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Abstract: It is shown that a significant reduction in the threshold gain of electrically pumped
semiconductor nano-lasers may be achieved in bridge-connected tandem semiconductor nano-lasers.
Optimization of the design is achieved by exploring the impact of bridge length and width on the
threshold gain. In addition, a detailed examination is also made of the emission patterns of the
structure. It is found that a trade-off emerges between threshold gain and beam quality where
multi-lobed far field emission may be associated with the lowest threshold gains.

Keywords: threshold gain; semiconductor nano-lasers; coupled nano-lasers

1. Introduction

The development of electrically pumped semiconductor nano-lasers has presented
considerable technical challenges that have spurred many innovative designs [1–4]. The
present authors and their co-workers have offered one approach to the design of electrically
pumped nano-lasers [5], which awaits practical realization. In anticipation of the availability
of such nano-lasers, work has been undertaken to delineate the dynamical features of
these devices both as stand-alone devices [6,7] and as coupled elements of arrays [8,9].
In addition to their provision of novel dynamical behaviors, coupled nano-lasers have
potential in regard to mitigating some of the challenges to the practical demonstration of
electrically pumped nano-lasers. Such potential has been recognized in recent studies where
imaginative structures have been studied in detail [10–12]. The present paper pursues that
theme by offering a detailed study of the opportunities for utilizing bridge-waveguide-
coupled nano-lasers to affect a significant reduction in threshold gain. The specific approach
taken here is to examine how the dimensions of the waveguide bridge affect the operating
characteristics of the coupled nano-lasers both in terms of the threshold gain and the optical
modes excited in the coupled nano-lasers. Characteristics of uncoupled nano-lasers are
presented as a benchmark to compare the influence of the bridge, and then attention is
given to the impact of the waveguide bridge.

The paper proceeds by presenting schematic diagrams of the uncoupled and coupled
nano-laser structures and outlines the numerical modeling technique utilized in their study.
A representative set of results is then presented for both types of structures. These include
key results showing how the threshold gain of the coupled nano-lasers may be reduced by
suitably adjusting the width and length of the waveguide bridge. A brief conclusion from
the work is drawn in the final section.

2. Model

The 3D diagram of uncoupled and coupled nano-lasers and the illustrations of its cross-
section are shown in Figure 1a–c. The coupled nano-laser is located on an InP substrate.
The core of this coupled nano-laser is InGaAs, which is sequentially coated with SiO2 and
silver with thicknesses of tC, tS, and tM, respectively. The SiO2 layer prevents the diode
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from electrically shorting. Silver is utilized to confine the mode. The length and width of
bridge-waveguide-coupled nano-lasers connecting two single lasers are lbridge and wbridge,
respectively, as shown in Figure 1c. The dimensions of each layer for a single laser are
shown in Table 1. The structure of the single nano-laser is similar to the nano-laser in [2],
which can be electrically pumped except that the SiO2 is replaced by α-Al2O3 in [2]. It
should be noted that manufactured devices may deviate from the ideal; for example, there
may be sidewall tilts [13]. In addition, surface roughness may be introduced during the
manufacturing process. These defects will tend to degrade the performance of coupled
nano-lasers. Therefore, it is necessary to design a robust SNL to ensure that it is minimally
affected by non-idealities introduced in the manufacturing process.
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Figure 1. The schematic illustration of the uncoupled and coupled nano-laser structures. (a) A 3D
schematic of uncoupled nano-lasers. (b) A 3D schematic of coupled nano-lasers. (c) Cross-sectional
view of coupled nano-lasers.

Table 1. The size of each layer of the coupled nano-laser.

Layer Name Material Size

InGaAs Core InGaAs tC = 300 nm, rC = 350 nm
N Doped Layer N InP tN = 450 nm, rN = 250 nm
P Doped Layer P InP tP = 470 nm

Insulating Layer SiO2 tS = 100 nm
Metal Layer Ag tM = 30 nm

Bridge InGaAs lbridge = variable, wbridge = variable

We calculate the wave vector and electromagnetic field by using the 3D full-wave
finite difference time domain (FDTD) method. The mesh size is limited to a fraction of the
wavelength. Perfect matched layers (PMLs) are used to surround the lasers to ensure no
back-reflections of the light. The quality factor Q is calculated by (1), where kreal and kimag
represent the real and imaginary parts of the wave vector, respectively.

Q =
kreal

2kimag
(1)

Starting from the electric field distribution of the resonant mode inside the cavity
structure, we calculate the confinement factor Γ by integrating the electric field intensity
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in the active layer. The threshold gain required to emit the laser in the active layer can be
derived from the following Formula (2) [5]:

gth =
2πng

λQΓ
(2)

where ng is the group refractive index of the active region, and λ = 1550 nm is the resonance
wavelength. The refractive indices of InP, InGaAs active layer, and SiO2 are set to 2.63, 3.4,
and 1.45 [2,11], respectively. The permittivity of silver is fitted by the Drude–Lorentzian
model to experimental values [14]. From (2), it can be seen that the general rules for
designing a SNL with a low threshold gain are as follows: (i) to increase the Q factor, which
can be achieved by avoiding modal overlap with the metal; and (ii) to maximize the mode
confinement in the active region.

3. Results

In order to illustrate the effect of the connecting bridge, Figure 2 displays both hori-
zontal and vertical cross-sections of the electric field intensity in, respectively, a stand-alone
semiconductor nano-laser, two uncoupled nano-lasers, and bridge-connected tandem
nano-lasers, where lbridge = 1175 nm and wbridge = 400 nm. The electric field intensity of
the uncoupled lasers does not deviate markedly from that of the stand-alone laser, but
the evanescent coupling between the lasers results in a reduction in threshold gain from
1035 cm−1 (Figure 2d) to 543 cm−1 (Figure 2e). However, as intended, the connecting
bridge significantly changes the optical field distribution within the compound device,
leading to a further reduction in the threshold gain to 188 cm−1 (Figure 2f). Considering
the far fields of the devices, Figure 3 includes 3D plots of the far field as well as 2D polar
diagrams of the laser emission. The overall beneficial effect of the connecting bridge is
made manifest particularly in the 2D polar plots where the number of emission lobes is
progressively reduced as one moves from a single nano-laser (Figure 3d) to uncoupled
nano-lasers (Figure 3e) and hence to tandem nano-lasers (Figure 3f).
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The salient impact of the connecting bridge is captured by Figure 4, which is the
product of considerable computational effort. Here, the influence of the bridge width and
length on the threshold gain is shown. In essence, the beneficial effect of the bridge is to
enhance the coupling between the lasers. A priori, it was expected that the lowest threshold
gains would consequently be achieved with relatively wide and short bridges. However,
it is seen in Figure 4 that although wider bridges (350 nm to 500 nm) do yield lower
threshold gains of order 200 cm−1, the bridges are relatively long (900 nm to 1500 nm). A
smaller region of low threshold gains is also found for short (300 nm) and narrow (100 nm)
bridges, which yield gains of 130 cm−1 or so. It would appear that the principal factor in
determining the gain is the perturbation of the optical field in the device caused by the
bridge. The consequences of that are explored in detail below. At this point it is observed
that the reduction in threshold gain of several hundred cm−1 will greatly assist the practical
operation of these devices. When consideration is given to the emission patterns of the
tandem laser, it is apparent from Figure 5 that there is a trade-off between threshold gain
reduction and beam quality. Twin lobes are most prominent in the cases of narrower bridges
(150 nm to 250 nm), while quadruple lobes are present in the far field of the widest bridge
considered (400 nm).

The consideration of beam quality in the case of varying bridge lengths underlines the
challenges for device design as shown in Figure 6. The longest bridge considered (1175 nm)
exhibits a two-lobed, well-directed far-field, whereas the shortest bridge (300 nm) delivers
emission over a broader angular spread.
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Figure 5. The electric field intensity diagram, 3D far-field distribution, and 2-dimensional polar
coordinates far-field diagram of coupled nano-lasers with the increase in the width of the bridge
(widths of 150 nm, 200 nm, 250 nm, 300 nm, 350 nm, and 400 nm) when lbridge = 1175 nm. The first
column is the electric field intensity diagram. The second column is a 3D far-field diagram. The third
column is a 2-dimensional polar coordinates far-field diagram.
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(the length of 300 nm, 475 nm, 650 nm, 825 nm, 1000 nm, 1175 nm) when wbridge = 100 nm. The first
column is the electric field intensity diagram. The second column is a 3D far-field diagram. The third
column is a 2-dimensional polar coordinate far-field diagram.

4. Conclusions

This work has explored the opportunities to achieve reduced threshold gains in tandem
semiconductor nano-lasers. A design trade-off is identified by consideration of the beam
quality of the laser emission. It is observed that the tandem laser structure studied here
may be generalized to a multi-element array where bridge couplers may be used to great
effect in reducing the threshold gain.
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validation, J.Z. and K.A.S.; formal analysis, Y.F. and K.A.S.; investigation, Y.F. and K.A.S.; resources,
Y.F.; data curation, J.Z.; writing—original draft preparation, Y.F. and K.A.S.; writing—review and
editing, Y.F., J.Z. and K.A.S.; visualization, J.Z.; supervision, K.A.S.; project administration, Y.F.;
funding acquisition, Y.F. All authors have read and agreed to the published version of the manuscript.
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