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Summary

Chapter One gives an exposition of the theory of automorphisms of crossed modules over
groupoids. We introduce notions of free derivation and their Whitehead multiplication,
and invertible free derivations also called coadmissible homotopies. We prove that with
this multiplication the set F Der*(C) of all coadmissible homotopies is a group and that
there is a morphism A : FDer*(C) — Aut(C) which is a part of a pre-crossed module

which gives rise to a 2-crossed module
M(C) — FDer*(C) — Aut(C).

Chapter Two gives a detailed proof of the Brown-Spencer theorem on the equivalence
between crossed modules over groupoids and double groupoids with connection. We define
linear coadmissible sections for the special double groupoid corresponding to a crossed
module, and we prove that the group of all linear coadmissible sections and the group of
coadmissible homotopies are isomorphic.

Chapter Three generalises the notion of “locally Lie groupoid” to dimension 2 for the
special double groupoid called “V-locally Lie double groupoid” and relates this to corre-
sponding notions for crossed modules. We localise the definitions of linear coadmissible
sections and coadmissible homotopies and prove that these form isomorphic inverse semi-
groups. We define a corresponding notion of germ, and from this obtain a holonomy
groupoid as an abstract groupoid Hol(D(C), W©).

Chapter Four gives the Lie structure on Hol(D(C), W) and gives its universal property,
which shows how a V-locally Lie double groupoid give rise to its holonomy groupoid. This
is the main Globalisation Theorem.

Chapter Five gives suggestions for further work in the area.
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Introduction

The object of this thesis is to consider the extension to dimension 2 of some notions in
the loca,l'-to—globa‘l theory of Lie groupoids, and which are important in the foundations of
differential topology and its applications. We refer particularly to the notion of holonomy
in the theory of foliations.

The concept of holonomy has a long and continuing history in differential geometry.
However, its 2-dimensional version still needs to be investigated. The main part of this

thesis is to attempt this.

0.1 Background

0.1.1 Holonomy for foliations

The notion of the holonomy groupoid was introduced by Ehresmann and Weishu in [24]
and Ehresmann in [21], for a locally simple topological foliation on a topological space X
(this means that X has two comparable topologies, and with respect to the finer topology
on X, a cover by open sets, in each of which the two topologies coincide.) It is constructed
as a groupoid of local germs of the groupoid G’ of holonomy isomorphisms between the
transverse spaces [jl of simple open subsets U; of X such that (U;,U;41) is a pure chain.
The holonomy group at = € X is the vertex group G(z) of G. This holonomy group is
isomorphic to the holonomy group G(y) for each y € X on the same leaf of the foliation
as z.

Pradines [43] considered this holonomy groupoid G, in a wider context, with its dif-



ferential structure. He took the point of view that a foliation determines an equivalence
relation R by xRy if and only if  and y are on the same leaf of the foliation, and that
this equivalence relation should be regarded as a groupoid R in the standard way, with
multiplication (z,y)(y,z) = (z,2) for (z,y),(y,z) € R. The locally differential structure
which gives the foliation determines, if X is paracompact, a differential structure not on
R itself but ‘locally’ on R, that is, on a subset W of R containing the diagonal A(X)
of X. This leads him to a definition of “un morceau différentiable de groupoide” G, for
which Mackenzie [37] used the term “ locally differentiable groupoid”. Pradines’ note [43]
asserts essentially that such a (G, W) determines a differential groupoid Qo(G, W) and a
homomorphism P : Qo(G, W) — G such that the “germ” of 1 extends to a differential
structure on G if and only if P is an isomorphism. However his statement of results as-
sumes that the base X is paracompact and that (G, W) is a-connected, i.e.,, a7 (z) N W
is connected for each z € X.

The groupoid Qo(G. W) is called holonomy groupoid of (G,W). Aof-Brown [1] gives
full details of Pradines’ construction in the topological case and the modifications for the
Lie case are indicated by Brown-Mucuk [14].

One of the key motivations for the construction of the holonomy groupoid in [43] is
the construction of the monodromy groupoid of a differential groupoid. An outline of
Pradines’ construction is given in [4]. Full details are given by Brown and Mucuk in [15].
Formulations and proofs of these two structures, holonomy and monodromy, in the locally
trivial case, have been given in Mackenzie [37].

Following Ehresmann’s work, there has long been interest in the holonomy group of a
leaf of a smooth foliation, see for example [33, 34]. For the locally differential groupoid cor-
responding to a smooth foliation, the vertex groups of the Ehresmann-Pradines holonomy
groupoid are the holonomy groups in the standard sense.

The holonomy groupoid G of a smooth foliation on a manifold X with its smooth



structure was rediscovered (using a different, but equivalent, description) by Winkelnkem-
per [50], as the “graph of foliation”. This was defined as the set S of all triples (z,y,[7]),
where z,y € X are on the same leaf L of the foliation, v is a continuous path on L from z
to y and [y] is the equivalence class of v under the equivalence relation ~ which is given
by: for the two paths 71, 72 in L from z to y along, 71 ~ vz if and only if y37,7! is zero.

Connes [20] has considered this differentable holonomy groupoid G of the foliation and
applied to it his general theory of integration based on transerve measures on a measurable
groupoid.

Phillips [42] defines the holonomy groupoid Hol(X, F') of a foliated manifold (X, F') as
a quotient groupoid of the monodromy groupoid Mon(X, F'). This develops earlier work
of Winkelnkemper, Phillips who only puts a manifold structure on Hol(X, F).

Also, Haefliger [27] defines a related holonomy groupoid, and consider its classifing

space as a representative of the homotopy type of the transverse structure of the foliation

F.

0.1.2 Local equivalence relation and “local subgroupoids”

In this subsection we mention some of our work related to that of the thesis but not
included in it.

At present, it seems that only the holonomy of an equivalence relation has been exten-
sively studied, in the form of the holonomy groups and holonomy groupoids of a smooth
foliation. In this sense, Rosenthal [46, 47] has considered the concept of local equivalence
relations, which was introduced by Grothendieck and Verdier [26] in a series of exercises
presented as open problems concerning the construction of a certain kind of topos. A local

equivalence relation is a global section of the sheaf £ which is defined by the presheaf
E ={E(U), Eyv, X},
where E(U) is the set of all equivalence relations on the open subset U of X and Eyv is

3



the restriction map from E(U) to E(V), for V C U. Moreover this presheaf is not a sheaf.
The key idea in this case is connectedness of the equivalence classes.

Rosenthal [47] has investigated the way a locally topological groupoid arises from a
local equivalence relation. However, he esentially puts on the local equivalence relation
enough conditions to ensure that it gives rise to a pair (G, W) satisfiying all the conditions
for a locally topological groupoid. Brown and Mucuk [14] have verify that these conditions
are satisfied for the local equivalence relation determined by a foliation on a paracompact
ma.nifold, for suitable W.-

Kock and Moerdijk [31] have given alternative accounts of the theory of local equivalence
relations using topoi and étendues. They prove that the category of r-sheaves is equivalent
to the classifing topos BMon(F') associated to the monodromy groupoid of foliations for a
local equivalence relation r. They define a map of classifing (spaces or) topoi BAfon(F') —
BHol(F) by using the well-known groupoid homomorphism from Mon(F') onto Hol(F).

Brown and igeu in work in preparation [12] have considered the concept of local equiva-
lence relation in a wider context, i.e, local subgroupoid. A local subgroupoid of a groupoid

(¢ on a topological space X is a global section of the sheaf £ associated to the presheaf
Le ={L({U), Lyv, X}

where L(U) is the set of all wide subgroupoids of G |y and Lyv is the restriction map from
L(U) to L(V) for V C U.

It is well known that an equivalence on X is a wide subgroupoid of the groupoid X x X.
This suggest that the well-known theory of local equivalence relations can be generalised to
a theory of local subgroupoids. We show that this is indeed so far the works of Rosenthal
[46, 47].

Brown and Icen [12] have obtained the holonomy groupoid of certain local subgroupoids

by using the idea of a locally topological groupoid. For this reason, they define weakly



s-a.daptable family, regular and strictly regular local subgroupoids and show that if s is a

strictly regular local subgroupoid of the topological groupoid G on X and
glob(s) = H, W =UgexH,,

then (H,W) is a locally topological groupoid. So we get under these circumstances a
holonomy groupoid of the locally topological groupoid (H, W).

At the heart of these foundations is the notion of Lie or locally Lie groupoid - the former
is often éa.lled in earlier literature “differential groupoid”, but the term Lie groupoid gives

a better impression of the ideas and of the area of applications.

0.2 A 2-dimensional version of Holonomy

Our interest in this thesis is to test ways of extending to dimension 2 various of the above
mentioned constructions in the theory of Lie groupoids.

For a 2-dimensional version, there are a number of possible choices for 2-dimensional
versions of groupoids, for example double groupoids, 2-groupoids, crossed modules over
groupoids. We are not able at this stage to give a version of holonomy for the most general
locally Lie double groupoids. It seems reasonable therefore to restrict attention to those
forms of double groupoids whose algebra is better understood, and we therefore considered

the possibility of a theory for one of the equivalent categories
(CrsMod) ~ (2 — Grpd) ~ (DGrpd!),

which denote respectively the categories of crossed modules over groupoids, 2-groupoids
and “special double groupoids with connection”.

In this way, we hope to come nearer to 2-dimensional extensions of the notions of
transport along a path. This would hopefully give ideas of, for example, transport over a

surface, and pave the way for further extensions to all dimensions. It is hoped that this



will lead to a deeper understanding of higher dimensional constructions and operations in
differential topology.

One of the hints as to a way to procede lies in the way a group G gives rise to a crossed
module G — Aut(G). The homomorphism G — Aut(G) which sends an element z € G to
the inner automorphisms of G — G, k +— —z + k + z, with the standard action of Aut(G)
on (. This has been called (Norrie) [41] the actor crossed module of the group G. The
notion of crossed module was introduced by Whitehead [49]. In the case of a groupoid G

with base space X, we will see that the actor crossed module is of the form
kg: M(G) — Aut(G)

where M(G) is the group of coadmissible sections of G, i.e., sections s of the final map
B: G — X such that as: X — X is a bijection. Note that k¢, the “inner automorphism”
map, is given by

kG(s) 1 a— saa+a — sfa

In the case G is a Lie groupoid, Ehresmann focussed attention first on the smooth
coadmissible sections (in fact he used admissible sections), and then on the notion of local
smooth coadmissible sections. From these he constructed various kinds of prolongation
groupoids.

Pradines explained in 1981-85 to R.Brown the use of such sections in the case of locally
Lie groupoids, and how this led to a construction of a holonomy groupoid for a large class
of locally Lie groupoids. One special case of this construction is the holonomy groupoid of
a foliation. This goes via a locally Lie groupoid constructed from the foliation [15].

Here we are exploring the implications of the idea that a natural generalisation to
crossed modules of the notion of coadmissible section is that of coadmissible homotopy.
This arises naturally from the work of Brown-Higgins [11] on homotopies for crossed com-

plexes over groupoids, and also relates interestingly to important work of Whitehead [48],



which was followed up by Lue [36], Norrie [41] and Brown and Gilbert [6] on automorphisms
of crossed modules over groups.
There is considerable evidence to suggest that crossed modules can be thought of as

a 2-dimensional version of groups. The principal argument for this is the fundamental

crossed module
6:ma( X, A, z) = 7 (A4, )

of a pair of pointed spaces (X, A), where 73(X, A, x) is the second relative homotopy group,
and m1(A, ) is the fundamental group [49]. This notion has also been generalised to the
fundamental crossed module on a set Ay of base points, which gives a family of groups
{ma(X, A, z)}2e4, on which the fundamental groupoid m;(A4, Ag) acts.

There are also many algebraic examples of crossed modules, see in Chapter 1.

We now describe the Chapters in detail.

In Chapter I, we combine the notion of coadmissible sections, which is fundamental to
the work of Ehresmann [21], with the notion of homotopy of morphisms of crossed modules,
which occurs in Whitehead’s account [48] of automorphisms of crossed modules and which
is later developed by Lue, Norrie, Brown-Gilbert [36, 41, 6].

We introduce the definition of free derivation for a crossed module C = (C, G, §) with

the base space X. A free derivation s is a pair of maps so: X' — G, 87 : G — C which

satisfy the following

B(soz) = z, z€ X
Blsie) = Bla), a€G,
si(a+d) = s1(a)’ 4 s1(b), a,beG.

Let FDer(C) be the set of free derivations of C.

We prove that if s is a free derivation of the crossed module C = (C, G, §) over groupoids,



then the formulae

fo(z) = aso(z),
fi(a) = so(aa)+ a+ 8s1(a) — so(Ba),
fale) = (c+ s16¢c)7*0F()

define an endomorphism f = (fo, f1, f2) of C and write f = A(s) = (fo, f1, f2)

We prove that F'Der(C) has a monoid structure with the following multiplication.

(s+42) = {

—~

s *t)o(z) = (s0go(z)) + to(z), €=0, z=z€ X,
sxt)i(a) = t1(a) + (s101(a))?P?), e =1,z = a € G(z,y),

where ¢ = (go,91,92) = A(t). This Inlultiplica‘tion, for e = 0, give us Ehresmann’ multipli-
cation of coadmissible homotopies, and for € = 1 and to(z) = 1, for all € X, gives the
multiplication of derivations introduced by Whitehead [48].

Let FDer*(C) denote the group of invertible elements of this monoid. Then each
element of F'Der*(C) is also called a coadmissible homotopy.

We prove the following theorems.
Theorem 1.3.5 Let s € FFDer(C) and let f = A(s). Then the following conditions are
equivalent.

(i) s € FDer*(C), (i) fi € Aut(G), (iii) fo € Aut(C).

Theorem 1.3.6 There is an action of Aut(C) on s € FDer*(C) given by

| fi'sofola), a€ X
Sf((l) = { f2_131f1(ﬂ), a € G

for each a € G(z,y), which makes A: F'Der*(C) — Aut(C) a pre-crossed module.

The fact that A : FDer*(C) — Aut(C) is a precrossed module is also a special case of
results of Brown-Gilbert [6], which applies the monodial closed structure of the category
of crossed complexes introduced by Brown-Higgins in [11]. In fact the description of A :
FDer*(C) — Aut(C) is carried out explicitly in Brown-Gilbert [6] Proposition 3.3, for the

case C is a crossed module over a group.



‘Thus, there is some overlap with the work of Brown and Gilbert [6]. However they
explain in detail in their Proposition 3.3 only the case of crossed modules over groups, and
this relies on the bulk of the theory on the monoidal closed structure for crossed complexes.
So in our Chapter 1 we give a complete and explicit account, from the beginning, of the
automorphism theory of crossed modules over groupoids.

There are results in [6] on the “2-crossed module structure”
M — P x Der*(P,M) — Aut(M, P, 1)

of a crossed module p : M — P over a group P. We discuss an analogue of this for a crossed
module over a groupoid. However, because we have not yet developed the corresponding
local theory for the 2-dimensional part, we do not give explicit verifications of all the
axioms for a 2-crossed module, but rely on the general method used in [6, 11].

In Chapter I, we deal with double groupoids especially special double groupoids.
A double groupoid is a groupoid object in the category of groupoids: that is, a double
groupoid consists of a set D with two groupoid structures over H{ and V, which are them-
selves groupoids on the common set X, all subject to the compatibility condition that the
structure maps of each structure on D are morphisms with respect to the other. Elements

of D are pictured as squares
h1

in which vy, v, € V are the source and target of w with respect to the horizontal structure

on D, and hy, hy € H are the source and target with respect to the vertical structure.
Double groupoids were introduced by Ehresmann in the early 1960’s [22, 23], but pri-

marily as instances of double categories, and as a part of a general exploration of categories

with structure. Since that time their main use has been in homotopy theory. Brown-Higgins



[8] gave the earliest éxa.mple of a “higher homotopy groupoid” by associating to a pointed
pair of spaces (X, A) a special double groupoid with special connection p( X, Aj in the sense
of Brown and Spencer (see below). In such a double groupoid, the vertical and horizontal
edge structures H and V coincide. In terms of this functor p, [8] proved a Generalised Van
Kampen Theorem, and deduced from it a Van Kampen Theorem for the second relative
homotopy group m2(X, A), viewed as a crossed module over the fundamental group =1(A).

The main result of Brown-Spencer in [16] is that a special double groupoid with special
connection whose double base is a singleton is entirely determined by a certain crossed
module it contains; as explained above, crossed modules had arisen much earlier in the
work of Whitehead [49] on 2-dimensional homotopy. This result of Brown and Spencer
is easily extended to give an equivalence between arbitrary special double groupoids with
special connection and crossed modules over groupoids; this is included in the result of [9].

We give this extended result as in [11] and [13], since we need the detail here. Brown
and Mackenzie [13] have a more general result.

The method which is used here can be found in [16].

Let D = (D, H,V,X) be a double groupoid. We show that D determines two crossed
modules over groupoids.

Let z € X and let

H(z] = {a £ H vagla) = Gls) = 2}

We define V(z) similarly. We put

(D, H,z) = {w € D : apw = fo(w) = ez, f1(w) = fr}
and

I(D,V,z) ={vED:ai(v) = fi(v) = fo,0(v) = €.}

which have group structures induced from 4o, and +;. Then II(D, H) = {II(D, H,z) : = €
X} and II(D, V) = {II(D, V,z) : @ € X} are totally intransitive groupoids over X.

10



Clearly maps
e:II(D,H) - H and 9:1I(D,V) -V

defined by e(w) = a1(w) and d(v) = ag(v), respectively, are homomorphism of groupoids.
Proposition 0.2.1 Let D = (D, H,V,X) be a double groupoid then

v(D) = (II(D, H),H,¢e) +(D)=(I(D,V),V,0)
may be given the structure of crossed modules.

Clearly v is a functor from the category of double groupoids to the category of crossed
modules.

As we wrote , a special double groupoid is a double groupoid D but with the extra
condition that the horizontal and vertical groupoids H and V structures coincide. These
double groupoids will, from now on, be our sole concern, and for these it is convenient
to denote the sets of points, edges and squares by X, G, D. The identities in G will be
written 1, or simply 1. The source and target maps G — X will be written o, 3.

By a morphism f : D — D' of special double groupoids is meant functions f : D — D',

f:G— G, f: X — X' which commute with all three groupoid structures.

Definition 0.2.2 Let D be a special double groupoid. A special connection for D is a
function T : G — D such that if a € G then T(a) has boundaries given by the following

diagram

A morphism f : D — D' of special double groupoid with special connections T, T’ is said

to preserve the connections if £,/ = T f;.

11



The category DGrpd! has objects the pairs (D, T) of a special double groupoid D with
special connection, and arrows the morphisms of special double groupoids pfeserving the
connection. If (D, T) is an object of DGrpd!, then we have a crossed module v(D) by
Proposition 2.3.1. Clearly v extends to a functor from DGrpd! to CrsMod, the category

of crossed modules. The main result on double groupoids is:
Theorem 0.2.3 The functor v : DGrpd! — CrsMod is an equivalence of categories [16].

We then show how special double groupoids arise from crossed modules over groupoids.

Let C = (C,G,6) be a crossed module over groupoids with base set X. We define a
special double groupoid D(C) as follows. First, H = V = G with its groupoid structure,
base set X. The set D(C) of squares is to consist of quintuples

d

such that w; € C,a,b,c,d € G and
b(wr) =—a—b+d+ec.

The vertical and horizontal structure on the set D(C) can be defined as in [16]. Then D(C)
becomes a double groupoid with these structures.

We introduce a definition of linear coadmissible section for the special double groupoid

D(C) as follows.

Definition 0.2.4 Let C = (C,G,6) be a crossed module and let D(C) be the corresponding
double groupoid. A linear coadmissible section o = (0g,01) : G — D(C) of D(C) also

written

o(a) = (al(a) . oocr(a) a oof(a) )

12



is a pair of maps

go: X =G, o6:G-C

such that
(1) ifx € X, fog(z) =z, and if a € G, then foi(a) = fa.
(ii) ifa,b,a+ b€ G, then

o(a+b) =o(a) 4o ()
(ii1) aog: X — X is a bijection, ao : G — G is an automorphism.

Let I'D(C) denotes the set of all linear coadmissible sections. Then a group structure

on I'D(C) is defined by the multiplication
(o % 7)o(x) = (doao(2)) + 10(z), 2 € X,

(c*7)(a) = (cami(a)) +17(a), o« € G(a,y)

for o, 7 € I'D(C).

We show in Corollary 2.4.4 that the groups of linear coadmissible section and free
invertible derivation maps (coadmissible homotopies) are isomorphic.

Now we come to the main new work of this thesis.

Chapter IIT is aimed at the study of some local Lie structures on a special double
groupoid D(C) corresponding to a crossed module C = (C, G, )~ namely such a local Lie
structure is given a pair of sets (D(C), W) satisfying certain conditions, where W¢ C D(C)
has a manifold structure.

In order to cover both the topological and differentiable cases, we use the term C”
manifold for » > —1, where the case r = —1 deals with the case of topological spaces and
continuous maps, with no local assumptions, while the case » > 0 deals as usual with C”

manifolds and C™ maps. Of course, a C° map is just a continuous map. We then abbreviate
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C" to smooth. The terms Lie group or Lie groupoid will then involve smoothness in this
extended sense.

One of the key differences between the cases r = —1 or 0 and r > 1 is that for
r > 1, the pullback of C” maps need not be a smooth submanifold of the product, and so
differentiability of maps on the pullback cannot always be defined. We therefore adopt as
in Brown-Mucuk [15] the following definition of Lie groupoid. Mackenzie [37] discusses the
utility of various definitions of differential groupoid.

A Lie groupoid is a topological groupoid G such that

(i) the space of arrows is a smooth manifold, and the space of objects is a smooth
submanifold of G,

(i1) the source and target maps a, 3 are smooth maps and are submersions.

(iii) the domain G Mg G of the difference map is a smooth submanifold of G x G, and

(iv) the difference map d is a smooth map.

We localise the concept of the coadmissible homotopies and linear coadmissible sections.
We define products on the sets of both concepts. We prove that 1/;(C), the set of all local
coadmissible homotopies, and I'(D)(C), the set of local linear coadmissible sections are,
isomorphic inverse semigroups.

We introduce the concept of a V-locally Lie double groupoid (D(C), W) and related
notion “locally Lie crossed module” for crossed module. Note that for the case of groupoids
rather than crossed modules, Pradines stated a differential version involving germs of locally
Lie groupoids in [43], and formulated this in terms of adjoint functors. A version for locally
topological groupoids was given in Aof-Brown [1] and the modifications for the differential
case were given in Brown-Mucuk [14]. Our general aim is to consider analogous methods
for the case of crossed modules.

However, there already existed in the literature a well developed and clearly relevant

theory of automorphism of crossed modules, and it therefore seemed sensible to develop a
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holonomy theory for forms of locally Lie crossed modules, based on “coadmissible homo-
topies” rather than coadmissible section.

In so doing, there arose the problem of defining “final map” on the germs of local
coadmissible homotopies. It became clear that the values of such a final map had to lie
in the double groupoid associated to the crossed module. This explains why our theory
develops crossed modules and double groupoids in parallel. It also is sensible to keep the
crossed module theory, since the algebra of crossed modules is closly related to standard
algebra for group, and these show how aspects of “2-dimensional groupoid theory” are
likely to prove of continuing importance.

The holonomy groupoid Hol(D(C), W) is constructed in Section 3.4 as the quotient
groupoid J™(D(C))/Jo, where J™(D(C)) is a subgroupoid of the groupoid J(D(C)) (the sheaf
of germs of local coadmissible sections of the special double groupoid D(C) generated by
the subsheaf J™(WS) of germs of elements of (W) and J, is the intersection of J™(WE)
and the kernel Ker ¢ of the final map ¥ : J(D(C)) — D(C).

In order to show that the quotient groupoid is well defined, we prove:

Lemma 3.4.2 The set Jo = J"(W%) N Ker ¢ is a wide subgroupoid of the groupoid
J(D(C)).
Lemma 3.4.3 The groupoid Jp is a normal subgroupoid of the groupoid J"(D(C)).

Chapter IV, which is a main aim of this thesis, is concerned with the construction
of the Lie structure on the holonomy groupoid Hol(D(C),W%) of a V-locally Lie double
groupoid (D(C), W) and we state and prove the Holonomy Theorem 4.0.1.

The aim of Section 4.1 is to construct the topology on the holonomy groupoid Hol(D(C), W¢)
such that Hol(D(C), WC) with this topology is a Lie groupoid. The intuition is that first
of all W€ embeds in Hol(D(C), W®), and second that Hol(D(C), W?) has enough local

linear coadmissible sections for it to obtain a topology by translation of the topology of

We,
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Let s € F('D(C),V/G). We define a partial function y, : W€ — Hol(D(C), WE®). The
domain of x, is the set of w € W€ such that a(w) = a € D(s;) and a(a), f(a) € D(so).
The value x(w) is obtained as follows. Choose a local linear smooth coadmissible section

f through w. Then we set
Xs('w) =< 8 Za(w)< 0 Zw)=< 8 * 0 > B(w) -

By Lemma 3.4.2, y,(w) is independent of the choice of the local linear smooth coad-
missible section €.
Lemma 4.1.1 y, is injective.

Let s € I'(D(C)). Then s defines a left translation L; on D(C) by
Ly(w) = s(a(w)) +1 w.
This is an injective partial function on D(C). The inverse L, of L, is
v = —18(as) o)) +1 v

and L,™' = L,-:. We call L, the left translation corresponding to s.

So we have an injective function y, from an open subset of W to Hol(D(C), W®). By
definition of Hol(D(C), W), every element of Hol(D(C),W®)) is in the image of x, for
some s. These x; will form a set of charts and so induce a topology on Hol(D(C), W©).
The compatibility of these charts results from the following lemma, which is essential to
ensure that W retains its topology in Hol(D(C), W) and is open in Hol(D(C), W%). As
in the groupoid case, this is a key lemma.

Lemma 4.1.2 Let s,t € ['(D(C), WE). Then (x;)"x, coincides with L,, left translation
by the local linear smooth coadmissible section n = ¢~! * 5, and L, maps open sets of W¢
diffeomorphicially to open sets of W€,

Lemma 4.1.3 With the above topology, Hol(D(C), W¢) is a Lie groupoid.
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‘We now review .deﬁnitions of Lie crossed module and double Lie groupoid. A Lie
crossed module C = (C, G, §) over groupoid is a crossed module such that C and G have
Lie groupoid structure and action of G on C, and 6 : C' — G is smooth functor. The image
of C'in G is not required to be closed, see [38, 13].

In differential geometry, double Lie groupoids, but usually with one of the structure
totally intransitive, have been considered in passing by Pradines [44, 45]. In general, double
Lie groupoids were investigated by K.Mackenzie in [39]. A double Lie groupoid is a double
groupoid D = (D; H,V, X') together with differentiable structures on D, H, V and X, such
that all four groupoid structures are Lie groupoids and such that the double source map
D — H x,V ={(h,v) : ag(h) = av(v)}, d = (av(d),dn(d)) is surjective submersion.

We also state Theorem 4.2.7 in part of a Lie version of Brown-Spencer Theorem which
occurs in [13]. Let € = (C, G, §) be a certain Lie crossed module; then the corresponding
special double groupoid D(C) is a Lie double groupoid which is called a “split double
groupoid” in [13],

In Section 4.2, we state and prove the main theorem of the universal property of the
morphism 1 : Hol(D(C), W) — D(C). The main idea is when we are given a V-locally
Lie double groupoid (D(C), W) of a double groupoid D(C) for a crossed module C, a Lie

crossed module A and a morphism
p: D(A) — D(C)
with suitable conditions, we can construct a morphism
1 : D(A) — Hol(D(C), W%),

where Hol(D(C), W®)) is the holonomy groupoid of a V-locally Lie crossed module, such

that

ou' = p.
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We prove that such a morphism p' is well-defined, smooth and unique.
The aim of Chapter V is to give an outline of possible and interesting topics for further
working this area, particulary will regard to possibility of obtaining forms of “holonomy

double groupoids”.
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Chapter 1

Automorphisms of Crossed Modules
of Groupoids

1.1 Introduction

In this chapter we are exploring the implications of the idea that a natural generalisation to
crossed modules of the notion of coadmissible section is that of coadmissible homotopy.
This arises naturally from the work of Brown-Higgins on homotopies for crossed complexes
over groupoids, and also relates interestingly to important work of Whitehead [48], and
followed up by Lue [36] and Norrie [41], on automorphisms of crossed modules over groups.

There is some overlap with the work of Brown and Gilbert [6]. However they explain
in detail in Section 3 only the case of crossed modules over groups. So in this chapter we
give a complete and explicit account, from the beginning, of automorphisms in the theory
of crossed modules over groupoids.

Brown and Gilbert also relate this theory to the monoidal closed structure of crossed
modules over groupoids, and indeed deduce their results from a description of this structure.
The complete account of this monoidal closed structure in [11] is based on the equivalence
in [11] between crossed complexes over groupoids and w-groupoids. The latter is a cubical

based theory, in which the monoidal closed structure is easy to define.
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Further results in [6] are on the “2-crossed module structure”
M — P Der*(P,M) — Aut(M, P, )

for a crossed module y : M — P over a group P. We extend this to an explicit description
of a 2-crossed module equivalent to AUT(C) in the case C is a crossed module over a
groupoid. However, because we have not yet developed the corresponding local theory for
the 2-dimensional part, we do not give explicit verification of the axioms, but rely on the

general method used in [7, 6].

1.2 Crossed Modules Of Groupoids

We recall the definition of crossed modules over groupoids. The basic reference is Brown-

Higgins [7].

Definition 1.2.1 Let G,C be groupoids over the same object set and let C be totally

intransitive. Then an action of G on (' is given by a partially defined function
CxG-C,

written (¢, a) — ¢*, which satisfies

1. ¢* is defined if and only if f(c) = a(a), and then F(c*) = p(a), where a, 3 are
respectively the source and target maps of the groupoid G.

2. (a1 4 ¢2)* = a® + et

% Ca+b —

= (cf)b and ¢f* = ¢4

for all ¢, ¢, € C(z,2), a € G(z,y), b€ Gy, 2).

Definition 1.2.2 A crossed module of groupoids consists of a pair of groupoids C and
(G over a common object set such that C is totally intransitive, together with an action of
G on C, together with a functor § : C — G which is the identity on the object set and

satisfies



1. §(c*) = —a+bc+a
2. =—¢+c+a

for ¢,c1 € C(z,2), a € G(z,y).

A crossed module will be denoted by C = (C,G,6). A crossed module of groups is a
crossed module of groupoids as above in which C, G are groups.

The followings are standard examples of crossed modules:

(z). Let H be a normal subgroup of a group G with 7 : H — G the inclusion. The
action of G on the right of H by conjugation makes (H,G,1) into a crossed module.

(22). Suppose G is a group and M is a right G-module; let 0 : M/ — G be the constant
map sending M to the identity element of G. Then (M,G,0) is a crossed module.

(7i). Suppose given a morphism
n: M — N

of left G-modules and form the semi-direct product G'x N. This is a group which acts on

M via the projection from GG x N to G. We define a morphism
§: M -G N

by 6(m) = (1,n(m)) where 1 denotes the identity in G. Then (M,G x N,§) is a crossed
module.

Also we can define a category CrsMod of crossed modules of groupoids. Let C, C' be
crossed modules. A morphism f : C — C’ consists of a pair of groupoid homomorphisms

(f1, f2) such that the following diagrams commute:

LW O % G—a0

e

G—>G C'x G'—("



1.3 Free Derivations and Coadmissible Homotopies

In this section, we combine the notion of coadmissible section, which is fundamental to the
work of Ehresmann [21], with the notion of homotopy of morphisms of crossed modules,
which occurs in Whitehead’s account [48] of automorphisms of crossed modules and which
is later developed by Lue, Norrie, Brown-Gilbert [36, 41, 6].

So we are exploring the implications of the idea that a natural generalisation to crossed
modules of the notion of coadmissible section is that of coadmissible homotopy. This arises
naturally from the work of Brown-Higgins [11] on homotopies for crossed complexes over

groupoids.

Definition 1.3.1 Let C = (C, G, §) be a crossed module over groupoids with base space
X. A free derivation s is a pair of maps sg: X — G, s : G — C which satisfy the

following

Bléen) = 2, z€ X
[3(51“) = ﬂ(ﬂ.), G‘EGw

sifa+bd) = s1(a)’+s51(b), a,beQG.
Let F'Der(C) be the set of free derivations of C.

Proposition 1.3.2 Let s be a free derivation of the crossed module C = (C,G,8) over

groupoids. Then the formulae

folz) = aso(z),
fila) = solaa)+ a+ &s1(a) — so(fa),

fale) = (e s16¢) %P

Q)
o



define an endomorphism f = (fo, f1, f2) of C which we write A(s) = f.

Proof: We have to show that f; and f, are groupoid homomorphisms and f,(c*) =
f2(e)(e) for c € C(z),a € G(z,y).
fila+b) = so(v)+a+b+bsi(a+b)— so(2)
= so(z)+a+ b+ 8(s1(a)’ + 51(b)) — s0(2)
= so(z) +a+b—b+6si(a)+b+bs:(b) — so(z), by definition of §
= so(z) + a+bs1(a) — so(y) + so(y) + b+ 651(b) — s0(2)
= fi(a) + f2(b)
fale+c) = (c+ +s16(c+c)) @)
= (c+c 4 s1(bc+ b))~
= (¢ +81(6c) + 51(6¢")) )
= (¢+d - +s10c+ + §16¢) (=)
= (c+ s16c+ ¢+ Sl&')ﬂo(l‘)
= fale) + fa()
Let c € C(z),a € G(z,y). Then B(c*) = Ba, fc* =y. So
Re) = (¢ + sid(et)) 0
= (¢ + s1(—a+ fe+ a)) oW
= (¢ +51(=a)"*" 4 51(80)° + s1(a)) W
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(since —(s1(a))~=+oete = (s1(—a))ie+),

= (¢ — (s10)7°F*® 4 (816¢)" + s10) ™)

= (¢ — 510" + (816¢)* + s10) W)

= (=s1(a) + ¢ + (516¢)" + s1(a)) "W

= (—s1(a) + (c+ 516¢)* + 51(a)) W)

= (=su(a) + (fa()*®)* + 51 (a)) 7 (1.1)
= (fac))ertetsna-soy

— fg(c)fl(a).

So f is an endomorphism of C. O

Proposition 1.3.3 Let C = (C,G,6) be a crossed module over groupoids. Then a monoid

structure on FDer(C) ts defined by the multiplication

(s#1)e(z) = (s *t)o(z) = (sogo(z)) + to(z), €=0, z2=1€ X,
AT (sxthi(a) = ti(a) + (s101(a))eP), e=1, z=ua€ G(z,y)

for s,t € FDer(C) and f = A(s),g = A(t). Further A(s*t) = A(s)* A(t), A(1) = 1.

Proof: It is clear that f(sxt)e(z) = 2 and [(sx*t)i1(a) = B(a) for x € X, and a € G(z,y).

In fact,
B(s*t)o(z) = B(solgo(z))+ to(z)
= Plo(z)
—
Secondly ,

B(txs)(a) = Bti(a)+ s191(a))
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— }3(519‘1(G)t°y)
= Psi(gr(a))

We have to show that (s *t); is a derivation map. Let a« € G(z,y), b € G(y,z). Then

(s*th(a+b) = tila+ D)+ (ssg(a+ b))l
= ta(a)’ + t2(b) + (s1(ga(a) + g2 (8)))
= ty(a)® + t2(B) + (81(g1(a))?® + s1(g1 (b))
= (@) 4 t1(B) + (51(ga(a)) PO 4 g (g (B))00)
= £1(@)* + 1 (B) + sa(ga(@) OO 1 (1)1
= t1(a)" + t2.(b) + (s51(g1(a)°@H)u®) 4 g (g, (b))t
= t1(a)’ + t1(b) — t1(b) + (s1(g2(a))** 4 £1(b) + s1(g1(b)")
= 11(a)’ + (s1(92(@))*W*? 4 11(b) + s1(gn (b))
= (ti(a) + s1(g1(a)® @) 4 t1(b) + s1(ga (b))
= (sxt)1(a)’ + (s x 1)1(D).

For the associativity pi‘operty, let u, s,t € FDer(C) and let f = A(s),g = A(2),h = A(u).
Then

(uo* (s *t)o)(z) = (uo(fogo(x)) + (£ * s)o(2)
= uo(fogo)(z) + (s0g0)() + to(z)

= uo(fo(go(2)) + s0go(x) + to(2)
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= (u*s)o(go(x)) + to(2)
= ((u*s)o*to)(2)

and

(ur* (s *)1)(a) = (s*t)i(a) +u(fg(a))le ol
= tia+ (s19a)°W) + (uy fga)ls+ho()
= tia + (s * u)1(ga)W
= ((u*8);%t1)(a).
Let s,t € FDer(C) be as above and let a € G(z,y). Then
A(sta(e) = (s*t)o(z)+a+8(s*th(a) = (s tholy)
= sogo(2) + to(2) + a + 8(t1(a) + s101(a))*™) = (sogo(y) + to(y))
= sogo(z) + to(2) + a + &(t1(a) + 6(s191(a)*™) — (s0g0(y) + to(y))
= sogo(x) + to(z) + @ + 8t1(a) — to(y) + ds191(a) + to(y) — to(y) — s0g0(y)
= sogo(2) + &¢(a) + ds191(a) — s0g0(y)
= A(s)(A(t))(a)
= A(s) o A(t)(a).
Let c € C(2),a € G(z,y).
As*t)(e) = (o (s £)2(8()) e
= (e+t(8(c)) + s191(8(c)) ) ~(e+h®)
= (et 1a(6(e)) ") 4 g1 5(c))o==(5w100(2)
= (e 4 t(§(e)Em0m) 4 5165 (c)) o000 ()
= ((e+t:(6(c) ™) + 816g5(c)) 0o
= (A@1)()) + (s18g2(c)) >0, since A(t)(c) = ga(e),

= A(s) o A(t)(¢)



So A(s*t) = A(s) o A(4).
Let ¢ = (co,c1) be the free derivation defined by
co(z) =1, and ¢i(a) =1
for z € X and a € G.

Ale)(a) = co() +a+ ber(a) — co(y)

= lz+a+6(1)-1,

Similarly, for ¢’ € C, we have A(c)(¢') = 1(¢'). O

Corollary 1.3.4 The function A is @ monoid morphism
FDer(C) - End(C)

Let F'Der*(C) denote the group of invertible elements of this monoid. An invertible free

derivation is also called a coadmissible homotopy.

Theorem 1.3.5 Let s € FDer(C) and let f = A(s). Then the following conditions are
equivalent:

(i) s € FDer*(C),

(it) f1 € Aut(G),

(iii) fa € Aut(C).

Proof: That (z) = (i2), (¢) = (i7) follows from the fact that A is a morphism to End(C).
We next prove (i1) = (7). Suppose then f; € Aut(G). We define s7' = (so7%,5:71).
Let 5071 : X - G,5:71:G — C by
so7(z) = —so(fo™ (w)) and s;7'(a) = —s1(fi 7 (a))" W,
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Since Bso (z) = z and asy™!(z) = fo(z), s~ is an inverse element of so. In fact,

(7 #s)o(z) = so(fo ) (z) + so()
= —so(fo7 (fo)(x)) + so(z)
= —so(z) + so(@)

= Ggl) =1z
and also
(s*s o(z) = so(fo™')(2) + s }(2)

= so(fo™")(2) — so(fo (2)

= Cﬂ(y) = ly'

We have to show that s;~! is a derivation map. Let a,b,a + b € G and let o'

fi}a),¥ = fi (D), Bb = z. Note that so~f(a + b) = so~1(2) and —s0(z) = —sofo~ (=

siHa4+0) = —(sifiH(a+ b)) PO by definition of s,
= —(a(fiTta+ fi70))0T )
= —(safd + )y
= —((s1a)" + 51('))* 7)) since sy is a derivation,
= (maa(t) - (su(a)) 0
= —(sa(B) + (sa(a)) )0

oy ___(Sl(br)—so(:) + (Sl(ar))br-i-Su(b‘)—sgfo—l(:}

Since f(8') = sofo  (y) + 0" + 6s1(V) — sofo " (2) = b and ¥ + bs,(b) — Sofo_l(Z)
b— sofo™(y),

= —((t) O + sy (@)W
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= (s (¥) ) + (s (@)W
o _(Sl(af))b)—sc,-l(y) _ sl(b')so_l
= “(81(f1_1(a))b)_5°~1(y) - slfl“l(b’)“’"1

= 5;7(a)’ + 51 71(D).

1

One can easily show that s*s™! = cand s7'*xs =c.

s17M(a) + s1(f M a))* W)

= —sf @)W 4 5 (f7H @)W

Il

(s %57 i(a)

= c.l(a).

and

(st % s)i(a) = si(a) + 517 (f(a))™W)
= s1(a) = s1(f7(f(a)) )W
= s1(a) - s1(a)
= ¢fa).

Now we will prove (i) = (i). We first recalculate (s % t); in terms of f;. Let A(t) =g

and let A(s) = f, a € G(x,y) as above.

(sxt)1(a) = ti(a)+ s1g(a)o®
= ti(a) + s1(to(z) + a + 6t1(a) — to(y))°W
= ti(a) + Sl(to(m))a+5n(a)"fo(y) + Sl(a)sn(a)—to(y) o Sl(gtl(a))so(y)) n sl(eto(y))“’(y)
= ti(a) + 51(to(2)) ) 4 51 (@)1 4 5y (6ty(a)) + s1(—to(y))PW

= ti(a) + s1(to(2)*)™ ) — t1(a) + s1(a) + t1(a) + s1(8t1(a)) — s1(to(y)),



sinbe S]_(-tg(‘y))to(y) = —Slfo(y),

= ti(a) — ta(a) + s1(to(2)® + t1(a) — t1(a) + s1(a) + t1(a) + s1(6t1(a)) — s1(to(y))
= s1(to(2))* + s1(a) + ti(a) + s1(6t1(a)) — s1(to(y))

= s1(to())® + s1(a) + fa(t1(a))*@ — s (to(y))

Now, suppose that f, has inverse f,7'. Let s™! = (so™!, s17!) be defined by
-1 _ =1/, ” 7]
so” (2) = —sofo  (z), z€X

s17H(a) = o (=s1(a) = (51507 (2))* + (51507 (@)™, @ € Gla,y)

We prove that s~! is an inverse element of s and is a derivation map. Clearly
(s % s o(a) = co(z) and (s71 * 8)o(x) = co(z)

by on argument as above.

Next we prove (s * s71)1(a) = e1(a), for a € G(2,y).

(s457 (@) = (safso™(@)* + s1(a) + falfa ™ ((—s2() + (s250f0 ™ (2))°
~(s150f0™ (3))™5W)®) — 51557 (y)
= (safsofo™(@))* + s1(a) — s1(a) + (sr50fo™ ()"
+(s150fo7 () = s150f0™(y)
= ala).

1 !

Since (s*s71); = ¢; and also (s71*s'); = ¢1. It follows that 5371 %s; = 577 ks %817 %8y =

s17 k(s xs7 ) ks’ =817 8" =1 and s0 8,7 = 5, e,

(s7' x8)1(a) = c1(a), forall a€G.
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We have to prove that s;7! is a derivation map. Let a € G(=,y),b € G(y,z). We write

f2s17(a) = (=s1(a) — (5150~ (z))* + (150~ (y))~*°®), and then

f((s17H(a)" + 5171(1) = falsi7M(a))’ + fa(s172(D))
= (—s1(b) + (f2(s17 (@)WY + 51(5)) =) + fo(s,71(D)), by 1.1
= (=s1(0)7°0) 4 (—s1(a) = (s1807 (2))* + s1807 ()P~

+51(8) 7N (—515) 7% — (s1807H(y)))P ) + 1507 (2) 700

= falsi7M(a + 1))

1 1

Hence s;7* is a derivation, i.e., 87" is a free derivation. O

Theorem 1.3.6 There is an action of Aut(C) on s € FDer*(C) given by

f(2) :{ A sofol),

= E X
frlsifila), z=a

€.

for each a € G(z,y), which makes

A: FDer*(C) — Aut(C)

A. = fila) = so(2) + a + 8s1(a) — so(y), a€ G
T\ fale) = (c+ s16c)~%F), ce C.

a pre-crossed module.
Proof: Now, we will show that
FDer*(C) x Aut(C) — FDer*(C)
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(s,f) > s

is an action of Aut(C) on FDer*(C).

sf(z) = fl_ISGfD(I), z=z€ X
B f2_131f1(a), z=ua€G.

In fact this give rise to an action over groupoid:

ng(z) :'{ (fg)o_l.so(fg)q(.r) = Q'O—Ifﬂ_l-sofogo(m) = gg_lsongo(z) = (SDfO)QO(I)’ s=recX
(fg)1_151(fg)1(a) = 91_1f1"131f1£/1(a) = g1 5o g1 (a) = (slfl Yi(a), z=a €

and
sl(z) = I7's0l(a) = so(z), 2
T IlsiI(a) = sq(a), 2
Let A(s) = f. Then A(s?) = f, where f(a) = so® () +a + 85,7 (a) — so”°(y). We can show

s as the following diagram:

Is s/ € FDer*(C) 7 Clearly one can see 3so°z = & and fs,%(a) = f(a). Also we should
have to show that s/(a + b) = s¥(a)® + s/(b). We have
fla+b) = s (2) + (a + b) + 65 (a + b) — s57(2)

by definition of f and

fla) + f(b) = sof(z)+a+6s1f(a) + b+ 85,7 (b) — s17(2)
= sol(z)+a+b—0b+b8s17(a)+ b+ 65, (b) — 5,7 (2)
= sol(z) + a4 b+ 6(s17(a)’ + 5,7 (8)) — 507 (2)

= Jla+b)



So .sf(a)b + 8%(b) = s%(a + b) and also we can obtain

I(a) = —so(x) + f(a) + 50 (y) — 657 (a).

fAsf(a) = f(sof(2) + fa) + 6(fa) = s’ ()
= fsof(z) 4+ f7 f(a) + f78,(fa) — [ s (y))
= so’(z) +a+8f s1f(a) — so’ (y)
= sof(¢) + a4 8517 (a) = s’ (y)

= A(s')(a).

Hence A(sf)(a) = f~1Asf(a). O

The fact that A : F'Der*(C) — Aut(C) is a precrossed module is a special case of results
of Brown-Gilbert [6], which applies the monoidal closed structure of the category of crossed
complexes introduced by Brown-Higgins in [11]. In fact the description of A : FDer*(C) —
Aut(C) is carried out explicitly in Brown-Gilbert [6] Proposition 3.3, but only for the case

C is a crossed module over a group.

1.4 Braided regular crossed modules and 2-crossed
modules

1.4.1 Introduction

In this section our object is to give the explicit relationship between braided regular crossed
modules and 2-crossed module. This indicates a possible further context for development
of work on holonomy. The following material can be found in Brown and Gilbert [6].

We begin with a review of basic facts that we need on monoidal closed categories. Let

C be a monoidal closed category with tensor product —® —, identity object I, and internal
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hom functor HOM'.(see [40]). Then for all objects A, B, C of C there exists a natural
bijection
6:C(A® B,C) — C(A,HOM(B,()),

which, together with the associativity of the tensor product, implies the existence in C of

a natural isomorphism
©: HOM(A® B,C) —» HOM(A,HOM(B, (C)).
Further, the bijection
0:C(HOM(A,B)® A,B) — C(HOM(A,B), HOM(A, B))
shows that there is a unique morphism
€e1: HOM(A,B)@ A—> B

such that 0(e4) is the identity on HOM(A, B); €4 is called the evaluation morphism. Then

for all objects A, B, C of C, there is a morphism
(HOM(B,C)® HOM(A,B))® A - HOM(B,C)® (HOM(A,B) ® A)
— HOM(B,C)® B — C.
This corresponds under @ to a morphism
vase : HOM(B,C)® HOM(A, B) » HOM(A,C)

which is called composition.
We write END(C) for HOM(C,C). There is a morphism 5¢ : I — END(C) cor-
responding to the morphism A : I/ ® C — C. The main result we need is the following

(29].
Proposition 1.4.1 The morphism n¢ and the composition
¢ =vccc : END(C)® END(C) - END(C)

make END(C) a monoid in C.
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1.4.2 Regular Crossed Modules and 2-crossed modules

The following definitions are due to Brown and Gilbert [6].

Let M be a monoid. A biaction of M on the crossed module C = (Ci,Cs,8) with
point set Cy consists of a pair of commuting left and right actions of M on the set Cy and
the groupoids C; and C, compatible with all the structure. Specifically we have functions
M xC;— C;and C; x M — C; for 1 = 0,1, 2, denoted by “(m,c) — m.c and (¢,m) — c.m,
such that

M; : each function M x C; — C; determines a left action of M and each function
C; x M — C; determines a right action of A and these actions commute;

Ms,: each action of M preserves the groupoid structure of Cy over Cy and in particular
the source and target maps a, 8 : C; — Cp are M-equivariant relative to each action;

M3 : each action of M preserves the group operations in C'; and if ¢ € Cy(z) and m € M
then m.c € C3(m.z) and c.m € Cy(x.m);

My, : each action of M is compatible with the action of C; on C; so that if ¢ € Cy(a),

a € Cy(z,y), and m € M then
m.(e*] = (m.e)™" € 3 (m.z),

(z%).m = (2.m)*™ € Cy(x.m);

Ms : the boundary homomorphism § : C; — C is M-equivariant relative to each
action.

The crossed module C is semiregular if the object set Cp is a monoid and there is a
biaction of Cp on C in which Cy acts on itself in its left and right regular representations.
A semiregular crossed module in which Cp is a group is said to be régu]ar. Note that
every crossed module of groups is regular.

Let C be a semiregular crossed module. We write the monoid Cy multiplicativily with

identity element e. A braiding on C is a function C; x C; — Cs, written (a,b) — {a, b},
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which satisfies the following axioms (here a,a’,b,0’ € C1,¢,¢' € Cy and 2,y € Cp):

B, : {a,b} € Co((Ba)(B0)), {0, b} = Op, {0, 0c} = Opa;

By : {a,b+ b} = {a, b}*** + {a,V'};

B;: {a+d',b} = {d, b} + {a,b'}*"?;

By : 6{a,b} = —(Ba.b) — a.a.ab+ aa.b+ a.Bb;

Bs : {a,6c'} = —(Ba.c) + (aa.c')*V if ¢ € Ca(y);

Bg : {6c,b} = —(c.ab)® + c.Bb if c € Cy(p);

By 124 a; b} ={z.a,b};

{a,b}.2 = {a,b.2},
{a.z,b} = {a,z.b}.

Joyal and Street have defined a notion of braiding for an arbitrary monoidal cate-
gory and in particular have considered braided categorical groups. These are equivalent to
braided crossed modules, with the bracket operation in [28] given by (a,b) — {a7?,b}".
This difference is merely one of notational conventions.

The axioms B, ..., By are evidently closely related to the axioms given by Conduché
[19]. This relationship is given by Brown and Gilbert [6].

Recall from [19] that a 2-crossed module consists, in the first instance, of a complex
of P-groups

LML p
and P-equivariant homomorphisms, where the group P acts on itself by conjugation, such
that

L2 M

is a crossed module, where M acts on L via P. We require that for all [ € L,m € M, and
n € P that (™)™ = (I")™". Further, there is a function <,>: M x M — L, called a Peiffer
lifting, which satisfies the following axioms:

.P1 : 3 < Mg, My >= mg_lml‘lmgmlam",
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By < @lym =17,

P3: < mg,mymy >=< mg,my >< mg,my > ma®mo

Py : < momy, M >=< mg,ma >™<L m1,171‘2m° 2

Ps: <mg,my >"=<mg",m" >.

Let 2 — CrsMod denote the category of 2-crossed modules. Then the equivalence
of Theorem 2.2 in [6], together with Conduché’s equivalence [19] between the categories
2 — CrsMod and the category of simplicial groups with Moore complex of length 2, yields
a composite equivalence between 2 — CrsMod and CrsModgg.

Let C = (C4,C53, 6) be a regular crossed module. The 2-crossed module associated to C
is defined to be the Moore complex of the simplicial group S(C). Denote by K the costar
in C; at the vertex e € Cy, that is, ' = {a € C; : fa = e}. Then I\ is the subgroup kerag

of 5(C); with group operation given for any a,b € K by
ab=b+ (a.ab).

The source map a : K — Cj is a homomorphism of groups and is Cp-equivariant relative
to the biaction of Cg on C;. Note that the new composition extends the group structure
on the vertex group Ci(e) so that Ci(e) is a subgroup of K: it is plainly the kernel of a.
Further, Cy acts diagonally on K: for all « € K and p € Cp we set a”> = p~t.a.p. (there
should be no confusion with the given action of Cq on Cz which we denote in a similar way.)
Then the homomorphism a : K — Cp is Co-equivariant relative -to the diagonal action on
K and the conjugation action of the group Cy on itself. Now Cj also acts diagonally on

the vertex group C,(e) and so we have a complex of groups
Gile) -2 K =5 G

in which é and « are Cy-equivariant. We know that § : Cy(e) — Cy(e) is a crossed module:
we claim that K acts on Cy(e), extending the action of C;(e) C K, so that 6§ : Cp — K is

a crossed module.
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We define an action (¢,a) — cla by cla = (c.ca)* where ¢ € Cy(e) and a € K. This is
indeed a group action and 6 is K-equivariant. Moreover, the actions of Cy(e) on itself via
K and by conjugation coincide, for 6 : Cy(e) — Ci(e) is a crossed module and so for all
¢, ¢’ € Cy(e),

cléc’ = (c.a(6))* = (c.e) = -+ c+ ¢\
Therefore the map 6 : Ca(e) — K is a crossed module. Further the action of Cq on Cs(e)
is compatible with that of K.

The final structural component of a 2-crossed module that we need is the Peiffer lifting,
which is provided by the braiding. For suppose that C has a braiding {,} : C; x C; — Cb.
Then the map K x K — Cs(e) given by (a,b) — {a™!,b}la =< a,b > is a Pieffer lifting.

Therefore we have the 2-crossed module
Cy(e) = K — Cy

which is indeed the Moore complex of S(C).

Then we show how a 2-crossed module give rises to a braided regular crossed module.

So we begin with a 2-crossed module
AR Ny

and construct from it, in a functorial way, a regular, braided crossed module C = (C4, C2, 8).

The group of object of Cy is just the group P. The underlying set of elements of C;
is G x P with source and target maps a(g,p) = 9d(¢)p and B(g,p) = p. The groupoid
composition in Cy is given by (g1,p1) + (92, p2) = (9192, p2) if p1 = 9(g2)p2. The underlying
set of elements of C; is L x P with composition (l1,p) + ({2,p) = (l1l2,p). The boundary
map 6 : C; — Cj is given by é6(I,p) = (9l,p) and the action of C; on C; is given by

(I,p)@9) = (19 ¢) if p = O(g)q. This does define a crossed module over (Cy,Co) and a

biaction of Cg on C is obtained if we define

p(9,9) = (4" 1 pq), (9,9)-p = (9,9p),
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p-(L,g) = (", pa), (1, 9).p = (g, 9p),

where (g,¢),(l,¢) € C2 and p € Co = P and therefore C with this biaction is regular. The

braiding on C is given by

1

{(g1,11), (g2,02)} = (< 17, g™ >, p1p2)

where <,>: G x G — L is the Peiffer lifting.

We do not use the notion of 2-crossed module in later work on holonomy, as the de-
velopment of the local version of the theory exposed below needs further work. However
we give the full theory here to show the results on automorphisms of crossed modules over

groupoids corresponding to Theorem 3.4 of Brown and Gilbert [6].
1.5 f-Derivations

In this section we give an explicit description of a 2-crossed module equivalent to AUT(C)

in the case C is a crossed module over a groupoid.

1.5.1 END(C)

Let C = (C,G,6) be a crossed module of groupoids, regarded as a 2-truncated crossed
complex with object set X. We form the crossed module C RS(C): this is again 2-truncated
and we denote it by E : E; — E; — FEq.

An explicit description of E may be extracted from [11]. The object set Eq is just
Crs(C) = End(C), the set of endomorphisms of the crossed module C = (C,G,4§). We
shall usually denote elements of Ey by a single letter f and its components (fo, f1, f2),
where these are morphisms of X, G, C, respectively.

Now F; consists of all homotopies of C = (C,G,8). Such a homotopy is completely
specifed by a triple (so, 1, f), where s : X —» G, f € Ep, and s, : G — C is an f-

derivation, so for all a,b € G, sy(a + b) = s1(a)’® + s1(b). The source and target maps
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are given by
a(SO':Slaf) = fU
and

ﬂ(So,S:uf) = f :

where f° is defined by

f%(a) = so(z) + f(a) + &s1(a) — so(y)

and

for all @ € G(2,y), c€ C(z) and 2,y € X.
It is straightforward to check that f° € Ey, i.e., it is a morphism C — C.

The groupoid structure on FE; is given by

(50,51, f°) + (to, ta, ) = ((s % )o, (s % t)1, f)
where for all ¢ € G, z € X.

(sxt)(2) = (s *t)o(z) = so(z) +to(x), 2=z € X, e=0
¢ (s % )1(a) = ta(a) + (s1(a)®), z=a € Glz,y) e=1

An element of E; is a section of 3. Each consists of a pair (s;, f) where s, is a section

and f € Ey. The groupoid structure on Ej is

(32,f)*(t2’f) = (32*t23f)'

The map ¢ : E; — Ey is (s2, f) — (6s2,(s,, f) where (,(a) = —sz(cv)f(“) + so(y) for

a € G(z,y). We can show that (,, is an f-derivation as follows:

(ola+b) = (—s2(2))/F) 4 55(2)
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= (—s2(2)) ) 4 55(y) ) — 55 ()P + 5a(2)
= ((—s2(2))’ @ + 52(y))'® — 52(y)'® + 52(2)

= (€ (a))® + {y (B)

Finally, the action of E; on FE, is

(32a fﬂ)(so,s:_,f) = (3250 ” f)

and, moreover,

(¢)  C((s2, fo)(sn’sl'f) = —(80y81,.f) + C(Szafﬂ) + (30, 81, f)

(”) (52? f)c(tg'f) = “(ti’-’ f) + (‘921 f) + (tﬁa f)
In fact,

E(am: f) ) = ey, f)
= (6(52%), (s, f)
where
(ao)(@) = (—52°(2))® +5,°(y), a€Gla,y)

= (—oa(2)*F)E) + sy y)

= () 1 (55%)(y)
On the other hand,
_(501 51, f) + C(Sih fo) T (303311 f) = (Sﬂhlaslulif) + (6(32)1 Csz'.'fo) + (307 S1, f)

= (50_1 * 0(sg) * Sp, 81T * (s, * 81, f)

= (8(52™), 817" * (s * 51, f)

So we have to show that

81_1 i Cdz i, 5 —82($)3°($)+I(a) i (stg)(y)_
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Here

C(Sh fo) o (30) Sl:f) = (6(32)1 Cszﬁfﬂ) £ (‘501311 f)

= (8(s2) * s0, (s, * 51, f)-

we have

Then

5171 % ({sy ¥ 81)(a) = (Cs *51)(a) + (31—1(a))(5(s2)*30)(y)

= s1(a) + (—sa(2)"" + 8y(1)) ) + (817 () )l0xde0)8)

= @y ] = gl JTHEH I e o [N ooy gt 0D

= s(a) - Sz(ﬂf“(ﬂ)“o(y) + sz(y)sf’(”) + (HSI(a))—SO(y)+(5(Sz))~Scu(y)

= 51(@) — 5y(@) ") |5y o) 4 (—s3(a)) N

= s1(a) = sp()/ W) 4 5500 — 5 (y)" ) — 51 (a) + s5(y) W)
= _Sz(m)f°(ﬂ)+so(y)—5(sx(ﬂ)) + Sz(y)s"{y)
= —sy(a)®@H(a) L .5 (y), by the definition of f°(a)

= CSE"D (a)
For the second axiom of crossed module,

(Sg’f)C(tﬂnf) - (Sz’f)(ﬁ(tg),ctz,j)
= (Sza(tz)a f)
= (ta7 ksyxty f)

= (tz_l,f) +(‘S21f)+(t21f)

as is required. Hence ( : E; — Ej is a crossed module.



Proposition 1.5.1 [6] The composition map v : E® E — E together with the map
n:0— E adjoint to A : 0® (C,G,8) — (C,G,6) make E a monoid in the category of

crossed complezes.

Proof: This is merely a special case of Proposition 1.4.1. O
So by Proposition 1.5.2, F is semiregular and braided. To determine the biaction of
Ey and the braiding we have to understand the composition map v explicity. A direct

calculation leads to the following non-trivial components for the bimorphism determining
ok

Eox Eo— Ey @ (f1,f2) = fifa,

Eox Ey— Ey ¢ (f1,(s0,81. f)) = (f1%0, fisa, [ f)

Eyx Eo — Er & ((s0,81,f), f2) = (s0f2,81f2, [ fa),

Ey x Ey — Ey ¢ ((s0,81, f), (to, 11, f')) = (s1to, £ )

Eox Ey = By (f1,(s2,f)) = (fi(s2), fuf),

Ea x Eq — Ey :+ ((s2,f), f2) = (82, f f2).

These maps give a biaction of Ey on E and a braiding £y x Ey — E;. The monoid structure

on Fjy is the usual composition of maps.

1.5.2 AUT(C) and 2-Crossed Modules

Let A = AUT(C), the full subcrossed module of E on the object set Ag = Aut(C) of
automorphisms of the crossed module C = (C, G, 6). Thus Ag is the group of units of Eq
and A inherits from E the structure of a regular, braided, crossed module [6]

Now an element of Aj is a section over an automorphism of C = (C, G, §) and consists
of a pair (sz, f) where s, is a section and f € Aq. An element of A; is a homotopy over
an automorphism of C = (C, G, §) and consists of a triple (so, s1, f) where s is a section,

f € Ag, and s; is an f-derivation G' — C such that the endomorphism f° of C = (C, G, §)
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which gives the source object of (so,s1, f) is actually an automorphism. Clearly f° is an

automorphism of C = (C, G, §) if and only if
g(a) = so(x) + f(a) + 8s1(a) — so(y)

g(c) = (f(c) + s18(c)) ¥
g(z) = aso(x)

for all a € G(z,y), c € C(x), € X defines an automorphism of C = (C, G, §).

For f € Ey, denote by Der;(C) the set of f-derivations

Proposition 1.5.2 If f is an automorphism of G then Der;(C) is a monoid with compo-

sition

(s*t)o(x) = sofo(z) + tof_l(;l‘)
(s=t)1(a) = t1(a) + s1(toa(a) + a4+ f16t1(a) — to(F(a))tlPe)

and identity element ¢c; :a— 1, cg:a =1, foralla € G and x € X.

Proof: We defined a monoid structure on the set F'Der(C) of free derivations in the
Section 2.3. Now if f is an automorphism of G and s is an f-derivation, then sf~! =
(sofo ' s1f17") is a derivation: hence we can use f to transport general composition on
FDer(C) defined in Proposition 1.3.3 to Dery(C) and the result is as stated. This general

composition is of course recovered by taking f = 7. O

Proposition 1.5.3 Let f be an automorphism of the crossed module C = (C,G,§) and let
s be an f-derivation. Then the following are equivalent.

(i) s is a unit in the monoid Ders(C),

(11) g(a) = so(x) + f(a) + 8s1(a) — so(y) is an automorphism of G,

(i) g(c) = (f(c) + 516(c))~*P) 45 an automorphism of C.
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Proof: For f equal to the identity automorphism of C = (C, G, §) this result has been
given in Theorem 1.3.5. Now s is a unit in Der(C) if and only if sf~! is a unit in Der(C) and
by Theorem 1.3.5 this is equivalent to gf~* being an automorphism of G or of C: since f

is an automorphism of C = (C, G, ¢), this is in turn equivalent to ¢ being an automorphism

of Gand of C. O

We write Der*(C) for the group of units of Ders(C) and s for the inverse of s €
Der*¢(C). If f is the identity, we write F'Der*(C) for Der*;(C). An element of A; is now

seen to consist of a triple (sg, $1, f) where sg € M(C), f € Aut(C), and s; is a derivation.

Theorem 1.5.4 The regular crossed module A = AUT(C) corresponds via the equivalence

of Theorem 2.2 in [6] to the 2-crossed module
M(C) =55 FDer*(C) -2 Aut(C)

in which ((s3) = (63, C,, ), where (s, (a) = —sa(2)® + s2(y), and A(so, 81) = f, where
fi(a) = so(z) + a + bs1(a) — so(y)

falc) = (¢ + 816(c)) =P
fo(2) = aso(z)

fora € G(z,y), c€ C(y) andz € X.

Proof: The costar in the groupoid A, at the identity automorphism I of C may be
identified as a set with F'Der*(C) and the group structure on the costar is given by (so, 81)*

(to,t1) = (80 * to, 81 * t1) where
(s*t)i(a) = tifa)+ s1fi(a)@
= ti(a) + s1(to(e) + @ + 8t1(a) — to(y))eW
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= t1(a) + sa(to(@))*HEHA) 153 (a)P5(00) 4 53 (8t3(a)) = )sto()

= t(a) + s (to(2))*9) 4 51(@)5E) 4 51(8t3(a))5P) + 1 (—to(y))

= t1(a) + s1(t0(2)")’5) — 12(a) + s1(a) + ta(a) + 51(6t2(a)) — s1(toly)

= t1(a) — () + sa(to(2)* + () — ta(a) + sa(a) + t2(a) + s1(612(a)) — s1(to(y))

= si(to(2)* + s1(a) + t1(a) + s1(6t1(a)) — s1(to(y))

for a € G(z,y). The vertex group A,(I) is identified with the group Af(C) with ((s3) =
(6s2,(s,) as required. Note that Aut(C) acts on F Der*(C) by

(sa, 31)U°'h’f2) = (f1_130f03 fa"ts1h)

proved in Theorem 1.3.6 and on M(C) by stforfi+f2) = f=15, f. The action of FDer*(C)

on M(C) is simply s&*) = 53 and the Peiffer lifting is given by
2 2 =} g

< (80,81), (to, 1) > = {(s0,1)7%, (to, t1)} (50, 51)
= ({(s07, (31_1)30—1): (o, t1)}-A(s0, 31))(S°'51)
= (31—1)50_1(io)sn

= 51_1(50_1 * to * Sg)

This concludes the description of the functor 2 — CrsMod — CrsModgpg.

We give above the full definitions and proofs of the algebraic structure, because, we
believe it will help the reader to see explicitly the algebra that is involved, and to make
this work independent of the papers Brown and Higgins [11] and Brown and Gilbert [6]. In
particular, this makes our work independent of the equivalence between crossed complexes

and w-groupoids which is used by Brown-Higgins in [11]: We quote from op.cit p:2 which

46



discusses the formulae for the tensor product. “Given formulae (3.1), (3.11) and (3. 14),
it is possible, in principle, to verify all the above facts within the category of crossed
complexes, although the computations, with their numerous special cases, would be long.
We prefer to prove these facts using the equivalent category w-Grd of w-groupoids where
the formulae are simpler and have clearer geometric content”.

Thus we have in the above carried out a portion of this verification. For the braided
part of the structure, we are however using facts from Brown and Gilbert [6]. In any case,
in this thesis we will not be studying the localisation theory for M(C'). The extension of

later theory to this 2-crossed module would be an interesting topic for further study.
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Chapter 2

Special Double Groupoids and
Crossed Modules

2.1 Introduction

In this chapter, we deal with double groupoids especially special double groupoids. A dou-
ble groupoid is a groupoid object in the category of groupoids: that is, a double groupoid
consists of a set D with two groupoid structures over H and V', which are themselves
groupoids on the common set X, all subject to the compatibility condition that the struc-
ture maps of each structure on D are morphisms with respect to the other. Elements of D

are pictured as squares

in which vy,v, € V are the source and target of w with respect to the horizontal structure
on D, and hy, hy € H are the source and target with respect to the vertical structure.
Double groupoids were introduced by Ehresmann in the early 1960’s [22, 23], but pri-
marily as instances of double categories, and as a part of a general exploration of categories
with structure. Since that time their main use has been in homotopy theory. Brown-Higgins

[8] gave the earliest example of a “higher homotopy groupoid” by associating to a pointed
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pair of spaces (X, A) a special double groupoid with special connection p(X, A). In such a
double groupoid, the vertical and horizontal edge structures // and V' coincide. In terms of
this functor p, [8] proved a Generalized Van Kampen Theorem, and deduced from it a Van
Kampen Theorem for the second relative homotopy group m3(X, A), viewed as a crossed
module over the fundamental group m(A).

The main result of Brown-Spencer in [16] is that a special double groupoid with special
connection whose double base is a singleton is entirely determined by a certain crossed
module it contains; crossed modules had arisen much earlier in the work of J.H.C White-
head [49] on 2-dimensional homotopy. This result is easily extended to give an equivalence
between arbitrary special double groupoids with special connection and crossed modules
over groupoids; this is included in the result of [9]. This is the result we explain in the
next section as it is essential for later work.

Further, we introduce a definition of linear coadmissible section for the special double
groupoid D(C). We prove that the groups of linear coadmissible sections and free invertible

derivation maps are isomorphic.

2.2 Double Groupoids

In this section, we review the definition of double groupoid [17].

A double groupoid D = (D, H,V, X') consists of four related groupoids
(D1H1a13ﬁ11+1:0) (Ds‘/aa()aﬁo:"}‘ﬂ:l)

(VaXaaoaﬁoa'ae) (Ha‘}{!alvﬁl"af)

as partially shown in the diagram



and satisfying
(i) @if; = Bjeu, cuaj = eijen, Bifl = B, for 1,5 = 0,1
(1) @o(1a) = €ag(a)s Po(la) = poa)

a1(0s) = fay () Br(06) = f0)-
(iii) 0., = 1y, for z € X, and this square is written O,
(iii) e, B; are morphisms of groupoids for 2 =0, 1.

(iv) (Interchange Law)

(v 41 w) +o (v +1 0") = (v 4o v") +1 (w0 o w')

. ) .
v 'L"

° ® .
w w'

® . .

whenever v, v, w,w’ € D and both sides are defined.
The element of D are called squares and the elements of H and V' respectively are
called horizontal and vertical edges. The elements of X are called points.

Condition (i) allows us to represent a square as having bounding edges pictured as

@w

+o h4

L ] P ——

+1 Ull

while the edges are pictured as

B T—
h‘z

co(a)® 2E5 05, (a)

cu(b).

leV

£1(a)®
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It is convenient to represent the structures +g,+; on D, respectively vertically and hori-

zontally, by composition of squares as follows;

S0

w

hz
and
[ ] L ]
v (e} v’
L] L ]

Va2

where of course v+, w is defined if and only if f1v = ayw, and v+pv’ is defined if and only

if Bov = apv’. The inverse for +; on D is written w +— —;w; the inverse for 44 is written

w +— —ow. S0 if w € D has faces given by

]11

those of —jw and —qw are given by

h-z

RS —

.
|—U1 - w
L]

R —

h’l

st »

and



It is convenient to use matrix notation for composition of squares. Thus if v, w satisfy
Bov = apw, we write

[ VoW ] for v4qw
and if fiv = ayu, we write
l z ] for v+4;u
More generally, we define a subdivision of a square w in D to be a rectangular array
(wi;), 1 <1< m,1 <j<n,of squares in D satisfying

Bow; i1 = apw;;, 1<i<m,2<3< m
J 9 ; J

Biwgi g = oqwy, 21 €<m,2<i<n

o

such that

(w11 Fowiz +o-*  Fowin) +1 (W1 +o- - o wan) +1- +1 (Wmi FoWma 4o+ +oWmn) = w.

Definition 2.2.1 A morphism f:D = (D,H,V,X)— D = (D', H', V', X') of double
groupoids consists of four functions fy : D — D', fs3: H - H'. fo:V = V' fi: X — X'

which preserve the structure.

So we have a category DGrpd of double groupoids.

2.3 Brown-Spencer Theorem

This section considers the relationship between crossed modules and double groupoids as
given in [16].

The main result of Brown-Spencer in [16] is that a special double groupoid with special
connection whose double base is a singleton is entirely determined by a certain crossed

module of groups. This result is easily extended to give an equivalence between arbitrary



special double groupoids with special connection and crossed modules over groupoids; this
is included in the result of [9].

We here give this extended result as in [11] and [13]. The method which is used here
can be found in [16].

Let D = (D, H,V, X) be a double groupoid. We show that D determines two crossed

modules over groupoids.
Let z € X and let

H(z)={a € H: ap(a) = fola) = a}.

We define V(a) similarly. We put
H(D'»H'»:L) = {w €D:aw= BO(W) = ersﬂl(w) = f.r}

and
(D, V,z) ={v € D:a(v) = fi(v) = fr, Bo(v) = €z}

so that II(D, H,z) and II(D, V, z) consist of squares with bounding edges given by

a

_—

tex w IeI
[ ] T.
and
T

Ib v €z

fa
for some a € H and b€ V. II(D, H,z) and II(D, V,z) have group structures induced from

+o, and +;. Then II(D, H) = {II(D, H,z) : € X} and II(D,V) = {II(D,V,z) : z € X}

are totally intransitive groupoids over X.
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Clearly maps
e:1(D,H)— H
and
0:1(D,V) -V
defined by e(w) = a1 (w) and 3(v) = ag(v), respectively, are homomorphisms of groupoids.
Proposition 2.8.1 Let D = (D, H,V, X) be a double groupoid then
D)= (I{D,H),H,&)
v(D) = (II(D, V),V,9)
may be given the structure of crossed modules.

Proof: We define an action of H on II(D, H) as follows. Let b € H(z,y) and w €
II(D, H,z) and put

w® = —glp 40w 4o 1

oY =b ot G ] b oV
ey == 1b [ w BT lb ey
oy ) L fx . 7 y

as in the diagram.

It easy to see that this gives an action of H on II(D, H). Clearly

e(w’) = ai(—ols +ow+o1y),
= ai(—olp) +o a1(w) +o @1(1s), by linearity of o

Suppose v € II(D, H,z) and e(v) = b. Then w® and —gv+ow+ov have common subdivision
—11, w lb
—v 0 v
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and so w?

= —U +q W +q V-

We have shown that, y(D) is a crossed module. A similar proof holds for /(D). O

Clearly # is a functor from the category of double groupoids to the category of crossed
modules.

A special double groupoid is a double groupoid D but with the extra condition that
the horizontal and vertical groupoid structures H and V', on edges, coincide. These double
groupoids will, from now on, be our sole concern, and for these it is convenient to denote
the sets of points, edges and squares by X, G, D. The identities in G will be written 1,
or simply 1. The source and target maps G — X will be written a, 3.

By a morphism f: D — D' of special double groupoids is meant functions f : D — D',

f:G—- G, f: X — X' which commute with all three groupoid structures.

Definition 2.3.2 Let D be a special double groupoid. A special connection for D is a
function T : G — D such that if « € G then T(a) has boundaries given by the following

diagram

Further, if b € G and a + b is defined and
T(a+0b) = (T(a)+10;) 4o T(b) (%),

then the law (x) is called transport law of the special connection T. This can be expressed



as: Y(a+ b) is given by the diagram

and

(T(e) +01s) +1 (Os +0 T(B)) = (Y(a)+10s) 4o (1p +1 T(b)), by interchange law
= (T(a) +1 Os) +o T(b),
= T(a+b).
By transport law (*) we have for @ € X (remembering that 1o, = Op, is abbreviated to
Oz)
T(0:) = T(0: + O:) = ((T(0:) +1 Ox) +0 T(Ox)

so that T(O,) = O. Then applying transport to T(—a+ «) we may obtain various identites

relating T(—a) and T(a)™* for example Y(—a) :

L] —a L]

1 T(—a)|a

] 1 [ ]
and Y(a)™1:

L] 1 [ ]

—a T(a) 41

L] a L]



A morphism f : D — D' of special double groupoid with special connections T, T’ is said
to preserve the connections if f,1' =T fi.

The category DGrpd! has objects the pairs (D, T) of a special double groupoid D with
special connection, and arrows the morphisms of special double groupoids preserving the
connection. If (D,T) is an object of DGrpd!, then we have a crossed module 4(D) by
Proposition 2.3.1. Clearly v extends to a functor from DGrpd! to CrsMod, the category

of crossed modules. The main result on double groupoids is:
Theorem 2.3.3 The functor v : DGrpd! — CrsMod is an equivalence of categories [16].

Proof: Now, we will show how special double groupoids arise from crossed modules
over groupoids.

Let C = (C, G, 6) be a crossed module over groupoids with base set X. We define a
special double groupoid D(C) as follows. First, H/ = VV = G with its groupoid structure,

base set X. The set D(C) of squares is to consist of quintuples

CHMD
w=lw:}p ¢
a

such that w, € C,a,b,¢,d € G and
b(wy) =—a—b+d+c
The source and target maps on w yield d and «a, respectively, and vertical composition is
. d T Y] % My _ / c / d ’
wiip  c)tilw b ) =lw+w” i b4Db c+c). (I)
. a o o

a7



For the horizontal structure, the source and target maps on w yield b and ¢, and the

composition is

e : d+e
(o6 4 e)to s §3) = (mivmnsn 2755). @
2 a 2

It is straightforward to check that these operations are well-defined, i.e., that with the
above data

S(wi+w®)=—a' =0 —b+d+c+d

§(wl +v)=—i—a—bt+d+e+]

for which condition (i) of crossed module is needed. It is also easy to check that each of

these operations defines a groupoid structure on D(C) with object maps,

aHOa:(l:a 1 a),
1
CLHla:(lrl ¢ 1)

a

for 4o and +1, respectively. The verification of the interchange law requires condition (ii)

for a crossed module, as follows.

(w41 1) +o(v+12) = (w+ov) +1 (u 40 2)

. d . e .
b w G v 7
Tl
bou d =z [
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whenever v, u,w, z € D(C) and both sides are defined.

: d+e . a+1
(wWHov)+1(u+oz) = |wi'+v1:b RS RN R {
a+1 a+k

L ) 1 d+e
= Ui —}—zl—l—('wl’-l—vl) :b-l—b‘ ]+l
a 4k

and
, d e .
(w+iu)+o(v+12) = (u1+wl° Po+ b c+c’) +o (zl+v1':c+6' ; J-I-l)
a :
- ; d+e
= [(u+w® )" +z4+v b4V j~{-l>

a4+ k

So we have to prove that
uf a4 (o tn) =(wm+u)+a+u’. Q)

This is equivalent to

x o 3
21 + wH = w0, 4 2.

But §zy =—-k—c +i+landsoi+{=¢c+k+6z. Let 2 = wt*. Then
g wl(c'+k).sz1 — wl(c‘+k) i, (2)
Put z = w;, ¢ 1%, (2) is equivalent to
428 =242

which is equivalent to

snn—xntaer+znn=z+4 2.

This proves that the two operations +¢ and +; satisfy the interchange law.

The special connection T : G — D(C) for D(C) is given by
Tla) = (1 :a CIL 1)
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Recall that by a transport law we mean that if a,b € G and a + b is defined, then

T(a+b) = l%‘:) Tl(bb)]

So the verification of the transport law is trivial.
This completes the description of D(C) and it is clear that ) extends to a functor
1 : CrsMod — DGrpd!. It is immediate that Q) : CrsMod — CrsMod is naturally
equivalent to the identity. We now prove that Qv is naturally equivalent to the identity.
Let (D, T) be an object of DGrpd!. Let E = Qy(D). Then Ey = Do, E; = D;. We

define ¢ : E — D to be the identity on Ey and E; and on Ej; by
o (wl : b i c) = T(b) 40 1a 40 w1 —o T(c)

(for é(w1) = —a — b+ d + ¢) as shown in the diagram

b o )

1 & 1 1

which clearly has the correct bounding edges. Clearly ¢ is a bijection E; — D, so to prove
¢ is an isomorphism it suffices to prove that ¢ preserves +¢,+; and connections.

For +¢ we have, by definition of w* and using the above notation (II):

: d+e : .
¢ | (w0 4+v1): b I J1 = T(b) o lagi +wr' + vy —o T(j)
a1
= T(b) 4+olatoli—0lidows +ol;i+ownr —T(j)
= T(b) 4o ls +ow1 —o YT(c) 4o T(c) +01; +ov1 — Y(y)

f d 2
— @(uq:b c)+0¢5 vp:¢ 7
a 1

For 4+, we have using the notation of equation (I)

* i d
d)(wl'—i—wlc :b—*—b’

CI'

c+ C') =T(b+ V') 4o lar +o (wli + wl‘:‘) —o T(c+¢) (III)
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while on the other hand
a

) (wl ) z c)+1¢5 (wl'r? b o C’) = (T(b)-l-ola)-l-o(wl—UT(C))-FO(T(IJ')+01a'+0w1'—0T(C’)) (VI)

The equality of ({1I) and (V) follows from the fact that by the transport law the right
hand sides of both (I11) and (VI) have the common subdvision

T(b) lbl —lbr la w 1cr 1a(w{) 1ar —lci T(C’)
Obr T(b') —15r lg_ o0 1cr wl' lar T((:') Ucf

Finally ¢ preserves the connection since
a
5 (o o 1) e Tl g Ty to— UL} =P,

Since the naturality of ¢ in the category DGrpd! is clear, we have now proved that
¢ is a natural equivalence from Qv to the identity functor. This completes the proof of

Theorem. O

2.4 Linear coadmissible sections

In this section, we introduce the definition of linear coadmissible section for the special
double groupoid D(C) corresponding to a crossed module C, and we prove that the group
of all linear coadmissible sections and the group of coadmissible homotopies (invertible free
derivations) are isomorphic.

In D(C), given w = (wl 7% ;i c ), we need only specify w; and three of a, b, ¢ and d,
as this determines the last side as well so for example we may write w = (w1 2 b 5 € ),
for such a w, where d = b+ a + §(w;) — ¢ and still specify the element w precisely. We use

this shorthand convention below.

Definition 2.4.1 Let C = (C, G, 6) be a crossed module and let D(C) be the corresponding

double groupoid. A linear coadmissible section o = (0g,01) : G — D(C) of D(C)
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written also

is a pair of maps

such that
(i) if z € X, foo(z) = @, and if @ € G, then Boy(a) = Ba.
(i1) if a,b,a+ b € G, then

o(a+b) =c(a) +o0o(bd)
i) aogg: X — X is a bijection, ao : ¢ — (' is an automorphism.
J

A linear coadmissible section can be given by the following diagram

oo(x) o(a) |oo(y)

[ Rr—— ]
z a Y
14

Proposition 2.4.2 Let T'D(C) denotes the set of all linear coadmissible sections. Then a

group structure on I'D(C) is defined by the multiplication

| (o*7)o(2) = (0oamo(2)) + To(z), 2=2€ X, e¢=0
o . ol o= { (o * T)(()(t) = (crc;'r(a)) +;7(a), z=a€ G(a,y) e=1
for a,7 € I'D(C)

Proof: We show that (¢ * 7) is a linear map. i.e.,

(cx7)(a+d)=(c*7)(a)+o (o *7)(b).
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In fact,

(cx7)(a+b) = o(ar(a+Db))+17(a+b), by definition
= o(ar(a) +oar(h)) +1 (r(a) +o 7(b)), by linearity of a, 7
= (car(a) +ocar(b)) +1 (r(a) +o 7(b)), by linearity of o
= ((car)(a) +17(a) +o (car(b)) +17(b)), by interchange law

= (o#*7)(a)4o(c*7)(b)

An inverse element o=! of o is defined as follows, for « € G, 2 € X,

oo () = —oo((aoe) ™ ().
We have to show that o= is linear. Let a,b,a + b € G. It follows that
o Ma+b) = —o((ac) a4+ b))
= —o((ac) M (a) + (aa)7}(b)), since (ac)™! is linear
= —o(ag)™(a) =0 o(ao)7}(b))

= o7} (a)4+o07(D))

Hence 07! € TD(C). O

Proposition 2.4.3 Let C = (C, G, 8) be a crossed module over a groupoid and let s be an

invertible free derivation with A(s) = f. If we write
oo(z) = so(2)

o(a) = (Sl(ﬂ) * So() aE 30(3’)) ’

a
then o = (09,01) is a linear coadmissible section of D(C).
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Proof: The condition (i) and (iii) are clear from the definition of invertible free derivation.

For the linearity condition (ii), let a € G(x,y), b € G(y,2). Then

fila +b)
ola+b) = (31(a + b) & so(z) so(z)) ;

a+b
( b fila) + £1(b) ) .
= | s1(a)’ + s1(b) : so(z) so(z) |, by derivation map s,
a+b
fila fr(b)
= (Sl(a) * s0(2) | -5‘0(?/)) o (Sl(b) +so(y) , 80(3))’

= o(a) 4o o(a).

Conversely, if o = (09, 01) is a linear coadmissible section of D(C) defined by

a(a) = (51('3) " so() b 30(3’)) '

a

then (sq, 1) 1s a coadmissible homotopy for the crossed module C.

Corollary 2.4.4 The groups of linear coadmissible sections and free invertible derivation
maps are isomorphic, i.e.,

FDer*(C) = T'D(C).

Proof: Let o be a linear coadmissible section. We define a map p(¢) = (09, 01). We have
to show that (oq,01) € FDer*(C), i.e., (00, 01) is an invertible free derivation (coadmissible
homotopy).

Let a € G(z,y), we write

po(a) = (0g,01)(a) = (al(a) : 0o() Uo(ﬂ))

a
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by Definition 2.4.3. Then

bo1(a) = —a — oo(z) + ao(a) + oo(y)
and
ac(a) = ogo(a) + a + bo1(a) — oo(y)
is an automorphism of G. Hence (0g,01) € FF'Der*(C) by Propositionl.3.5.
Also we have to show that o; is a derivation map, i.e.,
o1{a+b) = 0'1((1)6 + a1(b)

for a € G(z,y),b € G(y, z). In fact, since ¢(a + b) = a(a) +o o(b), we have

o(a)+oo(b) = (01((1) . oo() C’O(y)) +o (o’l(b) . 90(y) . ag(z)>,
file) + f1(b) (?)).

a-+b

= (al(a)b + 01(b) : oo(2)

and also we have

ola+b) = (01(0. +0): ao(x) Jﬂ(z)) .

a+b

Hence
o1(a + b) = a1(a)’ + o1(b).
Moreover p is a group homomorphism, since
ploxt) = ((6%7)o,(0%7)1)
= (o9,01) *(00,71), by definition =
= p(o)*p(7)

Conversely, let (so, s1) be an invertible free derivation (coadmissible homotopy) for a crossed

module C = (C, G, §) such that A(s) = f. We also define a map
fila)
ofo01)(@) = @) = (1(0) sy ™) ).
a ,
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for a € G(z.y). Clearly s(a) € D(C).

Moreover s is a linear map,i.e.,
s(a+b) = s(a) 4o s(b)

as in Proposition 2.4.2. Hence s € I'D(C). Also we have to show that w is a group

homomorphism.

w((s0,81) * (fo, t1))(a) = w(soxtg, s1%t1)(a),
= (sx*t)(a), by definition of w
= sat(a) +1 t(e), by definition of *
= w(so,s1)(at(a)) +1 w(lo, t1)(a),

= (w($0,81) *w(to,t1))(a).

So

for (so,s1) € F'Der*(C) and

for ¢ € I'D(C), i.e.,
FDer*(C) 2 I'D(C).
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Chapter 3
V-Locally Lie Double Groupoids

3.1 Introduction

In generalising holonomy to dimension 2, we have to show how the formal definitions and
results correspond to some intuition. What we find is that the search for a formulation of
a definition which works mathematically also clarifies the intuition.

Note that for the 1-dimensional case of groupoids, Pradines stated a differential version
involving germs of locally Lie groupoids in [43], and formulated this in terms of adjoint
functors. A version for locally topological groupoids was given in Aof-Brown [1] and the
modifications for the differential case were given in Brown-Mucuk [14]. Our general aim is
to consider analogous methods for the case of crossed modules and double groupoids.

The steps that are required are as follows:

(i) We need to formulate the notion of a locally Lie structure on a double groupoid
D(C) that is corresponding to a crossed module C = (C, G, §) with base space X. For this
reason, here (G, X) is supposed to be a Lie groupoid and that there is a smooth manifold
structure on a set W such that X C W C C. Then (D(C), W) can given as a locally Lie

groupoid over (+, where

WC = {w= (wl ] j c) : B(b) = ala), Ba) = B(c) = B(wy), d = b+a+b(wy)—c,w, € W}
is a subset of D(C) and a,b,c € G.
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(ii) Next, we are replacing local coadmissible sections of a groupoid by local linear
coadmissible sections of a special double groupoid. We define a product on the set of all
local linear coadmissible sections. This easily leads to a 2-dimensional version of I'(G) to
['(D(C)), again an inverse semigroup.

(iii) Now we form germs of [s],, where ¢ € G, s € I'(D(C)). We find this gives a
groupoid J(D(C)) over G.

(iv) A key matter for decison is that of the final map % and its values on [s],. This is
related to the question of deciding the meaning of the generalisation to dimension 2 of the

term ¢

“ enough local linear coadmissible sections ”.

Recall that, in the groupoid case, we ask that for any a € G there is a local linear
coadmissible section s such that fa € D(s) and sfe = a. Under certain conditions, we
require 8 to be smooth and such that as is a diffeomorphism of open sets. The intuition
here is that @ € G can be regarded as a deformation of fa, and s gives a “thickening” of
this deformation.

In dimension 2, we therefore suppose given a € G(2,y) and b € G(z,z), ¢ € G(w,y)
and w; € C(y).
b-}-.a—l—é(wl)—c

Then a local coadmissible section will be “through w = (wl + b . C) " if spr = b, 50y = ¢
and sja = wjy. Our “final map” 3 will be a morphism from J(D(C)) to a groupoid. This
groupoid D(C) will be one of the groupoid structures of the double groupoid associated to
the crossed module C = (C, G, §). We write

() = 5(0) = (1061 ) 7 i)

a
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so that the value of 1) on [s], does use all the information given by s = (s, s1) at the arrow
a € G. This explains why our theory develops crossed module and double groupoids in

parallel.

3.2 Local Coadmissible Homotopies

In this section, our aim is to localise the concept of the coadmissible homotopy given in
Chapter 1. Note that for the 1-dimensional case, the concept of local coadmissible section
is due to Ehresmann [21] and modified by Mackenzie [37].

In order to cover both the topological and differentiable cases, we use the term C7
manifold for » > —1, where the case r = —1 deals with the case of topological spaces
and continuous maps, with no local assumptions, while the case r > 0 deals as usual
with €™ manifolds and C™ maps. Of course, a C'° map is just a continouous map. We then
abbreviate C" to smooth. The terms Lie group or Lie groupoid will then involve smoothness
in this extended sense. By a local diffeomorphism f: M — N on C'" manifolds M, N we
mean an injective partial function with open domain and range and such that f and f?
are smooth.

One of the key differences between the cases r = —1 or 0 and r > 1 is that for
r > 1, the pullback of C” maps need not be a smooth submanifold of the product, and
so differentiability of maps on the pullback cannot always be defined. We therefore adopt
the following definition of Lie groupoid. Mackenzie [37] discusses the utility of various
definitions of differential groupoid.

A Lie groupoid is a topological groupoid G such that

(1) the space of arrows is a smooth manifold, and the space of objects is a smooth
submanifold of G,

(11) the source and target maps «, § are smooth maps and are submersions.

(iii) the domain G Mg @ of the difference map is a smooth submanifold of G x G, and
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(iv) the difference map d is a smooth map.

Recall that coadmissible homotopies were defined in Chapter 1. Here we define the

local version.

Definition 3.2.1 Let C = (C, G, §) be a crossed module such that (G, X) is a Lie groupoid.

A local coadmissible homotopy s = (sq,s1) on Up, Uy consists of two partial maps
So: X =G s5:G->C
with open domains Uy C X, U; C G, say, such that «(U;), A(Ih) C Uy and

(i). If @ € Uy, then fso(z) = 2.
(i1). If a,b,a + b € Uy, then

s1(a +b) = s1(a)® + s1(b),

we say s; is a local derivation.
(iii) If @ € Uy Bsi(a) = B(a),
(iv) if fo, f1 are defined by
fo(z) = aso(z), =€ U,
fi(a) = soa(a) + a + és1(a) — sof(a), a € Uy.

then fo, f1 are local diffeomorphisms and f;™*, f; are linear.

A local coadmissible homotopy s defined as ahove will be denoted by s : f ~ I and, we
will write Uy = D(sg), Uy = D(s;) and called them jointly the domains of s, this can be

illustrated by the following diagram.




Suppose given open subsets V5 € X and Vi C G such that a(V1),3(V1) C V5. Let
t: (Vo,V1) — (C,G) be a local coadmissible homotopy on V5, V; with t : ¢ ~ I. Let
s : f =~ I be as above. Let D(s*t)o = VoNgo™*(Up) and D(sx*t); = ViNgi~(U1)NB~1(Vp).

Now we can define a multiplication of s and ¢ in the following way

(s*t)1(a) = t1(a) + s101(a)°P), @€ D(s*t);
(s *1)o(7) = sogo(2) +1o(z), « € D(s*1)o
Lemma 3.2.2 The product function s xt is a local coadmissible homotopy.

Proof:
We will prove that the domain of s %t is open. In fact, if « € V4, ¢1(a) € Un, f(a) € Vb,
then a € V4 N g7 (U1) N B71(V5) is an open set in G and also if @ € V5 and go(2) € Up

then = € Vo N g5 (Up) is open in X, so the domain of (s * t) is open. One can show that
B(s*t)o(z) = B(a), for z € D(s xt)g

B(s*t)1(a) = B(a), for a € D(s*t);

and (s *t); is a derivation map as in Proposition 1.3.3. i.e.,
(s*)a(a+b) = (s % )a(a)’ + (s % 1)a(b)
for a,b,a + b € D(s xt);. We define maps hg, h; as follows:
ho() = fogol) = als ¥ t)o(z) for = € D(s * t)o

hi(a) = figri(a) = (s *t)o(aa) + a + §(sxt)1(a) — (s *xt)o(Ba), for a € D(s *1t);.

Since hg, hy are compositions of local diffeomorphisms, they are local diffeomorphisms.

O
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Proposition 3.2.3 Let M (C) denotes the set of all local coadmissible homotopies of a
crossed module C = (C, G, 6) such that (G, X) is a Lie groupoid. For each s,t € Mp(C),
s*t € ML(C) and for each s € M(C), let s: f ~ I and let

iy @) = s (ATH@)T, 2 =a € Uiz,y)
e { so™(z) = —so(fo' (2)), z=2€ U (3.1)

Then s~ € M(C), and with this product and inverse element the set Mp(C) of local

coadmissible homotopies becomes an inverse semigroup.

Proof: The proof is very similar to that for the groupoid case given in the Appendix. O

3.3 Local linear coadmissible sections

Recall that linear coadmissible sections were defined in the previous chapter. Here we

define the local version.

Definition 3.3.1 Let C = (C, G, 8) be a crossed module of groupoids with (G, X) a Lie
groupoid, and let D(C) be the corresponding special double groupoid.

A local linear coadmissible section o = (09,01) : G — D(C), written
ola) = (al(a) : ooa(a) 4 oof}(a) )
consists of two partial maps
op: X =G o0,:G—-C

with open domains Uy C X, U; C G, say, such that «(U1), B(U1) C Us and
(i). If 2 € Uy, then Boo(x) = z, and if a € Uy, then foy(a) = Ba.
(ii). If a,b,a + b € Uy, then
o(a+b)=o(a)+o0o(b)
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we say o is local linear,
(iv) if fo, f1 are defined by
fo(z) = aoo(z), x € Uy,
fi(a) = ao(a), a € Us.

Then fo, f; are local diffeomorphisms and fi, fi™" are linear.

A local linear coadmissible section can be illustrated by the following diagram.

(e} —-P(E)

g ———X
Given open subsets Vo € X and V4 C G such that a(V;), 8(V4) C V4, let 7 be a local
linear section with domain V5 and V). Let o be as above and let D(o*7)o = VoN(am)~1(Us),
D(ox7);=a€ V1N (ar) Y (U;1)N B~ (Vs). Now we can define a multiplication of ¢ and

7 in the following way
(0% 7)(a) = o(at)(a) + 7(a), | a € D(o*71)
(0% 7)o(z) = go(amo)(2) + 7o(2), 2 € D(o*7)o
Lemma 3.3.2 The product function o * 1 is a local linear coadmissible section.

Proof: The key point is to prove that the domain of o * 7 is open. In fact, if a € W4,
at(a) € Uy, B(a) € Vo, then a € Vi N (ar)™*(U1) N B~(V5) is an open set in G and also if
z € Vo and ary(z) € Uy then z € Vo N (aro)™*(Up) is open in X, so domain of (o * 7) is
open.

The remaining part is easily done as follows.
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We show that (o % 7) is a linear map as in Proposition 2.4.2. i.e.,

(0 *7)(a+b)=(oc*7)(a)+o (o x7)(b)

for a,b,a4+ b € D(o * 7). Also we have to show that if z € D(c* 7)o

In fact,

Blox7)o(x) = Blogarmo(x)+ 1o(x))

and if a € D(o % 7), then

Blox7)(a) = Ploat(a)+: 7(a))
= f7(a)

= a

Proposition 3.3.3 Suppose C is a crossed module (C,G,6) such that (G,X) is a Lie
groupoid. Let I'(D(C)) denote the set of all local linear coadmissible sections of D(C). For
each 0,7 € I'(D(C)), o* 1 € I'L(D(C)) and for each o € T'(D(C)), let

0-1('2) _ { c™a) = —o(ao)™(a), z=acl,

oo 2) = —oo(aoe) " Hz)), z=a€ Up

(3.2)

Then with this product and inverse operation, the set I'L(D(C)) of local linear coadmissible

sections becomes an inverse semigroup.
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Proof: Inverse of ¢ is a linear coadmissible section, because it is a composition of the

linear map o and (o)™t . O

Proposition 3.3.4 Let (s, 1) be a local coadmissible homotopy for a crossed module C =

(C,G,6) and let D(C) be the corresponding double groupoid. A partial map s is defined by
5= (80,51): G- D(C)

fi(a
s'(a) = (s0,81)(a) = (sl(a)  so(2) (a) So(y)) .

a

Then (so, s), shortly s' is a local linear coadmissible section.

Proof: It is easy to see from the definitions of local coadmissible sections, local coadmis-

sible homotopies and Proposition 2.4.3 O

Corollary 3.3.5 The inverse semigroups of local coadmissible homotopies and local linear

sections are isomorphic.

Proof: Proof as in Corollary 2.4.4 O

Throughout the next two chapters, we will deal with the linear coadmissible sections

rather than coadmissible homotopies.

3.4 V-locally Lie Double Groupoid

Let C = (C,G,¢) be a crossed module such that (G, X) is a Lie groupoid. Let D(C) be
the corresponding double groupoid. Let I'(D(C)) be the set of all local linear coadmissible
sections and let W be a subset of C' such that W has the structure of a manifold and

B: W — X is a smooth surmersion.
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Let

WE={w=(u1:3 ¢ e) i B(b) = ala), Bla) = B(e) = Aluwn),d = bra+8(uwr) e, wr € W} (+)

where a,b,c € G. Here the set W can be considered as a repeated pullback, i.e., if

G* = {(b,a,¢) : a(a) = B(b), B(a) = B(c)}

is a pullback, then
We —=(3°

|

1% *T’“ X
is a pullback, so W€ has a manifold structure on it, because 8 and B are smooth and
surmersions.
We can represent an element w € W& by the following diagram:

b+a+68(wy) —c

e

~

<
- @

(]

Clearly W€ CW x G x G x G and W€ C D(C).

A local linear coadmissible section (sg,(0,81)) as given in Proposition 3.3.4, or s’ for
short is said to bhe W-smooth if Im(s;) C W and sq,s; are smooth. Let I'" (W) be the
set of local linear W-smooth coadmissible sections. We say that the triple (a, 8, 1WG) has
enough smooth local linear coadmissible sections if for each w = (wl b ;l c) €

W, there is a local linear smooth coadmissible section s : f ~ I with domains (Uo, Uy)

such that

(1). sp(w) =w, a(w) = fi(a); s18(w) = wy = s1(a), soB(a) = ¢, spa(a) = b.
(ii). the values of s lie in W¢

(iii). s is smooth as a pair of function Uy = D(sq) — G and U; = D(s;) — WC.
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We call such an s a local linear smooth coadmissible section through w.

Definition 3.4.1 Let C = (C, G, é) be a crossed module over a groupoid with base space
X and let D(C) be the corresponding double groupoid. A V-locally Lie double groupoid
structure (D(C), W¢) on D(C) consists of a smooth structure on G, X making (G, X) a

Lie groupoid and a smooth manifold W, W C C such that if

We = {w= (wl L i c) : B(b) = a(a), B(a) = B(c) = B(w1),d = b+a+é(wr)—c, w1 € W},

as in *, then
S1). W& = — W€,
$:). G C W C D(C),
S3). the set (WM W) Nd~1(WT) = Wy is open in (W N3 1WE) and the restriction

to W4 of the difference map
d:D(C) Mz D(C) — D(C)

(w,v) —» w—v,

is smooth.
Ss). the restriction to W€ of the source and target maps a and f are smooth and the
triple (a, 8, W) has enough local linear smooth coadmissible sections,

Ss). WG generates D(C) as a groupoid with respect to +;. '

Also one can define locally Lie crossed module structure on a crossed module by con-
sidering the above Definition 3.4.1.

Let C = (C,G,6) be a crossed module over a groupoid with base space X. A locally
Lie crossed module structure (C, W, §) on C consists of a Lie groupoid structure (G, X)
and a subset W of C with a smooth structure on W such that W is G-equivariant and

C1) (C,W)is a locally Lie groupoid,
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Cy) I(GYCWCC,

C3) the restriction to W of the map é : C — G is smooth,

Cs) the set Wy = A"} (W) N (W Mg G) is open in W Mg G and the restriction to
Aw : Wy — W of the action A: C Mg G — C is smooth.

Cs) Let

W= {(w; b, a1c) vw € Woa,b,c € G,ﬁ(a) = ﬁ(w)ao'(“) = ﬂ(b)vﬁ(c) = JB(G)}

We say that W has enough local smooth coadmissible homotopies if for all (w; b, a,c) €
W there exists a local smooth coadmissible homotopy (sq, s1) such that s1(a) = w, sof(a) =
¢, soax(a) = b.

Let us compare the above two definitions.

First of all, in the definition of locally Lie crossed module, conditions C3 and Cy gives
rise to the difference map

d:D(C)NzD(C) — D(C)
(w,v) — w —y v,

which is smooth. In fact,

d o d o d _ d o d
wy th c),\vri ¢ = Wy, c) T\ c
a a a a
) a
_ (wl 4 C) o (_vl_c Y _C,)
a d
ko e d
= [(-v) 4w : b=V c—c
d

Since éw, +, Aw are smooth, d is smooth. This is equivalent to the two smooth conditions
C3 , C4 for locally Lie crossed module, because the formulae for d involves + and the action
Aw.

The condition C) that (C, W) is a locally Lie groupoid, which includes W generates C.
The other equivalent condition can be stated as follows: We first prove that if W generates

C and is G-equivariant, then WG generates D(C) with respect to +;.
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Let w = (’y 5k . c) € D(C). We prove by induction that if 4 can be expressed as a
a

word of length n in conjugates of elements of W then w can be expressed as

w=w 4y w"

; d;
where w' = (7,- : b; c,-) e WC fori=1,..,n,and v; € W.
a;

This is certainly true for n = 1, since w € W€ if and only if y € W,

Suppose v = 7' + (* where ' can be expressed as a word of length n in conjugates of

elements of W and ¢ € W.

h

a
expressed as a word of length n in elements of W, by the inductive assumption.

Let w' = ((: 0 b ;i c— e) . Then w' € D(C), since
1

Let h = a4+ 67 — e, and let w" = (7’: 1 e) . Then w" € D(C) and so w" can be

8 = b=+
= 8y 4 8l
= e—6yY—e+et+by—ce
= e—(—a+h+e)—a—-b+d+ec—c
= e—e—h+a—a—-b+td+c—e

= o = Bt g
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and ¢ € W. Clearly w = w' +; w"”, and so w can be expressed as a word 6f length n+1 in
conjugates of elements of WE.

Conversely, suppose W& generates D(C) with respect to +;.

Let v € C and let w = (7: 1 1 1) . Then w € D(C). Since W€ generates D(C), we
can write

w=w 4y w"

where w* = (fy; : bi - C"),'TIEW', fori =1, --,n and w' € Wg. Then
c1 c2 cnttel d 1
w= |+t thy 4+ b, . gy A verdigy | = 1L 11
We get

y = ,nc; + 72c1+c2 i Tncyz+---+ﬁ1; Vi € W

So W generates C.

In the definition of V-locally Lie double groupoid, condition S, transfers as follows:
Let (o, 8, W) have enough local linear smooth coadmissible sections. Then for each
1w = ('y : b i C) € WG there exists a local linear smooth coadmissible section s such that
sp(w) = w,. i.e., there exits (sp, s;) that is a local coadmissible homotopy for the crossed
module C = (C,G,8). So for (w;b,a,c) defined as above, there exists a local smooth

coadmissible homotopy s = (so, 51) such that si(a) = w, spaa = b, sofa = c.

Lemma 3.4.2 Suppose s,t € T(W®), a € G and s(a) = t(a). Then there is a pair of
neighbourhoods (U, Uy), where Uy is a neighbourhood both of a(a) and f(a) and U; is a

neighbourhood of a such that the restriction of s *t™! to (Up, Uy) lies in T(WE).

Proof: Since s and ¢ are smooth and s(a) = t(), then (s(a),t(a)) € WS Nz WE. This

gives rise to maps

(s0,%0) : D(s0) N D(te) = GMz G and (s,t): D(s;) N D(t;) — Wz W€
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which are smooth. But by condition (S3) of Definition 3.4.1, (W€ My W¢) nd=1(W¢)
is open in WY Mg WY and (G, X) is a (globally) Lie groupoid. Hence there exist open
neighbourhoods U of a in G , Us of a(a), B(a) in X such that (s,t)(U;) C(WCEn, We)n
d=1(W¢) and (s0,10)(Uo) C (G Mg G) Nd~Y(G). Hence d(s,t)(;) is contained in W€ and
d(s0,%0)(Us) is contained in G. This gives (s * t™1)(U;) € W€ and (s *t71)o(Up) C G. So
sxt~l e I(WE). O

3.5 Germs

Let s, t be two local linear smooth coadmissible sections with domains, respectively, (Up, Uy)
and (Ug,U]) and let @ € Uy NU;. We will define an equivalence relation as follows: set
s ~g t if and only if Uy N U] contains an open neighbourhood V) of @ such that
S1 |V1: tl |V11 S0 |V0: tO |V0
and a(Vi), (Vi) C V.
Let J,(D(C)) be the set of all equivalence classes of ~, and let

J(D(C)) = U{Ja(D(C)) : a € G}.

Each element of J,(D(C)) is called a germ at a and is denoted by [s], for s € T'(D(C)),

and J(D(C)) is called the sheaf of germs of local linear smooth coadmissible sections of the

double groupoid D(C).

Proposition 8.5.1 Let J(D(C)) denote the set of all germs of local linear smooth coadmis-
stble sections of the double groupoid D(C). Then J(D(C)) has a natural groupoid structure

over G.
Proof: Let s,t € I'(D(C)) and s: f ~ I,t: g~ I. The source and target maps are

o([s]e) = f1(a)
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)6([3]!1) =a

and the object map is @ — [c],, the multiplication * is

[Slosa * [t]la = [(s * £)]a
and inversion map is

sl =157 pe-

Remark: One can give a sheaf topology on J(D(C)) defined by taking as basis the sets
{[s]a @ € Uy} for s € I'(D(C)), U; open in G. With this topology J(D(C)) is a topological
groupoid. We do not use the sheaf topology since this will not give W embedded as an
open set.

Suppose now that (D(C), W) is a V-locally Lie double groupoid. Let I"(W¢) be the
subset of I'r,(D(C)) consists of local linear coadmissible sections with values in W¢ and
which are smooth. Let I'"(D(C), W¢) be the sub inverse semigroup of I'L(D(C)) generated
by I"(W€). Then I'"(D(C), WC) is again an inverse semigroup. If s € I"(D(C), W), then

there are s' € I"'(T-fVG), 1 =1,---.n such that

si= 8" k voroig,

So let J™(D(C)) be the subsheaf of J(D(C)) of germs of elements of I'"(D(C), WE). Then
J™(D(C)) is generated as a subgroupoid of J(D(C)) by the sheaf JT(WE) of germs of
element of I'"(W©). Thus an elements of J"(D(C)) is of the form

[s)a = [s"]an * -+ % [']ay

where s = s™ % - - - * s! with [s'],, € JT (W), a;41 = fi(a:),i =1,...,n and a; = a € D(s").
Let 9 : J(D(C)) — D(C) be the final map defined by

fi(a)

$((sh) = s(a) = (sl(a) ) Y s
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where s is a local linear coadmissible section. Then % is a groupoid morphism. In fact, let

g feed,tygd, then

P([slosa) ¥ [ta) = P([s*2]a)

= (s+1)@)

= sat(a)+1t(a)

= s(g1(a)) +1 t(a)

= Yls]pa) +1 Y[t
Then

»(J"D(C)) = D(C),
from the axiom S of a V-locally Lie double groupoid on D(C) in Definition 3.4.1.
Let Jo = J" (W) N Ker 1, where as usual
Ker ¢ = {[sa : ¥[s]e = Lo}

We will prove that Jy is a normal subgroupoid of J"(D(C)).
Lemma 3.5.2 The set Jo = J (W) N Ker ¥ is a wide subgroupoid of the groupoid
JT(D(C)).

Proof: Let a € GG. Recall that ¢: I ~ I is the constant linear section. Then [c], is the
identity at a for J"(D)(C) and [c], € Jo. So Jo is wide in J"(D(C)).

Let [s]q, [t]e € Jo(a,a), where s and t are local linear smooth coadmissible sections with
a € D(s1) N D(t;) and a(a),B(a) € D(so) N D(to).

Since Jo = J" (W) N Ker 1, then we have that

i) [8]a, [t]la € J(WC) and so we may assume that the images of s and ¢ are both con-
tained in WY and s, t are smooth by definition of germs of local linear smooth coadmissible

sections.
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i) [8]a,[t]le € Ker ¢ and this implies that 1([s],) = ¥([t].) = 1. € D(C) which gives
s(a) = t(a) = 1, by definition of the final map.
Therefore (s(a),t(a)) € WE Nz W€ and d(s(a),t(a)) = s(a) —; t(a) = 1, € WE which
mplics Sk
(s(a),t(a)) € (WC Ny W) nd~{(WE).

Since s and ¢ are smooth, then the induced maps
(50,10) : D(s0) N D(to) = G Mg G and (s,t) : D(s1) N D(t,) — Wz W¢

are smooth. But, by condition (S3) of definition 3.4.1 , (WY Nz WE) N d~1(WS) is open
in W¢ng WC. Since (G, X) is a globally Lie groupoid, there exist open neighbourhoods
U of ain G, Uy of a(a), f(a) in X and «(U4), B(U1) € U such that

(s,2)(U1) € (W Mz W) Nd™ (W)

(s0,t0)(Uo) € (G M G) Nd™H(G)

which implies that (s,t)(U;) € d=' (W) and (so,%0)(Us) € d7}(G). Thus (s*t71)(U;) C
WS and (s * t™1)o(Up) € G, and hence [s * t7], € J"(WE). Since s(a) = t(a), then

[s*t71, € Ker 1. Therefore [s *t'], € Jo(a,a) and this completes the proof. O

Lemma 3.5.3 The groupoid Jy is a normal subgroupoid of the groupoid J"(D(C)).

Proof: Let [k], € Jo(a,a) and let [s], € Jo(b,a), s : ¢ ~ I where k,s are local smooth
coadmissible sections with b = fi(a) and Sk(a) = ak(a) = Bs(a) = a. Moreover k(a) = 1,.
Since J™(D(C)) is generated by J" (W), then

[sle = [s"]an # -+ % [s']ay, 8" € T7(WC)
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where a1 = a, aip1 = fi(a), i =1,-++,n. [s']s, € J (W), where we may assume that the

images of the s',7 = 1,...,n are contained in W and are smooth.
[slalBla[sla™ = [s™an # - % [8]ay * [Kla % ([s"]a, % -+ % [']a,) "
= [Sn]an Koeoo X [sl]ﬂl * [k}u * [sl]ﬂl_l ook [Sn]au—l
= [Sn]an LEERE [Sl]ﬂl i [}‘"‘]ﬂ o [(31)_1]}'1&1 W Er [(Sn)_l]f1ﬂn=b
= [sxk=*s7], € Jo(b,b).
In fact, now, since k™!(a) = —k(I71(a)) = —k(a), then k71 (a) = —k(a). But k(a) = 1,
by definition of Jo; hence k~1(a) =1, € — WG,
Since, by condition S; of definition 3.4.1, W¢ = — WY, then k(a) € W% Since

[s]a € Jo(b,a), then we may assume that the image of s is contained in W& and s is a local

linear smooth coadmissible section. So s(a) € W€, and therefore
(s(a), —1k(a)) € WE Mz WC, (so(z), —ko(z)) €GN G

and d(s(a), —1k(a)) = s(a) +1 k(a) = (s * £)(a) = s(a). Also d(so(z), —ko(2)) = so(z) +
ko(z) = (80 * ko)(z) = so(z). Hence (s(a),—1k(a)) € Wy and (so(z), —ko(z)) € Gy, for
y € X, By the smoothness of k~! and s, induced maps

(s,k7Y) : D(s;) N D(ky™") = WMy WE and (so, k™) : D(so N D(ke™) = GNp G

are smooth. Hence there exists a pair of open neighbourhoods (Uy, U ) where a(a), 3(a) €

Up in X, and a € U; in G such that
(5, E1)(Th) € WSs,  (s0,ko™")(Uo) C G

(s(U1) =1 k7 (UL) S WO, (s0(Us) — ko™ (Ui)) € G.

Therefore [s * k], € Jo(WE).
Thus we may assume that the image of s*k is contained in W& and s#k is a local linear

smooth coadmissible section. Since B(s* k)(a) = Bs(a) = Bk(a) = a and (s * k)(a) = s(a).
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Then ((s* k)(a),s(a)) € WENz W and so d((s* k)(a), s(a)) = (k*s) —1s(a) = 1, € WE.
and ((s * k)(a),s(a)) € Wy®. Similarly a € G(z,y), for 2,y € X, ((s * k)o(2), 50(2)) € Gy.

Since s and s * k are smooth, then they induce a smooth map
((s* k),8): D(ky) N D(sy) = W N W°

((s * K)o, s0) : D(ko) N D(s0) — G N G.

But W¢y and G4 are open in W¢ Mg W and G M G, respectively. Hence there exists a

pair of neighbourhoods (U, U?) of a(a), B(a) € U} in X and a € U/ in G such that
((s % k), s)(U}) S WO My WO ((5 % K)o, s0)(Us) € GMp G

which implies that
(s % K)(U]) =1 s(U)) S W and (s K)o(U3) — so(U}) € G-

Therefore [s* k], * [s]la ™" = [s # k]o* [s7 5y (a)=p = [s % k*571]y € J(b,b). But [s#k*s71]; €
(Kerg)(b,b), since (s k+s71)(b) = 1;. Hence [s* k*s7'], € Jo(b, b) and so Jp is a normal
subgroupoid of J"(D(C)). O

We define the quotient groupoid

Hol(D(C), W) = J"(D(C))/Jo

and call this the holonomy groupoid of the V-locally Lie double groupoid (D(C), W)
on D(C). Let p : J(D(C)) — Hol(D(C), W) be the quotient morphism, and write
< 8 >, for p[s],. Then the final map ¢ : J(D(C)) — D(C) induces a surjective morphism
¢ : Hol(D(C),W¢) — D(C) such that ¢(< s >,) = s(a).
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Chapter 4

The Holonomy Groupoid of
(D(C),W&)

4.1 Introduction

In this chapter, we deal with some local Lie structures on a special double groupoid D(C)
corresponding to a crossed module C = (C, G, §) -namely such a local Lie structure is a
Lie groupoid structure on the groupoid (G, X) of D(C), and a manifold structure on a
certain subset W€ of the set of squares, satisfing certain conditions. This Lie groupoid
Hol(D(C),W¥?) is called the holonomy groupoid of the V-locally the Lie double groupoid
(D(C), WE). Further, we state a universal property of Lie groupoid Hol(D(C), W¢) in

Theorem 4.2.8.

4.2 Lie Crossed Modules and Double Lie groupoid

We devote this section to a brief survey of Lie crossed modules and Double Lie groupoids. We
state a part of a Lie version of Brown-Spencer Theorem given in Brown-Mackenzie [13].
It is reasonable to recall the definition of Lie groupoid in this section. A Lie groupoid
(G, X) is a topological groupoid such that |
(i) the space G of arrows is a smooth manifold, and the space X of objects is a smooth

submanifold of G,
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(ii) the source and target maps «, 8 are smooth maps and are submersions,
(iii) the domain

GNg G ={(a,b) € GxG: pa= pb}

of the difference ma,p‘

d:GﬂgG-—}G
(a,b)—~a—10

is a smooth submanifold of G x G, and
(iv) the difference map d is a smooth map.

Moreover, the anchor map, i.e., the map
[]:G—XxX

a— (aa,Ba)
is a Lie groupoid morphism of GG to the coarse groupoid X x X. Similiarly, the manifold
(G Mg G is a wide subgroupoid of the coarse groupoid (G x G,G), and the difference map
d:GNgG— G
is a Lie groupoid morphism over f: G — X.
4.2.1 Lie Crossed Module

Definition 4.2.1 Let G, C be two Lie groupoids over the same object set and let C be
totally intransitive. Then a Lie action of G on C is given by a partially defined smooth
function, written (¢, a) — ¢*, which satisfies

1. c® is defined if and only if 8(c) = «(a), and then f(c*) = f(a), where a, are
respectively the source and target maps of the groupoid G.

2. (a1 +¢2)* =c1® + 2 and (e;)* = ¢,
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3, ;1192 = ¢, ()% and ¢,% = ¢
for all ¢1,¢; € C(z,2), a1 € G(z,y), a2 € G(y, 2).
Further, the domain

G G= {{e.a) s o= au}

of the action

CNnNG —-C

is a smooth manifold. Image of C in G is not required to be closed, see [38, 13].

Definition 4.2.2 A Lie crossed module of groupoids consists of a pair of Lie groupoids
C, G over a common object set with a Lie action of G on C, together with a smooth functor
6 : C' — G which is the identity on the object set and satisfies

1. 6(c*) =—a+dc+a

2. =g tet g

for c,¢c; € C(z, ), a € G(z,y).

Note that 8é(c) = B(c) = a(e), since § is a functor over the identity and @ = § on C.

Image of C in G is not required to be closed, see [38, 13].

Example 4.2.3 Every Lie groupoid G give rise to a Lie crossed module over groupoids,
with G acting on its inner group bundle. In fact, let G be a Lie groupoid over X and
let /G be the inner group bundle of G, i.e., IG = UzexG(z). Then clearly IG is a Lie
subgroupoid of G. The inclusion map 1 : IG — G is a smooth homomorphism, and G acts
on IG smoothly by conjugation:

IGNG — IG

(c,a)—c*=—a+c+a.

Hence C = (IG, G, 6) is a Lie crossed module over a groupoid.
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A Lie crossed module of groups is a Lie crossed module of groupoids as above in
which C, G are Lie groups. Examples given in Chapter 1 can be stated as examples of Lie
crossed modules of groups.

Also we can define a category of Lie crossed modules of groupoids. Let C = (C, G, §),
C' = (C', @G, §") be two Lie crossed modules with same base space X. A morphism f : C — ('
consists of a pair of smooth Lie groupoid homomorphism (fi, f2) such that the following

diagrams commute:

cne—¢ og—7 .o
O AN
Cc'nG—C" X

The monoid of all morphisms from a crossed module (C, G, 8) to itself is called the
endomorphism monoid of (€', G, ), and denoted by End(C,G,8). Its maximal subgroup

is the group Aut(C, G, §) of automorphisms of C = (C, G, §).
4.2.2 Double Lie Groupoid

In differential geometry, double Lie groupoids, but usually with one of the structure totally
intransitive, have been considered in passing by Pradines [44, 45]. In general, double Lie
groupoids were investigated by K.Mackenzie in [39] and Brown and Mackenzie [13].
Recall that a double groupoid consists of a quadruple of sets (D, H,V, X), together
with groupoid structures on H and V, both with base X, and two groupoid structure
on D, a horizontal with base V', and a vertical structure with base H, such that the
structure maps (source, target, difference map, and identity maps) of each structure on D

are morphisms with respect to the other.

Definition 4.2.4 A double Lie groupoid is a double groupoid D = (D; H,V, X) to-

gether with differentiable structures on D, H, V and X, such that all four groupoid struc-
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tures are Lie groupoids and such that the double source map D — H x, V = {(h,v) :
an(h) = ay(v)}, d = (v (d), ag(d)) is a surjective submersion, where ay, oy are source

and target maps on D.

A morphism of double Lie groupoids (®,®y,®v,®x) : (D;H', V' @ X') —
(D; H,V : X) is a quadruple of smooth maps, ®: D' — D, ®g: H — H, &y : V' = V,
®x : X' —» X such that (®,®g), (®,Pv), (Dy,Px), (Py,Px) are morphism of their
respective groupoids.

We give two examples which are found in Brown-Mackenzie [13]. Later, these will be

used in the proof of Theorem 4.2.7.

Example 4.2.5 For any manifold X, the product manifold X x X has a natural Lie
groupoid structure, where (x, y) has source z, target y, and the composition is (z,y)(z,u) =
(z,u), defined if y = 2. This is known as the pair or coarse groupoid on X. If (G, X) is
a Lie groupoid, then G x G can be considered both as the Cartesian product groupoid on
base X x X, and as the pair groupoid on base G. These two structures constitute a double

Lie groupoid.
GxG_XxX

ol

G X

Given any double Lie groupoid D = (D, H,V, X), the anc.hor LJv: D —= HxH
together with id : H — H, [,], : V — X x X, id : X — X is a morphism of double
groupoids D = (D, H,V,X) — (H x H,H, X x X, X). Similarly, the vertical morphism is
D ={D,HV.X)—{Fx VX x X X].

Example 4.2.6 Let H and V be Lie groupoids on the same base X, and suppose that

the two anchors [,]n: H = X x X and [,], : V — X x X are transversal as smooth maps;
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that is , the tangent bundle of X x X is generated, at each point, by the images of the

tangent maps to [,] and [,],. Then the pullback of

VxV
l[,]u><[.]u
H x H[W X4
may be regarded as defining either the pullback groupoid [,],""(V x V) on base H or
the pullback groupoid [,],”"(H x H) on V. These two structures constitute a double Lie

groupoid which is denoted by O(H, V'), and whose elements are squares

with hqy,hy € H, vi,v3 € V and source and targets matching as shown. If H = V we
write OH for O(H, H). Taking H = X x X, the pair groupoid on X, we obtain the double

groupoid (X*, X? X% X) in which all four groupoid structures are pair groupoids.

Theorem 4.2.7 [16] Let C = (C, G, ) be a Lie crossed module with base space X and let
the maps k : [,]**(G x G) = Gx IG and id x 6 : Gx C — G« IG are transversal (see [13],

p.29). Then the corresponding special double groupoid D(C) is a double Lie groupoid.

Proof: Let C = (C,G,6) be a fixed Lie crossed module. Let /G = UIE;(G:; be the
inner group bundle of G (sometimes called the gauge group bundle). Form the semi-direct
product group G x IG on base X; this consists of all pairs (a,c) with f(a) = B(c), and

composition
(aacl) + (bﬁcZ) == (CL + baclb + CZ)

defined if B(a) = a(b). Next, form the pullback Lie groupoid [,]™(G x G) of the Cartesian

square groupoid over its own anchor; this admits the double groupoid structure OG as
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given in Example 4.2.6 but we are here considering it merely as an ordinary groupoid.

Define a map

E:[,]"(GxG)— Gx IG, (bya,c,d)r (a,—a—b+d+c)

with our usual orientation; in particular, d is the source and a the target. Now k is a

where a, b, ¢, d are arranged as

d

- >

_—

a

regular fibration over o : G — X, and § is base-preserving, so we can take the pullback in

the category of Lie groupoids of the diagram

[I™(G x G)
k
G CWG x IG
We obtain a groupoid D(C) whose element are 5-tuples (w, b, «, ¢, d) such that (b,a,c,d) €
[[]*(G x @) and w € C with f(w) = B(a) and §(w) = —a— b+ d +c. To keep the notation

clear, we rewrite (w, b, a, ¢, d) as

The source and target of this element are d and a, respectively, and the composition is
defined in Chapter 2. Now D(C) becomes a double groupoid by defining a horizontal

structure as in Chapter 2. O

We now start with a statement of the theorem, the proof of which then occupies this

and the next two sections.

Theorem 4.2.8 Let C = (C, G, 6) be a crossed module and let D(C) be the corresponding

double groupoid. Let (D(C), W) be a V-locally Lie double groupoid for the double groupoid
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D(C). Then there is a Lie groupoid Hol(D(C), W), a« morphism
W : Hol(D(C),W®) — D(C)

of groupoids, and an embedding
i: W= Hol(D(C), W°)

of WG to an open neighbourhood of Ob(Hol(D(C), W®)) = G, such that

(i) 1 is the identity on G, i = Liys, P71 l(wey is open in Hol(D(C), W), and the
restriction e : W= (WEG) — WEC of 1 is smooth.

(ii) if A = (A, B,§) is a Lie crossed module with object set X and ji : D(A) — D(C)
is @ morphism of groupoids such that

(a) p is the identity on objects;

(b) the restriction e : = (W) — W is smooth and = '(WC) is open in D(A)
and generates D(A) as a groupoid.

(c) the triple (a, 8, D(A)) has enough local linear smooth coadmissible sections;

then there is a unique morphism p' : (D(A), B, +1) — Hol(D(C), W) of Lie groupoids
such that pp' = p and p'(w) = (ip)(w) for w € p~H(WE).

Lemma 4.2.9 Let w € W, and let s and t be local linear smooth coadmissible sections

through w. Let a = Bw. Then < s >,=<t >, in Hol(D(C), TfVG_).

Proof: By assumption sa = ta = w. Let b = aw. Without loss of generality, we may
assume that s and ¢ have the same domain (I, U;) and have image contained in W< and

G, respectively. By Lemma 3.4.2, s ¥t~ € I'(WY). So [s *t7!], € Jo. Hence

Ct>e=< 8%t I ><t>=<sxt T %t >, =< 5>,
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4.3 Lie groupoid structure on Hol(D(C), W)

The aim of this section is to construct a topology on the holonomy groupoid Hol(D(C), W¢)
such that Hol(D(C),W€S) with this topology is a Lie groupoid. In the next section we
verify that the universal property of Theorem 4.2.8 holds. The intuition is that first of all
WS embeds in Hol(D(C), W), and second that Hol(D(C), W%) has enough local linear
coadmissible sections for it to obtain a topology by translation of the topology of W¢.

For our construction of the topology on Hol(D(C), W), we remind the reader of the
following well-known facts in the theory of differential topology see [5, 18, 3, 2].

Let W be a topological space and let X be a set. A W-chart (U, x) on X is an injective
partial function y : W — X with open domain U C W, and a W-atlas on X is a family
{(Ui,x:) : © € I} of W-charts on X such that the family {x:(U/;) : ¢« € I} covers X
and if ¢,5 € I is such that x;(U:) N x;(U;) is non-empty, then the change of coordinates
Xi~tx; 1 W — W is a partial diffeomorphism of an open subset of IV onto an open subset
of W. It is easy to prove that X can be given a topology in a unique way, which is the
initial topology on X with respect to all the W-charts {(U;, x;) : ¢ € I} such that each U;
is open and any W-chart on X is a homeomorphism.

Let s € T(D(C), WC). We define a partial function x, : W€ — Hol(D(C), WC). The
domain of y, is the set of w € W such that a(w) = a € D(s;) and a(a), B(a) € D(sp).
The value x,(w) is obtained as follows. Choose a local linear smooth coa.dmissibb section

f through w. Then we set
Xs(w) =< 8 Zaw)< 6 ZRw)=< S * g >p(w) -

By Lemma 3.4.2, x,(w) is independent of the choice of the local linear smooth coad-

missible section 0.

Lemma 4.3.1 x, ts injective.
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Proof: Suppose y;v = x,w. Then fw = fv = a, say and asav = asaw. By definition
of 5, av = aw = d, say. Let 0, ' be local linear smooth coadmissible sections through w

and v respectively. Then we now obtain from yv = yw that
< S ol b= s a B oy

and hence, since Hol(D(C), W€) is a groupoid, that < § >,=< ¢’ >,. Hence v = f(a) =

#'(a)=we WE. O

Let s € I(D(C)). Then s defines a left translation L on D(C) by
Ls(w) = s(a(w)) +; w.
This is an injective partial function on D(C). The inverse L,™" of L, is
v —1s(as) ™ (a(v)) +1v

and L,™' = L,1. We call L, the left translation corresponding to s.

So we have an injective function x, from an open subset of W& to Hol(D(C), W®). By
definition of Hol(D(C), W), every element of Hol(D(C), W)) is in the image of x, for
some s. These y, will form a set of charts and so induce a topology on Hol(D(C), W©).
The compatibility of these charts results from the following lemma, which is essential to
ensure that W retains its topology in Hol(D(C), W) and is open in Hol(D(C), W®). As

in the groupoid case [1], this is a key lemma.

Lemma 4.3.2 Let s,t € I"(D(C), WC). Then (x:)™x coincides with L,, left translation
by the local linear smooth coadmissible section n = t~! * s, and L, maps open sets of W¢

diffeomorphicially to open sets of WC.

Proof: Suppose v,w € W¢ and y,v = x,w. Choose local linear smooth coadmissible
sections 6 and ' through v and w respectively such that the images of # and ¢ are contained

in W€, Sincé XsV = X:w, then fv = fw = a say. Let av = b, aw = c.
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Since ysv = y;w, we have
Zanl =<t »,

Hence there exists a local linear smooth coadmissible section ¢ with a € D(({) such that
[(]. € Jo and

[s % 0o = [t % 0'a[Cl
Let n = t~'xs. Then in the semigroup I'(D(C), W) we have from the above that n*6 = 6'*(
locally near a. So we get w = (0'*()(a) = 0'(a) +1((e¢) = 0'(a)+11, = (n*0)a = nav+,v.
This shows that (x:)™ xs = Ly, left translation by y € T'(D(C)), i.e.,

() ()E) = (1)< %0 >pema)
= (M # s+ 0)(a),
= (p*0)(a), since n=1t""%s
= n(a(f(a))+10(a), by definition of *
= n(a(v))+1v, since O(a)=v
= L,(v), by definition of L.

However, we also have n = 0" % ( *x 7! near av. Hence L, = Ly L¢Lg-1 near v. Now Ly

maps v to 1, Le maps 1, to 1,, and Lg maps 1, to w. Namely,
Lg-1(v) = 0 a(v)) 41 v
= —0(af)(av) +;, v, by definition of 7

= —0(B(v)) +1 6(Pv), since #(fv) =

= la.:

L(1,) = ((a(ls))+1 ls, by definition of Ly
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= ((a)+11,, since ¢ € Jp
= l,+11,

= 1,
and
Ly(1,) = 60'(a(ls)) +11a, by definition of Ly
= 0'(a) 41 1., since 0'(a) =w

= w4 la

= w.

So these left translations are defined and smooth on open neighbourhoods of v, 1, and 1,

respectively. Hence L, is defined and smooth on an open neighbourhood of v. O

We now impose on Hol(D(C), W) the initial topology with respect to the charts x,
for all s € T(D(C), WY). In this topology each element h € Hol(D(C), W) has an open

neighbourhood diffeomorphic to an open neighbourhood of 14, in W,
Lemma 4.3.3 With the above topology, Hol(D(C),W€) is a Lie groupoid.

Proof: Source and target maps are smooth: In fact, for w € W€,

Bu(xs(w)) = B(w), an(xs(w)) = afsa(w)).

It follows that ey and Sy are smooth.

Now we have to prove that
dy : Hol(D(C), W) Mg Hol(D(C),W®) — Hol(D(C), WF)

is smooth. Let < s >,,<t >,€ Hol(D(C),W?). Then x,(1.) =< s >4, xe(la) =< t >,

and if n = s * t71, then x,(1y) =< s xt™! >4 where b = Bt(a). Let v € D(xs),w € D(xu),
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with v = fw = ¢, say and let § and #' be elements of I'(W¢) through v and w respectively.

Let d = B(t *8')(c). Then

Xa " da(xs X X1 (v, w)

X~ da(xs(v), xe(w))

Xo Mdi(< 5% 0 >, <tx0'>,), by definition of x,, xe
X, (< (s 0) % (t+6')"! >5), by definition of dy
(n™') * (s % 0) % (t%6')7'(d), by definition of x, ™"
((s#t™)7 ) * (s%0) % (t+0')7}(d), since p= (st
(tk s as*0)x(t*0)1)(d)

((t*0) = (% 0)7")(d)

((t % 0)(a(t = 0")72(d) +, (¢ % 0")"(d)

(t*0)1(c) =1 (t*0)(a(t *0')71)(d), since a(t+8)(d) =c
t(af1(c) +1 0(c) =1 (H(ab'(c) +1 8'(c))

(t(a(v)) +1 v —1 (Ha(w)) +1 w)

Li(v) =1 Ly(w)

Qv, w),

say. The smoothness of this map {2 at (1,,1,) is now easily shown by writing ¢ = ¢, *---*t;

where t; € ['"(WY) and using induction and a similar argument to that of Lemma 3.5.3.

a

4.4 The Universal Property of Hol(D(C), W¢)

In this section we state and prove the main theorem of the universal property of the

morphism ¢ : Hol(D(C), W) — D(C). Note that for the case of groupoids rather than

crossed modules, Pradines [43] stated a differential version involving germs of locally Lie
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groupoids in [43], and formulated the theorem in terms of adjoint functors. No information
was given on the construction or proof. A version for locally topological groupoids was
given in Aof-Brown [1], with complete details of the construction and proof, based on
conversations of Brown with Pradines. The modifications for the differential case were
given in Brown-Mucuk [14].

The main idea is when we are given a V-locally Lie double groupoid (D(C), W¢) of a
double groupoid D(C) for a Lie crossed module C and given a Lie crossed module A and a
morphism

t:D(A) — D(C)
with suitable conditions, we can construct a morphism
¢ D(A) — Hol(D(C), W),
where Hol(D(C), W¢)) is a holonomy groupoid of a locally Lie crossed module, such that
hu' = p.

We prove that such a morphism ' is well-defined, smooth and unique. Now let (D(C), W¢)

be a V- locally Lie double groupoid as above.

Theorem 4.4.1 If A = (A, B,§') is a Lie crossed module and p : D(A) — D(C) is a
morphism of groupoids such that

1). p is the identity on objects;

ii).the restriction pye : p~ (W) — WG of u is smooth, p=*(WS) is open in D(A)
and generates D(A) as a groupoid.

iii). the triple (e, B, D(A)) has enough local smooth coadmissible sections.

Then there erists a unique morphism
i : D(A) — Hol(D(C), W€)
of Lie groupoids such that ' = p and p'(w) = ip(w) for w € p~Y(WE).
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Proof: Since, by condition (i), p1 = lg, then G = B and X = X' which implies that
1(G) =G, p(X) = X. But G € W® C D(C), by condition (S;) of Definition 3.4.1. Hence
p(G) € WG C D(C). So it follows that G C u~(WC) C D(A).

Let w € D(A). The aim is to define p'(w) € Hol(D(C), WE).

But, by condition (ii), #~'(W?) is an open set of D(A). Hence p~'(W?) is an open
neighbourhood of G in D(A). Since p~* (W) generates D(A), we can write w = w™ +;
«o++; w', where p(w') € WG, i=1,...,n.

Since (a, 3, D(A)) has enough local linear smooth coadmissible sections, by condition
(iii), we can choose local linear smooth coadmissible sections #; through w;, 2 = 1,...,n,
such that they are composable and their images are contained in p~!(11%).

Because of the condition (ii), the smoothness of g on u~'(W¢) implies that uf; is a
local linear smooth coadmissible section through u(w;) € W whose image is contained in

WE. Therefore uf € T"(D(C), W), Hence we can set
w(w) =< 1l >p(u)
and prove the following lemmas.
Lemma 4.4.2 p/(w) is independent of the choices which have been made.

Proof: Letw = vy, +;-++1v1, where pv; € W and j = 1,---,m, B(w) = c. Choose a set
of local linear smooth coadmissible sections #'; through v; such that the §'; are composable
and their images are contained in p~1(W¢).

Let ¢/ = ¢/, % --- %'y, Then pd' € I'"(D(C), W), and so < pb’ >.€ Hol(D(C), WE).
Since by assumption, 8(c) = #'(c) = w € D(A), then (8(c), 8 (c)) € D(A) Ng D(A) and
da(0(c),0'(c)) = 0(c) = 0'(c) = 1.. Hence (0(c),0'(c)) € da™ u~Y(WG) because 1. €
p=H(WE).

Because A is a Lie crossed module and the corresponding double groupoid D(A4) is a

double Lie groupoid, the difference map d4 : D(A) Mg D(A) — D(A) is smooth. Since

101



p~ (W) is open in D(A), by condition (ii), then d4 ™~ (WC) is open in D(.A) Mz D(A).
But, by the smoothness of § and ¢’, the induced map (0,6') : D(8) N D(8') — D(A) Mg
D(.A) is smooth. Hence there exists open neighbourhoods N of ¢ in G and N of a(c), B(c)
such that (8,0)(N) C (da~"p~1)(WC). This implies that 8 ¥ 0’ (af'N) C p~}(WF), and
so, after suitably restricting 8, ¢, which we may suppose done without change of notation,
we have that §%6'~" is a local linear smooth coadmissible section through 14 € D(A) and its
image is contained in £~ (W). So u(8%6"") is a local linear smooth coadmissible section
through 14 € WS, and its image is contained in WE. Therefore [u(0 * 871))y € J(WE).
Since 0(c) = &'(c), then ¢[pl]. = [pd].. But ¢ and u are morphisms of groupoids;
hence Y[u(6%0'"")]g = 14, and so [pu(0*0'~")]s € Kerip. Therefore [1(6+0'™1)]y € JE(W)N
Kerth = Jo. Since g is a morphism of groupoids, we have [u(0 * 8'"')]; € J¢. Hence

< (0% 0'1) >4= 14 € Hol(D(C), WF)), and so
<l >e=< plh >o< p(0 %07 Sy=< pb >,

which shows that p'w is independent of the choices made. O

Lemma 4.4.3 y' is @ morphism of groupoids.

Proof: Let u = w +; v be an element of D(A) such that w = w, +1 ... +; w; and
V = Up +1 ... +1 V1, Where w;,v; € ;A‘I(WG), t = 1,---,nand y = 1,---,m. Then
U =Wy +1°° +1 W1 +1Vm+1° +1 01

Let 6;,60'; be local linear smooth coadmissible section through w; and v; respectively
such that they are composable and their images are contained in p~}(W¢). Let 6 =
O,%---x0;and 0 =0',, %---%0'1, k =0+ 60'. Then & is a local linear smooth coadmissible
section through u € D(A), and ub, ub’, ux € T7(D(C), W), and pk = uf * pd', since p is
a morphsim of groupoids.

Let a = Ew, b= fv. Then < px >,=< pd >,< pbh >, and so x' is a morphism. O
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Lemma 4.4.4 The morphism u' is smooth, and is the only morphism of groupoids such

that Yu' = p and p'w = (ip)(w) for all a € p~Y(WE).

Proof:

Since (4, 84, D(A)) has enough local linear smooth coadmissible section, it is enough
to prove that y’ is smooth at 1, for all @ € G. Let ¢ denote the linear coadmissible section
c:G@—-DC),a— l,and ¢g: X — G,z — 1,.

Let a € G. Ifw € p~ (W) and s is a local linear smooth coadmissible section through
w, then p'w =< ps >gu= xep(w). Since p is smooth, it follows that x’ is smooth.

The uniqueness of g’ follows from the fact that g’ is determined on ;= '(1W¢) and that
this set generates D(.A).

O

This completes the proof of our main result, Theorem 4.2.8. O
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Chapter 5

Conclusions and suggestions for
further work

The way of proceeding further has been discussed by the writer and Ronald Brown.

5.1 2-Groupoids

5.1.1 Introduction

For a 2-dimensional version of holonomy, there are a number of possible choices. It seems
reasonable therefore to attend to those whose algebra is better understood. There are at
least six categories equivalent to that of crossed modules over groupoids. We consider the

possibility of a theory for one of the equivalence categories
CrsMod ~ DGrpd! ~ 2 — Grpd.

The equivalence of 2-groupoids and crossed modules over groupoids is a 2 dimensional case

of a result due to Brown and Higgins [10].

5.1.2 2-Groupoids

2-groupoids are special cases of the so-called 2-categories originally due to Ehresmann [23]
and see also Kelly and Street [30]. The 2-categories with invertible 1-cells and 2-cells

are called 2-groupoids. In another way of defining it, a 2-groupoid may be thought of as
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a double groupoid in which all the vertical edge arrows are identities. So a 2-groupoid
consists of a set H with groupoid structures over Hy and Hy and H; is also a groupoid on
Hy all subject to the compatibility condition that the structure maps of each structure on
H are morphisms with respect to the other.

Full details of the following material has been written down seperately from the thesis.

5.1.3 Equivalence of crossed modules and 2-groupoids

As said earlier, the equivalence given in the title of this section is a 2-dimensional case of
Brown and Higgins [10]. We give this equivalence briefly as follows.

Let H be a 2-groupoid. Then it has a groupoid structure (H;, oy, f;, +;) for 2 = 0,1,
satisfying the usual compatibility conditions. We obtain a corresponding crossed module
C=AH,by X = Hy, G = H; and C = {C(2)}rex, where C(2) = {n € H : apn = fon =
z,Bin = 1;}. Then C = (C, G, §) becomes a crossed module with boundary é(n) = a;(n),
n€ €.

Conversely, let C = (C, G, §) be a crossed module over a groupoid. We can obtain a

2-groupoid H = 6(C), with 2-cells forming the set
GxC={(a,c):a€G,ceC(f(a))}
with a 2-groupoid structure. The following theorem can be stated.

Theorem 5.1.1 The functors
A:2—=Grpd — CrsMod

0:CrsMod — 2 — Grpd

indicated above are inverse equivalences [10)].
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5.1.4 Homotopy for 2-groupoids

The notion of homotopy for morphism of crossed modules over groups (groupoids) has been
well known for many years, Whitehead [48], Brown and Higgins [11], Brown and Gilbert
[6] and also see the first chapter of this thesis. This was put in the general context of
a monoidal closed structure on the category of crossed complexes in Brown and Higgins
[11]. The notion of homotopies for 2-groupoids is essentially a special case of the notion of
2-natural transformation due to Gray in [25].

The relation between homotopies for crossed modules over groupoids and homotopies for
2-groupoids can be explained by extending Theorem 5.1.1 to an equivalence of 2-categories.

We can add to this theory an analogue of Ehresmann’s product of (co)-admissible
sections. In the groupoid case, the latter can be consider as homotopies o : f ~ 1,0 :
g ~1:G — G, and the product ¢ * # is a homotopy gf =~ 1, where f,g are here
automorphisms. The same formulation holds in the 2-groupoid case, i.e., so that we have
a product of coadmissible homotopies.

Corresponding Lie and locally Lie notions may be developed, analogous to previous
work.

However, it turned out, in working with the appropriate sheaf of germs of local coad-
missible 2-homotopies, that we have to consider also the double groupoids associated to
the 2-groupoid and the exposition becomes closely related to that given above for crossed

modules. Thus there is a natural holonomy theory in the context of 2-groupoids.

5.2 2-Crossed Modules

Brown and Higgins proved that the category of crossed modules has a monoidal closed

structure. Then, for any crossed module C over a groupoid we can determine crossed

modules END(C) and AUT(C) as in Chapter 1. Brown and Gilbert proved that AUT(C)
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is a braided regular crossed module over the group Aut(C). We have studied this in detail
in Chapter 1. But material on the braiding is relevant to studying the larger structure.

We already have constructed
Hol(D(C),WS) — D(C),

where Hol(D(C), W) is a Lie groupoid on G and D(C) is the corresponding double
groupoid for the crossed module C = (C, G, §). This uses free derivations or linear coad-

missible sections. We have not used the inner derivations
M(C) — FDer(C),

described in Section 1.5. In the rest of Chapter 1 we did get as far as describing explicitly

the maps and morphisms
M(C) — FDer™(C) — Aut(C).

Also, the Peiffer lifting structure which makes this a 2-crossed module is not used in the
localisation part and we have therefore been content to show that the verification of the
axioms follows from Brown and Gilbert [6]. The development of the local theory using the

full structure of 2-crossed modules requires further work.

5.3 Double Holonomy Groupoids

A natural question on globalisation is: Does there exist a Lie crossed module Hol(C, W)

with a universal property related to the diagram:

Hol(C,W)2——~(

|

(G, X)—(G, X)

We started with the idea of globalising a locally Lie crossed module (C, W, §) for a crossed

module C = (C,G,6). The latter is a concept not difficult to define. In carrying out
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such a conjectured globalisation project, it became clear that our methods did not pro-
duce a global crossed module. Instead, we have produced from (C, W, §) a holonomy Lie
groupoid Hol(D(C), W), using all the information in (C,W,§). It seems possible that
this Lie groupoid is a part of a Lie 2-crossed module. Thus the examination of local theory
and crossed modules seems to lead outside crossed modules and to some more complex
structure. This is probably related to work of L. Breen on stacks of groupoids.

So the area requires considerably more work to develop and reveal the underlying

structures. This thesis is intended as a start in this important direction.
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Appendix

Inverse semigroup

It is standard that inverse semigroups are natural generalisations of groups, encoding in-
formation about partial rather than global symmetries. See for more information, “Inverse
Semigroup Theory”, by M.V. Lawson [35].

We give the verification that our semigroups of local coadmissible sections form an

inverse semigroup.

Definition .0.1 A semigroup S is said to he inverse if for each s € S there exists a

1

unique element called the inverse of s, denoted by s7!, satisfying s = ss7!s and s7! =

Example .0.2 Let X be a C"-manifold and let M(X') denote the set of all diffeomorphisms
between open subsets of X. We define a multiplication on M(X) as follows: Let f : U — V,
and let g : V' — W' be two diffeomorphisms, where U, V,U’, 1V’ are open subsets of X.

Then we define a composition,
gf 1 FFHVNV) = g(V N V).

With this composition, M(X) becomes an inverse semigroup, i.e., for each (f: U — V) €
M(X) there exist (f~!:V — U) € M(X) such that f = ff™'fand f~* = f~' ff~*. Note
the key point that f~1f = Iy, ff~! = Iy.
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Definition .0.3 A local coadmissible section of a groupoid GG with base space X is a
function s : U — G from an open subset U of X such that s satisfies;

(i) Psz =z, forz e X,

(i1) as(U) is open in X, and

(ili) as maps U homeomorphically to Fs(U).

The first point of this Appendix is to show that the set M(() of local coadmissible
sections of a groupoid G such that X = Ob(G) is a topological space has the structure of

inverse semigroup under the * multiplication of Ehresmann.

Proposition .0.4 The set M(G) of local coadmissible section of a groupoid G is an inverse

semigroup.

1 1

Proof: We can easily verify that if s™' is as given earlier, then s™' % s+ s™! = s

1 !

s*s 1 *s = s. Then we have only to verify uniqueness. So suppose s’ satisfies s = s*s'*s

and s’ = s’ x s * '. We have to show that s’ = s7'.

Let us start with s * s’ * s = s, where as : U — V. We need to prove that D(s') = V.
Let y € V. Then there is an  such that as(z) = y. If s'(y) not defined, then s * s' * s(z)
is not defined and so s * s’ * s # 5. This proves V C D(s').

Suppose s'(y) is defined. Let @ = as'(y). Then s(z) is defined, since 5" * s * s’ = s'. So
z€U,and soy € V,ie., D(s') CV. Hence D(s') = V.

Finally, y = Bs(x),s(z') + §'(y) + s(z) = s(z) implies s(2’) + &'(y) = 1y, so s(z') =
s'(y) 7

O
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