 1 bit 
1000 register shifted right by 1 bit 
1001 register rotated left by 1 bit 
1010 register rotated right by 1 bit 
1011 register rotated left by 1 bit with extend 
1100 register rotated right by 1 bit with extend 
1101 memory 
1110 Reserved 
1111 Reserved 

Table 7: ALU control codes 

The final two codes are reserved for the subroutine handling instructions JSR 

Gump to subroutine) and RTS (return from subroutine). 

Op-code bits 5 and 4 activate the P and A registers respectively. If either bit is 1, 

the corresponding register will be updated with the ALU's output when the 

instruction completes. Both can be used simultaneously if required. If bit 8 is set 

to 1, the flags register will also be updated with flags derived from the ALU 

operation. The N flag is set when the top bit of the accumulator is l, representing 

a negative number in 2' s complement notation. The Z flag is set when the ALU 

outputs zero, and the C flag is set when a carry is generated, or a l is shifted out 

of either end of the ALU during a rotate-with-extend operation. 

4.2.2: Address Processing 

The CI (Current Instruction) register supplies the address of the instruction or 

operand currently being fetched. An address register is used to latch the address 

for any instructions which require access to memory. The input to this register can 

be taken either from the data input, if the address comes from the instruction, or 

from the P register if the instruction uses indexed addressing. The CI register is 

updated through a pair of multiplexers, and can either be incremented, loaded 

directly from the address register (for jumps) or controlled by the stack system. If 
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op-code bit 6 is set to 1 the CI will be updated during the execution phase of the 

instruction. 

The address bus outputted by the processor can be supplied by either the CI or 

address registers. 

4.2.3: Jump and Skip Instructions 

There is only one jump instruction available, an absolute jump which is effected 

by loading the CI register from the address register, having first loaded the 

address register with the destination address. Op-code bit 6 must be set to 1 to 

perform a jump. Since it is possible to load the address register with the contents 

of P rather than the jump operand, a kind of indirect jump can be performed, but 

this has not been tested and there is currently no support for it in the assembler. 

Conditional branching is achieved with a series of conditional skip instructions, 

which cause the processor to skip the following instruction when the selected 

condition is met. If op-code bit 7 is set, and the condition specified by bits O to 2 

is met, the skip logic will be armed during the execution phase and the CI will be 

incremented by 3 rather than 1 at the start of the next instruction. If the condition 

is not met, the skip logic will not arm. Table 8 shows the condition codes for the 

different skip instructions. 

Code Skip Condition 
000 N flag set 
001 N flag clear 
010 C flag set 
011 C flag clear 
100 Z f lag set 
101 Z flag clear 
110 Never 
111 Never 

Table 8: Conditional skip control codes 

To implement a conditional branch, skip and jump instructions are used together. 

Due to the CI being incremented before a fetch rather than after, as explained 

below, the target specified in the jump instruction should be the address before the 

desired instruction. This is handled automatically by the assembler, and only 

needs to be taken into account when hand-assembling programs. 
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4.2.4: Subroutine Handling 

The logic required for subroutine handling was added after the processor was 

completed, in order to increase its usefulness. The stack logic monitors the 

incoming op-codes and takes over when either JSR or RTS are detected. The JSR 

op-code is a jump op-code with the lower four bits set to 1110, while RTS is a 

jump with the lower bits set to 1111. The stack memory itself is a separate block 

implemented inside the stack logic, as this was simpler than adapting the 

processor' s logic to keep the stack in system memory. 

When a JSR instruction is encountered, the stack logic reads the current value of 

the CI and stores it in its internal memory. When JSR is encountered, the stack 

logic replaces the CI register's input with its own output. In both cases, the rest of 

the processor is allowed to perform the actual jump instruction. 

4.2.5: Control 

The processor has an operating cycle consisting of six states, or phases. 

Phase 1: 

The first phase is an idle phase, included to provide an inactive state in which the 

processor can safely halt. 

Phase 2: 

The CI is incremented by either 1 or 3, depending on whether the skip logic was 

successfully armed during the previous instruction. 

Phase 3: The contents of the memory address pointed to by CI are loaded into the 

instruction register. The bits within this op-code then set up the multiplexers and 

registers for the selected instruction. The skip logic is reset here, so that the next 

CI increment will be an increment of 1. 

Phase 4: The CI is incremented again, to point to the instruction ' s second word. 

Phase 5: The address register is enabled, and the source selected by op-code bit 15 

is written to it. The source can be either the data input or the P register. 

Phase 6: The instruction is executed. Register enable signals are sent to the 

registers selected by the op-code, and if the instruction is set to be an output 

instruction ( op-code bit 14 = 1) the memory write line is pulsed. 
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4.2.6: Op-Code Layout 

As described above, the processor has no instruction decoder, so each bit in the 

op-code controls a piece of hardware directly. Table 9 shows the functions of the 

bits in mnemonic form. 

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Function IDX 1/0 AMUX DMUX CMUX STP MEM FLAG SKIP Cl PTR ACC O 3 0 2 0 1 0 

Table 9: Op-code bit layout 

IDX Function DMUX Function 
O Address register loaded from data input O Data output supplied by A 
1 Address ister loaded from P 1 Data out ut su ied P 

AMUX Function CMUX Function 
O Address supplied by address register O Cl incremented by adder 
1 Address su lied b Cl 1 Cl loaded from address re ister 

Table 10: Multiplexer functions 

The FLAG, CI, PTR and ACC bits select which registers will be updated during 

phase 6 of the instruction. The MEM bit does the same for memory. 

IDX, AMUX, DMUX and CMUX control the four multiplexers labelled in the 

block diagram. Table 10 shows the functions performed by these multiplexers. 

VO is used to tell the control unit whether the instruction is an input or output 

instruction. If set to 1, the instruction is defined as output and the control unit will 

generate the necessary signals to control the tri-state buffers required for a bi

directional data bus. 

STP (stop) will halt the processor at the end of the instruction. Although there is 

currently no support in the control unit for resuming from a halt without resetting 

the processor completely, the changes required to accommodate this would be 

trivial. 

SKIP activates the skip unit as described above. 

Op0 - Op3 form the ALU operation code for an arithmetic or logic instruction, or 

the skip type for a conditional skip instruction. 

As an example, the instruction with the assembler mnemonic LDA (p) causes the 

contents of the memory location pointed to by the P register to be loaded into the 
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A register. The op-code for this is 811D16, or 1000 0001 0001 1101 in binary. 

Referring to table n, we see that the IDX, FLAG and ACC bits are set, and the 

ALU code is 1101. This ALU code causes the ALU to feed the incoming data 

from memory directly to the register inputs. Since ACC is set, the accumulator 

will be updated during phase 6. FLAG is set, which will cause the flags to be 

updated according to the data which arrives from the memory. Only the Z (zero) 

flag will be affected by this, as the ALU will not generate a carry during this 

operation, and the N flag is generated based on the accumulator. If this is not 

required, the FLAG bit is cleared and the op-code becomes 810D16• 

The active IDX bit causes the address register to be updated from P rather than 

memory during phase 5, so that during phase 6 the memory will be outputting the 

contents of the address stored in P. This will be written to A when the register 

enable signals are generated in phase 6. 

4.3: The Assembler 

The assembler was written in QBasic to allow software to be created quickly and 

easily. Since the processor was designed to perform relatively simple tasks, the 

early software was hand-assembled. It soon became apparent that an automated 

solution was required. 

The instruction mnemonics file used by the assembler is shown in appendix B. 

This fi le contains the canonical list of supported instructions, with an entry for 

each addressing mode supported by the instructions, along with their hexadecimal 

op-codes. 

There are a number of different addressing modes which can be used, though not 

all instructions support all modes. These modes are summarised below. 

The simplest mode is the register-only mode. Here, a register provides the data to 

be operated upon, and also provides the destination for the result. The shift and 

rotate instructions, along with NOT, are examples of this type. 

The most straightforward of the memory accessing modes is absolute addressing, 

where the operand field of the instruction provides the address on which the 

instruction operates. This can be written numerically or using an assembler label, 

e.g.: 
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LOA 100 will load the contents of memory address 100 into A, while 

LOA mem will load the accumulator with the contents of the address labelled by 

'mem'. 

It is also possible to use the operand itself as the source data, in which case a '#' is 

placed before the numeric operand. In the terminology of processors such as the 

6502, this is immediate addressing. Only numeric operands can be accommodated 

in this mode, and these can be in decimal or hexadecimal, e.g.: 

LDA #100 will load the value 100 (decimal) into A. 

LDA #$100 will load the value 10016 into A. 

In addition to this, there is a slight variation which is useful for creating a pointer 

to an array. Placing '@' in front of a label will cause the assembler to generate an 

instruction using the immediate addressing mode but to place the address of the 

label into the operand field as in the case of absolute addressing. The result of this 

is that the address of the label will be loaded into the register. This is most usually 

used with the LDP instruction. 

The final addressing mode is indexed addressing, where the address of the 

operand is supplied by P rather than the instruction code. This is used to access 

arrays or look-up tables, and is represented thus: 

LOA ( p) will load the accumulator with the contents of the address pointed to by 

P. 

It is possible to create hybrid instructions by combining the bit patterns of two 

ordinary instructions. For example, the normal absolute LDA instruction code is 

011D I 6• If the PTR bit is set in this instruction, making it 013D I 6, the data will be 

loaded into both A and P simultaneously. These hybrid instructions are easily 

added to the assembler' s op-code table whenever they become necessary. 

Other assembler instructions are ORG, DC and OS. ORG is followed by a 

number, always in hexadecimal, which sets the assembler's program counter, 

telling it where to assemble the following code. DC (Define Constant) is followed 

by a number, series of numbers or ASCII string, or any mix of these, and is used 

to place values into memory. DS (Define Storage) causes the assembler's program 

counter to skip onward by one word, and is used to define labelled storage in 
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memory. The simple structure of the assembler requires that an operand is 

provided, but as this is ignored it can be any numeric value. 

4.4: Performance 

The processor requires six clock cycles to process an instruction, and the Quartus 

timing analyser suggests that the maximum speed of operation is 66MHz when 

implemented in an Apex 20K device. This corresponds to a performance of 11 

million instructions per second (MIPS). In general, the tasks for which it was 

designed do not require much processor speed, and the fastest clock rate it was 

used at was 24MHz, or 4 MIPS. As it is fully static and synchronous it should run 

at any speed up to the maximum of 66MHz, and it should be possible to change 

the speed as it runs, provided that the clock gating logic does not introduce 

glitches. The six phase outputs are provided to allow the external circuitry to 

synchronise with the processor' s operating cycle. 

If the control state machine is suitably modified there is no reason why the 

processor should go through state O each cycle, it could go from state 5 to state I 

on all instruction cycles except where the instruction is a halt instruction, thus 

increasing the speed slightly to 13.2 MIPS at 66MHz. State O does however 

provide a period during which the processor is guaranteed to be not accessing 

memory, and this time could be used by external hardware to perform transparent 

DMA transfers or other memory accesses. 

4.5: Analysis 

The architecture of the processor is difficult to compare with other types of 

processor, because it is greatly simplified compared with most. One possible 

comparison is with the 6502, which has a similar programming model and a 

similar set of functions. Both devices have a single accumulator, though the 6502 

has a pair of 8-bit index registers instead of a pointer register, which can be used 

in a base-offset addressing system. The 16-bit pointer register allows indexed 

addressing to be used across the whole memory map without requiring complex 

base-offset addressing, a useful feature when dealing with transferring data in 

large blocks. The connection between the P register and the ALU, which allows P 
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to be used as a second accumulator, makes it possible to perform pointer 

arithmetic much more simply than with the 6502, and also allows the use of two 

accumulators in sections of the program where pointers are not required. It is 

primarily because the processor' s entire architecture is 16-bit that this is possible, 

if the data bus was 8-bit the P register would be 8-bit and could not hold a 

complete memory address. 

It is difficult to compare the processor with other architectures because it does not 

bear close resemblance to any common processor. The relatively simple 

instruction set and small number of registers are somewhat similar to the 6500 

series, while its reliance on conditional skip instructions instead of conditional 

jumps or branches, and its regular instruction timing are similar to the PIC series 

of microcontrollers. Although its instruction set is small and it has some features 

in common with RISC architectures, it is not a true RISC machine, in which it is 

common to see many more general purpose registers, pipelining and more 

complex addressing modes which can be used by compilers to make more 

efficient translation of high-level code. In fact, with the lack of an instruction 

decoder and the wide range of hybrid instructions this enables, the instruction set 

of this new design could potentially contain many hundreds of instructions. 

It is unlikely that pipelining would be a useful addition to this design, as the 

addition of several pipeline stages might increase the speed slightly but would add 

significantly to the size of the processor. The simplicity of the execution cycle 

also makes pipelining more difficult, as it is hard to see how the cycle can be 

broken up into stages without making it less efficient. 

A possible method of analysis of the design is to compare its performance and 

hardware size with that of other FPGA-based processors. This comparison will be 

based on the general-purpose processors implemented in VHDL / Verilog rather 

than hardware embedded units like the Virtex's PPC core or designs which are 

specifically intended to support a particular compiler or language, such as JOP, 

the Java Optimised Processor mentioned in section 4.1. The results detailed here 

are only a basic and approximate indication of the relative capabilities of the 

processors, as is discussed below. A complete and thorough analysis of the 

different types would require a common benchmark program to be implemented 
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and run on all types, which has not been done. These figures show only the 

performance in MJPS (Millions of instructions per second). 

Type LEs MHz MIPs (Est.) MIPS/ LE 
New Design 440 66 13.2 0.0300 
Nios 2 fast 1800 185 218 0.1211 
Nios 2 std. 1400 165 127 0.0907 
Nios 2 min. 700 200 31 0.0443 

D68000 6332 32 3.2 0.0005 
DRPIC1655X 919 59 14.75 0.0161 

68HC11 1809 42 42 0.0232 
DP 8051 1750 63 63 0.0360 
Free6502 1064 12.5 4.3 0.0040 

Table 11: Comparison of various FPGA processor implementations 

Table 11 shows the size and speeds of FPGA implementations of various 

processors. Apart from the Nios designs, the Free6502 design [4.7] and this new 

design the others are commercial IP blocks available from Hitech Global [4.6]. 

The Free6502 core is not a commercial design, and is quoted as using 523 CLBs 

in a Xilinx 4020XL device. The difference in architecture between the Xilinx and 

Altera devices makes a direct comparison more difficult, but the datasheets show 

that functionally each CLB in the Xilinx 4020 device is approximately equivalent 

to two of the Apex LEs, so the LE count shown in the table is based on this. It is 

clear that this new design has a smaller footprint than any of the others, and while 

it may not have the highest clock speed, its maximum speed of 66MHz is faster 

than several of the other designs in the table, with only Nios II running faster. 

The MIPS figures are approximate, except in the case of the new design which is 

assumed to always require 5 cycles per instruction, and the PIC which is assumed 

to use 4 cycles per instruction. The figures for Nios II are obtained from the 

handbook for the processor [4.24]. The 68000 is known from past experience to 

take an average of 10 cycles per instruction, while the 68HC 11 and 8051 are 

specified by their manufacturers as being speed-enhanced versions which offer ;:t 

substantial increase in speed for a given clock speed when compared with the 

original devices. It is therefore assumed for the purposes of this comparison that 

they take a single cycle per instruction. The 6502 is known from past experience 

to perform around 0.7MIPS at 2MHz, thus the value in the table is calculated 

accordingly. 
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The final column in the table shows the speed in MIPS per logic element used, 

showing the area / performance trade-off. This shows that this new design ranks 

fifth by this measure, with Nios and the 8051 outperforming it. However, if the 

8051 is not capable of single-cycle instructions as was assumed, its score would 

decrease. It is clear that the Nios 2 design is substantially more powerful than any 

of the others in the table, though the 8051 is not far behind the least powerful of 

the Nios designs, in terms of MIPS per LE. The architectural differences between 

the three versions of Nios account for the wide variation in MIPS per MHz for 

these three. 

A direct comparison of speeds, either in terms of clock speed or instructions per 

second, can be misleading unless the two processors have similar features. In 

some cases certain sections of program code can be implemented more efficiently 

on some processors than on others, if it makes use of some processor-dependant 

features. Similarly a program running on a processor with more internal registers, 

such as the 68000 in the table above, will need fewer data transfers between 

registers and memory than a similar program running on a processor with just a 

single accumulator. Capabilities such as hardware multiply and divide will also 

reduce the execution time of an algorithm compared with software 

implementations. Even simple functions such as shift and rotate can be 

accelerated if the processor has a barrel shifter and can perform several shifts in 

one cycle. 

Another point of importance is that the instructions take a fixed length of time to 

complete in this new design, regardless of their mode, in contrast with more 

complex processors such as the 68000 series, in which the more complex 

addressing modes add significantly to the execution time of the instructions. 

However, the simplicity which provides this feature also reduces the number of 

addressing modes available, which can result in complex operations involving 

pointers taking longer, as base-offset address calculations have to be done with 

the ALU. 

The ALU design is inefficient at present, as the add, add-with-carry and subtract 

operations are all performed by separate adder circuits. The ALU could be rebuilt 

to make more efficient use of the hardware, further reducing the logic cell count, 

though with a possible reduction in operating speed as combining the adders into 

one will add extra gates to the input of the adder and thus increase the propagation 
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delay. Each adder currently takes at least 16 cells to implement, along with the 

extra cells required to implement the larger multiplexer that is required when the 

adders have separate outputs. If the ALU size is reduced without lowering the 

operating speed of the processor, its performance/area ratio will increase. 

The simplicity which allows the processor to take up relatively little hardware will 

also pose a problem if the processor is to be expanded with a larger instruction set. 

There are only four bits which could be used for the ALU function code, and at 

present only two permutations of these are unused, though these are detected by 

the stack logic and used to denote subroutine jumps. However, since the 

subroutine logic is only activated if the instruction is specified as a jump 

instruction, it is possible to use these 'spare' codes for two extra ALU operations. 

There are also two spare codes in the conditional skip instruction set, though there 

is no reason why the skip code cannot be expanded to fill the four bits allowed for 

the ALU codes, resulting in a total of ten more conditional skip instructions. It 

would be difficult, however, to find enough testable conditions to make use of this 

feature. 

The stack can also be expanded, and in fact since the RAM blocks in the Apex 

FPGA hold 2048 bits each, the current 16 level stack, using just 256 of these, is 

not using the RAM block to its full potential. In theory, the stack could be 

extended to 128 levels before an extra RAM block is required. Later Altera 

FPGAs, which have smaller RAM blocks, would enable a less wasteful 

implementation. 

The memory usage is also less efficient than most processors, but this was 

necessary in order to simplify the hardware as much as possible. Two 16-bit 

words make up each instruction, the second word being present whether it is 

required or not. However, there is no reason why the operand words of 

instructions which do not need operands shouldn' t be used for data storage, even 

if this complicates the design of the software. There is no support for this at 

present but an optimising assembler could make use of the unused operand spaces 

to store constants for other instructions, or variables if the assembled code is to be 

placed in RAM. 

A feature which can work in this design's favour is the ability to create hybrid 

instructions, and to customise the standard set, in both cases with no change to the 

hardware, but simply by altering the bit pattern of the op-codes. A simple example 
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which was mentioned previously is the ability to load both registers 

simultaneously from the same source, which would clearly save an instruction 

cycle or 5/6 clock cycles (depending on whether state O is used in each cycle). 

This LDAP instruction can take any form available to the LDA or LDP 

instructions. It is also possible to specify whether flags are updated or ignored, 

something which is not often available on other architectures, and if it is required 

that an LDA instruction does not modify the flags, this can be achieved without 

having to back up the flags in memory, a task complicated immensely by the fact 

that the flags are not accessible as a register. Certain more complex instruction 

sequences can be combined into one instruction, for example it is possible to 

create an op-code which will perform a register-only operation such as a shift or 

rotate on A, but with the result written into P rather than A, thus preserving the 

contents of A for future instructions without having to write it to memory. It is 

also possible to perform instructions of this nature without writing any result, but 

instead only updating the flags. Although it may be hard to see the necessity of 

these instructions, they are representative of the idea that a flexible architecture 

such as this can, under the right conditions, make certain software operations a lot 

simpler. 

4.6: Conclusions and Further Work 

At present the processor is a capable machine which is suitable for applications 

requiring functions which are too complex to implement with hardware. It is 

ideally intended to be used in conjunction with other more specialised processing 

hardware, with the processor itself overseeing the movement of data and the 

control of the other hardware. Some degree of refinement is desirable in the case 

of the ALU, which is currently somewhat larger than necessary, having been 

implemented in an inefficient way. 

It has been seen that the processor' s simple hardware brings two major 

advantages, firstly the small footprint, which is useful when implementing 

systems in smaller FPGAs, and secondly its ability to operate quickly, as having 

relatively little hardware in the data path to add to the propagation delays allows 

for a higher clock speed. The two of these combine to produce a device with a 

high ratio of performance to area. It may not be as high as some alternative 
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processors, but this new design has a small footprint compared with other designs, 

which can be made even smaller by a more efficient implementation of the ALU. 

The small instruction set and limited number of registers do however mean that 

some of the more complex operations take more instructions to perform than with 

more complex processors. However, the simplicity of the control hardware also 

introduces the idea of hybrid instructions, which have been shown to have 

potential in reducing the number of discrete operations required to perform a task. 

At present the only additional work that needs to be done on the processor is to 

make the ALU more efficient, as any modifications to the instruction set or 

addition of new features will be dictated by the applications for which the 

processor is used. One particular application area could be education, as the 

processor' s very simple hardware could make it a good platform for learning the 

basics of microprocessor design. 
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Chapter 5: Digital Neuron Models 

This chapter describes the development of a set of hardware blocks which 

replicate the function of neurons in a greatly simplified form. The motivation 

behind the design of these models is to develop a simplified model of a neuron 

which takes up as little space in the FPGA as possible while retaining the ability 

to perform complex functions. Several designs are presented, showing different 

approaches to the problem of modelling a neuron with simple hardware. The 

issues associated with efficient implementation of the models in the FPGA are 

shown and methods of optimising the designs to make the most efficient use of 

the hardware are discussed. 

It is shown that the neuron models are capable of performing complex functions 

despite their simplicity, and that a network of such models is capable of very 

complex dynamics under certain conditions. Finally, some simple neural circuits, 

a spike multiplier and a set-reset latch are demonstrated, showing that the neurons 

can be used to construct novel and useful building blocks for a larger and more 

complex system. 

5.1: Background & Review 

Neural networks find applications m a variety of fields, but the most usual 

applications are statistical analysis, pattern recognition and classification of data. 

In particular, a neural network can be useful when the data set has no easily 

described features which differentiate one class from another, or in which the 

differentiating features are too subtle or variable for a conventional rule-based 

approach to work [5.1 , 5.2]. The ability of the network to determine subtle 

patterns in the incoming data also makes it useful when the incoming data is 

corrupted or obscured by noise, especially when the noise is largely periodic, as 

the network can be trained to ignore this and focus purely on the embedded signal. 

[5 .3] 

The term ' neural network' implies a device that operates in a manner similar to an 

organic brain or central nervous system, systems which operate very differently 

from conventional computers. 
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The brain is a massively-parallel computer, a device in which computation is 

carried out by a large number of simple processors operating in parallel. Each of 

these processors, a neuron, performs a relatively simple function, collecting 

signals from other neurons and producing signals of its own when its inputs meet 

certain conditions. Each neuron may be connected to fewer than ten others, or 

more than a thousand, while the connections themselves can have a variety of 

effects on the state of the neuron. It is the cumulative effect of these simple 

operations which gives the brain its enormous ability to process and store 

information, and which gives a neural network the ability to perform operations 

which are difficult or impossible to program a conventional computer to perform. 

The neural network obtains its high performance by ' steering' the incoming data 

rather than by performing algorithmic processing. Once the necessary learning has 

taken place, and the network is trained to perform a task, any incoming data 

simply activates the pathways between the neurons which were set up by the 

training, providing an answer very quickly. 

Typically, networks designed for pattern classification tend to have two or three 

layers. [5.4] The first layer is the input layer, to which the incoming data is 

presented. This data may need to be encoded in some way to suit the type of 

neuron model used in the network, for instance if the network uses spiking models 

the input to each neuron would be encoded as a spike train, where the information 

is carried in the frequency or timing of the network. 

The last layer in any network of this type is the output layer, and in the case of a 

pattern-classifier network, will generally consist of one neuron for each class to 

which the incoming data could belong. There may also be a hidden layer of 

neurons between the input and output layers, as depicted in Figure 37. 
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Figure 37: A three-layer neural network 
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5.2: Neuron Structure and Operation 

The general form of a neuron [5.5] is shown in Figure 38. This is the type of 

neuron found in brain tissue, which differ slightly from some of the more 

specialised types such as sensory cells and motor neurons. The soma, or cell body, 

has a structure similar to most types of body cells, with the addition of a series of 

protrusions and a surface membrane consisting of a lipid bi-layer with unique 

electrochemical properties. The inputs to the cell are the dendrites, which are long 

branching structures, several of which may extend from a single cell. The cell's 

output channel is the single axon, which ends in one or more terminals which 

make contact with other neurons at sites called synapses. 

Dendrites/ 

j 
Cell body (Soma) 

~on 

Figure 38: Form and layout of a neuron 
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Neurons communicate by means of action potentials, which can be thought of as 

short pulses of the form shown in Figure 39. The voltage and time scales in this 

figure are approximate, showing that the action potential usually measures around 

1 00m V peak-to-peak and lasts for around one millisecond. These action potentials 

are usually approximately equal in amplitude from one to the next, but it is not the 

size of the pulse that determines the message to be transmitted, this information is 

encoded in the timing of the pulses and the effect each pulse has on the post

synaptic neuron. This effect is determined by the synapse which receives the 

pulse. 
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Action potentials occur due to the polarization of the neuron's cell membrane, 

which is due in turn to an imbalance of positive and negative ions when the 

neuron is at rest. The cell membrane has a potential difference across it, with the 

outside having a potential around 70m V higher than the inside when at rest. It is 

conventional to speak of the matter surrounding the neurons as having a potential 

of zero, so the neuron's internal potential is - 70mV at rest. Any disturbance to 

this polarization will cause a change in the membrane potential at that point, 

which will affect the surrounding membrane, causing the disturbance to propagate 

across the cell. 
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Figure 39: General form of an action potential 

Embedded in the cell's membrane are a series of ion channels, which selectively 

allow ions to enter and leave the cell. Some of these are the ion pumps responsible 

for maintaining a concentration gradient of ions across the membrane, and 

therefore maintaining the potential difference between the inside and the outside. 

At the synapses, the ion channels are responsible for the change in membrane 

polarisation during synaptic events. Generally, sodium, potassium, calcium and 

chloride ions are responsible for the polarisation effect in a neuron. 
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Figure 40 shows a more detailed view of a single synapse. As an action potential 

reaches the synapse from the presynaptic neuron, the vesicles, containing 

neurotransmitter, move to and merge with the presynaptic membrane, releasing 

their neurotransmitter into the synaptic cleft. Chemical binding of the 

neurotransmitter with the receptor sites on the postsynaptic membrane' s ion 

channels triggers an electrochemical process which alters the balance of positive 

and negative ions in the membrane, either reducing the magnitude of the 

polarisation (depolarisation), or increasing it (hyperpolarisation). This change in 

the polarisation, called a post-synaptic potential (PSP), can therefore either bring 

the membrane potential closer to zero, away from its normal resting point at 

around -70mV, or can push it further away from zero, making it more negative. A 

raise (toward zero) in the membrane potential brings the neuron closer to firing, so 

a PSP which does this is called an Excitory PSP, while a PSP which increases the 

polarisation is called an Inhibitory PSP. 

Presynaptic Neuron 

.0 0 Synaptic Vesicles 
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. . 

Synaptic Cleft • • +- Neurotransmitter release 

Postsynaptic Neuron 

Figure 40: Detailed view of a single synapse 

The magnitude of the PSP is determined by the electrochemical effect which the 

neurotransmitter has on the postsynaptic membrane, and as this will vary 

depending on the exact conditions present at each synapse, the PSPs from 

different synapses will all have different effects on the overall state of the neuron. 
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This gives rise to the concept of weighted inputs, where certain synapses have a 

greater effect than others, or a greater weight, while others may in fact reduce the 

neuron's chance of firing, having a negative weight. 

Thousands of PSPs arrive from the thousands of synapses, converging on the axon 

hillock, where the axon joins the soma. If the cumulative effect of these raises the 

membrane potential at this point enough to reach a threshold, which is typically 

around -50mV, the neuron fires, and an action potential propagates along the 

axon, where it triggers the same synaptic processes in subsequent neurons. 

Whenever there are no PSPs arriving from the synapses, the neuron slowly re

polarises, so that the membrane potential gradually returns to the resting value of 

around -70m V. Therefore, a stream of excitory PSPs may fail to trigger an action 

potential if the timing is such that the membrane potential is allowed to return to 

the resting potential between inputs. The neuron can thus be considered to be a 

frequency-dependant system, where a low input frequency will not produce an 

output. The size of the PSP generated by a particular synapse will have an effect 

on this frequency-dependence, as a very small PSP will have to occur more 

frequently than a much larger one in order to overcome the decay and cause the 

neuron to fire. 

Figure 4 I shows a simplified overview, approximated by straight lines, of the 

change in membrane potential with time for a neuron which is stimulated to firing 

point by a series of input pulses. 
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Figure 41: Simplified membrane potential response to three input spikes 
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As the neuron fires, the membrane potential rises rapidly before returning to a 

much lower value that the resting potential. Now, the ionic compounds 

responsible for the membrane polarisation must be replaced, and during this 

period, the refractory period, action potentials will not be produced, regardless of 

the input activity. There is therefore a minimum period of action potential 

generation, and a neuron which is constantly stimulated by incoming signals will 

have a maximum firing rate beyond which any further increase in stimulation will 

have no effect. 
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5.3: Artificial Neuron Models 

The descriptions of the conventional artificial neuron models in the following 

sections are adapted from [5.4] and [5.5]. More complete details can be found in 

these texts. 

5.3.1: Threshold Logic Unit 

The simplest type of artificial neuron is the Threshold Logic Unit, or TLU. This 

provides a very simplified model of a neuron as a device which will produce an 

output signal if sufficiently stimulated by its input signals. The general form of 

such a device is shown in Figure 42. 

W1 

Figure 42: Block diagram of a threshold logic unit 

The incoming signals are weighted and summed to determine the neuron's 

activation, which is then fed to a threshold unit to determine whether the neuron 

will fire. Weights can be positive or negative, representing excitory and inhibitory 

synapses. 

The threshold function depicted in the figure, though lacking detail, shows the 

general form of the threshold response. The output, on the Y axis, is zero for any 

input (X axis) below a certain point, the threshold. For input above the threshold, 

the output is a fixed, higher value. It is conventional to consider these values to be 

0 and 1, respectively. 
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Although this binary representation of the neuron's response limits the neuron to 

simple on/off outputs, it does give rise to some degree of error tolerance, as the 

weights can change slightly without altering the output from the neuron. Whether 

the activation of the neuron is just below or a long way below the threshold, the 

neuron will output 0, and similarly the output will be 1 whether the activation just 

exceeds the threshold or exceeds it by a long way. 

An alternative activation function to the step function described above is the 

sigmoid function, which provides a continuous relationship between the activation 

and the neuron's output. An example is shown in Figure 43. The sigmoid curve is 

symmetric about the point at which the Y-axis value is 0.5, and the X axis value 

corresponding to this can be thought of as being equivalent to the threshold in this 

case. 

~--------"72:,-----------------, 
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Figure 43: Example of a sigmoid function 

The sigmoid function is expressed mathematically as 

Y = 1 - (a- 8) / p +e 

where 0 is the centre point of the function and p determines the shape of the 

curve. The figure was generated with p = I. Larger values make the curve flatter, 

while asp tends to zero the curve more closely approximates the shape of the step 

function. 



The values passed between the neurons represent their level of activity, so for the 

case of the step function, the neurons in a network are either active or not active, 

represented by O or I. Neurons with a sigmoid activation function can produce a 

variety of outputs. 
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5.4: Spiking Neuron Models 

While the threshold logic unit can model the basic summation of inputs and 

threshold functions of a real neuron, many models have been developed which are 

based on a much more detailed analysis of the internal functions of the neuron, 

taking into account the spiking nature of the cells, and the details of the membrane 

potential. Spiking neuron models have been shown to be more computationally 

powerful than threshold or sigmoid-based models (5.6], demonstrating the ability 

to perform with a single neuron a function that requires many hidden layers in a 

network of TLUs. It is suggested (5.7] that the computational power of these 

neurons arises from the way in which information is coded, not only in the 

frequencies of the spikes but also in their relative timings. 

5.4.1: The Integrate-and-Fire Model 

The simplest of these models is the integrate-and-fire model, though the slightly 

more complex and realistic leaky integrate-and-fire model (LIF) is used most 

often. This model was first proposed by Lapicque in 1907 (5.8, 5.9], long before 

the mechanisms governing action potential generation were known and is based 

on a simplified view of the capacitance and leakage conductance of the cell 

membrane. 

Figure 44: Overview of the Lapicque model 

The structure of the model is shown in Figure 44. Yr represents the resting 

potential, to which the membrane potential V will gradually return in the absence 

of stimulation current I. C represents the membrane capacitance while R 

represents the leakage resistance. When I is positive, the capacitor is charged at a 

rate proportional to I, raising the membrane potential. It can be seen that the 
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model does not model the actual generation of an action potential, Lapicque 

postulated that when the membrane potential reached some threshold value, an 

action potential would be generated by some other means, and the membrane 

voltage would be reset to some sub-threshold value. If set to less than Yr, it would 

need time to return to Yr, providing a basic simulation of the refractory period. 

Sample waveforms showing the response of the leaky-integrator to a varying 

input current are shown in Figure 45. The resting potential in the figure is -60mY, 

and it is apparent that the potential immediately after firing is a little lower than 

this. The threshold is around -45m Y. The input current is large, the model fires 

repeatedly, until the current is lowered to a point where it cannot charge the 

capacitor more quickly than the resistor R is discharging it. 

0 

~-20 -> -40 

=i• 4( /\ 
.s JI\, ~ L\,I\ I\_ c,,/\, j 

0 100 200 300 400 500 
t (ms) 

Figure 45: Response of a simple LIF model to a varying input current (adapted from (5.91) 

The basic equation governing the response of the integrate-and-fire neuron is 

where •m is the membrane time constant, Y is the membrane voltage, EL is the 

resting potential of the neuron, Rm is the total membrane resistance and Ie is the 

excitation current. In addition to this, the threshold rule is applied, so that when Y 

reaches the threshold Y1h, the neuron fires an action potential and Y is reset to 

some value Yr. 
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Solving the above equation allows the subthreshold membrane potential Y(t) to be 

calculated: 

- I 

where Y(0) is the membrane potential at time t = 0. This equation is valid only 

when Y <Y1h-

We can use this equation to calculate the firing rate of the neuron for a constant 

value ofle. Assuming that the neuron has just fired at t=0, the membrane potential 

will be at the reset value, Yr. Note that this is not the same Yr as in Figure 44, as 

the resting potential is represented by EL here. The next action potential will occur 

when Y reaches Y1h, at a time ti, 

Solving for ti, we can obtain the firing interval for the neuron 

and since the firing rate ri = ti_, we obtain: 

It is clear that in general the firing rate of this neuron model increases 

logarithmically as the excitation current increases, but for large le the increase can 

be considered to be approximately linear. This logarithmic response is discussed 

in section 5.14.2, where it is shown that the neuron can behave as an input 

encoder. 
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5.4.2: More Complex Models 

The integrate-and-fire model was extended in the 1960s by the pioneering work of 

Hodgkin and Huxley into analysing the behaviour of squid neurons [5.10]. The 

Hodgkin-Huxley model [5.11], in its simplest form, provides a detailed and 

biologically plausible model for the membrane conductances and allows the input 

current le to be defined more realistically. The FitzHugh-Nagumo model [5.12, 

5 .13] was introduced later as a simplification of the Hodgkin-Huxley model. Both 

models are much more complex than the integrate-and-fire model, being based on 

modelling real-world biological and chemical processes. 

5.5: Existing Implementations of Neurons and Networks 

An interesting alternative to developing a system by training a neural network is 

the principle of evolved hardware, which was first demonstrated by Thompson 

[5.14], where a Xilinx XC6216 FPGA was programmed to perform a simple task 

- discriminating between two tones - by a process of evolution guided by a 

genetic algorithm rather than by explicit design of the circuit. A subset of 100 

logic cells within the device was used, and a genetic algorithm starting with 50 

random configuration patterns evolved a configuration pattern after 5000 

generations which could distinguish flawlessly and rapidly between the tones. It 

was later found that most of the circuitry could be removed, leaving just 32 cells 

which were required, even though many of them appeared not to be connected. 

The circuit was shown to be making much more complete use of the dynamics of 

the individual transistors than a conventional digital logic design would, and its 

performance was very dependant on its operating environment. Later work by 

Fogarty et al [5.15] showed that true digital circuits could also be evolved, which 

were not bound to the analogue operating conditions of the underlying hardware. 

Simple evolved arithmetic circuits were shown which used far fewer resources 

than circuits generated by traditional design and optimisation methods, as the 

evolution process was free to explore the underlying logical structure of the logic 

elements themselves, rather than thinking of them as simply places where logic 

gates can be put. Since the first study of evolution in FPGAs there has been much 

work in this area, concentrating mostly on making non-hardware-dependant 
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circuits which function at the gate level rather than the analogue level [5.16] 

[5.17] [5.18] [5.19]. Gordon and Bently [5.20] provide a good overview of this 

field, which could be thought of as an alternative to neural networks. 

There are two main methods of implementing artificial neurons in VLSI; analogue 

and digital. The former is based on the analogue models developed in the 50s and 

60s, and is generally implemented in full-custom VLSI, making use of the 

analogue nature of the transistors [5.21][5.22][5.23], or sometimes in Field

Programmable Analogue Arrays (FPAAs) [5.24]. The analogue full-custom types 

can offer the highest neuron density, as each neuron may consists of a mere 

handful of transistors [5.25], equivalent to a few logic gates in a digital system, 

though these are expensive to develop. Full-custom VLSI implementations can 

also make use of mixed analogue and digital circuitry, with the spikes handled by 

digital gates while the integration is handled by an analogue integrator. [5.26] 

The digital implementations are usually performed with FPGAs at the present 

time, since FPGAs allow rapid prototyping at lower cost than full-custom VLSI. 

Within the sphere of these digital implementations, there are many subtypes, 

ranging from simple implementations of threshold logic units to complete 

simulations based on hardware-accelerated software. 

Vitabile et al. [5.27] present an efficient method for implementing a Multi-layer 

Perceptron in an FPGA. The MLP is a layered feed-forward network based on 

threshold units, and it is shown in this implementation that a replacement of the 

more conventional sigmoid activation function with a sinusoidal one results in a 

decrease in resource usage while retaining the precision and processing abilities of 

the network. It is also demonstrated that many of the variables and buses such as 

weights and pre/post synaptic connections can be reduced to small bit widths, in 

some cases as small as 3 bits wide, without compromising the operation of the 

network. A major point raised is that the main bottleneck in a system such as the 

one presented is the bandwidth between the parameter memory and the neurons 

themselves, and thus a method is presented where the network is pipelined and the 

neurons of the first layer are updated one at a time, writing the partial results into 

a series of FIFOs. Once the required number of results are present to allow the 

first neuron in the second layer to be updated, the second layer is processed, one 
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neuron at a time, and the process continues in this manner. It is shown that this 

method reduces the number of individual RAMs which must be used, as all 

parameters are held in a small number of large memories which are shared among 

the neurons. 

The system demonstrated by Eldredge et al. [5 .28] makes use of run-time 

reconfiguration to increase the density of a multi-layer feed-forward network 

using back-propagation learning by dividing the system's operation into three 

phases; feed-forward operation, back-propagation operation and weight updates. 

These three functions are implemented as separate blocks and time-multiplexed 

onto the FPGA, with the results of each phase being stored in external memory. 

The results presented show that when the system is partitioned in this way, six 

neurons can be fitted to each processor, compared with just one if all three phases 

co-exist on the same chip at the same time. It is shown that the time required to 

reconfigure the FPGA with its new function will slow the system down if a single 

chip is used, but when a large number of them are used in parallel, the advantage 

of being able to process 6 neurons on each chip at once outweighs the 

disadvantage of the extra time required for reconfiguration. 

Bade and Hutchings approached the problem of reducing the hardware size from 

another angle, using a stochastic method [5.29] in which the neurons' activation 

values are represented by serial bit-streams where the magnitude is proportional to 

the quantity of 1 's in the stream. This allows multiplication by the weights to be 

done with much less hardware (a single gate) than if a complete multiplier was 

used, and thus increases the number of neurons which will fit into a single chip. 

One of the oldest FPGA implementations of a very large scale neural network is 

the CAM-Brain Machine (CBM), built by De Garis & Korkin [5.30][5.31] in 

which a total of 75 million neurons are implemented by 72 FPGA-based 

processors. The neurons are grouped into cellular-automaton-based 'modules' of 

around 1000 each, and each module is evolved by a genetic algorithm to perform 

a specific function. Up to 65000 of these CA modules are then loaded into a large 

memory to form the overall 'brain', which can be updated by the machine at a rate 

of 130 billion cells per second. At the time of publication, the performance gain 
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was estimated at around 10,000 times the performance of software running on a 

400MHz Pentium II PC. 

The actual cells used in the implementation of this system are quite different from 

either threshold logic units or spiking neurons, as they are simple CA cells of one 

of four types: axon, dendrite, neuron body or blank. [5.32] These exist in a 3-

dimensional CA and operate together to produce the simulated neurons, of which 

there will clearly be fewer than there are cells in the CA. The overall effect of the 

set of cells which combine to produce each simulated neuron is roughly 

equivalent to a threshold logic unit, but the real distinction of this system is that 

the cellular-automaton based structure combined with the genetic algorithm used 

to develop the network results in the connections between the neuron bodies being 

' grown' to suit the application rather than hard-wired in a regular structure. Each 

module has a 'chromosome' which guides the CA when growing these 

connections. A hundred modules are evaluated for fitness by comparing the 

outputs with the expected outputs for a range of input vectors, then the ten best are 

selected and a hundred more composed by 'mating' these ten. Eventually a 

module arrangement is reached which is deemed ' fit for purpose', and this can 

then be used in the final CBM, along with thousands of others. 

While the above examples are all essentially threshold logic units, less work has 

been done in the area of implementing spiking neuron models in FPGAs. It is 

generally the case that the more complete spiking neuron designs based on a full 

implementation of the Hodgkin-Huxley model or similar tend to be implemented 

as analogue circuits, while the simple integrate-and-fire designs are often 

implemented digitally, but with a view to implementing large-scale networks 

rather than small networks or individual neurons. 

Many FPGA implementations of larger networks are based on the principle of 

multiplexing the simulated neurons onto a small number of execution units, and 

simulating the neurons in a series of time-steps, with the parameters for the 

neurons and synapses stored in RAM, along with the status of each 

interconnection. Glackin, McGinnity et al [5.33] showed that while a fully parallel 

implementation could be expected to fit a few tens of neurons into an FPGA, a 
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multiplexed approach such as this could be used to implement a network of 

thousands of neurons with four main neuron processors. 

The neuron processors used in this system consist of embedded microprocessors 

which have access to integrate-and-fire neuron models which they use as 

coprocessors. A single time-step for the entire network is calculated by operating 

the four processors in parallel with each processing a subset of the network. The 

results show an increase in speed of around 1000 times compared with a Matlab 

simulation of the same network, for the case of a large network of 4200 neurons 

and 1.9 million synapses. 

Pearson et al. proposed a Biologically Plausible model [5.34], in which the simple 

leaky integrate-and-fire model is extended to simulate the axonal delay and noise 

in the weights and other parameters. Ten neuron processing elements, each 

consisting of a neuron model and a synapse model are implemented in parallel in 

a million-gate FPGA, and 120 virtual neurons and 912 virtual synapses are time

multiplexed onto each one. This implementation also makes use of 16-bit integer 

arithmetic in place of floating-point arithmetic, an implementation chosen for the 

simpler hardware involved. This implementation is not a 'neural network' as such, 

as it is considered to be a SIMD (Single Instruction Multiple Data) processor with 

custom hardware specifically geared towards simulating neural networks, a 

hardware-accelerated software implementation. 

The SNN Emulation Engine (SEE) described by Hellmich et al. [5.35) is another, 

later example of this type, consisting of 3 FPGAs; a master controller, a Network 

Topology Computer and a Neuron State Computer. The NSC contains 3 

Processing Elements, each of which has a link to fast SDRAM, containing the 

complete parameter set for each neuron and synapse. A total capacity of i19 

neurons and 803xl06 synapses is achieved, and an acceleration factor of 30x 

compared with a standalone 2.4GHz PC is claimed, with the SEE operating at 

50MHz. Although based on standard Xilinx Virtex lI FPGAs, SEE is however a 

custom architecture, and its builders state that commercial and educational FPGA 

development systems are generally not adequate for this level of acceleration. 
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While many of these implementations are intended to model many hundreds or 

thousands of neurons, usually processing a few at a time, some work has been 

done in implementing smaller networks, sometimes with all the neurons of the 

network implemented in parallel. Roggen et al. demonstrate a simple parallel 

network of very simple spiking neurons [5.36] being used to control an 

autonomous robot. Despite the simplicity of the neurons, in which the arithmetic 

representation is cut down to use as few bits as possible, and the weights assume 

one of two fixed values, the network is shown to be capable of performing the 

task for which it was developed, and as a result of the simplicity 64 neurons can 

fit into a relatively small FPGA, along with an embedded processor for interfacing 

and control. It is stated that the speed of the network is two orders of magnitude 

greater than the software version, at the same clock speed. This is an interesting 

result as it demonstrates that useful neural networks can be built from neurons 

with greatly reduced hardware cost. Bellis et al. also showed that an autonomous 

robot could be controlled by a simple network [5.37], in this case a network of 

just four neurons, with two acting as input encoders and two as output generators. 

The neurons in this case were built with arithmetic hardware tailored to suit the 

sensors used by the robot, and were small enough to allow 40 to be implemented 

in parallel in a mid-range FPGA. 

Upegui et al [5.38][5.39] propose a simple leaky integrate-and-fire model 

featuring Hebbian learning implemented in an FPGA, using a mixture of 

configurable logic and embedded RAM to compute the function of the neuron in a 

series of time-slices and a network of 30 neurons is trained to discriminate 

between two freq uencies of input signal. It is shown that this simplified 

approximation uses much less hardware than more complex biologically-plausible 

implementations which perform a more detailed modelling of the neuron [5.40], 

and also that a change in the number of inputs to the neuron affects not only the 

hardware size but also the latency, as the need to integrate over more inputs 

means that more clock cycles are required. 

This neuron model is a good basis for development of other simple integrate-and

fire models, as it captures the basics of neural operation. 
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Savich et al. discuss number representation and the design of the neuron core 

[5.41], concluding that fixed-point computations can be executed with much less 

hardware than their floating-point counterparts, generally achieving a halving in 

the area required and an increase in clock rate when comparing implementations 

in which the range and precision of the two formats are similar. It is also shown 

that the area required can be reduced by as much as 80% if the weights are 

processed serially with a multiplier-accumulator, rather than being processed 

simultaneously with a series of separate multipliers and an adder tree. 

Schrauwen and Van Campenhout address the issue of hardware size in an 

alternative way, realising that while software implementations tend to follow the 

architecture of the host computer, a hardware implementation can be based around 

a completely different architecture, which can result in significant improvements 

in operating speed or resource usage in an FPGA. The method proposed is that of 

serial arithmetic [5.42], where 1-bit adders replace the wider parallel adders and 

registers are replaced by shift registers. The result of this is that the neuron 

requires far fewer logic cells than an equivalent implementation with parallel 

arithmetic, and due to the simpler hardware it also can operate at a much higher 

clock speed, though as it uses serial arithmetic more clock cycles are required to 

perform each operation. This approach has been previously taken by others such 

as Torres et al. [5.43] with similar findings. 
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5.6: FPGA Spiking Neuron Model 

It was decided to investigate the implementation of a spiking neuron model rather 

than a simpler model such as a threshold logic unit because the spiking neuron 

model is capable of more complex and interesting dynamics. A TLU can be 

thought of as a static system, it responds to steady inputs, producing a steady 

output signal. When the inputs change the output may change, or it may not, but it 

will quickly reach a new steady state, with any changes in output following 

changes in input in terms of timing. A spiking neuron model responds not to the 

steady-state magnitude of the input signal but to the timing of the pulses, 

producing pulses at a rate proportional to its excitation, and can therefore both 

produce and respond to signals with more complex time-dependant 

characteristics. A spiking neuron model also more closely mimics the dynamics of 

a real neuron, and it was for these reasons that this type of neuron model was 

chosen for implementation. 

The Spiking Neuron Model presented in this chapter is intended to model the 

timing-dependant operation of a real neuron without modelling the internal 

functions in detail. As described above, the model does not represent the full, 

complex dynamics of a real neuron, but replicates the operation of a simplified 

leaky integrate-and-fire model with integration, decay and the threshold function 

modelled as approximations. 

It was decided that the neuron model design should have two major features; 

firstly, it should operate independent of any others to which it is connected, and 

therefore should not require to be synchronised with the others in the network. 

This should bring the neuron a little closer to an analogue implementation, where 

processing is carried out in real-time. Secondly, the hardware should be as simple 

as possible, to make its LE count as low as possible. This latter requirement 

necessitates a trade-off between the precision and realism of operation and the 

size of the hardware. In addition, if the model is kept very simple, it should be 

possible for it to behave as if it is performing its functions in real-time, using a 

high enough clock speed to keep latency small. 
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5.6.1: First Implementation of a Leaky Integrator Model 

The neuron model was built with four inputs, a simplification which makes it 

suitable for simple neural networks with reduced connectivity. This was chosen 

arbitrarily, and the model can be extended to have more inputs, or reduced to 

fewer inputs. It was also built to operate at the relatively low speeds at which real 

neurons operate, with firing rates of a few kilohertz at most. This low activity rate 

compared with the tens or hundreds of megahertz clock rates possible with the 

FPGA logic makes it possible to perform a large number of internal operations 

between input spikes. 

5.6.2: Overview 

The basic neuron model has four inputs and one output, along with a series of 

control signals which allow parameters to be updated in real-time. The internal 

structure of the model is summarised in Figure 46. 
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Figure 46: Block diagram of the neuron model structure 

Since the neurons communicate through short spikes, it will generally not be 

possible for the receiving neuron to detect a spike if it has to do so by repeatedly 

checking its inputs under the control of a state machine while also performing 

other tasks necessary for the model. An output spike is one clock cycle in length, 

so there is a chance that the receiving neuron will not be checking its input during 

that particular cycle, and will miss the spike. To correct this the inputs are fed into 

Spike Catchers, in which the input spike sets a flip-flop which can be read at the 
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next convenient time, and is reset by the state machine once the spike has been 

received. 

Output spikes are generated directly by the controlling state machine as it passes 

through its firing state. 

5.6.3: Neural Processing Core 

The modelling of the simplified neuron function is performed by a simple data 

processing system consisting of an accumulator, adder and two multiplexers. The 

value in the accumulator represents the membrane potential in arbitrary units. 

While the membrane potential in a real neuron rests at -70m V with no activity, 

and can rise to around +90m V during firing, the simulation uses only positive 

integers, resulting in a representation of the membrane potential which has the 

same form, simplified, as that of a real neuron, but with a DC offset and expressed 

in arbitrary units in order to simplify the design of the arithmetic logic. This is 

simpler even than fixed-point, though as fixed-point representation involves using 

the top n bits as the integer and the remaining bits as the binary fraction, an 

integer representation using 16 bits can be thought of as being equivalent to a 

fixed point representation but with all the numbers multiplied by some power of 2. 

The multiplexer feeding the accumulator allows fully synchronous operation 

without using logic in the clock generation. The accumulator is clocked on the 

falling edge of every clock cycle, regardless of the current process operation. 

Whenever the data in the accumulator is required to remain unchanged, the 

multiplexer feeds the accumulator's output back to its input. This method ensures 

that short glitches will not affect the accumulator. These glitches are inevitable in 

FPGA logic when decoding wide bit vectors due to the fine-grained nature of the 

device, which often requires that the state decoding logic is formed from several 

cascaded layers of logic cells. 

When the membrane potential is changed, either by an input spike, or by the 

gradual re-polarisation between spikes or after firing, this multiplexer feeds the 

output of the adder back to the accumulator. The adder produces the sum of the 

current accumulator value and a selected parameter, chosen by the state machine 

and control logic and fed from the parameter registers by a second multiplexer 
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under the control of the state machine. Any negative numbers must be entered in 

two's complement representation. 

5.6.4: Neuron Control 

The basic operating cycle consists of checking the four inputs for spikes, adding 

the weights to the accumulator if any spikes have been received, then adding the 

decay constant to the accumulator to represent re-polarisation. The chain of states 

in the state machine which perform this checking function is balanced so that if an 

input doesn't have a spike waiting to be integrated, extra ' blank' states are 

executed in place of the integration states. This ensures that the processing loop 

takes a constant number of clock cycles to execute each time (15 in the case of 4 

inputs), regardless of the input signals, and therefore the decay function works at a 

constant rate. Each spike catcher is cleared immediately after the integration state, 

and since this is only done if a spike has been captured, there is no chance of the 

spike catcher being cleared at the instant a spike arrives, provided that the spike 

rate is significantly lower than the clock rate, as was assumed when the neuron 

was designed. If a spike has been captured, it must have occurred within the last 

loop cycle, and therefore the next spike will not occur for some time. 
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Figure 47: State transition diagram for the four input neuron model 

The state diagram for this neuron model is shown in Figure 47. The neuron starts 

in the idle state, waiting for a 'GO' signal, a facility which allows all neurons in a 

network to be reset and started simultaneously. The period between resetting the 

neuron and starting the model with the go signal is used to load the model 

parameters into the registers without any spurious responses from the neuron's 

output due to incorrectly set parameters. 
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Once the neuron model is started by the GO signal, it enters the refractory period, 

during which time it will not respond to input stimuli. To ensure this, the spike 

catchers are constantly reset during this loop. If this were not the case, any 

incoming spikes during this period would be held until the start of the integration 

loop and would be integrated once the refractory period was finished. The 

refractory period ends when the resting level comparator signals that the 

membrane potential is within the limits set for the resting potential. At this point 

the system enters its main processing loop. 

At the start of each pass through the loop, the output from the threshold detector is 

checked, and if it is signalling that the threshold has been exceeded, the state 

machine passes through the FIRE state and back to the refractory loop. During the 

FIRE state the accumulator is loaded with the post-firing potential specified in one 

of the parameter registers, and an output spike is generated. 

If the threshold has not been exceeded, the processing continues with the decay of 

the membrane potential and the integration of the spikes. Firstly, if the 

accumulator is not at the resting value, the decay constant, a negative value, is 

added to the accumulator, then the four inputs are checked in succession and if a 

spike has been captured at any input, the weight value for that input is added to 

the accumulator. The use of a negative constant for the decay slope allows the 

same adder to be used for the decay, integration and refractory period, saving 

hardware. 

The neuron' s parameters are held in a set of registers which appear from outside 

the unit to be ten words of write-only memory. The addresses for the parameters 

are shown in Table 12. The registers allow the parameters to be updated while the 

neuron is operating, and in particular allow the weights to be adjusted without 

stopping the neuron. 
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Address Parameter 
0 Weight 1 
1 Weight 2 
2 WeiQht 3 
3 Weight 4 
4 Upper limit of resting potential 
5 Lower limit of resting potential 
6 Threshold 
7 Decay slope 
8 Refractory period slope 
9 Post-firinQ membrane potential 

Table 12: Parameter addresses for the neuron model 
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5.7: Testing the First Neuron Model 

The aim of the tests presented in this section is to demonstrate that the neuron 

performs the integrate-and-fire function correctly, and to show that the decay 

function and refractory period are correctly handled. The timing-dependant 

response of the neuron to the input spikes and its response to inhibitory inputs are 

also shown. 

The basic test of the excitory response consists of feeding a train of spikes into an 

excitory input, with each spike increasing the membrane potential, until the 

threshold is exceeded and the neuron fires. 

Referring back to the assumptions made when designing the neuron, it was 

assumed that the spike frequency on any input would be low compared with the 

neuron model's clock frequency, and so a number of decay cycles would have 

elapsed between input spikes. If the spike frequency is low enough the decay will 

cause the potential to drop sufficiently far between spike inputs that it will never 

be able to reach the threshold. This is tested by varying the decay slope and the 

frequency of the input spikes. 

The neuron was set up with the resting potential boundaries set to 1000 and l 050, 

the threshold set to 3000, and the post-firing potential set to 200. The refractory 

and decay slopes were set to 17 and -6 respectively. The choice of these values 

was not determined by any specific requirements, but to provide a useful range of 

membrane potentials over which the neuron could be tested and to provide a large 

enough response to be displayed graphically. 

5.7.1: Simple Spike-Train Test 

The neuron was tested with a train of three spikes. Figure 48 shows the input and 

output spike trains and the simulated membrane potential as the spikes are 

entered. The input weight was set to 1000, so assuming that the resting potential is 

probably just above 1000, two spikes should be enough to fire the neuron with no 

decay present. With moderate decay, three spikes will be required. The resting 

potential will not be at exactly 1000 (its lower bound) because the refractory slope 
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is +17, so the initial build-up of potential will result in the potential resting at the 

closest multiple of 17 to I 000, which in this case is I 003. 

Neuron Triggered By Three Spikes 

1----------------..._ __ __, O~p~ 

lnp~ 

Accumulator 

Time 

Figure 48: Neuron model response to a train of three input spikes 

The decay can be seen between the input spikes as a gradual drop in the 

membrane potential. Each spike causes a sharp rise in the potential, with the third 

spike causing the potential to exceed the threshold. Once this happens, the neuron 

fires, outputting a spike and entering the refractory period. Due to the refractory 

slope value as described above, this second resting potential is actually 1016. 
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In order to test the timing dependant response of the neuron, the decay function 

was made more aggressive, taking the membrane potential back down more 

quickly, to show that the three spikes entered in the first test could no longer fire 

the neuron. These three spikes were then brought closer together to show that a 

faster train of spikes could overcome this more aggressive decay and cause the 

neuron to fire normally. 

Three spikes fail to trigger the neuron 

Time 

Output 

Input 

Accumulator 

Figure 49: Neuron fails to respond to three input spikes 

Figure 49 shows a second test using the same input spike train as the first test. 

Here, the neuron was set with a more aggressive decay, using a decay slope value 

of -40. This extra decay slope was enough to ensure that the spikes failed to 

trigger the neuron, because the time period between spikes was long enough for 

the membrane potential to reach the resting potential, and therefore cancel the 

increase brought about by each spike. Note that the time scale used in this figure 

differs from that used in the first result graph, in order to show the entire 

waveform. 

Figure 50 shows a faster spike train fed to the neuron with the same parameters as 

the previous test. Here, the neuron fires, because the shorter delay period between 

spikes does not allow time for the membrane potential to fully decay. 
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A Faster spike train triggering the neuron 

Time 

Figure 50: A faster spike train triggering the neuron 
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Input 

Accumulator 

This graph uses the same timescale as Figure 49, showing the shorter delay 

between spikes. 

This dependence on the timing of the input spikes shows that for any 

configuration of the neuron's parameters, there will be a minimum rate of input 

spikes below which the neuron will not be triggered. 
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5.7.2: Refractory Period Test 

During the refractory period, the neuron should ignore any incoming signals, and 

should clear the spike catchers so that any spikes caught during this period are not 

read once the refractory period is over. Figure 51 shows the two spikes arriving 

too close together, so that the second arrives during the refractory period. For the 

purposes of this test the weight of the input was set to exceed the threshold value 

with a single spike. 

Input Suppression During Refractory Period 

Time 

Figure 51: Input suppression during refractory period 

Output 

Input 

Accumulator 

It can be seen from Figure 51 that the second spike is completely ignored. There is 

also an apparent delay between the input spike causing the membrane potential to 

exceed the threshold, and the neuron firing, which is due to the short period used 

for testing. In order to complete the simulation quickly using the Quartus 

simulator, the parameters and clock speed were set so that the refractory period 

was very fast, and the spikes were fed in at rates far higher than a real neuron 

would encounter. The delay caused by the few states performed by the state 

machine between integrating the spike and firing would be a much smaller 

percentage of the spike-to-spike time if the neuron was used with biologically 

realistic input spike rates. 
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5.7.3: Inhibitory Input Test 

An important aspect of the neuron's functionality is the ability to assign a 

negative weight to an input to simulate an inhibitory synaptic response. To test 

this the second input was given a weight of -990 and spikes were inputted to both 

inputs simultaneously. The result of this test is shown in Figure 52. 

I 

Excitory and Inhibitory Inputs 

I I I 
I I I 

Time 

Output 

Excitory input 

Inhibitory input 

Accumulator 

Figure 52: Neuron response to excitory and inhibitory inputs 

Figure 52 shows that the first two spike pairs arrived at a time when the neuron 

was either checking inputs 3 or 4, or performing the decay function. This can be 

seen from the potential waveform, which shows that the excitory input was read 

first, raising the potential, followed shortly by the inhibitory input, which lowered 

the potential back to the resting level. In the third case the spikes appear to have 

arrived after the neuron checked input 1 but before it checked input 2. Referring to 

the state transition diagram in Figure 47, there are two states, DELIA and 

DELlB, in this interval. The waveform shows that the inhibitory input was read 

first, followed by the excitory input after a slightly longer delay than in the first 

cases, after the neuron had read inputs 3 and 4. 

This response shows a potential problem with this particular neuron design, as an 

inhibitory input that does not coincide with an excitory input will push the 
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simulated membrane potential below the resting level. The resting level detector 

simply detects whether the potential is within the correct range, and if it is not, the 

state machine makes assumptions about whether the potential is higher or lower 

than the resting level based on the operational phase (resting, firing, refractory 

period) it is currently simulating. If an inhibitory input causes the membrane 

potential to drop below the resting level during normal neural operation, the state 

machine will assume that the potential is above the resting level and will apply the 

decay function accordingly. If an excitory spike arrives in time, the lowered 

membrane potential will suppress its effect, but if no other spikes arrive within a 

suitable time period, the potential will decay all the way down to zero, and then 

continue past zero. Figure 53 shows the response of the neuron to a single 

inhibitory input with a weight of -500. 

Erroneous response to Inhibitory Input 

Output 

Input 

Accumulator 

Figure 53: Neuron responding incorrectly to inhibitory input 

The dashed line in Figure 53 represents zero potential, and it can be seen that the 

membrane potential crosses this line after decaying away from the resting level. 

The threshold comparator assumes that the membrane potential is an unsigned 

integer, but the repeated subtraction, even in an adder which is not explicitly built 

to use signed numbers, will eventually take the value past zero, making it 

negative, if expressed in 2' s complement notation. This negative number is also, if 
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interpreted as being unsigned, a very large positive number, which exceeds the 

threshold, and causes the neuron to fire incorrectly. 

There are various ways to correct this problem. If the resting level comparator 

could specify to the state machine whether the potential is above or below the 

resting level, the state machine could choose to either increase or decrease the 

potential to bring it back in range. This would allow an inhibitory input to have 

the desired effect without the problem described above, but would require extra 

logic and possibly an extra parameter defining the positive 'decay' slope. An 

alternative method is to prevent the potential being pushed below the resting 

potential at any time, though this would also prevent an inhibitory input from 

affecting any future excitory inputs. The effect of this on the operation of the 

neuron are shown in section 5.9, where a more complex neuron model is 

developed. 

5.7.4: Hardware Test 

The previous tests were performed entirely in simulation, using the simulator 

module of the Quartus software. The neuron model was also tested in real 

hardware, using an FPGA development board. Figure 54 shows a schematic view 

of the additional hardware connected to the FPGA to provide input pulses and to 

display the output. 

For this test, the setup parameters were loaded into the neuron from ROM when 

the system powered up. A pulse generator with variable frequency provided the 

input spikes, through a transistor buffer which matched the generator's output to 

the FPGA's 3.3V CMOS logic levels. The upper byte of the 16-bit membrane 

potential was connected through a simple 8-bit resistor-tree DAC to an 

oscilloscope, to provide a trace similar to those shown in the simulated tests. 
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Figure 54: RTL level translator and resistor-tree DAC 

In order for this to provide an accurate view, the resting level bounds were set to 

10000 and 10050, and the threshold was set to 30000, thus ensuring that the upper 

8 bits of the membrane potential would change significantly enough to show a 

detailed trace during the test. The weight for the input was 2000. 

The oscilloscope traces are shown in Figure 55. The upper trace is the output from 

the DAC and the lower trace is the input signal. 

Figure 55: Photograph of oscilloscope traces during neuron test 
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The slight decay of the potential is visible between the jumps caused by the input 

spikes, as is the refractory period during which the incoming spikes are ignored. 

5.7.5: Conclusion 

The neuron model has been shown to be capable of the functions for which it was 

designed, namely the leaky integration, threshold-based firing and refractory 

period simulation. The response matches the expected response, and the response 

of similar simple spiking neuron models [5.38]. 

The inhibitory input test demonstrated that the inhibitory function works but is 

flawed, the flaw arising from the simplified processing performed by the neuron 

model. Methods of correcting this flaw were proposed, but not implemented as 

this correction is addressed by the more complex neuron design of section 5.9. 

Further analysis of this design and its performance can be found in section 5.12. 
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5.8: An Experimental Neural Network 

In order to check the resource usage of this first neuron model, a simple network 

was built with sixteen neurons and a set of control hardware. The aim of this stage 

of the development was not to produce a working neural network with practical 

applications, but instead to investigate the basic infrastructure required to set up 

and control such a network. 

The neurons were implemented in parallel, which limits the number which can be 

fitted into the device. The neurons were found to use between 350 and 360 logic 

elements each, varying slightly across the set of 16, depending on the 

optimisations which the compiler could apply. Assuming 360 LEs per neuron, a 

total of 32 neurons could fit in the chip, so with just 16 neurons in the network, 

half of the chip's logic resources were left available for control logic. 

The network connections were chosen arbitrarily and a variety of different 

arrangements were implemented, showing little change in the logic usage of the 

neurons from one to another. A few of these arrangements are shown in Figure 56. 

Figure 56: Three examples of networks of 16 neurons 

The three networks shown represent stages in the conversion of the network from 

a four layer to a two layer network. The smaller circles represent the four inputs to 

the network, though the two layer network was also tried with 8 inputs, showing 

no significant change in resource usage other than the four extra pins. Note that 

only the four layer network can have full connectivity between the layers, as each 

neuron has only four inputs. The other networks were either wired randomly or so 

that neuron N in a layer takes input from the nearest four neurons in the previous 
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layer. The inputs to the top and bottom neurons in the three layer network 

represent feedback, where each neuron was fed by the four main network outputs. 

5.8.1: User Interface Hardware 

Since these neuron models do not use any of the FPGA's internal memory blocks, 

it was decided to make use of these to hold firmware which would provide a user 

interface, allowing the neuron parameters to be altered while the network is 

operating. 

The simple microprocessor described in chapter 4 was used to provide this 

interface. VGA display circuitry was used to output the results, initially providing 

a complete screen display, but later restricted to 32 x 32 character cells to save 

video memory. All RAM, ROM and video memory required by the system was 

implemented inside the FPGA. 

Figure 57 shows the overall layout of the system. The complete system used 63% 

of the 300K-gate FPGA's logic resources (7,259 LEs, or 189,000 gates) and 66% 

of its internal memory (98,560 bits total). 

16 neurons 

~ 

Parameter and control data 

CPU - CORE ·- Key ·~ - ~ 
board 

RAM - ~ 
VRAM --- VDUlXT 512 X 16 ~ - 1024 X 8 --. VGA 

t 
ROM FONT VGA_SYNC I -

4096 X 16 i.- 2048 X 8 

Figure 57: Block diagram of neural network control system 

The CPU is assisted by the block named CORE, which provides address decoding 

and input/output interfaces for the system. The original design used the D igilab 
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board' s four onboard switches for input, these were later replaced by a keyboard 

providing a more straightforward user interface. 

The memory map for the processor is shown in Table 13. 

Address (Hex) Function 
0000-1FFF ROM (4096 words) 
2000-3FFF RAM (512 words) 
4000-5FFF Neuron parameter write 
6000-?FFF Neuron readback 
8000-9FFF 1/0 ports 
A000-BFFF Video RAM (512 bytes) 
C000-DFFF Keyboard register 
E000-FFFF Unused 

Table 13: Memory map for network controller 

The 1/0 ports allow the processor to control the neurons, control the on-board 

LEDs, and read the switches. The keyboard register is read/write, and when a key 

is pressed this will contain the scan code of the key. When written to, the register 

is cleared, allowing the software to determine whether a new key code has arrived. 

This function is assisted by a state machine built into CORE which provides a 

bridge between the CPU and the keyboard receiver. The particular keyboard used 

was chosen because its default scan code set produces a single code for each key, 

whereas a standard PC keyboard will produce longer code sequences for some of 

the keys, complicating the interface. 

The neurons are accessed as write-only memory, with each one taking up 16 

words of the memory map. Of these, the first ten are implemented as described 

earlier. The neuron read-back port allows the membrane potential of any neuron in 

the network to be read, the original intention being that these values would be 

displayed on the screen to allow the network to be monitored. The read-back port 

was implemented as part of the network hardware but no use was made of it by 

the software during these initial tests. 

The video output provides 32 lines of 32 characters with a fixed character set. 

Each byte in the video memory corresponds to a single screen character cell. The 

video synchronisation block VGA_SYNC, along with the receiver for the 

keyboard, were adapted from the code provided with 'Rapid Prototyping of 
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Digital Systems' [5.44], the text accompanying Altera's University Program UPI 

and UP2 development boards. 

5.8.2: External Hardware 

Figure 58 shows the development board with the keyboard and VGA interface 

fitted. The VGA interface, visible at the top right hand corner of the picture, 

simply provides clamping diodes and pull-up resistors for the red, green and blue 

signals, and was based on the interfaces provided on other development boards in 

the Digilab series. The early versions of the firmware used the four buttons visible 

below the four digit display for input. 

·········· ·········· . : : : ·; ......... . 
::::: :: :::::::::· 

.::::: , :: :::::::::: .. :].:) :: ' :::::::::: 

Figure 58: Photograph of the Digilab system with keyboard and VGA interface 

5.8.3: User Interface Software 

The software allows the neurons' parameters to be changed in real-time. Initially, 

due to the limited input capability of the four switches, this was limited to simply 

selecting a parameter and incrementing or decrementing it. Various methods were 
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tried to allow direct number entry with the buttons, but eventually the keyboard 

was fitted to simplify matters. 

Using the arrow keys, a neuron (left/right) and a parameter (up/down) are selected 

and enter is pressed to update it. The parameter displayed the screen is blanked, 

and a new four digit number can be entered. Once the last digit is entered, the 

software returns to parameter selection mode, and the updated parameter is 

written to the correct register in the selected neuron. 

Figure 59: Photographs of the user interface displays 

5.8.4: Conclusion 

This experimental network, though not functionally useful, demonstrates the basic 

methods of building such a network using these neurons, and has allowed some 

degree of investigation into the hardware requirements for a control system 

capable of allowing the parameters of the neurons to be adjusted in real time. 

The network overall required 7259 LEs, of which 5641 were used by the 16 

neurons, averaging 352.56 LEs per neuron. 14 of the neurons used 352 LEs each, 

one used 354 and one used 359, though it is not clear why this difference should 

occur. The difference was in the number of LUT-only LEs, with all neurons 

having the same number of registers, and it is likely that the variation occurred as 

parts of the neuron logic were merged with other blocks of circuitry. 
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The processor and its supporting circuitry made up the remaining 1618 LEs in the 

device, and it is likely that this figure would increase slightly as the number of 

neurons increases, as the readback port is implemented by a multiplexer which 

would clearly require more logic cells if more inputs were required. This increase 

shouldn' t be significant compared with the number of LEs required by each new 

neuron. 

The target device, with 11,520 logic elements, could hold a network of around 28 

neurons with controlling hardware of this size. It is likely however that a network 

in which the neurons' parameters can be controlled in this way would be used 

with a controlling PC, and thus the controlling hardware would consist of some 

kind of PC interface whose job is simply to receive data from the PC and pass it 

on to the neurons' control buses. The display and keyboard interface, though 

useful in a standalone system like this, would not be required if the controlling 

logic was simply an interface to a host PC. 
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5.9: A More Flexible Neuron Model 

While the simple four-input neuron model covers the basics of neural 

functionality, it does suffer from a few limitations. The major limitation is the 

fixed set of four inputs, if fewer than four are required the neuron is 

overcomplicated, while if more than four are required the system must be rebuilt 

accordingly. 

If one or more input is not required when the neural network is built, it can be tied 

to ground and the compiler should optimise away much of the logic associated 

with it, but the state machine will still perform the extra integration states. This 

may not be a bad thing, as the rate of decay (in membrane potential units per 

clock cycle) programmed by a particular decay slope value will change if the 

number of states in the main loop is changed. A change in the main loop is 

unavoidable if more inputs are added, as these will each have to have their own 

integration states, in addition to the extra spike catchers and multiplexer inputs. 

A second neuron model was built to address some of these issues, the intention 

being to produce a more accurate model capable of more complex neural 

dynamics, while retaining some degree of compatibility with the first design. In 

order to build more flexibility into the neuron, a two-part design was used, with 

the synapses being separate from the neuron body. The outputs from the synapses 

are summed and fed to a single input on the neuron, which behaves as a leaky 

integrator with a threshold triggered firing function. The general layout of the 

design is shown in Figure 60. 

135 



----------------------------, Neuron Body 

Integrator Threshold 

Synaptic current , __ +C ---output 

Figure 60: Overview of second neuron model 

5.9.1: Neuron Body 

The core of the neuron provides a simplified simulation of the processes which 

take place at the axon hillock. The synaptic current, summed over all the 

synapses, arrives here and is integrated over time by a method similar to that used 

in the first neuron design. The adder used in the integration has a form of bounds

checking, so that in the event that its output is less than the resting potential, it 

outputs the resting potential instead, addressing one of the problems found earlier 

w ith the first design. With this modification to the adder a mostly inhibitory input 

from the synapses wi ll not push the membrane potential below the resting 

potential, but an inhibitory input coinciding with an excitory input wi ll reduce or 

suppress the effect on the membrane potential. 

A major change to the operation of this neuron is that the decay and refractory 

period slopes are no longer programmed in terms of the step change per cycle, but 

instead as the number of cycles required for a step change of one unit. This allows 

a much slower decay to be programmed, and also removes the requirement for the 

resting level comparator to have a wide detection window, as with a change of 

one unit each time it is guaranteed that the membrane potential will reach exactly 

the resting level without going past it. 

136 



-1 

+1 

PSP in 

0 
Accumulator 

Post-firing le-.el ----+------1.i 

Resting le-.el ------

Clock and control signals ----.i State Machine 

----Decay Period 

Time Counter 

---output 

----Refractory Period 

Figure 61: Block diagram of second neuron model 

Figure 61 shows a block diagram of the neuron model. This model is simpler than 

the first version, since there is only one input and the spike handling is done by 

the synapses. A state machine, clocked on the rising edge of the input clock, 

provides the control signals for three multiplexers, and receives input from a 

number of comparators in order to control the flow of states. The two registers, 

the accumulator and the time counter, are clocked on the negative edge of the 

clock and are clocked on every cycle regardless of the operation being performed. 

The accumulator is used, as before, to hold the simulated membrane potential, and 

is accompanied by an adder and a series of multiplexers. The input multiplexer 

selects a value to be added to the accumulator, either the incoming PSP, or the 

slope values for the decay and refractory period (-1, +1 respectively). 

The output from the adder feeds a bounds-checking block which ensures that the 

new input to the multiplexer cannot be lower than the resting potential. This can 

be bypassed by the accumulator' s input multiplexer to handle the refractory 

period correctly, where the membrane potential is expected to be lower than the 
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resting potential. This second multiplexer also allows the accumulator to be 

updated with the post-firing potential, or to be left unchanged. 

Two comparators are used to signal to the state machine that the membrane 

potential is at the resting potential or has exceeded the threshold. 

The time counter is a feature not present in the first neuron design, which counts 

state machine loop cycles, incrementing during any clock cycle in which its input 

multiplexer is set accordingly. During the refractory period, this is used to provide 

a delay between each increment of the accumulator, while during normal neuron 

operation it is used to ensure that the decay is performed once per N cycles of the 

main state machine loop, where N can be set along with the normal neuron 

parameters. A larger value ofN results in a slower decay. 

The same counter is used for both functions because the two functions can never 

overlap, as normal neural functions are suspended during the refractory period. 

This results in a saving in hardware. 

With just a single input to this neuron, the state machine required to control it is 

simpler than for the earlier design. The state transition diagram is shown in Figure 

62. 

Figure 62: State transition diagram for the second neuron model 
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As with earlier designs, after a reset signal is applied the neuron waits in an idle 

state until triggered by the GO signal. Waiting in this state allows the neuron's 

parameter data to be loaded without causing spurious neural outputs, and allows 

all neurons in a network to be started simultaneously with correct configurations. 

Once activated, the system passes through the ST ART state, which loads the post

firing potential into the accumulator and clears the time counter, preparing the 

neuron for the refractory period. 

State REFI activates the time counter, so that it advances one count per clock 

cycle. However, the state machine will remain in this state until the refractory 

period comparator indicates that the programmed delay has elapsed, at which 

point the state machine proceeds to state REF2. Here, the accumulator is 

incremented, and the synapse control outputs SYNC and SYN_CLR are pulsed. If 

the accumulator matches the resting potential, the refractory period is over and the 

neuron can proceed with processing, otherwise the state machine returns to state 

REFl. 

Under normal neural processing, the state machine runs a four state loop 

consisting of states INTEG, CLR, DEC_ CHK, and either DECAY or NOD EC, 

depending on the time counter's output. When in the INTEG (integrate) state, the 

incoming data is added to the accumulator, using the bounds-checked output of 

the adder, and a decision is made to proceed to either CLR if the neuron is not to 

fire, or FIRE if the threshold has been exceeded. 

The CLR state is used to generate a pulse on the SYNC output, which signals to 

the synapses that the PSP has been read. Once this has been done, the DEC_ CHK 

state is used to increment and check the time counter. If the decay period 

comparator indicates that enough cycles have elapsed, the next state will be the 

DECAY state, which decrements the accumulator and clears the time counter. 

Otherwise, the NODEC state is executed in place of DECAY, to ensure that the 

main loop always consists of four cycles. 

When the neuron fires, the state machine passes through the FIRE state, which 

generates an output pulse, then back to START to begin the refractory period. 

Only a reset signal will cause the neuron to return to the idle state. 
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5.9.2: Synapse Control 

Two control signals are produced by the neuron, SYNC and SYN CLR. The 

SYNC signal outputs a pulse for each integration cycle, telling the synapse that its 

output has been read. The SYN_ CLR signal pulses continuously during the 

refractory period, and can be used to clear the synapses so that incoming spikes 

are ignored during this time. For maximum flexibility, the SYNC output also 

pulses during the refractory period, so it is possible to continue with normal 

synapse operation during this period if it is required. 
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5.10: Synapse Design 

The synapses were designed to replicate the synaptic functionality described in 

[5.5], and inspired by previous work in spiking neuron modelling. [5.45, 5.46] 

5.10.1: Simple Synapse 

The simple synapse replicates the function of the inputs on the earlier neuron 

design. Incoming spikes are captured by a rising-edge triggered flip-flop, and the 

synapse outputs either zero or its weight value, until cleared by a reset input. 

Referring back to the neuron's synapse control outputs, this reset input would be 

connected to the SYNC signal rather than SYN_CLR, as the latter is only active 

during the refractory period. The SYNC signal pulses once for each integration 

cycle, ensuring that a synapse will provide an output for a single cycle only. 

The structure of the simple synapse is shown in Figure 63. 

Input Spike 
Catcher 

Reset----- 0 

---• Output 

Figure 63: Logic structure for the simple synapse design 

A problem encountered with this synapse design was that the synapses attached to 

a neuron will be reset every time the neuron passes through the CLR state, and so 

if a spike from another neuron arrives during this cycle it will be ignored. 

Assuming that the neurons in a network will have different weight and threshold 

parameters, it is inevitable that even though all neurons will start at the same time, 

triggered by the GO signal, they will not remain synchronised for long and 

occasionally a signal will be received by a synapse at the same time as the clear 

signal arrives. Initially the neuron was modified to issue the synapse reset signal 

only if the incoming PSP was not zero, so the synapses would only be cleared 

when necessary. However, this does not achieve the desired result, because all 
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synapses are cleared by the same signal and therefore if a single synapse is active, 

the others will also be cleared. This also causes a problem if an inhibitory synapse 

is triggered at the same time as an excitory one, and their weights sum to zero. In 

this case the neuron will not detect the incoming synaptic currents, and 

subsequently not issue the clear signal. The synapses will fail to respond to any 

subsequent input until another synapse is triggered and the sum of the PSPs 

becomes non-zero. 

In addition to this problem, this simplified 'one-shot' synapse design provides 

only a very basic simulation of the function of a synapse. Since the synapse is an 

electrochemical device which operates by controlling the flow of ions through the 

cell membrane, it will generally not deliver its output in the form of a single short 

pulse causing a step change in membrane potential, but instead as a longer pulse, 

which may, if conditions are correct, cause the neuron to produce an action 

potential after a short delay. 

In order to address these issues, a second, more complex synapse was designed. 
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5.10.2: More Complex Synapse 

The second synapse design allows full control of both the amplitude and duration 

of the post-synaptic response. While the first synapse design produces a one-cycle 

output pulse of amplitude A, this new design produces a stretched pulse of 

amplitude W over a period of L cycles. Ignoring the decay function in the neuron 

body, provided that A = WL, the effect on the neuron should be the same, but may 

be delayed depending on the value of L. However, it will be necessary to include 

some consideration of the decay function whenever L > I, as an elongated output 

pulse increases the chance of a decay cycle being executed during the PSP. If L=l 

and W=A the synapse produces the same output as the simpler version. 

Input 

SYNC input 

Spike 
Catcher 

SYNC 
Latch 

0 

State Machine 

Figure 64: Logic diagram of a more complex synapse 

r---• Output 

The logic structure of this new synapse design is shown in Figure 64. The spike 

catcher and output multiplexer from the original synapse are still present, with the 

addition of a synchronous counter to count the neuron's integration cycles and a 

simple state machine to control it. A duplicate of the spike catcher is used to catch 

the SYNC pulses, and hold them until the state machine has read them. Once read, 

the pulse is cleared, thus ensuring that the state machine does not inadvertently 

perform two counter increment cycles due to a slow sync pulse remaining active 

for too long. 

143 



It was discovered during testing of the neuron and synapse together that under 

some rare circumstances an incoming spike could coincide with the SYNC signal 

from the neuron in such a way that the synapse would clear its output just before 

the neuron performed an integration cycle. To correct this problem, the spike 

catcher was modified to consist of two stages, the first being a standard D-type 

flip-flop clocked by the rising edge of the spike, and the second being an extra 

flip-flop clocked by the falling edge of the SYNC input, through which the first 

flip-flop's output is fed. The spike catcher's output is therefore sampled on the 

falling edge of the SYNC pulses, delaying the synapse's response slightly but 

hence ensuring that the state machine does not clear the output signal too soon. 

The counter is built with synchronous logic, with a multiplexer to ensure that it is 

only updated when required. 

The two parameters, W and L, are supplied by a pair of registers which allow 

these parameters to be updated at run-time by external hardware. 

The state machine controlling the synapse is very simple, consisting of four states 

as shown in Figure 65. When a spike is received, the state machine enters a loop 

which increments the counter register once for each synchronising pulse received 

from the neuron, and then returns to a waiting state, resetting the spike catcher in 

the process. Since the output of the spike catcher controls the output multiplexer, 

the synapse will output its weight until the counter value reaches the L parameter 

value. 

No spike 

Counter= L Spike captured 

SYNC= 1 

SYNC= 0 

Counter"#- L 

Figure 65: State diagram for the synapse control state machine 
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With the synapses separated from the neuron, it is possible to adapt them 

individually to make the most efficient use of the hardware. The initial designs for 

the synapses and the neuron itself use 16-bit words for all parameters, but it is 

possible to use larger or smaller words if the application requires them. If a 

particular synapse in an evolved network is found to use values for W or L which 

can be represented in fewer than 16 bits, it can be replaced with a synapse design 

with narrower buses and registers, saving a handful of logic cells. Table 14 shows 

the logic cell requirements for the synapse, compiled for Altera's Apex 20KB 

FPGA series, with L and W ranging from 16 bits down to 10 bits. Both 

parameters were the same width in all cases. 

Width of L and W LEs 
16 84 
15 80 
14 75 
13 70 
12 66 
11 61 
10 56 

Table 14: Logic element usage for different parameter widths 
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5.11: A RAM-Based Neuron Design 

While some of the more advanced FPGAs include embedded hardware blocks 

designed to enable fast DSPs to be built efficiently, these blocks usually consist of 

multipliers or multiplier-accumulator units, intended for rapid implementation of 

digital filters. No multipliers are required by the current neuron designs, as the 

only functions used are addition, subtraction and Boolean logic. The output of the 

synapse can be thought of as a kind of multiplication, where the output is the 

weight multiplied by the synapse activity. However, as the synapse activity is 

either 1 or Oat present, the multiplication is implemented with a multiplexer. 

The other type of embedded hardware block present in most modern FPGAs, 

whether or not embedded DSP blocks are present, is the embedded memory block. 

These are useful when large amounts of memory are needed, and it is not practical 

or desirable to produce these using the logic elements. In this section a neuron 

design is presented which makes use of these embedded memory blocks to reduce 

its logic cell count compared with the previous model. 

Using flip-flop registers to store the neuron's parameters has both advantages and 

disadvantages. The advantages of such a design include the ability to read all 

parameters simultaneously and without interruption, and also an improvement in 

portability, since all VHDL compilers can handle inferred latches regardless of the 

target technology. The major disadvantage is the high logic cell count of such a 

design when used in an FPGA. 

This disadvantage can be reduced by replacing the registers with a single block of 

RAM, taking advantage of the FPGA's internal RAM cells. The Apex 20K series 

FPGAs contain a number of Embedded System Blocks (ESBs) which contain 

memory cells and can be configured as simple RAM or ROM, or more complex 

functions such as FIFO buffers. The 20K300E device used for the tests contains 

72 ESBs, each of which has 2048 bits of memory, which can be configured as 

2048 x I, 1024 x 2, 512 x 4,256 x 8 or 128 x 16 bit memory arrays. The neuron 

was redesigned to use one of these blocks instead of logic-cell registers for 

parameter storage. Figure 66 shows a block diagram of this new design. 
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Figure 66: Block diagram of the neuron model using RAM instead of registers 

It can be seen from the figure that the major change is that the parameters are 

replaced by a single signal, represented by R. This is the RAM's output data bus, 

and a series of additions to the state machine are used to produce an address 

which selects the parameter required at each state. There is also now only one 

comparator circuit in the timing block, as with the parameters being fed from a 

single source, the two comparators in the earlier design became identical. 

This design change also necessitated a small change in the operation of the 

neuron, as there is one state in the state machine for the previous neuron where 

two parameters are used simultaneously. The state machine was modified to check 

that the membrane potential hadn' t exceeded the threshold during the CLR state, 

rather than the INTEG state as was the case with the previous design. This was 

necessary because with RAM, as described above, only a single parameter can be 

accessed at any point in time, and the resting potential is required during the 

JNTEG state to ensure that the bounds checking in the input adder works 

correctly. 

The RAM block implemented for the neuron is oversized, by necessity, as five 

parameters are required. This leads to a requirement for the parameter address but 

to be 3 bits wide, resulting in an 8-word memory. There are therefore three unused 
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words of memory, and these are simply ignored by the hardware. In fact, the 

memory usage is less efficient still, as the ESB can implement only a single 

memory at any time. With 16-bit parameters, 80 bits are required in total, and 128 

bits are implemented, leaving 1920 of the 2048 bits unusable. It is possible that a 

future neuron design in which the synapses are incorporated back into the neuron 

would be able to use this extra memory for synapse weights, though the problems 

of multiplexing the various weights and other parameters as they are required may 

overcome the saving in logic cells from the use of the memory block rather than 

registers. However, some later FPGA types, notably the Stratix II type from 

Altera, have smaller memory blocks of 512 bits each, in larger quantities, and 

these could be used to make a more efficient use of the resources available. 

In order to retain compatibility with the previous, register-based neuron design, 

the RAM was implemented as dual-ported RAM, which in the Apex 20K series is 

not true dual-ported RAM with two completely independent bi-directional ports, 

but is a type of dual port RAM where one port is read-only and the other write

only. The write-only port resembles the register inputs as far as any controlling 

system is concerned, and the dual-ported operation allows the parameters to be 

updated in real-time without interrupting the operation of the neuron. 

Replacing the registers with RAM in this way reduced the neuron's logic element 

usage from 267 LEs to 157 LEs, a saving of 110 elements, or some 40%. It is 

clear that 80 of these LEs were saved by removing the 80 bits of storage, and a 

further 16 were saved by removing the redundant comparator in the timing circuit. 

The remainder are likely to have been those elements responsible for providing 

the input logic for the registers, a complex demultiplexer which allowed 

asynchronous updating of the parameters. 

We can see, therefore, that making use of em bedded features such as these can be 

useful in reducing the footprint of the neuron model. However, in the case of the 

synapses, it would not necessarily be a good idea to replace the registers with 

RAM, as there are a limited number of ESBs available, 72 in the EP20K300E 

device used for the development of the neurons. Assigning one of these per 

neuron is feasible, but in most cases there will be many times more synapses than 

neurons, so this would place a major restriction on the size of the network. Taking 

the example of the network cell discussed in the next sections, nine synapses are 
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used per neuron, which means that with ten memory blocks required in total for 

the cell, just seven cells could be implemented in the chip. 

5.12: Analysis of Designs & Conclusion 

The neuron model, like many logic designs, relies heavily on registers for storage 

of parameters and working values. These registers are produced in the VHDL 

code by inferred latches or flip-flops, and are implemented in the FPGA using the 

flip-flops present in the logic elements. As can be seen from Table 14, the logic 

element usage for the synapse design decreases as the bit width of the parameters 

decreases. The same is true for any design, as an N-bit wide register will require 

N logic elements, since there is only one flip-flop available in each logic element. 

In cases such as the accumulator in the neuron, the circuitry preceding the register 

can often be partially built into the same LEs, since most FPGA logic elements 

consist of some form of combinatorial logic feeding the flip-flop, and this 

explains the variable logic element usage found when testing different 

arrangements of neuron and synapse. Used alone, there will be no logic preceding 

each unit 's parameter registers, but when used as part of a larger system, there 

may be such logic present, which will result in a merging of units, and a slight 

variation in logic element usage. The element usage will tend to increase in steps 

as the arithmetic pathway width increases, due to the limited number of inputs to 

each LE. As an example, VHDL 'IF' statements such as IF X="0000000 0" 

are widely used in the neuron designs. The above statement will clearly generate a 

block of logic with eight inputs, which, assuming there is no merging of this 

function with surrounding circuitry, will require at least two logic elements. Using 

the Cascade Chains built in to the LEs allows the construction of this block 

without using extra cells to join the input cells together, and although there is 

some reduction in speed associated with these chains, in the same way as the 

ripple carry adder suffers from a speed reduction over more advanced types, the 

extra delay will generally be smaller than if several layers of logic elements were 

used, as the cascade signals do not pass through the signal routing channels which 

connect the logic cells. In the Altera Apex series FPGAs, up to ten logic elements 

can be chained efficiently in this way. 
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We can therefore see that the m1mmum logic element usage of a functional 

element such as a zero-detector or an adder will equal the bit-width of the element 

rounded up to the next multiple of four. The maximum usage of such a block will 

be one cell per bit, if its outputs feed a register, due to the previously discussed 

distribution of flip-flops in the FPGA. In practice, due to compiler optimisations 

which may have a cascading effect leading back from a seemingly unrelated 

register, the logic cell usage of any particular section of a large, complex logic 

circuit is often hard to determine before it is compiled. For example it was found 

in various tests involving not only the first neuron design but also the processor of 

chapter 4 that logic cell usage changed, sometimes significantly, when debugging 

outputs were fitted to the block to allow the internal registers to be read by 

external hardware. It appears that the compiler was merging the registers with 

other hardware when they were truly embedded, but had to implement them as 

register-only LEs with the debugging outputs present. 

Ultimately, it is the logic cell usage which determines the number of neurons 

which can fit into an FPGA. The FPGA used for most of the tests was an Altera 

Apex 20KE device, with 11,520 logic elements (LEs), so the original neuron 

design, using 400 cells, could be duplicated 28 times in one device. 

Table 15 shows the logic cell requirements and maximum operating frequency (as 

given by the Quartus compiler/fitter) for the neuron and synapse designs, along 

with parameters by which their performance can be compared. From this table it 

can be seen that a neuron with four inputs, similar to the early design, would 

require at least 509 LEs, excluding the circuitry required to sum the synapse 

outputs and to load the parameters. This reduces the number of neurons which can 

be implemented to 22 or fewer. 

A test network cell, consisting of a neuron body, nine synapses and the required 

control logic, was built to test the logic cell requirements. 1150 LEs were 

required, roughly a tenth of the capacity of the chip. 

150 



Device LEs Fmax(MHz) Clk/cycle Int (us) Fmax/LE lnf1 
/ LE 

First neuron desiQn 400 39.55 15 0.38 0.10 0.01 
Second neuron design 267 36.53 4 0.11 0.14 0.03 

RAM-based desion 173 29.58 4 0.14 0.17 0.04 
::,'ynapse 84 123.82 

RAM-based 4-i/p 509 29.58 
RAM-based 9-i/p 1150 29.58 

Table 15: Logic Element usage and operating speed of the neural elements 

The extra logic required for the network cell consists of an adder tree to connect 

the nine synapses to the neuron, and an address decoder to allow the synapses and 

the neuron to share the same data and address buses, allowing the cell to appear as 

a single block of memory to the host processor. The adder tree for 9 inputs was 

defined in the simplest possible way, allowing the compiler to determine the 

architecture. This required 128 logic cells when compiled alone, but in the 

completed test network the logic evidently merged with the surrounding circuitry, 

as the typical LE count was 112. The address decoder logic took up two of the 

network cell's LEs. 

We can see that a network cell requiring a tenth of the host device' s logic capacity 

will restrict the size of a network to just ten cells. In fact, if additional logic is 

required for control or VO purposes the network size will be restricted further. 

Methods of using the FPGA's resources more efficiently are therefore desirable if 

large networks are to be implemented in parallel. 

The reduction in maximum operating frequency from the first design to the 

second is interesting, and hard to explain. It is likely that the slight reduction from 

the original design to the second design is due to the addition of the bounds

checking in the accumulator update loop, though the addition of the time counter 

will play a part as it adds more logic with which the state machine must interact 

during the operation of the neuron. The subsequent larger reduction when the 

neuron was rebuilt with embedded RAM may be due to the additional 

interconnects necessary to connect the RAM block to the logic, as this is the only 

part that has changed significantly. 

In any case, the operating frequency is well beyond that which is required for 

biologically plausible firing rates, as is shown in section 5.17.1, where it is found 

that firing rates of around 2KHz can be obtained with a clock rate of 500KHz. It 

would be likely though that a higher clock frequency would be used, as this would 
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decrease latency, making the neuron respond more quickly to its inputs. Figure 

51, in section 5.7.2 shows a reason for wanting to do this, as it can be seen that the 

membrane potential lingered above the threshold for a short time before the 

neuron fired, as it took several clock cycles for the state machine to reach the 

threshold checking state. The second neuron design would have less of a problem 

here, as it performs fewer operations per integration cycle. 

The number of clock cycles required to perform a single integration cycle, and the 

resultant time required to do this if operating at the maximum operating 

frequency, are also given in Table 15, along with the area-time products, both in 

terms of clock speed against LE usage and number of integrations per second 

against LE usage. It can be seen that the RAM-based design, despite having the 

lowest operating frequency, scores highest on both counts, due to its small 

hardware size. The first neuron design scores poorly because of its large LE 

requirement, and also because of its relatively long integration cycle time. 

Comparing these neuron designs with other published designs yields mixed 

results. There are few other published designs with which a detailed comparison 

can be made, as most of the designs are either substantially more complex or are 

designed for time-multiplexed operation with the neuron acting as a custom 

processor. Comparing with the design in [5.38][5.39], where a 30 input neuron 

without learning uses 23 slices of a Xilinx XC2S200 device (equivalent to around 

46 LEs in an Apex device), we can see that the neuron designs presented in this 

chapter use much more hardware than this design, though this alternative design 

uses 9-bit data rather than 16-bit, holds the synapse weights in a RAM block, and 

uses hard-coded threshold, resting potential and post-firing potential values. It 

also requires 31 clock cycles to perform a time-step, and would require 5 cycles in 

the case of a 4-input version. The first neuron design presented in this chapter 

performs an integration cycle over four inputs in 15 clock cycles, while the second 

design requires 4 cycles regardless of the number of inputs. This means that the 

second neuron design presented in this thesis will have the advantage of a faster 

execution cycle when larger numbers of inputs are used. Furthermore the second 

neuron design presented in this thesis will operate at the same speed regardless of 

the number of inputs, and thus all neurons in a network will operate at the same 
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speed even if some have more synapses attached than others. It is also capable of 

performing more complex post-synaptic functions (such as the ' slow' PSP 

functions and the synapse-less operation) than the neuron described in [5.38], 

though clearly at the expense of a significantly higher resource usage. It is clear 

however that while some of this increase in resource usage stems from the wider 

data bus and accumulator, a good deal of the extra resources are used by the 

registers holding the parameters and the general purpose comparators used to 

perform bounds checking and threshold checking, as no compiler optimisations 

can be applied to these based on the number against which they are checking, 

since this is not known at compile-time. 

The neural network presented by Roggen et al. [5.36] uses neuron models which 

are simplified in the same manner, but much more so, with fewer bits to represent 

the membrane potential, hard-coded weights and threshold, and a simple 

refractory period of one cycle. The neuron is quoted as using 109 LEs of a similar 

FPGA when compiled standalone, or 90 LEs when compiled as part of the 

network, showing a variation due to compiler optimisations as described earlier in 

this section. The quoted fmax is 42MHz, with n+ 1 clock cycles required for an 

integration cycle over n inputs. Thus the area/time products can be calculated as 

for the new designs presented in this thesis. In terms of Fmax / LE usage, the 

score is 0.39, while the score in terms of integration cycles is 0.08 for 4 inputs, or 

0.01 for the 26 input version described. 

For 4 inputs, both of the scores are higher than the highest score achieved by 

either the first or second neuron designs presented here, due to the higher clock 

speed and much smaller size of Roggen's design. However, with 26 inputs the 

neuron scores lower when integration cycle speed is considered, as the number of 

clock cycles per integration cycle increases. By contrast the second of the designs 

presented in this chapter would achieve the same score regardless of the number 

of inputs. 

This neuron is much simpler than the designs presented in this chapter, mainly 

due to its smaller bus width, but also due to its hard-coded parameters, which 

remove many of the logic cells used as parameter memory. The result of these 

simplifications is clearly a loss of flexibility, as without adjustable parameters the 

response of the neurons cannot be altered at run-time. In the implementation 

described only the connections between the neurons can be reconfigured at run-
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time. As with the implementation in [5.38], the number of clock cycles required to 

perform one time step depends on the number of inputs to each neuron, as the 

input summation and the decay function are time-multiplexed. Both of these 

previous implementations demonstrate that this method saves hardware, as both 

are significantly smaller than the implementations presented in this chapter, 

though this method does also require that all neurons in the network are 

synchronised and processing is carried out in steps, whereas the new designs 

presented here are capable of working in real-time and completely 

unsynchronised, integrating all their inputs together without any extra clock 

cycles required as the number of inputs increases. The constant number of cycles 

required to perform one integration in the second of these new designs, 4 

compared with 27 or 31 for the designs described above means that although it 

has a lower maximum operating frequency, it can perform more integrations per 

second with a similar clock rate. The capability for unsynchronised operation 

brings the neuron model a step closer to an analogue implementation, which in 

turn is more biologically-realistic. 

It is clear, therefore, that the neuron models presented in this chapter compare 

favourably with other published designs in some ways, such as their flexibility 

and efficiency. The more complete second design and its RAM-based follow-up 

are capable of more than simple spiking operation, depending on how the 

synapses are programmed. They can also be used without synapses for additional, 

potentially useful modes of operation. It is also apparent that although the 

maximum operating speeds may be lower in these designs, they take fewer clock 

cycles to perform an integration cycle than designs which integrate their inputs in 

turn, and could therefore operate faster when used at the same clock speed. 

This efficiency and flexibility comes at the cost of greatly increased hardware 

usage, however. Much of this can be attributed to the extra hardware required to 

implement the extra functionality, and some of it can be attributed to the increased 

width of the accumulator and arithmetic hardware. 
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5.13: Learning Considerations 

The process by which a network can be trained was not investigated during this 

project, but would be a major future development. It is presently possible to adjust 

the parameters of the neural models in real-time through the control signals and 

data buses, so it will theoretically be possible for a learning system to be attached 

to the network without requiring any changes to be made to the neurons. The 

learning system would need access to the signals passing between the neurons, in 

order to determine which connections need to be strengthened or weakened by 

looking at the neurons' responses to their inputs. 

A common form of learning in spiking neural networks is Spike-Timing 

Dependant Plasticity [5.47][5.5], a correlation-based (Hebbian) learning system in 

which a synapse' s response is adjusted if there is a strong correlation between the 

activity of the presynaptic and postsynaptic neurons. The training patterns, input 

and output, are applied to the network so that the output neurons are forced to fire 

.in the desired output pattern, and the synaptic weights are strengthened where 

both the pre- and post-synaptic neurons fire. This type of learning is the most 

common type used with implementations of spiking neurons, as its time

dependence suits the time-dependant response of this type of neuron. 

There is usually a time window function, so that if the two neurons fire within a 

certain time of each other they are said to be firing together. If the presynaptic 

event occurs just before the postsynaptic event it is considered to have contributed 

to the firing and that particular synaptic connection is strengthened, and if the 

postsynaptic event leads the input it is considered to have had no effect and so the 

strength is reduced. [5.48][5.25] It is possible that a processor system attached to 

the network could read the activity of the neurons and make these adjustments to 

the weights in real-time. This is presently the only method by which learning can 

be implemented with these new neuron models, and any system which requires 

more low-level control of the synapses will require that the synapse model be 

rebuilt to incorporate the learning hardware. Such learning systems have been 

implemented in previous designs [5.38] but not in cases where the synapses are 

modelled separately from the neuron body. This area shows one of the advantages 
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of having all synapses built-in to the neuron and handled in turn, as in addition to 

enabling the same hardware to be used for all synapses, the same learning 

hardware can be used for all synapses. With the synapses modelled separately, as 

with the second of the designs presented in this chapter, there would have to be 

one 'learning unit' per synapse, resulting in a considerable increase in hardware 

even if the learning unit is not too complex. 

The learning unit itself will need the ability to modify the weight, and would 

therefore need a simple ALU, with just add and subtract functions. It would also 

need some kind of phase detector to detect the relative timing of the spikes, and a 

window generator - probably based on a counter - which enables the weight 

change only if the spikes are close enough in time. It would also have to have 

some method of disabling it, so that learning can be performed only when 

required. 

From these requirements only a few speculative values regarding the logic cell 

usage can be derived. It is clear that the ALU will require at least as many logic 

cells as there are bits in the weight register, though as the ALU is purely 

combinatorial and the weight register is purely a register, it is possible that the 

compiler might merge some or all of the logic elements. The window counter' s 

LE requirement will depend on how many bits are required, and the rest of the 

logic can't be estimated until it is designed. 

A potential issue with this type of learning system is that the second of the designs 

in this chapter is capable of implementing both fast and slow PSPs, and as such 

has two parameters stored in the synapse' s registers, both of which contribute to 

the overall effect on the membrane potential. The STOP-based learning would 

work for adjustments to the magnitude of the PSP, but not for changes to its 

length, as lengthening the PSP can make the neuron fire just as increasing the 

magnitude will, but will add a delay which would result in the neuron firing 

outside the time-window used in the learning process. The published designs 

which implement STDP with spiking neurons in FPGAs generally do not have the 

capability to modify the length of the PSP, so it is difficult to say how much more 

complex this would make the learning system. 
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This method would potentially have the advantage of allowing the neurons to 

learn by themselves, adjusting their own synaptic weights without requiring an 

external controller. It would also increase the size of each neuron and thus 

decrease the number of neurons which could fit into an FPGA. Assuming that the 

software for a controller in an embedded processor performs the same operations 

on each neuron and can therefore cope with any number of them without a 

significant increase in code size, the embedded processor option would be much 

more efficient in hardware usage for larger numbers of neurons. It would however 

have the disadvantage of slowing down as the number of neurons grows, whereas 

fitting the learning systems to each neuron individually would allow them to 

operate at the same speed regardless of the number of neurons present. 

Alternatively, it is possible to train the network off-line, in software simulation, 

and then load the parameters into the control registers when training is complete. 

In this case, however, the neuron models do not actually need to be built with 

RAM-like registers, as the parameters can be hard-coded into the VHDL and the 

network recompiled. This would almost certainly result in a reduction in the logic 

cell usage of each neuron, and would also result in a wide variation of logic cell 

usage from one to the next, as the compiler may be able to optimise the hardware 

differently depending on the bit patterns of the parameters. In addition any 

synapses which are not required could be removed from the VHDL rather than 

simply programmed into an inactive state. 

Implementation of learning algorithms was not a part of this project, but would be 

a major part of any follow-up project work. 
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5.14: Usage of the New Neuron Model 

In this section a series of examples are presented to demonstrate the set-up and 

operation of the second neuron model. 

5.14.1: Loading Parameter Data 

Since the neuron' s parameters are held in registers or RAM, the first step when 

the network is initialised is to load these values through the data bus. A short 'O' 

pulse on the reset line causes the neuron to enter a resting state, in which no 

processing occurs. The parameters are loaded as depicted in Figure 67, using the 

data and address buses and the CE and WR signals. These replicate the functions 

of the Chip Enable and Write pins on a static RAM device. 
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Figure 67: Quartus simulator view showing parameters being written to the registers 

The waveform view shows the process of loading the data for a simple test system 

with one neuron and two synapses. The active-low reset pulse can be seen at the 

left of the traces, with the leading edge of the GO pulse at the far right. 

The CE signal is set low to enable writing to the registers. This allows the use of a 

decoder to select one of the neurons in a network based on the upper bits of the 

address bus, though for a simple test system as depicted above, the three CE 

signals are brought out to individual pins. When WR goes low, the data will be 

written into the selected register or memory cell. 

The values shown in the waveforms for the data bus ('d' in the figure) are as 

follows: The neuron is set with a post-firing potential of 50, a threshold of 400 

and a resting level of 100. The timer settings for the decay and refractory period 

timers are IO and 5 respectively. 

The first synapse is set to have a weight of 100, delivered in a single cycle. The 

second synapse remains active for 50 cycles, and h~s a weight of -50. When a 
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negative weight W is required, the value written to the register should be 2N + W, 

where N is the bit-width of the neuron's accumulator and PSP input. For W = -50 

and a 16-bit neuron the required value is 65,486. 

5.14.2: Using the Neuron without Synapses 

Here the use of a neuron without synapses will be examined, where it will be seen 

to act as a basic input encoder. 

For normal neuron operation the neuron body will be accompanied by one or 

more synapses, but because these are not built in to the neuron it is possible to 

operate it without them and to feed an externally generated stimulation signal into 

the PSP input. If this is held constant, it will be added to the accumulator on every 

cycle of the main loop ( 4 clock cycles) and, if it is large enough to overcome the 

decay, will cause the neuron to fire after a certain number of cycles. Since the 

neuron integrates its input until the threshold is exceeded, it is clear that a larger 

number fed in to this input will trigger firing after fewer clock cycles than a 

smaller number, thus increasing the firing rate of the neuron. The neuron is 

therefore acting as a basic magnitude to frequency converter, and can be used to 

encode an input stimulus, perhaps from a sensor, as a spike train of varying 

frequency. 
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Figure 68: Output pulse train and stimulation for an input neuron 
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Figure 68 shows the neuron's response to a gradually increasing input value. The 

input word started at 1 and increased by 2 each time the neuron fired, allowing the 

number of clock cycles between firings to be measured and the firing frequency to 

be calculated. The curvature of the input signal is caused by its increments being 

synchronised with the gradually increasing frequency of the output pulses so that 

the input is incremented each time the neuron fires. 
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Figure 69: Neuron firing frequency against stimulation input 

Figure 69 shows the form of the firing frequency change as the stimulation current 

(represented by the binary word supplied to the PSP input) changes. Since the 

magnitude of the input affects the firing period, the curve has a logarithmic form, 

as found from the analysis of the integrate-and-fire model in section 5.4.1. The 

form of this response is more important than the actual values, which are 

expressed in kilohertz in the figure. These values will depend on the settings of 

the threshold and resting potential, the decay timing, and the clock frequency 

supplied to the neuron, but the shape of the curve will be consistent for any 

configuration. This curve shape has been previously demonstrated in existing 

analogue neuron models [5.45]. 
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An interesting point to note is the apparent quantisation of the frequency, and also 

the reduction in accuracy as the input word increases. This is due to the constant 

time interval between integration cycles in the neuron, and the fact that the neuron 

will fire in a particular cycle if the threshold has been exceeded at all, regardless 

of how far over the threshold the membrane potential has gone. 

As an example, it can be seen from the graph that an increase in the frequency 

occurs at a stimulation value of around 150. As the input changes from 149 to 

151, the frequency increases, but the change to 153 does not produce a change. 

This is because at an input of 149 the threshold was exceeded in a certain number, 

N, of integration cycles, where in cycle N-1 the membrane potential just failed to 

reach the threshold. However, when the input word increased to 151, the increase 

in potential on each cycle was enough to exceed the threshold in cycle N-1, 

reducing the firing period by one integration cycle. When the input increased to 

153, however, the increase in the membrane potential on each cycle was enough 

to exceed the threshold by a slightly larger amount in N-1 cycles, but not quite 

enough to exceed it in N-2 cycles. 

The resting level will usually be greater than zero, to allow for the refractory 

function, and the threshold will be lower than the maximum value which can be 

represented with the chosen accumulator width, to allow the membrane potential 

to exceed the threshold without exceeding the limits of the accumulator. 

Therefore, the difference between the two will be smaller than the maximum 

possible value of the input word. This implies that there will be a value of input 

word which, when added to the accumulator during at the start of the integration 

cycle, will cause it to exceed the threshold immediately. Once this input value is 

reached, the neuron will fire at a rate determined by the length of its refractory 

period, and any further increase in input value will not increase the firing rate. 

The parameters given to the neuron during the tests typically put the threshold at 

3000 and the resting potential at 1000, so an input word of 2001 will cause the 

potential to exceed the threshold on the first cycle. 

If the input word increases further, it will eventually reach a point where the sum 

of the resting potential and the input word exceeds the capability of the 

accumulator, with the result being truncated. With a 16-bit accumulator and a 

resting potential of 1000 as described above, when the input word reaches 64,536 
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the limit of the accumulator will be exceeded and the resulting potential in the 

accumulator will be zero. The second integration cycle will then result in a 

potential value of 64,536, and the neuron will fire. Since the neuron now takes 

two integration cycles to fire, the firing rate bas decreased. 

While in practical networks it is likely that the erratic behaviour for large input 

numbers could be a problem, this section has demonstrated that the neuron 

without synapses can be used as an input encoding device. 

5.14.3: Single Synapse Operation 

When using a single synapse, the neuron and the synapse can be connected 

directly together. The schematic view of this connection, as shown by the Quartus 

II schematic editor, is shown in Figure 70. This schematic shows two types of 

parameter entry, with the synapse taking its two parameters through two 16-bit 

input buses, L and W, and the neuron having a single data input through which all 

parameters are loaded, and an address input to control this. If both units are of the 

type with address and data inputs, as shown in Figure 71, an additional address 

decoder is required which can map the units ' individual address spaces into a 

single continuous address space. 
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Figure 70: Quartos symbol layout for a single synapse test system 

Another item to note about Figure 70 is that most of the signals passed between 

the neurons have pins attached for testing, allowing the internal operation of the 
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neuron and the circuit as a whole to be measured. A practical network would not 

have taps on the synapse control lines, and would use a version of the neuron 

without the T output. This is connected to the time counter and is only used for 

debugging. It is almost certain, however, that the P (membrane potential) output 

would be present in such a system, along with the PSP input to each neuron. 

These would be connected through a series of multiplexers to a single output 

channel, which would allow the simulated potentials present in any neuron to be 

displayed graphically. It was found during the course of the designs that adding 

these extra readouts would tend to increase the logic size of the neuron, as 

registers which were otherwise optimised away by the compiler were forced to 

exist as coded, to allow their contents to be read out easily. 

When using the more complex synapse, the neuron's SYN_CLR (Synapse Clear) 

and SYNC outputs connect to the RESET and SYNC inputs on the synapse. 

5.14.4: Operation with more than one synapse 

:_., ______________ _ 

Figure 71: Extract from schematic showing a neuron with two synapses 

If the neuron is used with more than one synapse, an extra element is required 

between the synapses and the neuron in order to add the synapse outputs. There is 

no limit to the number of synapses which can be attached to a neuron, although 

care must be taken to ensure that the sum of all the synapse weights, which could 

be produced if all excitory synapses are triggered simultaneously, can never 

exceed the maximum number which can be transmitted through the PSP bus to the 

neuron. 
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5.15: Testing the Second Neuron Model 

A series of tests were carried out using the system with two synapses shown in 

Figure 71. These, as in the case of the first neuron model, were carried out using 

the Quartus simulator. 

5.15.1: Simple Excitory Tests 

To test the basic functionality of the neuron, a number of input spikes were fed to 

an excitory input in order to make the neuron fire. The weight of the input was set 

to 250, and the resting and threshold potentials to 250 and 750 respectively. These 

are a quarter of the values applied to the first neuron when it was tested in section 

5.7, the reason for this being that the maximum decay slope available with this 

design is a decrease of 1 per integration cycle, whereas the first neuron design 

could apply a much sharper decay. This new neuron will therefore require many 

more clock cycles to allow the membrane potential to decay between any two 

values than were required by the previous design with similar values, so to reduce 

the amount of data which had to be handled during testing the potentials were 

scaled to restrict them to a smaller range. 

The tests performed here were similar to those performed with the first design, 

with the resting potential, threshold and synaptic weight set up to ensure that three 

spikes entered in a rapid enough sequence would result in the neuron firing. 

The simulated result of this first test is shown in Figure 72, where three spikes 

inputted 200us apart cause the membrane potential to exceed the threshold. For 

this test the decay system was set to produce a decay of 1 unit per IO integration 

cycles. 
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3 Spikes cause the neuron to fire 
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Figure 72: 3 spikes inputted to the second neuron design causing it to fire 

This response shows that the neuron functions as the first version, with the 

integration, decay, threshold firing and refractory period parts of the response 

working correctly. 

In the second stage of the test, the decay value is set to produce a decay of I unit 

on each integration cycle, thus making the decay ten times as fast as in the first 

stage. The three spikes are fed in at 200us intervals again, with the expectation 

being that the more aggressive decay would reduce the membrane potential 

sufficiently quickly after each spike that the three spikes would not be sufficient 

to exceed the threshold. Figure 73 shows the result of this test. 
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3 Spikes fail to trigger the neuron 
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Figure 73: A faster decay prevents the spikes from causing the neuron to fire. 

It can be clearly seen that the faster decay returned the membrane potential to the 

resting potential after each spike, long before the subsequent spike arrived. As 

with the first neuron design this prevented the neuron from firing. 

Keeping the same decay setting, the period of the spike train was reduced, with 

the spikes arriving at 50us intervals in the third test. Figure 74 shows the result of 

this test, with the same timescale as the previous two results to show the faster 

spike train. 
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Figure 74: A faster spike train overcomes the faster decay and causes the neuron to fire. 
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It is clear that the faster spike train results in the membrane potential increasing in 

steps before it has been able to reach the resting potential, eventually reaching the 

threshold as was the case with the less aggressive decay in the first test. 

Input spike ignored during refractory period 
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Figure 75: Input spike ignored during refractory period 
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As an additional test, the weight on the synapse was increased to 600, allowing a 

single spike to trigger the neuron to fire. Two spikes were then sent in rapid 

succession to verify that the neuron ignored the second spike, which arrived 

during the refractory period. Figure 75 shows the result of this test, demonstrating 

that the second spike had no effect on the membrane potential. 

5.15.2: Inhibitory Response 

Inhibitory inputs were also tested, with one synapse set to have a negative weight. 

Figure 76 shows the result of applying an inhibitory input some time after an 

excitory input. The membrane potential, increased by the excitory input, is 

reduced by the inhibitory input as expected. Although both inputs have a weight 

of l 00, the inhibitory input delivers this as 10 cycles with a weight of -10 rather 

than a single cycle, so the decrease in the membrane potential due to this is more 

gradual than the increase due to the first spike. 
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Excitory and Inhibitory Inputs 

I 
l 

n r 
Time 

Excitory 

Inhibitory 

Potential 

Figure 76: Membrane potential response to excitory and inhibitory inputs 

This response shows that in inhibitory input can be used to make the neuron less 

likely to fire, as it can cancel all or part of the membrane potential increase from 

previous excitory inputs. It also demonstrates that the bounds-checking logic is 

functioning correctly, as the membrane potential did not fall below the resting 

potential. The second PSP exerted a change of -100 on the potential, but the effect 

of the decay function meant that the potential was less than 100 above the resting 

potential when this PSP began. 
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5.15.3: Slow PSP Response 

The simple response of the previous tests, where the input spikes each cause a 

sharp increase in the membrane potential, was the only type of response which 

could be modelled with the first neuron design. However, this second 

implementation with its more complex synapses can also model some more 

complex behaviour, simply by changing the form of the post-synaptic response. In 

the above test, the synapse was set to deliver its weight in the form of a single

cycle pulse but as it is possible to extend this output pulse, the synapse could 

deliver its weight as a longer pulse of lower intensity, delivering the same effect 

but over a longer period. Figure 77 shows the result of applying a single input 

spike to an input programmed with this type of response. 

Single Slow PSP Response 
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Figure 77: Delayed firing with a slow PSP 
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The overall weight, the product of the length and amplitude of the pulse, is 

sufficient that if delivered in a single cycle, it would exceed the threshold 

immediately and the neuron would fire as soon as it had integrated the input. With 

a longer pulse of lower intensity the membrane potential has to build up gradually 

until the threshold is exceeded. The firing is therefore delayed. 
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A second similar test was performed with both inputs set to provide a slow 

response, triggered so that their outputs would overlap. The resulting waveforms 

are shown in Figure 78. 

Slow PSPs cause a delayed firing 
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Figure 78: Two overlapping slow PSPs and their effect on the membrane potential 

As expected, the rate of change of the membrane potential increased after the 

second input pulse, then decreased again once the first pulse ended. Each synapse 

had a weight of 2 and a pulse length of 200, which results in a total delivered 

effect of +200 on the membrane potential, although at the end of the pulse the 

actual increase in the potential will be less than 200, since several decay cycles are 

executed while the synapse's output is active. 

For comparison with earlier tests, the neuron was set up in the same way as the 

first of the excitory tests, as shown in Figure 72, but with the W and L parameters 

reversed so that instead of a single-cycle PSP of +250 it delivers a PSP of 

magnitude + 1 over 250 cycles. The result of this was that the neuron fired after 3 

spikes as before, but with an additional delay, as shown in Figure 79. 
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3 slow PSPs cause a delayed firing 
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Figure 79: Repeat of the simple excitory test with slow PSPs 

Figure 80 shows a comparison of the effect on the membrane potential of two 

forms of post-synaptic potential (PSP) which can be delivered by the synapses. A 

'fast' PSP is one which delivers its weight as a short pulse of high amplitude, 

while a 'slow' PSP delivers the same overall effect but over a longer period. With 

sufficient precision in the parameters, a wide range of different types of PSP is 

available, ranging from one extreme to the other. For this test, the fast synapse 

had a weight of 200 and a pulse length of 1, while the slow synapse had a weight 

of 2 and a pulse length of 100. It can be seen from the diagram that the membrane 

potential after the length of time required for the slow PSP to finish had elapsed 

was the same in both cases, as in both cases the decay cycles were executed at the 

same times. The slope of the membrane potential driven by the slow PSP is 

therefore not constant, as when a decay cycle is executed the potential decreases 

slightly. Although the two responses eventually reach the same point, the fast PSP 

causes a response which peaks at a higher value. This means that if the threshold 

was set low enough, a fast PSP could cause the neuron to fire, while a slow PSP 

delivering the same overall effect would not. The slow PSP would therefore have 

to have a slightly greater weight. 

This effect only applies, however, if the decay period is relatively short compared 

with the length of the PSPs. In all the tests which were carried out on this test 

system, the decay period was set to 10, so the membrane potential will decrease 

by 1 every 10 integration cycles. 
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Comparison of two types of PSP 

350 -,------------------------, 

300 

cii 
~ 250 
s 
~ 200 
a, 

! 150 
.a 

~ 100 
:I: 

50 

'Fast' PSP 

'Slow' PSP 

0-'-'----------------------~ 
Time 

Figure 80: Comparison of the effects of fast and slow PSPs 

5.15.4: Conclusion 

The tests presented in this section have verified that the second neuron model can 

perform the same functions as the earlier model, leaky integration, threshold

based firing and refractoriness. It has also been shown that this more complex 

neuron model is capable of exhibiting dynamics which were not possible with the 

earlier simpler model, by extending the length of the PSP from the synapse. It has 

also been shown that this model does not suffer from the probl.ems associated with 

the inhibitory synapse response which caused the earlier model to fire after a 

single inhibitory input. 
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5.16: Operation as part of a network 

The neurons in a neural network can be arranged and connected in a variety of 

different ways. The number of synapses required for each neuron may depend on 

both the size and the form of the network. In a fully-connected network, each 

neuron will take input from all other neurons, and may also require an input 

channel from outside the network. This will require a large number of synapses 

per neuron, and for large networks there will be a large quantity of 

interconnections between neurons to take into account. Such a network can be 

programmed to behave as any type of less fully connected network, such as those 

depicted in Figure 81, since any connection present in these simpler networks will 

be present in a fully-connected one. 

0-0 re~erns an 
Figure 81: Nearest-neighbour and three-layer feedforward networks 

A biological brain will generally not be fully-connected, as the neurons can only 

take input from the immediately adjacent neurons with which they make physical 

contact. There may be small clusters of neurons which are fully connected within 

the cluster, but in a large brain such as that of a human, there will not be any 

neurons which take synaptic input from all others in the brain. However, as the 

biological neuron is an electrochemical device, the levels of hormones and stray 

neurotransmitters can modify the neural response over a large section of the brain 

by interfering with the operation of the synapses [5.49]. 
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The layered network as shown in Figure 81 (right) is of a topology commonly 

used with simpler networks of steady-state neurons, such as threshold logic units , 

where an input signal is presented to the first layer, and the result read from the 

output layer once the network has stabilised. These networks are often used for 

pattern recognition or classification, or for more complex functions such as data 

transformation [5.33]. 

Networks with neurons connected in a regular lattice arrangement as shown in 

Figure 81 (left) are more often used for experimentation, though they have been 

demonstrated in control applications (5.36]. These networks, employing large 

amounts of connectivity and feedback between neurons, are used more often with 

spiking neurons than TL Us. 

A particular class of network, the small-world network [5.50], is one in which 

there is less than full connectivity between nodes, but a signal can travel from any 

node to any other node in a relatively small number of steps. For a neural 

network, this is of course dependant on the willingness of the intermediate nodes 

to pass the signal. 
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5.17: Small Network Testing 

It is well known that groups of neurons can produce oscillatory behaviour, on both 

large and small scales. [5.51] On the large scale, the 'brain waves' associated with 

the different levels or states of consciousness have been widely studied, and large

scale oscillatory networks are thought to be responsible for tremor-based disorders 

of the nervous systems [5.52]. On the small scale, groups of neurons known as 

Central Pattern Generators (CPGs) have been identified in animal nervous tissue, 

and it is these CPGs that are responsible for many types of repetitive motor 

functions such as peristalsis in the digestive system or the beating of the heart. 

[5.53] The latter is a function which is performed constantly, while the former is 

performed on demand, controlled by inputs from the rest of the nervous system 

but sequenced by the oscillations within the CPO. On a more complex scale it has 

been determined that some aquatic animals' swim patterns are controlled by these 

networks, with the oscillation arising from synaptic interactions between the 

neurons. 

The feedback provided by the connections between the neurons has been shown to 

be one of the mechanisms by which real CPGs oscillate [5.54], and in [5.55] it is 

shown that the network will settle into a repeating pattern, which can be perturbed 

by external inputs, though many CPGs are quite stable and will return to their 

natural firing pattern quickly once external stimulation is removed. 

CPGs in many animals can be quite small, often with a few tens of neurons and 

the behaviour of these has been studied and even replicated with analogue 

artificial neurons. [5.55] 

An experimental system was constructed using the second neuron model to 

determine whether this oscillatory behaviour could be replicated using such a 

simplified model. The first of the neuron designs is not suitable for this 

experiment, as it lacks the capacity to produce a time-delayed response, having 

only a simple instant-action synaptic model. This would result in all the connected 

neurons firing almost simultaneously and subsequently entering their refractory 

periods, and thus ignoring feedback from each other. 

The overall aim of the tests is to replicate the oscillatory behaviour of the CPGs 

discussed above in a network of simplified artificial neurons. The first aim is to 
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determine whether simple oscillatory behaviour can be obtained, then 

subsequently to determine whether perturbing the network with extra input signals 

would result in a change to the pattern of oscillation, and whether the network 

would return to a stable state. 

5.17.1: Network Layout 

The lobster's stomatogastric CPGs studied in [5.55] typically contain 25 neurons, 

but due to the limited space in the target FPGA, a smaller network of 9 neurons 

was used. These were connected as a 3 x 3 grid, with each node taking input from 

its neighbours, and the edges connecting to their opposites, e.g. a toroidal 

network. It can be seen that in the case of a 9 neuron network such as this there is 

full connectivity, as each neuron takes input from 8 others, but if the network 

were larger the nearest-neighbour connections would not be sufficient for full 

connectivity. Thus the 3 x 3 network can, by disabling particular synapses, be 

made to resemble any smaller network. A schematic view of this network is 

shown in Figure 81 (left). The number of neurons was chosen due to the 

limitations on the number which would fit into the chip, while the 3 x 3 layout 

was chosen as the most logical way of arranging 9 neurons. 

Each neuron was provided with 9 synapses, and while in most cases the extra 

synaptic inputs were unused, two of the neurons were connected to push buttons 

so that extra stimulation could be provided. 

The nine spike outputs from the network were connected through pulse extenders 

to a PC for data logging. The pulse extenders work in a manner similar to the 

synapse models, but with a single-bit output and a hard-coded pulse length of 16 

cycles. These are provided purely to prevent the PC missing any spikes due to 

their short duration, and also to allow the network activity to be displayed 

visually. For basic visual testing, the network's outputs were displayed on a VGA 

monitor, as a grid of green blocks which flashed red when the corresponding 

neuron fired. This, however, required that the network was made to run much 

more slowly than normal, and in fact firing rates of around 1 Hz were obtained, by 

running the neuron models with a clock of 250Hz. Since for any given set of 

parameters, the firing rate increases in direct proportion with the clock rate, this 

implies that with the same parameter settings, biologically plausible firing rates of 
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around 2KHz could be obtained with a clock rate of just 500KHz, though it is 

likely that a practical network would run with a higher clock rate and parameters 

adjusted to obtain a much larger range of membrane potential values during 

normal operation, allowing more precision in the sub-threshold dynamics. 

Initially, all neurons were set up with the same parameters, with the horizontal 

and vertical links being the only active ones, the others having weights of zero. To 

ensure feedback, the weights were set up so that a single spike inputted to any 

neuron would cause it to fire after a short delay, with a low intensity but 

temporally stretched PSP from each synapse. 

5.17.2: Single Stimulus Response 

When the centre neuron was stimulated, the network settled into a steady firing 

pattern, with each neuron being re-triggered once its neighbours fired. This was 

made possible because of the delayed response from the slow PSP, which meant 

that the first neuron would have finished its refractory period before the others 

fired. When another stimulus was applied the network entered a brief period of 

instability, with no discernable repeating pattern, and then settled into a new 

pattern. 

Figure 82 shows a sample firing chart for a short duration run of this network. 

Each neuron is represented by a row in the chart, with the black bars representing 

the output spikes. It can be clearly seen that the delay after the first spike is much 

longer than the subsequent firing periods, this is due to the number of inputs 

contributing to the firing in each case. 
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Figure 82: Firing chart for a simple network 
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The first output spike from the centre neuron (5) triggers the four orthogonally

adjacent neurons (2, 4, 6, 8), but through a single synapse on each one. When 

these fire, they retrigger the centre neuron through four of its inputs, resulting in 

the membrane potential exceeding the threshold in approximately a quarter of the 

time. These four neurons also stimulate the four comer neurons (I , 3, 7, 9), but 

only through two synapses each, resulting in a longer delay before they fire. The 

network then settles into a steady periodic behaviour. 
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5.17.3: Multiple Stimulus Response 

Figure 83: Firing pattern with additional stimulation indicated by the grey bars 

Figure 83 shows the result of applying additional stimulation to the network once 

it was in a stable firing pattern. The left-hand grey line shows the point at which 

neuron 1 (lowest trace) was stimulated by an external input, causing it to fire 

early, upsetting the pattern. The period between the two grey lines shows a small 

degree of variation in the firing pattern, but after the right-hand line the network 

has settled into a regular but different sequence, and the pattern is periodic again. 

It was observed that when the threshold values were the same for all neurons, the 

pattern resulting from the initial stimulation was always the one shown in Figure 

82. If a single threshold was increased or decreased by a small amount, the pattern 

was found to be generally similar, but with the changed neuron firing slightly out 

of step with the others. 

The system can be seen to have a number of different periodic orbits, 

characteristic of the dynamics of a nonlinear system [5.56], with the stimulation 

causing it to switch between orbits. 

5.17.4: Complex Dynamics 

When the thresholds for the neurons were all different, but spaced regularly, the 

network would fall into a repeating pattern of somewhat greater complexity, and 

would take a longer time after the initial stimulation to do so. Until the network 

reached the stable point, it would fire in a chaotic and unpredictable way, though 

since the neurons themselves are predictable units, the pattern will be the same on 

each run, if starting from a resting state in each case. 

179 



Figure 84: Part of an unstable network's firing pattern 

An example of an unstable network's firing sequence is shown in Figure 84. In 

this case, all the synapses were set up to produce 'slow' PSPs which delivered a 

change in the membrane potential greater than the threshold, so that the neurons 

were guaranteed to fire within a relatively short number of integration cycles. A 

lower threshold, or stimulation from more than one input, would produce a shorter 

firing delay. All the neurons were set up with randomly chosen different threshold 

values, and it can be seen from the firing sequence that no neuron was firing at a 

constant rate throughout the whole period. 

It was found to be hard to determine whether a network firing in this way was 

actually firing chaotically, or whether it was simply producing a repeating pattern 

with a very long period of repetition. The visual display made it easy to spot 

short-period repetition, and some medium-period repetition could be seen in the 

firing plots obtained from the data logger, but to find long period repetition would 

require more complex techniques, which were not investigated. Chaotic dynamics 

have been shown to exist in neural systems, both in real neurons [5 .57] and in 

complex neuron models [5.58] and it appears from the response of this network 

that chaotic dynamics can be achieved with greatly simplified models too. 

5.17.5: Analysis 

It is clear that if CPGs are the controlling element in cyclic processes such as 

locomotion and digestion, the output pattern produced by the CPG can be 

perturbed by incoming neural signals and made to change. Examples of this are 

found in animals with simpler neural structures, such as the tadpole [5.54], in 

which it is clear that the neural circuits responsible for the swimming motion must 

be able to change their output or the tadpole would not be able to change its 

direction of travel. We have seen that the experimental network, when set up to 

produce a stable oscillation, can be made to change its pattern, both temporarily 
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and permanently, by external stimulation. This stimulation could come in the form 

of additional spikes fed into the network from outside, as was seen in section 

5 .15 .3, or in the form of modifications to the weights or thresholds, as was shown 

in section 5.15.4. This latter case would be a result of chemical changes to the 

neurons' operating environment. [5.49] 

Although the real neural CPGs are more complex in their interconnections, and 

more complex in terms of individual neurons' dynamics, this experiment has 

shown that the neuron model is capable, when working as part of a network, of 

performing functions similar to those observed in real neural circuits.[5.55] It has 

not yet been determined whether this network of neuron models can replicate 

exactly the measured behaviour of a real CPG, or whether the output is actually 

chaotic, but the network was shown to produce complex dynamics with a number 

of periodic orbits, making the transition between these orbits when stimulated by 

external inputs, in a manner very similar to that of the simple biological CPGs of 

animals such as the tadpole or lobster. It has also been seen that the dynamics 

produced would not be possible using the simpler first neuron model of section 

5.6, as the more sophisticated time-dependant response of the second neuron 

model is required for these dynamics to occur. 
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5.18: Some Functional Elements Built With Neurons 

It has been demonstrated that logic functions ranging from simple AND, OR or 

XOR gates to adders and multipliers can be realised with threshold logic units by 

careful choice of the weights on the inputs. [5.59], [5.60] These threshold units, as 

was discussed in section 5.3.1, respond to steady-state inputs, with the output 

potentially only settling when the inputs are stable. In this respect they are 

functionally similar to the combinatorial logic functions which have been 

implemented in them. Most of the published work on using neurons or 

neuromorphic hardware to design logic hardware has focused on threshold units, 

though some work has been done in using spiking neurons for logic circuits 

[5.61], though this was done with analogue VLSI neurons rather than digital ones. 

A driving factor behind this use of neurons rather than traditional hardware is the 

discovery that some functions require less hardware when implemented in this 

way In the case of adders and multipliers, it was found that the hardware 

requirements grow less quickly than with traditional methods as the size of the 

input word increases. [5.59] 

The following neural circuits were intended to be simple test circuits to 

demonstrate the flexibility of the neuron model. The experiments presented in the 

previous section have shown that it is possible to obtain complex and interesting 

behaviours from a network by simply altering the parameters. The aim of the tests 

in this section is to demonstrate that certain behaviours can be tailor-made by 

setting up the network specifically according to a design, rather than by any 

process of evolution. 

The circuits presented in this section are purely speculative, but as they are very 

simple it is not unlikely that a large evolved neural network could contain circuits 

similar to these. 

5.18.1: Simple Logic Gates 

The easiest type of logic gate to implement with these spiking neuron models is 

the OR gate, as it is possible to set up a neuron with sensitive inputs so that a 

single spike inputted to either input will cause the neuron to fire. An AND 

function is much more difficult, as although it is possible to reduce the weights so 
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that the neuron will only fire when both inputs receive a spike simultaneously, the 

same effect can be produced by simply increasing the frequency of the spike train 

fed to a single input (see section 5.7.1). One possible solution to this is to 'buffer' 

the inputs with other neurons whose refractory period will limit the frequency of 

the spike train, while an alternative is to impose a limit on the frequency of any 

spike trains applied as inputs to the system overall. 

A NOT function can be achieved by combining a single inhibitory synapse with a 

constant excitory bias input. [5.61] This is only possible with the second, more 

complex neuron model, where a stimulation current can be applied to the input 

(section 5.14.2). The bias will result in the neuron firing continuously with a 

period determined by the total time required for the integration of the bias to 

exceed the threshold and the time spent in the refractory period. When a spike 

arrives at the inhibitory synapse, the output of this synapse cancels the bias and 

the neuron is not stimulated, and stops firing. The length of the PSP produced by 

this synapse determines how long the neuron remains in this state, after which it 

will begin firing again. 

5.18.2: Spike multiplier 

A spike multiplier accepts an incoming spike and provides a train of output 

spikes, the number of output spikes being determined by the number of neurons in 

the circuit. It is possible to replicate this function to a certain degree if the 

synapses are configured so that they are not cleared during the refractory period, it 

is possible to extend the output pulse from a synapse so that it lingers through the 

refractory period after the first spike and retriggers the neuron. However, this can 

only produce output pulse trains at a fixed frequency. Chaining neurons can 

theoretically provide a wide variety of different output signals, as the intervals 

between the pulses are set by the firing delays of the intermediate neurons. 

Figure 85: Diagram of a spike multiplier 
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The basic form of such a circuit is a chain of neurons, as shown in Figure 85, each 

of which causes the next in the chain to fire, after a delay. An extra neuron at the 

end of the chain acts as an OR gate, so that all pulses appear at a single output. 

This is the simplest form of the circuit, forming a spike doubler. 

If the chain is a loop, as in the set-reset latch to be discussed in the next section, 

then the output will fire at twice the frequency of either of the neurons in the loop. 

Spike doubler 

time 

Figure 86: Spike doubler waveforms 

Input 

Output 

Potential A 

Potential B 

As can be seen in Figure 86, the spike doubler relies on the membrane potential 

building slowly in NI and N2, so that the firing is delayed. This requires that the 

PSP emitted by the synapses on these neurons is of a low intensity, but lingers for 

some time after the incoming spike is received. It is also necessary for the output 

neuron, N3, to have a short enough refractory period that it can recover from the 

firing induced by NI before N2 fires. If this is not the case, then a spike doubler 

would require a chain of more than two neurons, tapped at suitable intervals to 

allow the cumulative delay of the chain to exceed the refractory time of the output 

neuron. 

While this circuit may be purely speculative, its simplicity suggests that it is not 

unlikely that a large evolved neural network would contain at least one similar 

chain of neurons. 
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5.18.3: Neuron Set-Reset Latch 

The wide range of post-synaptic responses possible with a synapse which can 

provide a stretched output pulse allows for a range of interesting neural circuits to 

be built. One such circuit is the Set-Reset latch, which has an approximate 

functional relationship with its electronic counterpart. In this circuit, two neurons 

are coupled into a feedback loop as shown in Figure 87. 

Figure 87: Cross-coupled neurons acting as a set-reset latch 

It is important to note that while the electronic equivalent of such a circuit is 

based on steady-states, so that when triggered its output maintains a constant logic 

level until the alternative input is triggered, this steady-state output is not possible 

with spiking neurons because by definition they do not hold steady outputs. They 

can, however, be made to fire at a steady rate once triggered by an input spike. If 

the information carried by the spike trains is assumed to be encoded in their 

frequency, this could be thought of as a steady state in terms of the information 

outputted. 

In the circuit of Figure 87, neuron 1 has three synapses while neuron 2 has two. If 

it can be assured that the resetting spike will never arrive during neuron l 's 

refractory period, then synapse E can be removed to further simplify the system. 

Synapse A has a large excitory weight, delivered as a relatively short pulse, 

enough to cause Nl to fire immediately. Synapses C and D, the feedback 
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synapses, have similarly large weights but produce longer PSPs of lower intensity, 

each allowing the originating neuron to complete its refractory period before the 

other is triggered. Synapses B and E have strong inhibitory effects, stretched over 

a long enough period to stifle the feedback pulses, at least to the point where they 

just fail to trigger an action potential. The two neurons each have very short 

refractory periods, although provided that the PSPs from the feedback synapses 

are long enough, this need not necessarily be the case. ln addition, there is no 

requirement for there to be just two neurons involved in the feedback loop, if a 

longer chain of neurons was used, a ring oscillator with start/stop control would 

be created. 

Neural S-R Latch 

N2 accumulator 

N1 accumulator 

f------'----L---__.____,_-L __ __.__---,-_L-_ __ -i N2 output 
1---~ __ _.._ _ _ _._ _ _ __.'---- ~ ---'------4 N1output 
f-------------------------'c....L..J'-----l Reset 

t=:::=====================:::::l Set 
Time 

Figure 88: Test waveforms for the set-reset latch 

Test waveforms from this circuit are shown in Figure 88. The lowest trace shows 

the spike input to the 'set' input, which initiates a large change in the membrane 

potential of NI. This causes Nl to fire, which in tum initiates a longer, slower 

build-up of membrane potential in N2. The cycle repeats, with each neuron's 

firing causing the other to fire after a short delay. Finally, a series of spikes on the 

reset input causes the rise in membrane potential in Nl to be stopped before the 

threshold was reached, stopping the circuit. Three spikes were fed into the reset 

input to ensure that it would stop the feedback correctly, in case the first arrived 
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during the refractory period but due to the very short refractory period of both 

neurons the feedback was stopped by the first spike. 

The S-R latch circuit was tested using the 3 x 3 network described earlier. Due to 

the simplicity of the circuit, the nearest-neighbour connections in the network 

were adequate for reproducing the circuit. The unused synapses were set to weight 

0, pulse length 1 so that they had no effect on the neurons. 

In order to make the full set of signals visible, two additional neurons were used 

to buffer the set and reset inputs, their input synapses being set up to trigger firing 

immediately. The outputs of these, and the outputs of the two cross-coupled 

neurons, can be seen in the firing sequence plot of Figure 89. The particular 

choice of neurons was made based on the fact that neurons 5 (centre) and 1 (one 

corner) were connected to two of the Digilab's buttons for testing. 

~_I _'_._·_._·_._·_. _ _ · _. ___ : _ 
Time 

Figure 89: Firing sequence for initial test of S-R latch, showing erroneous response 

The initial test was performed with the thresholds of the two cross-coupled 

neurons set differently, so the firing pattern in Figure 89 shows a slight 

asymmetry in the oscillation. An anomaly can be seen at the end of the sequence 

when the reset neuron (Nl) is triggered, causing both N3 and N6 to fire 

simultaneously. This does have the effect of stopping the oscillation, as both 

neurons then enter their refractory periods and so clear their synapses. However, it 

is not the expected behaviour, as the inhibitory synapses feeding NI 's output to 

N3 and N6 should not be able to fire the neurons. 

The reason for this anomalous behaviour is the way in which negative numbers 

are represented by the system. The inhibitory weights used were -500, represented 

as a 16 bit number as i 6 
- 500, or 65036. The resting potential was set to I 00, the 

thresholds to 180 or 200, and the post-firing potential to 80. If we assume that the 

membrane potential would be somewhere between I 00 and 200 for each of the 

oscillator neurons, adding 65036 to this would produce a number between 65136 
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and 65236, which, being less than i 6 would not be truncated in the addition so 

the bounds-checking performed in the integration step would not detect a 

problem. The new membrane potential then becomes very large, exceeding the 

threshold and causing the neuron to fire. 

To remedy this, the normal operating range of potentials was raised so that the 

resting potential was 1000, the threshold was 1200 and the post-firing potential 

was 980. Thus, adding 65036 to the subthreshold range now yields a number 

between 66036 and 66236, which would be truncated by the 16-bit adder to 

produce values between 500 and 700, which is correct as it represents a 

subtraction of 500 from the original potential. 

This behaviour demonstrates one of the pitfalls of a simple model such as this, 

something which must be taken into account when choosing the neuron's 

parameters. The anomaly occurred because with the membrane potential at 100, 

there isn't ' room' below this to accommodate a change of -500 without an error. 

This means that the resting potential and threshold must be set adequately high 

above zero that the largest inhibitory weight can be accommodated. 

In theory, there is no reason why the model should behave any differently as the 

base value for the membrane potential changes. Provided that the threshold and 

post-firing potential are the same distance from the changed resting potential, 

there should be no change in the overall response of the neuron. However, if the 

network is trained by a learning algorithm, it is possible the these anomalies, 

being part of the neuron's operating repertoire, could be made use of by the 

algorithm, resulting in a network which performs its function in an unusual way. 

N6 
N5 

N3 

N1.,_ ________________________ .....,_ 
Time 

Figure 90: S-R latch running correctly with new parameters 
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The output of the corrected system is shown in Figure 90. Again, N5 starts the 

sequence by causing N6 to fire immediately, then N3 and N6 fire alternately until 

the inhibitory output from NI stops the process. 

This circuit is a simpler version of the pattern generators studied in section 5.17, 

but in this case the function of the circuit was designed rather than simply arising 

from the neurons' dynamics and coupling. 

5.18.4: Conclusion 

The circuits presented here demonstrate that while the neurons may be capable of 

complex neuromorphic responses when used in a network, their simplicity means 

that circuits can be explicitly designed without needing to evolve them or train the 

network. The problem of implementing logic functions in spiking neurons was 

discussed, and while it has been shown in other publications that Boolean logic 

functions can be implemented in neurons such as threshold logic units, the lack of 

a steady state in a spiking system complicates the design of some logic functions, 

such as AND or NOT, but not others such as the OR gate. 

The spike multiplier showed that a simple circuit could be designed and would 

work as expected, demonstrating the spike-timing based operation of the neurons 

and also the Boolean OR function, while the S-R latch circuit, which is really 

more of a controllable ring oscillator, showed that oscillatory dynamics can be 

designed into a network. 
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5.19: Overall Conclusion 

The design and implementation of these neuron models have shown that even a 

simplified representation of an already simple neuron model can replicate the 

basic functions of a biological neuron, and can exhibit relatively complex 

behaviour. We have seen that a network of such models can also exhibit very 

complex dynamics, which further work may establish as being chaotic. The 

sequences produced certainly do not exhibit short-period repetitions. 

A comparison of the two neuron designs shows that the simpler neuron requires a 

smaller area in the chip, but also has a more limited range of functionality. The 

more complex design provides a better approximation of the real neuron, but with 

the disadvantage of using a greater area of the chip, resulting in a reduction in the 

number of neurons which can be used in a network. This more complex model has 

the capability to produce delayed effects due to the longer output pulses which 

can be supplied by the synapses. This delay was what permitted the periodic 

behaviour demonstrated with the test network, as if there was no delay the 

neurons would be in their refractory periods when re-stimulated by their 

neighbours. Modelling the synapses as separate units also allows a greater range 

of different setups to be produced, as the number of synapses is not restricted and 

can be changed without affecting the operation of the neuron body. For large 

numbers of inputs this system is also more efficient than designs where the inputs 

are integrated in turn, as it integrates the net effect of all post-synaptic potentials 

simultaneously and therefore requires only one integration cycle to cover all 

inputs. 

In comparing the neuron models presented in this chapter with other published 

works it is evident that some other models have been developed which are smaller 

in terms of area occupied. However, in those cases a large proportion of the 

saving in area is attributable to the reduction in flexibility of those other models, 

which have hard-coded thresholds and decay rates. If future work is to incorporate 

learning mechanisms as discussed briefly in section 5.13, then flexibility in such 

parameters may well turn out to be essential, and hence the reduced-area models 

presented elsewhere may not have the necessary flexibility. 
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When comparing performance in terms of integration time per logic element, the 

models presented here compare favourably with others, and crucially the scaling 

behaviour with increasing numbers of inputs is far better for the models presented 

here, with constant integration time regardless of the number of inputs. This 

constant integration time also means that the neuron models presented here have a 

clear advantage over the majority of the other models considered, namely that 

they can be combined into networks without explicit synchronization, making the 

models presented closer to an analogue implementation, which in turn is more 

biologically-realistic. 

As was discussed earlier, other works have shown that an alternative, though 

slower method of producing a large neural network is to time-multiplex the 

neurons onto a single model. The results presented in this section certainly 

support this, as it has been shown that only a few neurons will fit into a moderate

sized FPGA, and while the current generation of FPGAs may be many times 

larger, even the largest could only allow a hundred or so neurons to exist in 

parallel. 

However, the performance of the simplified neuron model suggests that a mixture 

of time-multiplexing and parallel operation could be employed, as it has been 

shown that a model simple enough to fit several times into a medium-capacity 

FPGA can perform complex operations, so several of these could be employed in 

parallel to speed up the execution of the time-multiplexed network. This 

parallelism idea fits with what was found during the image processing tests, where 

each individual processor may not be able to operate very quickly, but if several 

are used in parallel the performance could potentially rise significantly. 

An important consideration when building a neural network in this way is that it 

will clearly be less tolerant of faults in the neurons than one built fully-paraJlel, as 

if all the neurons in the network are time-multiplexed onto a single physical 

neuron model, a failure in this circuit would stop the whole network. If two 

instances of the neuron model were used, a failure could potentially stop half of 

the network. A fully-parallel network would only lose a single neuron if a single 

neuron model was to fail, and it may be possible for the network to continue 
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operation, perhaps producing a few errors. In the same way that the human brain 

can cope with individual cells dying without failing completely, such a 'graceful 

deterioration' property would certainly be desirable in systems based on such 

neural networks 

The experiments with the neuron models have also revealed the ways in which the 

simpler arithmetic logic can produce incorrect results. We have seen that placing 

the operating range of the model too close to the limits of the representable 

numbers can cause erratic operation, and can sometimes cause the models to fail 

in ways which do not immediately reveal the true cause. The first model' s 

response in the cases where inhibitory synapses are used showed the importance 

of bounds checking. However one of the outcomes of this work is a clear 

understanding of the scope and impact of these anomalies. 

The resting potential detection in this first model could also give rise to 

unpredictable operation, as it is possible for the membrane potential to rest at any 

value between the two bounds, and so if it is at the top of the band, a certain input 

may cause the threshold to be exceeded, whereas the same input might not cause 

this if the potential was resting at the bottom of the band. These effects arise from 

the simplified arithmetic in use in the models, and are another indication of the 

trade-off between simplicity and operating capability. 

The results of the tests conducted with the small network in section 5 .17 show that 

the second neuron model, despite its simplicity, is capable of a biologically

plausible response when used in a network, showing periodic firing with stable 

patterns similar to that found in the CPGs such as the lobster stomatogastric 

ganglion described in [5.55]. It was found that only the second of the neuron 

designs, with its greater flexibility in terms of PSP response, was suitable for this 

application, as the biologically-plausible functionality is dependant on the ability 

of this model to delay firing due to a slow build-up of the membrane potential. 

This type of PSP response is common in analogue implementations of neurons, as 

it is easy to do, by restricting the current into the cell, but it is a novel approach in 

digital spiking neurons, and as has been seen, shows promising results. 

192 



The spike multiplier and S-R latch circuits in section 5.18 show an interesting way 

of building more complex systems from the neuron models. It is easy to see that 

these two examples represent just a small part of the possible range of functions 

which could be built in this way. It was stated in the text that the spike multiplier 

can be extended to produce any number of spikes when triggered by an input, and 

this is made possible by the flexible nature of the input to the neuron model, 

which can allow input from as many synapses as are required. These two simple 

examples show the neurons behaving in ways which might not be obvious from 

the descriptions of the operation of the neuron presented at the start of this 

chapter. Extensions to these models can be imagined, such as the extension of the 

S-R latch to produce a ring oscillator as described in section 5.18.3. With just a 

simple modification to allow the neuron to pass through its refractory period 

without clearing the synapses, it should be possible to make a single neuron re

trigger itself, and thus it may be possible to make an S-R latch with a single 

neuron. It is also easy to envisage neural circuits built in this way which can 

perform Boolean logic functions. The output neuron in the spike multiplier is 

acting as an OR gate, replicating the input spikes regardless of which input they 

occur through. An AND gate could simply be a neuron with two inputs, each of 

which can provide half the required increase in membrane potential required to 

exceed the threshold. Coincident inputs on both inputs would cause it to fire, but a 

single input would not. Clearly there are issues with this idea which would need to 

be addressed if Boolean logic is to be used, for instance there is no easy way to 

make an equivalent of a NOT gate, and also the AND gate could be triggered to 

fire by consecutive pulses on a single input, if the decay is not aggressive enough. 

However, there is no reason why pure Boolean logic should be necessary, as the 

range of functions possible even with these simple neuron models allows for more 

interesting effects than are possible with digital logic gates. 

5.20: Further Work 

There is much left to be explored with these neuron models. For a start, there are 

numerous ways in which the model can be extended to allow a greater range of 

capabilities, and a few areas have been identified where error-checking or bounds

checking logic could be added to make the operation more reliable. 
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The decay function in the later neuron models is one area which could be made a 

little more flexible . At present the decay works by subtracting 1 from the 

accumulator every n cycles, which means that the maximum decay slope is a 

decay of 1 every cycle. Adding an extra parameter and altering the logic could 

allow this to be increased, so that the extra decay parameter, d, is subtracted every 

n cycles rather than the constant decay of 1. Similarly the refractory period slope 

could be modified to allow a sharper increase. The decay rate does not necessarily 

have to be constant, but could instead be made proportional to the membrane 

potential, giving an exponential decay rather than a linear decay. It would be 

necessary to determine whether there is any improvement in the neural model 

arising from such a change, or whether the neuron is just as capable with either 

method of decay. It was shown that biologically-plausible network responses are 

possible with a linear decay, so it seems that an exponential decay is unnecessary. 

Another potentially useful modification would be to allow the inputs to push the 

membrane potential below the resting potential, perhaps as far as some lower 

bound set as an additional parameter, so that the decay gradually brings the 

potential back up to the resting potential, and allowing inhibitory inputs to make 

the neuron harder to fire. An alternative to this would be to simply raise the 

threshold each time the potential tries to go below the resting potential, then 

gradually bring it back down to normal with the same hardware as used for the 

decay. This may be a little more efficient in terms of hardware than the previous 

method, as it avoids the need for a dual-polarity decay function, and should 

produce the same result. 

It is desirable to experiment with the bit-widths of the registers and arithmetic 

circuits, to investigate the trade-off between logic element usage and operating 

ability. It is expected that a neuron built with narrower buses and registers will not 

be able to perform as great a range of functions as one built with wider buses, as 

the range of possible values for the parameters will decrease, and it will be more 

difficult to obtain fine variations in weights and thresholds with a coarser 

quantisation of parameters. In this case having the synapses outside the main 

neuron model is desirable, as it is possible to vary the parameter width in these 

194 



without affecting the parameters in the neuron body. Although the synapses, like 

the neurons, were built with 16-bit registers and data paths, the parameters used in 

the tests rarely exceeded the capabilities of 10-bit registers, or 8-bit in the case of 

the L parameters. It was shown earlier that a reduction in parameter width leads to 

a reduction in LE usage, and this may be useful when implementing large 

networks. 

When developing networks of neuron models there will need to be some means of 

control, to allow the parameters to be adjusted, either manually or by learning 

algorithms. A simple embedded controller was presented with the first neuron 

model, but this would be more useful implemented on a PC as a graphical 

interface. Some means of encoding inputs as spike trains and decoding spike 

trains to produce output signals would also be useful. 

The neural circuits presented in section 5.18 could be developed further, to refine 

the existing circuits and to develop more simple building blocks which could be 

combined to create more complex systems. It would then be useful to compare 

these systems with similar systems produced by some manner of learning or 

evolution of the network, to determine whether the hand-built blocks would 

actually exist in an evolved system. This would require that systems are built to 

allow the network to learn, either by adding these to the neuron and synapse 

models, or by implementing a learning controller which can alter the weights 

through the neurons' data buses. 
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Chapter 6: Overall Conclusions 

The experiments presented in this work have demonstrated various approaches to 

implementing systems which would traditionally be software-based. The image 

processing hardware presented in chapter 3 was implemented as a direct hardware 

translation of a software algorithm, while the neuron models were implemented as 

hardware systems exhibiting some degree of parallelism, in the case of the neuron 

with separate synapses. It was found that there are implementation issues common 

to both approaches, as well as some issues specific to a particular type of 

implementation. 

The image processing hardware showed that the direct translation of the software 

algorithm to hardware resulted in a system with relatively low perfonnance but 

with the advantage of small hardware size. Two implementations were 

demonstrated, and it was shown that both could perform the required function, 

extracting the skin lines from the image. The results showed that the two systems, 

high-pass filter and second-order filter, perfonned differently and produced 

different outputs. The second-order filter was seen to be more susceptible to noise 

and distortion in the source images, but produced a result image with more detail, 

due to its smaller mask size. 

Methods of increasing the efficiency of the processor were shown, such as the use 

of space-inefficient but relatively fast divider logic to perform a division by a 

fixed divisor. Clearly this approach is not suitable for a general purpose divider 

where the divisor is variable, but in this particular instance, and in other similar 

cases, it is a good solution. The use of a software program to generate the VHDL 

code was shown, a useful feature of a hardware description language which can 

save a lot of time. 

The second-order filter was seen to operate much more quickly than the high-pass 

filter, also requiring considerably less hardware. The increase in processing speed 

was due mainly to the smaller mask size, though a slightly more efficient control 

state machine assisted in this increase, as did the overall clock frequency increase 

enabled by the simpler hardware. 
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While the large hardware requirement of the divider in the high-pass filter reduced 

its area-time product score, the second-order filter performed well by this 

measure, due mainly to its very small hardware size. It was seen that although the 

lack of 'local' storage of pixels or partial sums meant more accesses to memory 

were required, thus increasing the processing time, the small number of registers 

required led to the hardware being considerably smaller than many other 

implementations of convolution filters. This reduction in hardware size is the 

principal advantage of the systems developed in this chapter. 

The flexibility of the hardware developed for the image processor was 

demonstrated in the conversion of the system to process cellu Jar automata. It was 

shown that the CA processor is a special case of image processor, which can 

operate in the same was as the basic image processors, with just a few 

modifications to the way memory is accessed. The system that was demonstrated 

was shown to be a versatile general-purpose CA processor which could be 

adapted to a wide range of different rules with no change to the architecture. 

Methods of accelerating the system were discussed, and it was shown that 

methods similar to those that can be applied to accelerate the image processing 

could also be used to accelerate the CA processing. 

The development and use of a simple microprocessor in chapters 4 and 5 showed 

the ease with which software can be combined with custom hardware to create a 

more adaptable system. It was shown that a very simple structure lacking many of 

the parts of a conventional modern microprocessor, such as an instruction decoder 

or microcode, can still be useful as a general-purpose processor. Restricting the 

processor to an accumulator-based architecture did not prevent it from being 

useful, and the lack of instruction decoding allows the creation of often useful 

hybrid instructions which are not possible on a machine with a rigidly defined 

instruction set. The simplicity of the design resulted in a compact, useful 

processor with a high performance-to-area ratio when compared with many other 

embedded processors. 
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In chapter 5 a simplified spiking neuron model was developed, and it has been 

demonstrated that even though it is a good deal simpler than most artificial neuron 

models it can still behave in a manner similar to a real neuron, with some 

simplification. It has been shown that a biologically accurate model of the internal 

working is not required, and an approximation based on simple integer arithmetic 

will suffice. 

Two models for the neuron were demonstrated, the first design being relatively 

simple and as a result somewhat limited. It was shown that a neuron model in 

which the synapses are multiplexed would have to have its parameters changed if 

extra inputs are added, as the extra inputs will lengthen the integration cycle. A 

second neuron model was presented in which the synapses are modelled 

separately, and perform their operations as true parallel processes, more closely 

resembling the real biological neuron. 

It was also demonstrated that even this simple neuron model takes up enough 

space within the FPGA as to make a parallel implementation of a large network 

difficult. It is possible to build small networks with the model, and networks of 

over a hundred neurons, though not possible with the FPGA which was used for 

the experimental work, are possible with current FPGAs. The possible reduction 

in logic element usage with a reduction in the precision of the parameters used by 

the neuron models was discussed, and this was demonstrated in the case of the 

synapse model and also in the case of the RAM-based neuron model, the latter 

making use of the otherwise unused memory blocks in the FPGA in order to 

reduce its logic usage. The FPGA architecture's limitations pertaining to the 

neuron development were also discussed, as it was shown that while the 

embedded RAM blocks can be used by the neuron model itself, if the synapses are 

modelled separately the relatively coarse-grained nature of the Apex series 

FPGA's RAM blocks makes them unsuitable for use in the synapse model. Later 

FPGA types such as the Stratix series could be used to make a more efficient 

implementation using the RAM blocks for parameters. 

The importance of error checking in the arithmetic used in a system such as the 

neuron was demonstrated by the incorrect operation of the neuron models under 

certain circumstances. The first model, lacking bounds checking, was shown to 
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behave incorrectly in response to inhibitory inputs which place the simulated 

membrane potential at a level the control logic is not equipped to cope with. The 

use of a variable decay slope also necessitated a degree of vagueness in the 

definition of the resting potential, this being defined by upper and lower bounds. 

It was suggested that this vagueness could lead to unpredictable operation, though 

this was not observed. The second, improved model addressed these issues, 

adding bounds checking and handling the decay of the potential in an alternative 

and more reliable way. 

The neuron models which were developed were shown to be simple yet capable, 

and although they may be larger in terms of hardware size than some models from 

the literature the increased size is due to greater flexibility in the parameters, 

greater precision in the simulation of the membrane potential and a greater range 

of synaptic responses than simpler implementations such as [5.36]. The second 

model is also capable of supporting any number of inputs with no change in the 

integration cycle time, which is a side-effect of many of the simpler 

implementations [5.38]. They are also able to operate in a network without any 

explicit synchronisation, and thus the network is not performing a series of time

steps but is running in real-time, which is more biologically-realistic. 

The simple neuron model was shown to be capable when used as part of a 

network of producing complex periodic and non-periodic dynamics. A small 

network was found to behave in a complex and apparently non-periodic way 

following simple stimulation, given sufficient feedback. It was demonstrated that 

the network appears to have stable states, which in this case are dynamically 

stable, repeating the same firing sequence with a short period. The network has 

more than one such stable state, and can be made to transition from one to another 

in an unpredictable manner by disrupting the pattern with external stimulation. 

This was seen to be consistent with behaviour seen in real-world neural circuits, 

notably the Central Pattern Generators found in many animals. 

Construction of simple but novel neural circuits was demonstrated, showing that 

the neuron models can be used together to perform functions which are a good 

deal more complex than the simplicity of the model would suggest. These circuits 
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could be used as building blocks for larger systems, using the neurons instead of 

conventional logic circuits to take advantage of their complex time-dependant 

responses. Methods for implementing Boolean logic functions were also 

suggested. 

In summary, we have seen methods of implementing systems in hardware which 

would traditionally have been software-based. The trade-offs between 

performance and hardware size were revealed, and methods for making efficient 

use of the FPGA's hardware were discussed. It was shown that making a direct 

translation from software to hardware produced a system with relatively small 

hardware size but also relatively low processing speed. It was shown however that 

a high ratio of performance to area can be achieved with such small hardware, 

even when the actual performance is not particularly high. 

Exploiting parallelism to increase performance was discussed in the cases of the 

images processors and the neurons. The parallel nature of the neuron models 

shown in the demonstrated networks allows the system to perform in real-time 

with relatively low clock rates or to perform very fast with higher clock rates. The 

simplified neurons show promising and interesting results, as complex dynamics 

were obtained from both small and large neural systems. It was demonstrated that 

a network of these simplified high-performance neurons can demonstrate complex 

periodic and non-periodic dynamics. Simple neural circuits built with the 

developed models showed interesting results and abilities, and the potential to be 

developed further and used to create more complex systems. 
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Appendix A: Extracts from QBasic Software 

A.l : Extract from the divider generator code 

This program produces the VHDL divider code. The full 32,768 line LUT is 
generated, which was then trimmed manually to remove the lines which were not 
required. 

OPEN "div81 . vhd" FOR OUTPUT AS 1 
quot$= CHR$(34) 
ta$= CHR$(9) 
PRINT #1, " library ieee;" 
PRINT #1 , "use ieee . std_logic_1164 . all;" 
PRINT #1 , "" 
PRINT #1 , "entity div81 is " 
PRINT #1, "port ( " 
PRINT #1 , ta$+ " i : in std_logic_vector(14 downto 0) ;" 
PRINT #1 , ta$+ "o : out std_logic_ vector(7 downto 0)) ;" 
PRINT #1, "end div81; " 
PRINT #1 , "" 
PRINT #1, "architecture stuff of div81 is" 
PRINT #1 , "begin" 
PRINT #1 , ta$+ "process(i} " 
PRINT #1 , ta$ + ta$+ "begin" 
PRINT #1, ta$+ ta$+ ta$+ "case i is" 
FOR ml= 0 TO 32767 

z = ml 
f = INT(ml / 81) 
dee= z 
GOSUB convrt 
ad$= decbin$ 
dee = f 
GOSUB convrt 
da$ decbin$ 
ad$ " 000000000000000000 " + ad$ 
ad$ RIGHT$(ad$, 15) 
da$ " 0000000000000000" + da$ 
da$ RIGHT$(da$ , 8) 
a$= "when " + CHR$ (34) +ad$+ CHR$(34) + " => o <= " + 

CHR$(34) + da$ + CHR$(34) + ";" 
PRINT a$ 
PRINT #1 , ta$+ ta$+ ta$+ a$ 
NEXT ml 

PRINT #1 , ta$+ ta$+ ta$+ "when others=> o <= " + CHR$(34) + 
STRING$(8, " 0 " ) + CHR$(34) + ";" 
PRINT #1 , ta$+ ta$; "end case;" 
PRINT #1 , ta$ + "end process ;" 
PRINT #1, "end stuff ;" 
CLOSE 1 
END 
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A.2: Examples of code for building the CA rule table from a rule definition 

This is an example of the program that generated the Life rule table. The lines 
marked in bold are changed to suit the particular cellular automaton being 
implemented. 

OPEN "life .mif" FOR OUTPUT AS 1 

PRINT jt 1 , "WIDTH= 8 ;" 
PRINT #1, " DEPTH= 512 ;" 
PRINT #1 , "ADDRESS RADIX=UNS ;" -
PRINT #1 , " DATA_RADIX=HEX ;" 
PRINT #1, "CONTENT BEGIN" 

FOR q = 0 TO 511 
dee= q 
GOSUB eonvrt 

END 

b$ " 0000000000 " + bin$ 
b$ = RIGHT$(b$ , 9) 
e$ = RIGHT$(b$, 8) 
sum= 0 
FOR f = 1 TO 8 

n$ = MID$(c$ , f , 1) 
IF n$ = "1" THEN sum= sum+ 1 

NEXT f 
IF q > 255 THEN centre= 1 ELSE centre= 0 

npix$ = "00" 
IF centre= 0 AND sum= 3 THEN npix$ = "FF" 
IF centre= 1 AND (sum= 2 OR sum= 3) THEN npix$ "FF" 
v$ = STR$ (q) + " : " + npix$ + " ;" 
PRINT U , v$ 
NEXT q 
PRINT Jtl, " END; " 
CLOSE 1 

eonvrt: 
bin$ = "" 
h$ = HEX$ (de e) 
FOR i % = 1 TO LEN(h$) 

digit% = INSTR( " 0123456789ABCDEF", MID$(h$ , i %, 
1)) -1 

IF digit%< 0 THEN bin$ = "": EXIT FOR 
j % 8 : k% = 4 
DO 
bin$ bin$+ RIGHT$(STR$((digit% \ j %) MOD 2) , 1) 

j % = j % - ( j % \ 2) : k % = k% - 1 

RETURN 

IF k % = 0 THEN EXIT DO 
LOOP WHILE j % 

NEXT i % 
deebin$ = bin$ 
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For the majority rule, the lines in bold above are replaced by: 

sum = 0 
FOR f = 1 TO 9 
n$ = MID$(b$, f, 1) 
IF n$ = "l" THEN sum sum+ 1 
NEXT f 
npix$ = " 00 " 
IF sum> 4 THEN npix$ = " FF " 

For the simulated annealing the last line of this is changed to: 

IF sum> 5 OR sum= 4 THEN npix$ = " FF" 

For the hourglass rule the section becomes: 

c$ = MID$(b$ , 1, 1) 
se$ = MID$(b$, 2 , 1) 
s$ = MID$ (b$ , 3 , 1) 
sw$ = MID$(b$ , 4 , 1) 
e$ = MID$(b$, 5 , 1) 
w$ = MID$(b$, 6, 1) 
ne$ = MID$(b$ , 7, 1) 
n$ = MID$(b$ , 8, 1) 
nw$ = MID$(b$ , 9 , 1) 

npix$ = " 00 " 
nb$ = e$ + w$ + s$ + n$ + c$ 
PRINT nb$ 
IF nb$ = " 00001 " OR nb$ " 00010 " OR nb$ = " 00011 " OR nb$ = 
" 01011 " OR nb$ = " 10101" OR nb$ "1 1001 " OR nb$ = "11101 " OR nb$ 
= "11110 " OR nb$ = "11111 " THEN 
npix$ = " FF" 
END IF 

These examples show the various ways in which a rule can be defined. The rest of 
the program builds the look-up table in Altera's Memory Initialisation File (MIF) 
format. 
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Appendix B: Assembler Mnemonics file for the VHDL 
Microprocessor 

LDA, abs , 011D 
LOA, idx , 811D 
LDA , imm, 211D 
STA, abs , 4200 
STA, idx , C200 
ADD, abs , 0110 
ADD , idx , 8110 
ADD,imm, 2110 
SUB, abs , 0111 
SUB, idx , 8111 
SUB, imm, 2111 
ADC, abs , 0112 
ADC, idx , 8112 
ADC , imm, 2112 
AND , abs , 0113 
AND , idx , 8113 
AND, imm, 2113 
OR,abs , 0114 
OR , idx , 8114 
OR , imm, 2114 
XOR, abs,0116 
XOR , idx , 8116 
XOR , imrn, 2116 
NOT , imp , 0115 
SHL, imp , 0017 
SHR, imp , 0018 
ROL , imp , 0019 
ROR , imp , 001A 
RXL , imp,011B 
RXR, imp , OllC 
LDP,abs , 002D 

End of file 

LDP , idx, 802D 
LDP , imm, 202D 
STP , abs , 5200 
STP , idx , D200 
ADDP , abs , 1020 
ADDP , idx , 9020 
ADDP , imrn, 3020 
SUBP, abs , 1021 
SUBP, idx , 9021 
SUBP, imm, 3021 
SLP, imp , 1027 
SRP, imp , 1028 
SKN,imp , 0080 
SKP, imp , 0081 
SKCS , imp , 0082 
SKCC, imp , 0083 
SKZ , imp, 0084 
SKNZ,imp, 0085 
JMP , imp, 0840 
CMP , abs,0101 
CMP, idx, 8101 
CMP, imm, 2010 
LDPF , abs , 012D 
LDPF,imp,812D 
LDPF , imp , 212D 
CMPP,abs , 1101 
CMPP , idx , 9101 
CMPP,imm,3101 
HLT,imp,0400 
JSR, abs , 084E 
RTS , imp , 004F 
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