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Phase limitations of multipliers for nonlinearities with monotone
bounds

William P. Heath, Member, IEEE, and Joaquin Carrasco, Member, IEEE,

Abstract—We consider Lurye systems, whose nonlinear opera-
tor is characterized by a nonlinearity that is bounded above and
below by monotone functions. Absolute stability can be estab-
lished using a subclass of the O’Shea-Zames-Falb multipliers. We
develop phase conditions for both continuous-time and discrete-
time systems under which there can be no such suitable multiplier
for the transfer function of a given plant. In discrete time the
condition can be tested via a linear program, while in continuous
time it can be tested efficiently by exploiting convex structure.
Results provide useful insight into the dynamic behaviour of such
systems and we illustrate the phase limitations with examples
from the literature.

Index Terms—Absolute stability, Lurye (or Lur’e) systems,
multiplier theory, frequency domain

I. INTRODUCTION

We are concerned with the Lurye system (Fig. 1) where
the nonlinearity ϕ is bounded below and above by monotone
functions (Fig. 2). If the nonlinearity is itself monotone
then its positivity is preserved by the OZF (O’Shea-Zames-
Falb) multipliers [1]–[5]. More generally the positivity of
such nonlinearities is preserved by a subclass of the OZF
multipliers. If a multiplier in this subclass can be found that
is suitable for the LTI component G then the Lurye system
is guaranteed to be absolutely stable. Cases where the bounds
are odd are considered in [6]–[8]; in particular it is argued in
[6] that such analysis is useful for systems with stiction. In
[9] the analysis is generalised to include bounds that are not
odd and applied to systems with asymmetric nonlinearities,
including both an example with asymmetric deadzone that
cannot have odd bounds and an example of simple saturation
with asymmetric bounds.

Frequency domain criteria have played an important role
in the analysis of Lurye systems [10], [11] and multipliers
are best characterised by their phase properties. The phase
limitations for the OZF multipliers developed in [12]–[20]
allow the class of OZF multipliers to be characterised in the
frequency domain.

It has been conjectured (e.g. [5]) that the existence of
a suitable OZF multiplier is necessary as well as sufficient
for absolute stability. The conjecture remains open, but has
received considerable recent attention [5], [21]–[24].

Although the class of multipliers for nonlinearities con-
sidered in this paper is a subclass of the OZF multipliers,
phase limitations of this subclass have not previously been
considered. In this paper we develop phase limitations at an
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arbitrary number of isolated frequencies for both continuous-
time and discrete-time systems. The corresponding limitations
for OZF multipliers [13], [18] emerge as special cases. In
discrete time the phase conditions (Theorem 7) can be tested
for numerically by a linear program (cf [18], [24], [25]), while
in continuous time they can be approximated by a linear
program if one continuous variable over a finite interval is
gridded. Further convexity properties may be exploited in a
similar manner to the search for OZF multipliers proposed in
[26], [27].

We consider the continuous-time multipliers in section II.
After preliminaries in subsection II-A we derive the general
result in subsection II-B. We consider its application to single
frequencies and two frequencies in subsections II-C and II-D
respectively. As with the limitations for OZF multipliers [19],
there are no limitations at a single frequency save a uni-
form bound across frequencies; by contrast limitations at two
frequencies reveal a rich behaviour provided the frequencies
are rational multiples of each other. Although there is not
necessarily a closed-form expression for the phase limitations
at two frequencies, the limitations can be easily computed
by exploiting smoothness and convexity. We illustrate these
results with an example in subsection II-E.

We consider the discrete-time multipliers in section III.
The structure of the Section is similar to that for continuous
multipliers, but we only consider the specific application of
the general result (subsection III-B) to a single frequency (sub-
section III-C); as with the limitations for OZF multipliers [18]
limitations even at single frequencies reveal a rich behaviour
and can be computed as the maximum of a finite number
of closed-form expressions. We illustrate the limitations with
an example in subsection III-D where guarantees of absolute
stability are associated with the magnitude of any exogenous
signal in steady state.

II. CONTINUOUS-TIME SYSTEMS

A. Preliminaries

Let L2 be the space of finite energy Lebesgue integrable
signals and L2e be the corresponding extended space [28].
The Lurye system (Fig. 1) is given by

y1 = Gu1, y2 = ϕu2, u1 = r1 − y2 and u2 = y1 + r2. (1)

It is assumed to be well-posed with G : L2e → L2e linear time
invariant (LTI), causal and stable, and with ϕ : L2e → L2e

some nonlinear causal operator. We further assume r1(t) =
r2(t) = 0 for all t < 0. The Lurye system is said to be
stable if r1, r2 ∈ L2 implies y1, y2 ∈ L2 (it then follows that
u1, u2 ∈ L2 also).



-

6

-

�

r1 y1

ϕ

Gm
−

u1

m�
r2u2y2

Fig. 1. Lurye system.
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Fig. 2. (After [9].) The nonlinearity (i.e. the map from u(t) to y(t) = (ϕu)(t)
or, in the discrete-time case, from u[k] to y[k] = (ϕu)[k]) is bounded below
and above by the monotone and bounded functions α and α respectively.
In addition the nonlinearity is bounded below and above by the monotone,
bounded and odd functions β and β respectively. For this illustration α and β

coincide in the bottom left quadrant while α and β coincide in the top right
quadrant.

A function α : R → R is said to be monotone if α(x1) ≥
α(x2) for all x1 ≥ x2. It is said to be bounded if there exists
C ≥ 0 such that |α(x)| ≤ C|x| for all x ∈ R. It is said to be
odd if α(−x) = −α(x) for all x ∈ R. It is said to be slope-
restricted on [0, s] if 0 ≤ (α(x1)− α(x2))/(x1 − x2) ≤ s for
all x1 ̸= x2.

Following [9] we say an operator ϕ : L2e → L2e is bounded
below by α : R → R and above by α : R → R if

0 ≤ α(u(t))

u(t)
≤ (ϕu)(t)

u(t)
≤ α(u(t))

u(t)
, (2)

for all u ∈ L2e and for all t ∈ R whenever u(t) ̸= 0.
We say ϕ ∈ ΦA,B if it is bounded below both by some

monotone α and by some monotone odd β and if it is bounded
above both by Aα with 1 ≤ A and by Bβ with 1 ≤ A ≤ B
(and with B possibly infinite).

Let M : jR → C and G : jR → C. We say M is suitable
for G if there exists some ε > 0 such that

Re {M(jω)G(jω)} > ε for all ω ∈ R. (3)

Define H as the set of generalised functions h(·) of the
form

h(t) =

∞∑
i=1

hiδ(t− ti) + ha(t), (4)

with ti ̸= 0, ha ∈ L1, ha(0) = 0 and hi ∈ R for all i and
ha(t) ∈ R for all t ∈ R. In addition define the norm [29]

∥h∥H =

∞∑
i=1

|hi|+
∫ ∞

−∞
|ha(t)| dt < ∞. (5)

Define Hp as the subset of H where hi ≥ 0 for all i ∈ Z+

and ha(t) ≥ 0 for all t ∈ R.
Let MA,B with 1 ≤ A ≤ B be the class of multipliers

MA,B = {M = m0(1−H+ +H−)} with m0 > 0 and
where H+ and H− are noncausal convolution operators whose
respective impulse responses are h+ ∈ Hp and h− ∈ Hp

satisfying

A∥h+∥H +B∥h−∥H ≤ 1. (6)

We can set m0 = 1 without loss of generality.

Theorem 1 ( [9]). If M ∈ MA,B with 1 ≤ A ≤ B then it
preserves the positivity of any ϕ ∈ ΦA,B in the sense that∫ ∞

−∞
(Mu)(t)(ϕu)(t) dt ≥ 0, (7)

for any u ∈ L2. Furthermore, if M is suitable for G then the
Lurye system (1) is absolutely stable in the sense that it is
input-output stable for all ϕ ∈ ΦA,B .

If we write G(jω) = |G(jω)| exp(j π
180∠G(jω)) with

−180o < ∠G(jω) ≤ 180o then we call ∠G(jω) the phase
of G at ω. We define the phase of M at ω similarly. Suppose
M ∈ MA,B with 1 ≤ A ≤ B. Since MA,B ⊂ M1,1 we must
have −90o ≤ ∠M(jω) ≤ 90o for all ω [5]. In this case we
can note that if M is suitable for G and ∠G(jω) ≤ −90o− θ
for some θ ∈ [−90o, 90o) then ∠M(jω) > θ; similarly
if ∠G(jω) ≥ 90o + θ for some θ ∈ [−90o, 90o) then
∠M(jω) < −θ.

The sets Φ1,∞ and Φ1,1 are respectively the sets of mono-
tone and monotone odd nonlinearities considered in [2]. The
classes M1,∞ and M1,1 are the corresponding OZF multipli-
ers, discovered by O’Shea [1] and formalized by Zames and
Falb [2]. In [6] the set ΦA,A with 1 < A is used to characterise
stiction and the corresponding Lurye system is analysed in
[6]–[8]. In [9] we discuss an example where ϕ ∈ ΦA,∞ with
1 < A. We also show that the class Φ1,B with 1 < B < ∞ can
be used to characterise aysmmetric memoryless nonlinearities;
we revisit these examples below.

In [2] loop transformations are used to admit slope-restricted
nonlinearities. Loop transformations can also be used for the
nonlinearities in this paper. However, the values of A and B
are not necessarily preserved under transformation [9].

There are two approaches to the analysis of phase limita-
tions of the classes M1,∞ and M1,1 in the literature. In [12],
[17] limitations are given over frequency intervals. By contrast,
in [13] limitations are given at a finite number of distinct
frequencies. In [19] we derive a more powerful condition at
just two frequencies derived using the approach of [13]–[16];
the condition may also be derived as a limiting case of the
frequency interval approach [20].

We will find it useful to define the scaled delay multipliers
D−

A,τ and D+
B,τ as

D−
A,τ (jω) = 1− 1

A
e−jτω,

D+
B,τ (jω) = 1 +

1

B
e−jτω,

(8)



with τ ∈ R. Define the classes D−
A,I and D+

B,I for some I ⊆ R
as

D−
A,I =

{
D−

A,τ with τ ∈ I
}
,

D+
B,I =

{
D+

B,τ with τ ∈ I
}
.

(9)

Note that for any A ≤ B and any I ⊆ R we have D−
A,I ⊂

MA,B and D+
B,I ⊂ MA,B .

B. Phase limitations at N frequencies

The following result generalises Proposition 1 from [13]
where A = B = 1.

Theorem 2. Given G : jR → C, assume there exist 0 < ω1 <
· · ·ωN < ∞ and non-negative λ1, . . . , λN not all zero such
that

N∑
r=1

λrRe {M(jωr)G(jωr)} ≤ 0, (10)

for all M ∈ D−
A,R ∪D+

B,R. Then there is no M ∈ MA,B such
that Re {M(jωr)G(jωr)} > 0 for r = 1, . . . , N and hence
no M ∈ MA,B suitable for G.

Proof. Let M ∈ MA,B have impulse response

m(t) = δ(t)− h−(t) + h+(t), (11)

with h−, h+ ∈ Hp satisfying (6) and

h−(t) =

∞∑
i=1

h−
i δ(t− t−i ) + h−

a (t),

h+(t) =

∞∑
i=1

h+
i δ(t− t+i ) + h+

a (t).

(12)

Then

M(jω) = 1−
∫ ∞

−∞
h−(t)e

−jωt dt+

∫ ∞

−∞
h+(t)e

−jωt dt,

=1−
∫ ∞

−∞
h−
a (t)e

−jωt dt−
∞∑
i=1

h−
i e

−jωt−i

+

∫ ∞

−∞
h+
a (t)e

−jωt dt+

∞∑
i=1

h+
i e

−jωt+i .

(13)

We can write (10) with M = D−
A,τ as

N∑
r=1

λrRe {G(jωr)} ≤ 1

A

N∑
r=1

λrRe
{
e−jωrτG(jωr)

}
. (14)

If this is true for all τ we must have
N∑
r=1

λrRe {G(jωr)}

≤ lim
T→∞

1

T

∫ T

0

1

A

N∑
r=1

λrRe
{
e−jωrτG(jωr)

}
dτ,

= 0,
(15)

so we can write
N∑
r=1

λrRe {G(jωr)}

≤ (A∥h+∥H +B∥h−∥H)

N∑
r=1

λrRe {G(jωr)} ,

(16)

with

∥h−∥H =

∞∑
i=1

h−
i +

∫ ∞

−∞
h−
a (t) dt,

∥h+∥H =

∞∑
i=1

h+
i +

∫ ∞

−∞
h+
a (t) dt.

(17)

So
N∑
r=1

λrRe {M(jωr)G(jωr)}

=

N∑
r=1

λrRe {G(jωr)} −
N∑
r=1

λrRe {H−(jωr)G(jωr)}

+

N∑
r=1

λrRe {H+(jωr)G(jωr)} ,

≤ (A∥h−∥H +B∥h+∥H)

N∑
r=1

λrRe {G(jωr)}

−
N∑
r=1

λrRe {H−(jωr)G(jωr)}

+

N∑
r=1

λrRe {H+(jωr)G(jωr)} .

(18)

But

A∥h−∥H
N∑
r=1

λrRe {G(jωr)} −
N∑
r=1

λrRe {H−(jωr)G(jωr)}

=A

∞∑
i=1

h−
i

N∑
r=1

λrRe
{
D−

A,t−i
(jωr)G(jωr)

}
+A

∫ ∞

−∞
h−
a (t)

N∑
r=1

λrRe
{
D−

A,t(jωr)G(jωr)
}

dt,

≤0,
(19)

and similarly

B∥h+∥H
N∑
r=1

λrRe {G(jωr)}+
N∑
r=1

λrRe {H+(jωr)G(jωr)}

=B

∞∑
i=1

h+
i

N∑
r=1

λrRe
{
D+

B,t+i
(jωr)G(jωr)

}
+B

∫ ∞

−∞
h+
a (t)

N∑
r=1

λrRe
{
D+

B,t(jωr)G(jωr)
}

dt,

≤0.
(20)



So
N∑
r=1

λrRe {M(jωr)G(jωr)} ≤ 0, (21)

and hence M is not suitable for G.

Remark 1. If the frequencies ωr are all integer multiples of
some base frequency ω0 then we can exploit periodicity and
restrict τ to lie in the interval [0, 2π/ω0). Specifically if ωr =
nrω0 with nr ∈ Z+ for r = 1, · · · , N we find

D−
A,τ+2π/ω0

(jωr) = 1− 1

A
e−jωrτ−j2πnr ,

= 1− 1

A
e−jωrτ ,

= D−
A,τ (jωr),

(22)

and similarly

D+
B,τ+2π/ω0

(jωr) = D+
B,τ (jωr). (23)

Hence for this case we need only consider M ∈ D−
A,[0,2π/ω0)

∪
D+

B,[0,2π/ω0)
in the statement of Theorem 2. We will find it

useful to extend the interval for τ to [0, 2π/ω0].

The conditions of Theorem 2 can then be usefully expressed
in terms of an infinite dimensional linear program. Specifcally,
define

λ =

 λ1

...
λN

 ,1 =

 1
...
1



v−(τ) =


Re

{
D−

A,τ (jω1)G(jω1)
}

...

Re
{
D−

A,τ (jωN )G(jωN )
}

 ,

v+(τ) =


Re

{
D+

B,τ (jω1)G(jω1)
}

...

Re
{
D+

B,τ (jωN )G(jωN )
}

 .

(24)

Let LP be the infinite dimensional linear program:

max
λ

1Tλ such that λi ≥ 0 for i = 1, . . . N,

and λT v−(τ) ≤ 0 and λT v+(τ) ≤ 0,

for all τ ∈ [0, 2π/ω0].

(25)

Then if LP has a positive solution then there is no M ∈
MA,B suitable for G.

We may approximate LP with a finite dimensional linear
program by gridding τ over the interval [0, 2π/ω0] as τl with
l = 1, . . . , n for some suffciently large n (noting that v− and
v+ are smooth vector functions).

As an alternative, suppose we define ϕ : RN ×
[−2π/ω0, 2π/ω0] → R as

ϕ(λ, τ) =


N∑
r=1

λrRe
{
D−

A,τ (jωr)G(jωr)
}

when τ ≥ 0,

N∑
r=1

λrRe
{
D+

B,−τ (jωr)G(jωr)
}

when τ < 0.

(26)

Fig. 3. Geometric interpretation of Statement 1. The locus of M(jω)G(jω)
with any M ∈ D−

A,(0,2π/ω)
is a circle centre G(jω) with radius |G(jω)|/A.

If ∠G(jω) ≥ θ + 90o (or ∠G(jω) ≤ −θ − 90o) with sin θ = 1/A
then Re {M(jω)G(jω)} ≤ 0 for all M ∈ D−

A,(0,2π/ω)
and hence there

is no M ∈ MA,B suitable for G . The locus of M(jω)G(jω) with M ∈
D+

B,(0,2π/ω)
is a circle centre G(jω) with radius |G(jω|/B. Since B ≥ A

its value makes no difference to the Statement.

Then since ϕ(λ, τ) is convex for every τ ∈ [−2π/ω0, 2π/ω0]
(and since the interval is compact) then by Danskin’s Theorem
[30] the function

f(λ) = max
τ∈[−2π/ω0,2π/ω0]

ϕ(λ, τ), (27)

is convex in λ. This allows the conditions of Theorem 2 to
be tested efficiently. A similar observation is made for the
computation of OZF multipliers in [26], [27].

C. Phase limitations at a single frequency

When N = 1 we can set λ1 = 1 without loss of generality
and write Theorem 2 as:

Statement 1. Given G : jR → C, assume there exists ω > 0
such that

Re {M(jω)G(jω)} ≤ 0 for all M ∈ D−
A,[0,2π/ω). (28)

Then there is no M ∈ MA,B suitable for G.

Remark 2. The statement makes no assumption on the value
of B. Since B ≥ A, if (28) holds then in addition (Fig. 3)

Re {M(jω)G(jω)} ≤ 0 for all M ∈ D+
B,[0,2π/ω). (29)

From simple geometry (Fig. 3) we can state this equivalently
as:

Statement 2. Given G : jR → C, assume there exists ω > 0
such that ∠G(jω) ≥ θ + 90o (or ∠G(jω) ≤ −θ − 90o) with
sin θ = 1/A. Then there is no M ∈ MA,B suitable for G.

This is in turn equivalent to the following statement about
multipliers.

Statement 3. The phase of any M ∈ MA,B at any frequency
lies in the interval [−θ, θ] where sin θ = 1/A.

This also has a simple geometric interpretation. The fre-
quency response of any h ∈ H satisfies supω |H(jω)| ≤ ∥h∥p



Fig. 4. The Nyquist plot of M lies in a circle, centre 1 and radius 1/A
(whether M is continuous-time or discrete-time). It follows that its phase lies
on the interval [−θ, θ] where sin θ = 1/A.

( [29], p300). If follows that the Nyquist plot of any M ∈
MA,B must lie in the circle centre 1, radius 1/A (see Fig. 4).
The bound is tight in the sense that the Nyquist plot of any
scaled delay multiplier M ∈ D−

A,R lies on the boundary of the
circle. We have argued elsewhere [17] that, at least in the case
A = 1 where the interval is [−90o, 90o], further limitations
must exist: otherwise the Kalman conjecture would be true
for all systems.

D. Phase limitations at two frequencies

When N = 2 we can set λ1 = λ and λ2 = 1− λ for some
λ ∈ [0, 1]. We can write Theorem 2 as:

Theorem 3. Given G : jR → C, assume there exist 0 < ω1 <
ω2 and λ ∈ [0, 1] such that

λRe {M(jω1)G(jω1)}+ (1− λ)Re {M(jω2)G(jω2)} ≤ 0,
(30)

for all M ∈ D−
A,R ∪ D+

B,R . Then there is no M ∈ MA,B

suitable for G.

Remark 3. If ω2 is an irrational multiple of ω1 then Theo-
rem 3 yields no more information than the case N = 1.

To see this, suppose given A ≥ 1 and 0 < ω1 < ω2 we
find some τ1, τ2 ∈ R such that Re{D−

A,τ1
(jω1)G(jω1)} >

0 and Re{D−
A,τ2

(jω2)G(jω2)} > 0. If ω2 is an irra-
tional multiple of ω1 then we can find τ ∈ R such that
Re{D−

A,τ (jω1)G(jω1)} > 0 and Re{D−
A,τ (jω2)G(jω2)} > 0.

Specifically we have Re{D−
A,τ1+2πl/ω1

(jω1)G(jω1)} > 0 for
all l ∈ Z. Since ejω2(τ1+2πl/ω1) with l ∈ Z is uniformly
distributed on the unit circle [31] we can choose l so that
|D−

A,τ1+2πl/ω1
(jω2) − D−

A,τ2
(jω2)| is arbitrarily small and

hence Re{D−
A,τ1+2πl/ω1

(jω2)G(jω2)} > 0.
We can make a similar statement, given B ≥ 1 and

0 < ω1 < ω2, if we find some τ1, τ2 ∈ R such that
Re{D+

B,τ1
(jω1)G(jω1)} > 0 and Re{D+

B,τ2
(jω2)G(jω2)} >

0.

In the following we assume n2ω1 = n1ω2 for some
n1, n2 ∈ Z+.

Remark 4. If n2ω1 = n1ω2 with n1, n2 ∈ Z+ both odd then
the criterion in Theorem 3 is independent of the value B.
Specifically, given D+

B,τ ∈ D+
B,R we find

D−
B,τ+πn1/ω1

(jω1) = 1− 1

B
e−jω1τ−jn1π,

= 1 +
1

B
e−jω1τ ,

= D+
B,τ (jω1),

(31)

and similarly

D−
B,τ+πn2/ω2

(jω2) = D+
B,τ (jω2). (32)

Given two frequencies ω1 and ω2 satisfying n2ω1 = n1ω2

with n1, n2 ∈ Z+ coprime, testing the condition of Theorem 3
numerically requires a search over two variables: λ on the
interval [0, 1] and τ on the interval [−2πn1/ω1, 2πn1/ω1].

Specifically we can write condition (30) as

min
λ∈[0,1]

f(λ) ≤ 0, (33)

where f(λ) is defined by (27) with our slight change of
notation (λ1 = λ;λ2 = 1 − λ). For a given λ it is
straightforward to find f(λ) as ϕ(λ, τ) has at most 4(n1+n2)
turning points when viewed as a function of τ on the interval
[−2πn1/ω1, 2πn1/ω1]. Then since f(λ) is convex we can use
a golden-section search [32] to test condition (33).

If A = 1 and if B = 1, B = ∞ or if n1 and n2 are both
odd, then a more efficient test is available. Specifically:

Theorem 4 ( [19], [20]). Let n2ω1 = n1ω2 with n1, n2 ∈ Z+

coprime and let M ∈ M1,∞. Then∣∣∣∣n2∠M(jω1)− n1∠M(jω2)

n1/2 + n2/2− p

∣∣∣∣ ≤ 180o, (34)

with p = 1.

Remark 5. If in addition n1 and n2 are both odd then the
statement holds for any M ∈ M1,B by Remark 4.

Theorem 5 ( [19], [20]). Let n2ω1 = n1ω2 with n1, n2 ∈ Z+

coprime and not both odd and let M ∈ M1,1. Then inequality
(34) holds with p = 1/2.

Fig. 5 illustrates Theorems 3, 4 and 5 for the case n1 = 1,
n2 = 2, A = 1 and various values of B. Similarly Fig. 6
illustrates Theorems 3 and 4 for the case n1 = 1, n2 = 3 and
various values of A. The values for Theorem 3 are obtained
numerically as described above.

E. Example

In [9] we considered a Lurye system with LTI plant

G(s) = e−ds 1

s2 + ξs+ 1
with d = 0.2 and ξ = 0.3, (35)

and a bounded nonlinearity with asymmetric deadzone. After
loop transformation, the bounds on the nonlinearity could
be characterised by the values A = 1.5 and B = ∞. We
constructed a suitable multiplier for 1 + G. Fig. 7 shows
the phase of 1 + G; it can be seen to lie above the bound
−90o − arctan 1√

A2−1
. The figure also shows the phase of



Fig. 5. Phase constraint with n1 = 1 and n2 = 2 (red: A = 1, B = 1.4,
Theorem 3). When B = 1 (cyan) or B = ∞ (magenta) the constraint
boundary is a parallelogram, determined respectively by Theorem 4 and
Theorem 5.

Fig. 6. Phase constraint with n1 = 1 and n2 = 3 (red: A = 1.2, Theorem 3).
When A = 1 (magenta) the constraint boundary is a parallelogram determined
by Theorem 4. Because n1 and n2 are both odd, the constraint boundaries
are independent of the value of B.

Fig. 7. Phase of 1+G when G is given by (35). The phase does not exceed
the bounds given by Statement 2 when A = 1.5. The phase touches the
bounds with small perturbations to either the damping ratio ξ or the delay d.

1 + G for the two cases d = 0.2, ξ = 0.2885 and d = 0.22,
ξ = 0.3 . In each of these latter cases, the phase touches
the bound. We conclude there is no suitable multiplier when
d > 0.22 or ξ < 0.2885.

Suppose instead the LTI plant is O’Shea’s example [1]

G(s) =
s2

(s2 + 2ξs+ 1)2
. (36)

Fig. 8 shows the phase of 1 + G when ξ = 0.1. It does
not exceed the bounds given by Statement 2 when A = 1.5.
Nevertheless Fig. 9 shows that there are frequencies where
the phase exceeds the bounds of Theorem 3. Specifically
the phases at ω1 and ω2 = 2ω1 exceed the limits given by
Theorem 3 when ω1 = 0.74805, A = 1.5 and B = ∞. We
conclude there is no suitable multiplier in this case.

Fig. 8. Phase of 1 + G for O’Shea’s example. The phase does not exceed
the bounds given by Statement 2 when A = 1.5.

Fig. 9. Phase of 1+G at 2ω versus phase of 1+G at ω for O’Shea’s example.
When ω1 = 0.74805 the bounds given by Theorem 3 with A = 1.5 and
B = ∞ are exceeded.

III. DISCRETE-TIME SYSTEMS

A. Preliminaries

Let ℓ be the space of all sequences h : Z+ → R and ℓ2 be
the space of all square-summable sequences h : Z+ → R. We
consider the Lurye system (1), Fig. 1, once again assumed to
be well-posed, with G : ℓ → ℓ LTI, causal and stable, and
with ϕ : ℓ → ℓ some nonlinear causal operator. We further
assume r1[k] = r2[k] = 0 for all k < 0. The Lurye system is
said to be stable if r1, r2 ∈ ℓ2 implies u1, u2, y1, y2 ∈ ℓ2.

We say an operator ϕ : ℓ → ℓ is bounded below by α :
R → R and above by α : R → R in an analogous fashion to
the continuous-time case. Similarly we define the class Φd

A,B

analogously to the continuous-time case.
Let D by the unit circle in the complex plane. Let M : D →

C and G : D → C. We say M is suitable for G if

Re
{
M(ejω)G(ejω)

}
> 0 for all ω ∈ [0, 2π). (37)

Define hp as the set of sequences in ℓ where h[k] ≥ 0 for all
k ∈ Z and h[0] = 0. Let Md

A,B with 1 ≤ A ≤ B be the class
of multipliers Md

A,B = {M = 1−H− +H+} where H−
and H+ are noncausal convolution operators whose respective
impulse responses are h− ∈ hp and h+ ∈ hp satisfying

A∥h−∥1 +B∥h+∥1 ≤ 1. (38)



Theorem 6 ( [9]). If M ∈ Md
A,B with 1 ≤ A ≤ B then it

preserves the positivity of any ϕ ∈ Φd
A,B in the sense that

∞∑
k=−∞

(Mu)[k](ϕu)[k] ≥ 0, (39)

for any u ∈ ℓ2. Furthermore, if M is suitable for G then the
Lurye system (1) is absolutely stable in the sense that it is
input-output stable for all ϕ ∈ Φd

A,B .

We call ∠G(ejω) the phase of G at ω with −180o <
∠G(ejω) ≤ 180o.

The classes Md
1,∞ and Md

1,1 are the discrete-time counter-
parts of the OZF multipliers [3], [4].

We define the discrete-time counterparts of the scaled delay
multipliers as

Dd−
A,k(e

jω) = 1− 1

A
e−jkω with k ∈ Z,

Dd+
B,k(e

jω) = 1 +
1

B
e−jkω with k ∈ Z.

(40)

Define the classes Dd−
A,I and Dd+

B,I for some I ⊆ Z as

Dd−
A,I =

{
Dd−

A,k with k ∈ I
}
,

Dd+
B,I =

{
Dd+

B,k with k ∈ I
}
.

(41)

B. Phase limitations at N frequencies

The following result generalises Theorem 2 in [18] where
A = 1 and either B = 1 or B = ∞.

Theorem 7. Given G : D → C, assume there exist 0 < ω1 <
· · ·ωN < π and non-negative λ1, . . . , λN not all zero such
that

N∑
r=1

λrRe
{
M(ejωr )G(ejωr )

}
≤ 0 (42)

for all M ∈ Dd−
A,Z ∪Dd+

B,Z. Then there is no M ∈ Md
A,B such

that Re
{
M(ejωr )G(ejωr )

}
> 0 for r = 1, . . . , N and hence

no M ∈ Md
A,B suitable for G.

Proof. Similar to that for Theorem 2

Theorem 2 in [18] restricts each ωr to take the value ωr =
r

N+1π. If we similarly define each ωr then we may exploit
periodicity and consider only M ∈ Dd−

A,I ∪ Dd+
B,I with I =

{0, . . . , 2N + 1}. In this case, as in [18], the condition may
be expressed in terms of a finite dimensional linear program.
Its construction is similar to that of the infinite dimensional
linear program LP (25).

C. Phase limitations at a single frequency

Let a, b ∈ Z+ be coprime with a < b. We can find the phase
limitation at the frequency ω = a

bπ by applying Theorem 7
with b = N + 1 and setting λr = 0 for r ̸= a. Some
manipulation leads to:

Theorem 8. Given 1 ≤ A ≤ B and ω = a
bπ for some integers

0 < a < b, there is no M ∈ Md
A,B with

∠M(ejω) > arctan ρ or ∠M(ejω) < − arctan ρ (43)

where

ρ =


max

k=1,...,b−1

sin(kπ/b)

A− cos(kπ/b)
when a is odd,

max
k=1,...,b−1

max

{
sin(2kπ/b)

A− cos(2kπ/b)
,

sin(kπ/b)

B − cos(kπ/b)

}
when a is even,

(44)

Proof. The result follows from Theorem 7 in a similar manner
to Corollary 1 and Theorem 3 in [18].

The condition requires evaluation at a finite number of
values of k. In the special case where A = 1 and either B = 1
or B = ∞ the condition is even more straightforward, as the
maximum occurs when k = 1; in this case the result agrees
with [18]. Taking the limit as b → ∞ allows us to state the
following discrete-time counterpart to Statement 3.

Statement 4. The phase of any M ∈ Md
A,B at any frequency

lies in the interval [−θ, θ] where sin θ = 1/A.

D. Example

Consider the discrete-time Lurye system (1) where ϕ is
characterised by a memoryless saturation function and G is
given by

G(z) =
2z + 0.92

z2 − 0.5z
. (45)

This is known to satisfy the Kalman conjecture when non-
linearity is symmetric but not necessarily otherwise [33]. In
[9] we argued that behaviour with exogenous signals whose
steady state is non-zero can be interpreted as asymmetry
in the nonlinearity. Specifically: there is an OZF multiplier
when A = 1 and B = 1 [33]; in [9] we constructed a
multiplier for the case B = 1.467 which corresponds to r2
with steady state 1.295; there is a three-period limit cycle when
B = 436/275 ≈ 1.586 [33] which corresponds to r2 with
steady state 1.55. Consider the phase of 1+G(ejω) (Fig. 10).
We find

1 +G(ejω) = − 48

175
− j

31
√
3

175
at ω =

2π

3
. (46)

Hence any suitable multiplier must have

∠M(ejω) ≥ arctan
48

31
√
3

at ω =
2π

3
. (47)

By Theorem 8 there is no suitable multiplier when B > 47
32 ≈

1.469. This corresponds to an exogenous signal r2 with steady
state greater than 513

395 ≈ 1.299.
These results are summarised in Table I. Although absolute

stability is guaranteed via multiplier analysis when r2 has
steady state value less than 1.295 [9], by Theorem 7 there
can be no multiplier when r2 has steady state value greater
than 1.299.

IV. CONCLUSION

We have developed phase limitations of multipliers that
preserve the positivity of wider classes of nonlinearity than



TABLE I
SUMMARY OF RESULTS FOR DISCRETE-TIME EXAMPLE

B r2 Comment
1.467 1.295 Stability guaranteed by

construction of OZF multiplier [9]
1.469 1.299 Phase limitation (here)

1.586 1.55 Existence of
3 term limit cycle [33]

Fig. 10. Phase of 1 + G for the example of subsection III-D. The phase
limitations given by Theorem 8 are shown when B = 47

32
. Specifically the

green crosses show values of 90o + arctan ρ and −90o − arctan ρ
where ρ is determined by (44).

those addressed by the classical OZF multipliers. The exam-
ples illustrate that the limitations are insightful for closed-loop
behaviour and give a useful frequency domain interpretation.

The limitations are applicable to an arbitrary number of
isolated frequencies, and generalise the results (for OZF mul-
tipliers) of [13]–[16], [18], [19]. Convexity properties ensure
they are straightforward to compute.

We have not generalised the results (for OZF multipliers)
of [12], [17] which are applicable across frequency intervals.
Although such generalisations are simple to derive, they do
not appear to add additional insight over and above the
results here. It is also possible to derive phase limitations
at isolated frequencies in the limit via this approach (c.f.
[20]) and there may be cases where this brings numerical
advantages. Nevertheless we omit further discussion for the
sake of concision.

It remains an open question whether the existence of a suit-
able OZF multiplier is necessary for the absolute stability of a
Lurye system with monotone or slope-restricted nonlinearity
The conjecture remains open, but has received considerable
recent attention [23], [24]. Similarly it remains open whether
the existence of a phase limitation developed in this paper
negates absolute stability for the corresponding Lurye system.
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