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Abstract 35 

Elevational gradients are often used to reveal how soil microorganisms will respond to climate 36 

change. However, inconsistent microbial distribution patterns across different elevational 37 

transects have raised doubts about their practical applicability. We hypothesized that variations 38 

in bedrock, which influence soil physical and chemical properties, would explain these 39 

inconsistencies. We therefore investigated soil microbial communities (bacterial and fungal) 40 

along two adjacent elevational transects with different bedrocks (granite vs. slate) in a 41 

subtropical forest. Our findings reveal that soil microbial communities are shaped by complex 42 

interactions between bedrock type and environmental factors along elevational gradients. 43 

Bacterial biomass was higher on slate, whereas fungal biomass was higher on granite. On 44 

granite, both bacterial and fungal biomass increased with elevation, whereas divergent patterns 45 

were observed on slate, likely due to the distinct soil properties or combinations of properties 46 

influencing microbial biomass on each bedrock. Bedrock and elevation strongly influenced 47 

microbial beta-diversity, with beta-diversity on granite driven primarily by soil total phosphorus 48 

and moisture, and on slate by soil organic carbon and pH. In contrast, alpha-diversity was  49 

impacted less by bedrock and elevation, but its relationship with environmental factors varied 50 

markedly between bedrock types. Overall, our results highlight the critical influence of bedrock 51 

in determining soil microbial community structure along elevational gradients and their potential 52 

responses to climate change. 53 

 54 

Keywords: altitude; climate; granite; parent material; slate; soil microbes. 55 

 56 

1. Introduction 57 

As a proxy for the impacts of climate change on microbial communities, elevational 58 

gradients provide unique insights into the regulatory mechanisms governing the spatial 59 

distribution of soil microorganisms (Sundqvist et al., 2013). Studying the distributions of soil 60 

microorganisms along elevational gradients not only reveals the mechanisms structuring soil 61 

https://www.zotero.org/google-docs/?PlWqMK
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microbial communities (Nottingham et al., 2018; Peters et al., 2019), it also useful for 62 

understanding the impacts of climate change on soil biogeochemical cycles (Bahram et al., 63 

2018; Hartmann and Six, 2022; Philippot et al., 2023). Numerous studies of the elevational 64 

patterns of soil microbial communities have emerged over the past two decades (Bryant et al., 65 

2008; Fierer et al., 2011; He et al., 2020; Hendershot et al., 2017). However, these studies have 66 

not found consistent trends in microbial biomass or community α-diversity: linear increases, 67 

linear decreases, unimodal and concave trends have all been detected (He et al., 2020; 68 

Hendershot et al., 2017; Wang et al., 2024). Environmental explanations for these disparate 69 

patterns include climatic regions (He et al., 2020), vegetation types (Li et al., 2016), or 70 

microclimate variation (Ma et al., 2022). However, the type of soil parent material -known as 71 

“bedrock”- may also explain complex elevational patterns. 72 

Spatial variations in soil microbial communities are influenced strongly by soil properties 73 

(Fierer et al., 2009; Ni et al., 2022; Seaton et al., 2020). The factors shaping these communities 74 

are often determined by specific combinations of local soil characteristics. For example, soil pH 75 

is a well-established driver of bacterial community composition, particularly in acidic soils 76 

(Griffiths et al., 2011; Tripathi et al., 2018). Similarly, the availability of nutrients such as nitrogen 77 

and phosphorus plays a key role in regulating microbial dynamics, especially in nutrient-limited 78 

ecosystems (Delgado-Baquerizo et al., 2017). While climatic factors along elevational gradients 79 

tend to follow predictable trends within similar climate zones, the responses of soil microbial 80 

communities to climate change may vary depending on underlying soil conditions (e.g., acidic 81 

vs. neutral soils; nutrient-limited vs. nutrient-rich environments). Bedrock, as the parent material 82 

for soil formation, influences a wide range of soil physico-chemical properties, including pH, 83 

texture, and P levels (Augusto et al., 2017; He et al., 2021; Porder and Ramachandran, 2013; 84 

Spinola et al., 2022; Zeng et al., 2023). Consequently, soil microbial communities on different 85 

bedrock types may exhibit distinct responses to climate changes along elevational gradients, 86 

reflecting the unique soil environments created by bedrock characteristics. In the present study, 87 

we explored the extent  to which bedrock can explain complex elevational patterns.  88 

 Bedrock varies in mountainous regions at both regional and local scales (Antonelli et al., 89 

2018), affecting the spatial patterns of soil microorganisms (He et al., 2024; Hu et al., 2020; Li et 90 

al., 2018). However, only two studies have revealed that differences in bedrocks can affect the 91 

response of soil microbes to elevational gradients (Bhople et al., 2019; Singh et al., 2014). 92 

Singh et al. (2014) established two adjacent elevational transects on Mount Hana in South 93 

Korea, one on basalt and one on coarse-grained basalt. They observed a triple-curve in 94 

https://www.zotero.org/google-docs/?UVugqI
https://www.zotero.org/google-docs/?33XuIZ
https://www.zotero.org/google-docs/?33XuIZ
https://www.zotero.org/google-docs/?hgeP3E
https://www.zotero.org/google-docs/?hgeP3E
https://www.zotero.org/google-docs/?hgeP3E
https://www.zotero.org/google-docs/?hgeP3E
https://www.zotero.org/google-docs/?vUumv2
https://www.zotero.org/google-docs/?vUumv2
https://www.zotero.org/google-docs/?10ZIeP
https://www.zotero.org/google-docs/?2S7qCg
https://www.zotero.org/google-docs/?e0SuoI
https://www.zotero.org/google-docs/?Q8erKz
https://www.zotero.org/google-docs/?ZGF2YO
https://www.zotero.org/google-docs/?TPmUzF
https://www.zotero.org/google-docs/?TPmUzF
https://www.zotero.org/google-docs/?1GpMER
https://www.zotero.org/google-docs/?1GpMER
https://www.zotero.org/google-docs/?ZtxIhF
https://www.zotero.org/google-docs/?ZtxIhF
https://www.zotero.org/google-docs/?RzOsnv
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bacterial species richness on the basalt and a concave pattern on the coarse-grained basalt. 95 

Bhople et al. (2019) showed a linear increase in soil microbial biomass on basaltic bedrock and 96 

acidic soils, and a unimodal pattern on limestone bedrock with pH neutral soils.  97 

Studies focusing on the influence of bedrock on elevational patterns of soil microbes are 98 

remarkably scarce, and these studies often concentrate on a single feature of soil microbial 99 

communities, such as biomass, or community α-diversity. Biomass, α-diversity, and β-diversity 100 

are crucial characteristics of soil microbial communities, usually regulated by different factors. 101 

Soil microbes are often carbon (C) limited, which is why microbial biomass is predominantly 102 

driven by the availability of labile C (He et al., 2020). α-diversity is more responsive to variations 103 

in soil pH (Fierer, 2017; Looby and Martin, 2020), particularly within acidic environments 104 

(Calderón‐Sanou et al., 2022). The β-diversity of soil microbial communities, which describes 105 

the compositional variation among microbial communities across different environments, is 106 

influenced by a complex interplay of factors (Chen and Lewis, 2023). With such diverse 107 

characteristics of microbial communities being regulated by an assortment of environmental 108 

factors, it is no surprise that the interactions between bedrock, elevation, and soil microbial 109 

communities are extremely intricate. 110 

 In accordance with our hypothesis that bedrock modulates the environmental factors 111 

regulating soil microbial communities at different elevations, we anticipate significant differences 112 

in microbial community composition between the two bedrock types. Specifically, we expect to 113 

find that: (1) Soil microbial biomass, α-diversity, and β-diversity differ between bedrock types. 114 

We expect microbial biomass and α-diversity to increase on the slate transect due to its higher 115 

SOC, phosphorus levels, and pH (He et al., 2021). (2) Bedrock type will govern the relationship 116 

between elevation, microbial biomass and α-diversity. Given that key environmental conditions 117 

structuring microbial communities differ on different bedrocks, we also predict that (3) factors 118 

driving β-diversity along the elevational gradient will vary between the two bedrocks, and similar 119 

environmental conditions may shape microbial community patterns differently on different 120 

bedrock types. 121 

 122 

2. Materials and methods 123 

2.1 Study sites 124 

https://www.zotero.org/google-docs/?Tsnenk
https://www.zotero.org/google-docs/?nf2udC
https://www.zotero.org/google-docs/?1xSILy
https://www.zotero.org/google-docs/?rB913b
https://www.zotero.org/google-docs/?OtrQ4E
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We worked in the Chebaling National Nature Reserve in the Guangdong Province of 125 

southern China (114°09′–114°16′E, 24°40′–24°46′N). The climate is a typical subtropical 126 

monsoon (He et al., 2021). The geological structure of the Reserve belongs to the South China 127 

fold system. Elevation ranges from 330 meters above sea level to 1,256 m.a.s.l. Cambrian and 128 

Ordovician strata are present in the northwest section. Northeast-southwest slate was formed 129 

after fold-fracture. The middle and south are Cambrian strata, forming slate mountains. The 130 

northern parts experienced intrusion of Jurassic plutonic rocks, forming acid plutonic rock 131 

mountains. Soils are classified in the Ultisol order and the Udult suborder based on the USDA 132 

soil classification system (Zhou et al., 2013). 133 

We identified two adjacent mountains with different bedrocks (granite and slate) in the 134 

Chebaling National Nature Reserve (He et al. 2021). The geographic distance between the two 135 

mountains does not exceed 10 km. The vegetation on both mountains is well-preserved 136 

subtropical evergreen broad-leaved forest. The forest on the granite bedrock is dominated by 137 

Schima superba, Machilus chinensis, and Eurya nitida, while the forest on the slate bedrock is 138 

dominated by Machilus chinensis, Eurya nitida and Rhododendron simsii. A total of 18 sites 139 

were established along two elevational transects (Fig. S1), with nine sites on each bedrock. 140 

Plots were distributed at about 100-m intervals in elevation (determined by GPS) within each 141 

transect, with elevations ranging from 410 to 1,080 m.a.s.l. on the granite bedrock and 350 to 142 

1,120 m.a.s.l. on the slate bedrock. To reduce the influence of aspect, sampling plots were 143 

located on the south side of any microtopography at each site. 144 

2.2. Sampling and analytical methods 145 

All plots (40 m x 40 m) were sampled in October 2018. All trees with a diameter at breast 146 

height above 1 cm were recorded in each plot. We estimated the forest above-ground biomass 147 

(AGB) using diameter at breast height of each tree and allometric relationships (Réjou‐Méchain 148 

et al., 2017). We installed a Micro Station Data Logger (USA, HOBO, H21-002) in each plot, 149 

with two probes inserted into the soil (at a depth of approximately 10 cm) which monitored soil 150 

temperature and moisture. Recordings were taken hourly from July 13, 2018, to July 13, 2019. 151 

Here, we use the data collected over the entire year to calculate the soil mean annual 152 

temperature (MAT) and moisture, which we use to explain the spatial variation of soil microbial 153 

community characteristics. 154 

Volumetric soil samples were taken to determine soil bulk density. Soil depth was more 155 

than 100 cm in all but two of the high elevation sites in the slate transect. In these two plots, soil 156 

https://www.zotero.org/google-docs/?4K2Pfe
https://www.zotero.org/google-docs/?1sJhs4
https://www.zotero.org/google-docs/?1sJhs4
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depth was roughly 60 cm. These shallow soil depths were likely due to severe erosion on the 157 

steeper slopes. Five subplots (10 × 10 m) were randomly selected at each site. We removed the 158 

leaf litter from the forest floor and collected topsoil to a depth of 20 cm using a stainless soil 159 

corer (inner diameter = 3.5 cm). We collected six random soil cores and homogenized them into 160 

composite samples for each subplot. A total of 90 soil samples (i.e. 18 plots x 5 subplots) were 161 

collected and transported on ice directly to the laboratory. Each soil sample was then passed 162 

through a 2-mm sieve before being divided into two subsamples: one was stored at −80°C for 163 

phospholipid fatty acid (PLFA) analysis and high-throughput sequencing (HTS), and one was 164 

air-dried at room temperature for the measurement of soil physicochemical properties in the 165 

laboratory.  166 

We measured soil pH with a PHS-3C pH acidometer (soil-water ratio of 1:5) and used 167 

dry combustion with an elemental analyser (Perkin Elmer 2400 Series II) to measure soil 168 

organic carbon (SOC) and total N (TN) concentrations. Soil total P (TP) concentration was 169 

measured using a nitric acid–perchloric acid digestion, followed by a colorimetric analysis 170 

(Murphy and Riley, 1962) using a UV-Vis spectrophotometer (UV1800; Shimadzu, Kyoto, 171 

Japan). We measured particle size distribution using a laser particle analyzer based on the laser 172 

diffraction technique operating over a range of 0.02-2000 μm (Mastersizer 2000 particle size 173 

analyzer, Malvern Instruments, Ltd., UK).  174 

We used a modified PLFA analysis (Frostegård and Bååth, 1996) to determine bacterial 175 

and fungal biomass. The abundance of individual fatty acids was expressed as μg per g of dry 176 

soil. Concentrations of each PLFA were calculated based on the 19:0 internal standard 177 

concentrations and microbial biomass was expressed as the sum of identifiable PLFAs. We 178 

chose a set of fatty acids to represent bacterial PLFAs. Bacterial PLFAs were obtained by 179 

summing the phospholipid fatty acid 14:00, 15:00, 16:00, 18:00, 13:0 anteiso, 13:0 iso, 14:0 iso, 180 

14:1 ω5c, 15:0 anteiso, 15:0 iso, 15:1 ω6c, 16:0 iso, 16:1 ω5c, 16:1 ω7c, 17:0 anteiso, 17:0 181 

cyclo ω7c, 17:0 iso, 18:1 ω7c, 18:1 ω9c, 19:0 cyclo ω7c, and 19:0 cyclo ω9c contents. Gram-182 

positive bacteria were identified by branched-chain fatty acids, including 13:0 anteiso, 13:0 iso, 183 

14:0 iso, 15:0 anteiso, 15:0 iso, 16:0 iso, and 17:0 anteiso and iso. Gram-negative bacteria were 184 

distinguished by monounsaturated and cyclopropyl fatty acids, specifically 14:1 ω5c, 15:1 ω6c, 185 

16:1 ω5c, 16:1 ω7c, 17:0 cyclo ω7c, 18:1 ω7c, 18:1 ω9c, 19:0 cyclo ω7c, and 19:0 cyclo ω9c. 186 

The sum of 18:2ω6c and 18:3 ω6c represented fungal PLFAs. 187 

https://www.zotero.org/google-docs/?6OZ9nZ
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Soil DNA was extracted from composite soil samples using the FastDNA SPIN Kit for 188 

Soil (MP Biomedicals, Heidelberg, Germany) and purified by agarose gel electrophoresis. The 189 

quality of the DNA samples was checked on a spectrophotometer (NanoDrop, ND2000, 190 

ThermoScientific, USA). Total DNA was used for high-throughput sequencing on an Illumina 191 

MiSeq platform (San Diego, CA, USA). The bacterial V4 hypervariable region of the 16S rRNA 192 

gene and fungal internal transcribed spacer (ITS) region was amplified using the primer pair 193 

505F/816R (5′-GTGCCAGCMGCCGCGG-3′/5′-GGACTACHVGGGTWTCTA AT-3′) (Caporaso 194 

et al., 2011) and ITS1F/ITS2 (5′-GGAAGTAAAAGTCGTAACAAGG-3′/5′-195 

GCTGCGTTCTTCATCGATGC-3′) (Shen et al., 2020) along with the Illumina adaptor sequence 196 

and barcode sequences, respectively. 197 

The raw sequence data were processed and analyzed using QIIME Pipeline (Caporaso 198 

et al., 2011). To improve sequence quality we removed average quality (value ≤20) sequencing 199 

reads with ambiguous nucleotides in barcodes, and homopolymer reads between 8 bp and 150 200 

bp in length. Paired ends were joined with FLASH (Magoc and Salzberg, 2011). Chimeric 201 

sequences were detected and eliminated using the Uchime algorithm (Edgar, 2013). All 202 

sequences were clustered into operational taxonomic units (OTUs) at a 97% identity threshold. 203 

Finally, the representative sequences of each OTU were classified against the RDP 16S rRNA 204 

database for bacteria and UNITE Fungal ITS database for fungi with an 80% confidence 205 

threshold. The resultant OTU abundance tables from these analyses were rarefied to an even 206 

number of sequences per sample to ensure equal sampling depth (26,160 and 26,760 for 16S 207 

rDNA and ITS, respectively). To minimize the influence of potentially spurious OTUs, we 208 

excluded those with a total read count below 50 or present in fewer than five samples after 209 

rarefaction. All subsequent analyses of α-and β-diversity were conducted based on this filtered 210 

OTU table. The raw reads have been deposited into the National Centre for Biotechnology 211 

Information (NCBI) Sequence Read Archive database (PRJNA1177672). 212 

2.3 Statistical analyses 213 

We used Wilcoxon tests to assess differences in microclimate, plant traits, and soil 214 

properties between granite and slate bedrocks. To evaluate elevational trends, we applied 215 

univariate linear regression models, while multivariate linear regression models were used to 216 

examine soil microbial community responses across different elevations and bedrock types, as 217 

well as to identify interactive effects. Model fit was evaluated using Akaike’s Information 218 

Criterion (AIC), with the model having the lowest AIC score selected as the best fit.  219 
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Spearman correlation analyses were conducted to determine whether bedrock type 220 

influenced relationships between environmental variables and soil microbial communities. 221 

Additionally, we applied multiple regression models to investigate associations between 222 

microbial variables (bacterial and fungal biomass, biomass ratios, and alpha diversity indices) 223 

and a range of environmental predictors, including soil properties, i.e., pH, moisture, clay 224 

content, soil organic C (SOC), soil P, soil C-to-N ratio (C:N), soil C-to-P ratio (C:P), soil N-to-P 225 

ratio (N:P), plant traits (above-ground biomass and plant Shannon diversity), and climatic 226 

factors (mean annual temperature). Multicollinearity among predictors was assessed using 227 

Variance Inflation Factor (VIF) values calculated with the vif function from the car package. 228 

Initial VIF analysis revealed high collinearity among certain soil nutrient ratios (soil C:P and soil 229 

N:P), with VIF values exceeding 100; thus, these variables were excluded, reducing the VIF of 230 

all remaining predictors to below 5. To examine interactions between environmental predictors 231 

and bedrock type, we incorporated selected interaction terms (bedrock:TP, bedrock:moisture, 232 

bedrock:pH, and bedrock:MAT) aligned with our research questions. Due to the limited sample 233 

size, we focused on these specific interactions rather than including all possible terms. Stepwise 234 

model selection using AIC was performed with the dredge function from the MuMIn package to 235 

identify best-fit models for each microbial variable, allowing for retention of the most informative 236 

predictors while optimizing model performance. 237 

We calculated the Chao1 index, Shannon, and Inverse Simpson diversity index as α-238 

diversity indices of soil microbial communities. Shannon index is defined as 𝐻𝐻 =  −∑𝑖𝑖1 𝑃𝑃𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖, 239 

where Pi is the proportional abundance of species i. Inverse Simpson index is defined as 1/D, 240 

where 𝐷𝐷 = 𝛴𝛴𝑃𝑃𝑖𝑖2. We used the Bray-Curtis-dissimilarities-based principal components analysis 241 

(PCoA) to assess differences (β-diversity) in microbial communities in different sites and 242 

bedrocks. We performed square root transformations of the OTU relative abundances before 243 

the PCoA. We performed distance-based Redundancy Analysis (db-RDA) of the correlation 244 

between predictor variables and microbial composition. We calculated these diversity indices 245 

and conducted these ordination analyses using the vegan R package (Oksanen et al., 2020). 246 

We performed a Principal Component Analysis (PCA) to visualize the variation in environmental 247 

variables across elevational gradients on two bedrock types. The analysis was conducted using 248 

the PCA function from the FactoMineR package. A biplot was created using fviz_pca_biplot 249 

from the factoextra package. We used a neutral community model (NCM) (Sloan et al., 2006) to 250 

test whether deterministic or stochastic processes were structuring the microbial communities. 251 
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We used Hmisc, minpack.lm and stats4 packages for the NCM, with default parameters for 252 

model fitting.  253 

All statistical analyses were performed using R (R Core Team, 2023) and graphs were 254 

generated with the ggplot2 package (Wickham, 2016). 255 

 256 

3. Results 257 

3.1 Effects of elevation and bedrock on soil characteristics 258 

Wilcoxon tests showed no significant differences in soil MAT, moisture, and SOC 259 

concentration between the granite and slate transects (Table S1). AGB, soil C:N, C:P, N:P 260 

ratios, and soil silt and sand contents were higher on the granite transect, whereas plant 261 

diversity, soil pH, bulk density, TN, TP, and clay content were lower on the granite than on the 262 

slate transect. Univariate linear regression models revealed a consistent pattern of significant 263 

declines in MAT, plant diversity and soil pH with elevation, and an increase in SOC, TN, TP and 264 

silt content across both bedrock types (Fig. S2 and S3). Soil clay content and moisture showed 265 

no significant elevational trend along either transect (Fig. S3). AGB decreased with elevation on 266 

the granite but showed no significant trend on the slate (Fig. S2). PCA results revealed a clear 267 

separation of sampling sites along PC1 (Figure S4). Key variables associated with PC1, such as 268 

soil P, C:N, C:P, N:P, clay, and moisture, appear to be major environmental drivers of microbial 269 

community differences between the two bedrocks. Variables closely aligned with PC2, including 270 

elevation, MAT, SOC, and pH, are likely primary drivers of microbial community changes along 271 

the elevational gradient within each transect.  272 

3.2 Effects of elevation and bedrock on soil microbial biomass 273 

Bacterial biomass was slightly higher on slate, whereas fungal biomass was higher on 274 

granite (Table 1). Consequently, the bacteria-to-fungi biomass ratio (B/F) was significantly 275 

higher on slate than on granite. Given that Gram-positive bacteria are ecologically and 276 

functionally more similar to fungi, our findings align with this pattern: the Gram-positive to Gram-277 

negative bacteria ratio (G+/G- ratio) was significantly higher on granite than on slate. Notably, 278 

both bacterial (B) and fungal (F) biomass, along with the G+/G- ratio increased significantly with 279 

elevation on the granite but not on the slate transect; B/F ratios showed no significant linear 280 

trends on either bedrock (Fig. 1). Multivariate linear regression models confirmed significant 281 
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impacts of elevation and bedrock on microbial biomass characteristics, including significant 282 

interactive effects for bacterial and fungal biomass but not for B/F ratios or G+/G- ratios (Table 283 

2).  284 

The best models selected through stepwise regression provided strong explanatory 285 

power for variations in microbial biomass, with adjusted R² values ranging from 0.45 to 0.71 286 

(Table 3). Soil microbial biomass was shaped significantly by multiple environmental factors and 287 

their interactions with bedrock type. For bacterial biomass, SOC, TP, and the soil C:N ratio were 288 

key factors, with positive associations observed for soil C and P, and a negative association 289 

with the C:N ratio. Fungal biomass was also influenced by SOC, C:N ratio, and TP, though the 290 

impacts of moisture and MAT varied depending on bedrock type. The B/F biomass ratio was 291 

shaped by soil moisture, plant Shannon diversity, and TP, with an interaction between moisture 292 

and bedrock type. Additionally, the G+/G- ratio was driven by soil clay content, MAT, and pH, 293 

with a significant interaction between TP and bedrock type. 294 

Spearman correlations corroborated the multiple regression results (Tables S2 & S3). 295 

On the granite transect, bacterial biomass was strongly associated with SOC and TP, whereas 296 

on slate, no significant correlations were observed. Fungal biomass on granite correlated 297 

positively with SOC and the soil N:P ratio, while being negatively associated with AGB and 298 

MAT. On slate, fungal biomass correlated only with moisture. The B/F ratios on granite were 299 

positively linked with soil TP and negatively to moisture, whereas on slate, they correlated 300 

negatively with moisture. Additionally, the G+/G- ratios showed a strong positive correlation with 301 

the soil N:P ratio on granite and a negative correlation with MAT on slate. 302 

3.3 Effects of elevation and bedrock on soil microbial community diversity and 303 

composition 304 

Microbial richness, as indicated by Chao1 indices, was consistently and significantly 305 

higher on slate for both bacterial and fungal communities (Table 1). In contrast, Shannon 306 

indices showed no significant differences between bedrock types for either bacterial or fungal 307 

communities, indicating comparable overall diversity. The inverse Simpson index, however, was 308 

significantly lower for bacterial communities on slate than on granite, suggesting reduced 309 

evenness and potential dominance by a few species on slate. Interestingly, soil microbial α-310 

diversity, encompassing Shannon and inverse Simpson indices, showed no clear elevational 311 

trends (Fig. 2). Multivariate linear regression analyses confirmed these observations, identifying 312 

significant differences between bedrock transects in the Chao1 and inverse Simpson indices for 313 
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bacteria, and in the Chao1 index for fungi, but not in other α-diversity measures. Additionally, 314 

elevation significantly influenced only the fungal Chao1 index, with no observable effect on other 315 

α-diversity indices or significant interactions between elevation and α-diversity (Table 2). 316 

Regression models for diversity indices showed lower explanatory power compared with 317 

biomass (adjusted R² = 0.20-0.38; Table 4). Bacterial Shannon index was significantly affected 318 

by clay content, MAT, moisture, and pH, while the bacterial inverse Simpson index was 319 

associated with soil C, P, and a moisture-bedrock interaction. Both the fungal Shannon and 320 

inverse Simpson indices were influenced by soil P, soil C, and pH, with strong effects from 321 

interactions between these variables and bedrock type; soil P, in particular, played a prominent 322 

role in shaping fungal community diversity. 323 

Spearman correlation analysis indicated that the Shannon index of the bacterial 324 

community correlated positively with soil pH on both granite and slate transects (Table S2 and 325 

S3). The inverse Simpson index of bacteria correlated positively with soil C:P and N:P ratios on 326 

granite but showed no significant relationship on slate. The fungal community's Shannon index 327 

correlated negatively with MAT on both bedrocks, and additionally with clay content on granite. 328 

On slate, it correlated significantly with TP, C:P, and N:P. The inverse Simpson index for fungi 329 

correlated negatively with clay on granite, whereas on slate it showed significant correlations 330 

with soil pH, C:N, C:P, N:P, and other environmental factors (Table S3). 331 

 Principal Components Analysis results highlighted clear differences in beta-diversity, 332 

i.e., the composition of soil microbial communities (bacterial and fungal), across different 333 

bedrock types (Fig. 3 a & b). Results of db-RDA revealed that the compositions of soil bacterial 334 

and fungal communities were determined primarily by the soil C:P and N:P ratios and TP 335 

content (Fig. 3a). These findings indicate that variations in phosphorus level were key in driving 336 

the differences in community composition observed between the bedrocks. Further db-RDA on 337 

individual bedrock types revealed that on granite, soil TP content and moisture were crucial in 338 

shaping both bacterial and fungal communities (Fig. 3 c & e). Conversely, on slate, SOC and 339 

soil pH were the dominant factors influencing bacterial communities (Fig. 3d), whereas moisture 340 

and clay content significantly affected fungal communities (Fig. 3f). This analysis suggests a 341 

role for bedrock in mediating species turnover along elevational gradients, with changes in soil 342 

P concentration and moisture levels being pivotal. 343 

The fit of bacterial communities on granite to the NCM was higher (R2 = 0.92; Nm = 344 

18943) compared with slate (R2 = 0.90; Nm = 16458) (Fig. S6 a & b), suggesting the importance 345 
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of stochastic processes in the assembly of these bacterial communities. In the case of the 346 

fungal communities, the fit to the NCM was comparable between granite (R2 = 0.62; Nm = 1237) 347 

and slate (R2 = 0.62; Nm = 1209) , indicating no discernible difference in community assembly 348 

processes (Fig. S6 c & d).  349 

 350 

4. Discussion 351 

 This study reinforces findings by Bhople et al. (2019) and Singh et al. (2014), confirming 352 

that bedrock composition plays a critical role in shaping soil microbial community responses 353 

along elevational gradients in subtropical mountain ecosystems. While this and previous studies 354 

each focused on a single transect per bedrock type, together they provide robust evidence that 355 

bedrock type significantly influences microbial elevational patterns. Unique combinations and 356 

ranges of soil properties are established by different bedrock types, resulting in distinct microbial 357 

community distributions along elevation gradients. Moreover, the impact of specific 358 

environmental factors on microbial communities varies with bedrock type, highlighting the 359 

interactive effects between bedrock and environmental conditions on microbial distribution. 360 

These interactions deepen our understanding of the intricate dynamics of microbial communities 361 

and underscore the necessity to consider bedrock type when evaluating microbial responses to 362 

environmental changes. 363 

4.1 Bedrock modulates the elevational patterns of soil microbial biomass 364 

Bacterial and fungal biomass differed significantly on the contrasting bedrocks. Both 365 

transects were under similar climates, and we therefore conclude that differences in microbial 366 

biomass were likely caused by the variation of bedrock, which concurs with previous studies 367 

(Deng et al., 2015; Sun et al., 2016) (Deng et al., 2015; Sun et al., 2016). Deng et al. (2015), 368 

who worked in a similar subtropical monsoon climate, concluded that bedrock explained more 369 

variation in soil microbial biomass than land use, after discovering that microbial biomass in soil 370 

derived from granite was significantly higher than in soil derived from quaternary red earth and 371 

tertiary red sandstone. Sun et al. (2016) showed that agricultural soils derived from granite 372 

supported more microbial biomass than quaternary red clay soil and purple sandy shale, even 373 

after 40 years of agricultural use. These results further emphasize the fact that bedrock drives 374 

the spatial variation of soil microbial biomass.  375 

https://www.zotero.org/google-docs/?RXFLpm
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Bacteria and fungi responded differently to the different bedrocks in our study, which is 376 

further evidence of the regulatory effects of bedrock on microbial communities. Bacterial 377 

biomass, particularly the amount of Gram-positive versus Gram-negative bacteria, was higher 378 

on slate than on granite. This can be attributed to slate's higher soil TN and TP contents, closer-379 

to-neutral soil pH, and higher soil clay content, all of which favor bacterial growth. Bacteria, 380 

especially Gram-positive types, rely heavily on nutrient availability (Yu et al., 2022), are more 381 

sensitive to pH changes (Luan et al., 2023; Rousk et al., 2010), and benefit from the simplified 382 

physical conditions of soils richer in clay (Philippot et al., 2023). In contrast, fungi are better at 383 

extracting nutrients from decomposing organic matter (Koranda et al., 2014)q, and have a 384 

greater tolerance to pH changes (Rousk et al., 2010). Moreover, their multicellular, filamentous 385 

structure enables fungi to adapt to a variety of soil physical environments (Philippot et al., 2023). 386 

Furthermore, considering the competitive dynamics between fungi and bacteria (Bahram et al., 387 

2018), the diminished bacterial biomass on granite reduces competition, potentially boosting 388 

fungal biomass. These mechanisms clarify why fungal biomass was higher on granite than on 389 

slate, providing insight into how bedrock variability distinctly influences bacterial and fungal 390 

communities.  391 

As well as observing the effects of the bedrock itself on soil microbial communities, we 392 

also noticed inconsistencies in the elevational patterns of the soil microbial biomass along the 393 

two transects. On the granite, soil bacterial and fungal biomass increased with elevation, 394 

whereas on the slate, bacterial biomass showed no trend, and fungal biomass decreased 395 

slightly. Soil microbes usually need to derive energy and nutrients from soil organic matter, and 396 

as a result, their biomass is generally coupled with SOC concentration (He et al., 2020; Smith et 397 

al., 2021). However, in this study, such a relationship was observed only on granite; on slate, 398 

which had higher N and P levels, the biomass of bacteria and fungi did not show significant 399 

correlations with SOC, soil TP content, MAT, or other factors. This may be attributed to the fact 400 

that in nutrient-abundant environments, especially with sufficient P, soil microbes experience 401 

lower nutrient limitations; and their reliance on the pathway of nutrient acquisition through the 402 

decomposition of organic matter might be comparatively weaker (Lang et al., 2016). This would 403 

certainly explain why microbial biomass was not correlated with SOC and TP concentrations on 404 

slate. These findings suggest that the bedrock, by influencing the P levels in the soil and indeed 405 

throughout the entire ecosystem, can impact the responses of soil microbial biomass to 406 

elevational gradients. 407 

4.2 Bedrock modulates the elevational patterns of soil microbial community diversity 408 

https://www.zotero.org/google-docs/?TyXk1Y
https://www.zotero.org/google-docs/?q2aJ5F
https://www.zotero.org/google-docs/?ThYNPZ
https://www.zotero.org/google-docs/?4Gs2Ju
https://www.zotero.org/google-docs/?fvNQlK
https://www.zotero.org/google-docs/?6yX0yu
https://www.zotero.org/google-docs/?XysrVe
https://www.zotero.org/google-docs/?XysrVe
https://www.zotero.org/google-docs/?5yAP62
https://www.zotero.org/google-docs/?5yAP62
https://www.zotero.org/google-docs/?17kMXp
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The higher Chao1 index for both bacterial and fungal communities on slate than on 409 

granite indicates greater microbial species richness in soils with higher nutrient content and pH 410 

(Xiao et al., 2022). However, neither the Shannon nor the inverse Simpson index on slate were 411 

significantly higher than on granite, suggesting that the increased richness on slate likely 412 

reflects a greater presence of rare or low-abundance taxa, reducing overall community 413 

evenness. In particular, the inverse Simpson index for bacterial communities was significantly 414 

higher on granite than on slate. This may be attributed to the lower P, moisture, and pH levels 415 

on granite, which may promote a broader range of microbial taxa that coexist more evenly. 416 

Conversely, the higher P, moisture, and pH levels on slate could favor a few dominant species, 417 

resulting in lower evenness despite the elevated species richness. Interestingly, unlike microbial 418 

biomass, neither bacterial nor fungal α-diversity varied significantly with elevation on either 419 

bedrock type, suggesting that soil microbial biomass and community α-diversity are regulated by 420 

different factors (Li et al., 2020; Ren et al., 2018). These distinct responses between microbial 421 

biomass and α-diversity, with their implications for ecosystem functioning, warrant further 422 

exploration. 423 

With regard to those factors influencing α-diversity, our multiple linear models explained 424 

significantly less of the variation in α-diversity than in microbial biomass along the elevational 425 

gradient. Alongside the high explanatory power of neutral community models (NCM) on both 426 

bedrocks—especially with over 90% for bacterial communities—our findings suggest that 427 

microbial community assembly along the elevation gradient was driven largely by stochastic 428 

processes, with environmental factors playing a lesser role. While we found significant 429 

relationships between soil pH and the Shannon indices for both bacteria and fungi, supporting 430 

the notion that microbial α-diversity is sensitive to soil acidity (Luan et al., 2023; Smith et al., 431 

2021), α-diversity itself did not vary significantly with elevation. This is likely due to the relatively 432 

small pH fluctuations across the transects. Despite the limited explanatory power of our models, 433 

we observed that certain factors, such as soil phosphorus and moisture, had bedrock-specific 434 

effects on microbial α-diversity. These significant interactions indicate that although α-diversity 435 

did not shift noticeably with elevation, its relationship with environmental factors was still 436 

modulated by bedrock. 437 

Our findings suggest that bedrock impacts the β-diversity of soil microbial communities. 438 

Bacteria and fungi displayed markedly distinct compositions across the two bedrocks. Our 439 

observation that bedrock influences the composition of soil microbial communities aligns with 440 

the conclusions of previous studies (Sheng et al., 2023; Tytgat et al., 2016; Weemstra et al., 441 

https://www.zotero.org/google-docs/?8XZqfQ
https://www.zotero.org/google-docs/?92XVYu
https://www.zotero.org/google-docs/?92XVYu
https://www.zotero.org/google-docs/?LrJbMT
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2020; Xiao et al., 2022). Studies of different bedrocks have proposed different mechanisms for 442 

structuring soil microbial communities. For example, Tytgat et al. (2016) found that SOC content 443 

structured bacterial communities, whereas Sheng et al. (2023) concluded that soil pH structured 444 

the bacterial community composition among different bedrocks. We identified differences in soil 445 

P as the primary mechanism structuring soil microbial communities on the granite and slate 446 

bedrocks. On granite, soil TP content and moisture govern species turnover of both bacteria 447 

and fungi, which is supported by another study in nearby subtropical forest (Chen and Lewis, 448 

2023). On slate, however, the influence of soil P on species turnover appeared to be minimal. 449 

This could be due to P not being a limiting factor, as slate and its associated soils have high P 450 

concentrations. Together, these results indicate that bedrock type not only influences the 451 

composition of soil microbial communities, but also modulates the primary drivers of microbial 452 

community structure along elevational gradients. 453 

Our results should be interpreted in light of the fact that our study was based on one 454 

elevational transect per bedrock type. Nonetheless, given the inconsistency of previous studies 455 

of soil microbial elevational patterns, including those based on single transects (e.g., 456 

Bayranvand et al., 2021; Peters et al., 2016; Zakavi et al., 2022), our findings provide relevant 457 

and valuable insights into how bedrock influences microbial community patterns along elevation 458 

gradients. Ideally, future studies should integrate multiple transects replicated within bedrock 459 

types to more thoroughly understand the responses of soil microbial communities to climate 460 

gradients. 461 

 462 

5. Conclusion 463 

We have shown that bedrock significantly influences soil microbial biomass and β-464 

diversity, while having limited effects on α-diversity. Moreover, bedrock modulated the impacts 465 

of the elevation gradient on soil microbial biomass and β-diversity. This was likely an indirect 466 

process via the alteration of soil P content, C:P, N:P ratios, soil moisture, and pH. We believe 467 

that bedrock may explain some of the inconsistencies surrounding previous studies of the 468 

elevational patterns of soil microbial communities. We also anticipate that bedrock will modulate 469 

the impacts of climate change on soil microbial communities. 470 

 471 

https://www.zotero.org/google-docs/?LrJbMT
https://www.zotero.org/google-docs/?dOy6qC
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Table 1. Results of the Wilcoxon test to compare the mean values of soil microbial 680 

biomass and α-diversities between two bedrock transects. Significantly higher mean values 681 

are in bold. Unit of biomass is ug g-1 soil.  682 

Variable Granite  
(Mean ± SD) 

Slate  
(Mean ± SD) 

w p 

Fungal biomass  1.33 ± 0.54 1.09 ± 0.37 1267 0.040 

Bacterial biomass 38.62 ± 14.2 42.95 ± 9.58 791 0.074 

Bacteria to fungi ratio 30.79 ± 10.49 42.28 ± 11.66 476 <0.001 

Gram+ to Gram- ratio 0.81 ± 0.08 0.72 ± 0.05 1634 <0.001 

Bacterial Chao1 3036 ± 294 3344 ± 349 520 <0.001 

Bacterial Shannon 5.89 ± 0.2 5.95 ± 0.27 864 0.234 

Bacterial inv-Simpson 104 ± 29 82 ± 28 1413 0.001 

Fungal Chao1 1237 ± 187 1364 ± 209 695 0.010 

Fungal Shannon 4.12 ± 0.48 4.03 ± 0.68 1060 0.706 

Fungal inv-Simpson 18 ± 8 16 ± 9 1119 0.394 

 683 
  684 
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Table 2. Effects of elevation and bedrock, and their interaction on the variations of soil 685 

microbial communities’ characters. Numbers in the table are the standardized linear 686 

regression coefficients. 687 

 Elevation Bedrock Elevation×Bedrock Adjusted R2 

Bacterial biomass 0.88*** 0.36* -1.01*** 0.372 

Fungal biomass 0.80*** -0.49* -1.08*** 0.373 

B:F biomass ratio 0.19* 0.93***  0.231 

G+ to G– biomass ratio 0.31*** -1.06***  0.384 

Bacterial Chao1 index 0.11 0.87***  0.182 

Bacterial Shannon index 0.04 0.26  0.001 

Bacterial inverse Simpson 0.17 -0.71***  0.140 

Fungal Chao1 index 0.28** 0.62**  0.151 

Fungal Shannon index 0.09 -0.12   0.001 

Fungal inverse Simpson  -0.15 -0.20  0.001 

Stars next to the numbers indicate significance in the regression model: *, **, *** indicates 688 

significance at the 95%, 99% and 99.9% level, respectively; no star means p > 0.05. 689 

  690 

  691 
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Table 3 Summary of optimal model parameters for microbial biomass variables. This table 692 

presents the best-fit model results for microbial biomass variables, derived from an initial full 693 

model that included mean annual temperature (MAT), soil organic carbon (C), phosphorus (P), 694 

moisture, clay content, pH, carbon-to-nitrogen ratio (C:N), above-ground biomass (AGB), and 695 

plant Shannon diversity (Plant H). Additionally, interactions between bedrock type and specific 696 

environmental variables (soil P, moisture, pH, and MAT) were incorporated.  697 

Microbial Variable Predictors Estimate p-value Adjusted R2 

Bacterial Biomass Soil C 9.316 <0.001 0.625 

Soil C:N -4.936 <0.001  

Soil P 6.011 0.008  

Clay -2.065 0.070  

MAT×Bedrock 4.294 0.022  

Soil P×Bedrock -11.818 <0.001  

Fungal Biomass Soil C 0.267 <0.001 0.453 

Soil C:N -0.216 <0.001  

Soil P -0.351 <0.001  

Moisture×Bedrock 0.288 0.009  

MAT×Bedrock 0.221 0.047  

Bacterial-to-Fungal 
Biomass ratio 

Moisture 3.715 0.002 0.502 

Plant H 3.163 0.001  

Soil P 6.042 <0.001  

Moisture×Bedrock -9.585 <0.001  

Gram+ to Gram– bacteria 
biomass ratio 
  

Clay -0.015 0.046 0.710 

MAT 0.014 0.018  

pH -0.027 0.028  

Soil P×Bedrock 0.060 0.020   
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Table 4 Summary of optimal model parameters for microbial community diversity index. 699 

This table presents the best-fit model results for microbial diversity index, derived from an initial 700 

full model that included mean annual temperature (MAT), soil organic carbon (C), phosphorus 701 

(P), moisture, clay content, pH, carbon-to-nitrogen ratio, above-ground biomass (AGB), and 702 

plant Shannon diversity. Additionally, interactions between bedrock type and specific 703 

environmental variables (soil P, moisture, pH, and MAT) were incorporated.  704 

Microbial Variable Predictors Estimate p-value Adjusted R2 

Bacterial Shannon 
index 

Clay 0.068 0.008 0.271 

MAT -0.098 <0.001  

Moisture -0.063 0.033  

pH 0.075 0.004  

Bacterial inverse 
Simpson index 

Soil C 9.249 0.013 0.202 

Soil P -12.539 <0.001  

Moisture×Bedrock 15.275 0.020  

Fungal Shannon 
index 

Soil P -0.608 0.000 0.383 

AGB -0.155 0.019  

Moisture×Bedrock 0.081 0.119  

Soil P×Bedrock 1.145 <0.001  

Fungal inverse 
Simpson index 

Moisture 4.086 <0.001 0.332 

Soil P -6.853 0.001  

Soil C -3.039 0.045  

pH×Bedrock 7.561 0.004  

Soil P×Bedrock 16.332 <0.001  
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Figure 1. Soil microbial biomass along elevational transects on granite and slate 706 

bedrock. (a) soil bacterial biomass; (b) soil fungal biomass; (c) bacterial biomass to fungal 707 

biomass ratios; (d) gram-positive to gram-negative bacterial biomass ratios. Solid and dashed 708 

lines indicate significant (p < 0.05) and nonsignificant (p > 0.05) linear regression relationships, 709 

respectively. 710 

 711 
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Figure 2. Elevational patterns of soil microbial community α-diversities. (a and b) Shannon 713 

and inverse Simpson diversity index of bacterial communities, respectively; (c and d) Shannon 714 

and inverse Simpson diversity index of fungal communities, respectively. Dashed lines indicate 715 

nonsignificant (p > 0.05) linear regression relationships. 716 

 717 
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Figure 3. Distance-based redundancy analysis (db-RDA) of the relationship between 719 

predictor variables and the Bray–Curtis dissimilarity distance between microbial 720 

communities. Dots indicate individual samples; the arrow lengths and directions correspond to 721 

the variance explained by the individual variables. The figure shows the three most important 722 

variables to keep it concise. Figure S5 shows all the results for the variables' R2. 723 

 724 
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Table S1. Comparisons of climate, soil, and vegetation on contrasting bedrocks. 748 

Variable Granite Slate w p Significanc
e 

MAT 21 ± 2.52 21.81 ± 3.47 875 0.268 ns 

AGB 20.46 ± 7.95 14.33 ± 3.86 1550 0.000 * 

Plant Shannon 2.66 ± 0.49 2.89 ± 0.37 675 0.006 * 

Soil pH 4.41 ± 0.18 4.67 ± 0.28 373 0.000 * 

Soil moisture 0.18 ± 0.05 0.17 ± 0.03 950 0.616 ns 

Bulk density 0.76 ± 0.21 0.83 ± 0.15 723 0.019 * 

SOC 81.49 ± 34.39 84.87 ± 27.09 880 0.288 ns 

Soil TN 2.02 ± 0.88 2.42 ± 0.63 661 0.004 * 

Soil TP 0.23 ± 0.1 0.49 ± 0.09 41 0.000 * 

Soil C:N 41.93 ± 12.09 34.76 ± 4.88 1469 0.000 * 

Soil C:P 397 ± 166 171 ± 40 1865 0.000 * 

Soil N:P 9.33 ± 2.64 4.9 ± 0.8 1868 0.000 * 

Clay 40 ± 18.48 64.78 ± 18.82 325 0.000 * 

Silt 28.02 ± 9.26 23.36 ± 8.69 1375 0.003 * 

Sand 31.67 ± 26.14 11.86 ± 21.32 1400 0.002 * 

Slope direction 72 ± 63 51 ± 29 1038 0.843 ns 

 749 

 750 
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Table S2. Spearman correlation coefficients between soil microbial communities’ characters 752 

and environmental variables using all data from two transects. Significant coefficients (p < 0.05) 753 

are in bold. B.Biomass: Bacterial biomass; F.Biomass: Fungal biomass; B.F.ratio: ratios of 754 

bacterial to fungal biomass; G.G.ratio: ratios of gram positive to gram negative bacterial 755 

biomass; Bacteria.H: Bacterial Shannon index; Bacteria.invs: Bacterial inverse Simpson index; 756 

Fungi.H: Fungal Shannon index; Fungal.invs: Fungal inverse Simpson index. 757 

 MAT pH Moistu
re 

Clay AGB Plant.
H 

SOC Soil.P C:N C:P N:P 

All            

B.Biomass -0.24 -0.13 0.21 0.15 -0.37 -0.01 0.56 0.38 -0.10 -0.04 0.01 

F.Biomass -0.15 -0.06 0.05 -0.06 -0.20 -0.10 0.17 -0.17 0.01 0.23 0.30 

B.F.ratio -0.13 -0.03 0.21 0.32 -0.19 0.12 0.33 0.63 -0.26 -0.41 -0.42 

G.G.ratio -0.29 -0.32 -0.07 -0.37 -0.12 -0.51 0.29 -0.40 0.38 0.67 0.69 

Bacteria.H -0.16 0.27 -0.05 0.19 -0.15 -0.07 -0.07 0.06 0.03 -0.08 -0.11 

Bacteria.invs -0.13 -0.23 -0.09 -0.17 0.09 -0.21 0.07 -0.35 0.34 0.41 0.38 

Fungi.H -0.28 0.06 0.15 -0.02 -0.25 -0.03 -0.02 0.10 -0.11 -0.07 -0.09 

Fungi.invs -0.04 0.15 0.27 -0.05 -0.11 -0.05 -0.20 -0.04 -0.12 -0.10 -0.12 
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Table S3. Spearman correlation coefficients between soil microbial communities’ 759 

characters and environmental variables on granite and slate, respectively. Significant 760 

coefficients (p < 0.05) are in bold. B.Biomass: Bacterial biomass; F.Biomass: Fungal biomass; 761 

B.F.ratio: ratios of bacterial to fungal biomass; G.G.ratio: ratios of gram positive to gram 762 

negative bacterial biomass; Bacteria.H: Bacterial Shannon index; Bacteria.invs: Bacterial 763 

inverse Simpson index; Fungi.H: Fungal Shannon index; Fungal.invs: Fungal inverse Simpson 764 

index. 765 

 MAT pH Moistu
re 

Clay AGB Plant.
H 

SOC Soil.P C:N C:P N:P 

Granite            

B.Biomass -0.37 -0.31 0.24 0.27 -0.38 0.09 0.76 0.66 -0.23 0.01 0.23 

F.Biomass -0.36 0.01 -0.33 0.00 -0.53 -0.16 0.43 0.13 -0.06 0.25 0.51 

B.F.ratio -0.07 -0.41 0.72 0.40 0.15 0.32 0.38 0.71 -0.35 -0.40 -0.39 

G.G.ratio -0.19 0.06 -0.35 -0.34 -0.52 -0.53 0.35 -0.17 0.26 0.55 0.65 

Bacteria.H -0.08 0.38 -0.23 0.14 0.02 -0.26 -0.04 -0.12 0.23 0.17 0.16 

Bacteria.invs -0.15 0.09 -0.30 -0.03 -0.20 -0.09 0.12 -0.20 0.24 0.34 0.37 

Fungi.H -0.30 -0.03 0.19 -0.30 -0.22 -0.21 0.11 0.07 -0.07 -0.08 -0.07 

Fungi.invs -0.17 -0.01 0.26 -0.45 -0.15 -0.44 -0.04 -0.02 0.05 -0.08 -0.21 

Slate            

B.Biomass -0.07 -0.21 0.05 0.01 -0.15 -0.08 0.20 0.09 0.12 0.22 0.24 

F.Biomass 0.12 0.20 0.42 0.18 -0.07 0.25 -0.16 -0.13 -0.12 -0.10 -0.04 

B.F.ratio -0.08 -0.33 -0.51 -0.17 0.03 -0.40 0.30 0.20 0.19 0.23 0.17 

G.G.ratio -0.45 -0.09 0.26 0.19 -0.43 -0.10 0.36 0.43 0.14 0.20 0.20 

Bacteria.H -0.26 0.32 0.00 0.11 -0.08 0.22 -0.13 -0.02 -0.06 -0.10 -0.17 

Bacteria.invs -0.09 -0.18 0.21 0.07 0.02 -0.09 0.12 -0.05 0.21 0.23 0.11 

Fungi.H -0.36 0.33 0.02 0.10 -0.41 0.34 -0.16 0.34 -0.22 -0.34 -0.37 

Fungi.invs -0.05 0.45 0.19 0.25 -0.24 0.46 -0.37 0.12 -0.32 -0.47 -0.46 
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Figure S1. Distribution of sampling sites along two subtropical elevational transects. (a) 767 

Location of the sampling sites within East Asia, indicated by a red square; (b) Distribution of 768 

sites along the two transects, where red dots represent granite sites and blue dots represent 769 

slate sites. Elevations are marked by numbers near each dot. The base map is a color-coded 770 

DEM derived from SRTM 90m data. 771 

 772 
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Figure S2. Elevational patterns of soil temperature, moisture, and vegetation 774 

characteristics on granite and slate bedrock. (a) Mean annual soil temperature; (b) Mean 775 

annual soil moisture; (c) Plant diversity, measured by the Shannon index; (d) Above-ground 776 

biomass. Solid and dashed lines indicate significant (p < 0.05) and nonsignificant (p > 0.05) 777 

linear regression relationships, respectively. 778 
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 Figure S3. Elevational patterns of soil physical-chemical properties on granite and slate 780 

bedrock. (A) soil organic carbon concentration; (B) soil total phosphorus concentration; (C) soil 781 

clay content; (D) soil silt content; (E) soil pH; (F) soil moisture. Solid and dashed lines indicate 782 

significant (p < 0.05) and non-significant (p > 0.05) linear regression relationships, respectively. 783 

 784 
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Figure S4. Principal Component Analysis (PCA) of environmental variables vary along 786 

two elevational transects on granite and slate bedrocks.  787 

 788 
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Figure S5. Variables’ R2 in the redundancy analysis (RDA) in Figure 3 in the main text. R2 790 

indicates the proportion of variation of soil microbial communities explained by the variables, 791 

respectively. Star next to a bar indicates that it is statistically significant (p < 0.05).  792 

 793 
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Figure S6. Effects of bedrock on microbial community assembly processes. (a–b) Fit of 795 

the neutral community model to bacterial communities on granite and slate, respectively. (c–d) 796 

Fit of the neutral community model to fungal communities on granite and slate, respectively. 797 

Black dots indicate the best fit to the model (± 95% confidence intervals); R2 values indicate 798 

level of neutral community model prediction accuracy and Nm indicates estimated migration 799 

volume of samples. “R2” represented overall goodness of fit of the NCM, with higher values 800 

indicating that the improved fit was the result of stochastic processes; “N” represented microbial 801 

metacommunity size (number of OTUs); “m” represented migration rate of microbes, with 802 

smaller values indicating less diffusion limitation.  803 
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