
Bangor University

DOCTOR OF PHILOSOPHY

FPGA techniques for algorithm acceleration

Lewis, Emlyn

Award date:
2007

Awarding institution:
University of Wales, Bangor

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 18. Nov. 2024

https://research.bangor.ac.uk/portal/en/theses/fpga-techniques-for-algorithm-acceleration(411bca12-4aef-4e17-b3a3-f71ecc667729).html

FPGA Techniques for Algorithm Acceleration

Emlyn Lewis

Thesis submitted in candidature for the degree of Doctor of Philosophy

October 2007

School of Informatics

University of Wales, Bangor

Summary

The techniques necessary for the hardware implementation of systems which
would traditionally be implemented in software are investigated, with regard to
two systems: an image processor and an electronic neuron model. The latter is
developed in detail and it is shown that a simplified and space-efficient model can
perform the functions of more complex models. Interesting results are shown and
novel methods of building with these models are demonstrated.

Contents

Summary i
Contents ii
List of Figures .. . v
List of Tables vii
List of Tables vii
Acknowledgements ix
Chapter 1 : Introduction 1

1.1: Structure of the Thesis 1
1.2: Contributions 3

Chapter 2: FPGA Technology 4
2.1: Reconfigurable Logic - The FPGA 4
2.2: Hardware Compilation .. 9
2.3: FPGA Performance 11
2.4: Digital Signal Processing with FPGAs .. 12
2.5: The Experimental Hardware 13

Chapter 3: Image Processing with an FPGA .. 15
3.1 Theory and Review 15
3.2: Image Processor Implementation 22

3.2.1: Data processor 23
3.2.2: Address Processor 25
3.2.3: Control Unit 28

3.3: Alternative Filter Masks 30
3.3.1 : Second - order High-Pass Filter 30
3.3.2: Gaussian Blur filter 31
3.3.3: Median Filter 32

3.4: Alternative Implementation: Second-order Filter 34
3.5: A Test-bed System 37
3.6: Testing the Image Processor 40

3.6.1: Basic Edge Detection Tests 40
3.6.2: Low-frequency test.. 43
3.6.3: Line Detection 44
3.6.4: Skin Image Tests 47
3.6.5: Test Conclusions 50

3.7: Analysis -of Designs 51
3.8: Further Uses of the Convolution Engine - A Cellular Automaton Processor

·· 58
3.8.1: Background .. 58
3.8.2: Implementation of the CA processor 61
3.8.3: Cellular Automaton Test results ... 63
3.8.4: Performance of the CA processor ... 66

3.9: Conclusions 69
3.9. l: Image Processor 69
3.9.2: Cellular Automaton Processor .. 70

Chapter 4: A Simple VHDL Microprocessor 71
4.1: Existing Designs 71
4.2: Architecture 74

4.2.1: ALU and Registers 77
4.2.2: Address Processing 78

II

4.2.3: Jump and Skip Instructions 79
4.2.4: Subroutine Handling 80
4.2.5: Control ... 80
4.2.6: Op-Code Layout 81

4.3: The Assembler 82
4.4: Performance 84
4.5: Analysis 84
4.6: Conclusions and Further Work .. 89

Chapter 5: Digital Neuron Models ... 91
5 .1 : Background & Review 91
5.2: Neuron Structure and Operation 94
5.3: Artificial Neuron Models 99

5.3.1: Threshold Logic Unit ... 99
5.4: Spiking Neuron Models .. 102

5.4.1: The Integrate-and-Fire Model... 102
5.4.2: More Complex Models 105

5 .5: Existing Implementations of Neurons and Networks 105
5.6: FPGA Spiking Neuron Model 112

5.6.1: First Implementation of a Leaky Integrator Model... 113
5.6.2: Overview ... 113
5 .6.3: Neural Processing Core .. 114
5.6.4: Neuron Control .. 115

5.7: Testing the First Neuron Model... 119
5.7.1: Simple Spike-Train Test 119
5.7.2: Refractory Period Test. ... 123
5.7.3: Inhibitory Input Test 124
5.7.4: Hardware Test. 126
5.7.5: Conclusion 128

5.8: An Experimental Neural Network 129
5.8.1: User Interface Hardware 130
5.8.2: External Hardware 132
5.8.3: User Interface Software 132
5.8.4: Conclusion 133

5.9: A More Flexible Neuron Model .. 135
5.9.1: Neuron Body 136
5.9.2: Synapse Control 140

5.10: Synapse Design 141
5.10.1: Simple Synapse 141
5.10.2: More Complex Synapse 143

5.11: A RAM-Based Neuron Design .. 146
5.12: Analysis of Designs & Conclusion 149
5 .13: Learning Considerations ... 15 5
5.14: Usage of the New Neuron Model 158

5 .14 .1: Loading Parameter Data 15 8
5.14.2: Using the Neuron without Synapses ... 159
5.14.3: Single Synapse Operation ... 162
5.14.4: Operation with more than one synapse ... 163

5.15: Testing the Second Neuron Model 164
5.15.1: SimpleExcitoryTests 164
5.15.2: Inhibitory Response .. 167

iii

5. 15.3: Slow PSP Response 169
5.15.4: Conclusion 172

5 .16: Operation as part of a network .. 173
5.17: Small Network Testing 175

5.17.1: Network Layout 176
5. 17.2: Single Stimulus Response 177
5. 17.3: Multiple Stimulus Response ... 179
5.17.4: Complex Dynamics .. 179
5.17.5: Analysis 180

5.18: Some Functional Elements Built With Neurons 182
5.18.1: Simple Logic Gates 182
5.18.2: Spike multiplier 183
5. 18.3: Neuron Set-Reset Latch .. 185
5.18.4: Conclusion 189

5.19: Overall Conclusion 190
5.20: Further Work 193

Chapter 6: Overall Conclusions 196
Bibliography 201
Appendix A: Extracts from QBasic Software ... 209

A. l: Extract from the divider generator code 209
A.2: Examples of code for building the CA rule table from a rule definition 210

Appendix B: Assembler Mnemonics file for the VHDL Microprocessor 212

iv

List of Figures

Figure 1: Logic Element layout of the Apex 20K FPGA (From Altera's Apex
datasheet) ... 5

Figure 2: Section of Quartus floorplan view showing FPGA structures 6
Figure 3: Quartus floorplan view of entire FPGA 7
Figure 4: Photograph ofDigilab 20Kx.240 FPGA development kit.. 13
Figure 5: Comparison of lesions and their skin line patterns 15
Figure 6: Block Diagram of the Convolution Image Processor 23
Figure 7: Block diagram of the data processing section 24
Figure 8: Gamma correction curve ... 25
Figure 9: Example of a co-ordinate transforming multiplexer 26
Figure 10: State transition diagram for the control unit 28
Figure 11: Second-order filter mask ... 30
Figure 12: Odd-Even Transposition Sorting Network .. 33
Figure 13: Layout of the second order filter processor 34
Figure 14: Control State Machine for the Second-Order Filter Processor 35
Figure 15: Overview of the image processing test bed 37
Figure 16: State machines for the test-bed controller. 39
Figure 17: Gradient test image, high-pass result and 2nd order result 41
Figure 18: Enlarged section of checkerboard test pattern and result images 4 J
Figure 19: Pixel values for a small image section 42
Figure 20: Blurred boundary test image and result images 43
Figure 21: Low spatial frequency test and result images 44
Figure 22: Line test image and result images 45
Figure 23: Bright line test and result images 45
Figure 24: Dark line test image 46
Figure 25 : Sample skin lesion and processing results 47
Figure 26: Skin line test image with JPEG artefacts .. 48
Figure 27 : Skin line test image with low detail... 49
Figure 28 : Skin line test image with good detail.. .. 49
Figure 29: Cellular Automaton Processor 62
Figure 30: Combinations leading to an active cell in the Hourglass CA 64
Figure 31: Generations 0-3 of a life rule test 64
Figure 32: Generations O and 10 of the majority rule test 65
Figure 33: Generations 0, 10, 50 and 100 of the simulated annealing test 65
F igure 34: 500th generation of the hourglass rule ... 66
Figure 35: A single cell for a hardware cellular automaton 67
Figure 36: Simplified overview of the VHDL microprocessor 76
Figure 37: A three-layer neural network 93
Figure 38: Form and layout of a neuron ... 94
Figure 39: General form of an action potential ... 95
Figure 40: Detailed view of a single synapse 96
Figure 41: Simplified membrane potential response to three input spikes 97
Figure 42: Block diagram of a threshold logic unit.. 99
Figure 43: Example of a sigmoid function ... 100
Figure 44: Overview of the Lapicque model 102
Figure 45: Response of a simple LIF model to a varying input current (adapted

from (5.9]) 103
Figure 46: Block diagram of the neuron model structure 113

V

Figure 47: State transition diagram for the four input neuron model.. 116
Figure 48: Neuron model response to a train of three input spikes 120
Figure 49: Neuron fails to respond to three input spikes 12 l
Figure 50: A faster spike train triggering the neuron 122
Figure 51: Input suppression during refractory period 123
Figure 52: Neuron response to excitory and inhibitory inputs 124
Figure 53: Neuron responding incorrectly to inhibitory input.. 125
Figure 54: RTL level translator and resistor-tree DAC 127
Figure 55: Photograph of oscilloscope traces during neuron test 127
Figure 56: Three examples of networks of 16 neurons 129
Figure 57: Block diagram of neural network control system 130
Figure 58: Photograph of the Digilab system with keyboard and VGA interface

·· ······ ·· 132
Figure 59: Photographs of the user interface displays 133
Figure 60: Overview of second neuron model.. 136
Figure 61: Block diagram of second neuron model 137
Figure 62: State transition diagram for the second neuron model 138
Figure 63: Logic structure for the simple synapse design 141
Figure 64: Logic diagram of a more complex synapse 143
Figure 65: State diagram for the synapse control state machine 144
Figure 66: Block diagram of the neuron model using RAM instead ofregisters 147
Figure 67: Quartus simulator view showing parameters being written to the

registers 158
Figure 68: Output pulse train and stimulation for an input neuron 159
Figure 69: Neuron firing frequency against stimulation input 160
Figure 70: Quartus symbol layout for a single synapse test system 162
_Figure 71: Extract from schematic showing a neuron with two synapses 163
Figure 72: 3 spikes inputted to the second neuron design causing it to fire 165
Figure 73: A faster decay prevents the spikes from causing the neuron to fire .. 166
Figure 74: A faster spike train overcomes the faster decay and causes the neuron

to fire 166
Figure 75: Input spike ignored during refractory period 167
Figure 76: Membrane potential response to excitory and inhibitory inputs 168
Figure 77: Delayed firing with a slow PSP 169
Figure 78: Two overlapping slow PSPs and their effect on the membrane potential

········· ··· ······ ············ ······ ········· ························· 170
Figure 79: Repeat of the simple excitory test with slow PSPs 171
Figure 80: Comparison of the effects of fast and slow PSPs 172
Figure 81: Nearest-neighbour and three-layer feedforward networks I 73
Figure 82: Firing chart for a simple network .. 177
Figure 83: Firing pattern with additional stimulation indicated by the grey bars 179
Figure 84: Part of an unstable network's firing pattern 180
Figure 85: Diagram of a spike multiplier 183
Figure 86: Spike doubler waveforms 184
Figure 87: Cross-coupled neurons acting as a set-reset latch 185
Figure 88: Test waveforms for the set-reset latch 186
Figure 89: Firing sequence for initial test of S-R latch, showing erroneous

response 187
Figure 90: S-R latch running correctly with new parameters 188

VI

List of Tables

Table I: Mask offsets for a 256 pixel wide image 27
Table 2: Gaussian coefficients 31
Table 3: Clock cycles required for various combinations of image and mask size

............................ .. 52
Table 4: Performance Comparison oflmage Processors 54
Table 5: Comparison of various image processor designs 56
Table 6: Comparison of cellular automaton rules ... 63
Table 7: ALU control codes 78
Table 8: Conditional skip control codes 79
Table 9: Op-code bit layout 81
Table l 0: Multiplexer functions 81
Table 11 : Comparison of various FPGA processor implementations 86
Table 12: Parameter addresses for the neuron model... 118
Table 13: Memory map for network controller ... 131
Table 14: Logic element usage for different parameter widths 145
Table 15: Logic Element usage and operating speed of the neural elements 151

vii

Acknowledgements

I would like to thank Dr Iestyn Pierce, my supervisor, for his help and support
during this project, and my family and friends.

IX

Chapter 1: Introduction

This work is an investigation into the processes involved in implementing systems

in custom hardware which have previously been implemented in software. In

particular, the aim was to investigate Field-Programmable Gate Array (FPGA)

implementations, looking at the particular challenges inherent in the use of these

devices. Two major projects were undertaken, the first was an implementation of

an image filtering system, and the second was an implementation of digital neuron

models. The image processing system was a reimplementation of a software

based system, and its development provides an insight into the process of

converting a software algorithm to hardware, resulting in a hardware-based

system which performs the same sequence of operations. The neuron models are

different in that they were not based on software implementations but instead

designed for hardware from the start. In both cases, various issues and difficulties

were encountered and overcome, and these are discussed, along with extensive

test result analysis.

1.1: Structure of the Thesis

Chapter 2 provides an introduction to FPGAs and their current uses, both in

general-purpose logic implementation and prototyping, and in more specialised

processing systems. The internal structure of the FPGA is discussed, looking

specifically at Altera's Apex series FPGAs, which were used for the subsequent

work. The use of hardware description languages and some of the issues

associated with hardware compilation are also discussed. This chapter summarises

many of the issues encountered during the development of the hardware described

in chapters 3, 4 and 5.

Chapter 3 describes the first body of experimental work, an investigation into

implementing a simple image processing function in an FPGA, looking at the

issues involved in the implementation and the possible performance of the system.

Current implementations in this field are discussed at the start of the chapter, with

the new work being introduced from section 3.2 onwards.

Two filtering systems are developed and optimised for efficient operation in the

FPGA. A range of test results is presented to show the operation of the filters and

I

the differences between the two types. The specific issues associated with making

efficient and effective use of the hardware resources available in the FPGA are

revealed and discussed, as are the issues associated with implementing fast and

accurate arithmetic circuitry in the hardware. The trade-off between hardware size

and processing speed is demonstrated and discussed.

Following from the development of the image processor, a cellular automaton

processor using very similar hardware is also presented, demonstrating the

flexibility of the design.

Chapter 4 describes the development and implementation of a simple

microprocessor which was intended to provide good performance with low

hardware cost. The use of the processor is further explored in chapter 5. The

design is shown to be versatile and capable, even though it lacks many of the

features of conventional microprocessors, and to have a high performance for its

size. The optimisation of the design to make the hardware cost as low as possible

is also discussed.

Chapter 5 describes the major body of work, looking at implementations of digital

spiking neuron models in the FPGA. The existing work in this field is discussed in

section 5.4, with the project work beginning in section 5.5. Various neuron

models are introduced, along with simple networks in which the neurons are

tested. The response of the neurons to input spikes is demonstrated and a range of

test results are presented covering the two major models constructed. Some simple

neural circuits are presented, showing interesting functions being performed by

the neuron models in novel ways, and a network of these neurons is demonstrated

showing complex dynamics due to feedback.

This chapter also includes some discussion of the trade-offs between the size and

complexity of the models and their abilities, and analysis of the importance of

choosing the register sizes and parameter ranges carefully to avoid erroneous

operation.

The conclusions from the previous chapters are finally summarised in chapter 6.

2

1.2: Contributions

The major contributions in this thesis are summarised below.

Image processing systems have been developed and it has been shown that there

is a definite trade-off between performance and hardware complexity. The image

processors presented show a large difference in both performance and complexity,

with the faster version showing a good performance / area ratio.

The issues associated with the efficient implementation of hardware image

processing systems have been discussed and methods for making the most

efficient use of the FPGA hardware have been considered.

The extension of the image processing hardware to cater for different algorithms

and processing of cellular automata has been shown, and a versatile cellular

automaton processor has been demonstrated.

A simple microprocessor for FPGA implementation has been developed, and has

been shown to be versatile and capable despite lacking much of the complexity of

conventional microprocessors. Its simple hardware is shown to yield a relatively

high performance - area ratio.

Hardware-based digital spiking neuron models have been developed and these

have been shown to be capable of performing complex functions with relatively

simple internal hardware.

Networks of simplified neuron models have been demonstrated and have been

shown to be capable of complex and possibly chaotic dynamics, replicating the

oscillatory behaviour seen in small networks of neurons in biological tissue.

Novel neural circuits have been developed which can perform functions not

normally associated with neurons. These building blocks have shown promising

results and the potential for future development.

3

Chapter 2: FPGA Technology

This chapter is intended to give a brief overview of the FPGA, its hardware and its

uses in accelerating signal processing. Detailed reviews of the use of FPGAs in

the three fields of image processing, microprocessor implementation and neuron

modelling can be found in sections 3.1, 4.1 and 5.5 respectively.

2.1: Reconfigurable Logic - The FPGA

The Field Programmable Gate Array (FPGA) allows large-scale digital circuitry

to be implemented without the cost of producing a fully-custom VLSI device. The

configurability of the FPGA architecture means that prototype circuits can be

built, tested and debugged rapidly, without requiring experience in VLSI layout

on the part of the designer. The reconfigurability of the device can provide a

useful benefit for consumer appliances such as set-top boxes, where the hardware

digital signal processor which performs the decoding of the signals can be

upgraded in much the same way as firmware is upgraded, without having to

physically replace the part. In fact, the circuit can be considered to actually be

firmware, as the FPGA will usually read its configuration data from external

storage into internal SRAM at power-up, therefore if the data held in this external

storage is changed, the next time the appliance is powered up, its hardware will be

updated.

The FPGA is typically composed of a number of logic cells connected together by

a switching and routing matrix. In a fine-grained FPGA, each logic cell will

typically have a small number of inputs feeding a look-up table based logic block,

which in turn feeds a register, usually implemented with a D-type flip-flop. A

coarse-grained device, such as a CPLD (Complex Programmable Logic Device)

will tend to consist of a smaller number of much larger cells, called macrocells,

each of which may have 30 - 40 inputs feeding an AND-OR array. In either case,

a series of SRAM cells hold the configuration data which in turn sets the state of

switches - MOS transistors in most cases, which configure the internal operation

of the block. A four input logic cell' s logic block can perform one of 24 = 16

4

different operations, so the block can be implemented as a I 6 x I bit SRAM where

the inputs to the block form the address.

The structure of the logic element of an Altera Apex 20K series FPGA [2.1] is

shown in Figure 1. The look-up table has additional carry and cascade logic

attached, which allows wider functions to be implemented with a smaller speed

penalty than would be the case if the function was implemented with a number of

LEs in series. The registered part of the LE consists of a flip-flop and logic to

allow synchronous or asynchronous operation.

dom1 ____.
do:a2 ____.
d':tita3
doto4

Loo~-Up
T3bte
(LUT)

Carry-In

LA5 ... ;ce LAS..,.ice
S)n chrooous S;nchrooow.

Lrod Clear

Cascade-In

lo\lclr1 _.., Asynchrooouo t-+---+-----~
lo\Jclr2 _.., Cleor/l'resetl

Chip-Wice Load Log C 1-+---+--------H---'
Res~

kll:clk2

Clock&
C ock Enable
Select

Corry.Qu1 Cascade-OU\

To Filsffrack Interconnect,
MegolA3 ln:erconnec~
or Loe.di Interconnect

To FastTmck Interconnect,
MegaLAB- ln~erconnec=.,
or Lero Interconnect

Figure 1: Logic Element layout of the Apex 20K FPGA (From Altera's Apex datasheet)

It can be seen from the figure that since the LE has two outputs, it is possible to

use the register and the LUT separately, with the input ' data3 ' feeding the

register, which feeds one output, and the other three inputs feeding the LUT,

which can then feed the other output. Thus, it is possible to make more efficient

use of the logic space in the device than it would be if the LUT's output had to go

through the register, and it is also possible to obtain higher speeds than if the

register's input had to come through the LUT.

5

The LEs in the Apex series are grouped into larger blocks called Logic Array

Blocks (LABs) which each contain 10 LEs. Within the LAB connections between

LEs are very fast, allowing small logic structures to operate efficiently. Any

processing or register structure which require more than 10 bits will need to use

more than one LAB, which can reduce speed slightly, but the LABs are joined

together to form MegaLABs, which vary slightly across the range of devices

within the Apex 20K series. The 300,000 gate 20K300E device used for the

experiments described in the following chapters has 16 LABs to each MegaLAB,

with 72 MegaLABs in total. Some of the larger devices in the series have 24

LABs per MegaLAB, while the smallest one, the 20K30, has 10.

-- . ,. . ' ~ : u ,. -
I I I i "I H I "l I I I I ! !

I I I ! ! !! ! ! ! ! ! !

I • • ii • • I i i ~ s s s I I

I I I 1! I ! !
I I I I I I I

~ I I t ! H t I I I I I ! 1 1 1 • ¥ y y ~ ~ y y ¥ ~ ~

' 0 I I j_ ID I D I D D D
♦ ◊ D D DD D!!_ D D D D

i-....,_...._ .a-11:110 0 MegaLAB --- --a
VO Cells

C

ia--........ •-'ICl~O 0

~TITITITITITITITITITITITITITITii ,
i,-,-- - ca

p p

I I I I I I I l I 'I I ·1 'I 'I ·1
LEs ..

i'--,..~ I i,-,-- - c,g 0 ,i-... --a
-
□ □ □ r-, □ □ □ □ □ r-, □ r-, □ □ □ 8

i::i,.., j::::i- p,..., i::1,-, i::i,-, 1:1,.., iir-i 15,..., ii...-,&,..., i:1.-, ii,-, ii,-, i:!i,.., p,.., i:i.-, 1::$-; I

Figure 2: Section of Quartos floorplan view showing FPGA structures

These structures are shown graphically in Figure 2, which shows a screenshot of a

section of the Quartus software's floorplanner window, with the various structures

either open or closed. The coloured blocks are those which have been used by the

compiled design, the white blocks are unused. For completeness, Figure 3 shows

the full chip view, with the section in Figure 2 visible in the top left hand corner.

Although the scale of the image makes it difficult to see the coloured LEs, the

6

C

long carry chains used in counter and adders can be seen in the lower right hand

section of the chip, shown as dark lines. When joining two or more LABs in a

carry chain, the fitter usually skips alternate LABs, so a chain starting in LAB 1

will continue in LAB 3 rather than LAB 2.

I ~~l~Hm~lm!~!ll~~~m~~Hml~~ l~~~l!H!~~m!ll~~,~~H~lllllll~I ml II •illllllU!lllllll lillllllll:llllllilli l!!llllil lllllllll 1111: 11;1!: lllllirllllllll•I IIIIIIIIIIII
:llllIIIlllllilllil 11111111:lll llll ll li llll lllLI 11111111! l:lllillll 111111111111: II ii I IIII Ill 111 1 11 1111 1 11 1 11 1 1■
a:11111111111111!11111111:II llllll l •lllllllllllllllllli llilllll.llllll!lll Liliillll 111111111111: II lldlllll l lll l l l ll'l l l l 1 llll li■
mllilllllllllllllllllllll 1ll 1111111 .llllllll!llllllllll! llllllll ;llllllill1 l'llllllll:IIIIIIII 1111: II ll: 1 1 1111 1 111 1 11 111 11 11111 1 1■
111111111111111111111111111:II.IIIIIII llllll ll!lllllllll li llllllll llllll!lll l:!lilllll llllllll 1111: ll ill: lllllll !lllll ll llllillllll=
a:1111111111111111111 11Hill llll! 11 1111111 1~11111111111 11!111 11 ,llllli:tJ! l:iliillll!llllllll lllli 11 11Ulllll l lll l ll ll' lll li[III II■
•:111llllllllll ll llllllll ll.llllil l .llllllll:lllllllllli llllllll lllllllll: l11111111111 11 11111111! 11 ;11 1111111'.llll ll ll lll l:ll ll l l■
-llllllllllllll llllllllli 111111111 •llllilll lll llllllllllll llll:lllill ill! l:!1111111111111111 1111 ll 1lldllllll lll! ll ll llll1IIIIII
=:l!IIIIIIIIIIIIIIIIIIIII IUlll!ll •lllll lll!IJlllllllli llllllll lllllllll:.Lllllllll1 11111111 1111i 11 111.IIIIIILllll llll llll1 llllli=
=:11111111111111111111111 II IIII! II illlllll:lllllllllll llil llllllllllill: l11l11111111111111.IIII! 11 :ll:1111111111111 11 1!11:111111=
=;IIIIIIIIIIIIIIIIIIIIIIJ:ll lllllll •.1111111111111111111:llllllirllllll!lli 111111111111111111!1111' II li:1111111 lll! ll ll lil lt llllll
=;lilllllllllll llllllllll:ll:1111111 '11111111111111lllllillllllll llllllllll!llllllllll'llllllll 1111: 11111~1111111,1111 11111111;111111:
=:111IIIIIIIIIIIIIIIIIIII IUllllll ,lllllllllllllllllll1ll!l llll:llllllllli'llllllllll llllllll 1111: ll:ll lllllll llll ll ll l1i!IIIIIJ=
=:lllllllllllllllllll llli:11:11111.ll ,llllllllillllllllll111111111:11l11111111111111111,IIIIIIIIIIII'. ll:li ll lllll llllll ll :ill i:111111=
=;11111111111111111111111:ll:IIIII II 1 lllllllllllllllllll1llll llllll~lllllll~llllllllll llllllll'IIII: llill:11 11111111111 11,IIH: llllll:
=ll!lllllllllllllllllllllill11llllll •llllllll!llllllllll!ll!lllll:llllllllll l!llllll!I IIIIIIII IIII: ll:ll 1 llllll l: llllll ll llll1 llllli=
·· • :111llllllllllllllllllllillilllll II llllllllillllllllll:llllllll:ll~lllllll:IIIIIIIIIJ:111111111111 11111:11111111111!1 111 ::! 111111=
_;li!lllll!llllllllllllll!llilllll.ll :llllllll!llllllllll :1111111111111111 11 11!11111111'11111111:IIII: 11111:ll llll l'llllll lllllllillllli=

■lllllllll llllllll~ lll~~IIH~ll llHlllmllll llllU!lllllrlllllllllllll llll!llfllllllllllllllllllllllllll
Figure 3: Quartos floorplan view of entire FPGA

Each MegaLAB also contains an Embedded System Block (ESB), which in the

Apex 20K devices is a 2048 bit RAM block that can be configured as RAM or

ROM. The use of these blocks is further discussed in the microprocessor design of

chapter 4 and the neuron designs in chapter 5.

For comparison purposes, the Virtex series from Xilinx [2.2], being

approximately equivalent to the Apex series in terms of age and capabilities, uses

a slightly different arrangement. The basic block is still the Logic Cell, consisting

of a LUT and flip-flop, but these are grouped in pairs to form 'slices', with each

slice containing extra circuitry which can allow the LUTs to be grouped together

efficiently to implement functions of up to 9 inputs. The slices are then grouped in

7

pairs to form Configurable Logic Blocks (CLBs), which are arranged in a regular

lattice. Although the basic Logic Cell is similar to the LE of the Apex device, the

slight differences mean that in many cases a similar circuit implemented in the

two FPGA families will have quite different logic cell requirements. Some of the

more advanced Altera devices have multiple LUTs and registers in each LE, and

this will be noted where necessary, but the convention adopted in this thesis for

comparisons between the two FPGA types is that a CLB and slice in the Xilinx

devices are equivalent to 4 LEs and 2 LEs respectively in the Altera Apex device.

8

2.2: Hardware Compilation

The mapping of a design to the logic-cell structure of the FPGA is generally

performed by software, usually software provided by the device manufacturer. For

Altera's FPGAs the software is Altera' s own Quartus II software [2.3], which

contains a sophisticated logic synthesiser and fitter, allowing the design to be

entered as a schematic or in some form of hardware description language (HDL).

The use of a HDL allows a much more complex system to be generated easily, as

a single line of code could potentially represent a great deal of hardware,

especially where mathematical functions are required. The language used for the

systems in this work was VHDL [2.4], an industry standard which allows the

hardware to be defined in a manner similar to software, though with some

important differences. Firstly, the hardware description does not define an

algorithm, but rather a series of independent pieces of circuitry, all of which will

operate in parallel. lf an algorithm is to be implemented in hardware, it must be

broken down into a sequence of operations, so that the operations can be

implemented as blocks of hardware, and the sequence implemented by a state

machine or similar. The convolution-based image processor presented in chapter 3

was originally based on a simple software implementation, and the state machine

used to control it shows the flow of events that would take place if software was

used.

ln some cases the logic synthesiser can be put to use to avoid having to design a

complex piece of hardware, as demonstrated in chapter 3 where the image

processor developed there required a divide-by-81 circuit. The fastest arithmetic

circuit is one that is built from purely combinatorial logic, rather than using any

form of repetitive bit-by-bit algorithm, and this can be made even faster if built as

the hardware form of a look-up-table. The divider was therefore defined by a long

block of VHDL that explicitly stated the desired output for all possible inputs.

With a 15-bit input, this necessitated over 32,000 lines of code, which

demonstrates another useful feature of a hardware description language such as

VHDL, in that it can be written by machine, in this case being generated by a

simple program written in QBasic, which calculated the desired output for each

possible input, and created the VHDL code accordingly. The logic analyser and

synthesiser were then able to simplify this code to produce something relatively

9

small. This is a useful aspect of the hardware compilation which can save a lot of

time.

In addition to producing VHDL descriptions of simple blocks such as a divider or

look-up-table, much work has been done in allowing implementations of complete

DSP functions in software packages such as MATLAB to be converted

automatically to VHDL [2.5][2.6], which can then be processed with the FPGA

vendor' s own tools to produce an FPGA implementation. It is also possible to

compile from programming languages directly to hardware. One such language is

Handel-C [2. 7], which is much like C apart from its output. In either of these

cases the compiler will automatically generate the necessary hardware to perform

the coded algorithms, and the language contains some extensions to make use of

the parallelism possible with a hardware implementation.

While this approach may be useful in converting existing implementations, the

work presented in this thesis was coded either in VHDL or in a mixture of VHDL

for the functional blocks and schematic entry for their interconnections.

10

2.3: FPGA Performance

With the signals passing through a series of routing switches between logic cells,

there is always a speed penalty associated with using programmable logic rather

than full-custom devices. As is shown in the later chapters, if a design contains a

lot of logic spread out over many LABs this can limit the possible clock rates to a

few tens of megahertz, whereas a well laid-out design implemented in full-custom

VLSI could achieve many times this speed, as is apparent in the modem

generation of PC processors.

It is this reduction in performance that makes parallelism so important. In addition

to this, a hardware algorithm can often outperform a software algorithm without

using parallelism, as it doesn't have to fetch and decode instructions, and

intermediate results can be stored in registers rather than being written back to

memory for later retrieval. Local parallelism can also be used, for instance if

complex numbers are used, the real and imaginary parts must be handled

separately by a software algorithm, while hardware can handle them in parallel.

Complex multiplication requires four multiplications, an addition and a

subtraction, and performing these in parallel could provide a significant

performance increase. [2.8]

11

2.4: Digital Signal Processing with FPGAs

Since it is possible in many cases to gain a performance increase over traditional

software by using hardware, the usefulness ofFPGAs in this field has been known

for some time. [2.9][2. l O] In particular, the reconfigurable aspects of FPGAs

[2.11] and their ability to mix hardware and software [2.12] have been shown to

be useful for DSP acceleration. A method for mixing hardware and software in the

FPGA with a novel low-footprint embedded processor is discussed in chapter 4.

In DSP applications, the FPGA can be useful either in implementing the entire

DSP system on a single chip, or as a co-processor in conventional PC-based

systems. [2.13] In systems such as these, the functions which can be adapted to

make use of parallelism are implemented on the FPGA, with the rest of the

processing performed by the software. The high-performance GPUs found on

modem PC video cards are a good example of how custom hardware can provide

a significant performance boost compared with a software implementation.

Many of the more complex modem FPGA families contain additional DSP blocks

alongside the logic elements and embedded memory. The DSP blocks are

designed to support the implementation of digital filters, FFTs and DCTs, and

other similar functions. These functions tend to require multiplication, and so the

DSP blocks contain configurable multipliers which are usually much faster than

the logic elements. Taking Altera's Stratix 2 series [2.14] as an example, there are

up to 96 DSP blocks available (in the largest device), and each block can be

configured to support either a single 36 bit x 36 bit multiplier, four 18 x 18

multipliers or eight 9 x 9 bit multipliers. Theoretically then, the largest device in

the series could potentially provide the capacity to perform 768 9-bit

multiplications in parallel, before any of the logic elements are used. It has been

shown that high performance can be achieved with relatively low clock rates if

parallelism is exploited [2.8] and it can be assumed that the DSP blocks will be

able to perform much faster than the equivalent blocks built with logic elements

as their internal structure does not suffer from the reduction in speed due to the

configurable routing circuitry.

12

2.5: The Experimental Hardware

The hardware implementations of the systems discussed in this thesis were done

with a Digilab 20Kx240 FPGA development kit, from El Camino (2.15]. The

Digilab was fitted with an Altera Apex 20KE series FPGA, of type

EP20K300EQC240-IX, providing the equivalent of approximately 300,000 logic

gates.

The Digilab board pictured in Figure 4 provides the means for powering and

configuring the FPGA, and also provides a range of additional devices, many of

which were used in the prototype systems. There are two banks of high-speed

asynchronous static RAM, arranged as 512K x 16-bit, along with a serial

EEPROM for non-volatile storage. Four push buttons provide simple on-board

command inputs, while four bi-colour LEDs and a four digit 7-segment display

provide output capability. In addition to this, facilities are provided to attach

external hardware to the FPGA, allowing additional I/0 devices to be used. The

use of such devices is shown in chapter 3, with a communications system, and

chapter 5, with a variety of input and output systems.

Figure 4: Photograph of Digilab 20Kx240 FPGA development kit

13

There is a clock oscillator on the board, providing a 48MHz clock, and the -1 X

speed grade FPGAs have PLL-based frequency synthesisers on board which can

be used to multiply or divide the frequency to provide alternative clocks. These

PLLs were used to generate a 25MHz clock for the VGA timing logic used in

some of the experimental work. It was found that a video display could be useful

when a large quantity of low bandwidth status signals needed to be displayed, and

because the reconfigurable logic made it a simple process to tailor a display

controller to fit the exact needs of the system, VGA video displays were used on

some occasions to provide a user interface.

The Altera Apex 20K series were state-of-the-art when the work was started,

though technology moved on rather quickly, and just a couple of years later it was

possible to fit at least ten times the amount of logic into an FPGA as the 300k-gate

20K300 device allows. However, unless otherwise specified, throughout this

document it is assumed that any references to the architecture of the FPGA or its

logic cell functions refer to the Apex 20K series. The results obtained and the

architectures presented are still valid, as the systems presented in this thesis are all

implemented in VHDL and can be migrated to newer devices with little

modification.

14

Chapter 3: Image Processing with an FPGA

This chapter describes a series of image processing systems implemented in an

FPGA, for the purpose of performing high-pass filtering on an image in order to

extract details for further processing. Two main processing algorithms are

presented, along with a cellular automaton processor based on a reworking of the

same hardware.

3.1 Theory and Review

It has been shown [3.1][3.2] that an analysis of the surface texture of a skin lesion

can be useful in determining whether the lesion is benign or malignant. The skin

has a natural pattern of lines, which generally tend to flow in one overall

direction. As new skin develops and replaces the old, it will usually conform to

this same pattern, preserving the skin line structure. However, an uncontrolled

growth of cells, such as that displayed by cancerous cells, will not follow the same

pattern and will lead to a disruption of the pattern on the skin above. Therefore, as

shown in [3. l], it is possible to gauge the likelihood of a skin lesion being

cancerous by examining the skin lines. Figure 5 shows a comparison of a

malignant lesion and a benign one, and their skin line patterns.

Figure 5: Comparison of lesions and their skin line patterns

Sections 1 and 2 show the malignant lesion, and it can be seen that the pattern in

the lower left hand comer of section 2, corresponding to the inside of the lesion, is

15

much more irregular than in the upper right hand comer. By contrast, sections 3

and 4 show a benign lesion, and it can be seen that the skin lines do not noticeably

change direction between the inside and outside of the lesion.

This skin line analysis can be done by computer, but it is necessary to first extract

the pattern of skin lines from an image of the lesion before they can be analysed.

This can be done by a number of methods, which all essentially involve a high

pass filtering operation. This operation removes the more gradual changes in

intensity, leaving just the fine details, such as the skin lines. With good enough

contrast in the source image, an edge detection algorithm could also be used.

A widely used method of filtering in image processing is convolution, where each

pixel in the output image is computed from the pixels within a mask centred on

the corresponding pixel in the source image. Each cell within the mask has a

weight by which the pixel under that cell is multiplied, and then the weighted

pixels are summed, usually divided by the sum of the mask weights if this is non

zero, and the new pixel is stored in the result image. This is a simple and

configurable process, as the mask weights can be changed to implement a range of

different functions. The function of interest, based on the work in [3.1, 3.2], is a

high-pass filter operation implemented by isolating the low-frequency

components via a low-pass averaging filter and subtracting these from the original

image. The averaging filter is a simple filter to implement with convolution, as all

mask weights are 1, and therefore no multiplication is required. In the case of this

particular type of filter, the size of the mask determines the cut-off frequency of

the filter, with a larger mask allowing coarser details through.

With convolution being a widely used image processing function, many VLSI

implementations of the process have been made, in both custom VLSI and

reconfigurable logic.

Vega-Rodriguez et al. present an optimised architecture for image convolution

[3.3], focusing on convolving an image with a fixed 3x3 mask. The

implementation presented accelerates the process by performing the processing

for four pixels in parallel, with pipelining. On each clock cycle four rows of the

image data under the mask are read, allowing three pixels to be partially computed

16

and the fourth to be fully computed. Each cycle also finishes the three partial

computations from the previous cycle.

The filter mask is implemented as 9 parallel multipliers and an adder tree, with

optimisations applied to the latter such that each adder is built with only as many

bits as are required, thus reducing hardware usage. The multiplications are

decomposed into a series of summed multiplications by powers of two,

implemented with shifters and an adder tree. In the case of a low-pass filter, where

the centre column of the mask has coefficients which are twice that of the other

columns, the same hardware is used for all columns, with the result of the

computation of the centre partial result being multiplied by two, again by shifting,

thus reducing the hardware usage still further. It is shown that with a clock of

16MHz the system is capable of processing 30 images in less than 900ms, and is

therefore capable of real-time processing of video information.

The approach of simplifying multiplications by restricting them to powers of two

is also adopted by Hsiao et al. in the implementation of an edge detection system

[3.4] which incorporates a noise removal filter with a Gaussian mask. The mask is

approximated with powers of two, such that each mask coefficient is either a

power of two or the sum of no more than two such numbers.

Torres-Huitzil et al. present another architecture for convolution in which

processing is accelerated by re-using partially computed pixels [3.5]. This design

recognises that each pixel in the source image will be used in the computation of

several output pixels, and so for each pixel read a series of processors compute

that pixel 's contribution to each of the output pixels dependant on it. A mask size

of 7 x 7 pixels is used, and so 49 processors compute partial results for the same

pixel, each processor using the mask co-efficient for a different position within

the mask. Thus, each pixel need only be read once. The partial results are collated

and used to generate the output pixels once enough input pixels have been read.

The system is stated to take 8.35ms to process a 512x512 pixel greyscale image

with a 7x7 mask.

Bosi et al. present an architecture for a convolution co-processor intended to work

alongside a conventional DSP, which handles the high-level transfer of image

data. The intent of this implementation is to increase the speed of processing, and

17

it is stated that a TMS320C40 DSP requires around 20 instruction cycles per pixel

with a 3x3 mask. This co-processor [3.6] is based on shift-registers, which hold

the previously read pixels, so that each pixel need only be read once. The

processor holds two complete image lines plus 3 pixels of a third line, starting at

the pixel under the top-left comer of the mask and extending across and down the

image to the opposite comer of the mask. For the example presented, in which the

processor is handling subsections of the image 68 pixels wide, a total of 139

pixels are held in the shift register. With the register full, an output pixel is

produced on every clock cycle. The principle of storing pixels so that they can be

used in subsequent mask operations without being re-read from memory is a

simple and widely used way of speeding up the process [3 .7][3.8][3.9]. The

reduction in logic usage brought about by implementing some of the shift register

stages with the FPGA's RAM rather than logic elements is also shown in the work

by Hsiao et al. [3.4] This usage of the internal RAM as a shift-register is possible

on some of the more modern FPGAs.

It is also shown in [3.6] that convolution with a larger mask can be broken down

into a series of convolution operations using 3x3 masks. A 3x3 ' elementary'

convolution engine architecture is shown, along with the method by which four of

these can be used to perform a convolution with a 5x5 mask. This elementary

convolver is one which can take in partial sums from other convolvers, thus

allowing several to be used together. This method has the advantage of reducing

the complexity of the design, as all that is required is a simple 3x3 elementary

convolver repeated several times, but it does increase hardware usage, as many

operations are carried out twice where the convolution windows overlap. A third

alternative shown is to break the convolution down into a series of 1-D

convolutions, which has the benefit of being easier to scale as the image or mask

size is changed, though with the drawback of increased hardware usage over a

single 2-D convolver as partial sums must be passed between stages. For a fixed

mask size a single 2-D convolver is the optimum choice, but the more complex

methods involving breaking the convolution up into smaller processes allows for

better scalability when the mask is of variable size. Consideration is also given to

multiplexing the processing hardware between two shift-registers, allowing two

image lines to be processed simultaneously with the same hardware, though

reducing the throughput from one result pixel per clock cycles to one per two

18

cycles. However, this is a reduction in the quantity of multipliers only, and a large

number of shift register stages are required for large images. A total of 962 CLBs

in a pair of Xilinx XC4013s are required for the implementation, the majority

being used to implement the shift registers. This is equivalent to 1924 LEs in an

Apex device.

Addressing the issue of shift-register requirement, Cardells-Tormo et al. present a

series of alternative shift-register-based architectures [3.1 O], intended for

processing the large quantities of image data required for high-resolution printing.

The first of the architectures presented holds as many pixels within the shift

register as there are pixels in the mask, and thus allows the output pixel to be

computed using only the data from the shift-register, while not requiring any more

shift register stages than the minimum necessary. More complex architectures are

also presented, which use several shift registers operating in parallel, or move a

larger block of image data through the register with each cycle, to further enhance

the speed of the processing. It is shown that there is a trade-off between

performance and hardware cost; although the methods presented use fewer shift

register stages than the earlier work [3.6] the performance decreases and it is no

longer possible to produce a new result on each clock cycle, as to produce a row

of output data, 2s+ 1 complete rows must be read from the source image, where s

is the mask size.

In order to further reduce the amount of hardware required, Zhang et al. noted that

many of the most frequently used convolution kernels have some degree of

symmetry, and indeed many are quadrant-symmetric, so a reduction in hardware

can be achieved by implementing only a quarter of the kernel, and using this to

process the pixels from all four quadrants, with suitable co-ordinate

transformation [3.11]. A reduction of 75% in the number of multipliers and nearly

50% reduction in the number of adders is claimed, when compared with a

hardware system in which all kernel cells are processed by separate hardware.

Taking the other route of performance over hardware cost, Perri et al. have shown

that if minimising the hardware is not an issue, greatly improved performance and

flexibility can result from employing an array of 3 x 3 convolvers, each built with

19

its multipliers implemented in parallel [3.12]. This implementation allows

processing at different word lengths depending on configuration signals, and can

use arbitrary mask coefficients, in contrast with the architecture in [3.6] where the

mask coefficients were restricted to certain values to save hardware. This design

takes 4.6ms to process an image of 1024 x 1024 pixels with a 5 x 5 mask,

operating at around 28MHz.

The benefits arising from parallel processing are demonstrated in work by Rosas

et al. where a convolution engine designed to implement edge detection with a

Sobel mask operation is implemented with 30 parallel processing elements [3.13].

The overall processor works on a 32 pixel wide column of the source image,

repeating as necessary across the image, and stores the read pixels in memory

internal to each of the processing elements, which produce their outputs in

parallel. The resultant processor can process a 640x480 image in 23ms, fast

enough for real-time processing. This is compared with 3.6 seconds for the same

processing carried out on a SPARC-20 CPU.

In a similar fashion, Saldana et al. present an image processor using 49 parallel

processing elements [3 .14], which also makes use of local caching of pixels to

reduce the number of source pixel accesses, as has been seen to be the case in

many works. In this case around 200 images of 640x480 pixels can be processed

each second at 66MHz, an increase in speed of 8 x compared with a software

implementation on a 1.5GHz Pentium 4. This is indicative of the power of parallel

processing, as most if not all FPGA implementations operate at significantly

lower clock speeds than their software counterparts, and still achieve a

performance increase.

While many of the above implementations are of general-purpose convolution

systems, much work has been done specifically on edge detection

[3.15][3.4][3.16][3.17], which, though less flexible than full convolution, is

perhaps suited to the task at hand, i.e. the extraction of the skin lines from the

image. Indeed, edge detection is widely used enough that Altera produce an IP

block for this purpose [3.18], which can be implemented through a plug-in to the

Quartus software. This is a convolution-based system operating with the Sobel

20

masks, and in the reference design is connected to the Nios processor core (see

section 4.1), which handles the transfer of data between the core and memory. The

vast majority of the edge detection systems use the Sobel masks, as these require

just a 3x3 convolution with coefficients which are powers of two, and as the

previous work shows, can be implemented efficiently.

Convolution is the simplest method of implementing image filtering, but there are

other more complex methods such as FFTs which can provide more flexibility or

better performance. The FFT, and its close relative the Discrete Fourier

Transform, have been widely implemented in hardware. [3.19] An alternative, the

Discrete Hartley Transform, which uses only real numbers, has also been

implemented. [3.20]

Uzun et al. describe a system using an FPGA as a co-processor [3.21] in a

frequency-domain image filtering environment. The FFT in this case is performed

by several parallel processing elements, with each processing element containing

a 7 stage pipeline and implementing a 1-D FFT. The 2-D FFT for image

processing is composed of separate 1-D FFTs performed on each row and column

of the image. The system is built using the Handel-C language, and shows a

performance increase when compared with software implementations.

The FFT hardware does however tend to be very complex, due to the large

number of multiplications required when computing with complex numbers,

especially when using floating-point number representation. An example given in

[3.21] uses 45% of the logic space in a Xilinx XCV2000E, which equates to 4320

CLBs, functionally equivalent to 17,280 LEs in an Altera Apex device.

This large-scale hardware usage is typical of many of the systems presented in

this section, as in general high performance is more important than efficient logic

cell usage in these image processing applications.

21

3.2: Image Processor Implementation

It was decided that the initial implementation would be a direct hardware

translation of the basic flow of the operation, i.e. reading the pixels in turn and

computing the result when all the required pixels had been read. The aim of this

initial implementation was to determine if any speed-up could be achieved

without optimising the architecture for hardware implementation. Once a working

system was developed, future implementations would be more highly optimised to

achieve maximum performance.

It was clear that an implementation using shift-registers to hold entire image lines

would be significantly more costly in terms of logic element usage than one which

holds only the data required to compute one output pixel.

The shift register design as used by Bosi [3.6] which holds M image lines for a

mask size of M x Mis feasible when a 3 x 3 mask is used, but becomes unfeasible

for FPGA implementation with a 9 x 9 mask, as the number of shift register cells

exceed the number of LEs available in the FPGA. Since a 9 x 9 mask was

required, as this was the size used in the original work, a shift-register design was

not used. The implementation was based on the flow of the software algorithm for

the filter, reading the pixels one at a time and keeping a running sum, before

dividing.

A memory-to-memory design was used, constrained by the features of the FPGA

development kit introduced in section 2.5. Two banks of memory were used, one

for the source image and the other for the result image. The image size was set to

256 x 256 pixels (65536 pixels total), though the hardware could easily be

changed to accommodate larger or smaller images, with 512 x 512 being the

largest square power-of-two dimensioned image which could fit into the memory

on the board. If a square image was not required, it could be expanded to 512 x

1024 or 1024 x 512, to use all available memory. The dimensions do not

necessarily need to be powers of two, but this makes the most efficient use of the

memory, as the X and Y co-ordinates each fill a certain number of address bits

completely, and the complete address can be produced merely by joining the X

and Y addresses without needing to perform addition.

22

The overall form of the processor is shown in Figure 6. There are three main

functional elements: the data processor (named DATAPATH in the VHDL code),

the address processor (ADDRESSPROC) and the control unit (CSM). These are

explained in detail below.

Read data----

Clock

Reset---"'.i

Go

DATAPATH

CSM

----• Write address

Done

Ready

jOIIII~;::::=: Write control

Write address

ADDRESSPROC t-----• Read address

Figure 6: Block Diagram of the Convolution Image Processor

3.2.1: Data processor

This section performs the arithmetic on the image. Recalling the basic description

of the process, the required processing consists of summing the pixel values over

the mask area, dividing the sum by the number of pixels in the mask, and

subtracting this value from the original pixel value. Making the assumption that

an image of skin will not usually contain extremely sharp changes in brightness,

we can see that this will usually yield a low value for the output pixel, so the

image is then brightened using a gamma correction process. Figure 7 shows the

layout of this hardware.

23

Data In Accumulator
Gamma

COf'T8Ctk>n

Figure 7: Block diagram of the data processing section

Data Out

The incoming data is 8 bits wide, but the accumulator and adders must be wider to

accommodate the accumulated values. The maximum possible input value will be

255, and since the original test system used a mask of 9 x 9 pixels, up to 81 such

pixels can be accumulated, yielding a maximum possible accumulator value of

20655. This can be accommodated with 15 bits, so the accumulator, the first adder

and the divider were built 15 bits wide. The output of the divider, which divided

by 81 in this case, would never be greater than 255, so the subtractor and gamma

corrector were built 8 bits wide.

Incoming 8-bit pixel data is padded to 15 bits by filling the upper seven bits with

zeroes, and fed to the adder. This outputs the sum of the current accumulator

value and the incoming data, which is clocked into the accumulator for each

incoming pixel. A special case is when the pixel at the centre of the mask is read,

in which case it is also clocked into a second storage register. Once all required

pixels have been read, the result is available at the output of the data path without

any further clocking. Only a short delay of 30-50ns is required to allow the data to

propagate through the chain of processing elements.

The divider was built for speed rather than compactness, and as such is simply a

large combinatorial logic circuit with I 5 inputs and 8 outputs, whose VHDL

definition was computer-generated. The code which generated this is shown in

appendix A. 1. Some code space and compilation time was saved by exploiting the

fact that the maximum number which the divider would have to divide is less than

the maximum number supported by 15 bits, in the case of the 9 x 9 mask this was

20655 vs. 32767, saving 12112 lines of code.

A physically smaller divider could have been used in place of this, though at the

expense of speed, since the smallest dividers are generally those which use an

iterative process or repeated shift-and-subtract.

24

These dividers would require several clock cycles to complete a division, although

a pipelined system would be able to perform these while reading in and

integrating the source pixels for the next output pixel, saving time.

Gamma correction is provided by a look-up table (LUT) consisting of a 256x8 bit

ROM. The data from the subtractor is fed to the address inputs of the ROM,

which provides the corrected data at its outputs. This allows quick changes of the

correction curve during testing, as even though the ROM contents were fixed at

compile-time, changing the ROM required only that the final assembly of the

programming file was carried out, with no new logic synthesis or fitting being

necessary.

The correction curve is shown in Figure 8. Input values are shown on the X axis,

output value on the Y axis. This curve was determined experimentally, using Jase

Software ' s Paint Shop Pro [3.22] to apply gamma correction to an uncorrected

image produced by an early test system. Once a correction curve had been found

which produced an image in which the skin lines were clearly visible, the curve

was programmed into the ROM, and was then used for all subsequent tests.

192

0 .,-....,_,_.-++-++++->-+-+-+-+-++-+-+--H-+-+-1-+-+--+-+-<>-+-,-l

0 64 128 192

Figure 8: Gamma correction curve.

3.2.2: Address Processor

The address processor generates the read address from the pixel address and the

mask count. The read address is calculated by adding an offset to the pixel

25

address, based on the currently selected mask pixel. For a 9 x 9 mask, the top left

comer's co-ordinates will be (x - 4, y - 4), where (x,y) is the target pixel co

ordinate. Since the pixel address is a single binary number, it must first be split

into X and Y co-ordinate components. The image size was chosen to be a power

of two to make this split very simple. With an image of 256 x 256 pixels, or 28

pixels on each axis, the two bytes which make up the 16-bit address contain the

two co-ordinates. In order to retain compatibility with standard computer image

formats, the image is scanned horizontally, line by line, therefore the high order

byte is the Y co-ordinate and the low order byte is the X co-ordinate.

For performance reasons, the original approach chosen to perform the offset was

to split the incoming address into X and Y, and generate all offsets in parallel,

selecting the appropriate pair with a pair of multiplexers, as depicted in Figure 9.

This approach has the advantages of speed and coding simplicity, but generates a

large amount of logic.

X co-ordinate out

Multiplexer

Figure 9: Example of a co-ordinate transforming multiplexer

A simpler approach which was used later replaced the multiple adders with a

single 16-bit adder, which adds a single offset onto the address to produce the

same result. Since the image size is fixed at 256 x 256, we can see that the pixel

immediately above the target pixel will have an address which is 256 lower than

the address of the target pixel. More generally, the pixel at (x + a, y + b) will have

26

an address of P + (w x b)+a, where Wis the image width and Pis the address of

the pixel at (x, y). For an image 256 pixels wide, with a 9 x 9 mask, the full set of

mask offsets is shown in table n.

-1028 -1027 -1026 -1025 -1024 -1023 -1022 -1021 -1020
-772 -771 -770 -769 -768 -767 -766 -765 -764
-516 -515 -514 -513 -512 -511 -510 -509 -508
-260 -259 -258 -257 -256 -255 -254 -253 -252

-4 -3 -2 -1 0 1 2 3 4
252 253 254 255 256 257 258 259 260
508 509 510 511 512 513 514 515 516
764 765 766 767 768 769 770 771 772
1020 1021 1022 1023 1024 1025 1026 1027 1028

Table 1: Mask offsets for a 256 pixel wide image

The offset is generated by a look-up table (LUT) which is implemented as a small

block of VHDL-coded ROM. The address for the ROM is the mask co-ordinate

generated by the mask counter in the control unit. It should be noted that the two

versions of the address processor perform slightly differently when used at the

very edges of the image. Processing the X and Y co-ordinates separately means

that if the mask moves off the edge of the image, for example if the centre pixel is

on the right-hand edge of the image, the section of the mask which has left the

image area will in fact 'wrap' around to the opposite edge, remaining aligned

vertically with the rest of the mask. This is because there is no carry from the X

co-ordinate to the Y co-ordinate, so as the X co-ordinate rolls over through zero,

the Y co-ordinate is unchanged. Adding a single offset to the pixel address will

cause the mask cells which have moved off the edge of the image to reappear on

the opposite edge one row down (assuming it is the right-hand edge into which the

mask is moving). This difference doesn' t matter in the case of the convolution

filters, as the mask is never placed anywhere where it would have pixels outside

the image boundary, but for the cellular automaton processor in section 3.8 correct

wrapping at the edges is essential and so two individual co-ordinate transformers

must be used.

An additional logic circuit checks the current pixel address for validity. An invalid

pixel is defined as one which is close enough to the edge of the image that the

27

mask could not be placed around it without some of the mask pixels being outside

the image boundary. These pixels are not processed by the system, and so the

output from this validity-checker is used by the state machine to decide whether to

proceed with the inner processing loop. If the pixel is invalid, it is skipped to save

processing time and a black pixel is written to the processed image.

This checker splits the pixel address into X and Y co-ordinates and checks that

both co-ordinates are greater than 3 and less than 252, for a 9 x 9 mask.

3.2.3: Control Unit

The control unit consists of a state machine and a pair of counters which generate

the memory addresses and control signals for the system. The master pixel

counter generates the address of the target pixel which is to be processed. The

mask counter is used to count mask pixels, so for a 9 x 9 mask this counts from 0

to 80. The mask count is used by the address processor to modify the pixel

address to fetch the correct group of source pixels.

PIXa< FFFF

Figure 10: State transition diagram for the control unit

28

Figure 10 shows the state transition diagram for the control unit. When reset is

asserted, the system enters the idle state, where it will remain until the active-low

GO input is asserted. The supporting logic issues a clear signal to the address

counter when the state machine is in the idle state, to ensure that the processing

operation begins at the correct point.

Upon receiving the GO signal, the system enters the main processing loop with a

transition to the CLEAR state. While in this state signals are issued to clear the

accumulator and mask counter, and the next state is chosen by looking at the

VALID signal from the address processor. If the pixel is valid, the next state will

be ACCUM, starting a new integration cycle. For invalid pixels the next states

will be the chain consisting of WW AITI, WRITE and WW AIT2, which write the

accumulator to memory at the currently selected pixel address.

After writing a pixel, the state machine will either enter the DONE state, if the

pixel address is FFFF 16, or go to the !PIXEL state, during which the pixel address

is incremented. After IPIXEL the state machine returns to the CLEAR state.

The pixel processing is performed by the states inside the dashed box in Figure

10. Starting in the ACCUM state, with the accumulator cleared and the mask

count at zero, the state machine passes through states Q, !MASK and RDW AIT

until the mask count reaches 80 and all pixels in the mask have been read and

accumulated. The exception occurs when the mask count reaches 40, when an

additional state, BCLOCK, is used to write the centre pixel into the centre pixel

register.

29

3.3: Alternative Filter Masks

3.3.1: Second - order High-Pass Filter

The high pass filter is an effective method of extracting the skin lines, but it can

be costly in terms of processing time and logic element usage due to its large

mask size and the need for a divider. Therefore some speed increase could

theoretically be obtained through the use of a filter requiring fewer source pixels

to be read. One such simpler filter is the second-order or Laplacian filter [3.9],

which uses a mask of 3 x 3 pixels, of which only five need to be read.

Figure 11: Second-order filter mask

Since the mask weights are either 1 or -4, this is a simple function to implement in

digital hardware. A multiplication by four can be performed with a left - shift of

two bits while the negation can be performed by using a subtractor rather than an

adder. The remaining hardware is very similar to the averaging filter. The pixels

read from the source image are either added to the accumulator or multiplied by

four and subtracted from the accumulator. No division is required as the sum of

the weights is zero.

This filter essentially performs a high-pass or edge detection operation, and

whereas after performing the low-pass filtering with the averaging filter, it is

necessary to subtract these filtered components from the original image, there is

no such requirement with the second-order filter. Also, while the averaging filter,

by subtracting one image from an essentially similar one, will generally produce

low pixel values, the lack of such subtraction in the second order filter means that

the gamma-correction is not necessary and can be removed. These simplifications

mean that this filter has the advantage of requiring much less hardware than the

filter of section 3.2, while also exhibiting higher performance.

30

3.3.2: Gaussian Blur filter

The Gaussian blur filter is a low-pass filter that performs the same function as the

averaging filter, but produces a weighted output average of the neighbourhood of

each pixel. This tends to preserve edges more than the averaging filter, and has a

gentler response for a given mask size.

The Gaussian coefficients are shown in Table 2. For a mask size of N x N, row N

is taken from the table, and the outer product is found with the transpose.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

Table 2: Gaussian coefficients

It can be seen from the values in the table that these approximate a Gaussian

distribution for large N. [3.23]

From the table of coefficients, we see that for a 3 x 3 mask, the final mask values

w ill be:

The mask coefficients sum to 16, so this must be followed by a division by 16.

This is trivial to implement in hardware, as a division by 2" is a right shift of n

bits. It is similarly easy to implement the multiplications by two and four required

when weighting the pixels according to the mask values using left-shifts. For a 5 x

5 mask, the coefficients are:

31

1 1 4 6 4 1

4 4 16 24 16 4

6 [1 4 6 4 1] = 6 24 36 24 6

4 4 16 24 16 4

1 1 4 6 4 l

The sum of these coefficients is 256, which is again simple to implement, but the

multiplications by the mask values are more difficult to implement, as not all are

powers of two. However, these multiplications, by 24 or by 36, can be broken

down into multiplications and additions which can be achieved as follows:

24n=8n+l6n

36n = 4n+ 32n

Reducing these multiplications to bit-shifts and additions usually results in a faster

or less complex logic circuit, especially in cases where only one addition is

required. In those cases when several shifted terms must be added, the adder will

have to be broken down into a tree of two-input adders, which will multiply the

propagation delay of a single adder by log2 N, for N inputs, where N > 2.

The final divisor required for a mask of size m x m is 2 2111
-

2
, so for the 9 x 9 mask

used by the test system the divisor will be 65536. This implies that the data buses

carrying the sum of the weighted pixels will need to be at least 17 bits wide,

compared with the 15-bit bus used with the averaging filter. However, the division

by a power of two is simple to implement and removes the need for the hugely

complex divider as used in section 3.2.

3.3.3: Median Filter

The median filter produces the average of the pixel values within each pixels

neighbourhood by taking the median of these values, i.e. by taking the middle

value when the pixels are sorted by brightness. This has the advantage of

preserving edges more accurately, but is much more computationally intensive

than the simpler averaging functions, as it requires that the pixels under the mask

be sorted. In a hardware implementation, this sorting would be carried out by a

32

sorting network [3.24] consisting of several 2-input compare-and-swap blocks,

each of which can sort two values. These sorting networks quickly grow in size as

the number of inputs grows. For example the odd-even transposition sort, which is

one of the simpler ones, requires n stages for n inputs, as shown in Figure 12 for

an 8-input network. For a 9 x 9 mask this network would be 81 stages long,

though as the stages repeat it would be possible to implement a partial network of

two stages and apply this 41 times, feeding the outputs back to the inputs each

time.

t Comparator

Figure 12: Odd-Even Transposition Sorting Network

33

3.4: Alternative Implementation: Second-order Filter

The second-order filter described above was implemented as an alternative to the

standard blur filter. It was decided to implement the second-order filter because

the processing is very simple, with only 5 pixels being read per output pixel, and

there being only two values of mask weights and no requirement for a divider.

This makes the second-order filter much simpler than the Gaussian filter or

Median filter implementations would be, as the arithmetic requirements for the

second order filter are minimal.

The complete system is depicted in Figure 13. This was implemented as a single

unit which is externally compatible with the convolution filter, and can replace it

in a test system without any further changes being necessary.

Data In

Clock and control

Accumulator f----1-- Data Out

Control State Machine t---- - Status signals

Address
Processor

I----_. Read Address
Write Address

Figure 13: Layout of the second order filter processor

The simplified processing section consists of a series of simple functions joined

by multiplexers. The first of these multiplexers selects either the raw input data, or

the output of a multiply-by-four circuit that shifts the incoming data left by two

bits. The output of this multiplexer is fed to an adder and a subtractor, both of

which take their other input from the accumulator. The second multiplexer thus

selects whether the output from the first is to be added to or subtracted from the

accumulator. The third multiplexer is used to select whether the accumulator is to

be updated or not, which is required because the accumulator is clocked on every

cycle, to avoid having to feed its clock through logic, ensuring glitch-free

operation. The state machine is clocked on the opposite edge of the clock from the

34

registers, so that its multiplexer controlling outputs are stable when the registers

are clocked.

The pixel and mask counters are also built synchronous, and are clocked at the

same time as the accumulator. An additional pair of multiplexers are used to

ensure that these are only incremented when required.

The state machine controlling this filter system is also a little simpler than the

convolution controller. The state diagram is shown in Figure 14.

GO= 1

Figure 14: Control State Machine for the Second-Order Filter Processor

Processing begins in the CLRALL state, which clears the registers and sets the

pixel counter to 010 I ,6. This is the top-left-hand corner of the valid area of the

image. During the ACCUM state the accumulator is updated, and the arithmetic

circuitry before it ensures that the correct operation is performed on the incoming

data, either an addition or a subtraction, and either shifted or not, based on the

mask counter value. The mask is checked in the MCHECK state, and if there are

still pixels to be read, the process repeats. When the mask counter reaches 4, the

last of the required pixels have been read, and so the mask counter is reset, the

result pixel is written, and if the current pixel isn' t the last valid one, the pixel

counter is incremented in state INCPIXEL. If the validity checking logic in the

35

address processing section determines that the pixel is invalid, the system remains

in state INCPIXEL until a valid pixel is reached. Thus, with a border of 1 invalid

pixel down each edge of the image, two extra cycles are required at the end of

each row, to skip the border pixels at the end of the row and the start of the next

one. For pixels at the end of a row, 19 cycles are required, for all others, 17 are

required.

36

3.5: A Test-bed System

In order to test the image processors, a system was required which could place a

source image in one memory bank, allow the processor to perform its operation,

and then retrieve the processed image from the second memory bank. Originally

the reconfigurability of the FPGA was exploited and these three jobs were

performed by three individual designs. The FPGA's internal circuit could be

changed without disturbing the images in the RAM, as the RAM is external to the

chip. However, it was quickly found that this was a time-consuming way to

process the images, and the three processes were combined into a single test-bed

system.

An overview of the system is shown in Figure 15.

Left RAM ______ ___._ __

bank

Control State Machine

Right
RAM
bank

Figure 15: Overview of the image processing test bed

The test bed was built to fit the arrangement of components on the Digilab board.

The two RAM banks on the board itself are 512K x 16 bits, wired as two 512K x

8 SRAM chips. The processor uses 8-bit greyscale image data, thus leaving one

half of each physical data bus free.

In the case of the left-hand (source) memory bank, this unused half was left

unused, but with the right-hand bank there is an extra socket connected to one half

of the bus which allows ROM devices to be fitted. This socket was used to

provide the interface to the host PC, using the data lines for communication,

37

leaving the address lines untouched so they, together with the other 8 data lines,

could be used to access the memory. The electrical side of the interface was an

Altera ByteBlaster MV [3.25] JTAG interface, which would normally be used to

configure the FPGA. This provides the level translation between the FPGA's 3.3V

CMOS l/0 pins and the 5V TTL compatible parallel port of the PC, allowing

high-speed transmission. In practice, due to problems with noise and with the

software on the PC, data rates were somewhat limited, requiring nearly 30

seconds to transfer an image. This gives a calculated data rate of around

17Kbits/sec. Clearly something faster is required for any practical application, but

no further developments were made. This is not a problem as there are plenty of

ready-made communication controller solutions [3.26] available for inclusion in

future FPGA designs. These include fast RS232 serial and USB protocols.

The downloader and uploader were designed to be compatible with the image

processor in terms of the control and status signals, so when the chip is reset, each

block will present a 'ready' signal once it has performed any necessary

initialisation, then wait for a 'go' signal. Once given this signal it will perform its

function, usually outputting a ' busy' signal as it does so. When finished, it

removes the ' busy' signal, and asserts a 'done' signal to indicate that it no longer

needs control of the bus.

The overall operation of the system is controlled by a master state machine which

sends out the triggering signals and monitors the status lines. A second state

machine consisting of five states tracks the progress of the first, and is used to

remove glitches from the bus control outputs. The state diagrams for these are

shown in Figure 16. The bus control outputs from the control block are

responsible for controlling the multiplexers and tri-state buffers which set up the

data path between the downloader, processor and uploader, and the two memory

banks. Since the master state machine goes through several states for each of the

three stages, these control lines would need to be active for several states, and

glitches may occur at the transitions from one state to the next. The second state

machine removes these glitches by representing each phase with a single state,

and moving from one to the next as the master state machine does.

38

Figure 16: State machines for the test-bed controller

For each process (DownLoad, ConVolution, UpLoad) there are five main states.

The SEL (Select) state is used to move the second state machine to the correct

phase, and it is in this state that an additional reset pulse is given to the relevant

unit to ensure that it is working correctly. Following this the WT (Wait) state

allows time for the buses to settle and the selected unit to initialise, before the

TRG (Trigger) state issues the command to start it. The SYN (Synchronise) state

wastes some time before any of the status signals are checked, to ensure that the

current phase is in action before its status is checked. The RUN state is entered,

and it is here that the system will remain until the ' done' signal is issued.

39

3.6: Testing the Image Processor

In order to be able to perform the task for which it was designed, the system must

be able to detect sharp changes in brightness from one pixel to the next,

corresponding to the skin lines, while ignoring the more gradual changes

corresponding to areas of skin colouration or shadow. It must also be able to

detect these changes regardless of the average colour of the image, as it may be

required to process images of a wide range of different skin tones. A number of

test images were created which were processed by the two image processors.

These were intended to reveal any flaws in the processing and to provide a view

of the performance of the two systems relative to each other. Many of the test

images were designed to replicate features which would be found in the real

world skin images.

Note that when images are presented, the source image is on the left, with the

high-pass filtered result in the centre and the second order filtered result on the

right. In some cases, though it may not be noticeable in print, there may be a I

pixel wide border of random noise around the edges of the second-order result

images, as the second-order filter completely skips the invalid pixels and doesn' t

write anything into the second memory bank for these, leaving the random data

which was present at power-up.

3.6.1: Basic Edge Detection Tests

Since the system works by high-pass filtering, a sharp change in brightness should

result in a strong output, i.e. a brighter pixel in the output image. A gentler change

in brightness should result in a dimmer pixel. The aim of this basic test was

therefore to determine that the system responds correctly to changes in brightness,

and that it can distinguish between sudden and gentle changes. Figure 17 shows a

test image consisting of a grey half and a black to white gradient half. The grey

half has a brightness value of 128, half way between the black and white values.

There should therefore be no difference in brightness between the grey half and

the middle of the gradient and an increasing difference above and below this

point. The expected outcome was that the detected 'edge' would be stronger at the

top and bottom of the image where the brightness step is greater, diminishing to

40

nothing in the middle, and that although the gradient half of the image has a

continuous change in brightness from top to bottom, it should be gentle enough

that it would not be detected as an edge.

Figure 17: Gradient test image, high-pass result and 2nd order result

The processed results are shown in the centre and right images. As expected both

systems found no edge in the centre of the image, while the strongest edges were

found at the top and bottom, where the colour difference is greatest. It can also be

seen that while the high-pass filter places its line on the lighter side of the edge,

the second order filter places its line on the darker side, an effect which is more

noticeable in the case of the high pass filter due to its much wider output line.

This effect can be seen more clearly in Figure 18, which shows an extract from a

checkerboard pattern with 16-pixel wide squares.

Figure 18: Enlarged section of checkerboard test pattern and result images

Both filters have found the edges of the white squares, but the second order filter

has placed its output pixels outside these squares, which gives the appearance of

having detected the edges of the black squares.

41

The reason for the second order filter's line placement can be seen if we consider

a section of an image at an edge, as depicted in Figure 19.

255 255 255
255 255 255

0 0 0
0 0 0

Figure 19: Pixel values for a small image section

The two pixels to consider are shaded. When processing the upper pixel, the

second order fi lter will read three pixels with values 255, one with value 0, and

the centre pixel with weighted value -1020. The sum of these is -255, which is

clipped to zero, and results in a black pixel. For the lower shaded pixel, the sum of

the five pixels read by the fi lter is 255, resulting in a white pixel. Therefore,

wherever a bright section of the image appears, the second order filter will tend to

place bright pixels around but not inside its boundary.

The high-pass filter applies a low-pass filter to the image then subtracts this from

the original image pixel. So, if the centre pixel under the mask is darker than the

average of those around it, as would happen in the case of the lower shaded pixel

in the image section, the result of the subtraction will be negative, and will be

clipped to zero. The high-pass filter will therefore not place output pixels on the

darker side of such an edge.

A second test of the edge detection capability was performed with an image

consisting of a white half and a black half, with an increasingly blurred edge

between them. The aim was to determine that the edge detector could tell the

difference between a sharp edge and a softer edge. In this case, in contrast with

the first test shown in Figure 17, the edges in this test are always between areas of

maximum contrast, so it is the slope of the change in brightness which is varied,

rather than the magnitude. The expectation is that because the magnitude of the

change is the same in all cases, the system will be able to detect the edge all the

way along, despite the softening of the edge from top to bottom.

42

Figure 20: Blurred boundary test image and result images

The result of th is second test of the edge detection capabilities is shown in Figure

20. For the high-pass filter, the resulting image, in the centre, shows that the

detected edge is darker and weaker in the areas with a slower brightness change

than in areas with a sharp change. The edge line curves slightly because the

detected line lies in the brighter half of the source image's gradients rather than on

the centre line.

In the 2nd order filter's case, the detected edge is placed at the darker edge of the

transition, and short horizontal lines indicate that edges have been detected

between the sections of differing blur.

It is clear from this image that the 2nd order filter is more suitable for simple edge

detection than for extracting small features in an image.

3.6.2: Low-frequency test

The purpose of the filtering hardware is to pick out parts of the image with a high

spatial frequency, ignoring slow or gentle changes in background intensity. The

low-frequency test is therefore intended to check that the system doesn't detect

spurious edges within images consisting only of slow changes in brightness. The

test image was created by applying a heavy blur to an image consisting of solid

blocks of different grey levels. This resulted in an image in which the brightness

changed smoothly between the centres of these blocks. The expected result of the

test was that the image would not contain any detected edges, being completely

dark.

Figure 21 shows the test image which was used, along with the results produced

by the two systems. The result images are inverted and contrast-enhanced.

43

Figure 21: Low spatial frequency test and result images

The results of this test were almost completely black, with a very faint pattern of

lines corresponding to the step changes in brightness due to the quantization, both

spatially and intensity-wise, of the image. The second order filter showed a finer

pattern of quantization noise, due to its smaller mask size and correspondingly

higher sensitivity. Although both contrast-enhanced images appear to have similar

levels of noise, the high-pass filter' s output produced a noise pattern consisting of

broader bands at a lower intensity than those produced by the 2nd order filter. This

shows that there would be less noise in the output of the high-pass filter, making it

more suitable for processing the skin lines.

3.6.3: Line Detection

The low-frequency test image was overlaid with faint lines to test the processor' s

ability to extract the details with a non-constant background. A test image was

created which consisted of a series of lines drawn onto the image from section

3.6.2. The expectation was that the result would contain a depiction of the lines

but not the varying background, the latter varying too slowly to be detected by the

system. The results of these tests are shown in Figure 22.

44

Figure 22: Line test image and result images

The results of this test show that while both systems detected the lines, the output

from the high-pass filter can be said to be the more accurate one, as it shows the

lines themselves, whereas the second-order filter has placed lines around the

positions of the lines in the source image. Referring back to the grey gradient test

above, it was seen that the high-pass filter tends to place its output on the lighter

side of the detected edge, and with the lines in this test image being generally

brighter than the background, this filter will tend to produce output inside the

lines, while the second order filter will tend to place output outside the lines. The

larger mask size and correspondingly wider output lines of the high-pass filter can

also clearly be seen.

It should be noted that the lines placed onto the background in this test were of

constant brightness, which resulted in the detected lines being stronger in areas

where the background was darker, and therefore the contrast was greater. A pair

of new test images were created in which the difference between the lines and the

background was more constant, i.e. the lines either lighten or darken the

background by a constant amount.

Figure 23: Bright line test and result images

45

The first of these test images is shown in Figure 23. In this image the lines are

narrower and more detailed, and are overlaid in such a way that they brighten the

background rather than replacing it, producing a more constant difference in

brightness. This is reflected in the result images, in which the variation in line

intensity is smaller, as was expected. Again, the second-order filter produced

outlines of the detected details, which, due to the narrow lines, gives the image an

out-of-focus appearance. However, both filters have successfully extracted the

lines.

The same combination of background and lines was used in a third test, but with

the lines slightly darker than the background. The test image and the two results

are shown in Figure 24.

Figure 24: Dark line test image

Here, the second-order filter, due to its particular result placement, produces the

better result, though both processors have identified the lines, the lines are much

better defined in the second-order output.

46

3.6.4: Skin Image Tests

The system was tested further with a range of images of skin lesions taken during

the work in [3.1]. The particular set of images presented were chosen to

demonstrate the system's response to a variety of different patterns and lighting

conditions, covering the range of images which the system would be likely to

encounter. A selection of these and their processed results are presented below.

Figure 25 : Sample skin lesion and processing results

Figure 25 shows a section of a lesion with well-defined lines, and the two

processed result images. It is clear that the high-pass filtered image, shown in the

centre, shows the skin lines much more clearly than the 2nd order filtered image,

which shows a much finer level of detail in which the relatively coarse skin lines

are lost. This was found to be the case for most of the skin images, and is a result

of the difference in mask sizes between the two filters. With its 9 x 9 mask, the

high-pass filter is less sensitive to the small details and tends to extract the larger

skin lines only.

The higher sensitivity of the second order filter could be a problem if the image is

noisy. Such noise in the image could arise from noise in the image sensor, or from

quantisation or encoding noise. To test this, a sample skin lesion image obtained

from the internet [3.27] was used, which had a reasonable degree of distortion due

to JPEG compression artefacts. JPEG compression divides the image into 8 x 8

pixel squares before performing DCT functions, and it is at the edges of these

squares that subtle discontinuities in the image can occur. It was expected, based

on the quantisation noise exposed by the low-frequency test (Figure 21) that the

47

step changes at these boundaries would appear in the processed image as faint

edges. The results of the test are shown in Figure 26.

Figure 26 : Skin line test image with JPEG artefacts

The distortion is visible as a grid-like pattern of noise from the more sensitive

second-order filter, while the high-pass filter has largely ignored this and

extracted the larger features. In this case another problem with the filtering is

revealed, as both filters have picked up the hairs lying across the lesion much

more strongly than the skin texture. It is assumed that the following analysis of

the processed image would include some function which could detect and ignore

the longer lines produced by the hairs. [3.28]

A test was carried out with an image exhibiting poor contrast and detail, to

determine how well the systems could extract the skin lines when they were not

clearly visible with the naked eye. An image was used in which the skin lines

were very faint, with the expected outcome being that the system would fail to

detect any strong lines. Following on from the previous results, the second-order

filter was expected to show more detail in its output pattern, but it was not

expected that this detail would include the skin lines.

Figure 27 shows the source image and the two test results. Neither result image

shows much detail, and the results are unlikely to be of much use to the

subsequent processing systems.

48

Figure 27 : Skin line test image with low detail

The high-pass filtered image does show the skin lines very faintly, but with a lot

of noise, while the second order filtered image is almost entirely noise. The

expectation is that this case would be rare, as if the images are to be processed

based on the skin texture, an imaging system will be employed which shows the

texture properly.

If the image has clearly visible skin lines, it is expected that the result image will

be much clearer. An example of such an image is shown in Figure 28.

Figure 28 : Skin line test image with good detail

Here, both filters show the skin lines clearly, but as with most cases there is less

noise in the high-pass filtered output. The difference in the form of the skin lines

between the inside and outside of the lesion can also be seen. It is this difference

which forms the basis of the work in (3.1 , 3.2], and would be the focus of the

system which uses the result image.

49

3.6.5: Test Conclusions

Overall, the tests have shown that the two systems work, in that they are capable

of extracting details from the source images, and that they perform as expected.

The edge detection tests also showed that the arithmetic was being performed

correctly, so that negative results were clipped to zero rather than simply being

written as spurious positive values. The gamma correction is functioning

correctly, as shown by the bright and clear output lines.

It was seen that the second-order filter tended to produce an output with more

detail than the high-pass filter, due to its smaller mask size, though when tested

with real images of skin lesions this smaller mask size tended to make it more

susceptible to noise. With these lesion images the high-pass filter gave an output

which was visually clearer than the second-order filter's output, Therefore it is

concluded that the high-pass filter would be more suitable for the processing

carried out by the subsequent systems (referenced at the start of this chapter).

The importance of a good quality source image was shown, as the image must

have good contrast and an absence of noise.

50

3. 7: Analysis of Designs

Since the convolution engine is controlled by a state machine, which perfonns a

fixed series of operations to process each pixel, it is possible to calculate the total

number of steps required to process the entire image.

Assuming a square image ofN x N pixels, and a square mask ofM x M pixels, we

can calculate the following:

First, the image pixels can be classified into two types: Valid and Invalid. An

invalid pixel is one which falls outside the area to which the centre of the mask

can be moved. This invalid area is a border of JNT(M/2) pixels width around the

entire image, where the INT function rounds down to the nearest integer.

An invalid pixel will always take 5 states to process, since this is the number

required to check a pixel for validity and advance the address counter if it is

invalid. A valid pixel will require a larger number of states, dependant on the

mask size.

In the integrating loop, four states are required for each pixel in the mask, except

the centre pixel which requires five. Therefore each output pixel calculation

requires 4M2+ 1 cycles for a mask of M x M pixels.

Adding the states required to complete the processing and write the result to

memory, the total number of states required for the image is:

V(4M 2 + 8) + SN

Where V is the total number of valid pixels and N is the total number of invalid

pixels. For an image of size P x P pixels, the number of valid pixels is

V = (P-(M - 1))2

The number of invalid pixels is then

N= P 2 -V

51

or

The total cycle count for a range of different image and mask sizes is shown in

Table 3.

Mask size
lmaQe size 3 5 7 9

32 40220 85872 139644 193472
64 170396 391280 689916 1045952

128 701084 1665648 3043836 4790720
256 2843804 6868592 12765180 20439488
512 11454620 27891312 52261884 84373952

1024 45977756 112404080 211471356 342790592

Table 3: Clock cycles required for various combinations of image and mask size

Knowing the number of cycles required to process an image allows the total

processing time to be calculated, provided that the clock frequency is known. The

Quartus II software provides detailed timing analysis, allowing the maximum

clock frequency to be determined. The propagation delays of each part of the data

path will inevitably depend on the layout of logic elements in the compiled and

fitted FPGA, and this can vary slightly with each compilation as changes are made

to the other hardware around the image processor, but it is possible to obtain an

estimate of the maximum time required to perform each step of the processing.

The basic convolution image processor requires 1586 LEs, 48 of which are

registers, and 860 of which are used in the data processor. The address processor

accounts for 430 LEs. 2048 ROM bits are required to hold the gamma correction

table. This large LE usage is due to the simple ways in which the divider and

address processor are built; the divider is a plain combinatorial logic circuit which

takes a single clock cycle to perform a division, but in doing so takes up a lot of

space as it is essentially a look-up table synthesised using LEs. The address

processor generates the addresses of all of the pixels under the mask

simultaneously, then selects one based on the mask counter's output.

52

This inefficient address processor was replaced as described in section 3.2.6, with

one which contains a single adder and adds an offset to the address. This reduced

the logic element count for the address processor section to 77, or 71 when the

convolution engine is merged with external test-bed hardware. In this case the

offset table was implemented in the same way as the divider, as a look-up table

generated using LEs. If the table was implemented using the FPGA's embedded

memory, the estimated LE count would be around 32, consisting of the adder and

validity checking logic.

It was also found that merging the convolution processor with the test-bed

hardware reduced the logic element count quite considerably. When compiled on

its own, there were an additional 255 logic cells used in implementing the top

level part of the design, whose function is merely to connect the state machine,

data processor and address processor together. These cells were not present in the

hierarchy when the processor was used in the test-bed and so the total logic

element usage for the processor was 995, compared with 1233 when compiled

alone (with the more efficient address processor). These extra cells represent logic

which was merged with the rest of the test-bed when compiled in this way, and so

were not counted as being explicitly part of the processor.

A further large reduction in logic element usage could be made by replacing the

divider with one based on repeated shifting and subtraction, though this would

also increase the number of clock cycles required to perform the division.

The adder and subtractor were found to require a maximum of 15ns to perform

their functions, with the divider and gamma corrector taking up to 30ns. The

longest delay quoted by Quartus for the address processor was around 23ns. These

values will depend on the target FPGA architecture, and these particular results

were obtained for an Apex 20KB device of the fastest speed grade.

Experimentation with different FPGA families suggested that further speed

improvements were possible, but not necessarily significant, with no more than a

2-3ns reduction in general. Hence it has been further confirmed that the results

obtained for the Apex 20KB are still relevant even in the light of more recent

developments in FPGA technology.

From the state dfagram for the control unit, it can be seen that three states,

SUBW AIT, EQW AIT and WW AITl are executed before the processed pixel is

53

written to the memory. Therefore the time taken up by these three allows the

divider, subtractor and equaliser to perform their functions. The total processing

time for these three units, and therefore the minimum time these three states can

take, is around 75ns, or 25ns per state. This corresponds to a clock frequency of

40MHz, and for the test system, using a 256 x 256 image and a 9 x 9 mask, a total

processing time of 51 lms.

The second order filter, with its simplified state machine, requires 17 cycles for

most pixels, or 19 if the pixel is at the end of the row, within the 254 x 254 pixel

' valid' area. Thus, there are 64262 pixels requiring 17 cycles and 254 requiring

19. This results in a total of 1,097,280 cycles required to process the image.

When compiled on its own, this system uses 173 logic elements, and Quartus

estimates a maximum clock frequency of 114MHz, assuming the target device is

an Apex 20KE FPGA with a - 1 speed grade. This higher clock speed is due to the

absence of the divider and gamma correction LUT, which add a delay to the data

processor.

If operated at 114MHz, the system would require 9.6ms to process an image. For

comparison with the high-pass convolution filter, if operated at 40MHz the

second-order filter would require 27.4ms to process the image. This is 18. 7 times

the speed of the high-pass filter, due to the smaller mask size and simpler state

machine.

A comparison of the two designs is shown in Table 4. Area-time products are also

shown, in terms of both Fmax and the time taken to process the image. In both

cases a larger number represents a better system. ln the last column the numbers

show the image area divided by the area-time product of the processor, to make it

consistent with the results shown in Table 5.

System LEs Fmax Time (ms) Fmax/ LEs P/(Time * LEs)
HPF (first) 1586 40 511 0.03 0.08

HPF (smaller) 995 40 511 0.04 0.13
Second-order (same speed) 173 40 27.4 0.23 13.83
Second-order (max. speed) 173 114 9.6 0.66 39.46

Table 4: Performance Comparison of Image Processors

54

It is clear from the table that the second-order filter has a major advantage over

the high-pass filter, with a significant increase in the area-time product, even

when operated at the same clock frequency as the high-pass filter. Both the

reduced LE count and the more efficient processing are responsible for this

increase.

Comparing with a software implementation, the DSP implementation described in

[3.6] requires 20 instruction cycles per pixel when using a 3x3 mask, making use

of advanced features of the DSP such as parallel instructions. For a 256 x 256

image this would therefore require 1,310,720 cycles. The fastest 320C40 DSP has

an instruction cycle time of 33ns, therefore this would require 43ms to process the

image. Given that the DSP can perform parallel operations and is optimised for

signal processing, it is certain that a general-purpose processor would require

many more cycles.

The second-order filter is faster than this DSP implementation, requiring fewer

cycles to complete an image, and also being capable of operating faster. This is

however a specialised architecture compared with the general-purpose one in the

DSP implementation. The second-order filter derives some of its speed by only

reading 5 pixels per output pixel, as the corners of the mask are not used. If all

nine pixels were read, using the same state machine, 29 cycles would be required

and so performance would decrease, though the higher clock speed would

alleviate some of this disadvantage.

We can see from the analysis of the number of cycles required by the first

convolution processor that a 3x3 mask would require 4(3)2+ 1 = 37 cycles per

output pixel. This is less efficient than the software implementation, and even

with the slightly shorter cycle time of 25ns compared with 33ns for the DSP, this

system would take longer to process the image.

55

Design Size (LEs) lmaaesize Mask size Time (ms) Score
New HPF 995 256x 256 9x9 511 0.13

New 2nd order 173 256 X 256 3x3 9.6 39.46
Bosi [3.6] 1924 1024 X 1024 3x3 42 12.98

Muthukumar [3.8] 958 256 X 256 3x3 1.31 52.22
Benkrid (3.9] 756 720 X 576 3x3 37 14.83
Zhang (3.11] 2606 1024 X 1024 14 X 14 17.5 22.99
Perri [3.12) 29048 1024 X 1024 3x3 4.6 7.85

Table 5: Comparison of various image processor designs

The two designs presented in this chapter are compared with various examples

from the literature in Table 5. The table shows the processing times quoted in the

literature, and the image sizes for which these are given. The score of each is

taken by dividing the number of image pixels by the product of LE count and

processing time. The scores are therefore scaled to take the image size into

account. The LE counts from the literature are approximate, as all of these designs

were implemented with Xilinx devices.

It is clear that the design in [3 .8] has the highest score, due primarily to its very

fast processing time. This design takes the shortest time of any of the designs in

the table to process the image, though its image size is smaller than many of the

others.

The new high-pass filter design achieves the lowest score, due to its large

hardware size and relatively slow processing. If the divider was replaced with a

smaller one, the score could increase quite significantly, even if the new divider

requires several clock cycles to perform the division. It is possible that pipelining

could be used to overcome any increase in processing time of this nature, by

performing the division and equalisation for each pixel while the data for the next

pixel is being read, then outputting the finished pixel when the corresponding

mask pixel for the next target pixel is read, allowing the same address to be used.

The second-order filter achieves the second-highest score in the table, despite the

apparent inefficiency of its algorithm, due mainly to the great reduction in

hardware size compared with the shift-register based designs. This is important as

the smaller hardware allows parallelism to be employed, with multiple copies of

the processor operating in parallel. For a simple example, four of the second-order

processors operating in parallel on a 1024 x 1024 image would take the same time

56

to process it as a single one takes for 256 x 256 (ignoring considerations of

overlap at the edges of the sub-images for this simple example). With four times

the LE count and 16 times the number of pixels processed in the same time, this

system would obtain a score of 157.84 by the scoring system used in the table,

significantly higher than any of the other systems. In reality it may be even higher

than this, as the four processors could share a common address bus, fetching four

pixels at a time through a 32-bit data bus. There would therefore only need to be

one address processor, controlling four data processors, reducing the LE count

still further. Theoretically, even without shared address processors, over 65 copies

of the second-order filter could be implemented in parallel in the FPGA on the test

system, though as this would require two 520-bit data buses it is unlikely that so

many processors would be used.

It is clear from these results that while a shift-register design as described in [3.6]

will be capable of performing the image processing more quickly, it will also

require much more hardware. The shift-register holds M complete lines plus M

pixels of the next line, for a mask of M x M pixels. For a 256-pixel wide image

with a 3x3 mask, this would require 4120 bits of storage, or at least 4120 LEs. For

a 9x9 mask on the same image size, a total of 18,504 LEs would be required for

the shift register alone. The major advantage of the second-order design presented

in this chapter then is its small size.

57

3.8: Further Uses of the Convolution Engine - A Cellular Automaton
Processor

The Cellular automaton Processor described in this section is a development of

the basic convolution image processor, in which the convolution operation is

replaced with a CA rule. This was intended to explore possible other uses for a

general-purpose convolution engine, rather than as a highly optimised CA

processor.

3.8.1: Background

A cellular automaton (CA) can be thought of as an artificial universe, divided in

space into 'cells' and in time into 'generations'. At the transition from one

generation to the next, each cell adopts a new state based on both its own current

state and those of the cells surrounding it. The automaton can theoretically have

any number of spatial dimensions, and the cells can have any finite number of

possible states, but all cells share not only the same set of states but also the same

rules determining the transitions between these states.

The ability of the cellular automaton to produce very complex behaviours and

patterns from a set of simple rules is well known and has been widely studied.

Von Neumann showed that a CA with 29 states could be used to implement a

universal computer [3.29], while Zuse postulated that the universe itself could be

modelled as a large CA [3.30].

More recently, with the advent of fast computers which have allowed cellular

automata to be studied in detail, the complex dynamics of the cellular automata

have been studied in great depth, and have been found to be useful in a wide rang

of applications, from biological modelling [3.31] [3.32] and neuromorphic

processing [5.32] to video compression [3.33].

One of the most widely known cellular automata is Conway' s Game of Life

[3.34], a two-dimensional CA in which the cells can be either 'alive' or 'dead',

changing state according to two simple rules: -

If a dead cell has exactly three live neighbours, it will become alive.

58

If a living cell has two or three living neighbours it will remain alive, otherwise it

will die.

Patterns of great complexity can arise from these two simple rules. It has been

demonstrated that a certain pattern of cells acts as a 'life cell', and a grid of these

cells simulates the 'universe' in which they exist, the state of each cell being

shown by the presence or absence of a particular pattern at particular times. [3.35]

A complete Turing Machine [3.36] has also been demonstrated. [3.37] The wide

range of behaviours which are possible with this single CA rule shows that even a

very simple system can behave in very complex ways, and so there is much

interest in these simple 2-state CAs, though the investigation of the Game of Life

is often thought of as a recreational pursuit.

The complex and often chaotic dynamics exhibited by this and similar cellular

automata were not discovered fully until it became possible to use a computer to

simulate the system, and the complexity of the patterns which can be investigated

grows as the simulation speed increases. There is therefore a requirement to make

the processing of the CA as efficient as possible, and as with the image processing

systems described earlier, hardware-based processors can offer high-speed

processing beyond the capabilities of software implementations.

Halbach & Hoffmann showed that an FPGA implementation of a CA could

achieve a speed increase over a software implementation, if properly optimised.

[3.38] This implementation uses 16 parallel processors which operate on a 4 x 4

pixel window which is moved over the image. It was also shown in this work that

a benefit of a hardware implementation over a software one is that the hardware

implementation will perform its calculations at the same rate for a variety of rules

of different complexity, whereas a more complex rule will result in a slower

software implementation. A software implementation of a 256 x 256 CA was

stated as achieving 455 generations per second, with the FPGA implementation

achieving at best a speed increase of 13.8 times, or 6279 generations per second,

though it is not clear whether this reflects the sustained speed over the whole

' universe' or merely over the 4 x 4 window.

Shackleford et al. present an implementation of a small CA for random number

generation in which there are just 64 cells. [3 .39] These are connected toroidally,

59

and all cells are independent and implemented in parallel. This results in a very

time-efficient implementation, where a single clock cycles is all that is required to

compute a generation. The maximum clock rate achieved was 230MHz, or 230

million generations per second.

Kobori et al. present a method of implementing the CA [3.40] which makes heavy

use of distributed RAM within the FPGA to store a subset of the overall universe,

implementing a moving window inside which computations are carried out very

quickly by parallel processors. This implementation also makes use of a wide

memory bus to fetch and store 8 cells simultaneously. A speed increase of 250

times over a software implementation is quoted.

60

3.8.2: Implementation of the CA processor

During development of the convolution engine, it was realised that a version using

a 3x3 mask could be modified with little difficulty to perform the processing

required by a two dimensional cellular automaton. Since each outputted pixel has

a value determined mathematically from the values of the equivalent pixel in the

source image, and its eight immediate neighbours, a general-purpose cellular

automaton processor could be made by simply replacing the mathematical

function with a rule-based system. Much of the system remains unchanged, with

the address processor and control state machine being re-used almost unchanged

from the convolution engine. The major change is to the data path, which is

modified such that the target pixel and its eight neighbours are formed into a 9-bit

binary word, which is then presented to a look-up table, built in a manner similar

to the gamma-correction table of the convolution engine. The table contains 512

bits, determining the value of the output pixel for each of the 29 possible

combinations of input pixels. Thus, by changing the table, the cellular automaton

rule is changed. The tables are generated from a rule description by a QBasic

program, as shown in appendix A.2.

The ' next generation' value of each pixel is derived from the current value by

N(x,y) = F(P(x,y))

where F represents the look-up table and C is a bit-vector determined by

P(x,y) = 28 C(x + 1,y + 1) + 27 C(x,y + I)+ 26 C(x- l,y + 1) + 25 C(x + l,y)

+ 24 C(x, y) + 23 C(x - 1,y) + 22 C(x+ l,y -1) + 21C(x,y-1) + 2°C(x-1,y- 1)

with C being the current state of a pixel.

The particular mapping of co-ordinates to bit positions within the word is

arbitrary, but the above order is the one which was used in the implementation.

61

Pixel Counter

Mask Counter

Address
Processor

Clock, Control In -.----- Control State Machine

1--+----- Addresses Out

Data In ---t-----91 Demultiplexer Look-Up Table 1--+----- Data Out

Figure 29: Cellular Automaton Processor

The FPGA implementation of this system is shown in Figure 29. The address

generation logic and control state machine are nearly identical to those used in the

second-order filter based image processor. The major difference is that all cells

are processed rather than just the area where the mask is valid. At the edges of the

image the mask addresses wrap around to the corresponding pixels on the other

edge, thus the 'universe' has a finite size but no edges, and is toroidal. This

requires a slight change to the address processor, as it must be ensured that when

wrapping at the end of the line, the carry generated in the rollover of the X co

ordinate does not affect the Y co-ordinate. Thus, the two co-ordinates are

processed separately.

Each pixel is processed in 33 clock cycles. In order to reuse much of the test-bed

logic from the image processor, the image size was set at 256 x 256 pixels, though

each RAM byte could only take on the values O or 255, and only one of the eight

bits was read.

The demultiplexer is a 9-bit addressable latch, which captures the nine pixels read

by the state machine and assembles them into a 9-bit word, which is fed to the

look-up table to determine the cell ' s next state. Two memory banks are used, as in

the image processor, ensuring that the assembly of the ' next' generation does not

interfere with the stored ' current' generation. It would be possible to use

additional multiplexers so that when a generation is completed, the data runs

through the machine the other way for the next generation, i.e. from what was the

62

destination memory bank to what was the source bank, thus avoiding the need to

copy the new generation over the old one.

3.8.3: Cellular Automaton Test results

The cellular automaton processor was tested with a few sample images, including

skin line images outputted by the image processor. A few CA rules sets were

used, these being Conway' s Life, Simulated Annealing, Majority Rule and

Hourglass. Conway' s Life is detailed above, and is one of the most widely known

and implemented cellular automata, and so provides a good basis for checking

that the processor behaves as required.

Simulated Annealing and Majority Rule are quite similar. In the case of Majority

Rule, a cell takes on whichever state the majority of its neighbourhood have. The

neighbourhood includes the cell itself, so there are nine in the group. If the sum of

these cells is 5 or more, the cell will be on, otherwise it will be off.

Simulated annealing works in a similar way, but the cell will be on if the sum of

the active cells in the neighbourhood is exactly 4 or greater than 5. Table 6 shows

the difference between the rules in terms of the activation function for the cell

based on the number of active cells within its neighbourhood.

Active cells in nei2hbourhood 0 1 2 3 4 5 6 7 8 9
Next state (Majority) 0 0 0 0 0] 1] I 1
Next state (Sim. Annealing) 0 0 0 0 1 0 l 1 I I
Next state (Life) 0 0 I I 0 0 0 0 0 0

Table 6: Comparison of cellular automaton rules

One thing that links the three rules shown in Table 6 is that they are based purely

on the number of active cells, not on any consideration of which particular cells

are active. By contrast the hourglass rule is based on specific patterns of activity

and inactivity, and considers only five cells - the target cell and its north, south,

east and west neighbours. Figure 30 shows the nine combinations of these that

will lead to a cell being active in the next generation. In each case, a shaded cell

represents an active one, and the centre cell is the target.

63

EEG EEG EEG
EEG EEG EEG
EEG EEG EEG

Figure 30: Combinations leading to an active cell in the Hourglass CA.

The life, majority and simulated annealing rules were tested using result images

from tests run on the image processor which had been converted to black and

white. These provided a good test, with bands of active and inactive cells, though

any source image would have been sufficient.

Figure 31: Generations 0-3 of a life rule test

The first four generations of the Conway' s Life rule test are shown in Figure 31,

where generation 0 is the source image. Although in the generated images active

cell.s were white, in the figure they are black in order to display more clearly. The

life rule was tested for 1000 generations, and the ' chaos' generated was compared

with that produced by existing implementations [3.41]. The same patterns were

found in both, with the well-known and common stable, oscillating and moving

patterns being produced.

The majority rule was found to reach a stable pattern very quickly, as shown in

Figure 32, where the right-hand image shows generation 10, beyond which there

was no change in the pattern of live and dead cells. The finer features tended to

either disappear or merge together to form larger areas of either active or inactive

cells, and this would invariably happen within the first few generations.

64

Figure 32: Generations O and 10 of the majority rule test

Simulated annealing was found to merge the groups of cells, but the function's

changed response to the 4-active and 5-active cases tended to produce instability

in the edges of these groups, which meant that the groups would generally not

crystallise as with the majority rule and would instead gradually shrink and

become rounder, with narrow protrusions and small groups disappearing

completely.

Figure 33: Generations 0, JO, 50 and 100 of the simulated annealing test

The hourglass rule was tested with a different initial pattern - a continuous sheet

of active cells with a small group of inactive ones in the middle to act as a 'seed' .

The directional nature of the rule was evident in the patterns produced, an

example of which is shown in Figure 34. This image is inverted, as with the life

results, so that active cells are black. The complex branching pattern was not

static - the section which appears to be stretched vertically was in fact made up of

groups of cells moving downwards, building up on top of the compacted branches

below, and gradually pulling down the branches above. The wrapping of the

universe at the edges of the image is also evident.

65

Figure 34: 500th generation of the hourglass rule

The test results showed that the CA processor is capable of correctly

implementing cellular automata, producing the correct result for a set of widely

known automata. The four different types of automata demonstrated showed that

the look-up table based system is capable of implementing automata in which the

cell state is based on either the number of surrounding ' live' cells or the positions

of these. In fact, the look-up table system can implement any CA in which the

cell' s state is based on those of its eight neighbours, and in which there are only

two states. If more than two states are required, the rule table and the input

demultiplexer could be adapted easily, though for two bits per cell (4 states) the

nine inputted cells would take up 18 bits, requiring a table of 262,144 x 2-bit

words, which is not feasible in any of the Apex devices, though is possible with

later FPGA families.

3.8.4: Performance of the CA processor

To process a cell, the system must read the nine cells under the mask, allow some

time for the delay in the look-up table, then write the result. The implemented

system completed these operations in 33 clock cycles using the state machine

from the convolution image processor, and so required 2,162,688 clock cycles to

process all 65,536 cells. At 25MHz in the test-bed, this takes 86.5ms, or a rate of

11.5 generations per second. The processor was not, however, intended to be a

fast solution, it was merely intended to demonstrate the flexibility of the basic

66

image processor design. The maximum speed estimated by Quartus was

131.63MHz, at which speed it would take 16.4ms to process a generation, or 60.9

generations per second.

Comparing this with the implementations discussed in section [3.8.1] we see that

Halbach's implementation [3.38] is capable of 6279 generations per second,

though this may be only for the local window of 4x4 cells. The implementation by

Shackleford et al. [3.39] is capable of 230 million generations per second, for 64

cells. This is however a fully parallel implementation and so the 65536 cells of a

256x256 universe would require an enormous amount of hardware.

By comparison, the Life32 CA engine [3.41] running on a 2.25GHz PC takes

around 280µs to process each generation of a 256 x 256 toroidal universe using

the Life rule. To obtain even this performance with the simplified hardware

implementation presented in this chapter would require a clock rate of 7. 7GHz.

It is clear then that the fastest way to implement a cellular automaton would be to

implement all of the cells together in parallel, though it is also apparent that this

would be the least efficient method in terms of the size of the logic required. A

cellular automaton cell designed for this operation consists of a 9-input look-up

table as described above, feeding the data input of a flip-flop which is clocked to

yield the next generation. This is shown in Figure 35. All cells within the CA are

clocked simultaneously, and the set and clear inputs on the flip-flop are used to set

up an initial pattern.

Cell On

LUT Q i-----output

R

Clock
Cell Off

Figure 35: A single cell for a hardware cellular automaton.

67

The arrangement of a look-up table feeding a single-bit register is similar to the

internal arrangement of a logic element within an FPGA, the difference with the

CA processor being the connections between the cells. Rather than using a global

switching network, the look-up table inputs would be hard-wired to the outputs of

the surrounding cells. For FPGA implementation, this is relatively inefficient, as a

nine input look-up table would either have to be implemented using the embedded

system RAM blocks, or with a large number of logic cells. Even for the simplest

case where the system is built specifically for a single cellular automaton and

programmability is not required, the look-up table would require at least three

logic cells to cater for its nine inputs. The implementation in [3.39] used only

inputs from four neighbouring cells, and since a logic element within the FPGA is

a 4-input LUT feeding a single-bit register, each CA cell maps directly onto one

logic element.

The fully parallel design does have the advantage of being able to operate much

faster than the serial implementation in this chapter, as even if it were clocked at

the same rate, it would only require one clock cycle per generation, and so would

be able to produce 2,162,688 generations in the time taken to produce a single one

with the serial implementation.

In addition to this type of implementation, a line-at-once implementation such as

the shift-register approach described in [3.6] could offer a performance increase

without such a major increase in size. Care would have to be taken however to

ensure that the edges of the grid of cells are handled correctly, as with the 'target'

cell at the edge of the image, the cells within the shift register which represent the

other edge of the image would represent pixels which are vertically misaligned.

This is not a problem for the image processor as the pixels in places where the

mask is not completely within the image are not processed, and the edges do not

wrap, but in the case of a CA the wrapping of the edges to form a toroidal

universe would have to be considered. If a shift register is to be used, it could take

the form of a register which stores the three most recently read lines of the image,

and into which a complete new line is read before processing begins. This would

require more register cells than the implementations in [3.6] but this seems

unavoidable if the edges are to be processed correctly.

68

3.9: Conclusions

3.9.1: Image Processor

The image processing system was originally designed as part of an experiment

into replacing the software-based experimental processing system with hardware,

to obtain a performance boost. The image processing systems presented in this

chapter represent only the initial steps towards implementing a high-performance

image processor, and the project was discontinued before any further progress was

made.

The overall outcome of this project is that two working image processing systems

have been produced and demonstrated, showing a major difference in their

performance. Both have been seen to be capable of extracting the skin lines from

the source images, with differing levels of detail.

Although the chosen implementations have been shown to be relatively inefficient

in processing time, taking longer than alternative implementations to process the

image due to the large number of memory reads which must be performed, it has

been shown that they have the advantage of using much less hardware to perform

the processing. It was shown that the shift-register based designs used for

comparison would require a great deal more hardware if built for the same sized

image as the systems presented in this chapter. Thus, these new designs trade off

performance for a large reduction in hardware size.

The area-time product comparison gives a better score for the second-order filter

than for similar shift-register based designs, despite the slower processing,

because of the smaller LE count. It has been shown that a shift-register based

design with a 9 x 9 mask, as is the case with the high-pass filter, would require

many tens of thousands of LEs, and so it is likely that a system built in this way

would achieve a lower area-time score than the new high-pass filter design, even

if it could process the image more quickly.

Ultimately, the advantage of the implementations described in this chapter is their

relatively small hardware size compared with more time-efficient

69

implementations. This smaller size enables the use of parallel processors to make

up for the slower processing speed.

3.9.2: Cellular Automaton Processor

The cellular automaton processor demonstrates the flexibility of the basic

convolution image processor, showing that a small change in the hardware can

produce a quite different system. Like the image processor, the CA processor's

performance suffers due to the inefficient method used for the implementation.

However, like the image processor it can be improved by using one of the more

efficient implementations seen in section 3.1, making use of the parallelism which

is possible with a hardware implementation. It has been shown that the hardware

of the CA processor has some similarities with the underlying fabric of the FPGA

itself, and that an implementation based on full parallelism of the processing

elements would be capable of very fast processing. Finally, it has been shown that

a simple look-up-table based design such as this is a versatile system and can

implement any CA in which the cells have two states with no change in

architecture.

The ability of the cellular automaton, a regular grid of identical processing

elements, to produce chaotic output has been shown in the case of the Life

automaton, and will be seen again in a smaller form in the grid-like neural

network of section 5.17.

70

Chapter 4: A Simple VHDL Microprocessor

The processor described in this chapter was born out of the necessity to

implement functions within the FPGA which were sufficiently complex that it

would have been too time-consuming or awkward to implement them in pure

hardware. The original aim was to develop a simple processor which would be

capable enough to perform a range of useful tasks but small enough that it could

be used alongside other hardware, even in a relatively small FPGA. It was

originally intended to oversee the transfer of data between the host PC and the

convolution image processor, but it has since been used in a variety of

applications. Its relatively small footprint and straightforward architecture make it

suitable for any application where embedded software is required, and like any

embedded processor, it can be augmented with external custom DSP hardware if

higher performance is required.

4.1: Existing Designs

There are many existing embedded processor designs available, ranging in

complexity from simple microcontrollers to full RISC processors for which

operating systems are available. One obvious choice for implementation in the

Altera FPGA is Altera' s own Nios Embedded Processor (4.1], which can be

implemented using a plug-in for the Quartus Software. Nios is a pipelined RISC

implementation which can be built in 16 or 32 bit versions. Its architecture and

instruction set are intended to allow efficient compilation of the control structures

in high-level languages, a feature which many of the VHDL RISC

implementations have in common. It can however be programmed in assembly

language if necessary.

Nios is available only as an FPGA implementation built from the reconfigurable

logic, and Altera do not currently produce any FPGAs with hard-wired processor

cores built-in. Some types of FPGA, such as the Xilinx Virtex-II Pro and Virtex 4

types, include embedded processor cores (4.2], which are fabricated as part of the

chip rather than implemented with VHDL. The Virtex 4 is available with up to

two IBM power PC 405 cores, capable of 450MHz operation and delivering 700

DMIPS (Dhrystone MIPS). The Nios II high performance variant, by comparison,

71

is stated by Altera as being approximately equal in performance to an ARM9T

core [4.3] and can deliver over 250 DMIPs. The 'economy' variant is in the same

cost class as an 8051 core, delivering up to 30 DMIPs at up to 200MHz in fewer

than 700 logic elements. The Nios core will generally be slower than the Virtex' s

PPC core, as the latter is hard-wired and is not subject to the speed limitations of

the interconnections between the logic elements. Both types of processor can be

extended with custom co-processors such as FPUs or specialist DSPs, or with

extra instructions. In the case of the Virtex implementation, this extra hardware is

connected directly to the processor' s pipelines, but implemented with the FPGA's

reconfigurable hardware, while in the case of Nios, it is possible to modify the

core itself.

These approaches represent the top-end processors, intended for high performance

in very large embedded systems, and are supported by software suites available

from the FPGA manufacturers. For smaller and simpler applications, Xilinx also

provide a soft-core microcontroller with a very small footprint, PicoBlaze [4.4].

This is a simple 8-bit microcontroller architecture with internal IK program

memory, 64 byte scratchpad RAM, stack and 16 registers. The core takes 2 clock

cycles per instruction, and will run at 200MHz (l00MIPs) in a suitable Xilinx

FPGA.

The application in which the processor is to be used plays an important part in the

choice of processor, as in many cases existing code must be re-used, and therefore

an implementation of a standard processor core is required. Sometimes a standard

operating system is required, in which case a processor architecture must be used

for which there is an implementation of the particular OS.

Implementations of existing commercially available processors are provided by a

variety of companies, such as CAST inc. [4.5] and HiTech Global [4.6]. These

implementations, along with non-commercial implementations, cover a range of

processor types, from the popular microcontrollers such as the PIC series or the

8051 to ' classic' microprocessors such as the 6500 [4. 7] and 6800 series and the

Z80 [4.8]. More powerful or advanced devices such as the 68000 [4.9] and the

Intel Itanium [4.10] have also been developed, both commercially and as non

commercial or academic projects.

72

These 'real-world' processors are often implemented in an attempt to emulate

legacy systems [4.8] [4.11], and if this is the case are generally built with no speed

optimisations beyond a higher overall clock speed. Processors that are built for

code compatibility only can be optimised with pipelining and more efficient

design to provide more instructions per second for a given clock speed than the

original commercial implementations.

Custom processors which are not based on 'classic' designs are also available in

both commercial and free forms [4.12] with a wide range of features and

performance ratings. Many of these began life as experiments or as practice

projects when learning VHDL [4.13], or are intended as educational examples

[4.14]. The Edulent processor described by Mezei and Malbasa [4.15] is an

example of a simple educational processor, with a simple accumulator architecture

and 40 instruction types, capable of running at 12.5MHz. Romero-Troncoso et al.

present a more complex educational processor [4.16], with a larger register set,

more complex architecture and microcode, allowing the instruction set to be

customised easily.

Gustin and Bulic describe a novel architecture [4.17], again intended for

educational purposes, in which every possible instruction is a MOVE instruction

and the operand is the output of the ALU. It is shown that this allows the same

ALU to be used for address calculation and instruction execution, saving

hardware.

Paul Stoffregen' s OSU8 [4.18] is a relatively simple 8-bit microprocessor with

two accumulators, two pointer registers, microcode, and an instruction set similar

to that found in the 6502 or its contemporaries. This design has two ALUs, one

for instruction execution and a second 16-bit one for address computations. The

design is a little more complex than many of the simple architectures such as

Edulent, as described above, and the processor was designed to be implemented as

a standalone processor in an FPGA rather than an embedded processor as part of a

larger system.

An alternative class of custom processors is those which are designed to support

particular compilers or high-level languages, such as JOP [4.19], a hardware

implementation of the Java Virtual Machine. This is a RISC stack machine which

73

is essentially a direct hardware implementation of the NM, with a few

optimisations, and is intended for use in embedded and real-time systems,

achieving a speed increase of 250 times over the performance of compiled Java on

an embedded microcontroller. Around 1800 LEs are required and the processor is

capable of running at 101MHz.

Mattos and Carro [4.20] present an alternative Java processor called Femtojava, in

which the instruction set, though not extensible, can be pruned to exclude those

instructions which are not used by a given program, making the hardware as small

as possible for a given task.

Forth-based processor cores have also been implemented, with features that make

efficient translation of Forth programs easy. Haskell and Hanna [4.21] present a

Forth core which runs Forth code which has been converted to fit the processor's

instruction set, which is tailored to suit the requirements of the language. This

design, using 734 slices of a Xilinx Spartan II FPGA, is intended to be used where

microcontrollers would traditionally be used, and is shown to be nearly 30 times

faster than the equivalent compiled Forth programs running on a 68HC12

microcontroller. An alternative implementation is presented by Frank Buss [4.22]

using simpler hardware and requiring 432 LEs of an Altera Cyclone device.

4.2: Architecture

The processor was originally based on an experimental reworking of the

Manchester Small-Scale Experimental Machine, [4.23] (1948), a machine which

was intended to be the simplest possible computer which could perform general

purpose applications. This was an extremely simple machine, as the high cost of

hardware at the time, not just in monetary terms but also in terms of size and

power consumption, meant that the design had to be kept as simple as possible. As

a result the machine had just seven instructions, but it was shown that these were

sufficient for any computation, given sufficient time and memory.

The VHDL processor was intended to be the simplest implementation of a

general-purpose processor, but with a range of functions similar to modern

processors. The overall aim was to produce a processor which could be used for a

variety of applications but which used little enough hardware that it wouldn't have

74

a major impact on the space left in the chip for other devices. Although the range

of functions is comparable with some of the simpler modern processors, the

architecture and some of the operating methods are more similar to the SSEM.

The instruction set was inspired by the simpler 8-bit microprocessors of the 70s

and 80s, in particular the 6502, which has a similar set of instructions and just a

single accumulator rather than a set of several general-purpose registers. As the

processor was intended to be used for transferring data it was decided that an

index or pointer register was essential, allowing indexed addressing modes.

Rather than using two 8-bit index registers as in the 6502 it was decided to use a

single 16-bit pointer register, the implementation of which was made simpler by

the 16-bit architecture.

The processor uses a 16-bit data word, and requires two of these to form an

instruction, the first being the instruction code itself, the second being the

operand. In order to simplify the hardware, there is no instruction decoder or

microcode, and the two words are read for each operation, regardless of whether

an operand is required. With no instruction decoder, each bit in the op-code

directly controls some part of the processor, and thus there is no explicitly

hardware-defined instruction set. Only the ALU has a decoder, decoding the four

least significant bits of the op-code in order to select a function. It was this

instruction coding method which dictated the width of the processor's registers

and data bus, as the words had to be wide enough to include all the required

control signals in a single op-code.

There are two working registers which can be accessed by software, named A

(accumulator) and P (pointer). All functions available in the ALU can be applied

to either A or P, and in addition, the contents of P can replace the address used to

fetch or store the operand, allowing for easy implementation of arrays. This means

that any operation which is performed on data can also be performed on

addresses. In this respect the architecture differs from many earlier processors, as

in general registers which could be used for memory addressing were not also

available as general-purpose data registers. Although it would be useful to have

more than one accumulator and more than one pointer register, the method by

which the instructions operate makes this impractical, as many more bits would be

75

required in the op-code, not just extra register enable bits but also extra

multiplexer control bits.

The structure of the processor is shown in Figure 36, with the names of the VHDL

blocks shown. The data bus is shown divided into an output bus and an input bus,

though the control unit does generate the necessary bus control signals to allow

these to form a single three-state bi-directional bus, as there is no point in the

processor's operation where data needs to flow through both buses

simultaneously.

~--------+-_. Dout
A

p
ALU

Din--...,_- INSlREG CONlROL

SKIP

ADDREG

DXMJX Aout

CIREG

STACK

Figure 36: Simplified overview of the VHDL microprocessor

76

4.2.1: ALU and Registers

The ALU and registers form the data processing section. One input to the ALU

always comes from memory, while the other can be taken from either A or P. The

data output from the processor also comes from this multiplexer, allowing either

of the registers to be outputted. This means that the result of an operation can only

be written to a register and not directly to memory. If the latter is required the data

must be written to the register first, then the register written to memory with a

second instruction. In practice this is not a major limitation and has not been

found to cause problems. This architecture was based on the architecture of the

SSEM, though this earlier machine had just a single subtractor rather than a full

ALU, and only one accumulator, though many more modem processors such as

the 6502 have this arrangement, and the load-store architecture, where instructions

either load data, store data or perform an operation on a register, is one of the

characteristics of a RISC processor.

The ALU's operation is selected by the lower four bits of the op-code. The

operations available are shown in Table 7. The operations included in the ALU

were chosen to give the processor a useful range of abilities, though in order to

keep the ALU as small as possible multiplication and division were not included.

If these are required they must be implemented in software, though as the

processor is intended to be included in an FPGA, it is possible to include external

multiplication or division logic. This logic would have to take the form of a

peripheral device, where the operands are written to registers and the result read

after the required operation is performed.

The addition can be performed either with or without carry-in, if carry-in is

selected the stored C flag is added to the LSB of the adder, allowing numbers

wider than 16 bits to be added.

In addition to these, Boolean logic, shift and rotate operations are included, with

an option to perform an extended rotate, where the C (carry) flag is included in the

operation as the I 7'11 bit. The last implemented code simply feeds the memory

input through to the output, allowing the memory contents to be read into a

register.

77

Code ALU Output
0000 register + memory
0001 register - memory
0010 register + memory + cflag
0011 register AND memory
0100 register OR memory
0101 NOT register
0110 register XOR memory
0111 register shifted left by 1 bit
1000 register shifted right by 1 bit
1001 register rotated left by 1 bit
1010 register rotated right by 1 bit
1011 register rotated left by 1 bit with extend
1100 register rotated right by 1 bit with extend
1101 memory
1110 Reserved
1111 Reserved

Table 7: ALU control codes

The final two codes are reserved for the subroutine handling instructions JSR

Gump to subroutine) and RTS (return from subroutine).

Op-code bits 5 and 4 activate the P and A registers respectively. If either bit is 1,

the corresponding register will be updated with the ALU's output when the

instruction completes. Both can be used simultaneously if required. If bit 8 is set

to 1, the flags register will also be updated with flags derived from the ALU

operation. The N flag is set when the top bit of the accumulator is l, representing

a negative number in 2' s complement notation. The Z flag is set when the ALU

outputs zero, and the C flag is set when a carry is generated, or a l is shifted out

of either end of the ALU during a rotate-with-extend operation.

4.2.2: Address Processing

The CI (Current Instruction) register supplies the address of the instruction or

operand currently being fetched. An address register is used to latch the address

for any instructions which require access to memory. The input to this register can

be taken either from the data input, if the address comes from the instruction, or

from the P register if the instruction uses indexed addressing. The CI register is

updated through a pair of multiplexers, and can either be incremented, loaded

directly from the address register (for jumps) or controlled by the stack system. If

78

op-code bit 6 is set to 1 the CI will be updated during the execution phase of the

instruction.

The address bus outputted by the processor can be supplied by either the CI or

address registers.

4.2.3: Jump and Skip Instructions

There is only one jump instruction available, an absolute jump which is effected

by loading the CI register from the address register, having first loaded the

address register with the destination address. Op-code bit 6 must be set to 1 to

perform a jump. Since it is possible to load the address register with the contents

of P rather than the jump operand, a kind of indirect jump can be performed, but

this has not been tested and there is currently no support for it in the assembler.

Conditional branching is achieved with a series of conditional skip instructions,

which cause the processor to skip the following instruction when the selected

condition is met. If op-code bit 7 is set, and the condition specified by bits O to 2

is met, the skip logic will be armed during the execution phase and the CI will be

incremented by 3 rather than 1 at the start of the next instruction. If the condition

is not met, the skip logic will not arm. Table 8 shows the condition codes for the

different skip instructions.

Code Skip Condition
000 N flag set
001 N flag clear
010 C flag set
011 C flag clear
100 Z f lag set
101 Z flag clear
110 Never
111 Never

Table 8: Conditional skip control codes

To implement a conditional branch, skip and jump instructions are used together.

Due to the CI being incremented before a fetch rather than after, as explained

below, the target specified in the jump instruction should be the address before the

desired instruction. This is handled automatically by the assembler, and only

needs to be taken into account when hand-assembling programs.

79

4.2.4: Subroutine Handling

The logic required for subroutine handling was added after the processor was

completed, in order to increase its usefulness. The stack logic monitors the

incoming op-codes and takes over when either JSR or RTS are detected. The JSR

op-code is a jump op-code with the lower four bits set to 1110, while RTS is a

jump with the lower bits set to 1111. The stack memory itself is a separate block

implemented inside the stack logic, as this was simpler than adapting the

processor' s logic to keep the stack in system memory.

When a JSR instruction is encountered, the stack logic reads the current value of

the CI and stores it in its internal memory. When JSR is encountered, the stack

logic replaces the CI register's input with its own output. In both cases, the rest of

the processor is allowed to perform the actual jump instruction.

4.2.5: Control

The processor has an operating cycle consisting of six states, or phases.

Phase 1:

The first phase is an idle phase, included to provide an inactive state in which the

processor can safely halt.

Phase 2:

The CI is incremented by either 1 or 3, depending on whether the skip logic was

successfully armed during the previous instruction.

Phase 3: The contents of the memory address pointed to by CI are loaded into the

instruction register. The bits within this op-code then set up the multiplexers and

registers for the selected instruction. The skip logic is reset here, so that the next

CI increment will be an increment of 1.

Phase 4: The CI is incremented again, to point to the instruction ' s second word.

Phase 5: The address register is enabled, and the source selected by op-code bit 15

is written to it. The source can be either the data input or the P register.

Phase 6: The instruction is executed. Register enable signals are sent to the

registers selected by the op-code, and if the instruction is set to be an output

instruction (op-code bit 14 = 1) the memory write line is pulsed.

80

4.2.6: Op-Code Layout

As described above, the processor has no instruction decoder, so each bit in the

op-code controls a piece of hardware directly. Table 9 shows the functions of the

bits in mnemonic form.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
Function IDX 1/0 AMUX DMUX CMUX STP MEM FLAG SKIP Cl PTR ACC O 3 0 2 0 1 0

Table 9: Op-code bit layout

IDX Function DMUX Function
O Address register loaded from data input O Data output supplied by A
1 Address ister loaded from P 1 Data out ut su ied P

AMUX Function CMUX Function
O Address supplied by address register O Cl incremented by adder
1 Address su lied b Cl 1 Cl loaded from address re ister

Table 10: Multiplexer functions

The FLAG, CI, PTR and ACC bits select which registers will be updated during

phase 6 of the instruction. The MEM bit does the same for memory.

IDX, AMUX, DMUX and CMUX control the four multiplexers labelled in the

block diagram. Table 10 shows the functions performed by these multiplexers.

VO is used to tell the control unit whether the instruction is an input or output

instruction. If set to 1, the instruction is defined as output and the control unit will

generate the necessary signals to control the tri-state buffers required for a bi

directional data bus.

STP (stop) will halt the processor at the end of the instruction. Although there is

currently no support in the control unit for resuming from a halt without resetting

the processor completely, the changes required to accommodate this would be

trivial.

SKIP activates the skip unit as described above.

Op0 - Op3 form the ALU operation code for an arithmetic or logic instruction, or

the skip type for a conditional skip instruction.

As an example, the instruction with the assembler mnemonic LDA (p) causes the

contents of the memory location pointed to by the P register to be loaded into the

81

A register. The op-code for this is 811D16, or 1000 0001 0001 1101 in binary.

Referring to table n, we see that the IDX, FLAG and ACC bits are set, and the

ALU code is 1101. This ALU code causes the ALU to feed the incoming data

from memory directly to the register inputs. Since ACC is set, the accumulator

will be updated during phase 6. FLAG is set, which will cause the flags to be

updated according to the data which arrives from the memory. Only the Z (zero)

flag will be affected by this, as the ALU will not generate a carry during this

operation, and the N flag is generated based on the accumulator. If this is not

required, the FLAG bit is cleared and the op-code becomes 810D16•

The active IDX bit causes the address register to be updated from P rather than

memory during phase 5, so that during phase 6 the memory will be outputting the

contents of the address stored in P. This will be written to A when the register

enable signals are generated in phase 6.

4.3: The Assembler

The assembler was written in QBasic to allow software to be created quickly and

easily. Since the processor was designed to perform relatively simple tasks, the

early software was hand-assembled. It soon became apparent that an automated

solution was required.

The instruction mnemonics file used by the assembler is shown in appendix B.

This fi le contains the canonical list of supported instructions, with an entry for

each addressing mode supported by the instructions, along with their hexadecimal

op-codes.

There are a number of different addressing modes which can be used, though not

all instructions support all modes. These modes are summarised below.

The simplest mode is the register-only mode. Here, a register provides the data to

be operated upon, and also provides the destination for the result. The shift and

rotate instructions, along with NOT, are examples of this type.

The most straightforward of the memory accessing modes is absolute addressing,

where the operand field of the instruction provides the address on which the

instruction operates. This can be written numerically or using an assembler label,

e.g.:

82

LOA 100 will load the contents of memory address 100 into A, while

LOA mem will load the accumulator with the contents of the address labelled by

'mem'.

It is also possible to use the operand itself as the source data, in which case a '#' is

placed before the numeric operand. In the terminology of processors such as the

6502, this is immediate addressing. Only numeric operands can be accommodated

in this mode, and these can be in decimal or hexadecimal, e.g.:

LDA #100 will load the value 100 (decimal) into A.

LDA #$100 will load the value 10016 into A.

In addition to this, there is a slight variation which is useful for creating a pointer

to an array. Placing '@' in front of a label will cause the assembler to generate an

instruction using the immediate addressing mode but to place the address of the

label into the operand field as in the case of absolute addressing. The result of this

is that the address of the label will be loaded into the register. This is most usually

used with the LDP instruction.

The final addressing mode is indexed addressing, where the address of the

operand is supplied by P rather than the instruction code. This is used to access

arrays or look-up tables, and is represented thus:

LOA (p) will load the accumulator with the contents of the address pointed to by

P.

It is possible to create hybrid instructions by combining the bit patterns of two

ordinary instructions. For example, the normal absolute LDA instruction code is

011D I 6• If the PTR bit is set in this instruction, making it 013D I 6, the data will be

loaded into both A and P simultaneously. These hybrid instructions are easily

added to the assembler' s op-code table whenever they become necessary.

Other assembler instructions are ORG, DC and OS. ORG is followed by a

number, always in hexadecimal, which sets the assembler's program counter,

telling it where to assemble the following code. DC (Define Constant) is followed

by a number, series of numbers or ASCII string, or any mix of these, and is used

to place values into memory. DS (Define Storage) causes the assembler's program

counter to skip onward by one word, and is used to define labelled storage in

83

memory. The simple structure of the assembler requires that an operand is

provided, but as this is ignored it can be any numeric value.

4.4: Performance

The processor requires six clock cycles to process an instruction, and the Quartus

timing analyser suggests that the maximum speed of operation is 66MHz when

implemented in an Apex 20K device. This corresponds to a performance of 11

million instructions per second (MIPS). In general, the tasks for which it was

designed do not require much processor speed, and the fastest clock rate it was

used at was 24MHz, or 4 MIPS. As it is fully static and synchronous it should run

at any speed up to the maximum of 66MHz, and it should be possible to change

the speed as it runs, provided that the clock gating logic does not introduce

glitches. The six phase outputs are provided to allow the external circuitry to

synchronise with the processor' s operating cycle.

If the control state machine is suitably modified there is no reason why the

processor should go through state O each cycle, it could go from state 5 to state I

on all instruction cycles except where the instruction is a halt instruction, thus

increasing the speed slightly to 13.2 MIPS at 66MHz. State O does however

provide a period during which the processor is guaranteed to be not accessing

memory, and this time could be used by external hardware to perform transparent

DMA transfers or other memory accesses.

4.5: Analysis

The architecture of the processor is difficult to compare with other types of

processor, because it is greatly simplified compared with most. One possible

comparison is with the 6502, which has a similar programming model and a

similar set of functions. Both devices have a single accumulator, though the 6502

has a pair of 8-bit index registers instead of a pointer register, which can be used

in a base-offset addressing system. The 16-bit pointer register allows indexed

addressing to be used across the whole memory map without requiring complex

base-offset addressing, a useful feature when dealing with transferring data in

large blocks. The connection between the P register and the ALU, which allows P

84

to be used as a second accumulator, makes it possible to perform pointer

arithmetic much more simply than with the 6502, and also allows the use of two

accumulators in sections of the program where pointers are not required. It is

primarily because the processor' s entire architecture is 16-bit that this is possible,

if the data bus was 8-bit the P register would be 8-bit and could not hold a

complete memory address.

It is difficult to compare the processor with other architectures because it does not

bear close resemblance to any common processor. The relatively simple

instruction set and small number of registers are somewhat similar to the 6500

series, while its reliance on conditional skip instructions instead of conditional

jumps or branches, and its regular instruction timing are similar to the PIC series

of microcontrollers. Although its instruction set is small and it has some features

in common with RISC architectures, it is not a true RISC machine, in which it is

common to see many more general purpose registers, pipelining and more

complex addressing modes which can be used by compilers to make more

efficient translation of high-level code. In fact, with the lack of an instruction

decoder and the wide range of hybrid instructions this enables, the instruction set

of this new design could potentially contain many hundreds of instructions.

It is unlikely that pipelining would be a useful addition to this design, as the

addition of several pipeline stages might increase the speed slightly but would add

significantly to the size of the processor. The simplicity of the execution cycle

also makes pipelining more difficult, as it is hard to see how the cycle can be

broken up into stages without making it less efficient.

A possible method of analysis of the design is to compare its performance and

hardware size with that of other FPGA-based processors. This comparison will be

based on the general-purpose processors implemented in VHDL / Verilog rather

than hardware embedded units like the Virtex's PPC core or designs which are

specifically intended to support a particular compiler or language, such as JOP,

the Java Optimised Processor mentioned in section 4.1. The results detailed here

are only a basic and approximate indication of the relative capabilities of the

processors, as is discussed below. A complete and thorough analysis of the

different types would require a common benchmark program to be implemented

85

and run on all types, which has not been done. These figures show only the

performance in MJPS (Millions of instructions per second).

Type LEs MHz MIPs (Est.) MIPS/ LE
New Design 440 66 13.2 0.0300
Nios 2 fast 1800 185 218 0.1211
Nios 2 std. 1400 165 127 0.0907
Nios 2 min. 700 200 31 0.0443

D68000 6332 32 3.2 0.0005
DRPIC1655X 919 59 14.75 0.0161

68HC11 1809 42 42 0.0232
DP 8051 1750 63 63 0.0360
Free6502 1064 12.5 4.3 0.0040

Table 11: Comparison of various FPGA processor implementations

Table 11 shows the size and speeds of FPGA implementations of various

processors. Apart from the Nios designs, the Free6502 design [4.7] and this new

design the others are commercial IP blocks available from Hitech Global [4.6].

The Free6502 core is not a commercial design, and is quoted as using 523 CLBs

in a Xilinx 4020XL device. The difference in architecture between the Xilinx and

Altera devices makes a direct comparison more difficult, but the datasheets show

that functionally each CLB in the Xilinx 4020 device is approximately equivalent

to two of the Apex LEs, so the LE count shown in the table is based on this. It is

clear that this new design has a smaller footprint than any of the others, and while

it may not have the highest clock speed, its maximum speed of 66MHz is faster

than several of the other designs in the table, with only Nios II running faster.

The MIPS figures are approximate, except in the case of the new design which is

assumed to always require 5 cycles per instruction, and the PIC which is assumed

to use 4 cycles per instruction. The figures for Nios II are obtained from the

handbook for the processor [4.24]. The 68000 is known from past experience to

take an average of 10 cycles per instruction, while the 68HC 11 and 8051 are

specified by their manufacturers as being speed-enhanced versions which offer ;:t

substantial increase in speed for a given clock speed when compared with the

original devices. It is therefore assumed for the purposes of this comparison that

they take a single cycle per instruction. The 6502 is known from past experience

to perform around 0.7MIPS at 2MHz, thus the value in the table is calculated

accordingly.

86

The final column in the table shows the speed in MIPS per logic element used,

showing the area / performance trade-off. This shows that this new design ranks

fifth by this measure, with Nios and the 8051 outperforming it. However, if the

8051 is not capable of single-cycle instructions as was assumed, its score would

decrease. It is clear that the Nios 2 design is substantially more powerful than any

of the others in the table, though the 8051 is not far behind the least powerful of

the Nios designs, in terms of MIPS per LE. The architectural differences between

the three versions of Nios account for the wide variation in MIPS per MHz for

these three.

A direct comparison of speeds, either in terms of clock speed or instructions per

second, can be misleading unless the two processors have similar features. In

some cases certain sections of program code can be implemented more efficiently

on some processors than on others, if it makes use of some processor-dependant

features. Similarly a program running on a processor with more internal registers,

such as the 68000 in the table above, will need fewer data transfers between

registers and memory than a similar program running on a processor with just a

single accumulator. Capabilities such as hardware multiply and divide will also

reduce the execution time of an algorithm compared with software

implementations. Even simple functions such as shift and rotate can be

accelerated if the processor has a barrel shifter and can perform several shifts in

one cycle.

Another point of importance is that the instructions take a fixed length of time to

complete in this new design, regardless of their mode, in contrast with more

complex processors such as the 68000 series, in which the more complex

addressing modes add significantly to the execution time of the instructions.

However, the simplicity which provides this feature also reduces the number of

addressing modes available, which can result in complex operations involving

pointers taking longer, as base-offset address calculations have to be done with

the ALU.

The ALU design is inefficient at present, as the add, add-with-carry and subtract

operations are all performed by separate adder circuits. The ALU could be rebuilt

to make more efficient use of the hardware, further reducing the logic cell count,

though with a possible reduction in operating speed as combining the adders into

one will add extra gates to the input of the adder and thus increase the propagation

87

delay. Each adder currently takes at least 16 cells to implement, along with the

extra cells required to implement the larger multiplexer that is required when the

adders have separate outputs. If the ALU size is reduced without lowering the

operating speed of the processor, its performance/area ratio will increase.

The simplicity which allows the processor to take up relatively little hardware will

also pose a problem if the processor is to be expanded with a larger instruction set.

There are only four bits which could be used for the ALU function code, and at

present only two permutations of these are unused, though these are detected by

the stack logic and used to denote subroutine jumps. However, since the

subroutine logic is only activated if the instruction is specified as a jump

instruction, it is possible to use these 'spare' codes for two extra ALU operations.

There are also two spare codes in the conditional skip instruction set, though there

is no reason why the skip code cannot be expanded to fill the four bits allowed for

the ALU codes, resulting in a total of ten more conditional skip instructions. It

would be difficult, however, to find enough testable conditions to make use of this

feature.

The stack can also be expanded, and in fact since the RAM blocks in the Apex

FPGA hold 2048 bits each, the current 16 level stack, using just 256 of these, is

not using the RAM block to its full potential. In theory, the stack could be

extended to 128 levels before an extra RAM block is required. Later Altera

FPGAs, which have smaller RAM blocks, would enable a less wasteful

implementation.

The memory usage is also less efficient than most processors, but this was

necessary in order to simplify the hardware as much as possible. Two 16-bit

words make up each instruction, the second word being present whether it is

required or not. However, there is no reason why the operand words of

instructions which do not need operands shouldn' t be used for data storage, even

if this complicates the design of the software. There is no support for this at

present but an optimising assembler could make use of the unused operand spaces

to store constants for other instructions, or variables if the assembled code is to be

placed in RAM.

A feature which can work in this design's favour is the ability to create hybrid

instructions, and to customise the standard set, in both cases with no change to the

hardware, but simply by altering the bit pattern of the op-codes. A simple example

88

which was mentioned previously is the ability to load both registers

simultaneously from the same source, which would clearly save an instruction

cycle or 5/6 clock cycles (depending on whether state O is used in each cycle).

This LDAP instruction can take any form available to the LDA or LDP

instructions. It is also possible to specify whether flags are updated or ignored,

something which is not often available on other architectures, and if it is required

that an LDA instruction does not modify the flags, this can be achieved without

having to back up the flags in memory, a task complicated immensely by the fact

that the flags are not accessible as a register. Certain more complex instruction

sequences can be combined into one instruction, for example it is possible to

create an op-code which will perform a register-only operation such as a shift or

rotate on A, but with the result written into P rather than A, thus preserving the

contents of A for future instructions without having to write it to memory. It is

also possible to perform instructions of this nature without writing any result, but

instead only updating the flags. Although it may be hard to see the necessity of

these instructions, they are representative of the idea that a flexible architecture

such as this can, under the right conditions, make certain software operations a lot

simpler.

4.6: Conclusions and Further Work

At present the processor is a capable machine which is suitable for applications

requiring functions which are too complex to implement with hardware. It is

ideally intended to be used in conjunction with other more specialised processing

hardware, with the processor itself overseeing the movement of data and the

control of the other hardware. Some degree of refinement is desirable in the case

of the ALU, which is currently somewhat larger than necessary, having been

implemented in an inefficient way.

It has been seen that the processor' s simple hardware brings two major

advantages, firstly the small footprint, which is useful when implementing

systems in smaller FPGAs, and secondly its ability to operate quickly, as having

relatively little hardware in the data path to add to the propagation delays allows

for a higher clock speed. The two of these combine to produce a device with a

high ratio of performance to area. It may not be as high as some alternative

89

processors, but this new design has a small footprint compared with other designs,

which can be made even smaller by a more efficient implementation of the ALU.

The small instruction set and limited number of registers do however mean that

some of the more complex operations take more instructions to perform than with

more complex processors. However, the simplicity of the control hardware also

introduces the idea of hybrid instructions, which have been shown to have

potential in reducing the number of discrete operations required to perform a task.

At present the only additional work that needs to be done on the processor is to

make the ALU more efficient, as any modifications to the instruction set or

addition of new features will be dictated by the applications for which the

processor is used. One particular application area could be education, as the

processor' s very simple hardware could make it a good platform for learning the

basics of microprocessor design.

90

Chapter 5: Digital Neuron Models

This chapter describes the development of a set of hardware blocks which

replicate the function of neurons in a greatly simplified form. The motivation

behind the design of these models is to develop a simplified model of a neuron

which takes up as little space in the FPGA as possible while retaining the ability

to perform complex functions. Several designs are presented, showing different

approaches to the problem of modelling a neuron with simple hardware. The

issues associated with efficient implementation of the models in the FPGA are

shown and methods of optimising the designs to make the most efficient use of

the hardware are discussed.

It is shown that the neuron models are capable of performing complex functions

despite their simplicity, and that a network of such models is capable of very

complex dynamics under certain conditions. Finally, some simple neural circuits,

a spike multiplier and a set-reset latch are demonstrated, showing that the neurons

can be used to construct novel and useful building blocks for a larger and more

complex system.

5.1: Background & Review

Neural networks find applications m a variety of fields, but the most usual

applications are statistical analysis, pattern recognition and classification of data.

In particular, a neural network can be useful when the data set has no easily

described features which differentiate one class from another, or in which the

differentiating features are too subtle or variable for a conventional rule-based

approach to work [5.1 , 5.2]. The ability of the network to determine subtle

patterns in the incoming data also makes it useful when the incoming data is

corrupted or obscured by noise, especially when the noise is largely periodic, as

the network can be trained to ignore this and focus purely on the embedded signal.

[5 .3]

The term ' neural network' implies a device that operates in a manner similar to an

organic brain or central nervous system, systems which operate very differently

from conventional computers.

91

The brain is a massively-parallel computer, a device in which computation is

carried out by a large number of simple processors operating in parallel. Each of

these processors, a neuron, performs a relatively simple function, collecting

signals from other neurons and producing signals of its own when its inputs meet

certain conditions. Each neuron may be connected to fewer than ten others, or

more than a thousand, while the connections themselves can have a variety of

effects on the state of the neuron. It is the cumulative effect of these simple

operations which gives the brain its enormous ability to process and store

information, and which gives a neural network the ability to perform operations

which are difficult or impossible to program a conventional computer to perform.

The neural network obtains its high performance by ' steering' the incoming data

rather than by performing algorithmic processing. Once the necessary learning has

taken place, and the network is trained to perform a task, any incoming data

simply activates the pathways between the neurons which were set up by the

training, providing an answer very quickly.

Typically, networks designed for pattern classification tend to have two or three

layers. [5.4] The first layer is the input layer, to which the incoming data is

presented. This data may need to be encoded in some way to suit the type of

neuron model used in the network, for instance if the network uses spiking models

the input to each neuron would be encoded as a spike train, where the information

is carried in the frequency or timing of the network.

The last layer in any network of this type is the output layer, and in the case of a

pattern-classifier network, will generally consist of one neuron for each class to

which the incoming data could belong. There may also be a hidden layer of

neurons between the input and output layers, as depicted in Figure 37.

92

r/)

=i
0.
.!:

Input Layer Hidden Layer Output layer

Figure 37: A three-layer neural network

r/)

=i
0.
=i
0

93

5.2: Neuron Structure and Operation

The general form of a neuron [5.5] is shown in Figure 38. This is the type of

neuron found in brain tissue, which differ slightly from some of the more

specialised types such as sensory cells and motor neurons. The soma, or cell body,

has a structure similar to most types of body cells, with the addition of a series of

protrusions and a surface membrane consisting of a lipid bi-layer with unique

electrochemical properties. The inputs to the cell are the dendrites, which are long

branching structures, several of which may extend from a single cell. The cell's

output channel is the single axon, which ends in one or more terminals which

make contact with other neurons at sites called synapses.

Dendrites/

j
Cell body (Soma)

~on

Figure 38: Form and layout of a neuron

Synapse

One dendrite
from another
neuron

Neurons communicate by means of action potentials, which can be thought of as

short pulses of the form shown in Figure 39. The voltage and time scales in this

figure are approximate, showing that the action potential usually measures around

1 00m V peak-to-peak and lasts for around one millisecond. These action potentials

are usually approximately equal in amplitude from one to the next, but it is not the

size of the pulse that determines the message to be transmitted, this information is

encoded in the timing of the pulses and the effect each pulse has on the post

synaptic neuron. This effect is determined by the synapse which receives the

pulse.

94

Action potentials occur due to the polarization of the neuron's cell membrane,

which is due in turn to an imbalance of positive and negative ions when the

neuron is at rest. The cell membrane has a potential difference across it, with the

outside having a potential around 70m V higher than the inside when at rest. It is

conventional to speak of the matter surrounding the neurons as having a potential

of zero, so the neuron's internal potential is - 70mV at rest. Any disturbance to

this polarization will cause a change in the membrane potential at that point,

which will affect the surrounding membrane, causing the disturbance to propagate

across the cell.

40

>
20

.§.
0

"' +:I
C -20 s
0
ll.
QI -40
C

f
.a -60 E
QI
~

-80

-100
0 0.5 1.5 2 2.5 3 3.5 4

Time (ms)

Figure 39: General form of an action potential

Embedded in the cell's membrane are a series of ion channels, which selectively

allow ions to enter and leave the cell. Some of these are the ion pumps responsible

for maintaining a concentration gradient of ions across the membrane, and

therefore maintaining the potential difference between the inside and the outside.

At the synapses, the ion channels are responsible for the change in membrane

polarisation during synaptic events. Generally, sodium, potassium, calcium and

chloride ions are responsible for the polarisation effect in a neuron.

95

Figure 40 shows a more detailed view of a single synapse. As an action potential

reaches the synapse from the presynaptic neuron, the vesicles, containing

neurotransmitter, move to and merge with the presynaptic membrane, releasing

their neurotransmitter into the synaptic cleft. Chemical binding of the

neurotransmitter with the receptor sites on the postsynaptic membrane' s ion

channels triggers an electrochemical process which alters the balance of positive

and negative ions in the membrane, either reducing the magnitude of the

polarisation (depolarisation), or increasing it (hyperpolarisation). This change in

the polarisation, called a post-synaptic potential (PSP), can therefore either bring

the membrane potential closer to zero, away from its normal resting point at

around -70mV, or can push it further away from zero, making it more negative. A

raise (toward zero) in the membrane potential brings the neuron closer to firing, so

a PSP which does this is called an Excitory PSP, while a PSP which increases the

polarisation is called an Inhibitory PSP.

Presynaptic Neuron

.0 0 Synaptic Vesicles

0 0
. .

Synaptic Cleft • • +- Neurotransmitter release

Postsynaptic Neuron

Figure 40: Detailed view of a single synapse

The magnitude of the PSP is determined by the electrochemical effect which the

neurotransmitter has on the postsynaptic membrane, and as this will vary

depending on the exact conditions present at each synapse, the PSPs from

different synapses will all have different effects on the overall state of the neuron.

96

This gives rise to the concept of weighted inputs, where certain synapses have a

greater effect than others, or a greater weight, while others may in fact reduce the

neuron's chance of firing, having a negative weight.

Thousands of PSPs arrive from the thousands of synapses, converging on the axon

hillock, where the axon joins the soma. If the cumulative effect of these raises the

membrane potential at this point enough to reach a threshold, which is typically

around -50mV, the neuron fires, and an action potential propagates along the

axon, where it triggers the same synaptic processes in subsequent neurons.

Whenever there are no PSPs arriving from the synapses, the neuron slowly re

polarises, so that the membrane potential gradually returns to the resting value of

around -70m V. Therefore, a stream of excitory PSPs may fail to trigger an action

potential if the timing is such that the membrane potential is allowed to return to

the resting potential between inputs. The neuron can thus be considered to be a

frequency-dependant system, where a low input frequency will not produce an

output. The size of the PSP generated by a particular synapse will have an effect

on this frequency-dependence, as a very small PSP will have to occur more

frequently than a much larger one in order to overcome the decay and cause the

neuron to fire.

Figure 4 I shows a simplified overview, approximated by straight lines, of the

change in membrane potential with time for a neuron which is stimulated to firing

point by a series of input pulses.

iii ..
C

~ n.
Cl)
C

"' ..
..0
E
Cl)

~

Time

Figure 41: Simplified membrane potential response to three input spikes

97

As the neuron fires, the membrane potential rises rapidly before returning to a

much lower value that the resting potential. Now, the ionic compounds

responsible for the membrane polarisation must be replaced, and during this

period, the refractory period, action potentials will not be produced, regardless of

the input activity. There is therefore a minimum period of action potential

generation, and a neuron which is constantly stimulated by incoming signals will

have a maximum firing rate beyond which any further increase in stimulation will

have no effect.

98

5.3: Artificial Neuron Models

The descriptions of the conventional artificial neuron models in the following

sections are adapted from [5.4] and [5.5]. More complete details can be found in

these texts.

5.3.1: Threshold Logic Unit

The simplest type of artificial neuron is the Threshold Logic Unit, or TLU. This

provides a very simplified model of a neuron as a device which will produce an

output signal if sufficiently stimulated by its input signals. The general form of

such a device is shown in Figure 42.

W1

Figure 42: Block diagram of a threshold logic unit

The incoming signals are weighted and summed to determine the neuron's

activation, which is then fed to a threshold unit to determine whether the neuron

will fire. Weights can be positive or negative, representing excitory and inhibitory

synapses.

The threshold function depicted in the figure, though lacking detail, shows the

general form of the threshold response. The output, on the Y axis, is zero for any

input (X axis) below a certain point, the threshold. For input above the threshold,

the output is a fixed, higher value. It is conventional to consider these values to be

0 and 1, respectively.

99

Although this binary representation of the neuron's response limits the neuron to

simple on/off outputs, it does give rise to some degree of error tolerance, as the

weights can change slightly without altering the output from the neuron. Whether

the activation of the neuron is just below or a long way below the threshold, the

neuron will output 0, and similarly the output will be 1 whether the activation just

exceeds the threshold or exceeds it by a long way.

An alternative activation function to the step function described above is the

sigmoid function, which provides a continuous relationship between the activation

and the neuron's output. An example is shown in Figure 43. The sigmoid curve is

symmetric about the point at which the Y-axis value is 0.5, and the X axis value

corresponding to this can be thought of as being equivalent to the threshold in this

case.

~--------"72:,-----------------,

-15 -10 -5 0 5 10 15

Figure 43: Example of a sigmoid function

The sigmoid function is expressed mathematically as

Y = 1 - (a- 8) / p +e

where 0 is the centre point of the function and p determines the shape of the

curve. The figure was generated with p = I. Larger values make the curve flatter,

while asp tends to zero the curve more closely approximates the shape of the step

function.

The values passed between the neurons represent their level of activity, so for the

case of the step function, the neurons in a network are either active or not active,

represented by O or I. Neurons with a sigmoid activation function can produce a

variety of outputs.

101

5.4: Spiking Neuron Models

While the threshold logic unit can model the basic summation of inputs and

threshold functions of a real neuron, many models have been developed which are

based on a much more detailed analysis of the internal functions of the neuron,

taking into account the spiking nature of the cells, and the details of the membrane

potential. Spiking neuron models have been shown to be more computationally

powerful than threshold or sigmoid-based models (5.6], demonstrating the ability

to perform with a single neuron a function that requires many hidden layers in a

network of TLUs. It is suggested (5.7] that the computational power of these

neurons arises from the way in which information is coded, not only in the

frequencies of the spikes but also in their relative timings.

5.4.1: The Integrate-and-Fire Model

The simplest of these models is the integrate-and-fire model, though the slightly

more complex and realistic leaky integrate-and-fire model (LIF) is used most

often. This model was first proposed by Lapicque in 1907 (5.8, 5.9], long before

the mechanisms governing action potential generation were known and is based

on a simplified view of the capacitance and leakage conductance of the cell

membrane.

Figure 44: Overview of the Lapicque model

The structure of the model is shown in Figure 44. Yr represents the resting

potential, to which the membrane potential V will gradually return in the absence

of stimulation current I. C represents the membrane capacitance while R

represents the leakage resistance. When I is positive, the capacitor is charged at a

rate proportional to I, raising the membrane potential. It can be seen that the

102

model does not model the actual generation of an action potential, Lapicque

postulated that when the membrane potential reached some threshold value, an

action potential would be generated by some other means, and the membrane

voltage would be reset to some sub-threshold value. If set to less than Yr, it would

need time to return to Yr, providing a basic simulation of the refractory period.

Sample waveforms showing the response of the leaky-integrator to a varying

input current are shown in Figure 45. The resting potential in the figure is -60mY,

and it is apparent that the potential immediately after firing is a little lower than

this. The threshold is around -45m Y. The input current is large, the model fires

repeatedly, until the current is lowered to a point where it cannot charge the

capacitor more quickly than the resistor R is discharging it.

0

~-20 -> -40

=i• 4(/\
.s JI\, ~ L\,I\ I_ c,,/\, j

0 100 200 300 400 500
t (ms)

Figure 45: Response of a simple LIF model to a varying input current (adapted from (5.91)

The basic equation governing the response of the integrate-and-fire neuron is

where •m is the membrane time constant, Y is the membrane voltage, EL is the

resting potential of the neuron, Rm is the total membrane resistance and Ie is the

excitation current. In addition to this, the threshold rule is applied, so that when Y

reaches the threshold Y1h, the neuron fires an action potential and Y is reset to

some value Yr.

103

Solving the above equation allows the subthreshold membrane potential Y(t) to be

calculated:

- I

where Y(0) is the membrane potential at time t = 0. This equation is valid only

when Y <Y1h-

We can use this equation to calculate the firing rate of the neuron for a constant

value ofle. Assuming that the neuron has just fired at t=0, the membrane potential

will be at the reset value, Yr. Note that this is not the same Yr as in Figure 44, as

the resting potential is represented by EL here. The next action potential will occur

when Y reaches Y1h, at a time ti,

Solving for ti, we can obtain the firing interval for the neuron

and since the firing rate ri = ti_, we obtain:

It is clear that in general the firing rate of this neuron model increases

logarithmically as the excitation current increases, but for large le the increase can

be considered to be approximately linear. This logarithmic response is discussed

in section 5.14.2, where it is shown that the neuron can behave as an input

encoder.

104

5.4.2: More Complex Models

The integrate-and-fire model was extended in the 1960s by the pioneering work of

Hodgkin and Huxley into analysing the behaviour of squid neurons [5.10]. The

Hodgkin-Huxley model [5.11], in its simplest form, provides a detailed and

biologically plausible model for the membrane conductances and allows the input

current le to be defined more realistically. The FitzHugh-Nagumo model [5.12,

5 .13] was introduced later as a simplification of the Hodgkin-Huxley model. Both

models are much more complex than the integrate-and-fire model, being based on

modelling real-world biological and chemical processes.

5.5: Existing Implementations of Neurons and Networks

An interesting alternative to developing a system by training a neural network is

the principle of evolved hardware, which was first demonstrated by Thompson

[5.14], where a Xilinx XC6216 FPGA was programmed to perform a simple task

- discriminating between two tones - by a process of evolution guided by a

genetic algorithm rather than by explicit design of the circuit. A subset of 100

logic cells within the device was used, and a genetic algorithm starting with 50

random configuration patterns evolved a configuration pattern after 5000

generations which could distinguish flawlessly and rapidly between the tones. It

was later found that most of the circuitry could be removed, leaving just 32 cells

which were required, even though many of them appeared not to be connected.

The circuit was shown to be making much more complete use of the dynamics of

the individual transistors than a conventional digital logic design would, and its

performance was very dependant on its operating environment. Later work by

Fogarty et al [5.15] showed that true digital circuits could also be evolved, which

were not bound to the analogue operating conditions of the underlying hardware.

Simple evolved arithmetic circuits were shown which used far fewer resources

than circuits generated by traditional design and optimisation methods, as the

evolution process was free to explore the underlying logical structure of the logic

elements themselves, rather than thinking of them as simply places where logic

gates can be put. Since the first study of evolution in FPGAs there has been much

work in this area, concentrating mostly on making non-hardware-dependant

105

circuits which function at the gate level rather than the analogue level [5.16]

[5.17] [5.18] [5.19]. Gordon and Bently [5.20] provide a good overview of this

field, which could be thought of as an alternative to neural networks.

There are two main methods of implementing artificial neurons in VLSI; analogue

and digital. The former is based on the analogue models developed in the 50s and

60s, and is generally implemented in full-custom VLSI, making use of the

analogue nature of the transistors [5.21][5.22][5.23], or sometimes in Field

Programmable Analogue Arrays (FPAAs) [5.24]. The analogue full-custom types

can offer the highest neuron density, as each neuron may consists of a mere

handful of transistors [5.25], equivalent to a few logic gates in a digital system,

though these are expensive to develop. Full-custom VLSI implementations can

also make use of mixed analogue and digital circuitry, with the spikes handled by

digital gates while the integration is handled by an analogue integrator. [5.26]

The digital implementations are usually performed with FPGAs at the present

time, since FPGAs allow rapid prototyping at lower cost than full-custom VLSI.

Within the sphere of these digital implementations, there are many subtypes,

ranging from simple implementations of threshold logic units to complete

simulations based on hardware-accelerated software.

Vitabile et al. [5.27] present an efficient method for implementing a Multi-layer

Perceptron in an FPGA. The MLP is a layered feed-forward network based on

threshold units, and it is shown in this implementation that a replacement of the

more conventional sigmoid activation function with a sinusoidal one results in a

decrease in resource usage while retaining the precision and processing abilities of

the network. It is also demonstrated that many of the variables and buses such as

weights and pre/post synaptic connections can be reduced to small bit widths, in

some cases as small as 3 bits wide, without compromising the operation of the

network. A major point raised is that the main bottleneck in a system such as the

one presented is the bandwidth between the parameter memory and the neurons

themselves, and thus a method is presented where the network is pipelined and the

neurons of the first layer are updated one at a time, writing the partial results into

a series of FIFOs. Once the required number of results are present to allow the

first neuron in the second layer to be updated, the second layer is processed, one

106

neuron at a time, and the process continues in this manner. It is shown that this

method reduces the number of individual RAMs which must be used, as all

parameters are held in a small number of large memories which are shared among

the neurons.

The system demonstrated by Eldredge et al. [5 .28] makes use of run-time

reconfiguration to increase the density of a multi-layer feed-forward network

using back-propagation learning by dividing the system's operation into three

phases; feed-forward operation, back-propagation operation and weight updates.

These three functions are implemented as separate blocks and time-multiplexed

onto the FPGA, with the results of each phase being stored in external memory.

The results presented show that when the system is partitioned in this way, six

neurons can be fitted to each processor, compared with just one if all three phases

co-exist on the same chip at the same time. It is shown that the time required to

reconfigure the FPGA with its new function will slow the system down if a single

chip is used, but when a large number of them are used in parallel, the advantage

of being able to process 6 neurons on each chip at once outweighs the

disadvantage of the extra time required for reconfiguration.

Bade and Hutchings approached the problem of reducing the hardware size from

another angle, using a stochastic method [5.29] in which the neurons' activation

values are represented by serial bit-streams where the magnitude is proportional to

the quantity of 1 's in the stream. This allows multiplication by the weights to be

done with much less hardware (a single gate) than if a complete multiplier was

used, and thus increases the number of neurons which will fit into a single chip.

One of the oldest FPGA implementations of a very large scale neural network is

the CAM-Brain Machine (CBM), built by De Garis & Korkin [5.30][5.31] in

which a total of 75 million neurons are implemented by 72 FPGA-based

processors. The neurons are grouped into cellular-automaton-based 'modules' of

around 1000 each, and each module is evolved by a genetic algorithm to perform

a specific function. Up to 65000 of these CA modules are then loaded into a large

memory to form the overall 'brain', which can be updated by the machine at a rate

of 130 billion cells per second. At the time of publication, the performance gain

107

was estimated at around 10,000 times the performance of software running on a

400MHz Pentium II PC.

The actual cells used in the implementation of this system are quite different from

either threshold logic units or spiking neurons, as they are simple CA cells of one

of four types: axon, dendrite, neuron body or blank. [5.32] These exist in a 3-

dimensional CA and operate together to produce the simulated neurons, of which

there will clearly be fewer than there are cells in the CA. The overall effect of the

set of cells which combine to produce each simulated neuron is roughly

equivalent to a threshold logic unit, but the real distinction of this system is that

the cellular-automaton based structure combined with the genetic algorithm used

to develop the network results in the connections between the neuron bodies being

' grown' to suit the application rather than hard-wired in a regular structure. Each

module has a 'chromosome' which guides the CA when growing these

connections. A hundred modules are evaluated for fitness by comparing the

outputs with the expected outputs for a range of input vectors, then the ten best are

selected and a hundred more composed by 'mating' these ten. Eventually a

module arrangement is reached which is deemed ' fit for purpose', and this can

then be used in the final CBM, along with thousands of others.

While the above examples are all essentially threshold logic units, less work has

been done in the area of implementing spiking neuron models in FPGAs. It is

generally the case that the more complete spiking neuron designs based on a full

implementation of the Hodgkin-Huxley model or similar tend to be implemented

as analogue circuits, while the simple integrate-and-fire designs are often

implemented digitally, but with a view to implementing large-scale networks

rather than small networks or individual neurons.

Many FPGA implementations of larger networks are based on the principle of

multiplexing the simulated neurons onto a small number of execution units, and

simulating the neurons in a series of time-steps, with the parameters for the

neurons and synapses stored in RAM, along with the status of each

interconnection. Glackin, McGinnity et al [5.33] showed that while a fully parallel

implementation could be expected to fit a few tens of neurons into an FPGA, a

108

multiplexed approach such as this could be used to implement a network of

thousands of neurons with four main neuron processors.

The neuron processors used in this system consist of embedded microprocessors

which have access to integrate-and-fire neuron models which they use as

coprocessors. A single time-step for the entire network is calculated by operating

the four processors in parallel with each processing a subset of the network. The

results show an increase in speed of around 1000 times compared with a Matlab

simulation of the same network, for the case of a large network of 4200 neurons

and 1.9 million synapses.

Pearson et al. proposed a Biologically Plausible model [5.34], in which the simple

leaky integrate-and-fire model is extended to simulate the axonal delay and noise

in the weights and other parameters. Ten neuron processing elements, each

consisting of a neuron model and a synapse model are implemented in parallel in

a million-gate FPGA, and 120 virtual neurons and 912 virtual synapses are time

multiplexed onto each one. This implementation also makes use of 16-bit integer

arithmetic in place of floating-point arithmetic, an implementation chosen for the

simpler hardware involved. This implementation is not a 'neural network' as such,

as it is considered to be a SIMD (Single Instruction Multiple Data) processor with

custom hardware specifically geared towards simulating neural networks, a

hardware-accelerated software implementation.

The SNN Emulation Engine (SEE) described by Hellmich et al. [5.35) is another,

later example of this type, consisting of 3 FPGAs; a master controller, a Network

Topology Computer and a Neuron State Computer. The NSC contains 3

Processing Elements, each of which has a link to fast SDRAM, containing the

complete parameter set for each neuron and synapse. A total capacity of i19

neurons and 803xl06 synapses is achieved, and an acceleration factor of 30x

compared with a standalone 2.4GHz PC is claimed, with the SEE operating at

50MHz. Although based on standard Xilinx Virtex lI FPGAs, SEE is however a

custom architecture, and its builders state that commercial and educational FPGA

development systems are generally not adequate for this level of acceleration.

109

While many of these implementations are intended to model many hundreds or

thousands of neurons, usually processing a few at a time, some work has been

done in implementing smaller networks, sometimes with all the neurons of the

network implemented in parallel. Roggen et al. demonstrate a simple parallel

network of very simple spiking neurons [5.36] being used to control an

autonomous robot. Despite the simplicity of the neurons, in which the arithmetic

representation is cut down to use as few bits as possible, and the weights assume

one of two fixed values, the network is shown to be capable of performing the

task for which it was developed, and as a result of the simplicity 64 neurons can

fit into a relatively small FPGA, along with an embedded processor for interfacing

and control. It is stated that the speed of the network is two orders of magnitude

greater than the software version, at the same clock speed. This is an interesting

result as it demonstrates that useful neural networks can be built from neurons

with greatly reduced hardware cost. Bellis et al. also showed that an autonomous

robot could be controlled by a simple network [5.37], in this case a network of

just four neurons, with two acting as input encoders and two as output generators.

The neurons in this case were built with arithmetic hardware tailored to suit the

sensors used by the robot, and were small enough to allow 40 to be implemented

in parallel in a mid-range FPGA.

Upegui et al [5.38][5.39] propose a simple leaky integrate-and-fire model

featuring Hebbian learning implemented in an FPGA, using a mixture of

configurable logic and embedded RAM to compute the function of the neuron in a

series of time-slices and a network of 30 neurons is trained to discriminate

between two freq uencies of input signal. It is shown that this simplified

approximation uses much less hardware than more complex biologically-plausible

implementations which perform a more detailed modelling of the neuron [5.40],

and also that a change in the number of inputs to the neuron affects not only the

hardware size but also the latency, as the need to integrate over more inputs

means that more clock cycles are required.

This neuron model is a good basis for development of other simple integrate-and

fire models, as it captures the basics of neural operation.

110

Savich et al. discuss number representation and the design of the neuron core

[5.41], concluding that fixed-point computations can be executed with much less

hardware than their floating-point counterparts, generally achieving a halving in

the area required and an increase in clock rate when comparing implementations

in which the range and precision of the two formats are similar. It is also shown

that the area required can be reduced by as much as 80% if the weights are

processed serially with a multiplier-accumulator, rather than being processed

simultaneously with a series of separate multipliers and an adder tree.

Schrauwen and Van Campenhout address the issue of hardware size in an

alternative way, realising that while software implementations tend to follow the

architecture of the host computer, a hardware implementation can be based around

a completely different architecture, which can result in significant improvements

in operating speed or resource usage in an FPGA. The method proposed is that of

serial arithmetic [5.42], where 1-bit adders replace the wider parallel adders and

registers are replaced by shift registers. The result of this is that the neuron

requires far fewer logic cells than an equivalent implementation with parallel

arithmetic, and due to the simpler hardware it also can operate at a much higher

clock speed, though as it uses serial arithmetic more clock cycles are required to

perform each operation. This approach has been previously taken by others such

as Torres et al. [5.43] with similar findings.

111

5.6: FPGA Spiking Neuron Model

It was decided to investigate the implementation of a spiking neuron model rather

than a simpler model such as a threshold logic unit because the spiking neuron

model is capable of more complex and interesting dynamics. A TLU can be

thought of as a static system, it responds to steady inputs, producing a steady

output signal. When the inputs change the output may change, or it may not, but it

will quickly reach a new steady state, with any changes in output following

changes in input in terms of timing. A spiking neuron model responds not to the

steady-state magnitude of the input signal but to the timing of the pulses,

producing pulses at a rate proportional to its excitation, and can therefore both

produce and respond to signals with more complex time-dependant

characteristics. A spiking neuron model also more closely mimics the dynamics of

a real neuron, and it was for these reasons that this type of neuron model was

chosen for implementation.

The Spiking Neuron Model presented in this chapter is intended to model the

timing-dependant operation of a real neuron without modelling the internal

functions in detail. As described above, the model does not represent the full,

complex dynamics of a real neuron, but replicates the operation of a simplified

leaky integrate-and-fire model with integration, decay and the threshold function

modelled as approximations.

It was decided that the neuron model design should have two major features;

firstly, it should operate independent of any others to which it is connected, and

therefore should not require to be synchronised with the others in the network.

This should bring the neuron a little closer to an analogue implementation, where

processing is carried out in real-time. Secondly, the hardware should be as simple

as possible, to make its LE count as low as possible. This latter requirement

necessitates a trade-off between the precision and realism of operation and the

size of the hardware. In addition, if the model is kept very simple, it should be

possible for it to behave as if it is performing its functions in real-time, using a

high enough clock speed to keep latency small.

112

5.6.1: First Implementation of a Leaky Integrator Model

The neuron model was built with four inputs, a simplification which makes it

suitable for simple neural networks with reduced connectivity. This was chosen

arbitrarily, and the model can be extended to have more inputs, or reduced to

fewer inputs. It was also built to operate at the relatively low speeds at which real

neurons operate, with firing rates of a few kilohertz at most. This low activity rate

compared with the tens or hundreds of megahertz clock rates possible with the

FPGA logic makes it possible to perform a large number of internal operations

between input spikes.

5.6.2: Overview

The basic neuron model has four inputs and one output, along with a series of

control signals which allow parameters to be updated in real-time. The internal

structure of the model is summarised in Figure 46.

W1

~ W2 .,
§
~ W4

~ Rslope

Z Oslope _.

0

Threshold Comparatoc
+

Rest Le-.et Comparator
PostFire

Inputs ---~--S-ta-te_M_ac_hi_ne _ _,1----------.► Output

Input Spike Catchers

Figure 46: Block diagram of the neuron model structure

Since the neurons communicate through short spikes, it will generally not be

possible for the receiving neuron to detect a spike if it has to do so by repeatedly

checking its inputs under the control of a state machine while also performing

other tasks necessary for the model. An output spike is one clock cycle in length,

so there is a chance that the receiving neuron will not be checking its input during

that particular cycle, and will miss the spike. To correct this the inputs are fed into

Spike Catchers, in which the input spike sets a flip-flop which can be read at the

113

next convenient time, and is reset by the state machine once the spike has been

received.

Output spikes are generated directly by the controlling state machine as it passes

through its firing state.

5.6.3: Neural Processing Core

The modelling of the simplified neuron function is performed by a simple data

processing system consisting of an accumulator, adder and two multiplexers. The

value in the accumulator represents the membrane potential in arbitrary units.

While the membrane potential in a real neuron rests at -70m V with no activity,

and can rise to around +90m V during firing, the simulation uses only positive

integers, resulting in a representation of the membrane potential which has the

same form, simplified, as that of a real neuron, but with a DC offset and expressed

in arbitrary units in order to simplify the design of the arithmetic logic. This is

simpler even than fixed-point, though as fixed-point representation involves using

the top n bits as the integer and the remaining bits as the binary fraction, an

integer representation using 16 bits can be thought of as being equivalent to a

fixed point representation but with all the numbers multiplied by some power of 2.

The multiplexer feeding the accumulator allows fully synchronous operation

without using logic in the clock generation. The accumulator is clocked on the

falling edge of every clock cycle, regardless of the current process operation.

Whenever the data in the accumulator is required to remain unchanged, the

multiplexer feeds the accumulator's output back to its input. This method ensures

that short glitches will not affect the accumulator. These glitches are inevitable in

FPGA logic when decoding wide bit vectors due to the fine-grained nature of the

device, which often requires that the state decoding logic is formed from several

cascaded layers of logic cells.

When the membrane potential is changed, either by an input spike, or by the

gradual re-polarisation between spikes or after firing, this multiplexer feeds the

output of the adder back to the accumulator. The adder produces the sum of the

current accumulator value and a selected parameter, chosen by the state machine

and control logic and fed from the parameter registers by a second multiplexer

114

under the control of the state machine. Any negative numbers must be entered in

two's complement representation.

5.6.4: Neuron Control

The basic operating cycle consists of checking the four inputs for spikes, adding

the weights to the accumulator if any spikes have been received, then adding the

decay constant to the accumulator to represent re-polarisation. The chain of states

in the state machine which perform this checking function is balanced so that if an

input doesn't have a spike waiting to be integrated, extra ' blank' states are

executed in place of the integration states. This ensures that the processing loop

takes a constant number of clock cycles to execute each time (15 in the case of 4

inputs), regardless of the input signals, and therefore the decay function works at a

constant rate. Each spike catcher is cleared immediately after the integration state,

and since this is only done if a spike has been captured, there is no chance of the

spike catcher being cleared at the instant a spike arrives, provided that the spike

rate is significantly lower than the clock rate, as was assumed when the neuron

was designed. If a spike has been captured, it must have occurred within the last

loop cycle, and therefore the next spike will not occur for some time.

115

IDLE

Go

REFRACT

REFCHECK

Rest= O

Rest= 1

CHKFIRE

Thresh= 0

Thresh= 1

FIRE

DECAYCHECK

Figure 47: State transition diagram for the four input neuron model

The state diagram for this neuron model is shown in Figure 47. The neuron starts

in the idle state, waiting for a 'GO' signal, a facility which allows all neurons in a

network to be reset and started simultaneously. The period between resetting the

neuron and starting the model with the go signal is used to load the model

parameters into the registers without any spurious responses from the neuron's

output due to incorrectly set parameters.

116

Once the neuron model is started by the GO signal, it enters the refractory period,

during which time it will not respond to input stimuli. To ensure this, the spike

catchers are constantly reset during this loop. If this were not the case, any

incoming spikes during this period would be held until the start of the integration

loop and would be integrated once the refractory period was finished. The

refractory period ends when the resting level comparator signals that the

membrane potential is within the limits set for the resting potential. At this point

the system enters its main processing loop.

At the start of each pass through the loop, the output from the threshold detector is

checked, and if it is signalling that the threshold has been exceeded, the state

machine passes through the FIRE state and back to the refractory loop. During the

FIRE state the accumulator is loaded with the post-firing potential specified in one

of the parameter registers, and an output spike is generated.

If the threshold has not been exceeded, the processing continues with the decay of

the membrane potential and the integration of the spikes. Firstly, if the

accumulator is not at the resting value, the decay constant, a negative value, is

added to the accumulator, then the four inputs are checked in succession and if a

spike has been captured at any input, the weight value for that input is added to

the accumulator. The use of a negative constant for the decay slope allows the

same adder to be used for the decay, integration and refractory period, saving

hardware.

The neuron' s parameters are held in a set of registers which appear from outside

the unit to be ten words of write-only memory. The addresses for the parameters

are shown in Table 12. The registers allow the parameters to be updated while the

neuron is operating, and in particular allow the weights to be adjusted without

stopping the neuron.

117

Address Parameter
0 Weight 1
1 Weight 2
2 WeiQht 3
3 Weight 4
4 Upper limit of resting potential
5 Lower limit of resting potential
6 Threshold
7 Decay slope
8 Refractory period slope
9 Post-firinQ membrane potential

Table 12: Parameter addresses for the neuron model

118

5.7: Testing the First Neuron Model

The aim of the tests presented in this section is to demonstrate that the neuron

performs the integrate-and-fire function correctly, and to show that the decay

function and refractory period are correctly handled. The timing-dependant

response of the neuron to the input spikes and its response to inhibitory inputs are

also shown.

The basic test of the excitory response consists of feeding a train of spikes into an

excitory input, with each spike increasing the membrane potential, until the

threshold is exceeded and the neuron fires.

Referring back to the assumptions made when designing the neuron, it was

assumed that the spike frequency on any input would be low compared with the

neuron model's clock frequency, and so a number of decay cycles would have

elapsed between input spikes. If the spike frequency is low enough the decay will

cause the potential to drop sufficiently far between spike inputs that it will never

be able to reach the threshold. This is tested by varying the decay slope and the

frequency of the input spikes.

The neuron was set up with the resting potential boundaries set to 1000 and l 050,

the threshold set to 3000, and the post-firing potential set to 200. The refractory

and decay slopes were set to 17 and -6 respectively. The choice of these values

was not determined by any specific requirements, but to provide a useful range of

membrane potentials over which the neuron could be tested and to provide a large

enough response to be displayed graphically.

5.7.1: Simple Spike-Train Test

The neuron was tested with a train of three spikes. Figure 48 shows the input and

output spike trains and the simulated membrane potential as the spikes are

entered. The input weight was set to 1000, so assuming that the resting potential is

probably just above 1000, two spikes should be enough to fire the neuron with no

decay present. With moderate decay, three spikes will be required. The resting

potential will not be at exactly 1000 (its lower bound) because the refractory slope

119

is +17, so the initial build-up of potential will result in the potential resting at the

closest multiple of 17 to I 000, which in this case is I 003.

Neuron Triggered By Three Spikes

1----------------..._ __ __, O~p~

lnp~

Accumulator

Time

Figure 48: Neuron model response to a train of three input spikes

The decay can be seen between the input spikes as a gradual drop in the

membrane potential. Each spike causes a sharp rise in the potential, with the third

spike causing the potential to exceed the threshold. Once this happens, the neuron

fires, outputting a spike and entering the refractory period. Due to the refractory

slope value as described above, this second resting potential is actually 1016.

120

In order to test the timing dependant response of the neuron, the decay function

was made more aggressive, taking the membrane potential back down more

quickly, to show that the three spikes entered in the first test could no longer fire

the neuron. These three spikes were then brought closer together to show that a

faster train of spikes could overcome this more aggressive decay and cause the

neuron to fire normally.

Three spikes fail to trigger the neuron

Time

Output

Input

Accumulator

Figure 49: Neuron fails to respond to three input spikes

Figure 49 shows a second test using the same input spike train as the first test.

Here, the neuron was set with a more aggressive decay, using a decay slope value

of -40. This extra decay slope was enough to ensure that the spikes failed to

trigger the neuron, because the time period between spikes was long enough for

the membrane potential to reach the resting potential, and therefore cancel the

increase brought about by each spike. Note that the time scale used in this figure

differs from that used in the first result graph, in order to show the entire

waveform.

Figure 50 shows a faster spike train fed to the neuron with the same parameters as

the previous test. Here, the neuron fires, because the shorter delay period between

spikes does not allow time for the membrane potential to fully decay.

121

A Faster spike train triggering the neuron

Time

Figure 50: A faster spike train triggering the neuron

Output

Input

Accumulator

This graph uses the same timescale as Figure 49, showing the shorter delay

between spikes.

This dependence on the timing of the input spikes shows that for any

configuration of the neuron's parameters, there will be a minimum rate of input

spikes below which the neuron will not be triggered.

122

5.7.2: Refractory Period Test

During the refractory period, the neuron should ignore any incoming signals, and

should clear the spike catchers so that any spikes caught during this period are not

read once the refractory period is over. Figure 51 shows the two spikes arriving

too close together, so that the second arrives during the refractory period. For the

purposes of this test the weight of the input was set to exceed the threshold value

with a single spike.

Input Suppression During Refractory Period

Time

Figure 51: Input suppression during refractory period

Output

Input

Accumulator

It can be seen from Figure 51 that the second spike is completely ignored. There is

also an apparent delay between the input spike causing the membrane potential to

exceed the threshold, and the neuron firing, which is due to the short period used

for testing. In order to complete the simulation quickly using the Quartus

simulator, the parameters and clock speed were set so that the refractory period

was very fast, and the spikes were fed in at rates far higher than a real neuron

would encounter. The delay caused by the few states performed by the state

machine between integrating the spike and firing would be a much smaller

percentage of the spike-to-spike time if the neuron was used with biologically

realistic input spike rates.

123

5.7.3: Inhibitory Input Test

An important aspect of the neuron's functionality is the ability to assign a

negative weight to an input to simulate an inhibitory synaptic response. To test

this the second input was given a weight of -990 and spikes were inputted to both

inputs simultaneously. The result of this test is shown in Figure 52.

I

Excitory and Inhibitory Inputs

I I I
I I I

Time

Output

Excitory input

Inhibitory input

Accumulator

Figure 52: Neuron response to excitory and inhibitory inputs

Figure 52 shows that the first two spike pairs arrived at a time when the neuron

was either checking inputs 3 or 4, or performing the decay function. This can be

seen from the potential waveform, which shows that the excitory input was read

first, raising the potential, followed shortly by the inhibitory input, which lowered

the potential back to the resting level. In the third case the spikes appear to have

arrived after the neuron checked input 1 but before it checked input 2. Referring to

the state transition diagram in Figure 47, there are two states, DELIA and

DELlB, in this interval. The waveform shows that the inhibitory input was read

first, followed by the excitory input after a slightly longer delay than in the first

cases, after the neuron had read inputs 3 and 4.

This response shows a potential problem with this particular neuron design, as an

inhibitory input that does not coincide with an excitory input will push the

124

simulated membrane potential below the resting level. The resting level detector

simply detects whether the potential is within the correct range, and if it is not, the

state machine makes assumptions about whether the potential is higher or lower

than the resting level based on the operational phase (resting, firing, refractory

period) it is currently simulating. If an inhibitory input causes the membrane

potential to drop below the resting level during normal neural operation, the state

machine will assume that the potential is above the resting level and will apply the

decay function accordingly. If an excitory spike arrives in time, the lowered

membrane potential will suppress its effect, but if no other spikes arrive within a

suitable time period, the potential will decay all the way down to zero, and then

continue past zero. Figure 53 shows the response of the neuron to a single

inhibitory input with a weight of -500.

Erroneous response to Inhibitory Input

Output

Input

Accumulator

Figure 53: Neuron responding incorrectly to inhibitory input

The dashed line in Figure 53 represents zero potential, and it can be seen that the

membrane potential crosses this line after decaying away from the resting level.

The threshold comparator assumes that the membrane potential is an unsigned

integer, but the repeated subtraction, even in an adder which is not explicitly built

to use signed numbers, will eventually take the value past zero, making it

negative, if expressed in 2' s complement notation. This negative number is also, if

125

interpreted as being unsigned, a very large positive number, which exceeds the

threshold, and causes the neuron to fire incorrectly.

There are various ways to correct this problem. If the resting level comparator

could specify to the state machine whether the potential is above or below the

resting level, the state machine could choose to either increase or decrease the

potential to bring it back in range. This would allow an inhibitory input to have

the desired effect without the problem described above, but would require extra

logic and possibly an extra parameter defining the positive 'decay' slope. An

alternative method is to prevent the potential being pushed below the resting

potential at any time, though this would also prevent an inhibitory input from

affecting any future excitory inputs. The effect of this on the operation of the

neuron are shown in section 5.9, where a more complex neuron model is

developed.

5.7.4: Hardware Test

The previous tests were performed entirely in simulation, using the simulator

module of the Quartus software. The neuron model was also tested in real

hardware, using an FPGA development board. Figure 54 shows a schematic view

of the additional hardware connected to the FPGA to provide input pulses and to

display the output.

For this test, the setup parameters were loaded into the neuron from ROM when

the system powered up. A pulse generator with variable frequency provided the

input spikes, through a transistor buffer which matched the generator's output to

the FPGA's 3.3V CMOS logic levels. The upper byte of the 16-bit membrane

potential was connected through a simple 8-bit resistor-tree DAC to an

oscilloscope, to provide a trace similar to those shown in the simulated tests.

126

3.9kn

8.2 kn

3.3V LOGI C OUT
15 kCl DA.C OUT

33 kCl

68 kCl

1 kn
130 kCl

Figure 54: RTL level translator and resistor-tree DAC

In order for this to provide an accurate view, the resting level bounds were set to

10000 and 10050, and the threshold was set to 30000, thus ensuring that the upper

8 bits of the membrane potential would change significantly enough to show a

detailed trace during the test. The weight for the input was 2000.

The oscilloscope traces are shown in Figure 55. The upper trace is the output from

the DAC and the lower trace is the input signal.

Figure 55: Photograph of oscilloscope traces during neuron test

127

The slight decay of the potential is visible between the jumps caused by the input

spikes, as is the refractory period during which the incoming spikes are ignored.

5.7.5: Conclusion

The neuron model has been shown to be capable of the functions for which it was

designed, namely the leaky integration, threshold-based firing and refractory

period simulation. The response matches the expected response, and the response

of similar simple spiking neuron models [5.38].

The inhibitory input test demonstrated that the inhibitory function works but is

flawed, the flaw arising from the simplified processing performed by the neuron

model. Methods of correcting this flaw were proposed, but not implemented as

this correction is addressed by the more complex neuron design of section 5.9.

Further analysis of this design and its performance can be found in section 5.12.

128

5.8: An Experimental Neural Network

In order to check the resource usage of this first neuron model, a simple network

was built with sixteen neurons and a set of control hardware. The aim of this stage

of the development was not to produce a working neural network with practical

applications, but instead to investigate the basic infrastructure required to set up

and control such a network.

The neurons were implemented in parallel, which limits the number which can be

fitted into the device. The neurons were found to use between 350 and 360 logic

elements each, varying slightly across the set of 16, depending on the

optimisations which the compiler could apply. Assuming 360 LEs per neuron, a

total of 32 neurons could fit in the chip, so with just 16 neurons in the network,

half of the chip's logic resources were left available for control logic.

The network connections were chosen arbitrarily and a variety of different

arrangements were implemented, showing little change in the logic usage of the

neurons from one to another. A few of these arrangements are shown in Figure 56.

Figure 56: Three examples of networks of 16 neurons

The three networks shown represent stages in the conversion of the network from

a four layer to a two layer network. The smaller circles represent the four inputs to

the network, though the two layer network was also tried with 8 inputs, showing

no significant change in resource usage other than the four extra pins. Note that

only the four layer network can have full connectivity between the layers, as each

neuron has only four inputs. The other networks were either wired randomly or so

that neuron N in a layer takes input from the nearest four neurons in the previous

129

layer. The inputs to the top and bottom neurons in the three layer network

represent feedback, where each neuron was fed by the four main network outputs.

5.8.1: User Interface Hardware

Since these neuron models do not use any of the FPGA's internal memory blocks,

it was decided to make use of these to hold firmware which would provide a user

interface, allowing the neuron parameters to be altered while the network is

operating.

The simple microprocessor described in chapter 4 was used to provide this

interface. VGA display circuitry was used to output the results, initially providing

a complete screen display, but later restricted to 32 x 32 character cells to save

video memory. All RAM, ROM and video memory required by the system was

implemented inside the FPGA.

Figure 57 shows the overall layout of the system. The complete system used 63%

of the 300K-gate FPGA's logic resources (7,259 LEs, or 189,000 gates) and 66%

of its internal memory (98,560 bits total).

16 neurons

~

Parameter and control data

CPU - CORE ·- Key ·~ - ~
board

RAM - ~
VRAM --- VDUlXT 512 X 16 ~ - 1024 X 8 --. VGA

t
ROM FONT VGA_SYNC I -

4096 X 16 i.- 2048 X 8

Figure 57: Block diagram of neural network control system

The CPU is assisted by the block named CORE, which provides address decoding

and input/output interfaces for the system. The original design used the D igilab

130

board' s four onboard switches for input, these were later replaced by a keyboard

providing a more straightforward user interface.

The memory map for the processor is shown in Table 13.

Address (Hex) Function
0000-1FFF ROM (4096 words)
2000-3FFF RAM (512 words)
4000-5FFF Neuron parameter write
6000-?FFF Neuron readback
8000-9FFF 1/0 ports
A000-BFFF Video RAM (512 bytes)
C000-DFFF Keyboard register
E000-FFFF Unused

Table 13: Memory map for network controller

The 1/0 ports allow the processor to control the neurons, control the on-board

LEDs, and read the switches. The keyboard register is read/write, and when a key

is pressed this will contain the scan code of the key. When written to, the register

is cleared, allowing the software to determine whether a new key code has arrived.

This function is assisted by a state machine built into CORE which provides a

bridge between the CPU and the keyboard receiver. The particular keyboard used

was chosen because its default scan code set produces a single code for each key,

whereas a standard PC keyboard will produce longer code sequences for some of

the keys, complicating the interface.

The neurons are accessed as write-only memory, with each one taking up 16

words of the memory map. Of these, the first ten are implemented as described

earlier. The neuron read-back port allows the membrane potential of any neuron in

the network to be read, the original intention being that these values would be

displayed on the screen to allow the network to be monitored. The read-back port

was implemented as part of the network hardware but no use was made of it by

the software during these initial tests.

The video output provides 32 lines of 32 characters with a fixed character set.

Each byte in the video memory corresponds to a single screen character cell. The

video synchronisation block VGA_SYNC, along with the receiver for the

keyboard, were adapted from the code provided with 'Rapid Prototyping of

131

Digital Systems' [5.44], the text accompanying Altera's University Program UPI

and UP2 development boards.

5.8.2: External Hardware

Figure 58 shows the development board with the keyboard and VGA interface

fitted. The VGA interface, visible at the top right hand corner of the picture,

simply provides clamping diodes and pull-up resistors for the red, green and blue

signals, and was based on the interfaces provided on other development boards in

the Digilab series. The early versions of the firmware used the four buttons visible

below the four digit display for input.

·········· ·········· . : : : ·;
::::: :: :::::::::·

.::::: , :: :::::::::: .. :].:) :: ' ::::::::::

Figure 58: Photograph of the Digilab system with keyboard and VGA interface

5.8.3: User Interface Software

The software allows the neurons' parameters to be changed in real-time. Initially,

due to the limited input capability of the four switches, this was limited to simply

selecting a parameter and incrementing or decrementing it. Various methods were

132

tried to allow direct number entry with the buttons, but eventually the keyboard

was fitted to simplify matters.

Using the arrow keys, a neuron (left/right) and a parameter (up/down) are selected

and enter is pressed to update it. The parameter displayed the screen is blanked,

and a new four digit number can be entered. Once the last digit is entered, the

software returns to parameter selection mode, and the updated parameter is

written to the correct register in the selected neuron.

Figure 59: Photographs of the user interface displays

5.8.4: Conclusion

This experimental network, though not functionally useful, demonstrates the basic

methods of building such a network using these neurons, and has allowed some

degree of investigation into the hardware requirements for a control system

capable of allowing the parameters of the neurons to be adjusted in real time.

The network overall required 7259 LEs, of which 5641 were used by the 16

neurons, averaging 352.56 LEs per neuron. 14 of the neurons used 352 LEs each,

one used 354 and one used 359, though it is not clear why this difference should

occur. The difference was in the number of LUT-only LEs, with all neurons

having the same number of registers, and it is likely that the variation occurred as

parts of the neuron logic were merged with other blocks of circuitry.

133

The processor and its supporting circuitry made up the remaining 1618 LEs in the

device, and it is likely that this figure would increase slightly as the number of

neurons increases, as the readback port is implemented by a multiplexer which

would clearly require more logic cells if more inputs were required. This increase

shouldn' t be significant compared with the number of LEs required by each new

neuron.

The target device, with 11,520 logic elements, could hold a network of around 28

neurons with controlling hardware of this size. It is likely however that a network

in which the neurons' parameters can be controlled in this way would be used

with a controlling PC, and thus the controlling hardware would consist of some

kind of PC interface whose job is simply to receive data from the PC and pass it

on to the neurons' control buses. The display and keyboard interface, though

useful in a standalone system like this, would not be required if the controlling

logic was simply an interface to a host PC.

134

5.9: A More Flexible Neuron Model

While the simple four-input neuron model covers the basics of neural

functionality, it does suffer from a few limitations. The major limitation is the

fixed set of four inputs, if fewer than four are required the neuron is

overcomplicated, while if more than four are required the system must be rebuilt

accordingly.

If one or more input is not required when the neural network is built, it can be tied

to ground and the compiler should optimise away much of the logic associated

with it, but the state machine will still perform the extra integration states. This

may not be a bad thing, as the rate of decay (in membrane potential units per

clock cycle) programmed by a particular decay slope value will change if the

number of states in the main loop is changed. A change in the main loop is

unavoidable if more inputs are added, as these will each have to have their own

integration states, in addition to the extra spike catchers and multiplexer inputs.

A second neuron model was built to address some of these issues, the intention

being to produce a more accurate model capable of more complex neural

dynamics, while retaining some degree of compatibility with the first design. In

order to build more flexibility into the neuron, a two-part design was used, with

the synapses being separate from the neuron body. The outputs from the synapses

are summed and fed to a single input on the neuron, which behaves as a leaky

integrator with a threshold triggered firing function. The general layout of the

design is shown in Figure 60.

135

----------------------------, Neuron Body

Integrator Threshold

Synaptic current , __ +C ---output

Figure 60: Overview of second neuron model

5.9.1: Neuron Body

The core of the neuron provides a simplified simulation of the processes which

take place at the axon hillock. The synaptic current, summed over all the

synapses, arrives here and is integrated over time by a method similar to that used

in the first neuron design. The adder used in the integration has a form of bounds

checking, so that in the event that its output is less than the resting potential, it

outputs the resting potential instead, addressing one of the problems found earlier

w ith the first design. With this modification to the adder a mostly inhibitory input

from the synapses wi ll not push the membrane potential below the resting

potential, but an inhibitory input coinciding with an excitory input wi ll reduce or

suppress the effect on the membrane potential.

A major change to the operation of this neuron is that the decay and refractory

period slopes are no longer programmed in terms of the step change per cycle, but

instead as the number of cycles required for a step change of one unit. This allows

a much slower decay to be programmed, and also removes the requirement for the

resting level comparator to have a wide detection window, as with a change of

one unit each time it is guaranteed that the membrane potential will reach exactly

the resting level without going past it.

136

-1

+1

PSP in

0
Accumulator

Post-firing le-.el ----+------1.i

Resting le-.el ------

Clock and control signals ----.i State Machine

----Decay Period

Time Counter

---output

----Refractory Period

Figure 61: Block diagram of second neuron model

Figure 61 shows a block diagram of the neuron model. This model is simpler than

the first version, since there is only one input and the spike handling is done by

the synapses. A state machine, clocked on the rising edge of the input clock,

provides the control signals for three multiplexers, and receives input from a

number of comparators in order to control the flow of states. The two registers,

the accumulator and the time counter, are clocked on the negative edge of the

clock and are clocked on every cycle regardless of the operation being performed.

The accumulator is used, as before, to hold the simulated membrane potential, and

is accompanied by an adder and a series of multiplexers. The input multiplexer

selects a value to be added to the accumulator, either the incoming PSP, or the

slope values for the decay and refractory period (-1, +1 respectively).

The output from the adder feeds a bounds-checking block which ensures that the

new input to the multiplexer cannot be lower than the resting potential. This can

be bypassed by the accumulator' s input multiplexer to handle the refractory

period correctly, where the membrane potential is expected to be lower than the

137

resting potential. This second multiplexer also allows the accumulator to be

updated with the post-firing potential, or to be left unchanged.

Two comparators are used to signal to the state machine that the membrane

potential is at the resting potential or has exceeded the threshold.

The time counter is a feature not present in the first neuron design, which counts

state machine loop cycles, incrementing during any clock cycle in which its input

multiplexer is set accordingly. During the refractory period, this is used to provide

a delay between each increment of the accumulator, while during normal neuron

operation it is used to ensure that the decay is performed once per N cycles of the

main state machine loop, where N can be set along with the normal neuron

parameters. A larger value ofN results in a slower decay.

The same counter is used for both functions because the two functions can never

overlap, as normal neural functions are suspended during the refractory period.

This results in a saving in hardware.

With just a single input to this neuron, the state machine required to control it is

simpler than for the earlier design. The state transition diagram is shown in Figure

62.

Figure 62: State transition diagram for the second neuron model

138

As with earlier designs, after a reset signal is applied the neuron waits in an idle

state until triggered by the GO signal. Waiting in this state allows the neuron's

parameter data to be loaded without causing spurious neural outputs, and allows

all neurons in a network to be started simultaneously with correct configurations.

Once activated, the system passes through the ST ART state, which loads the post

firing potential into the accumulator and clears the time counter, preparing the

neuron for the refractory period.

State REFI activates the time counter, so that it advances one count per clock

cycle. However, the state machine will remain in this state until the refractory

period comparator indicates that the programmed delay has elapsed, at which

point the state machine proceeds to state REF2. Here, the accumulator is

incremented, and the synapse control outputs SYNC and SYN_CLR are pulsed. If

the accumulator matches the resting potential, the refractory period is over and the

neuron can proceed with processing, otherwise the state machine returns to state

REFl.

Under normal neural processing, the state machine runs a four state loop

consisting of states INTEG, CLR, DEC_ CHK, and either DECAY or NOD EC,

depending on the time counter's output. When in the INTEG (integrate) state, the

incoming data is added to the accumulator, using the bounds-checked output of

the adder, and a decision is made to proceed to either CLR if the neuron is not to

fire, or FIRE if the threshold has been exceeded.

The CLR state is used to generate a pulse on the SYNC output, which signals to

the synapses that the PSP has been read. Once this has been done, the DEC_ CHK

state is used to increment and check the time counter. If the decay period

comparator indicates that enough cycles have elapsed, the next state will be the

DECAY state, which decrements the accumulator and clears the time counter.

Otherwise, the NODEC state is executed in place of DECAY, to ensure that the

main loop always consists of four cycles.

When the neuron fires, the state machine passes through the FIRE state, which

generates an output pulse, then back to START to begin the refractory period.

Only a reset signal will cause the neuron to return to the idle state.

139

5.9.2: Synapse Control

Two control signals are produced by the neuron, SYNC and SYN CLR. The

SYNC signal outputs a pulse for each integration cycle, telling the synapse that its

output has been read. The SYN_ CLR signal pulses continuously during the

refractory period, and can be used to clear the synapses so that incoming spikes

are ignored during this time. For maximum flexibility, the SYNC output also

pulses during the refractory period, so it is possible to continue with normal

synapse operation during this period if it is required.

140

5.10: Synapse Design

The synapses were designed to replicate the synaptic functionality described in

[5.5], and inspired by previous work in spiking neuron modelling. [5.45, 5.46]

5.10.1: Simple Synapse

The simple synapse replicates the function of the inputs on the earlier neuron

design. Incoming spikes are captured by a rising-edge triggered flip-flop, and the

synapse outputs either zero or its weight value, until cleared by a reset input.

Referring back to the neuron's synapse control outputs, this reset input would be

connected to the SYNC signal rather than SYN_CLR, as the latter is only active

during the refractory period. The SYNC signal pulses once for each integration

cycle, ensuring that a synapse will provide an output for a single cycle only.

The structure of the simple synapse is shown in Figure 63.

Input Spike
Catcher

Reset----- 0

---• Output

Figure 63: Logic structure for the simple synapse design

A problem encountered with this synapse design was that the synapses attached to

a neuron will be reset every time the neuron passes through the CLR state, and so

if a spike from another neuron arrives during this cycle it will be ignored.

Assuming that the neurons in a network will have different weight and threshold

parameters, it is inevitable that even though all neurons will start at the same time,

triggered by the GO signal, they will not remain synchronised for long and

occasionally a signal will be received by a synapse at the same time as the clear

signal arrives. Initially the neuron was modified to issue the synapse reset signal

only if the incoming PSP was not zero, so the synapses would only be cleared

when necessary. However, this does not achieve the desired result, because all

141

synapses are cleared by the same signal and therefore if a single synapse is active,

the others will also be cleared. This also causes a problem if an inhibitory synapse

is triggered at the same time as an excitory one, and their weights sum to zero. In

this case the neuron will not detect the incoming synaptic currents, and

subsequently not issue the clear signal. The synapses will fail to respond to any

subsequent input until another synapse is triggered and the sum of the PSPs

becomes non-zero.

In addition to this problem, this simplified 'one-shot' synapse design provides

only a very basic simulation of the function of a synapse. Since the synapse is an

electrochemical device which operates by controlling the flow of ions through the

cell membrane, it will generally not deliver its output in the form of a single short

pulse causing a step change in membrane potential, but instead as a longer pulse,

which may, if conditions are correct, cause the neuron to produce an action

potential after a short delay.

In order to address these issues, a second, more complex synapse was designed.

142

5.10.2: More Complex Synapse

The second synapse design allows full control of both the amplitude and duration

of the post-synaptic response. While the first synapse design produces a one-cycle

output pulse of amplitude A, this new design produces a stretched pulse of

amplitude W over a period of L cycles. Ignoring the decay function in the neuron

body, provided that A = WL, the effect on the neuron should be the same, but may

be delayed depending on the value of L. However, it will be necessary to include

some consideration of the decay function whenever L > I, as an elongated output

pulse increases the chance of a decay cycle being executed during the PSP. If L=l

and W=A the synapse produces the same output as the simpler version.

Input

SYNC input

Spike
Catcher

SYNC
Latch

0

State Machine

Figure 64: Logic diagram of a more complex synapse

r---• Output

The logic structure of this new synapse design is shown in Figure 64. The spike

catcher and output multiplexer from the original synapse are still present, with the

addition of a synchronous counter to count the neuron's integration cycles and a

simple state machine to control it. A duplicate of the spike catcher is used to catch

the SYNC pulses, and hold them until the state machine has read them. Once read,

the pulse is cleared, thus ensuring that the state machine does not inadvertently

perform two counter increment cycles due to a slow sync pulse remaining active

for too long.

143

It was discovered during testing of the neuron and synapse together that under

some rare circumstances an incoming spike could coincide with the SYNC signal

from the neuron in such a way that the synapse would clear its output just before

the neuron performed an integration cycle. To correct this problem, the spike

catcher was modified to consist of two stages, the first being a standard D-type

flip-flop clocked by the rising edge of the spike, and the second being an extra

flip-flop clocked by the falling edge of the SYNC input, through which the first

flip-flop's output is fed. The spike catcher's output is therefore sampled on the

falling edge of the SYNC pulses, delaying the synapse's response slightly but

hence ensuring that the state machine does not clear the output signal too soon.

The counter is built with synchronous logic, with a multiplexer to ensure that it is

only updated when required.

The two parameters, W and L, are supplied by a pair of registers which allow

these parameters to be updated at run-time by external hardware.

The state machine controlling the synapse is very simple, consisting of four states

as shown in Figure 65. When a spike is received, the state machine enters a loop

which increments the counter register once for each synchronising pulse received

from the neuron, and then returns to a waiting state, resetting the spike catcher in

the process. Since the output of the spike catcher controls the output multiplexer,

the synapse will output its weight until the counter value reaches the L parameter

value.

No spike

Counter= L Spike captured

SYNC= 1

SYNC= 0

Counter"#- L

Figure 65: State diagram for the synapse control state machine

144

With the synapses separated from the neuron, it is possible to adapt them

individually to make the most efficient use of the hardware. The initial designs for

the synapses and the neuron itself use 16-bit words for all parameters, but it is

possible to use larger or smaller words if the application requires them. If a

particular synapse in an evolved network is found to use values for W or L which

can be represented in fewer than 16 bits, it can be replaced with a synapse design

with narrower buses and registers, saving a handful of logic cells. Table 14 shows

the logic cell requirements for the synapse, compiled for Altera's Apex 20KB

FPGA series, with L and W ranging from 16 bits down to 10 bits. Both

parameters were the same width in all cases.

Width of L and W LEs
16 84
15 80
14 75
13 70
12 66
11 61
10 56

Table 14: Logic element usage for different parameter widths

145

5.11: A RAM-Based Neuron Design

While some of the more advanced FPGAs include embedded hardware blocks

designed to enable fast DSPs to be built efficiently, these blocks usually consist of

multipliers or multiplier-accumulator units, intended for rapid implementation of

digital filters. No multipliers are required by the current neuron designs, as the

only functions used are addition, subtraction and Boolean logic. The output of the

synapse can be thought of as a kind of multiplication, where the output is the

weight multiplied by the synapse activity. However, as the synapse activity is

either 1 or Oat present, the multiplication is implemented with a multiplexer.

The other type of embedded hardware block present in most modern FPGAs,

whether or not embedded DSP blocks are present, is the embedded memory block.

These are useful when large amounts of memory are needed, and it is not practical

or desirable to produce these using the logic elements. In this section a neuron

design is presented which makes use of these embedded memory blocks to reduce

its logic cell count compared with the previous model.

Using flip-flop registers to store the neuron's parameters has both advantages and

disadvantages. The advantages of such a design include the ability to read all

parameters simultaneously and without interruption, and also an improvement in

portability, since all VHDL compilers can handle inferred latches regardless of the

target technology. The major disadvantage is the high logic cell count of such a

design when used in an FPGA.

This disadvantage can be reduced by replacing the registers with a single block of

RAM, taking advantage of the FPGA's internal RAM cells. The Apex 20K series

FPGAs contain a number of Embedded System Blocks (ESBs) which contain

memory cells and can be configured as simple RAM or ROM, or more complex

functions such as FIFO buffers. The 20K300E device used for the tests contains

72 ESBs, each of which has 2048 bits of memory, which can be configured as

2048 x I, 1024 x 2, 512 x 4,256 x 8 or 128 x 16 bit memory arrays. The neuron

was redesigned to use one of these blocks instead of logic-cell registers for

parameter storage. Figure 66 shows a block diagram of this new design.

146

-1

+1

PSP in

0

Clock and control signals----

R

Accumulator

State Machine --,.Output

Figure 66: Block diagram of the neuron model using RAM instead of registers

It can be seen from the figure that the major change is that the parameters are

replaced by a single signal, represented by R. This is the RAM's output data bus,

and a series of additions to the state machine are used to produce an address

which selects the parameter required at each state. There is also now only one

comparator circuit in the timing block, as with the parameters being fed from a

single source, the two comparators in the earlier design became identical.

This design change also necessitated a small change in the operation of the

neuron, as there is one state in the state machine for the previous neuron where

two parameters are used simultaneously. The state machine was modified to check

that the membrane potential hadn' t exceeded the threshold during the CLR state,

rather than the INTEG state as was the case with the previous design. This was

necessary because with RAM, as described above, only a single parameter can be

accessed at any point in time, and the resting potential is required during the

JNTEG state to ensure that the bounds checking in the input adder works

correctly.

The RAM block implemented for the neuron is oversized, by necessity, as five

parameters are required. This leads to a requirement for the parameter address but

to be 3 bits wide, resulting in an 8-word memory. There are therefore three unused

147

words of memory, and these are simply ignored by the hardware. In fact, the

memory usage is less efficient still, as the ESB can implement only a single

memory at any time. With 16-bit parameters, 80 bits are required in total, and 128

bits are implemented, leaving 1920 of the 2048 bits unusable. It is possible that a

future neuron design in which the synapses are incorporated back into the neuron

would be able to use this extra memory for synapse weights, though the problems

of multiplexing the various weights and other parameters as they are required may

overcome the saving in logic cells from the use of the memory block rather than

registers. However, some later FPGA types, notably the Stratix II type from

Altera, have smaller memory blocks of 512 bits each, in larger quantities, and

these could be used to make a more efficient use of the resources available.

In order to retain compatibility with the previous, register-based neuron design,

the RAM was implemented as dual-ported RAM, which in the Apex 20K series is

not true dual-ported RAM with two completely independent bi-directional ports,

but is a type of dual port RAM where one port is read-only and the other write

only. The write-only port resembles the register inputs as far as any controlling

system is concerned, and the dual-ported operation allows the parameters to be

updated in real-time without interrupting the operation of the neuron.

Replacing the registers with RAM in this way reduced the neuron's logic element

usage from 267 LEs to 157 LEs, a saving of 110 elements, or some 40%. It is

clear that 80 of these LEs were saved by removing the 80 bits of storage, and a

further 16 were saved by removing the redundant comparator in the timing circuit.

The remainder are likely to have been those elements responsible for providing

the input logic for the registers, a complex demultiplexer which allowed

asynchronous updating of the parameters.

We can see, therefore, that making use of em bedded features such as these can be

useful in reducing the footprint of the neuron model. However, in the case of the

synapses, it would not necessarily be a good idea to replace the registers with

RAM, as there are a limited number of ESBs available, 72 in the EP20K300E

device used for the development of the neurons. Assigning one of these per

neuron is feasible, but in most cases there will be many times more synapses than

neurons, so this would place a major restriction on the size of the network. Taking

the example of the network cell discussed in the next sections, nine synapses are

148

used per neuron, which means that with ten memory blocks required in total for

the cell, just seven cells could be implemented in the chip.

5.12: Analysis of Designs & Conclusion

The neuron model, like many logic designs, relies heavily on registers for storage

of parameters and working values. These registers are produced in the VHDL

code by inferred latches or flip-flops, and are implemented in the FPGA using the

flip-flops present in the logic elements. As can be seen from Table 14, the logic

element usage for the synapse design decreases as the bit width of the parameters

decreases. The same is true for any design, as an N-bit wide register will require

N logic elements, since there is only one flip-flop available in each logic element.

In cases such as the accumulator in the neuron, the circuitry preceding the register

can often be partially built into the same LEs, since most FPGA logic elements

consist of some form of combinatorial logic feeding the flip-flop, and this

explains the variable logic element usage found when testing different

arrangements of neuron and synapse. Used alone, there will be no logic preceding

each unit 's parameter registers, but when used as part of a larger system, there

may be such logic present, which will result in a merging of units, and a slight

variation in logic element usage. The element usage will tend to increase in steps

as the arithmetic pathway width increases, due to the limited number of inputs to

each LE. As an example, VHDL 'IF' statements such as IF X="0000000 0"

are widely used in the neuron designs. The above statement will clearly generate a

block of logic with eight inputs, which, assuming there is no merging of this

function with surrounding circuitry, will require at least two logic elements. Using

the Cascade Chains built in to the LEs allows the construction of this block

without using extra cells to join the input cells together, and although there is

some reduction in speed associated with these chains, in the same way as the

ripple carry adder suffers from a speed reduction over more advanced types, the

extra delay will generally be smaller than if several layers of logic elements were

used, as the cascade signals do not pass through the signal routing channels which

connect the logic cells. In the Altera Apex series FPGAs, up to ten logic elements

can be chained efficiently in this way.

149

We can therefore see that the m1mmum logic element usage of a functional

element such as a zero-detector or an adder will equal the bit-width of the element

rounded up to the next multiple of four. The maximum usage of such a block will

be one cell per bit, if its outputs feed a register, due to the previously discussed

distribution of flip-flops in the FPGA. In practice, due to compiler optimisations

which may have a cascading effect leading back from a seemingly unrelated

register, the logic cell usage of any particular section of a large, complex logic

circuit is often hard to determine before it is compiled. For example it was found

in various tests involving not only the first neuron design but also the processor of

chapter 4 that logic cell usage changed, sometimes significantly, when debugging

outputs were fitted to the block to allow the internal registers to be read by

external hardware. It appears that the compiler was merging the registers with

other hardware when they were truly embedded, but had to implement them as

register-only LEs with the debugging outputs present.

Ultimately, it is the logic cell usage which determines the number of neurons

which can fit into an FPGA. The FPGA used for most of the tests was an Altera

Apex 20KE device, with 11,520 logic elements (LEs), so the original neuron

design, using 400 cells, could be duplicated 28 times in one device.

Table 15 shows the logic cell requirements and maximum operating frequency (as

given by the Quartus compiler/fitter) for the neuron and synapse designs, along

with parameters by which their performance can be compared. From this table it

can be seen that a neuron with four inputs, similar to the early design, would

require at least 509 LEs, excluding the circuitry required to sum the synapse

outputs and to load the parameters. This reduces the number of neurons which can

be implemented to 22 or fewer.

A test network cell, consisting of a neuron body, nine synapses and the required

control logic, was built to test the logic cell requirements. 1150 LEs were

required, roughly a tenth of the capacity of the chip.

150

Device LEs Fmax(MHz) Clk/cycle Int (us) Fmax/LE lnf1
/ LE

First neuron desiQn 400 39.55 15 0.38 0.10 0.01
Second neuron design 267 36.53 4 0.11 0.14 0.03

RAM-based desion 173 29.58 4 0.14 0.17 0.04
::,'ynapse 84 123.82

RAM-based 4-i/p 509 29.58
RAM-based 9-i/p 1150 29.58

Table 15: Logic Element usage and operating speed of the neural elements

The extra logic required for the network cell consists of an adder tree to connect

the nine synapses to the neuron, and an address decoder to allow the synapses and

the neuron to share the same data and address buses, allowing the cell to appear as

a single block of memory to the host processor. The adder tree for 9 inputs was

defined in the simplest possible way, allowing the compiler to determine the

architecture. This required 128 logic cells when compiled alone, but in the

completed test network the logic evidently merged with the surrounding circuitry,

as the typical LE count was 112. The address decoder logic took up two of the

network cell's LEs.

We can see that a network cell requiring a tenth of the host device' s logic capacity

will restrict the size of a network to just ten cells. In fact, if additional logic is

required for control or VO purposes the network size will be restricted further.

Methods of using the FPGA's resources more efficiently are therefore desirable if

large networks are to be implemented in parallel.

The reduction in maximum operating frequency from the first design to the

second is interesting, and hard to explain. It is likely that the slight reduction from

the original design to the second design is due to the addition of the bounds

checking in the accumulator update loop, though the addition of the time counter

will play a part as it adds more logic with which the state machine must interact

during the operation of the neuron. The subsequent larger reduction when the

neuron was rebuilt with embedded RAM may be due to the additional

interconnects necessary to connect the RAM block to the logic, as this is the only

part that has changed significantly.

In any case, the operating frequency is well beyond that which is required for

biologically plausible firing rates, as is shown in section 5.17.1, where it is found

that firing rates of around 2KHz can be obtained with a clock rate of 500KHz. It

would be likely though that a higher clock frequency would be used, as this would

151

decrease latency, making the neuron respond more quickly to its inputs. Figure

51, in section 5.7.2 shows a reason for wanting to do this, as it can be seen that the

membrane potential lingered above the threshold for a short time before the

neuron fired, as it took several clock cycles for the state machine to reach the

threshold checking state. The second neuron design would have less of a problem

here, as it performs fewer operations per integration cycle.

The number of clock cycles required to perform a single integration cycle, and the

resultant time required to do this if operating at the maximum operating

frequency, are also given in Table 15, along with the area-time products, both in

terms of clock speed against LE usage and number of integrations per second

against LE usage. It can be seen that the RAM-based design, despite having the

lowest operating frequency, scores highest on both counts, due to its small

hardware size. The first neuron design scores poorly because of its large LE

requirement, and also because of its relatively long integration cycle time.

Comparing these neuron designs with other published designs yields mixed

results. There are few other published designs with which a detailed comparison

can be made, as most of the designs are either substantially more complex or are

designed for time-multiplexed operation with the neuron acting as a custom

processor. Comparing with the design in [5.38][5.39], where a 30 input neuron

without learning uses 23 slices of a Xilinx XC2S200 device (equivalent to around

46 LEs in an Apex device), we can see that the neuron designs presented in this

chapter use much more hardware than this design, though this alternative design

uses 9-bit data rather than 16-bit, holds the synapse weights in a RAM block, and

uses hard-coded threshold, resting potential and post-firing potential values. It

also requires 31 clock cycles to perform a time-step, and would require 5 cycles in

the case of a 4-input version. The first neuron design presented in this chapter

performs an integration cycle over four inputs in 15 clock cycles, while the second

design requires 4 cycles regardless of the number of inputs. This means that the

second neuron design presented in this thesis will have the advantage of a faster

execution cycle when larger numbers of inputs are used. Furthermore the second

neuron design presented in this thesis will operate at the same speed regardless of

the number of inputs, and thus all neurons in a network will operate at the same

152

speed even if some have more synapses attached than others. It is also capable of

performing more complex post-synaptic functions (such as the ' slow' PSP

functions and the synapse-less operation) than the neuron described in [5.38],

though clearly at the expense of a significantly higher resource usage. It is clear

however that while some of this increase in resource usage stems from the wider

data bus and accumulator, a good deal of the extra resources are used by the

registers holding the parameters and the general purpose comparators used to

perform bounds checking and threshold checking, as no compiler optimisations

can be applied to these based on the number against which they are checking,

since this is not known at compile-time.

The neural network presented by Roggen et al. [5.36] uses neuron models which

are simplified in the same manner, but much more so, with fewer bits to represent

the membrane potential, hard-coded weights and threshold, and a simple

refractory period of one cycle. The neuron is quoted as using 109 LEs of a similar

FPGA when compiled standalone, or 90 LEs when compiled as part of the

network, showing a variation due to compiler optimisations as described earlier in

this section. The quoted fmax is 42MHz, with n+ 1 clock cycles required for an

integration cycle over n inputs. Thus the area/time products can be calculated as

for the new designs presented in this thesis. In terms of Fmax / LE usage, the

score is 0.39, while the score in terms of integration cycles is 0.08 for 4 inputs, or

0.01 for the 26 input version described.

For 4 inputs, both of the scores are higher than the highest score achieved by

either the first or second neuron designs presented here, due to the higher clock

speed and much smaller size of Roggen's design. However, with 26 inputs the

neuron scores lower when integration cycle speed is considered, as the number of

clock cycles per integration cycle increases. By contrast the second of the designs

presented in this chapter would achieve the same score regardless of the number

of inputs.

This neuron is much simpler than the designs presented in this chapter, mainly

due to its smaller bus width, but also due to its hard-coded parameters, which

remove many of the logic cells used as parameter memory. The result of these

simplifications is clearly a loss of flexibility, as without adjustable parameters the

response of the neurons cannot be altered at run-time. In the implementation

described only the connections between the neurons can be reconfigured at run-

153

time. As with the implementation in [5.38], the number of clock cycles required to

perform one time step depends on the number of inputs to each neuron, as the

input summation and the decay function are time-multiplexed. Both of these

previous implementations demonstrate that this method saves hardware, as both

are significantly smaller than the implementations presented in this chapter,

though this method does also require that all neurons in the network are

synchronised and processing is carried out in steps, whereas the new designs

presented here are capable of working in real-time and completely

unsynchronised, integrating all their inputs together without any extra clock

cycles required as the number of inputs increases. The constant number of cycles

required to perform one integration in the second of these new designs, 4

compared with 27 or 31 for the designs described above means that although it

has a lower maximum operating frequency, it can perform more integrations per

second with a similar clock rate. The capability for unsynchronised operation

brings the neuron model a step closer to an analogue implementation, which in

turn is more biologically-realistic.

It is clear, therefore, that the neuron models presented in this chapter compare

favourably with other published designs in some ways, such as their flexibility

and efficiency. The more complete second design and its RAM-based follow-up

are capable of more than simple spiking operation, depending on how the

synapses are programmed. They can also be used without synapses for additional,

potentially useful modes of operation. It is also apparent that although the

maximum operating speeds may be lower in these designs, they take fewer clock

cycles to perform an integration cycle than designs which integrate their inputs in

turn, and could therefore operate faster when used at the same clock speed.

This efficiency and flexibility comes at the cost of greatly increased hardware

usage, however. Much of this can be attributed to the extra hardware required to

implement the extra functionality, and some of it can be attributed to the increased

width of the accumulator and arithmetic hardware.

154

5.13: Learning Considerations

The process by which a network can be trained was not investigated during this

project, but would be a major future development. It is presently possible to adjust

the parameters of the neural models in real-time through the control signals and

data buses, so it will theoretically be possible for a learning system to be attached

to the network without requiring any changes to be made to the neurons. The

learning system would need access to the signals passing between the neurons, in

order to determine which connections need to be strengthened or weakened by

looking at the neurons' responses to their inputs.

A common form of learning in spiking neural networks is Spike-Timing

Dependant Plasticity [5.47][5.5], a correlation-based (Hebbian) learning system in

which a synapse' s response is adjusted if there is a strong correlation between the

activity of the presynaptic and postsynaptic neurons. The training patterns, input

and output, are applied to the network so that the output neurons are forced to fire

.in the desired output pattern, and the synaptic weights are strengthened where

both the pre- and post-synaptic neurons fire. This type of learning is the most

common type used with implementations of spiking neurons, as its time

dependence suits the time-dependant response of this type of neuron.

There is usually a time window function, so that if the two neurons fire within a

certain time of each other they are said to be firing together. If the presynaptic

event occurs just before the postsynaptic event it is considered to have contributed

to the firing and that particular synaptic connection is strengthened, and if the

postsynaptic event leads the input it is considered to have had no effect and so the

strength is reduced. [5.48][5.25] It is possible that a processor system attached to

the network could read the activity of the neurons and make these adjustments to

the weights in real-time. This is presently the only method by which learning can

be implemented with these new neuron models, and any system which requires

more low-level control of the synapses will require that the synapse model be

rebuilt to incorporate the learning hardware. Such learning systems have been

implemented in previous designs [5.38] but not in cases where the synapses are

modelled separately from the neuron body. This area shows one of the advantages

155

of having all synapses built-in to the neuron and handled in turn, as in addition to

enabling the same hardware to be used for all synapses, the same learning

hardware can be used for all synapses. With the synapses modelled separately, as

with the second of the designs presented in this chapter, there would have to be

one 'learning unit' per synapse, resulting in a considerable increase in hardware

even if the learning unit is not too complex.

The learning unit itself will need the ability to modify the weight, and would

therefore need a simple ALU, with just add and subtract functions. It would also

need some kind of phase detector to detect the relative timing of the spikes, and a

window generator - probably based on a counter - which enables the weight

change only if the spikes are close enough in time. It would also have to have

some method of disabling it, so that learning can be performed only when

required.

From these requirements only a few speculative values regarding the logic cell

usage can be derived. It is clear that the ALU will require at least as many logic

cells as there are bits in the weight register, though as the ALU is purely

combinatorial and the weight register is purely a register, it is possible that the

compiler might merge some or all of the logic elements. The window counter' s

LE requirement will depend on how many bits are required, and the rest of the

logic can't be estimated until it is designed.

A potential issue with this type of learning system is that the second of the designs

in this chapter is capable of implementing both fast and slow PSPs, and as such

has two parameters stored in the synapse' s registers, both of which contribute to

the overall effect on the membrane potential. The STOP-based learning would

work for adjustments to the magnitude of the PSP, but not for changes to its

length, as lengthening the PSP can make the neuron fire just as increasing the

magnitude will, but will add a delay which would result in the neuron firing

outside the time-window used in the learning process. The published designs

which implement STDP with spiking neurons in FPGAs generally do not have the

capability to modify the length of the PSP, so it is difficult to say how much more

complex this would make the learning system.

156

This method would potentially have the advantage of allowing the neurons to

learn by themselves, adjusting their own synaptic weights without requiring an

external controller. It would also increase the size of each neuron and thus

decrease the number of neurons which could fit into an FPGA. Assuming that the

software for a controller in an embedded processor performs the same operations

on each neuron and can therefore cope with any number of them without a

significant increase in code size, the embedded processor option would be much

more efficient in hardware usage for larger numbers of neurons. It would however

have the disadvantage of slowing down as the number of neurons grows, whereas

fitting the learning systems to each neuron individually would allow them to

operate at the same speed regardless of the number of neurons present.

Alternatively, it is possible to train the network off-line, in software simulation,

and then load the parameters into the control registers when training is complete.

In this case, however, the neuron models do not actually need to be built with

RAM-like registers, as the parameters can be hard-coded into the VHDL and the

network recompiled. This would almost certainly result in a reduction in the logic

cell usage of each neuron, and would also result in a wide variation of logic cell

usage from one to the next, as the compiler may be able to optimise the hardware

differently depending on the bit patterns of the parameters. In addition any

synapses which are not required could be removed from the VHDL rather than

simply programmed into an inactive state.

Implementation of learning algorithms was not a part of this project, but would be

a major part of any follow-up project work.

157

5.14: Usage of the New Neuron Model

In this section a series of examples are presented to demonstrate the set-up and

operation of the second neuron model.

5.14.1: Loading Parameter Data

Since the neuron' s parameters are held in registers or RAM, the first step when

the network is initialised is to load these values through the data bus. A short 'O'

pulse on the reset line causes the neuron to enter a resting state, in which no

processing occurs. The parameters are loaded as depicted in Figure 67, using the

data and address buses and the CE and WR signals. These replicate the functions

of the Chip Enable and Write pins on a static RAM device.

go uo

'"'°' uo
ck uo

uo
uo

nee Ul

, lee U 1

s2cc U 1 .. U 1

Figure 67: Quartus simulator view showing parameters being written to the registers

The waveform view shows the process of loading the data for a simple test system

with one neuron and two synapses. The active-low reset pulse can be seen at the

left of the traces, with the leading edge of the GO pulse at the far right.

The CE signal is set low to enable writing to the registers. This allows the use of a

decoder to select one of the neurons in a network based on the upper bits of the

address bus, though for a simple test system as depicted above, the three CE

signals are brought out to individual pins. When WR goes low, the data will be

written into the selected register or memory cell.

The values shown in the waveforms for the data bus ('d' in the figure) are as

follows: The neuron is set with a post-firing potential of 50, a threshold of 400

and a resting level of 100. The timer settings for the decay and refractory period

timers are IO and 5 respectively.

The first synapse is set to have a weight of 100, delivered in a single cycle. The

second synapse remains active for 50 cycles, and h~s a weight of -50. When a

158

negative weight W is required, the value written to the register should be 2N + W,

where N is the bit-width of the neuron's accumulator and PSP input. For W = -50

and a 16-bit neuron the required value is 65,486.

5.14.2: Using the Neuron without Synapses

Here the use of a neuron without synapses will be examined, where it will be seen

to act as a basic input encoder.

For normal neuron operation the neuron body will be accompanied by one or

more synapses, but because these are not built in to the neuron it is possible to

operate it without them and to feed an externally generated stimulation signal into

the PSP input. If this is held constant, it will be added to the accumulator on every

cycle of the main loop (4 clock cycles) and, if it is large enough to overcome the

decay, will cause the neuron to fire after a certain number of cycles. Since the

neuron integrates its input until the threshold is exceeded, it is clear that a larger

number fed in to this input will trigger firing after fewer clock cycles than a

smaller number, thus increasing the firing rate of the neuron. The neuron is

therefore acting as a basic magnitude to frequency converter, and can be used to

encode an input stimulus, perhaps from a sensor, as a spike train of varying

frequency.

Output Pulses vs. Input Stimulation

400 -,--------------------------~

350

300 -1-------L---L..--L......L...L....L..L...L.L.L..LLUU..U..,..U.,.U,Ll,LI;

g 250
~

3 200
E
~ 150

100

50

o _L----===:::::::::::'.=-____________ __J

Time

Figure 68: Output pulse train and stimulation for an input neuron

159

Figure 68 shows the neuron's response to a gradually increasing input value. The

input word started at 1 and increased by 2 each time the neuron fired, allowing the

number of clock cycles between firings to be measured and the firing frequency to

be calculated. The curvature of the input signal is caused by its increments being

synchronised with the gradually increasing frequency of the output pulses so that

the input is incremented each time the neuron fires.

Firing Frequency vs. Stimulation

250 ~--------------------------,

200

>,
g 150 -
QI
::s
c:r e 100

LL.

50

0 +-------.-----,----.----------.----,---------,
0 50 100 150 200 250 300

Input Stimulation

Figure 69: Neuron firing frequency against stimulation input

Figure 69 shows the form of the firing frequency change as the stimulation current

(represented by the binary word supplied to the PSP input) changes. Since the

magnitude of the input affects the firing period, the curve has a logarithmic form,

as found from the analysis of the integrate-and-fire model in section 5.4.1. The

form of this response is more important than the actual values, which are

expressed in kilohertz in the figure. These values will depend on the settings of

the threshold and resting potential, the decay timing, and the clock frequency

supplied to the neuron, but the shape of the curve will be consistent for any

configuration. This curve shape has been previously demonstrated in existing

analogue neuron models [5.45].

160

An interesting point to note is the apparent quantisation of the frequency, and also

the reduction in accuracy as the input word increases. This is due to the constant

time interval between integration cycles in the neuron, and the fact that the neuron

will fire in a particular cycle if the threshold has been exceeded at all, regardless

of how far over the threshold the membrane potential has gone.

As an example, it can be seen from the graph that an increase in the frequency

occurs at a stimulation value of around 150. As the input changes from 149 to

151, the frequency increases, but the change to 153 does not produce a change.

This is because at an input of 149 the threshold was exceeded in a certain number,

N, of integration cycles, where in cycle N-1 the membrane potential just failed to

reach the threshold. However, when the input word increased to 151, the increase

in potential on each cycle was enough to exceed the threshold in cycle N-1,

reducing the firing period by one integration cycle. When the input increased to

153, however, the increase in the membrane potential on each cycle was enough

to exceed the threshold by a slightly larger amount in N-1 cycles, but not quite

enough to exceed it in N-2 cycles.

The resting level will usually be greater than zero, to allow for the refractory

function, and the threshold will be lower than the maximum value which can be

represented with the chosen accumulator width, to allow the membrane potential

to exceed the threshold without exceeding the limits of the accumulator.

Therefore, the difference between the two will be smaller than the maximum

possible value of the input word. This implies that there will be a value of input

word which, when added to the accumulator during at the start of the integration

cycle, will cause it to exceed the threshold immediately. Once this input value is

reached, the neuron will fire at a rate determined by the length of its refractory

period, and any further increase in input value will not increase the firing rate.

The parameters given to the neuron during the tests typically put the threshold at

3000 and the resting potential at 1000, so an input word of 2001 will cause the

potential to exceed the threshold on the first cycle.

If the input word increases further, it will eventually reach a point where the sum

of the resting potential and the input word exceeds the capability of the

accumulator, with the result being truncated. With a 16-bit accumulator and a

resting potential of 1000 as described above, when the input word reaches 64,536

161

the limit of the accumulator will be exceeded and the resulting potential in the

accumulator will be zero. The second integration cycle will then result in a

potential value of 64,536, and the neuron will fire. Since the neuron now takes

two integration cycles to fire, the firing rate bas decreased.

While in practical networks it is likely that the erratic behaviour for large input

numbers could be a problem, this section has demonstrated that the neuron

without synapses can be used as an input encoding device.

5.14.3: Single Synapse Operation

When using a single synapse, the neuron and the synapse can be connected

directly together. The schematic view of this connection, as shown by the Quartus

II schematic editor, is shown in Figure 70. This schematic shows two types of

parameter entry, with the synapse taking its two parameters through two 16-bit

input buses, L and W, and the neuron having a single data input through which all

parameters are loaded, and an address input to control this. If both units are of the

type with address and data inputs, as shown in Figure 71, an additional address

decoder is required which can map the units ' individual address spaces into a

single continuous address space.

;°ntWDn I

p{l 6.0] : ,. .,_ .. .,.r---- - •pri5,}f •-• - ••:
t(IS . .OJ I ;.. _ __ __ ,.._.,._ 1115.6(__ ,.. _,_....:

... I r,,1t"iiL- c::::::::> ~ - - - --- -:
syn_fk r-!-

syno I~

Figure 70: Quartos symbol layout for a single synapse test system

Another item to note about Figure 70 is that most of the signals passed between

the neurons have pins attached for testing, allowing the internal operation of the

162

neuron and the circuit as a whole to be measured. A practical network would not

have taps on the synapse control lines, and would use a version of the neuron

without the T output. This is connected to the time counter and is only used for

debugging. It is almost certain, however, that the P (membrane potential) output

would be present in such a system, along with the PSP input to each neuron.

These would be connected through a series of multiplexers to a single output

channel, which would allow the simulated potentials present in any neuron to be

displayed graphically. It was found during the course of the designs that adding

these extra readouts would tend to increase the logic size of the neuron, as

registers which were otherwise optimised away by the compiler were forced to

exist as coded, to allow their contents to be read out easily.

When using the more complex synapse, the neuron's SYN_CLR (Synapse Clear)

and SYNC outputs connect to the RESET and SYNC inputs on the synapse.

5.14.4: Operation with more than one synapse

:_., ______________ _

Figure 71: Extract from schematic showing a neuron with two synapses

If the neuron is used with more than one synapse, an extra element is required

between the synapses and the neuron in order to add the synapse outputs. There is

no limit to the number of synapses which can be attached to a neuron, although

care must be taken to ensure that the sum of all the synapse weights, which could

be produced if all excitory synapses are triggered simultaneously, can never

exceed the maximum number which can be transmitted through the PSP bus to the

neuron.

163

5.15: Testing the Second Neuron Model

A series of tests were carried out using the system with two synapses shown in

Figure 71. These, as in the case of the first neuron model, were carried out using

the Quartus simulator.

5.15.1: Simple Excitory Tests

To test the basic functionality of the neuron, a number of input spikes were fed to

an excitory input in order to make the neuron fire. The weight of the input was set

to 250, and the resting and threshold potentials to 250 and 750 respectively. These

are a quarter of the values applied to the first neuron when it was tested in section

5.7, the reason for this being that the maximum decay slope available with this

design is a decrease of 1 per integration cycle, whereas the first neuron design

could apply a much sharper decay. This new neuron will therefore require many

more clock cycles to allow the membrane potential to decay between any two

values than were required by the previous design with similar values, so to reduce

the amount of data which had to be handled during testing the potentials were

scaled to restrict them to a smaller range.

The tests performed here were similar to those performed with the first design,

with the resting potential, threshold and synaptic weight set up to ensure that three

spikes entered in a rapid enough sequence would result in the neuron firing.

The simulated result of this first test is shown in Figure 72, where three spikes

inputted 200us apart cause the membrane potential to exceed the threshold. For

this test the decay system was set to produce a decay of 1 unit per IO integration

cycles.

164

3 Spikes cause the neuron to fire

I l

Time

I

I

V

Input

Output

Potential

Figure 72: 3 spikes inputted to the second neuron design causing it to fire

This response shows that the neuron functions as the first version, with the

integration, decay, threshold firing and refractory period parts of the response

working correctly.

In the second stage of the test, the decay value is set to produce a decay of I unit

on each integration cycle, thus making the decay ten times as fast as in the first

stage. The three spikes are fed in at 200us intervals again, with the expectation

being that the more aggressive decay would reduce the membrane potential

sufficiently quickly after each spike that the three spikes would not be sufficient

to exceed the threshold. Figure 73 shows the result of this test.

165

3 Spikes fail to trigger the neuron

Time

Input

Output

Potential

Figure 73: A faster decay prevents the spikes from causing the neuron to fire.

It can be clearly seen that the faster decay returned the membrane potential to the

resting potential after each spike, long before the subsequent spike arrived. As

with the first neuron design this prevented the neuron from firing.

Keeping the same decay setting, the period of the spike train was reduced, with

the spikes arriving at 50us intervals in the third test. Figure 74 shows the result of

this test, with the same timescale as the previous two results to show the faster

spike train.

3 faster spikes overcome the decay

I I I

I

~
~

/
Time

Input

Output

Potential

Figure 74: A faster spike train overcomes the faster decay and causes the neuron to fire.

166

It is clear that the faster spike train results in the membrane potential increasing in

steps before it has been able to reach the resting potential, eventually reaching the

threshold as was the case with the less aggressive decay in the first test.

Input spike ignored during refractory period

Time

Figure 75: Input spike ignored during refractory period

Input

Output

Potential

As an additional test, the weight on the synapse was increased to 600, allowing a

single spike to trigger the neuron to fire. Two spikes were then sent in rapid

succession to verify that the neuron ignored the second spike, which arrived

during the refractory period. Figure 75 shows the result of this test, demonstrating

that the second spike had no effect on the membrane potential.

5.15.2: Inhibitory Response

Inhibitory inputs were also tested, with one synapse set to have a negative weight.

Figure 76 shows the result of applying an inhibitory input some time after an

excitory input. The membrane potential, increased by the excitory input, is

reduced by the inhibitory input as expected. Although both inputs have a weight

of l 00, the inhibitory input delivers this as 10 cycles with a weight of -10 rather

than a single cycle, so the decrease in the membrane potential due to this is more

gradual than the increase due to the first spike.

167

Excitory and Inhibitory Inputs

I
l

n r
Time

Excitory

Inhibitory

Potential

Figure 76: Membrane potential response to excitory and inhibitory inputs

This response shows that in inhibitory input can be used to make the neuron less

likely to fire, as it can cancel all or part of the membrane potential increase from

previous excitory inputs. It also demonstrates that the bounds-checking logic is

functioning correctly, as the membrane potential did not fall below the resting

potential. The second PSP exerted a change of -100 on the potential, but the effect

of the decay function meant that the potential was less than 100 above the resting

potential when this PSP began.

168

5.15.3: Slow PSP Response

The simple response of the previous tests, where the input spikes each cause a

sharp increase in the membrane potential, was the only type of response which

could be modelled with the first neuron design. However, this second

implementation with its more complex synapses can also model some more

complex behaviour, simply by changing the form of the post-synaptic response. In

the above test, the synapse was set to deliver its weight in the form of a single

cycle pulse but as it is possible to extend this output pulse, the synapse could

deliver its weight as a longer pulse of lower intensity, delivering the same effect

but over a longer period. Figure 77 shows the result of applying a single input

spike to an input programmed with this type of response.

Single Slow PSP Response

Time

Figure 77: Delayed firing with a slow PSP

Input

Output

Potential

The overall weight, the product of the length and amplitude of the pulse, is

sufficient that if delivered in a single cycle, it would exceed the threshold

immediately and the neuron would fire as soon as it had integrated the input. With

a longer pulse of lower intensity the membrane potential has to build up gradually

until the threshold is exceeded. The firing is therefore delayed.

169

A second similar test was performed with both inputs set to provide a slow

response, triggered so that their outputs would overlap. The resulting waveforms

are shown in Figure 78.

Slow PSPs cause a delayed firing

Time

Input

Input

Output

Potential

Figure 78: Two overlapping slow PSPs and their effect on the membrane potential

As expected, the rate of change of the membrane potential increased after the

second input pulse, then decreased again once the first pulse ended. Each synapse

had a weight of 2 and a pulse length of 200, which results in a total delivered

effect of +200 on the membrane potential, although at the end of the pulse the

actual increase in the potential will be less than 200, since several decay cycles are

executed while the synapse's output is active.

For comparison with earlier tests, the neuron was set up in the same way as the

first of the excitory tests, as shown in Figure 72, but with the W and L parameters

reversed so that instead of a single-cycle PSP of +250 it delivers a PSP of

magnitude + 1 over 250 cycles. The result of this was that the neuron fired after 3

spikes as before, but with an additional delay, as shown in Figure 79.

170

3 slow PSPs cause a delayed firing

Input
~------'------------'--------~------1 Output

Potential

Time

Figure 79: Repeat of the simple excitory test with slow PSPs

Figure 80 shows a comparison of the effect on the membrane potential of two

forms of post-synaptic potential (PSP) which can be delivered by the synapses. A

'fast' PSP is one which delivers its weight as a short pulse of high amplitude,

while a 'slow' PSP delivers the same overall effect but over a longer period. With

sufficient precision in the parameters, a wide range of different types of PSP is

available, ranging from one extreme to the other. For this test, the fast synapse

had a weight of 200 and a pulse length of 1, while the slow synapse had a weight

of 2 and a pulse length of 100. It can be seen from the diagram that the membrane

potential after the length of time required for the slow PSP to finish had elapsed

was the same in both cases, as in both cases the decay cycles were executed at the

same times. The slope of the membrane potential driven by the slow PSP is

therefore not constant, as when a decay cycle is executed the potential decreases

slightly. Although the two responses eventually reach the same point, the fast PSP

causes a response which peaks at a higher value. This means that if the threshold

was set low enough, a fast PSP could cause the neuron to fire, while a slow PSP

delivering the same overall effect would not. The slow PSP would therefore have

to have a slightly greater weight.

This effect only applies, however, if the decay period is relatively short compared

with the length of the PSPs. In all the tests which were carried out on this test

system, the decay period was set to 10, so the membrane potential will decrease

by 1 every 10 integration cycles.

171

Comparison of two types of PSP

350 -,------------------------,

300

cii
~ 250
s
~ 200
a,

! 150
.a

~ 100
:I:

50

'Fast' PSP

'Slow' PSP

0-'-'----------------------~
Time

Figure 80: Comparison of the effects of fast and slow PSPs

5.15.4: Conclusion

The tests presented in this section have verified that the second neuron model can

perform the same functions as the earlier model, leaky integration, threshold

based firing and refractoriness. It has also been shown that this more complex

neuron model is capable of exhibiting dynamics which were not possible with the

earlier simpler model, by extending the length of the PSP from the synapse. It has

also been shown that this model does not suffer from the probl.ems associated with

the inhibitory synapse response which caused the earlier model to fire after a

single inhibitory input.

172

5.16: Operation as part of a network

The neurons in a neural network can be arranged and connected in a variety of

different ways. The number of synapses required for each neuron may depend on

both the size and the form of the network. In a fully-connected network, each

neuron will take input from all other neurons, and may also require an input

channel from outside the network. This will require a large number of synapses

per neuron, and for large networks there will be a large quantity of

interconnections between neurons to take into account. Such a network can be

programmed to behave as any type of less fully connected network, such as those

depicted in Figure 81, since any connection present in these simpler networks will

be present in a fully-connected one.

0-0 re~erns an
Figure 81: Nearest-neighbour and three-layer feedforward networks

A biological brain will generally not be fully-connected, as the neurons can only

take input from the immediately adjacent neurons with which they make physical

contact. There may be small clusters of neurons which are fully connected within

the cluster, but in a large brain such as that of a human, there will not be any

neurons which take synaptic input from all others in the brain. However, as the

biological neuron is an electrochemical device, the levels of hormones and stray

neurotransmitters can modify the neural response over a large section of the brain

by interfering with the operation of the synapses [5.49].

173

The layered network as shown in Figure 81 (right) is of a topology commonly

used with simpler networks of steady-state neurons, such as threshold logic units ,

where an input signal is presented to the first layer, and the result read from the

output layer once the network has stabilised. These networks are often used for

pattern recognition or classification, or for more complex functions such as data

transformation [5.33].

Networks with neurons connected in a regular lattice arrangement as shown in

Figure 81 (left) are more often used for experimentation, though they have been

demonstrated in control applications (5.36]. These networks, employing large

amounts of connectivity and feedback between neurons, are used more often with

spiking neurons than TL Us.

A particular class of network, the small-world network [5.50], is one in which

there is less than full connectivity between nodes, but a signal can travel from any

node to any other node in a relatively small number of steps. For a neural

network, this is of course dependant on the willingness of the intermediate nodes

to pass the signal.

174

5.17: Small Network Testing

It is well known that groups of neurons can produce oscillatory behaviour, on both

large and small scales. [5.51] On the large scale, the 'brain waves' associated with

the different levels or states of consciousness have been widely studied, and large

scale oscillatory networks are thought to be responsible for tremor-based disorders

of the nervous systems [5.52]. On the small scale, groups of neurons known as

Central Pattern Generators (CPGs) have been identified in animal nervous tissue,

and it is these CPGs that are responsible for many types of repetitive motor

functions such as peristalsis in the digestive system or the beating of the heart.

[5.53] The latter is a function which is performed constantly, while the former is

performed on demand, controlled by inputs from the rest of the nervous system

but sequenced by the oscillations within the CPO. On a more complex scale it has

been determined that some aquatic animals' swim patterns are controlled by these

networks, with the oscillation arising from synaptic interactions between the

neurons.

The feedback provided by the connections between the neurons has been shown to

be one of the mechanisms by which real CPGs oscillate [5.54], and in [5.55] it is

shown that the network will settle into a repeating pattern, which can be perturbed

by external inputs, though many CPGs are quite stable and will return to their

natural firing pattern quickly once external stimulation is removed.

CPGs in many animals can be quite small, often with a few tens of neurons and

the behaviour of these has been studied and even replicated with analogue

artificial neurons. [5.55]

An experimental system was constructed using the second neuron model to

determine whether this oscillatory behaviour could be replicated using such a

simplified model. The first of the neuron designs is not suitable for this

experiment, as it lacks the capacity to produce a time-delayed response, having

only a simple instant-action synaptic model. This would result in all the connected

neurons firing almost simultaneously and subsequently entering their refractory

periods, and thus ignoring feedback from each other.

The overall aim of the tests is to replicate the oscillatory behaviour of the CPGs

discussed above in a network of simplified artificial neurons. The first aim is to

175

determine whether simple oscillatory behaviour can be obtained, then

subsequently to determine whether perturbing the network with extra input signals

would result in a change to the pattern of oscillation, and whether the network

would return to a stable state.

5.17.1: Network Layout

The lobster's stomatogastric CPGs studied in [5.55] typically contain 25 neurons,

but due to the limited space in the target FPGA, a smaller network of 9 neurons

was used. These were connected as a 3 x 3 grid, with each node taking input from

its neighbours, and the edges connecting to their opposites, e.g. a toroidal

network. It can be seen that in the case of a 9 neuron network such as this there is

full connectivity, as each neuron takes input from 8 others, but if the network

were larger the nearest-neighbour connections would not be sufficient for full

connectivity. Thus the 3 x 3 network can, by disabling particular synapses, be

made to resemble any smaller network. A schematic view of this network is

shown in Figure 81 (left). The number of neurons was chosen due to the

limitations on the number which would fit into the chip, while the 3 x 3 layout

was chosen as the most logical way of arranging 9 neurons.

Each neuron was provided with 9 synapses, and while in most cases the extra

synaptic inputs were unused, two of the neurons were connected to push buttons

so that extra stimulation could be provided.

The nine spike outputs from the network were connected through pulse extenders

to a PC for data logging. The pulse extenders work in a manner similar to the

synapse models, but with a single-bit output and a hard-coded pulse length of 16

cycles. These are provided purely to prevent the PC missing any spikes due to

their short duration, and also to allow the network activity to be displayed

visually. For basic visual testing, the network's outputs were displayed on a VGA

monitor, as a grid of green blocks which flashed red when the corresponding

neuron fired. This, however, required that the network was made to run much

more slowly than normal, and in fact firing rates of around 1 Hz were obtained, by

running the neuron models with a clock of 250Hz. Since for any given set of

parameters, the firing rate increases in direct proportion with the clock rate, this

implies that with the same parameter settings, biologically plausible firing rates of

176

around 2KHz could be obtained with a clock rate of just 500KHz, though it is

likely that a practical network would run with a higher clock rate and parameters

adjusted to obtain a much larger range of membrane potential values during

normal operation, allowing more precision in the sub-threshold dynamics.

Initially, all neurons were set up with the same parameters, with the horizontal

and vertical links being the only active ones, the others having weights of zero. To

ensure feedback, the weights were set up so that a single spike inputted to any

neuron would cause it to fire after a short delay, with a low intensity but

temporally stretched PSP from each synapse.

5.17.2: Single Stimulus Response

When the centre neuron was stimulated, the network settled into a steady firing

pattern, with each neuron being re-triggered once its neighbours fired. This was

made possible because of the delayed response from the slow PSP, which meant

that the first neuron would have finished its refractory period before the others

fired. When another stimulus was applied the network entered a brief period of

instability, with no discernable repeating pattern, and then settled into a new

pattern.

Figure 82 shows a sample firing chart for a short duration run of this network.

Each neuron is represented by a row in the chart, with the black bars representing

the output spikes. It can be clearly seen that the delay after the first spike is much

longer than the subsequent firing periods, this is due to the number of inputs

contributing to the firing in each case.

9
8
7

C 6
~ 5
~ 4

3
2

Time

Figure 82: Firing chart for a simple network

177

The first output spike from the centre neuron (5) triggers the four orthogonally

adjacent neurons (2, 4, 6, 8), but through a single synapse on each one. When

these fire, they retrigger the centre neuron through four of its inputs, resulting in

the membrane potential exceeding the threshold in approximately a quarter of the

time. These four neurons also stimulate the four comer neurons (I , 3, 7, 9), but

only through two synapses each, resulting in a longer delay before they fire. The

network then settles into a steady periodic behaviour.

178

5.17.3: Multiple Stimulus Response

Figure 83: Firing pattern with additional stimulation indicated by the grey bars

Figure 83 shows the result of applying additional stimulation to the network once

it was in a stable firing pattern. The left-hand grey line shows the point at which

neuron 1 (lowest trace) was stimulated by an external input, causing it to fire

early, upsetting the pattern. The period between the two grey lines shows a small

degree of variation in the firing pattern, but after the right-hand line the network

has settled into a regular but different sequence, and the pattern is periodic again.

It was observed that when the threshold values were the same for all neurons, the

pattern resulting from the initial stimulation was always the one shown in Figure

82. If a single threshold was increased or decreased by a small amount, the pattern

was found to be generally similar, but with the changed neuron firing slightly out

of step with the others.

The system can be seen to have a number of different periodic orbits,

characteristic of the dynamics of a nonlinear system [5.56], with the stimulation

causing it to switch between orbits.

5.17.4: Complex Dynamics

When the thresholds for the neurons were all different, but spaced regularly, the

network would fall into a repeating pattern of somewhat greater complexity, and

would take a longer time after the initial stimulation to do so. Until the network

reached the stable point, it would fire in a chaotic and unpredictable way, though

since the neurons themselves are predictable units, the pattern will be the same on

each run, if starting from a resting state in each case.

179

Figure 84: Part of an unstable network's firing pattern

An example of an unstable network's firing sequence is shown in Figure 84. In

this case, all the synapses were set up to produce 'slow' PSPs which delivered a

change in the membrane potential greater than the threshold, so that the neurons

were guaranteed to fire within a relatively short number of integration cycles. A

lower threshold, or stimulation from more than one input, would produce a shorter

firing delay. All the neurons were set up with randomly chosen different threshold

values, and it can be seen from the firing sequence that no neuron was firing at a

constant rate throughout the whole period.

It was found to be hard to determine whether a network firing in this way was

actually firing chaotically, or whether it was simply producing a repeating pattern

with a very long period of repetition. The visual display made it easy to spot

short-period repetition, and some medium-period repetition could be seen in the

firing plots obtained from the data logger, but to find long period repetition would

require more complex techniques, which were not investigated. Chaotic dynamics

have been shown to exist in neural systems, both in real neurons [5 .57] and in

complex neuron models [5.58] and it appears from the response of this network

that chaotic dynamics can be achieved with greatly simplified models too.

5.17.5: Analysis

It is clear that if CPGs are the controlling element in cyclic processes such as

locomotion and digestion, the output pattern produced by the CPG can be

perturbed by incoming neural signals and made to change. Examples of this are

found in animals with simpler neural structures, such as the tadpole [5.54], in

which it is clear that the neural circuits responsible for the swimming motion must

be able to change their output or the tadpole would not be able to change its

direction of travel. We have seen that the experimental network, when set up to

produce a stable oscillation, can be made to change its pattern, both temporarily

180

and permanently, by external stimulation. This stimulation could come in the form

of additional spikes fed into the network from outside, as was seen in section

5 .15 .3, or in the form of modifications to the weights or thresholds, as was shown

in section 5.15.4. This latter case would be a result of chemical changes to the

neurons' operating environment. [5.49]

Although the real neural CPGs are more complex in their interconnections, and

more complex in terms of individual neurons' dynamics, this experiment has

shown that the neuron model is capable, when working as part of a network, of

performing functions similar to those observed in real neural circuits.[5.55] It has

not yet been determined whether this network of neuron models can replicate

exactly the measured behaviour of a real CPG, or whether the output is actually

chaotic, but the network was shown to produce complex dynamics with a number

of periodic orbits, making the transition between these orbits when stimulated by

external inputs, in a manner very similar to that of the simple biological CPGs of

animals such as the tadpole or lobster. It has also been seen that the dynamics

produced would not be possible using the simpler first neuron model of section

5.6, as the more sophisticated time-dependant response of the second neuron

model is required for these dynamics to occur.

181

5.18: Some Functional Elements Built With Neurons

It has been demonstrated that logic functions ranging from simple AND, OR or

XOR gates to adders and multipliers can be realised with threshold logic units by

careful choice of the weights on the inputs. [5.59], [5.60] These threshold units, as

was discussed in section 5.3.1, respond to steady-state inputs, with the output

potentially only settling when the inputs are stable. In this respect they are

functionally similar to the combinatorial logic functions which have been

implemented in them. Most of the published work on using neurons or

neuromorphic hardware to design logic hardware has focused on threshold units,

though some work has been done in using spiking neurons for logic circuits

[5.61], though this was done with analogue VLSI neurons rather than digital ones.

A driving factor behind this use of neurons rather than traditional hardware is the

discovery that some functions require less hardware when implemented in this

way In the case of adders and multipliers, it was found that the hardware

requirements grow less quickly than with traditional methods as the size of the

input word increases. [5.59]

The following neural circuits were intended to be simple test circuits to

demonstrate the flexibility of the neuron model. The experiments presented in the

previous section have shown that it is possible to obtain complex and interesting

behaviours from a network by simply altering the parameters. The aim of the tests

in this section is to demonstrate that certain behaviours can be tailor-made by

setting up the network specifically according to a design, rather than by any

process of evolution.

The circuits presented in this section are purely speculative, but as they are very

simple it is not unlikely that a large evolved neural network could contain circuits

similar to these.

5.18.1: Simple Logic Gates

The easiest type of logic gate to implement with these spiking neuron models is

the OR gate, as it is possible to set up a neuron with sensitive inputs so that a

single spike inputted to either input will cause the neuron to fire. An AND

function is much more difficult, as although it is possible to reduce the weights so

182

that the neuron will only fire when both inputs receive a spike simultaneously, the

same effect can be produced by simply increasing the frequency of the spike train

fed to a single input (see section 5.7.1). One possible solution to this is to 'buffer'

the inputs with other neurons whose refractory period will limit the frequency of

the spike train, while an alternative is to impose a limit on the frequency of any

spike trains applied as inputs to the system overall.

A NOT function can be achieved by combining a single inhibitory synapse with a

constant excitory bias input. [5.61] This is only possible with the second, more

complex neuron model, where a stimulation current can be applied to the input

(section 5.14.2). The bias will result in the neuron firing continuously with a

period determined by the total time required for the integration of the bias to

exceed the threshold and the time spent in the refractory period. When a spike

arrives at the inhibitory synapse, the output of this synapse cancels the bias and

the neuron is not stimulated, and stops firing. The length of the PSP produced by

this synapse determines how long the neuron remains in this state, after which it

will begin firing again.

5.18.2: Spike multiplier

A spike multiplier accepts an incoming spike and provides a train of output

spikes, the number of output spikes being determined by the number of neurons in

the circuit. It is possible to replicate this function to a certain degree if the

synapses are configured so that they are not cleared during the refractory period, it

is possible to extend the output pulse from a synapse so that it lingers through the

refractory period after the first spike and retriggers the neuron. However, this can

only produce output pulse trains at a fixed frequency. Chaining neurons can

theoretically provide a wide variety of different output signals, as the intervals

between the pulses are set by the firing delays of the intermediate neurons.

Figure 85: Diagram of a spike multiplier

183

The basic form of such a circuit is a chain of neurons, as shown in Figure 85, each

of which causes the next in the chain to fire, after a delay. An extra neuron at the

end of the chain acts as an OR gate, so that all pulses appear at a single output.

This is the simplest form of the circuit, forming a spike doubler.

If the chain is a loop, as in the set-reset latch to be discussed in the next section,

then the output will fire at twice the frequency of either of the neurons in the loop.

Spike doubler

time

Figure 86: Spike doubler waveforms

Input

Output

Potential A

Potential B

As can be seen in Figure 86, the spike doubler relies on the membrane potential

building slowly in NI and N2, so that the firing is delayed. This requires that the

PSP emitted by the synapses on these neurons is of a low intensity, but lingers for

some time after the incoming spike is received. It is also necessary for the output

neuron, N3, to have a short enough refractory period that it can recover from the

firing induced by NI before N2 fires. If this is not the case, then a spike doubler

would require a chain of more than two neurons, tapped at suitable intervals to

allow the cumulative delay of the chain to exceed the refractory time of the output

neuron.

While this circuit may be purely speculative, its simplicity suggests that it is not

unlikely that a large evolved neural network would contain at least one similar

chain of neurons.

184

5.18.3: Neuron Set-Reset Latch

The wide range of post-synaptic responses possible with a synapse which can

provide a stretched output pulse allows for a range of interesting neural circuits to

be built. One such circuit is the Set-Reset latch, which has an approximate

functional relationship with its electronic counterpart. In this circuit, two neurons

are coupled into a feedback loop as shown in Figure 87.

Figure 87: Cross-coupled neurons acting as a set-reset latch

It is important to note that while the electronic equivalent of such a circuit is

based on steady-states, so that when triggered its output maintains a constant logic

level until the alternative input is triggered, this steady-state output is not possible

with spiking neurons because by definition they do not hold steady outputs. They

can, however, be made to fire at a steady rate once triggered by an input spike. If

the information carried by the spike trains is assumed to be encoded in their

frequency, this could be thought of as a steady state in terms of the information

outputted.

In the circuit of Figure 87, neuron 1 has three synapses while neuron 2 has two. If

it can be assured that the resetting spike will never arrive during neuron l 's

refractory period, then synapse E can be removed to further simplify the system.

Synapse A has a large excitory weight, delivered as a relatively short pulse,

enough to cause Nl to fire immediately. Synapses C and D, the feedback

185

synapses, have similarly large weights but produce longer PSPs of lower intensity,

each allowing the originating neuron to complete its refractory period before the

other is triggered. Synapses B and E have strong inhibitory effects, stretched over

a long enough period to stifle the feedback pulses, at least to the point where they

just fail to trigger an action potential. The two neurons each have very short

refractory periods, although provided that the PSPs from the feedback synapses

are long enough, this need not necessarily be the case. ln addition, there is no

requirement for there to be just two neurons involved in the feedback loop, if a

longer chain of neurons was used, a ring oscillator with start/stop control would

be created.

Neural S-R Latch

N2 accumulator

N1 accumulator

f------'----L---__.____,_-L __ __.__---,-_L-_ __ -i N2 output
1---~ __ _.._ _ _ _._ _ _ __.'---- ~ ---'------4 N1output
f-------------------------'c....L..J'-----l Reset

t=:::=====================:::::l Set
Time

Figure 88: Test waveforms for the set-reset latch

Test waveforms from this circuit are shown in Figure 88. The lowest trace shows

the spike input to the 'set' input, which initiates a large change in the membrane

potential of NI. This causes Nl to fire, which in tum initiates a longer, slower

build-up of membrane potential in N2. The cycle repeats, with each neuron's

firing causing the other to fire after a short delay. Finally, a series of spikes on the

reset input causes the rise in membrane potential in Nl to be stopped before the

threshold was reached, stopping the circuit. Three spikes were fed into the reset

input to ensure that it would stop the feedback correctly, in case the first arrived

186

during the refractory period but due to the very short refractory period of both

neurons the feedback was stopped by the first spike.

The S-R latch circuit was tested using the 3 x 3 network described earlier. Due to

the simplicity of the circuit, the nearest-neighbour connections in the network

were adequate for reproducing the circuit. The unused synapses were set to weight

0, pulse length 1 so that they had no effect on the neurons.

In order to make the full set of signals visible, two additional neurons were used

to buffer the set and reset inputs, their input synapses being set up to trigger firing

immediately. The outputs of these, and the outputs of the two cross-coupled

neurons, can be seen in the firing sequence plot of Figure 89. The particular

choice of neurons was made based on the fact that neurons 5 (centre) and 1 (one

corner) were connected to two of the Digilab's buttons for testing.

~_I _'_._·_._·_._·_. _ _ · _. ___ : _
Time

Figure 89: Firing sequence for initial test of S-R latch, showing erroneous response

The initial test was performed with the thresholds of the two cross-coupled

neurons set differently, so the firing pattern in Figure 89 shows a slight

asymmetry in the oscillation. An anomaly can be seen at the end of the sequence

when the reset neuron (Nl) is triggered, causing both N3 and N6 to fire

simultaneously. This does have the effect of stopping the oscillation, as both

neurons then enter their refractory periods and so clear their synapses. However, it

is not the expected behaviour, as the inhibitory synapses feeding NI 's output to

N3 and N6 should not be able to fire the neurons.

The reason for this anomalous behaviour is the way in which negative numbers

are represented by the system. The inhibitory weights used were -500, represented

as a 16 bit number as i 6
- 500, or 65036. The resting potential was set to I 00, the

thresholds to 180 or 200, and the post-firing potential to 80. If we assume that the

membrane potential would be somewhere between I 00 and 200 for each of the

oscillator neurons, adding 65036 to this would produce a number between 65136

187

and 65236, which, being less than i 6 would not be truncated in the addition so

the bounds-checking performed in the integration step would not detect a

problem. The new membrane potential then becomes very large, exceeding the

threshold and causing the neuron to fire.

To remedy this, the normal operating range of potentials was raised so that the

resting potential was 1000, the threshold was 1200 and the post-firing potential

was 980. Thus, adding 65036 to the subthreshold range now yields a number

between 66036 and 66236, which would be truncated by the 16-bit adder to

produce values between 500 and 700, which is correct as it represents a

subtraction of 500 from the original potential.

This behaviour demonstrates one of the pitfalls of a simple model such as this,

something which must be taken into account when choosing the neuron's

parameters. The anomaly occurred because with the membrane potential at 100,

there isn't ' room' below this to accommodate a change of -500 without an error.

This means that the resting potential and threshold must be set adequately high

above zero that the largest inhibitory weight can be accommodated.

In theory, there is no reason why the model should behave any differently as the

base value for the membrane potential changes. Provided that the threshold and

post-firing potential are the same distance from the changed resting potential,

there should be no change in the overall response of the neuron. However, if the

network is trained by a learning algorithm, it is possible the these anomalies,

being part of the neuron's operating repertoire, could be made use of by the

algorithm, resulting in a network which performs its function in an unusual way.

N6
N5

N3

N1.,_ ________________________,_
Time

Figure 90: S-R latch running correctly with new parameters

188

The output of the corrected system is shown in Figure 90. Again, N5 starts the

sequence by causing N6 to fire immediately, then N3 and N6 fire alternately until

the inhibitory output from NI stops the process.

This circuit is a simpler version of the pattern generators studied in section 5.17,

but in this case the function of the circuit was designed rather than simply arising

from the neurons' dynamics and coupling.

5.18.4: Conclusion

The circuits presented here demonstrate that while the neurons may be capable of

complex neuromorphic responses when used in a network, their simplicity means

that circuits can be explicitly designed without needing to evolve them or train the

network. The problem of implementing logic functions in spiking neurons was

discussed, and while it has been shown in other publications that Boolean logic

functions can be implemented in neurons such as threshold logic units, the lack of

a steady state in a spiking system complicates the design of some logic functions,

such as AND or NOT, but not others such as the OR gate.

The spike multiplier showed that a simple circuit could be designed and would

work as expected, demonstrating the spike-timing based operation of the neurons

and also the Boolean OR function, while the S-R latch circuit, which is really

more of a controllable ring oscillator, showed that oscillatory dynamics can be

designed into a network.

189

'

5.19: Overall Conclusion

The design and implementation of these neuron models have shown that even a

simplified representation of an already simple neuron model can replicate the

basic functions of a biological neuron, and can exhibit relatively complex

behaviour. We have seen that a network of such models can also exhibit very

complex dynamics, which further work may establish as being chaotic. The

sequences produced certainly do not exhibit short-period repetitions.

A comparison of the two neuron designs shows that the simpler neuron requires a

smaller area in the chip, but also has a more limited range of functionality. The

more complex design provides a better approximation of the real neuron, but with

the disadvantage of using a greater area of the chip, resulting in a reduction in the

number of neurons which can be used in a network. This more complex model has

the capability to produce delayed effects due to the longer output pulses which

can be supplied by the synapses. This delay was what permitted the periodic

behaviour demonstrated with the test network, as if there was no delay the

neurons would be in their refractory periods when re-stimulated by their

neighbours. Modelling the synapses as separate units also allows a greater range

of different setups to be produced, as the number of synapses is not restricted and

can be changed without affecting the operation of the neuron body. For large

numbers of inputs this system is also more efficient than designs where the inputs

are integrated in turn, as it integrates the net effect of all post-synaptic potentials

simultaneously and therefore requires only one integration cycle to cover all

inputs.

In comparing the neuron models presented in this chapter with other published

works it is evident that some other models have been developed which are smaller

in terms of area occupied. However, in those cases a large proportion of the

saving in area is attributable to the reduction in flexibility of those other models,

which have hard-coded thresholds and decay rates. If future work is to incorporate

learning mechanisms as discussed briefly in section 5.13, then flexibility in such

parameters may well turn out to be essential, and hence the reduced-area models

presented elsewhere may not have the necessary flexibility.

190

When comparing performance in terms of integration time per logic element, the

models presented here compare favourably with others, and crucially the scaling

behaviour with increasing numbers of inputs is far better for the models presented

here, with constant integration time regardless of the number of inputs. This

constant integration time also means that the neuron models presented here have a

clear advantage over the majority of the other models considered, namely that

they can be combined into networks without explicit synchronization, making the

models presented closer to an analogue implementation, which in turn is more

biologically-realistic.

As was discussed earlier, other works have shown that an alternative, though

slower method of producing a large neural network is to time-multiplex the

neurons onto a single model. The results presented in this section certainly

support this, as it has been shown that only a few neurons will fit into a moderate

sized FPGA, and while the current generation of FPGAs may be many times

larger, even the largest could only allow a hundred or so neurons to exist in

parallel.

However, the performance of the simplified neuron model suggests that a mixture

of time-multiplexing and parallel operation could be employed, as it has been

shown that a model simple enough to fit several times into a medium-capacity

FPGA can perform complex operations, so several of these could be employed in

parallel to speed up the execution of the time-multiplexed network. This

parallelism idea fits with what was found during the image processing tests, where

each individual processor may not be able to operate very quickly, but if several

are used in parallel the performance could potentially rise significantly.

An important consideration when building a neural network in this way is that it

will clearly be less tolerant of faults in the neurons than one built fully-paraJlel, as

if all the neurons in the network are time-multiplexed onto a single physical

neuron model, a failure in this circuit would stop the whole network. If two

instances of the neuron model were used, a failure could potentially stop half of

the network. A fully-parallel network would only lose a single neuron if a single

neuron model was to fail, and it may be possible for the network to continue

191

operation, perhaps producing a few errors. In the same way that the human brain

can cope with individual cells dying without failing completely, such a 'graceful

deterioration' property would certainly be desirable in systems based on such

neural networks

The experiments with the neuron models have also revealed the ways in which the

simpler arithmetic logic can produce incorrect results. We have seen that placing

the operating range of the model too close to the limits of the representable

numbers can cause erratic operation, and can sometimes cause the models to fail

in ways which do not immediately reveal the true cause. The first model' s

response in the cases where inhibitory synapses are used showed the importance

of bounds checking. However one of the outcomes of this work is a clear

understanding of the scope and impact of these anomalies.

The resting potential detection in this first model could also give rise to

unpredictable operation, as it is possible for the membrane potential to rest at any

value between the two bounds, and so if it is at the top of the band, a certain input

may cause the threshold to be exceeded, whereas the same input might not cause

this if the potential was resting at the bottom of the band. These effects arise from

the simplified arithmetic in use in the models, and are another indication of the

trade-off between simplicity and operating capability.

The results of the tests conducted with the small network in section 5 .17 show that

the second neuron model, despite its simplicity, is capable of a biologically

plausible response when used in a network, showing periodic firing with stable

patterns similar to that found in the CPGs such as the lobster stomatogastric

ganglion described in [5.55]. It was found that only the second of the neuron

designs, with its greater flexibility in terms of PSP response, was suitable for this

application, as the biologically-plausible functionality is dependant on the ability

of this model to delay firing due to a slow build-up of the membrane potential.

This type of PSP response is common in analogue implementations of neurons, as

it is easy to do, by restricting the current into the cell, but it is a novel approach in

digital spiking neurons, and as has been seen, shows promising results.

192

The spike multiplier and S-R latch circuits in section 5.18 show an interesting way

of building more complex systems from the neuron models. It is easy to see that

these two examples represent just a small part of the possible range of functions

which could be built in this way. It was stated in the text that the spike multiplier

can be extended to produce any number of spikes when triggered by an input, and

this is made possible by the flexible nature of the input to the neuron model,

which can allow input from as many synapses as are required. These two simple

examples show the neurons behaving in ways which might not be obvious from

the descriptions of the operation of the neuron presented at the start of this

chapter. Extensions to these models can be imagined, such as the extension of the

S-R latch to produce a ring oscillator as described in section 5.18.3. With just a

simple modification to allow the neuron to pass through its refractory period

without clearing the synapses, it should be possible to make a single neuron re

trigger itself, and thus it may be possible to make an S-R latch with a single

neuron. It is also easy to envisage neural circuits built in this way which can

perform Boolean logic functions. The output neuron in the spike multiplier is

acting as an OR gate, replicating the input spikes regardless of which input they

occur through. An AND gate could simply be a neuron with two inputs, each of

which can provide half the required increase in membrane potential required to

exceed the threshold. Coincident inputs on both inputs would cause it to fire, but a

single input would not. Clearly there are issues with this idea which would need to

be addressed if Boolean logic is to be used, for instance there is no easy way to

make an equivalent of a NOT gate, and also the AND gate could be triggered to

fire by consecutive pulses on a single input, if the decay is not aggressive enough.

However, there is no reason why pure Boolean logic should be necessary, as the

range of functions possible even with these simple neuron models allows for more

interesting effects than are possible with digital logic gates.

5.20: Further Work

There is much left to be explored with these neuron models. For a start, there are

numerous ways in which the model can be extended to allow a greater range of

capabilities, and a few areas have been identified where error-checking or bounds

checking logic could be added to make the operation more reliable.

193

The decay function in the later neuron models is one area which could be made a

little more flexible . At present the decay works by subtracting 1 from the

accumulator every n cycles, which means that the maximum decay slope is a

decay of 1 every cycle. Adding an extra parameter and altering the logic could

allow this to be increased, so that the extra decay parameter, d, is subtracted every

n cycles rather than the constant decay of 1. Similarly the refractory period slope

could be modified to allow a sharper increase. The decay rate does not necessarily

have to be constant, but could instead be made proportional to the membrane

potential, giving an exponential decay rather than a linear decay. It would be

necessary to determine whether there is any improvement in the neural model

arising from such a change, or whether the neuron is just as capable with either

method of decay. It was shown that biologically-plausible network responses are

possible with a linear decay, so it seems that an exponential decay is unnecessary.

Another potentially useful modification would be to allow the inputs to push the

membrane potential below the resting potential, perhaps as far as some lower

bound set as an additional parameter, so that the decay gradually brings the

potential back up to the resting potential, and allowing inhibitory inputs to make

the neuron harder to fire. An alternative to this would be to simply raise the

threshold each time the potential tries to go below the resting potential, then

gradually bring it back down to normal with the same hardware as used for the

decay. This may be a little more efficient in terms of hardware than the previous

method, as it avoids the need for a dual-polarity decay function, and should

produce the same result.

It is desirable to experiment with the bit-widths of the registers and arithmetic

circuits, to investigate the trade-off between logic element usage and operating

ability. It is expected that a neuron built with narrower buses and registers will not

be able to perform as great a range of functions as one built with wider buses, as

the range of possible values for the parameters will decrease, and it will be more

difficult to obtain fine variations in weights and thresholds with a coarser

quantisation of parameters. In this case having the synapses outside the main

neuron model is desirable, as it is possible to vary the parameter width in these

194

without affecting the parameters in the neuron body. Although the synapses, like

the neurons, were built with 16-bit registers and data paths, the parameters used in

the tests rarely exceeded the capabilities of 10-bit registers, or 8-bit in the case of

the L parameters. It was shown earlier that a reduction in parameter width leads to

a reduction in LE usage, and this may be useful when implementing large

networks.

When developing networks of neuron models there will need to be some means of

control, to allow the parameters to be adjusted, either manually or by learning

algorithms. A simple embedded controller was presented with the first neuron

model, but this would be more useful implemented on a PC as a graphical

interface. Some means of encoding inputs as spike trains and decoding spike

trains to produce output signals would also be useful.

The neural circuits presented in section 5.18 could be developed further, to refine

the existing circuits and to develop more simple building blocks which could be

combined to create more complex systems. It would then be useful to compare

these systems with similar systems produced by some manner of learning or

evolution of the network, to determine whether the hand-built blocks would

actually exist in an evolved system. This would require that systems are built to

allow the network to learn, either by adding these to the neuron and synapse

models, or by implementing a learning controller which can alter the weights

through the neurons' data buses.

195

Chapter 6: Overall Conclusions

The experiments presented in this work have demonstrated various approaches to

implementing systems which would traditionally be software-based. The image

processing hardware presented in chapter 3 was implemented as a direct hardware

translation of a software algorithm, while the neuron models were implemented as

hardware systems exhibiting some degree of parallelism, in the case of the neuron

with separate synapses. It was found that there are implementation issues common

to both approaches, as well as some issues specific to a particular type of

implementation.

The image processing hardware showed that the direct translation of the software

algorithm to hardware resulted in a system with relatively low perfonnance but

with the advantage of small hardware size. Two implementations were

demonstrated, and it was shown that both could perform the required function,

extracting the skin lines from the image. The results showed that the two systems,

high-pass filter and second-order filter, perfonned differently and produced

different outputs. The second-order filter was seen to be more susceptible to noise

and distortion in the source images, but produced a result image with more detail,

due to its smaller mask size.

Methods of increasing the efficiency of the processor were shown, such as the use

of space-inefficient but relatively fast divider logic to perform a division by a

fixed divisor. Clearly this approach is not suitable for a general purpose divider

where the divisor is variable, but in this particular instance, and in other similar

cases, it is a good solution. The use of a software program to generate the VHDL

code was shown, a useful feature of a hardware description language which can

save a lot of time.

The second-order filter was seen to operate much more quickly than the high-pass

filter, also requiring considerably less hardware. The increase in processing speed

was due mainly to the smaller mask size, though a slightly more efficient control

state machine assisted in this increase, as did the overall clock frequency increase

enabled by the simpler hardware.

196

While the large hardware requirement of the divider in the high-pass filter reduced

its area-time product score, the second-order filter performed well by this

measure, due mainly to its very small hardware size. It was seen that although the

lack of 'local' storage of pixels or partial sums meant more accesses to memory

were required, thus increasing the processing time, the small number of registers

required led to the hardware being considerably smaller than many other

implementations of convolution filters. This reduction in hardware size is the

principal advantage of the systems developed in this chapter.

The flexibility of the hardware developed for the image processor was

demonstrated in the conversion of the system to process cellu Jar automata. It was

shown that the CA processor is a special case of image processor, which can

operate in the same was as the basic image processors, with just a few

modifications to the way memory is accessed. The system that was demonstrated

was shown to be a versatile general-purpose CA processor which could be

adapted to a wide range of different rules with no change to the architecture.

Methods of accelerating the system were discussed, and it was shown that

methods similar to those that can be applied to accelerate the image processing

could also be used to accelerate the CA processing.

The development and use of a simple microprocessor in chapters 4 and 5 showed

the ease with which software can be combined with custom hardware to create a

more adaptable system. It was shown that a very simple structure lacking many of

the parts of a conventional modern microprocessor, such as an instruction decoder

or microcode, can still be useful as a general-purpose processor. Restricting the

processor to an accumulator-based architecture did not prevent it from being

useful, and the lack of instruction decoding allows the creation of often useful

hybrid instructions which are not possible on a machine with a rigidly defined

instruction set. The simplicity of the design resulted in a compact, useful

processor with a high performance-to-area ratio when compared with many other

embedded processors.

197

In chapter 5 a simplified spiking neuron model was developed, and it has been

demonstrated that even though it is a good deal simpler than most artificial neuron

models it can still behave in a manner similar to a real neuron, with some

simplification. It has been shown that a biologically accurate model of the internal

working is not required, and an approximation based on simple integer arithmetic

will suffice.

Two models for the neuron were demonstrated, the first design being relatively

simple and as a result somewhat limited. It was shown that a neuron model in

which the synapses are multiplexed would have to have its parameters changed if

extra inputs are added, as the extra inputs will lengthen the integration cycle. A

second neuron model was presented in which the synapses are modelled

separately, and perform their operations as true parallel processes, more closely

resembling the real biological neuron.

It was also demonstrated that even this simple neuron model takes up enough

space within the FPGA as to make a parallel implementation of a large network

difficult. It is possible to build small networks with the model, and networks of

over a hundred neurons, though not possible with the FPGA which was used for

the experimental work, are possible with current FPGAs. The possible reduction

in logic element usage with a reduction in the precision of the parameters used by

the neuron models was discussed, and this was demonstrated in the case of the

synapse model and also in the case of the RAM-based neuron model, the latter

making use of the otherwise unused memory blocks in the FPGA in order to

reduce its logic usage. The FPGA architecture's limitations pertaining to the

neuron development were also discussed, as it was shown that while the

embedded RAM blocks can be used by the neuron model itself, if the synapses are

modelled separately the relatively coarse-grained nature of the Apex series

FPGA's RAM blocks makes them unsuitable for use in the synapse model. Later

FPGA types such as the Stratix series could be used to make a more efficient

implementation using the RAM blocks for parameters.

The importance of error checking in the arithmetic used in a system such as the

neuron was demonstrated by the incorrect operation of the neuron models under

certain circumstances. The first model, lacking bounds checking, was shown to

198

behave incorrectly in response to inhibitory inputs which place the simulated

membrane potential at a level the control logic is not equipped to cope with. The

use of a variable decay slope also necessitated a degree of vagueness in the

definition of the resting potential, this being defined by upper and lower bounds.

It was suggested that this vagueness could lead to unpredictable operation, though

this was not observed. The second, improved model addressed these issues,

adding bounds checking and handling the decay of the potential in an alternative

and more reliable way.

The neuron models which were developed were shown to be simple yet capable,

and although they may be larger in terms of hardware size than some models from

the literature the increased size is due to greater flexibility in the parameters,

greater precision in the simulation of the membrane potential and a greater range

of synaptic responses than simpler implementations such as [5.36]. The second

model is also capable of supporting any number of inputs with no change in the

integration cycle time, which is a side-effect of many of the simpler

implementations [5.38]. They are also able to operate in a network without any

explicit synchronisation, and thus the network is not performing a series of time

steps but is running in real-time, which is more biologically-realistic.

The simple neuron model was shown to be capable when used as part of a

network of producing complex periodic and non-periodic dynamics. A small

network was found to behave in a complex and apparently non-periodic way

following simple stimulation, given sufficient feedback. It was demonstrated that

the network appears to have stable states, which in this case are dynamically

stable, repeating the same firing sequence with a short period. The network has

more than one such stable state, and can be made to transition from one to another

in an unpredictable manner by disrupting the pattern with external stimulation.

This was seen to be consistent with behaviour seen in real-world neural circuits,

notably the Central Pattern Generators found in many animals.

Construction of simple but novel neural circuits was demonstrated, showing that

the neuron models can be used together to perform functions which are a good

deal more complex than the simplicity of the model would suggest. These circuits

199

could be used as building blocks for larger systems, using the neurons instead of

conventional logic circuits to take advantage of their complex time-dependant

responses. Methods for implementing Boolean logic functions were also

suggested.

In summary, we have seen methods of implementing systems in hardware which

would traditionally have been software-based. The trade-offs between

performance and hardware size were revealed, and methods for making efficient

use of the FPGA's hardware were discussed. It was shown that making a direct

translation from software to hardware produced a system with relatively small

hardware size but also relatively low processing speed. It was shown however that

a high ratio of performance to area can be achieved with such small hardware,

even when the actual performance is not particularly high.

Exploiting parallelism to increase performance was discussed in the cases of the

images processors and the neurons. The parallel nature of the neuron models

shown in the demonstrated networks allows the system to perform in real-time

with relatively low clock rates or to perform very fast with higher clock rates. The

simplified neurons show promising and interesting results, as complex dynamics

were obtained from both small and large neural systems. It was demonstrated that

a network of these simplified high-performance neurons can demonstrate complex

periodic and non-periodic dynamics. Simple neural circuits built with the

developed models showed interesting results and abilities, and the potential to be

developed further and used to create more complex systems.

200

Bibliography

[2.1] Altera, 'Apex 20K Programmable Logic Device Family datasheet', Feb 2002
Available at www.altera.com

[2.2] Virtex docwnentation and datasheets available from www.xilinx.com

[2.3] Altera Quartus II software available from www.altera.com.

[2.4] VHDL Analysis and Standardization Group, IEEE std. 1076-2002, ,
http://www.eda.org/vhdl-200x/

[2.5] Haldar, M, Nayak, A, Shenoy, N, et al., FPGA hardware synthesis from MATLAB
VLSI DESIGN 2001: FOURTEENTH INTERNATIONAL CONFERENCE ON VLSI DESIGN :
299-304 2001

[2.6] Roy, S, Banerjee, P, An algorithm for trading off quantization error with hardware
resources for MATLAB-based FPGA design
IEEE T COMPUT 54 (7): 886-896 JUL 2005

(2.7] Handel-C, part of the DK Design Suite from Celoxica inc.,
http://www.celoxica.com/technology/c _ desi gn/handel-c.asp

[2.8] Lewis, E, Reconfigurable Computer Hardware Design, MEng dissertation, 2002

(2.9] Kramberger, l, Solar, M, DSP Acceleration using A Reconfigurable FPGA

(2.10] 0 . Albaharna, P. Cheung, and T. Clarke, "Virtual hardware and the limits of
computational speed-up," in Proc. IEEE Int. Symp. Circuits Sysl., 1994, pp. 159- 162.

(2.11] Shoa, A, Shirani, S, Run-time reconfigurable systems for digital signal processing
applications: A survey, VLSI SIG PROC SYST 39 (3): 213-235 MAR 2005

[2. 12] Galanis, MD, Dimitroulakos, G, Goutis, CE, Performance improvements from
partitioning applications to FPGA hardware in embedded SoCs, J SUPERCOMPUT 35 (2):
185-199 FEB 2006

[2.13] Singh, S, Slous, R, Accelerating Adobe Photoshop with reconfigurable logic
IEEE SYMPOSJUM ON FPGAS FOR CUSTOM COMPUTING MACHINES, PROCEEDINGS :
236-244 1998

[2.14] Altera, 'Stratix Il Device Handbook', available from www.altera.com

(2.15] El Camino GmbH, Digilab 20Kx240, www.elcamino.de

[3.1] Round, AJ, Duller, A WG, Fish, PJ, Lesion classification using skin patterning, SKIN RES
TECHNOL 6 (4): 183-192 NOV 2000

[3.2] She, ZS, Fish, PJ. Analysis of skin line pattern for lesion classification, SKIN RES
TECHNOL 9 (I): 73-80 FEB 2003

(3.3] Vega-Rodriguez, MA, Sanchez-Perez, JM, Gomez-Pulido, JA, An optimized architecture
for implementing image convolution with reconfigurable hardware
TSI PRESS S 16: 131-136 2004

(3.4] Hsiao, PY,, Chen, CH, et al., Real-time realisation of noise-immune gradient-based edge
detector, IEE P-COMPUT DIG T 153 (4): 261-269 JUL 2006

[3.5] Torres-Huitzil, C, Arias-Estrada, M: FPGA-based configurable systolic architecture for
window-based image processing, EURASIP J APPL SIG P 2005 (7): 1024-1034 MAY 11 2005

201

[3.6) Bosi, 8 , Bois, G, Savaria, Y: Reconfigurable pipelined 2-D convolvers for fast digital
signal processing, IEEE T VLSI SYST 7 (3): 299-308 SEP 1999

[3.7) Gribbon, KT, Bailey, DG, Johnston, CT, Using design patterns to overcome image
processing constraints on FPGAs, DELTA 2006: THIRD IEEE INTERNATIONAL
WORKSHOP ON ELECTRONIC DESIGN, TEST AND APPLICATIONS: 47-53 2006

[3.8] Muthukumar, V, Rao, DY, Image processing algorithms on reconfigurable architecture
using HandelC, PROCEEDDINGS OF THE EUROM1CRO SYSTEMS ON DIGITAL SYSTEM
DESIGN: 218-226 2004

[3 .9) Benkrid, K, Belkacemi, SD, Design and implementation of a 2D convolution core for
video applications on FPGAs, THIRD INTERNATIONAL WORKSHOP ON DIGITAL AND
COMPUTATIONAL VIEDO, PROCEEDINGS : 85-92 2002

[3.10) Cardells-Tormo, F, Molinet, PL, Area-efficient 2-D shift-variant convolvers for FPGA
based digital image processing, 2005 IEEE WORKSHOP ON SIGNAL PROCESSING
SYSTEMS - DESIGN AND IMPLEMENTATION (SIPS): 209-213 2005

[3.11] Zhang, MZ, Ngo, HT, Livingston, AR, et al. An efficient VLSI architecture for 2-D
convolution with quadrant symmetric kernels, lEEE COMPUTER SOCIETY ANNUAL
SYMPOSIUM ON VLSI, PROCEEDINGS : 303-304 2005

[3.12] Perri, S, Lanuzza, M, Corsonello, P, et al. A high-performance fully reconfigurable
FPGA-based 2D convolution processor, MICROPROCESS MJCROSY 29 (8-9): 381-391 NOV
l 2005

[3.13] Rosas, RL, de Luca, A, Santi llan, FB, SIMD architecture for image segmentation using
Sobel operators implemented in FPGA technology, 2005 2ND INTERNATIONAL
CONFERENCE ON ELECTRJCAL & ELECTRONICS ENGINEERJNG (ICEEE) : 77-80 2005

[3.14] Saldana, G, Arias-Estrada, M, FPGA-based customizable systolic architecture for image
processing applications, 2005 INTERNATIONAL CONFERENCE ON RECONFIGURABLE
COMPUTING AND FPGAS (RECONFIG 2005) : 17-24 2005

[3.15) F.G.Lorca, L Kessal and D.Demigny. "Efficent ASIC and FPGA implementation of IIR
filters for Real time edge detection". In the International Conference on image processing (ICIP-
97) Volume 2. Cct 1997

[3.I6) Hsiao, PY, Li, LT, Chen, CH, et al., An FPGA architecture design of parameter
adaptive real-time image processing system for edge detection, 2005 EMERGING
INFORMATION TECHNOLOGY CONFERENCE (EITC) : 38-40 2005

[3.17] Kraut, J, Author, Reprint Author Kraut Jay Kraut, Jay, Hardware edge detection using an
Altera Stratix nios2 development kit, 2006 CANADIAN CONFERENCE ON ELECTRICAL
AND COMPUTER ENGINEERJNG, VOLS 1-5 : 1172-1175 2006

[3.18] Altera, Application Note 364, "Edge Detection Reference Design", Oct 2004, available
from www.a ltera.com

[3.19] Dick, C, "Image processing on an FPGA based custom computing platform"
ISSPA 96- FOURTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS
APPLICATIONS, PROCEEDINGS, VOLS 1 AND 2: 361-364 1996

[3.20] Amira, A, Bouridane, A, An FPGA implementation of Discrete Hartley Transforms
SEVENTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS
APPLICATIONS, VOL l, PROCEEDINGS : 625-628 2003

202

[3.21] Uzun, IS, Amira, A, Bouridane, A, FPGA implementations offast Fourier transforms
for real-time signal and image processing, IEE P-VlS IMAGE SIGN 152 (3): 283-296 MAY
2005

[3.22] JASC Software Inc. Paint Shop Pro

[3.23] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A Wolfram Web
Resource. http://mathworld.wolfram.com/BinomialDistribution.html

[3.24t] K.E. Batcher: Sorting Networks and their Applications. Proc. AFIPS Spring Joint
Comput. Conf., Vol. 32, 307-314 1968

[3.25] Altera Inc. 'ByteBlaster MV data sheet' , www.altera.com

[3.26] http://www.altera.com/products/ip/communications/ipm-index.jsp

[3.27] Google Search: 'Skin Lesion'

[3.28] She, ZS, Duller, A WG, Fish, PJ, Enhancement of lesion classification using divergence,
curl and curvature of skin pattern, SKIN RES TECHNOL IO (4): 222-230 NOV 2004

[3.29] John von Neumann, Theory of Self-Reproducing Automata, 1969

[3.30] Konrad Zuse, "Rechnender Raum" (Calculating Space), 1969

[3.31] Alber, M, Kiskowskiy, M, Glazier, J, Jiang, Y, ON CELLULAR AUTOMATON
APPROACHES TO MODELING BIOLOGlCAL CELLS

[3.32] Ermentrout, G, Edelstein-Keshet, L: Cellular Automata Approaches to Biological
Modelling

[3.33] Tomohiro Miura, Tai Tanaka, Yoshikazu Suemitsu and Shigetoshi Nara, "Complete and
compressive description of motion pictures by means of two-dimensional cellular automata" ,
Physics Letters A 346 (2005): 296--304

[3.34] Gardner, M, 'Wheels of Life and other Amusements', Freeman, New York (1983)

[3.35] David Bell, "Unit Life Cell", Jan 1996
http://www.radicaleye.com/lifepage/patterns/unitcell/ucdesc.html

[3.36] Berlekamp E.R, Conway J.H and Guy R.K., 'Winning Ways for your Mathematical
Plays', Academic Press, London

[3.37] Rendell, P. "This is a Turing Machine Implemented in Conway's Game of Life."
Available on the Internet at: http : //www. r e nde ll. uk . co /gol/tm . htm.
Paper avai lable at: http://www.cs.ualberta.ca/- bulitko/F02/papers/tm_ words.pdf

[3.38] Halbach, M, Hoffmann, R. Implementing Cellular Automata in FPGA logic
Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS'04)

[3.39] Shackleford, B, Tanaka, M, Carter, R.J, Snider, G, FPGA Implementation of
Neighborhood-of-Four Cellular Automata Random Number Generators

[3.40] Kobori, T, Maruyama, T, Hoshino, T, "A Cellular Automata System with FPGA"
Proceedings of the 9th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM' 0l)

[3.41] Life32: a Life engine for Windows, Johan C Bontes, 2002.
Available at life32.lifepattems.net

203

[4.1] Altera, NIOS Embedded Processor
http://www.altera.com/products/i p/processors/nios/nio-index.htm I

[4.2] Xilinx, Virtex 4 capabilities/ PowerPC Processor
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/capabilities/powerpc.htm

[4.3] ARM, 'ARM9 Family'
http://www.arm.com/products/CPUs/famil ies/ ARM9Family .html

[4.4] PicoBlaze™ 8-bit Microcontroller Reference Design for FPGAs and CPLDs:
www.xilinx.com/picoblaze

[4.5] www.cast-inc.com

[4.6] www.hitechglobal.com

[4.7] Free6502 core
http://www.sprow.co.uk/fpgas/free6502.htm

[4.8] http://zxgate.sourceforge.net/

[4.9] David Lynch, "A Motorola MC68008 Op-code compatible VHDL Microprocessor"
https://www.cs.tcd.ie/Michael.Manzke/fyp2003-2004/DavidLynch.pdf

[4. IO] Wunderlich, RE, Hoe, JC, In-system FPGA prototyping of an Itani um
microarchitecture, PR IEEE COMP DESIGN : 288-294 2004

[4.11] Neil Franklin, "PDP-IO Clone Microprocessor in an FPGA"
http://neil.franklin.ch/Projects/PDP-! 0/

[4.12] www.opencores.org

[4.13] John Kent: http://members.optushome.com.au/jekent/FPGA.htm

[4.14] Augusto, N, Cortes, M, Centoducatte, P, "A CPU for Educational Applications Designed
With VHDL and FPGA"

[4.15] Mezei, I, Malbasa, V, Using VHDL to improve an FPGA based educational
microcomputer, EUR OCON 2005: THE INTERNATIONAL CONFERENCE ON COMPUTER
AS A TOOL, VOL I AND 2 , PROCEEDINGS : 799-802 2005

[4.16] Romero-Troncoso, R. de J., Ordaz-Moreno, A, et al., 8-bit CISC microprocessor core for
teaching applications in the digital systems laboratory, RECONFIG 2006: PROCEEDINGS
OF THE 2006 lEEE INTERNATIONAL CONFERENCE ON RECONFIGURABLE
COMPUTING AND FPGAS : 300-304 2006

[4.17] Gustin, V, Author, Reprint Author Gustin Veselko Gustin, Veselko, Bulic, P, et al.
Learning computer architecture concepts with the FPGA-based "move" microprocessor
COMPUT APPL ENG EDUC 14 (2): 135-141 AUG 2006

[4.18] Paul Stoffregen, "OSU8 microprocessor"
http://pjrc.com/tech/osu8/index.html

[4.19] M. Schoeberl, JOP: A Java Optimized Processor for Embedded Real-Time Systems,
PhD thesis, Vienna University of Technology, 2005
From www.jopdesign.com

204

[4.20] Mattos, JCB, Carro, L, Efficient architecture for FPGA-based microcontrollers
2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL V,
PROCEEDINGS : 805-808 2002

[4.21) Haskell, RE, Hanna, DM, A VHDL-Forth core for FPGAs, MICROPROCESS
MICROSY 28 (3): 115-125 APR 23 2004

[4.22) Buss, F: A Forth-like CPU, http://www.frank-buss.de/forth/cpul/

[4.23) F.C. Williams T. Kilburn & G.C. Tooti ll, Universal High-Speed Digital Computers: A
Small-Scale Experimental Machine, Proc. of the I.E.E., Vol 98, Part II, No. 61, Feb. 1951

[4.24] Nios II Processor Reference Handbook, Altera
http://www.altera.com/1 i terature/hb/n ios2/n2cpu _ nii5 v l. pdf

[5.1) Liu, Y., Guo, H. C., Zou, R., et al., Neural network modeling for regional hazard
assessment of debris flow in Lake Qionghai Watershed, China, Environmental Geology
(Berlin) 49 (7): 968-976 APR 2006

[5.2) Beltran, N . H., Duarte-Mermoud, M.A., Bustos, M. A., et al., Feature extraction and
classification of Chilean wines, Journal of Food Engineering 75 (I): 1-IO JUL 2006

[5.3) "Learning to Drive", IET Engineering & Technology, May 2006

[5.4) Gurney, K, "An Introduction to Neural Networks", UCL Press 1997

[5.5) Dayan, P, Abbott, L.F., "Theoretical Neuroscience: Computational and Mathematical
Modeling of Neural Systems", MIT Press

[5.6) Maass, W. (1997) "Networks of Spiking Neurons: The Third Generation of Neural
Network Models" Neural Networks, I 0(9): 1659--1671.

[5.7) Kunkle, D, Merrigan ' s, C, "Pulsed Neural Networks and their application"
http://www.redfish.corn/ dkunkle/mypapers/pnn. pdf

[5.8) Lapicque, L. Recherches quantitatives sur !'excitation electrique des nerfs traitee
comme une polarization. J. Physiol. Pathol. Gen. 9:620--635; 1907.

[5.9) Abbott, LF, Lapicque's introduction of the integrate-and-fire model neuron (1907)
BRAIN RES BULL 50 (5-6): 303-304 NOV-DEC 1999

[5.10] Hodgkin, A. L. and Huxley, A. F. (1952) "Measurement of Current-Voltage Relations in
the membrane of the Giant Axon of Loligo", Journal of Physiology 116: 424-448

[5.11] Hodgkin, A. L. and Huxley, A. F. (1952) "A Quantitative Description of Membrane
Current and its Application to Conduction and Excitation in Nerve" Journal of Physiology
117: 500-544

[5.12] FitzHugh R. (1961) Impulses and physiological states in theoretical models of nerve
membrane. Biophysical J. 1:445-466

[5.13] Nagumo J., Arimoto S., and Yoshizawa S. (1962) An active pulse transmission line
simulating nerve axon. Proc IRE. 50:2061- 2070.

[5.14] A. Thompson. An evolved circuit, intrinsic in silicon, entwined with physics. In T.
Higuchi, M. Iwata, and L. Weix.in, editors, Proceedings of the First International Conference on
Evolvable Systems: From Biology to Hardware (ICES 96), pages 390---405, Berlin, 1997. Springer.

205

[5.15] T. Fogarty, J. Miller, P. Thomson. Evolving Digital Logic Circuits on Xilinx 6000 Family
FPGAs. In P.K. Chawdrhy, R. Roy, R.K. Pant (Eds.), Soft Computing in Engineering Design and
Manufacturing, pages 299-305, Springer Verlag, London, 1998

[5.16) M. Murakawa, S. Yoshizawa, I. Kajitani, T. Furuya, M. Iwata, and T. Higuchi.
Hardware evolution at functional level. In International conference on Evolutionary
Computation: The 4th Conference on Parallel Problem Solving from Nature, pages
62{71, 1996.

[5.17] D. Levi and S. Guccione. Geneticfpga: Evolving stable circuits on mainstream fpga
devices. In The First NASA/DoD Workshop on Evolvable Hardware. IEEE Computer Society,
1999.

[5.18] J. Torresen. Evolvable Hardware as a New Computer Architecture. Proc. of the
International Conference on Advances in Infrastructure fore-Business, e-Education, e-Science,
and e-Medicine on the Internet, 2002

[5.19] G. Hollingworth, S. Smith, A. Tyrell. Safe Intrinsic Evolution of Virtex Devices.
proceedings of 2nd NASA/DoD Workshop on Evolvable Hardware, pages 195-204, 2000

[5.20] T.G.W. Gordon, P.J. Bentley. On Evolvable Hardware. In S. Ovaska, L. Sytandera (Eds.),
Soft Computing in Industrial Electronics, pages 279-323, Physica-Verlag, Heidelberg, Germany,
2002

[5.21) Lee, YJ, Lee, J, Kim, YB, et al. Low power real time electronic neuron VLSI design
using subthreshold technique, 2004 rEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS
AND SYSTEMS, VOL 4, PROCEEDINGS: 744-747 2004

[5.22) Alice C. Parker, Aaron K. Friesz, and Afshaneh Pakdaman, Towards a Nanoscale
Artificial Cortex: wwl .ucmss.com/books/LFS/CSREA2006/CDE8278.pdf

[5.23] Chicca, E. and Badoni, D. and Dante, V. and D'Andreagiovanni, M. and Salina, G. and
Carota, L. and Fusi, S. and Del Giudice, P. A VLSI recurrent network of integrate-and-fire
neurons connected by plastic synapses with long term memory , IEEE Transactions on Neural
Networks, 14:(5) 1297-1307, Sep, 2003

[5.24] Sekerli, M, Butera, RJ, An implementation of a simple neuron model in field
programmable analog arrays, P ANN INT IEEE EMBS 26: 4564-4567 Part 1-7 2004

[5.25] lndiveri, G, Chicca, E, Douglas, R, A VLSI array of low-power spiking neurons and
bistable synapses with spike-timing dependent plasticity, lEEE T NEURAL NETWOR 17 (I):
211-221 JAN 2006

[5.26] A.F. Murray, A.V.W. Smith. Asynchronous VLSI Neural Networks Using Pulse-Stream
Arithmetic. IEEE Journal of Solid-State Circuits, pages 688-697, 23: 3, 1988

[5.27] Vitabile, S, Conti, V, Gennaro, F, et al., Efficient MLP digital implementation on FPGA,
DSD 2005: 8TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN,
PROCEEDINGS: 218-222 2005

[5.28) J. G. Eldredge and B. L. Hutchings, "Density enhancement of a neural network using
FPGA's and run-time reconfiguration," in Proc. IEEEWorkshop FPGA' s Custom Computing
Machines, D. A. Buell and K. L. Pacek, Eds., Napa, CA, Apr. 1994, pp. 180-188.

[5.29] S. Bade and B.L.Hutchings, "FPGA based stochastic neural network implementation,"
proc IEEE workshop on FPGAs for custom computing machines, pp.189-198, 1994.

[5.30] H. de Garis. Growing an Artificial Brain with a Million Neural Net Modules Inside a
Trillion Cell Cellular Automaton Machine. Proc. of the Fourth International Symposium on
Micro Machine and Computer Science, pages 211-214, 1993

206

[5.31] NSPS, "The CAM-Brain Machine (CBM): Real Time Evolution and Update ofa 75
Million Neuron FPGA-Based Artificial Brain", Hugo de Garis, Michael Korkin. (Accepted, to
appear in Journal of VLSI Signal Processing Systems (JVSPS), Special Issue on Custom
Computing Technology)

[5.32] Felix Gers, Hugo De Garis and Michael Korkin. 'Codi-1 Bit: A simplified cellular
automata based neuron model.' 1n Proceedings of AE97, Artificial Evolution Conference,
October 1997

(5.33] Glackin, B, McGinnity, TM, Maguire, LP, et al., A novel approach for the
implementation of large scale spiking neural networks on FPGA hardware, LECT NOTES
COMPUT SC 3512: 552-563 2005

[5.34] Pearson, M, Gilhespy, l, Gurney, K, et al., A real-time, FPGA based, biologically
plausible neural network processor, LECTNOTES COMPUT SC 3697: 1021-1026 2005

[5.35] Hellmich, HH, Geike, M, Griep, P, et al., Emulation engine for spiking neurons and
adaptive synaptic weights, PROCEEDINGS OF THE INTERNATIONAL JOINT
CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5 : 3261-3266 2005

[5.36] D. Roggen, S. Hofmann, Y. Thoma, and D. Floreano. Hardware spiking neural network
with run-time reconfigurable connectivity in an autonomous robot. In NASA/DoD Conf. on
Evolvable Hardware, pages 189-198, 2003.

[5.37] Bellis, S, Razeeb, KM, Saha, C, et al., FPGA implementation of spiking neural networks
- an initial step towards building tangible collaborative autonomous agents
2004 IEEE INTERNATIONAL CONFERENCE ON FlELD-PROGRAMMABLE
TECHNOLOGY, PROCEEDINGS : 449-452 2004

[5.38] Upegui, A, Pena-Reyes, CA, Sanchez, E, A hardware implementation of a network of
functional spiking neurons with hebbian learning, LECT NOTES COMPUT SC 3141: 233-243
2004

[5.39] Upegui, A, Pena-Reyes, CA, Sanchez, E, An FPGA platform for on-line topology
exploration of spiking neural networks, MICROPROCESS MlCROSY 29 (5): 211-223 JUN l
2005

[5.40] E. Ros, R. Agis, R.R. Carrillo E. M. Ortigosa. Post-synaptic Time-Dependent
Conductances in Spiking Neurons: FPGA Implementation of a Flexible Cell Model.
Proceedings ofIWANN'03: LNCS 2687, pp 145-152, Springer, Berlin, 2003.

[5.41] Savich, AW, Author, Reprint Author Savich, Antony W. , Moussa, M, et al., The impact of
arithmetic representation on implementing MLP-BP on FPGAs: A study, IEEE TNEURAL
NETWOR 18 (1): 240-252 JAN 2007

[5.42]: Schrauwen, B, Van Campenhout, J, Parallel hardware implementation of a broad class
of spiking neurons using serial arithmetic, ESANN'2006 proceedings - European Symposium
on Artificial Neural Networks, Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-
930307-06-4.

[5.43] 0. Torres, J. Eriksson, J. M. Moreno, and A. Villa. Hardware optimization and serial
implementation of a novel spiking neuron model for the POEtic tissue. Submitted to
IPCAT'03.

[5.44] J.O. Hamblen & M.D. Furman, 'Rapid Prototyping of Digital Systems', Kluwer, Boston,
2001

207

[5.45] Indiveri, G. VLSI reconfigurable networks of integrate-and-fire neurons with spike
timing dependent plasticity , The Neuromorphic Engineer Newsletter, 2:(1) 4,7, 2005, The
Neuromorphic Engineer Newsletter

[5.46] Christodoulou, C, Bugmann, G, Clarkson, TO, A spiking neuron model: applications and
learning, NEURAL NETWORKS 15 (7): 891-908 SEP 2002

[5.47] Hebb, D. 0. (1949). The organization of behavior: A neurophychological study.
New York: Wiley-lnterscience.

[5.48] Saudargiene, A, Porr, B, Worgotter, F, How the shape of pre- and postsynaptic signals
can influence STDP: A biophysical model, NEURAL COMPUT 16 (3): 595-625 MAR 2004

[5.49] Birzniece, V, Backstrom, T, Johansson, IM, et al. Neuroactive steroid effects on cognitive
functions with a focus on the serotonin and GABA systems, BRAIN RES REV 51 (2): 212-239
AUG 2006

[5.50] Watts, D. J. Strogatz, S. H. "Collective Dynamics of Small-World Networks." Nature
393, 440-442, 1998.

[5.51] B. J. Norris, A. L. Weaver, L. G. Morris, A. Wenning, P. A. Garcia, and R. L. Calabrese, A
Central Pattern Generator Producing Alternative Outputs: Temporal Pattern of Premotor
Activity, J Neurophysiol, July I , 2006; 96(1): 309 - 326.

[5.52] Alfons Schnitzler, Lars Timmermann, Joachim Gross, Physiological and pathological
oscillatory networks in the human motor system, Journal of Physiology - Paris 99 (2006) 3-7

[5.53] A. A.V. Hill, M. A. Masino, and R. L. Calabrese, Intersegmental Coordination of
Rhythmic Motor Patterns, J Neurophysiol, August I , 2003; 90(2): 531 - 538.

[5.54] Roberts A (2001) Early functional organization of spinal neurons in developing lower
vertebrates. Brain Res Bull 53: 585- 590

[5.55] Selverston, AI, Author, Reprint Author Selverston Allen I. Selverston, Allen I. , Ayers, J, et
al. Oscillations and oscillatory behavior in small neural circuits. BIOL CYBERN 95 (6): 537-
554 DEC 2006

[5.56) J.M.T. Thompson and H.B. Stewart "Nonlinear dynamics and chaos: geometrical
methods for engineers and scientists", Wiley, 1986.

[5.57] K. Aihara, G. Matsumoto, Chaotic oscillations and bifurcations in squid giant axons, in:
A.V. Holden (Ed.), Chaos, Manchester University Press, Princeton University Press, Manchester,
Princeton, 1986, pp. 257- 269

[5.58) AIHARA K, MATSUMOTO G, lKEGA YA Y, PERIODIC AND NON-PERIODIC
RESPONSES OF A PERIODICALLY FORCED HODGKIN-HUXLEY OSCILLATOR,
Journal of Theoretical Biology 109 (2): 249-270 1984

[5.59] Bohossian, V, Hasler, P, Bruck, J, Programmable neural logic, IEEE T COMPON PACK
B 21 (4): 346-351 NOV 1998

[5.60) E. Allender, A note on the power of threshold circuits, in Proc. 30th IEEE Symp.
Foundations Comput. Sci. , 1989.

[5.61) Joye N, Schmid, A, Leblebici, Y, Asai, T, Amemiya, Y, Fault-Tolerant Logic Gates using
Neuromorphic CMOS circuits, Presented at: IEEE 3rd Conference on Ph.D. Research in
Microelectronics and Electronics, Bordeaux, France, July 2-5, 2007

208

Appendix A: Extracts from QBasic Software

A.l : Extract from the divider generator code

This program produces the VHDL divider code. The full 32,768 line LUT is
generated, which was then trimmed manually to remove the lines which were not
required.

OPEN "div81 . vhd" FOR OUTPUT AS 1
quot$= CHR$(34)
ta$= CHR$(9)
PRINT #1, " library ieee;"
PRINT #1 , "use ieee . std_logic_1164 . all;"
PRINT #1 , ""
PRINT #1 , "entity div81 is "
PRINT #1, "port ("
PRINT #1 , ta$+ " i : in std_logic_vector(14 downto 0) ;"
PRINT #1 , ta$+ "o : out std_logic_ vector(7 downto 0)) ;"
PRINT #1, "end div81; "
PRINT #1 , ""
PRINT #1, "architecture stuff of div81 is"
PRINT #1 , "begin"
PRINT #1 , ta$+ "process(i} "
PRINT #1 , ta$ + ta$+ "begin"
PRINT #1, ta$+ ta$+ ta$+ "case i is"
FOR ml= 0 TO 32767

z = ml
f = INT(ml / 81)
dee= z
GOSUB convrt
ad$= decbin$
dee = f
GOSUB convrt
da$ decbin$
ad$ " 000000000000000000 " + ad$
ad$ RIGHT$(ad$, 15)
da$ " 0000000000000000" + da$
da$ RIGHT$(da$, 8)
a$= "when " + CHR$ (34) +ad$+ CHR$(34) + " => o <= " +

CHR$(34) + da$ + CHR$(34) + ";"
PRINT a$
PRINT #1 , ta$+ ta$+ ta$+ a$
NEXT ml

PRINT #1 , ta$+ ta$+ ta$+ "when others=> o <= " + CHR$(34) +
STRING$(8, " 0 ") + CHR$(34) + ";"
PRINT #1 , ta$+ ta$; "end case;"
PRINT #1 , ta$ + "end process ;"
PRINT #1, "end stuff ;"
CLOSE 1
END

209

A.2: Examples of code for building the CA rule table from a rule definition

This is an example of the program that generated the Life rule table. The lines
marked in bold are changed to suit the particular cellular automaton being
implemented.

OPEN "life .mif" FOR OUTPUT AS 1

PRINT jt 1 , "WIDTH= 8 ;"
PRINT #1, " DEPTH= 512 ;"
PRINT #1 , "ADDRESS RADIX=UNS ;" -
PRINT #1 , " DATA_RADIX=HEX ;"
PRINT #1, "CONTENT BEGIN"

FOR q = 0 TO 511
dee= q
GOSUB eonvrt

END

b$ " 0000000000 " + bin$
b$ = RIGHT$(b$, 9)
e$ = RIGHT$(b$, 8)
sum= 0
FOR f = 1 TO 8

n$ = MID$(c$, f , 1)
IF n$ = "1" THEN sum= sum+ 1

NEXT f
IF q > 255 THEN centre= 1 ELSE centre= 0

npix$ = "00"
IF centre= 0 AND sum= 3 THEN npix$ = "FF"
IF centre= 1 AND (sum= 2 OR sum= 3) THEN npix$ "FF"
v$ = STR$ (q) + " : " + npix$ + " ;"
PRINT U , v$
NEXT q
PRINT Jtl, " END; "
CLOSE 1

eonvrt:
bin$ = ""
h$ = HEX$ (de e)
FOR i % = 1 TO LEN(h$)

digit% = INSTR(" 0123456789ABCDEF", MID$(h$, i %,
1)) -1

IF digit%< 0 THEN bin$ = "": EXIT FOR
j % 8 : k% = 4
DO
bin$ bin$+ RIGHT$(STR$((digit% \ j %) MOD 2) , 1)

j % = j % - (j % \ 2) : k % = k% - 1

RETURN

IF k % = 0 THEN EXIT DO
LOOP WHILE j %

NEXT i %
deebin$ = bin$

210

For the majority rule, the lines in bold above are replaced by:

sum = 0
FOR f = 1 TO 9
n$ = MID$(b$, f, 1)
IF n$ = "l" THEN sum sum+ 1
NEXT f
npix$ = " 00 "
IF sum> 4 THEN npix$ = " FF "

For the simulated annealing the last line of this is changed to:

IF sum> 5 OR sum= 4 THEN npix$ = " FF"

For the hourglass rule the section becomes:

c$ = MID$(b$, 1, 1)
se$ = MID$(b$, 2 , 1)
s$ = MID$ (b$, 3 , 1)
sw$ = MID$(b$, 4 , 1)
e$ = MID$(b$, 5 , 1)
w$ = MID$(b$, 6, 1)
ne$ = MID$(b$, 7, 1)
n$ = MID$(b$, 8, 1)
nw$ = MID$(b$, 9 , 1)

npix$ = " 00 "
nb$ = e$ + w$ + s$ + n$ + c$
PRINT nb$
IF nb$ = " 00001 " OR nb$ " 00010 " OR nb$ = " 00011 " OR nb$ =
" 01011 " OR nb$ = " 10101" OR nb$ "1 1001 " OR nb$ = "11101 " OR nb$
= "11110 " OR nb$ = "11111 " THEN
npix$ = " FF"
END IF

These examples show the various ways in which a rule can be defined. The rest of
the program builds the look-up table in Altera's Memory Initialisation File (MIF)
format.

211

Appendix B: Assembler Mnemonics file for the VHDL
Microprocessor

LDA, abs , 011D
LOA, idx , 811D
LDA , imm, 211D
STA, abs , 4200
STA, idx , C200
ADD, abs , 0110
ADD , idx , 8110
ADD,imm, 2110
SUB, abs , 0111
SUB, idx , 8111
SUB, imm, 2111
ADC, abs , 0112
ADC, idx , 8112
ADC , imm, 2112
AND , abs , 0113
AND , idx , 8113
AND, imm, 2113
OR,abs , 0114
OR , idx , 8114
OR , imm, 2114
XOR, abs,0116
XOR , idx , 8116
XOR , imrn, 2116
NOT , imp , 0115
SHL, imp , 0017
SHR, imp , 0018
ROL , imp , 0019
ROR , imp , 001A
RXL , imp,011B
RXR, imp , OllC
LDP,abs , 002D

End of file

LDP , idx, 802D
LDP , imm, 202D
STP , abs , 5200
STP , idx , D200
ADDP , abs , 1020
ADDP , idx , 9020
ADDP , imrn, 3020
SUBP, abs , 1021
SUBP, idx , 9021
SUBP, imm, 3021
SLP, imp , 1027
SRP, imp , 1028
SKN,imp , 0080
SKP, imp , 0081
SKCS , imp , 0082
SKCC, imp , 0083
SKZ , imp, 0084
SKNZ,imp, 0085
JMP , imp, 0840
CMP , abs,0101
CMP, idx, 8101
CMP, imm, 2010
LDPF , abs , 012D
LDPF,imp,812D
LDPF , imp , 212D
CMPP,abs , 1101
CMPP , idx , 9101
CMPP,imm,3101
HLT,imp,0400
JSR, abs , 084E
RTS , imp , 004F

212

