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Distinct biophysical and chemical 
mechanisms governing sucrose mineralization 
and soil organic carbon priming in biochar 
amended soils: evidence from 10 years of field 
studies
Haoli Zhang1†, Tao Ma2†, Lili Wang3*, Xiuling Yu4, Xiaorong Zhao1, Weida Gao1, Lukas Van Zwieten6, 
Bhupinder Pal Singh7, Guitong Li1, Qimei Lin1, David R. Chadwick5, Shenggao Lu4, Jianming Xu4, Yu Luo4, 
David L. Jones5,7 and Peduruhewa H. Jeewani4,5* 

Abstract 

While many studies have examined the role of biochar in carbon (C) accrual in short-term scale, few have explored 
the decadal scale influences of biochar on non-biochar C, e.g., native soil organic C (SOC) and added substrate. To 
address this knowledge gap, soils were collected from decade-old biochar field trials located in the United Kingdom 
(Cambisol) and China (Fluvisol), with each site having had three application rates (25–30, 50–60 and 75–100 Mg  ha−1) 
of biochar plus an unamended Control, applied once in 2009. We assessed physicochemical and microbial properties 
associated with sucrose (representing the rhizodeposits) mineralization and the priming effect (PE) on native SOC. 
Here, we showed both soils amended with biochar at the middle application rate (50 Mg  ha−1 biochar in Cambisol 
and 60 Mg  ha−1 biochar in Fluvisol) resulted in greater substrate mineralization. The enhanced accessibility and avail-
ability of sucrose to microorganisms, particularly fast-growing bacterial genera like Arenimonas, Spingomonas, 
and Paenibacillus (r-strategists belonging to the Proteobacteria and Firmicutes phyla, respectively), can be attributed 
to the improved physicochemical properties of the soil, including pH, porosity, and pore connectivity, as revealed 
by synchrotron-based micro-CT. Random forest analysis also confirmed the contribution of the microbial diversity 
and physical properties such as porosity on sucrose mineralization. Biochar at the middle application rate, however, 
resulted in the lowest PE (0.3 and 0.4 mg of  CO2-C g  soil−1 in Cambisol and Fluvisol, respectively) after 53 days of incu-
bation. This result might be associated with the fact that the biochar promoted large aggregates formation, which 
enclosed native SOC in soil macro-aggregates (2–0.25 mm). Our study revealed a diverging pattern between substrate 
mineralization and SOC priming linked to the biochar application rate. This suggests distinct mechanisms, biophysical 
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and physicochemical, driving the mineralization of non-biochar carbon in a field where biochar was applied a decade 
before.

Highlights 

• The application of biochar at a moderate rate (50–60 Mg  ha−1) resulted in increased labile C mineralization 
and decreased priming of native SOC.

• Biochar amendments led to the reconfiguration of physicochemical properties, including pH, porosity, 
and the formation of aggregates.

• Modified microbial community structure towards more r-strategists caused greater sucrose mineralization.
• Biochar incorporation rate governed the C dynamics via (biophysical vs physicochemical mechanisms) in long-

term biochar amended fields.

Keywords X-ray CT, Porosity, Aggregates, Microbial community, Decadal-scale field study

Graphical Abstract

1 Introduction
Sequestration of soil organic carbon (SOC) is one mech-
anism that can offset greenhouse gas emissions, while 
improving the physicochemical and biological proper-
ties of soil (Lehmann et  al. 2015). Biochar was a stable 
additive for long-term soil carbon (C) storage (Lehmann 
et  al. 2011). The amendment of soil with biochar  has 
been widely proposed for increasing SOC due to its 
resistance to biotic and abiotic degradation. Biochar can 

increase and/or decrease the turnover rates of both exist-
ing SOC and low molecular weight C compounds (e.g., 
rhizodeposits); therefore, biochar may facilitate the diver-
gent effects on mineralization of SOC  (Whitman et  al. 
2014; Keith et  al. 2015). However, the C sequestration 
potential of biochar amended soils and its interaction 
with native SOC and low molecular weight C compounds 
may change as biochar ages  in soil, and related informa-
tion is lacking.
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There are, however, interactions between biochar and 
non-biochar carbon (NBC), e.g., SOC, rhizodeposits 
and crop residues (Luo et  al. 2011; Weng et  al. 2017). 
For example, biochar can stimulate a short-term positive 
priming effect (PE), with up to five-fold losses of native 
SOC over a period of 87  days (Luo et  al. 2011; Maes-
trini et al. 2015; Wang et al. 2016), or induce a negative 
PE (Li et al. 2018; Yu et al. 2020) whereby SOC is further 
stabilized. The literature tends to agree that the posi-
tive priming effect is short-term, and that longer-term 
negative priming effects stabilize SOC (Weng et al. 2015, 
2022). Similarly, when labile sources of C (e.g., glucose) 
are added into biochar amended soils, both positive and 
negative PE effects on SOC mineralization were widely 
reported (Zhang et  al. 2019; Zimmerman and Ouyang 
2019). These inconsistent results of biochar related C 
mineralization can be attributed to the differences in the 
intrinsic properties of substrate (e.g., hydrophobicity), 
biochar itself, as well as the changes in edaphic proper-
ties of soil (Luo et al. 2017; Zheng et al. 2021). The legacy 
effects on the soil changes after the application of biochar 
that affect the dynamics of non-biochar C determine its 
overall sequestration effects of biochar, and it is there-
fore important to have a comprehensive understanding 
of biotic and abiotic mechanisms underpinning the fate 
of non-biochar C, i.e., new input of C or native SOC in 
biochar amended soils.

Biochar has been shown to provide improvements in 
soil physical properties including bulk density, aggrega-
tion, intra-aggregate pores and pore connectivity (Zong 
et al. 2015; Yu et al. 2018; Yu and Lu 2019), due to its low 
density and high specific surface area (Laird et al. 2010; 
Singh and Cowie 2014; Yu et al. 2018). Biochar has also 
been observed to increase soil aggregation by 16% (Islam 
et al. 2021). It is generally understood that soil aggregates 
confine plant debris in the core of the microaggregates, 
thus stabilizing new C and protecting it from microbial 
mineralization, whereas existing SOC is more commonly 
protected in occluded forms within microaggregates 
(Blanco-Canqui and Lal 2004).

The modifications of physicochemical properties 
caused by biochar can facilitate the growth of microbes 
and alter soil microbial communities (Nielsen et al. 2014). 
Present short-term studies both in the laboratory and in 
the field have showed that after incorporation into soil, 
biochar could induce significant changes in soil microbial 
biomass, activity  and community composition (Farrell 
et al. 2013; Luo et al. 2013; Ameloot et al. 2014; Gomez 
et  al. 2014). Application of biochar can facilitate with 
soil microbial assembly through providing high C inputs 
and improving resource accessibility for microbes due 
to porous structure (Lehmann and Joseph 2009; Smith 
et  al. 2010). Biochar can also provide suitable habitats 

for microbial survival and protection from predators 
due to compartmentalisation (Pietikäinen et  al. 2000; 
Lehmann et  al. 2011; Luo et  al. 2013). In contrast, bio-
char may also inhibit microbial activity via adsorbing/sta-
bilizing organic substances due to its large surface area 
or aggregate formation (Kasozi et  al. 2010; Rutigliano 
et al. 2014). A modification of the physiochemical prop-
erties of microbial ecological niche (e.g. soil pH, C and 
nutrient availability) can have negatively effect on certain 
microbial communities (Hardy et al. 2019). For instance, 
two years after biochar incorporation,  Ameloot et  al. 
(2014)  observed a lowered soil microbial activity, abun-
dance and shifted community composition in biochar 
amended soil with a rate of  49 Mg  ha−1 compared to the 
non-amended soil. Biochar can sequester C by shifting 
the bacterial community towards low C turnover bacte-
rial taxa (e.g., Acidobacteria and delta Proteobacteria), 
which may also indicate a microbiological mechanism of 
stabilization of  SOC under long-term biochar addition 
(Chen et al. 2019; Liao et al. 2019). Whether the changes 
in soil properties and microbial communities caused by 
biochar application persist for years afterwards is unclear, 
as most field studies haven’t investigated beyond a few 
years.

Despite an increasing number of studies that show bio-
char effects on soil physicochemical and microbial prop-
erties, a paucity of information still exists on the impact 
of these soil abiotic and biotic changes on C dynam-
ics (exogenous C inputs or SOC). This is especially the 
case for longer-term field-based studies. To address this 
knowledge gap, we utilized soil from decade-long biochar 
field trials in the United Kingdom (Cambisol) and China 
(Fluvisol), where three biochar application rates were 
applied. The objectives of this study were to determine 
the effects of biochar, with a decadal scale, on (i) soil 
physicochemical properties (e.g. pore traits as analyzed 
by synchrotron-based X-ray CT), (ii) microbial commu-
nity structure (analyzed by sequencing), and (iii) how 
these biochar-induced abiotic and biotic changes affect 
C mineralization (exogenous sucrose mineralization and 
sucrose-induced SOC priming). We hypothesized that: 
(i) the presence of biochar would increase sucrose min-
eralization due to higher accessibility to microorganisms, 
particularly r-strategists, via enhanced soil porosity and 
pore connectivity, and (ii) biochar would lower substrate-
induced SOC priming, resulting from changes in soil 
aggregation that protect SOC from microbial mineraliza-
tion. This study aims to improve our understanding of the 
mechanisms underpinning C mineralization and seques-
tration potential in biochar-amended soils by quantifying 
native SOC, substrate derived C mineralization patterns 
and changes in soil physicochemical properties, micro-
bial communities, and their interactions.
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2  Materials and methods
2.1  Site description
The soils were collected from two long-term (10  years) 
biochar field trials: (i) the Long-Term Biochar Agronomic 
(LTBA) field trial at Bangor University in Abergwyngr-
egyn, Wales, United Kingdom (53° 23′ 37″ N, 4° 01′ 44″ 
E), and (ii) the trial at the Shang-Zhuang experimental 
station of the China Agricultural University in Haidian 
district, Beijing, China (40° 08′ 21″ N, 116° 10′ 52″ E). 
The soil at the UK site was a sandy clay loam and clas-
sified as a Eutric Cambisol (IUSS Working Group WRB, 
2015). The mean annual rainfall  is 1250  mm,  and the 
mean annual air temperature is 10.6  °C. Here, mixed-
hardwood biochar pyrolyzed at 450 °C for 48 h was added 
to the soil surface and power harrowed into the soil in 
2009 at the application rates of 0, 25, 50, and 75 Mg  ha−1 
(Additional file  1: Table  S6). The soil collected from 
China was classified as a Eutric Fluvisol  (IUSS Working 
Group WRB, 2015) with the application of biochar at 0, 
30, 60, and 90 Mg  ha−1 in 2009. It has a typical continen-
tal monsoon climate, with 400 mm annual precipitation 
and 11.6  °C annual air temperature. Biochar was pro-
duced with woodchip waste from mushroom production 
and was pyrolyzed at 400  °C for 48 h (Additional file 1: 
Table S7).

2.2  Experimental setup
An incubation experiment was conducted over 53  days 
to investigate the priming effects of exogenous sub-
strate (sucrose) application to soil. The treatments of 
the experiment were control (0 Mg   ha−1), low rate (25–
30 Mg  ha−1), middle rate (50–60 Mg  ha−1) and high rate 
(75–90 Mg  ha−1) for both Cambisol and Fluvisol, respec-
tively, with three replicates (n = 3). Soil cores (~ 500  g, 
δ13C = −26.36 ~ −0.01‰ and δ13C = −24.78 ~ −0.07‰ 
Cambisol and Fluvisol respectively) were collected from 
the 0–10  cm layer of each replicated plot at both sites. 
The soil cores were packed in plastic bags to preserve 
them in optimal conditions, then transported to Zhejiang 
University, China. The water holding capacity (WHC) 
of soil cores were adjusted without disturbing the struc-
tures and preincubated at 25  °C for 7  days before start-
ing the experiments, to avoid any early sampling effects 
on soil processes (Kemmitt et al. 2008).  Sucrose, a com-
monly used, easily available, low molecular weight car-
bon compound representing rhizomatous deposition, 
was used as a substrate and was added at a rate of 10 mg 
sucrose  g−1 soil to represent a realistic annual residual 
C input to soil (Nottingham et  al. 2009). After the pre-
incubation, 1% sucrose solution (δ13C = −11.97 ± 0.12‰) 
was applied into soil column using a pipette (the con-
tent of added water was accounted to reach 40% WHC). 
The un-amended soil cores were treated in the same way 

with distilled water without sucrose. Then soil cores were 
incubated inside a 1000  mL glass jar containing 10  mL 
water in the base to maintain humidity. For the collec-
tion of  CO2, a 25 mL glass vial containing 20 mL of 1 M 
NaOH was placed in each large jar. The jars were then 
sealed with rubber bungs and incubated in a randomized 
block design at 25 ℃ for 53 days. Three additional blanks, 
consisting of jars with only water and NaOH, were 
included for quality control purposes. The NaOH vials 
were replaced after 1, 3, 7, 14, 28 and 53 days. The incu-
bation jars were opened periodically to maintain aerobic 
conditions (Jeewani et al. 2021).

2.3  Soil properties
The initial soil physiochemical and biological properties 
were measured. Soil pH was measured using a soil:water 
ratio of 1:2.5 (w/w) (Ling et  al. 2022). Total soil C (TC) 
and N (TN) concentrations were determined by dry 
combustion (Perkin Elmer EA 2400, Shelton, CT, USA) 
(Jeewani et  al. 2021). Microbial biomass carbon (MBC) 
was determined by fumigation extraction (Vance et  al. 
1987; Wu et  al. 1990). The  K2SO4 extractable organic C 
was quantified using an organic carbon auto-analyzer 
(Shimadzu, Analytical Sciences, Kyoto, Japan). The cation 
exchange capacity (CEC) was determined by a modified 
 NH4

+-acetate compulsive displacement method (Gaskin 
et  al. 2008). Soil bulk density (BD) was measured for 
both sites using a core sampling method (Casanova et al. 
2016). Dry sieving method was used for soil fractiona-
tion which was adapted from Elliott (1986). At the end of 
the incubation, 20 g representative samples were passed 
through a series of three sieve sizes (0.053 mm, 0.25 mm, 
and 2  mm,) to isolate four aggregate size fractions: 
(i) > 2 mm (large macroaggregates); (ii) 0.25–2 mm (small 
macroaggregates); (iii) 0.053–0.25  mm (microaggre-
gates); (iv) < 0.053 mm (silt and clay fraction). Meanwhile, 
stones, roots and other impurities were eliminated in the 
soil samples. Then the whole series of sieves were moved 
up and down for 7 min at 30 cycle  min−1. The aggregate 
fractions retained on each sieve were weighed. The natu-
ral 13C abundance in the soils, biochar and soil aggregate 
fractions were determined using an isotope ratio mass 
spectrometer (DELTA V plus IRMS) coupled with an ele-
mental analyzer  (EA NA1500—EA 1110 device, Carlo 
Erba and Thermo Fisher Scientific Bremen, Germany).

2.4  Analysis of  CO2‑C
An aliquot (5  ml) from the collected NaOH trap was 
mixed with 10 ml water and titrated against 0.5 M HCl 
using an Easy Plus auto titrator (Mettler Toledo, Greifen-
see, Switzerland). The 13C-CO2 was analysed according to 
methods of Aoyama et al. (2000). In brief, an 8 mL aliquot 
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from the NaOH trap was added to 8 mL 1.5 M  BaCl2 in 
a 50 ml centrifuge tube, and  the solution was incubated 
at 25 °C for 0.5 h before being centrifuged at 4000 × g for 
10  min. The resulting  BaCO3 precipitate was carefully 
rinsed with water three times, placed in a refrigerator for 
24  h and freeze-dried overnight. The precipitates were 
collected, and ca. 0.200 mg was accurately weighed into 
tin boats (4*4*11 mm). The prepared samples were then 
analyzed for δ13C using an Elementar vario micro cube 
elemental analyzer coupled with GV isoprime 100 iso-
tope ratio mass spectrometer (GV Instruments, United 
Kingdom).

2.5  δ13C calculations
The mineralization of sucrose (C4-derived) was distin-
guished from biochar amended soil (C3 derived) min-
eralization based on the changes in the stable isotopic 
composition (δ13C) over time. The standard equation for 
determining δ13C is derived from:

The value of 13C and 12C atomic ratio of the standard 
material was 0.0112372, where  Rsample is the mass ratio of 
13C to 12C of the sample, and  RPDB is the mass ratio of 13C 
to 12C of the Vienna Peedee belemnite  (VPDB) standard 
(Craig 1953).

where  Ct is the total  CO2,  C3 and  C4 are the respective 
amounts of  CO2 derived from the  C3 soil and  C4 sub-
strate, δt is the δ13C value of the  Ct (from the total  CO2), 
δ3 is the δ13C value of the  C3 soil (δ13C = −26.36 ~ −0.01‰ 
and δ13C = −24.78 ~ −0.07‰ Cambisol and Fluvisol 
respectively), and δ4 is the δ13C value of the  C4 substrate 
(δ13C = −11.97 ± 0.12‰). Thus, the  CO2-C produced by 
the substrate (sucrose) during the incubation could be 
determined.

The priming effect (or primed soil  CO2-C) with the 
addition of sucrose was calculated from: 

PE was calculated as the difference between SOM-
derived  CO2 from soil substrate added  (CSOM(substrate 

added)) and SOM-derived  CO2 from soil without substrate 
added  (CSOM(without substrate added)).

(1)δ
13C(‰) = [

Rsample

RVPDB
− 1] × 1000

(2)C4 = Ct ×

(

δt − δ3

δ4 − δ3

)

(3)Ct = C3 + C4

(4)
Priming effect =CSOM(substrate added)−

CSOM (without substrate added)

2.6  C retention and loss calculations
The theoretical average C content of each treatment was 
calculated according to the following equation:

where, C1 is the C content of biochar (g C  kg−1), W1 is the 
proportion of biochar mass in the soil-biochar mixture of 
each treatment, C2 is initial soil C content (g C  kg−1), and 
W2 is the proportion of soil in the soil–biochar mixture 
of each treatment.

The C content of each aggregate fraction was calcu-
lated. These values were summed to determine total C 
retention for each treatment at the end of the experiment 
according to the following equation (Sheng et al. 2020):

where, Ci is the C content of each aggregate fraction (g 
C  kg−1), and Pi is the proportion of the whole soil mass 
represented by each aggregate fraction. The difference 
between theoretical average C content and the sum of 
C in the aggregate fractions was defined as C loss dur-
ing the incubation, calculated according to the following 
equation:

2.7  Synchrotron‐based X‑ray CT analysis
Synchrotron‐based X-ray CT scanning combined with 
imaging was used to determine soil pore structure and 
total porosity. At the completion of the incubation, soil 
cores (40 mm diameter and 50 mm length) were assessed 
using 320  kV X-ray computed tomography in  situ 
(NIKON, United Kingdom) to provide a high-resolution 
3D soil pore structure. In each scan, 1250 angular pro-
jection images were collected, and each radiograph was 
averaged over 32 frames. Ring artifacts were minimized 
during data acquisition, and a 0.5 mm copper filter was 
used to reduce beam hardening. The software package 
CT-Pro v.1.0 (Metris X-Tek Systems Ltd., Hertfordshire, 
United Kingdom), which employs the filtered back-pro-
jection algorithm for CT reconstruction, was used to 
obtain the three-dimensional maps of attenuation coeffi-
cients from the two-dimensional angular projections. The 
three-dimensional images of attenuation coefficients with 
the isotropic voxel size of 0.0734  mm were then trans-
lated into a continuous stack of two-dimensional 16-bit 
TIFF images (Additional file  1: Fig. S4) using the soft-
ware VG Studio MAX 1.2.1 (Volume Graphics GmbH, 
Heidelberg, Germany). The quantitative analysis of pores 
is mainly using Image J software based on the intervals 

(5)Theoretical C content = C1W1 + C2W2

(6)Total C retention =
∑4

i=1
Ci × Pi

(7)
Total C loss = Theoritical C content − Total C retention
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of each agglomerate, with a size of 400*400*400 pixels 
within each macroaggregate (Schneider et al. 2012).

2.8  Analysis of 16S rRNA
DNA was extracted from 0.50 g of freeze-dried soil using 
a Fast DNA Spin Kit (MP Biomedicals, Santa Ana, CA, 
USA) according to the manufacturer’s protocol. The 
extracted DNA was dissolved in 50 μl of TE buffer, and 
the concentrations of DNA were quantified using a Nan-
odrop 2000 (Thermo Scientific, Willmington, USA). 
Samples were stored at –80  ˚C before sequencing. The 
bacterial 16S rRNA gene fragments were amplified using 
primer sets targeting the V4-V5 variable region. The 
forward primer is 515F (5’-GTG CCA GCMGCC GCG 
GTAA-3’) linked with a specific-sample 5-bp barcode 
sequence at the 5’end of primer, and 806R (5’-GGA CTA 
CHVGGG TWT CTA AT-3’) was used as the reverse 
primer. Each sample was amplified in triplicate, then the 
three reaction products were pooled and purified using 
Agincourt Ampure XP beads (Indianapolis, USA). All 
amplicons were pooled across all samples at equimo-
lar concentrations (20 ng μl−1) into a composite sample, 
and the index sequencing of paired-end 250 bp was per-
formed on an Illumina HiSeq 2000 platform. All the pro-
cedures for bacterial and fungal DNA amplification and 
sequencing were performed by Major bio, Inc. (Shanghai, 
China).

The raw 16S rRNA gene sequencing reads were demul-
tiplexed, quality-filtered by Trimmomatic, and merged by 
FLASH with the following criteria: (i) The 300 bp reads 
were truncated at any site receiving an average quality 
score of < 20 over a 50 bp sliding window, truncated reads 
shorter than 50 bp, or containing ambiguous characters 
were discarded; (ii) Only overlapping sequences longer 
than 10 bp were assembled according to their overlapped 
sequence. The maximum mismatch ratio of the overlap 
region is 0.2. Reads that could not be assembled were 
discarded; (iii) Samples were distinguished according 
to the barcode and primers, and the sequence direction 
was adjusted. Operational taxonomic units (OTUs), with 
a 97% similarity cut off (Liu et  al. 2017), were clustered 
using UPARSE (version7.1, http:// drive5. com/ uparse/), 
and chimeric sequences were identified and removed. 
The taxonomy of each OTU representative sequence was 
analyzed by RDP Classifier (http:// rdp. cme. msu. edu/) 
against the 16S rRNA database (e.g., Silva SSU128) using 
a confidence threshold of 0.7. Equimolar purified ampli-
cons were pooled and paired-end sequenced (2 × 300) on 
an Illumina MiSeq platform (Illumina, San Diego, USA) 
according to the standard protocols by Majorbio Bio-
Pharm Technology Co. Ltd (Shanghai, China). The ampli-
con sequence data were deposited in National Centre for 

Biotechnology Information under the accession number 
PRJNA 817743.

2.9  Statistical analysis
Shannon index was calculated for bacterial community. 
For β-diversity analysis, the dissimilarity of bacterial 
communities was calculated via principal coordinates 
analyses (PCoA). Distance-based linear model multivari-
ate analysis (distLM) was conducted in distLM forward3 
software (Anderson 2003) and used to determine the rel-
ative effects of soil variables such as TN, TC, C:N, DOC, 
MBC, pH, CEC, BD, pore size, porosity, and pore con-
nectivity on soil bacterial community. Two-way orthogo-
nal partial least squares (O2PLS) analysis was performed 
using the SIMCA-P 14 (Version 14.1.0.2047) to correlate 
the microbial genera to the dynamics of the substrate 
mineralization and PE. The Y-matrix was designed as 
the C dynamics datasets, and the X-matrix was designed 
as the microbial community data sets (Trygg and Wold 
2003). To test the relative importance of environmen-
tal variables in driving substrate mineralization and 
PE, we used a random forest analysis (Liaw and Wiener 
2002). Environmental variable validation was done for 
soil chemical properties (CEC, pH, TN, TC, C:N ratio), 
physical properties (> 2  mm aggregates, 0.25–2  mm 
aggregates, < 0.25  mm aggregates, pore connectivity), 
and biological properties (Network occurrence, co-
occurrence pattern of bacteria in-network (eigen values), 
bacterial diversity, the relative abundance of Firmicutes, 
Proteobacteria and Actinobacteria). The random forest 
package was used to estimate the contributions/influ-
ences of the above-mentioned variables on C dynamics, 
including the substrate mineralization and PE. The path-
ways and drivers of substrate mineralization and PE were 
investigated by structural equation modeling (SEM), 
which can determine the direction, magnitude, and effect 
relationships. The SEM was conducted using AMOS 
21.0 to confirm possible causal relationships between 
abiotic variables and the biotic community on C dynam-
ics. In the SEM, chi-squared values were used to evalu-
ate model fitting, while a non-chi-squared test (P > 0.05) 
indicates a good fit of the model to the data. The analysis 
of correlation metrics calculated the coefficients of each 
path. The path in this model was considered significant 
with a P < 0.05. A correlation network for all three differ-
ent biochar amendmends of Cambisol and Fluvisol was 
generated to visualize the associations between the diver-
sity of different phyla and the measured environmental 
variables such as > 2 mm aggregates, 0.25–2 mm aggre-
gates, < 0.25 mm aggregates, pore connectivity CEC, pH, 
TN, TC, C:N ratio using the Cytoscape. For the construc-
tion of networks, the OTUs with relative abundances 

http://drive5.com/uparse/
http://rdp.cme.msu.edu/
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greater than 0.01% were kept, and the dissimilarity 
threshold to the maximum value of the KLD matrix and 
the Spearman’s correlation threshold of 0.8 were calcu-
lated. For each edge and measure, permutation and boot-
strap distributions were computed with 100 iterations. 
Measure-specific P-values were generated as the area of 
the mean of the permutation distribution under a Gauss 
curve, computed from the mean and standard deviation 
of the bootstrap distribution. The P-values were adjusted 
using the Benjamini–Hochberg procedure (Benjamini 
and Hochberg 1995). Finally, only edges supported by 
two measures and with adjusted P-values below 0.05 
were retained. The nodes in the constructed networks 

represent OTUs, and edges represent strong and sig-
nificant correlations between OTUs. Network visualiza-
tions were conducted using Gephi (Bastian et  al. 2009) 
and Cytoscape 3.5.1 (Shannon et al. 2003). The Network 
Analyzer tool was used to calculate the network topology 
parameters. Genera with the highest betweenness cen-
trality scores were considered keystone species (Martín 
González et al. 2010).

The statistical analysis of all non-microbial data was 
performed using SPSS 20 (SPSS, Inc., Chicago, IL, USA). 
One way analysis of variance (one-way ANOVA) was 
used to analyze the effect of biochar addition. Residuals 
were checked for normal distribution and homogeneity 

Fig. 1 Cumulative sucrose-derived  CO2 evolved from the Cambisol (A), Fluvisol (B) and cumulative primed soil  CO2 evolved from the Cambisol 
(C), Fluvisol (D) caused by the various biochar doses: Control (no biochar addition), low rate (25 and 30 Mg  ha−1), medium rate (50 and 60 Mg  ha−1) 
and high rate (75 and 90 Mg  ha−1), after 53 days of incubation. Error bars represent standard errors of the means (n = 3)
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Fig. 2 Microbial biomass carbon (A) dissolved organic carbon (B), pH (C), C:N ratio (D), soil aggregate size distribution (E), bulk density (F), 
and porosity (G and H) following biochar addition: control, low rate (25, 30 Mg  ha−1), medium rate (50, 60 Mg  ha−1), and high rate (75, 90 Mg  ha−1) 
doses. Error bars represent standard errors of the means (n = 3)
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by Shapiro–Wilk and Levene’s tests, respectively. If con-
ditions were met, the Tukey Post-hoc test was performed 
to reveal differences between the treatments. All compar-
isons were made within each sampling date.

3  Results
3.1  The substrate derived  CO2 evolution, and priming 

effects
During the 53-day incubation period, higher cumula-
tive mineralization of applied substrate was observed in 
the Cambisol (2.4–4.5 mg of C g  soil−1) compared to the 
Fluvisol (2.1–3.4  mg of C g  soil−1) (Fig.  1A and B). The 
application dose of biochar at 50  Mg   ha−1 in the Cam-
bisol had the highest cumulative substrate-derived C 
mineralization, followed by 75 Mg  ha−1. The 25 Mg  ha−1 
biochar application rate was only slightly greater than 
the unamended Control, but still statistically significant 
(Fig.  1A). A similar trend was observed in the Fluvisol, 
with 60 Mg   ha−1 of biochar presenting with the highest 
substrate mineralization, but 90 Mg  ha−1 and 30 Mg  ha−1 
not proving different from the Control (Fig. 1B). Further 
substrate derived C fluxes were highest on day 7 and day 
14 after incubation in Cambisol and Fluvisol, respectively 
(Additional file 1: Fig S1).

The PE on native SOC mineralization through the 
addition of sucrose resulted in an immediate (within the 
first week) increase of soil  CO2. Cumulative PE reached 
a peak within 2–3 weeks and, following day 28, negligi-
ble PE was detected in both soils (Fig.  1C and D). The 
cumulative PE on native SOC mineralization following 
substrate addition was the lowest in the 50–60 Mg  ha−1 
biochar treatment (0.3 and 0.4 mg of C  g−1 of soil on day 
53) in both Cambisol and Fluvisol. In comparison, the 
cumulative PE was the highest in the Control (1.2 mg of 
C  g−1 of soil) on day 53 of the incubation (Fig. 1D). There 
was a decrease in PE of  CO2-C by 0.2 and 0.8 mg of C  g−1 
soil in the Cambisol and Fluvisol, respectively, amended 
with 50–60 Mg  ha−1 biochar application (Fig. 1C and D).

3.2  Aggregate‑associated C storage and losses
The impacts of biochar on aggregate-associated C stor-
age largely mirrored the soil C balance. The retention of 
soil C in the 50–60 Mg  ha−1 biochar application rates was 

14.2 g C  kg−1 for the Cambisol and 9.4 g C  kg−1 for the 
Fluvisol at the end of the incubation (Additional file  1: 
Table S1). When examining total C loss (substrate min-
eralization + SOC priming) during the incubation, the 
Cambisol and Fluvisol with biochar dose of 75 Mg   ha−1 
lost 12.5 g C  kg−1 and 12.9 g C  kg−1 compared to other 
biochar application doses. In the Fluvisol, soil with 
90  Mg   ha−1 of biochar lost 8.5  g C  kg−1 soil. Total C 
retention was highest for both soil types where biochar 
was applied at 50–60 Mg  ha−1, and the highest loss of C 
was found where biochar was applied at 75–90 Mg  ha−1 
biochar.

3.3  Soil physical properties
Sucrose addition to biochar amended soil, after ten years 
in two field sites, increased soil pH, MBC, C:N ratio and 
decreased bulk density particularly for the middle addi-
tional rate compared to the Control. In contrast, BD and 
contents of DOC were significantly decreased under 
middle biochar amendment (Fig. 2). The results showed 
an increased quantity of soil aggregates in the 0.25–2 mm 
size class compared to the Control (Fig.  2E). Increased 
aggregate stability in the > 2 mm and 0.25–2 mm aggre-
gate size was highest when biochar was applied at the 
middle doses (i.e., 50 and 60  Mg   ha−1) to the Cambisol 
and Fluvisol (1.5 and 1.7 fold, respectively). The BD sig-
nificantly decreased with increasing biochar dose, hav-
ing a greater effect in the Cambisol than the Fluvisol 
(Fig.  2F). Synchrotron‐based X‐ray micro‐computed 
tomography (X-ray μ-CT) indicated that the overall 
increase of soil porosity occurred in the lower pore size 
range (< 0.1 mm) with biochar amendments (Fig. 2G and 
H). Among different biochar rates, the 50 and 60 Mg  ha−1 
biochar amendment of both Cambisol and Fluvisol soils 
had the highest soil porosity: 15.3% and 19.5%, respec-
tively. The highest pore size distribution was reported 
from 50 and 60 Mg  ha−1 biochar addition to the Cambi-
sol and Fluvisol (Fig. 2G and H).

3.4  Soil microbial community structure
The different biochar application doses significantly 
altered the microbial community structure in the Fluvisol 
and the Cambisol. The phyla that were most abundant in 
both soils included Actinobacteria, Proteobacteria, and 

Fig. 3 The bacterial community composition (A, B), alpha diversity by Shannon diversity indices (C, D), Beta diversity by PCoA analysis (E, F), 
and co-occurrence networks of medium biochar dose to Cambisol (G) and Fluvisol (H). Four biochar doses were assessed: control (nil amendment), 
low (25, 30 Mg  ha−1), medium (50, 60 Mg  ha−1), and high (75, 90 Mg  ha−1), after 53 days of incubation. For the correlation networks, the relative 
abundance of the top 200 bacterial OTUs was used. Blue and red lines represent significant positive and negative correlations (P < 0.05), respectively. 
Green circles represent the responsible genera, and red circles represent soil physical factors

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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Acidobacteria. The phylum Proteobacteria showed a sig-

nificant increase in abundance in the Cambisol at 50 and 
60 Mg  ha−1 biochar application doses, a result not found 
in the Fluvisol (Fig. 3A and B). The bacterial α-diversity, 
assessed by the Shannon index, was higher in the 50 and 
60 Mg   ha−1 biochar application rates, while the Control 
had the lowest diversity in both soils. (Fig.  3C and D). 
PCoA showed compositional dissimilarities between 
treatments, with the loadings of PC1 24.6%, PC2 19.2% 
for Cambisol and PC1 53.4%, and PC2 13.8% for Flu-
visol (Fig.  3E and F). The largest variation in bacterial 
communities occurred following biochar amendment, 
as indicated by the separation along the first principal 
coordinate.

The best multivariate distance-based linear modeling 
(distLM) analysis (Anderson and Legendre 1999) was 
applied to analyze the contributions of edaphic factors 
that determined the microbial community, including TN, 
TC, C:N, DOC, MBC, pH, CEC, BD, pore size, poros-
ity, pore connectivity and > 2  mm aggregate fraction to 
the microbial community. The soil bacterial community 
was affected by DOC (18%), MBC (16%), pH (18%), CEC 
(19%), BD (17%), porosity (19%) and pore connectivity 
(15%). The bacterial community variations (51%) were 
explained by soil physical factors (porosity, pore connec-
tivity and bulk density). Soil chemical properties (DOC, 
pH, and CEC) occupied 55% of the bacterial contribution 
(Table 1).

In co-occurrence networks, the application of biochar 
modified the interactions between bacterial and envi-
ronmental factors (Fig. 3G,  H, Additional file 1: Figs. S2 
and S5). Although there were more positive interactions 
(co-presence) in the bacterial networks of low and high 
biochar additional rates, interactions between physical 
properties (porosity, bulk density, pore connectivity and 
pore size) and keystone taxa were more prominent in the 
50–60  Mg   ha−1 biochar rate compared with other bio-
char doses (Fig. 3G and H). Arenimonas, Sphingomonas, 
Devosia and Paenibacillus were positively correlated with 
substrate mineralization using O2PLS analysis and the 
keystone genera cause community stability in co-occur-
rence networks (Fig. 3G and  H, Table 2 and Additional 
file  1: Fig. S3). Blastococcus and Rhodococcus were key-
stone genera in the Control that showed a negative corre-
lation with porosity and a positive correlation with the PE 
(Fig. 3G and  H, Table 2 and Additional file 1: Table S3).

Random forest analysis was used to evaluate the poten-
tial predictors of substrate-derived C mineralization and 
PE on native SOC (including aged biochar). We found 
that the physical factors (porosity, pore connectivity, 
BD, > 2  mm aggregate class, 0.25–2  mm aggregate class, 
and < 0.25  mm aggregate class) were the main determi-
nants of substrate-derived C mineralization (Fig.  4A), 
whereas chemical factors (TC, TN, CEC, pH, and C:N 
ratio) contributed more to the PE than physical and bio-
logical variables, including substrate-derived C minerali-
zation (Fig.  4A and B). Network co-occurrence patterns 
and abundance of Firmicutes were the most-likely predic-
tors for substrate-derived C mineralization. The bacterial 
community composition and bacterial diversity were the 
most important contributors towards the PE on native 
SOC. To quantify the relative importance of the different 
controlling factors on PE and substrate mineralization, an 
SEM was constructed based on the known relationships 
between the PE and substrate-derived C mineralization. 
The effects of substrate application showed a reasonable 
fit to our hypothesized causal relationships (Additional 

Table 1 Contributions of edaphic variables to the bacterial 
community as analyzed by distance-based linear modelling 
(distLM) analysis

* p < 0.05; **p < 0.01

CEC cation exchange capacity, DOC dissolved organic carbon, MBC microbial 
biomass carbon, TC total C, TN Total Nitrogen, C:N Carbon/Nitrogen ratio

Variable Bacterial 
contribution

CEC 0.19**

Porosity 0.19*

pH 0.18**

DOC 0.18*

Bulk density 0.17*

MBC 0.16*

Pore connectivity 0.15*

TN 0.13*

TC 0.12

C:N 0.11

Pore size 0.11

Table 2 Two-way orthogonal partial least squares analysis 
to reveal the core functional genera (with variable influence 
projection (VIP) > 1.4) involved in C dynamics, including priming 
effect (PE) and substrate mineralization

* p < 0.05; **p < 0.01; ***p < 0.001

Phylum Genus VIP value Priming
effect

Substrate
mineralization

Proteobacteria Arenimonas 1.63 − 0.55** 0.88***

Sphingomonas 1.56 − 0.78** 0.84**

Devosia 1.52 − 0.71* 0.78***

Actinobacteria Blastococcus 1.62 0.73** 0.66**

Rhodococcus 1.59 0.81** –

Gaiella 1.58 0.94*** –

Firmicutes Paenibacillus 1.79 − 0.69** 0.86**

Shimazuella 1.46 − 0.73** 0.78*
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file  1: Fig. S2). The model accounted for 78% variance 
of substrate mineralization and 81% variance of the PE. 
Porosity, pore connectivity, DOC, network co-occurrence, 
and Firmicutes exerted a dominant direct positive effect 
on substrate-derived C mineralization. Actinobacteria 
and DOC were positively associated with PE, whereas the 
porosity, pore connectivity, and network co-occurrence 
pattern were negatively linked with the PE.

4  Discussion
4.1  Biophysical mechanisms controlling sucrose 

mineralization
The amendment of soils with biochar more than a dec-
ade prior to sampling for the present study showed more 
rapid mineralization of applied sucrose (Fig.  1a). It was 
proposed that substrate mineralization is mainly regu-
lated by biochar-induced changes in soil physicochemi-
cal and biological properties, e.g., pH, microbial activity, 
porosity, aggregation and MBC (Hamer et al. 2004; Singh 
and Cowie 2014; Watzinger et  al. 2014). Similar to our 
findings, it was reported that biochar amendment after 
four years increased  soil pH, MBC and C:N ratio and 
decreased bulk density, particularly for the 40  Mg   ha−1 
biochar dose compared to the Control (Zheng et  al. 
2016). However, recent studies showed that biochar 

induced changes, such as the  improved soil aggregation 
and porosity could be found in the fields several years 
after addition (Jones et  al. 2012; Liu et  al. 2017; Wang 
et al. 2017). Similarly, the medium application rates (50–
60 Mg  ha−1) resulted in the greatest increase in porosity 
and aggregation (Fig. 2E, G, H). Further, it was consistent 
with previous studies showing that biochar amendment 
to soil increases in µ-CT porosity, pore connectivity and 
decreases soil bulk density (Herath et  al. 2013; Brewer 
et al. 2014; Quin et al. 2014; Liu et al. 2017). Indeed, Quin 
et  al. (2014) amended biochar to soil at 5% (w/w) (con-
sistent with around 50–60 Mg  ha−1 in the current study) 
and showed the greatest increase in porosity and pore 
connectivity in two different soils (Vertisol and Ferralsol).

Accordingly, the high porosity (< 0.1 mm) (as reported 
under the 50–60  Mg   ha−1 biochar treatments) directly 
reduced physical constraints and thus (i) promoted 
microbial accessibility to sucrose, and (ii) increased activ-
ity and diversity of microbial community. Greater pore 
connectivity of soils facilitates the movement of gases 
(i.e., oxygen), water, soluble organic substrates and nutri-
ents, which can promote microbial activity, diversity 
and consequently facilitate C mineralization (Ruamps 
et  al. 2011; Ananyeva et  al. 2013). The observed higher 
cumulative substrate mineralization was consistent with 

Fig. 4 Random forest represents the relative importance of soil physical, chemical and biological variables for substrate mineralization (A) and SOC 
mineralization (B). CEC cation exchange capacity, TN total nitrogen, TC total carbon, C:N carbon nitrogen ratio, > 2 mm, > 2 mm aggregates; 
0.25–2 mm; 0.25–2 mm aggregates, < 0.25 mm; < 0.25 aggregates, P. connectivity, Pore connectivity; Network occurrence pattern represent 
co-occurrence pattern of bacteria by eigen values; Bacterial diversity; alpha diversity of bacteria
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previous studies, potentially attributed to the activation 
of the dormant microbial communities starved of labile 
C (Chotte et  al. 1998; Hamer et  al. 2004; Hamer and 
Marschner 2005). It was reported that the high poros-
ity provides habitat for soil microbial colonization (Luo 
et  al. 2013) and modulates their interactions with C/
nutrients that can be adsorbed by biochar (Hockaday 
et al. 2006; Herath et al. 2013). An increase in soil bacte-
rial alpha diversity (Shannon) in biochar amended soils 
(50–60 Mg  ha−1) was also observed (Fig. 3C and D), sug-
gesting greater sucrose utilization (Barret et  al. 2011; 
Carbonetto et  al. 2014; Chen et  al. 2021). Similarly, it 
was reported that the presence of labile C and biochar 
resulted in  greater microbial diversity and  promoted 
greater substrate mineralization (Anderson et al. 2011).

Among the linkages of the bacterial networks, co-pres-
ence (positive interactions) was increased under biochar 
amendment at 50–60 Mg  ha−1, suggesting mutually ben-
eficial interactions of bacteria for substrate acquisition 
(Herath et  al. 2013; Brewer et  al. 2014; Liu et  al. 2017). 
Chen et  al. (2019) found that biochar-induced competi-
tion within microbial groups stimulated soil microbial 
diversity and thus reduced C mineralization. However, 
interactions between 25–30 and 75–90 Mg  ha−1 biochar 
amended soil did not represent strong relationship with 
physical properties in both soils, supporting that mid-
dle application rate (50–60 Mg  ha−1) of biochar strongly 
influenced physiochemical properties of the soils while 
shifting the microbial community (Fig. 3G, H and  Addi-
tional file  1: Fig. S5). It was reported that among the 
physical properties, biochar application reduced bulk 
densities by 29% and increased porosity by 59% (Singh 
et  al. 2022). Different aspects of soil structure also 
improved in response to amendments including biochar 
(Blanco-Canqui 2017), and resulted in changes in micro-
bial composition, abundance, and activities (Lehmann 
et  al. 2011) by providing favourable environments with 
aeration, water, and nutrients (Ameloot et  al. 2014). 
Because of microbial shifting, key soil processes such as 
C mineralization could be altered by the biochar addi-
tional rate (Ullah et  al. 2020). The inconsistent results 
might be due to differences in types of biochar, soils and 
aging effects that modulated opposite traits of dominant 
microbiotas. Drivers of inconsistencies in responses are 
various, including heterogeneity among experiments 
related to soil types and rates of biochar application 
(ranging from 5 to 150 t  ha−1), properties of biochar as 
a function of feedstock (Atkinson 2018).  Still, the com-
prehensive understanding of microbial interactions 
underlying C dynamics shaped by changes in biochar-
induced soil physicochemical properties remains largely 
unexplored.

4.2  Insight into physicochemical mechanisms underlying 
biochar caused SOC priming

Since the priming of SOC could negate the biochar C 
sequestration potential in soil, trade-offs between new 
input C stabilization and SOC priming need to be better 
understood and quantified. There is a paucity of knowl-
edge on substrate-induced priming of SOC from long-
term biochar field trials. The current study showed that 
substrate (sucrose, as a proxy for rhizodeposits in this 
study) addition to soil stimulated mineralization of native 
SOC, causing positive priming (Fig.  1C and D). Inter-
estingly, we found an opposite trend of PE with biochar 
application, compared to sucrose mineralization. As indi-
cated by the random forest analysis, modification of soil 
properties (e.g., pH, MBC, TN, and TC), and the modu-
lation of microbial communities (Proteobacteria, and 
Firmicutes) by biochar showed a combined effect on the 
PE following the addition of sucrose (Fig. 4). It was docu-
mented that several factors are responsible for priming in 
long-term biochar incorporated soils like chemical struc-
ture of SOC, microbial community composition, and soil 
aggregation (Herath et  al. 2015; Martinsen et  al. 2015; 
Wang et al. 2016). Biochar applied at 50–60 Mg  ha−1 to 
field sites more than a decade ago showed suppressed 
sucrose-induced PE by 2 to 3 folds than that of the Con-
trol (Fig. 1C and D). This could have occurred as a result 
of the high pH, MBC, C:N ratio and modified microbial 
community in the middle biochar rate soil. Most stud-
ies suggested that biochar could affect the abundance of 
microorganisms due to its direct changes on the phys-
icochemical properties of the soil (Lehmann et al. 2011; 
Ameloot et  al. 2014; Jaafar et  al. 2014). Some previous 
studies reported that the microbial communities and 
bacterial diversity in the soil change differently with long-
term biochar application (Khodadad et al. 2011). As such, 
PE is complicated as a result of the ratio between “r-strat-
egist” and “K-strategist”, which depends on pH, nutrient 
status, substrates, (Rasul et al. 2022). Interestingly, domi-
nant microbial taxa in middle dose biochar falling into 
the “r-strategist” are better adapted for rapid response to 
new applied C sources than native SOC leading low SOC 
mineralization.

Other explanations may include middle biochar appli-
cation maintained a greater MBC, aggregation and lower 
DOC, yet incorporation of C into physically protected 
soil fractions was possible. This observation may hint at 
processes of SOC stabilization can occur via processes 
such as improved aggregation, adsorption, or compart-
mentalization. The main mechanisms of the lower PE 
induced by biochar involved soil aggregate formation, 
which physically protects SOC against microbial miner-
alization (Du et  al. 2017; Weng et  al. 2017; Zheng et  al. 
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2018). Previous studies have demonstrated that biochar 
stimulates aggregate formation, which limits microbial 
access to SOC and thus causes lower mineralization of 
native SOC (Yu et al. 2012; Wang et al. 2017). In another 
study, biochar enhanced aggregation in finer-textured 
soils was associated with an increase in physically pro-
tected C incorporated into macro-aggregates, including 
both > 2  mm (large macroaggregates) and 0.25–2  mm 
(small macroaggregates) (Wang et al. 2017).

In contrast to the middle application dose, we observed 
higher SOC loss in the 75–90 Mg  ha−1 biochar treatment, 
which had core genera such as Streptomyces (Additional 
file 1: Table S3) and smaller effects by aggregation (Addi-
tional file 1: Table S1). It was reported that Streptomyces 
bacteria are well adapted to complex ecosystems, com-
posed of complex C substrates where they grow myce-
lium  with multiple hyphae to search SOC (Antido and 
Climacosa 2022). Moreover, the absence of a substantial 
aggregate structure in soil could result in greater acces-
sibility of SOC, nutrients and oxygen to microbes, which 
is likely to stimulate SOC mineralization (Dungait et al. 
2012).

Several other mechanisms may be involved in the bio-
char-induced changes in soil properties that result in PE. 
The development of organo-mineral complexes through 
interactions with negatively charged surface functional 
groups on SOC (e.g., R–COO–) and soil minerals (e.g., 
Al–O–, Fe–O–, and  Si–O–) describes mechanisms 
involved in biochar induced C stabilization (Joseph 
et  al. 2010; Weng et  al. 2018). These interfacial reac-
tions enhance the oxidation resistance of biochar parti-
cles leading to the lower PE induced by new substrates, 
such as rhizodeposits (Yang et al. 2016; Weng et al. 2018). 
Based on the literature, the “aging” of biochar results in 
the formation of organic functional groups on biochar 
surfaces (Cheng et  al. 2006; Lützow et  al. 2006). Thus, 
this might enhance biochar interactions with native SOC 
and clay minerals e.g. through ligand exchange or cation 
bridging mechanisms (Lützow et al. 2006). In summary, 
biochar applied at 50–60 Mg   ha−1 lowered substrate-
induced SOC priming, resulting in the modified micro-
bial community due to changes of soil physicochemical 
properties such as pH, MBC, CEC and aggregation that 
protect SOC from microbial access.

Fig. 5 Conceptual diagram of C dynamics via interaction of physicochemical properties (porosity, connectivity) that resulted in higher microbial 
diversity and accessibility, thus larger new C input mineralization, but offset by lower SOC priming due to the protection provided by enhanced 
aggregation
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4.3  Involvement of core taxa on sucrose mineralization 
and SOC priming

Random forest analysis showed that the core bacteria 
such as Firmicutes and Proteobacteria revealed by the 
co-occurrence network (eigen values) had the great-
est effects on sucrose mineralization (Fig.  4). Similarly, 
O2PLS analysis indicated the significance of the soil bac-
terial phyla Proteobacteria and Firmicutes in substrate 
mineralization (Table  2),  especially the genera Areni-
monas, Sphingomonas (γ-Proteobacteria), Paenibacil-
lus and Shimazuella (Firmicutes). Dominance of these 
fast growth genera (r-strategists) might explain larger 
sucrose mineralization (Table 2), as these r-strategists are 
quickly adapted to respond to newly available C sources 
(Kuzyakov and Gavrichkova 2010; Luo et al. 2011). These 
results are consistent with other reports, where the gen-
era Sphingomonas  and Devosia  (Proteobacteria) have 
been reported to dominate by utilizing labile C resource 
as fast-growing r-strategists (Fierer et al. 2007; Sun et al. 
2022). Furthermore, it was reported that the  genera 
Arenimonas and  Spingomonas can utilize organic acids, 
modulate C and nutrient intake according to their meta-
bolic needs, facilitating labile C mineralization (Carbon-
etto et al. 2014; Makk et al. 2015; Schostag et al. 2019).

According to O2PLS and Random Forest analysis, there 
are several genera (e.g., Blastococcus and Arenimonas) 
utilizing both sucrose and SOC. The stimulation of SOC 
mineralization after substrate addition to the biochar 
amended soil has been attributed to co-metabolic min-
eralization of SOC by the microbial enzymes, which were 
produced to utilize the labile C in soil (Singh and Cowie 
2014; Cheng et  al. 2017). This supports our findings of 
fast-growing genera, e.g., Arenimonas, Spingomonas 
which were positively correlated with PE. Further, less 
priming accompanied with greater substrate mineraliza-
tion may occur due to substrate-switching among those 
genera by the preferential use of a labile C source over a 
more refractory one (Zimmerman and Ouyang 2019).

The phylum Actinobacteria is considered to contain 
many representative taxa known to degrade recalcitrant 
forms of C (Barret et  al. 2011). For example, Blastococ-
cus, Gaillia and Rhodococcus (affiliated to Actinobacteria) 
can act as regulators of native SOC mineralization with 
the highest variable influence projection (VIP) having 
a positive correlation (Table  2). Actinobacteria have a 
high affinity for both labile C and complex C substrates, 
and their ability to grow like soil fungi makes it possible 
to explore the soil in search of C sources (McCarthy and 
Williams 1992). For instance, Actinobacteria can access 
C/nutrients using branched filaments in oligotrophic 
conditions. Moreover, Actinobacteria are generally 
enriched in enzymes (e.g., glycoside hydrolases) respon-
sible for degrading cellulose, starch and xylan, facilitating 

recalcitrant C decomposition (Pold et al. 2016). Soils with 
biochar applied at 50–60 Mg  ha−1 had a lower abundance 
of Actinobacteria (Fig. 3), therefore partially explaining the 
lower priming of SOC following substrate addition (Fig. 1).

4.4  Environmental implications
The potential of utilizing biochar to store C in the soil has 
received considerable research attention in recent years as 
part of efforts to develop climate-smart agricultural prac-
tices (Weng et  al. 2017). The impact of biochar on soil 
physicochemical and biological properties is vital to the C 
dynamics (e.g., direction, magnitude and duration of bio-
char-induced PE) in biochar amended soil. We therefore 
fully assessed soil physicochemical and biological changes 
in the soils amended with biochar a decade prior to the 
present study. Here, we showed the highest sucrose min-
eralization as well as the lowest SOC priming after amend-
ment of biochar at the medium rate, suggesting the best 
dose for biochar application to achieve greatest C seques-
tration effect. Less PE observed in medium application of 
biochar suggests less native SOC loss, whilst greater min-
eralization of sucrose implies the increased turnover of 
new added substrate. Also, more C provision for microbial 
use may enhance SOC via metabolites and necromass.

It is critical to disentangle the mechanisms (physical, 
chemical and biological) underpinning the long-term bio-
char induced C dynamics as these determine both SOC 
turnover and biochar C sequestration potential in soil. Our 
study highlights non-biochar C dynamics and provides evi-
dence of how biochar affects C mineralization via soil abi-
otic and biotic properties (Fig. 5). Various rates of biochar 
application into the soil affects physiochemical properties 
differently, thereby modifying the core microbiome in soil 
towards r-strategist or K-strategist. Thereby the application 
of middle dose biochar enhanced substrate accessibility to 
microorganisms, particularly r-strategists, via improved soil 
porosity and pore connectivity. On the other hand, prim-
ing of SOC following sucrose addition was lower in biochar 
amended soil, with the SOC protected through changes to 
physicochemical properties such as CEC and aggregates.

5  Conclusions
This study investigated the legacy effects of biochar over 
ten years after application to two managed field trials. The 
purpose of the study was to evaluate long-term biochar 
effects, including control of SOC stocks, physicochemical 
and biological properties. We found that soils amended 
with biochar at the rate of 50–60 Mg  ha−1 (medium appli-
cation rate) 10 years prior to this study showed increased 
mineralization of applied sucrose (1.9-fold in Cambisol 
and 1.4-fold in Fluvisol) compared to the Control. This was 
mainly due to improved soil porosity and connectivity that 
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enhanced microbial accessibility to the labile C. The shift in 
the bacterial community dominated by fast-growing micro-
organisms (e.g., Arenimonas and Sphingomonas) suggests 
r-strategists benefited from this higher porosity and acces-
sibility to labile C. Biochar application at 50–60  Mg   ha−1 
significantly minimized SOC priming (0.6-fold in Cambi-
sol and 0.3-fold in Fluvisol compared to Control), making 
it the optimal dose for maximizing biochar’s potential for 
enhanced C sequestration. The promoted aggregation by 
biochar was associated with the improved protection of 
SOC. We showed the dominant governing mechanisms of 
mineralization of substrate (sucrose) and native SOC are 
biophysical and physicochemical, we also proved that the 
legacy effects of biochar continue at least a decade after 
application in comparison to non-biochar C dynamics.
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