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Summary 

Chapter One gives an exposit ion of the theory of automorphisms of crossed modules over 

groupoids. \Ve introduce notions of free derivation and their Whitehead multiplication, 

and invertible free derivations also called coa.dmissible homotopies. We prove t hat with 

this multiplication t he set F Der*(C) of all coa.dmissible homotopies is a group and t hat 

there is a morphism I::,. : F Der*(C) .- Aut(C) which is a pa.rt of a pre-crossed module 

which gives rise to a 2-crossed module 

Chapter Two gives a detailed proof of the Brown-Spencer t heorem on the equivalence 

between crossed modules over groupoids and double groupoids with connection. We define 

linear coa.dmissible sections for the special double groupoid corresponding to a crossed 

module, and we prove that the group of all linear coa.dmissible sections and the group of 

coadmissible homotopies are isomorphic. 

Chapter Three genera.lises the notion of "locally Lie groupoicl" to dimension 2 for the 

special double groupoid called "V-locally Lie double groupoid" and relates this to corre­

sponding notions for crossed modules. We localise the definitions of linear coadmissible 

sections and coa.drnissible homotopies and prove that these form isomorphic inverse semi­

groups. We define a corresponding notion of germ, and from this obtain a holonomy 

groupoid as an abstract groupoid H ol('D(C), lVG). 

Chapter Four gives the Lie structure on H ol('D(C), WG) and gives its universal property, 

which shows how a V-loca.lly Lie double groupoid give rise to its holonomy groupoid. This 

is the main Globalisation Theorem. 

Chapter Five gives suggestions for further work in the area. 
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Introduction 

The object of this thesis is to consider the extension to dimension 2 of some notions in 

the local-to-global theory of Lie groupoids, and which are important in the foundations of 

differential topology and its applications. We refer particularly to the notion of holonomy 

in the theory of foliations. 

The concept of holonomy has a long and continuing history in differential geometry. 

However, its 2-dimensional version still needs to be investigated. The main part of this 

thesis is to attempt this. 

0.1 Background 

0.1.1 Holonomy for foliations 

The notion of the holonorny groupoid was introduced by Ehresmann and Weishu in [24] 

and Ehresmann in [21], for a locally simple topological foliation on a topological space X 

(this means that X has two comparable topologies, and with respect to the finer topology 

on X, a cover by open sets, in each of which the two topologies coincide.) It is constructed 

as a groupoid of local germs of the groupoid G' of holonomy isomorphisms between the 

transverse spaces U1 of simple open subsets U1 of X such that ( U1 , Ui+i) is a pure chain. 

The holonomy group at x E X is the vertex group G( x) of G. This holonomy group is 

isomorphic to the holonomy group G(y) for ea.ch y E X on the same leaf of the foliation 

as x. 

Pradines [43] considered this holonomy groupoid G, in a wider context, with its dif-
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ferential structure. He took the point of view that a foliation determines an equivalence 

relation R by x Ry if and only if x and y are on the same leaf of the foliation, and that 

this equivalence relation should be regarded as a groupoid R in the standard way, with 

multiplication (x, y)(y, z) = (x, z) for (x , y), (y , z) E R. The locally differential structure 

which gives the foliation determines, if X is paracompact , a differential structure not on 

R itself but 'locally' on R, that is, on a subset W of R containing the diagonal ~(X) 

of X. This leads him to a definition of "un morceau differentiable de groupoide" G, for 

which Mackenzie [37] used the term " locally differentiable groupoid". Pradines' note [43] 

asserts essentially that such a ( G, HI) determines a differential groupoi cl Q0 ( G, 1¥) and a 

homomorphism P : Q0 (G, HI) ~ G such that the "germ" of W extends to a differential 

structure on G if and only if P is an isomorphism. However his statement of results as­

sumes that t he ba.se Xis para.compact and tha.t (G, W) is a-connected, i. e., a,- 1 (x) n W 

is connected for each x E X . 

The groupoid Qo(G, H1 ) is called holonomy groupoid of (G, W). Aof-Brown [l] gives 

full details of Pradines' construction in the topological ca.se a.ncl the modifications for the 

Lie case are indicated by Brown-Mucuk [14] . 

One of the key motivations for the construction of the holonomy groupoicl in [43] is 

the construction of the monodromy groupoid of a differential groupoicl. An outline of 

Pra.dines' construction is given in [4] . Full details a.re given by Brown a.nd Mucuk in [15]. 

Formulations and proofs of these two structures, holonomy and monodromy, in the locally 

t rivial case, ha.ve been given in Mackenzie [37]. 

Following Ehresmann's work, there has long been interest in t he holonomy group of a 

leaf of a smooth foliation, see for example [33, 34] . For the locally differential groupoid cor­

responding to a smooth foliation, the vertex groups of the Ehresma.nn-Pradines holonomy 

groupoid are the holonomy groups in the standard sense. 

The holonomy groupoid G of a smooth foliation on a manifold X with its smooth 
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structure was rediscovered (using a different, but equivalent, description) by Winkelnkem­

per [50], as the "graph of foliation". This was defined as the set 8 of all triples (x, y, [,]), 

where x, y E X are on the same leaf L of the foliation, 1 is a continuous path on L from x 

to y and [,] is the equivalence class of I under the equivalence relation ~ which is given 

by: for the two paths 11, 12 in L from x to y along, 11 ~ 1 2 if and only if 1112 -l is zero. 

Cannes [20] has considered this differentable holonomy groupoid G of the foliation and 

applied to it his general theory of integration based on transerve measures on a measurable 

groupoid. 

Phillips [42] defines the holonomy groupoid H ol(X, F) of a foliated manifold (X, F) as 

a quotient groupoicl of the monodromy groupoid J\.1 on(X, F). This develops earlier work 

of \i\Tinkelnkemper, Phillips who only puts a manifold structure on H ol(X, F). 

Also, Haefliger [27] defines a related holonomy groupoid, and consider its classifing 

space as a representative of the homotopy type of the transverse structure of the foliation 

F. 

0.1.2 Local equivalence relation and "local subgroupoids" 

In this subsection we mention some of our work related to that of the thesis but not 

included in it. 

At present, it seems that only the holonomy of an equiva.lence relation has been exten­

sively studied, in the form of the holonomy groups and holonomy groupoids of a smooth 

foliatio~. In this sense, Rosenthal [46, 4 7] has considered the concept of local equivalence 

relations, which was introduced by Grothendieck and Verdier [26] in a series of exercises 

presented as open problems concerning the construction of a. certain kind of topos. A local 

equivalence relation is a global section of the sheaf £ which is defined by the presheaf 

E = {E(U), Euv, X}, 

where E(U) is the set of all equivalence relations on the open subset U of X and Euv is 
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the restriction map from E(U) to E(V), for V ~ U. Moreover this presheaf is not a sheaf. 

The key idea in this case is connectedness of the equivalence classes. 

Rosenthal [47] has investigated the way a locally topological groupoid arises from a 

local equivalence relation. However, he esentia.lly puts on the local equivalence relation 

enough conditions to ensure that it gives rise to a pair (G, TV) satisfiying all the conditions 

for a locally topological groupoid. Brown and Mucuk [14] have verify that these conditions 

are satisfied for the local equivalence relation determined by a foliation on a paracompact 

manifold, for suitable TV. · 

Kock and Moerdijk [31] have given alternative accounts of the theory of local equivalence 

relations using topoi and etendues. They prove that the category of r-sheaves is equivalent 

to the classifing topos B1'1on(F) associated to the monodromy groupoid of foliations for a 

local equivalence relation r. They define a map of cla.ssifing (spaces or) topoi B.M on(F) -t 

BI-I ol(F) by using the well-known groupoid homomorphism from M on(F) onto H ol(F). 

Brown and i<;en in work in preparation [12] have considered the concept of local equiva­

lence relation in a wider context , i.e, local subgroupoid. A local subgroupoid of a groupoid 

G on a topological space X is a global section of the sheaf £ associated to the preshea.f 

Le= {L(U),Luv , X} 

where L( U) is the set of a.II wide subgroupoids of G lu and Luv is the restriction map from 

L(U) to L(V) for V ~ U. 

It is well known that an equivalence on X is a wide subgroupoicl of the groupoid Xx X. 

This suggest that the well-known theory of local equivalence relations can be generalised to 

a theory of local subgroupoids. \Ve show that this is indeed so far the works of Rosenthal 

[46, 47]. 

Brown and ic;en [12] have obtained the holonomy groupoid of certain local subgroupoids 

by using the idea of a locally topological groupoid. For this reason, they define weakly 
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s-adaptable family, regular and strictly regular local subgroupoids and show that if s is a 

strictly regular local subgroupoid of the topological groupoid G on X and 

glob(s) = H, 

then (H, W) is a locally topological groupoid. So we get under these circumstances a 

holonomy groupoid of the locally topological groupoid (H, vV). 

At the heart of these foundations is the notion of Lie or locally Lie groupoid - the former 

is often called in earlier literature "differential groupoidn, but the term Lie groupoid gives 

a better impression of the ideas and of the area of applications. 

0.2 A 2-dimensional version of Holonomy 

Our interest in this thesis is to test ways of extending to dimension 2 various of the above 

mentioned constructions in the theory of Lie groupoids. 

For a 2-dimensiona.l version, there are a number of possible choices for 2-dimensional 

versions of groupoids, for example double groupoids, 2-groupoicls, crossed modules over 

groupoids. \Ve are not able at this stage to give a version of holonomy for the most genera.] 

loca.lly Lie double groupoicls. It seems reasonable therefore to restrict attention to those 

forms of double groupoids whose algebra. is better understood, and we therefore considered 

the possibility of a theory for one of the equivalent categories 

(Crsl\1od) ~ (2 - Grpd) ~ (DGrpd!), 

which denote respectively the categories of crossed modules over groupoids, 2-groupoids 

and "special double groupoids with connection". 

In this way, we hope to come nearer to 2-dimensional extensions of the notions of 

transport along a path. This would hopefully give ideas of, for example, transport over a 

surface, and pave the way for further extensions to all dimensions. It is hoped that this 
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will lead to a deeper understanding of higher dimensional constructions and operations in 

differential topology. 

One of the hints as to a way to procede lies in the way a group G gives rise to a crossed 

module G - Aut(G) . The homomorphism G - Aut(G) which sends an element x E G to 

the inner automorphisms of G - G, k i---+ - x + k + x, with the standard action of Aut(G) 

on G. This has been called (Norrie) (41] the actor crossed module of the group G. The 

notion of crossed module was introduced by Whitehead [49]. In the case of a groupoid G 

with base space X, we will see that the actor crossed module is of the form 

"'a : l\1(G) - Aut(G) 

where M(G) is the group of coa.dmissible sections of G, i.e. , sections s of the final map 

/3: G - X such that o:s: X - X is a bijection. Note that "'G, the "inner automorphism" 

ma.p, is given by 

"'c(s) : a i---+ saa + a - sf3a 

In the case G is a Lie groupoid, Ehresmann focussed attention first on the smooth 

coa.dmissible sections (in fact he used admissible sections), and then on the notion of local 

smooth coa.drnissible sections. From these he constructed various kinds of prolongation 

groupoids. 

Pra.dines explained in 1981-85 to R.Brown the use of such sections in the case of locally 

Lie groupoids, and how this led to a construction of a holonomy groupoid for a large class 

of locally Lie groupoids. One special case of this construction is ihe holonomy groupoid of 

a foliat ion. This goes via a locally Lie groupoid constructed from the foliation [15]. 

Here we are exploring the implications of the idea that a natural generalisation to 

crossed modules of the notion of coadmissible section is that of coadmissible homotopy. 

This arises naturally from the work of Brown-Higgins [11] on homotopies for crossed com­

plexes over groupoids, and also relates interestingly to important work of Whitehead (48], 
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which was followed up by Lue [36], Norrie [41] and Brown and Gilbert [6] on automorphisms 

of crossed modules over groups. 

There is considerable evidence to suggest that crossed modules can be thought of as 

a 2-dimensional version of groups. The principal argument for this is the fundamental 

crossed module 

of a pair of pointed spaces .(X, A), where 1r2 (X, A, x) is the second relative homotopy group, 

and 1r1 ( A, x) is the fundamental group [49]. This notion ha.s also been generalised to the 

fundamental crossed module on a set A0 of ba.se points, which gives a family of groups 

{1r2(X,A,x)}xEA.o on which the fundamental groupoid 1r1 (A,Ao) acts . 

There are also many algebraic examples of crossed modules, see in Chapter 1. 

\1/e now describe the Chapters in detail. 

In Chapter J, we combine the notion of coaclrnissible sections, which is fundamental to 

the work of Ehresma.nn [21], with the notion of homotopy of morphisms of crossed modules, 

which occurs in \1/hitehea.d's account [48] of automorphisms of crossed modules and which 

is later developed by Lue, Norrie, Brown-Gilbert [36, 41, 6]. 

We introduce the definition of free derivation for a crossed module C = ( C, G, 8) with 

the base space X. A free derivation s is a pair of maps s0 : X --+ G, s 1 : G --+ C which 

satisfy the following 

(3( SoX) 

(3(s1a) 

s1 (a + b) 

x, XE X 

/J(a), a E G, 

s1(a)b + s1(b), a, b E G. 

Let F Der(C) be the set of free derivations of C. 

We prove that ifs is a free derivation of the crossed module C = ( C, G, 8) over groupoids, 
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the·n the formulae 

o:s0 ( x), fo(x) 

fi(a) 

h(c) 

so(aa) +a+ 8s1(a) - so(f3a), 

define an endomorphism f = (Jo, !1, h) of C and write f = ti.( s) = (Jo , Ji , h). 

We prove that F Der(C) has a monoid structure with the following multiplication. 

where g = (go, g1 , g2 ) = ti.(t). This multiplication, for E = 0, give us Ehresmann' multipli­

cation of coadmissible homotopies, and for E = 1 and t0 (x) = l x, for all x EX, gives the 

multiplication of derivations introduced by Whitehead [48] . 

Let F Der*(C) denote the group of invertible elements of this monoid. Then each 

element of F Der*(C) is also called a coadmissible homotopy. 

\Ve prove the following theorems. 

Theorem 1.3.5 Lets E FDer(C) and let f = ti.(s). Then the following condit ions are 

equivalent . 

(i) s E FDer*(C), (ii) .f1 E Aut(G), (iii) h E Aut(C). 

Theorem 1.3.6 There is an action of Aut(C) on s E F Der*(C) given by 

for each a E G(x , y), which makes ti.: F Der*(C) - Aut(C) a pre-crossed module. 

The fact that 6. : F Der*(C) -+ Aut(C) is a precrossed module is also a special case of 

results of Brown-Gilbert [6], which applies the monodial closed structure of the category 

of crossed complexes introduced by Brown-Higgins in (11]. In fact the description of ti. : 

F Der*(C) -+ Aut(C) is carried out explicitly in Brown-Gilbert [6] Proposition 3.3, for the 

case C is a crossed module over a group. 
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·Thus, there is some overlap with the work of Brown and Gilbert [6]. However they 

explain in detail in their Proposition 3.3 only the case of crossed modules over groups, and 

this relies on the bulk of the theory on the monoidal closed structure for crossed complexes. 

So in our Chapter 1 we give a complete and explicit account, from the beginning, of the 

automorphism theory of crossed modules over groupoids. 

There are results in [6] on the "2-crossed module structure" 

Af --t P ~ Der•(P,111) --t Aut(kl,P, 1t) 

of a crossed moduleµ : .M --t P over a group P. We discuss a.n analogue of this for a crossed 

module over a groupoid. However, because we have not yet developed the corresponding 

local theory for the 2-dimensiona.l part, we do not give explicit verifications of all the 

axioms for a 2-crossed module, but rely on the general method used in [6, 11]. 

In Chapter JI, we deal with double groupoids especially special double groupoids . 

A double groupoid is a groupoid object in the category of groupoicls: that is, a double 

groupoid consists of a set V with two groupoicl structures over H and V, which a.re them­

selves groupoids on the common set X, all subject to the compat.ibility condition that the 

structure maps of each structure on V a.re morphisms with respect to the other. Elements 

of V are pictured as squares 

•----• 
h2 

in which v1 , v 2 E V are the source and target of w with respect to the horizontal structure 

on V, and h1 , h2 E H are the source and target with respect to the vertical structure. 

Double groupoids were introduced by Ehresmann in the early 1960's [22, 23], but pri­

marily as instances of double categories, and as a part of a general exploration of categories 

with structure. Since that time their ma.in use has been in homotopy theory. Brown-Higgins 
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[8] ·gave the earliest example of a "higher homotopy groupoicl" by associating to a pointed 

pair of spaces (X, A) a special double groupoid with special connection p(X, A) in the sense 

of Brown and Spencer (see below). In such a double groupoid, the vertical and horizontal 

edge structures H and V coincide. In terms of this functor p, [8] proved a Generalised Van 

Kampen Theorem, and deduced from it a Van Kampen Theorem for the second relative 

homotopy group 1r2(X, A), viewed as a crossed module over the fundamental group 1r1(A). 

The main result of Brown-Spencer in [16] is that a special double groupoid with special 

connection whose double. base is a singleton is entirely determined by a certain crossed 

module it contains; as explained above, crossed modules had a.risen much earlier in the 

work of Whitehead [49] on 2-dimensional homotopy. This result of Brown and Spencer 

is easily extended to give an equivalence between arbitrary specia.l double groupoids with 

special connection and crossed modules over groupoids; this is included in the result of [9]. 

\Ve give this extended result as in [11] and [13], since we need the detail here. Brown 

and Mackenzie [13] have a more genera.I result. 

The method which is used here can be found in [16]. 

Let 1) = (D, H, V, X) be a double groupoicl. We show tha t 1) determines two crossed 

modules over groupoids. 

Let x E X and let 

H(x) = {a E ff: o·o(a) = f3o(a) = x}. 

\Ve define V ( x) similarly. We put 

and 

which have group structures induced from +o, and +1 . Then II( D, H) = {II( D, H, x) : x E 

X} and II(D, V) = {II(D, V,x): x EX} are totally intransitive groupoids over X. 

) 



Clearly maps 

c:: II(D,H) - H and 8: II(D, V) - V 

defined by c:( w) = a 1 ( w) and 8( v) = a0 ( v), respectively, are homomorphism of groupoids. 

Proposition 0.2.1 Let V = (D, H, V, X) be a double groupoid then 

,(D) = (II(D, H), H, c:) , '(D) = (II(D, V), V, 8) 

may be given the structure of crossed modules. 

Clearly I is a functor from the category of double groupoicls to the category of crossed 

modules. 

As we wrote , a special double groupoicl is a double groupoid 'D but with the extra 

condition that the horizontal and vertical groupoids H and V structures coincide. These 

double groupoids will, from now on, be our sole concern, and for these it is convenient 

to denote the sets of points, edges and squares by X, G, D. The identities in G will be 

written lx or simply 1. The source and target maps G - )( will be written a, (3. 

By a morphism f: 'D - V' of special double groupoids is meant functions f: D - D' , 

f: G - G' , f: X - X ' which commute with all three groupoicl structures. 

Definition 0.2.2 Let 'D be a special double groupoid. A specia l connection for 'D is a 

function Y : G - D such that if a E G then Y (a) has bo1mdaries given by the following 

diagram 

•---➔-1 

A morphism f : 'D - 'D' of special double groupoid with special connections Y, Y' is said 

to preserve the connections if f 2 Y' = Y f 1 . 
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The category DGrpd! has objects the pairs ('D, Y) of a special double groupoid V with 

special connection, and arrows the morphisms of special double groupoids preserving the 

connection. If (V, Y) is an object of DGrpd!, then we have a crossed module -y(V) by 

Proposition 2.3.1. Clearly, extends to a functor from DGrpd! to Crs.M od, the category 

of crossed modules. The main result on double groupoids is: 

Theorem 0. 2.3 The functor 1 : DGrpd! -----t Crs.Mod is an eq1tivalence of categories {16}. 

V./e then show how special double groupoids arise from crossed modules over groupoids. 

Let C = (C, G, 8) be a crossed module over groupoids with ba.se set X . We define a 

special double groupoid V(C) as follows. First, I-I = V = G with its groupoid structure, 

base set X. The set V(C) of squares is to consist of quintuples 

• d • 

w = (w1 : b 
d c) lb 

w IC a 

• Q a 

such that w1 E C, a , b, c, d E G and 

8 ( w1 ) = -a - b + cl + c. 

The vertical and horizontal structure on the set 'D(C) can be defined as in [16]. Then 'D(C) 

becomes a double groupoid with these structures. 

We introduce a definition of linear coadmissible section for the special double groupoid 

V( C) as follows. 

Definition 0.2.4 Let C = (C, G, 8) be a crossed module and let V(C) be the corresponding 

do1tble groupoid. A linear coadmissible section O" = (O"o,0"1): G-----+ V(C) of V(C) also 

written 
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is a pair of maps 

o-o : X ---+ G, 0-1 : G---+ C 

such that 

(i) if x EX, /3o-o(x) = x1 and if a E G, then /3o-1 (a) = /3a . 

(ii) if a, b, a+ b E G1 then 

o-(a + b) = o-(a) +o o-(b) 

(iii} ao-0 : X ---+ X is a bijection1 ao- : G ---+ G is an automorphism. 

Let f'D(C) denotes the set of all linear coadmissible sections. Then a group structure 

on f'D(C) is defined by the multiplication 

(o- * r)o(x) = (o-oaro(x)) + ro(x), x EX, 

(o- * r)(a) = (o-ar1 (a)) +1 r(a), a E G(:r,y) 

for o-, r E f'D(C) . 

Vve show in Corollary 2.4.4 that the groups of linear coaclrnissible section and free 

invertible derivation maps (coaclrnissible homotopies) are isomorphic. 

Now we come to the ma.in new work of this thesis. 

Chapter I I I is aimed at the study of some local Lie structures on a special double 

groupoid 'D(C) corresponding to a crossed module C = (C, G, 5)- namely such a local Lie 

structure is given a pair of sets ('D(C), H/G) satisfying certain conditions, where TV0 ~ 'D(C) 

has· a manifold structure. 

In order to cover both the topological and differentiable cases, we use the term er 
manifold for r 2: -1, where the case r = -1 deals with the case of topological spaces and 

continuous maps, with no local assumptions, while the case r 2: 0 deals as usual with er 
manifolds and er maps. Of course, a C 0 map is just a continuous map. vVe then abbreviate 
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er to smooth. The terms Lie group or Lie groupoid will then involve smoothness in this 

extended sense. 

One of the key differences between the cases r = - l or O and r ~ l is that for 

r ~ l, the pullback of er maps need not be a smooth submanifold of the product, and so 

differentiability of maps on the pullback cannot always be defined. We t herefore adopt as 

in Brown-Mucuk [15] the following definition of Lie groupoid. Mackenzie [37] discusses the 

utility of various definitions of differential groupoid. 

A Lie groupoid is a topological groupoid G such that 

(i) the space of arrows is a smooth manifold, and the space of objects is a smooth 

submanifold of G, 

(ii) the source and target maps a,/3 are smooth maps and are submersions. 

(iii) the domain G n,e G of the difference map is a smooth subrna.nifold of G x G, and 

(iv) the difference map d is a smooth map. 

Vi/e localise the concept of the coa.dmissible homotopies and linear coadmissible sections. 

We define products on the sets of both concepts. \Ve prove that Jh(C), the set of all local 

coa.dmissible homotopies, and r(V)(C), t he set of local linear coadmissible sections a.re, 

isomorphic inverse semigroups. 

\~1e introduce the concept of a V-locally Lie double groupoid (V(C), lV0 ) and related 

notion "locally Lie crossed module" for crossed module. Note that for the case of groupoids 

rat.her than crossed modules, Pradines stated a differential version involving germs of locally 

Lie groupoids in [43], and formulated this in terms of adjoint functors. A version for locally 

topological groupoids wa.s given in Aof-Brown [l] and the modifications for the differential 

case were given in Brown-Mucuk [14]. Our genera.I aim is to consider ana.logous methods 

for the case of crossed modules. 

However, there already existed in the literature a well developed and clearly relevant 

theory of automorphism of crossed modules, and it therefore seemed sensible to develop a 

14 



holonomy theory for forms of locally Lie crossed modules, ba.sed on "coadmissible homo­

topies" rather than coadmissible section. 

In so doing, there arose the problem of defining "final map" on the germs of local 

coadmissible homotopies. It became clear that the values of such a final map had to lie 

in the double groupoid associated to the crossed module. This explains why our theory 

develops crossed modules and double groupoids in parallel. It also is sensible to keep the 

crossed module theory, since the algebra of crossed modules is closly related to standard 

algebra for group, and these show how aspects of "2-dimensiona.l groupoid theory" are 

likely to prove of continuing importance. 

The holonomy groupoid H ol(D(C), we) is constructed in Section 3.4 as the quotient 

groupoid J"(D(C))/ 10 , where J"(D(C)) is a subgroupoid of the groupoid l(D(C)) (the sheaf 

of germs of local coadmissible sections of the special double groupoid D(C) generated by 

the subsheaf J"(lV0
) of germs of elements of f(We) and 10 is t.he intersection of J"(lVe) 

and the kernel J( er 'ljJ of the final map 'l/; : l(D(C)) - D(C). 

In order to show that the quotient groupoid is well defined , \\'e prove: 

Lemma 3.4.2 The set 10 = J"(l,Ve) n I< er ¢ is a wide subgroupoid of the groupoid 

J"(D(C)). 

Lemma 3.4.3 The groupoid 10 is a normal subgroupoid of the groupoid l r(D(C)). 

Chapter IV, which is a main aim of this thesis, is concerned with the construction 

of the Lie structure on the holonomy groupoicl Hol(D(C), 11'0 ) of a V-locally Lie double 

groupoid (D(C), 1¥0 ) and we state and prove the Holonomy Theorem 4.0.1. 

The aim of Section 4.1 is to construct the topology on the holonomy groupoid H ol(D(C), l,Ve) 

such that H ol(D(C), l1V0 ) with this topology is a Lie groupoicl. The intuition is that first 

of all we embeds in H ol(D(C) , l1Ve), and second tha.t H ol(D(C) , VVe) has enough local 

linear coadmissible sections for it to obtain a topology by translation of the topology of 

H/G _ 

15 



Let s E f(V(C), we). Vve define a partial function Xs : Hie ----+ H ol(V(C), lVc). The 

domain of x~ is the set of w E TVG such that a(w) = a E D(s1 ) and o·(a),,B(a) E D(s0 ). 

The value Xs( w) is obtained as follows. Choose a local linear smooth coadmissible section 

0 through w. Then we set 

Xs(w) = < S >a(w)< 0 >f3(w)=< S * 0 >,e(w). 

By Lemma 3.4.2, Xs ( w) is independent of the choice of the local linear smooth coad­

missible section 0. 

Lemma 4.1.1 Xs is injective. 

Let s E f(V(C)). Then s defines a left translation Ls on V (C) by 

Ls(w) = s(a(w)) +1 w. 

This is an injective partial function on V(C). The inverse Ls - l of Ls is 

and Ls -l = Ls-1. We call Ls the left translation corresponding to s. 

So we have an injective function Xs from an open subset of we to H ol(V(C), lVc) . By 

definition of Hol(V(C), lVG), every element of Hol(V(C), lVG)) is in the image of Xs for 

some s. These Xs will form a set of charts and so induce a. topology on H ol(V(C), lVc) . 

The compatibility of these charts results from the following lemma, which is essential to 

ensure that H/ G retains its topology in H ol(V(C), we) and is open in H ol(V(C), we). As 

in the groupoid case, this is a key lemma. 

Lemma 4.1.2 Let s, t E f(V(C) , lVG). Then (Xtt 1 xs coincides with Lr,, left translation 

by the local linear smooth coadmissible section 77 = r 1 * s, and Lr, maps open sets of TVG 

diffeomorphicially to open sets of HfG. 

Lemma 4.1.3 With the above topology, Hol(V(C), l1VG) is a Lie groupoid. 
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We now review definitions of Lie crossed module and double Lie groupoid. A Lie 

crossed module C = ( C, G, 8) over groupoid is a crossed module such that C and G have 

Lie groupoid structure and action of G on C, and 8 : C - G is smooth functor. The image 

of C in G is not required to be closed, see [38, 13]. 

In differential geometry, double Lie groupoids, but usually with one of the structure 

totally intransitive, have been considered in passing by Pra.dines [44, 45]. In general, double 

Lie groupoids were investigated by K.Mackenzie in [39]. A double Lie groupoid is a double 

groupoid 1J = ( D; H, V, X) together with differentiable structures on D, H, V and X, such 

that all four groupoid structures are Lie groupoids and such that the double source ma.p 

D - H Xcr V = {(h, v): aH(h) = av(v)}, d - (d'v(d), a~H(d)) is surjective submersion. 

We also state Theorem 4.2. 7 in part of a Lie version of Brown-Spencer Theorem which 

occurs in [13]. Let C = ( C, G, 8) be a certain Lie crossed module; then the corresponding 

special double groupoid 1J(C) is a Lie double groupoid which is called a "split double 

groupoid" in [13], 

In Section 4.2, we state and prove the main theorem of the universal property of the 

morphism 1/) : H ol(V(C), H10 ) - V(C). The main idea is when we are given a V-locally 

Lie double groupoid (7J(C), VV0 ) of a double groupoicl 7J(C) for a crossed module C, a Lie 

crossed module A a.nd a morphism 

Jl : 7J(A) - 1J(C) 

with suitable conditions, we can construct a morphism 

Jt': 'D(A) - H ol(V(C), W0
), 

where Hol('D(C), T1V0 )) is the holonomy groupoid of a V-locally Lie crossed module, such 

tha.t 

¢µ' = JL. 
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We prove that such a morphism f.l' is well-defined, smooth and unique. 

The aim of Chapter V is to give an outline of possible and interesting topics for further 

working this area, particulary will regard to possibility of obtaining forms of "holonomy 

double groupoids". 
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Chapter 1 

Automorphisms of Crossed Modules 
of Groupoids 

1.1 Introduction 

In this chapter we are exploring the implications of the idea tha.t a natural generalisation to 

crossed modules of the notion of coadmissible section is that of coadmissible homotopy. 

This arises naturally from the work of Brown-Higgins on homotopies for crossed complexes 

over groupoids, and also relates interestingly to important work of ·'vVhitehead [48], and 

followed up by Lue [36] and Norrie [41], on automorphisms of crossed modules over groups. 

There is some overlap with the work of Brown and Gilbert [6]. However they explain 

in detail in Section 3 only the case of crossed modules over groups. So in this chapter we 

give a complete and explicit account, from the beginning, of automorphisms in the theory 

of crossed modules over groupoicls. 

Brown and Gilbert also relate this theory to the monoidal closed structure of crossed 

modules over groupoids, and indeed deduce their results from a description of this structure. 

The complete account of this rnonoidal closed structure in [11] is based on the equivalence 

in [11] between crossed complexes over groupoids and w-groupoicls. The latter is a cubical 

based theory, in which the monoida.l closed structure is easy to define. 
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Further results in [6] are on the "2-crossed module structure" 

kl---+ P ti< Der*(P, M) ---+ Aut(A1, P, fl) 

for a crossed moduleµ: A1---+ P over a group P. We extend this to an explicit description 

of a 2-crossed module equivalent to AUT(C) in the case C is a crossed module over a 

groupoid. However, because we have not yet developed the corresponding local theory for 

the 2-dimensional part, we do not give explicit verification of the axioms, but rely on the 

general method used in [7, 6). 

1.2 Crossed Modules Of Groupoids 

We recall the definition of crossed modules over groupoids. The basic reference is Brown­

Higgins [7] . 

Definition 1.2.1 Let G, C be groupoicls over t he same object set and let C be tota.lly 

intransitive. Then an action of G on C is given by a partially defined function 

C X G - C, 

written (c, a) 1-► ca, which satisfies 

1. ca is defined if and only if /3(c) = o:(a), and then f3(ca) /3( a), where o:, /3 are 

respectively the source and target maps of the groupoid G. 

2. ( Ct + C2 t = Ct a + C2 a, 

3. c~+b = ( cnb and c~,% = C1 

for all c1, c2 E C ( x , x), a E G ( x, y), b E G (y, z) . 

Definition 1.2.2 A crossed module of groupoids consists of a. pair of groupoids C and 

G over a common object set such that C is totally intransitive, together with an action of 

G on C, together with a functor 8 : C --► G which is the identity on t he object set and 

satisfies 
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for c,c1 E C(x,x), a E G(x,y). 

A crossed module will be denoted by C = ( C, G, 8). A crossed module of groups is a 

crossed module of groupoids as above in which C, Gare groups. 

The followings are standard examples of crossed modules: 

(i) . Let H be a normal subgroup of a group G with i : H ---+ G the inclusion. The 

action of G on the right of H by conjugation makes (H, G, i) into a. crossed module. 

(ii). Suppose G is a group and lvl is a right G-module; let O: M---+ G be the constant 

map sending lvf to the identity element of G. Then (M, G, 0) is a crossed module. 

(iii). Suppose given a morphism 

71 : 1'1 ---+ N 

of left G-modules and form the semi-direct product Gt>< N. This is a group which acts on 

1'1 via the projection from G t>< N to G. vVe define a morphism 

8: A1 -t Gt>< N 

by 5(ni) = (1, ry(m)) where 1 denotes the identity in G. Then (M, Gt>< N, 8) is a crossed 

module. 

Also we can define a category Crs /11 od of crossed modules of groupoids. Let C, C' be 

crossed modules. A morphism f : C -t C' consists of a. pa ir of groupoid homomorphism s 

(!1 , f 2 ) such that the following diagrams commute: 

CxG-C 

hxfi! lh 
C' X G' ~ C' 
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1.3 Free Derivations and Coadmissible Homotopies 

In this section, we combine the notion of coadmissible section, which is fundamental to the 

work of Ehresmann [21], with the notion of homotopy of morphisms of crossed modules, 

which occurs in Whitehead's account [48] of automorphisms of crossed modules and which 

is later developed by Lue, Norrie, Brown-Gilbert [36, 41, 6]. 

So we are exploring the implications of the idea that a natural generalisation to crossed 

modules of the notion of coadmissible section is that of coadmissible homotopy. This arises 

naturally from the work of Brown-Higgins [11] on homotopies for crossed complexes over 

groupoids. 

Definition 1.3.1 Let C = (C,G,8) be a crossed module over groupoids with base space 

X. A free derivation s is a pair of maps s0 : X ---+ G, s 1 : G' ---+ C which satisfy the 

following 

/3(sox) 

(J(s1a) 

s1(a + b) 

x , XE X 

(J(a), a E G', 

s1(a/ + s1(b), a, b E G. 

Let F Der(C) be the set of free derivations of C. 

Proposition 1.3.2 Let s be a free derivatfon of the crossed module C 

groupoids. Then the formulae 

.fo(x) osa(x), 

f1(a) so(oa) +a+ 8s1(a) - so(/3a), 

.f2(c) = (c+s1ocrso.B(c) 
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define an endomorphism f = (!0 ,fi,h) ofC which we write ~(s) = f. 

Proof: We have to s_how that Ji and h are groupoicl homomorphisms and f 2(ca) = 

h(c)fi(a}, for c E C(x), a E G(x, y). 

f1(a+b) = s0(x) +a+b+ 8s1(a+b )- s0(z) 

.f2(c + c') 

= so(x) +a+ b + 8(s1(a)b + s1(b) ) - so(z) 

- 80(x) +a+ b - b + 8s1(a) + b + 8s1(b) - s0(z), by definition of 8 

= so(x) +a+ 8s1(a) - so(y) + $o(Y) + b + 8s1(b) - 80(z) 

= f1(a) + f1(b) 

= ( C + C1 + S10( C + c') rso(x) 

= ( C + C1 + S1 ( OC + Oc') r so(x) 

- (c + c' + s1(8c)°c' + s1(8c')tso(x) 

= ( C + C1 
- C1 + 81 OC + C1 + 81 Oc'tso(x) 

= (c + 810C + c' + s18c'tso(x) 

= h(c) + h(c') 

Let c E C(x),a E G(x,y) . Then /3(c0
) = {3a, {3ca = y. So 

- (ca+ S1(- a + 0C + a)rso(Y) 

- (ca+ s1(-a)6c+a + s1(8c)° + s1(a)rso(y) 
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- (ca - (s1ara+c5c+a + (s10ct + S1a)-so(Y) 

(ca - S1a0c
0 + (s10C)° + S1arso(Y) 

- (-s1(a) +Ca+ (s10C)° + S1(a)rso(Y) 

(-s1(a) + (c + S10c)° + S1(a)rso(Y) 

(-s1(a) + (h(c)so(x)r + s1(a)rso(Y) 

So f is an endomorphism of C. □ 

(1.1) 

Proposition 1.3.3 Let C = ( C, G, 8) be a crossed module over groupoids. Then a monoid 

structure on F Der( C) is defined by the multiplication 

( ) ( ) { (s * t)o(x) = (sogo(x)) + ta(x), E = 0, z = :r EX, 
s * t c 

2 = (s * t)t(a) = t1(a) + (s1gi(a))10(JJa) , E = 1, :: = a E G(x,y) 

for s,t E FDer(C) and J = 6(s),g = 6(t). fllrther 6(s * t) = 6(s) * 6(t),6(1) = 1. 

Proof: It is clear that ,B(s*t)0(x) = x and ,B(s*t)i(a) = ,B(a) for x EX, and a E G(x,y). 

In fact, 

,B(s * t)o(x) = ,B(so(go(x)) + ta(x) 

= ,Bio( X) 

- x. 

Secondly , 

,B(t * s)t(a) = ,B(t1(a) + s1g1(a)t0 y) 
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= ;3( S191 ( a )t0 y) 

= ,Bs1(91(a)t0y) 

- ,8(91 ( a )t0 y) 

- ,B( toy) 

- ,Bto(Y) 

= y 

= ,B(a) . 

We have to show that (s * t)i is a derivation ma.p. Let a E G(x, y), b E G(y, z). Then 

(s * t)i(a + b) = t1(a + b) + (s1g1(a + b))to(z) 

= t1(a/ + t1(b) + (s1(g1(a) + g1(b))1o(z) 

= t1(a)b + t1(b) + (s1(g1(a))91 (b) + s1(gi(b)) 10 (z) 

= t1(a)b + t1(b) + (si(g1(a))1o(Y)+b+oti(b)- to(=) + s1(g1(b))to(:) 

= t1(a)b + t1(b) + si(g1(a))to(Y)+b+St1(b) + s1(g1(b))to(z) 

- t1(a)b + t1(b) + (s1(g1(a) 10 (y)+b)5ti(b) + s1(91(b))1°(=) 

- t1(a/ + t1(b) - t1(b) + (s1(g1(a))1o(y)+b + t1(b) + s1(g1(b)10(z) 

= t1(a)b + (s1(g1(a)) 10(y)+b + t1(b) + s1(g1(b))10(z) 

= (t1(a) + s1(g1(a)10(y)/ + t1(b) + s1(g1(b)10(z ) 

= (s * t)i(a)b + (s * t)i(b) . 

For the associativity property, let u,s,t E FDer(C) a.nd let f = .6.(s),g = .6.(t) ,h = .6.(u). 

Then 

(uo * (s * t)o)(x) = (uo(fogo(x)) + (t * s)o(x) 

- uo(fogo)(x) + (sogo)(x) + to(x) 

- uo(fo(go(x)) + sogo(x) + to(x) 
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= (u * s)o(go(x)) + to(;t) 

= ((u * s)o * to)(x) 

and 

(u1 * (s * t)i)(a) = (s * t)i(a) + u1(f g(a))(s•t)o(x) 

- t1a + (s1ga)to(Y) + (uifga)(s•t)o(x) 

- t1a + (s * u)i(ga)to(Y) 

= ((u * s )i * t1)(a). 

Let s,t E FDer(C) be as above and let a E G(:i:,y) . Then 

.6.(s * t)i(a) - (s * t)o(x) +a+ o(s * t)1(a) - (s * t)o(Y) 

- sogo(x) + to(:i:) +a+ 8(t1(a) + s1g1(a))to(Y) - (sogo(Y) + to(y)) 

= sogo(x) + to(x) +a+ 8(t1(a) + 8(s1g1(a)10(y)) - (sogo(Y) + to(y)) 

= sogo(x) + to(x) +a+ oti(a) - to(y) + 8s1g1(a) + to(Y) - to(y) - sogo(Y) 

= sogo(x) + 8i(a) + 8s1g1(a) - sogo(Y) 

= .6.(s)(.6.(t))(a) 

= .6.(s) o .6.(t)(a). 

Let c E C(x),a E G(x , y) . 

.6.( s * t)( c) = (c + (s * t)i(o(c)t(s•t )o(i3c) 

= (c + t1(8(c)) + S191(8(c))to(x)t(s•t)o(l·) 

= (c + t1(8(c)t(s•t)o(x) + S1092(c))to(x)-(Ht)o(l,) 

= (c + t1(8(c)tto( x)- sogo(x) + S10g2(c))-sogo(l:) 

= ((c + t1(8(c)tto(x ) + S1092(c)tsogo(x) 

- (.6.(t)(c)) + (s18g2(c)tsogo(x), since .6.( t)(c) = g2(c), 

= .6.(s) o .6.(t)(c) 
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So 6.(s * t) = 6.(s) o 6.(t). 

Let c = ( Co, c1) be the free derivation defined by 

for x E X and a E G. 

co(x) = lx and c1(a) = 1 

6.(c)(a) co(x) +a+ 8c1(a) - co(Y) 

lx+ a+8(1)-ly 

1( a) . 

Similarly, for c' EC, we have 6.(c)(c') = l(c'). □ 

Corollary 1.3.4 The function 6. is a monoid morphism 

F Der(C) -t End(C) 

Let F Der*(C) denote the group of invertible elements of this monoid. An invertible free 

derivation is also called a coadmissible homotopy. 

Theorem 1.3.5 Lets E F Der(C) and let .f = 6.(s). Then the following conditions are 

equivalent: 

(i) s E F Der*(C), 

(ii) .fi E Aut(G), 

(iii) h E Aut(C). 

Proof: That (i)::::} (ii), (i)::::} (iii) follows from the fa.ct t hat 6. is a morphism to End(C). 

\Ve next prove (ii)::::} (i). Suppose then J1 E Aut(G). \"!\Te define s-1 = (s0 -1,s1 - 1 ). 

Let so- 1 : X -t G, s1 -l : G -t C by 

so-1(x) = -so(fo- 1(x)) and s1 - 1(a) = -s1(!1 - 1 (a))s0 -
1
(Y). 
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Since /3s0- 1 (x) = x and as0- 1(x) = f0(x), s0- 1 is an inverse element of s0. In fa.ct, 

(s- 1 * s)0(x) = So-1(Jo-1 )(x) + So(x) 

= -so(fo-1 (Jo)( x)) + so( x) 

= - so(x) + so(x) 

co(x)=lx 

and also 

(s * s-1
)0(x) = so(Jo - 1 )(x) + so - 1(x) 

= so(.fo - 1 )(x) - so(.fo - 1 (:r) 

= co(Y) = l y, 

We have to show that s1 -
1 is a derivation map. Let a, b, a + b E G and let a' = 

-(s1(.fi-1a + .f1 -lb))5°-1
(z) 

= -(s1(a' + b')fo-l(z) 

= -((s1a't + s1(b1))50 -
1
(z) , since s 1 is a derivation, 

(-s1(b') - (s1(a')ttso(z) 

-(s1(b') + (s1(a'))b'+ss1(b')tso(z) 

-(si(b'tso(z) + (si(a'))b'+ss1(b') - sofo - 1(z) 

Since J(b' ) = sofo-1(y) + b' + 8s1(b') - so.fo- 1(z) 

b - sofo - 1(y), 
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-(s1(b'tso(z) + (s1(a'))b-so-1(y) 

-(s1(a'))btso-1(y) - s1(b'fo-1 

- -(s1(!1 -l(a)/tso-i(y) - sif1 -l(b')so-1 

- s1-1(a)b+s1-1(b). 

One can easily show that s * s-1 = c and s-1 * s = c. 

S1 -l(a) + S1(!-l(a)fo-l(y) 

- -si.f-l(ar-l(y) + S1(.f-l(a)fo-l(y) 

- c1(a). 

and 

(s-1 * s)i(a) - s1(a) + s1- 1(f(a)yc(y) 

.51 ( (l) - 81 u-1 (f ( (l) r(y) )so-l(y) 

s1(a) - s1(a) 

C1 (a). 

Now we will prove (iii) ⇒ (i). \Ve first recalculate (s * t)1 in terms of Ji. Let 6(t) = g 

and let 6(s) = f, a E G(:r,y) as above. 

(s * t)i(a) - t1(a) + s1g1(a) to(Y) 

- t1(a) + s1(to(:i:) +a+ 8t1(a) - t0(y))to(Y) 

t1(a) + s1(to(x)t+ot1(a)- to(Y) + s1(a)5!1(a)-to(Y) + si(8t1(a))to(Y)) + s1(-to(y))to(Y) 

t1 (a) + S1 (to( X) r+oti(a) + S1 ( a )0t1 (a) + S1 ( Di1 (a)) + S1 ( - to(Y) )to(Y) 

= t1(a) + s1(to(xt)6l1(a) - t1(a) + s1(a) + t1(a) + s1(8t1(a)) - s1(to(y)), 
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t1(a) - t1(a) + s1(to(x)° + t1(a) - t1(a) + s1(a) + t1(a) + s1(ot1(a)) - s1(t0(y)) 

s1(to(x))°' + s1(a) + t1(a ) + s1(ot1(a)) - s1(to(y)) 

s1(to(x))°' + s1(a) + h(t1(a))8°(y) - s1(to(y)) 

Now, suppose t hat h has inverse h-1. Let s - 1 = (s0- 1, s1- 1) be defined by 

We prove that s-1 is an inverse element of s and is a derivation map. Clearly 

by on argument as above. 

Next we prove (s * s - 1 )i (a) = c1 (a), for a E G(x,y). 

(s * s-1)i (a) = (s1(so-1(x))° + s1(a) + h(.f2-1((-si(a) + (s1s0.fo - 1(x))° 

-(s1sofo-1(y)t so(Y)) so(Y)) - S1S0- 1(y) 

= (s1(so .fo - 1(x))a + s1(a) - s1(a) + (s1s0.fo-1(a:))° 

+(s1sofo-1(y)) - s1sofo-1(y) 

Since ( s * s-1 )i = c1 and also ( s-1 * s ' )1 = c1. It follows that s1 - l * s1 = .s1 -l * s1 * s1 -l * st' = 
-1 ( -1) , -1 , l d -1 , · S1 * S1 * S1 * S1 = S1 * S1 = a.n so S1 = S1 , 1.e., 

( s- 1 * s )i (a) = c1 (a), for all a E G. 
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\Ve have to prove that s1 -l is a derivation map. Let a E G(x, y ), b E G(y, z ). We write 

hs1-1(a) = (-s1(a) - (s1so-1(x))a + (s1so- 1(y)tso(Y), and then 

f2(s1-1(a)/ + h(s1-1(b)) 

(- s1(b) + (h(s1-1(a))so(Y))6 + s1(b)tso(z) + f2(s1 -l (b)), by 1.1 

(-s1(btso(z) + (-s1(a)- (.s1so- 1(x)t + S1So-1(y)/-so(z) 

+s1(btso(z)(-s1b)-soz - (s1so -l(y))/- so(z) + S1So -l (zrso(z) 

- (- s1(btso(z) - s1(a)6-so(z) - (s1so-l(x)r+b-so(z) + S1So-l(z)rso(z) 

= (- s1(b) - s1(a/- (s1So-1(x)t+b + S1So-1(z)rso(=) 

= (-(s1(a? + S1(b)) - (s1So- 1(x)t+b + S1So -l (z)rso(z) 

h(s1 - 1 (a + b)) 

Hence s1 -l is a derivation, i.e ., s-1 is a free derivation. □ 

Theorem 1.3.6 There is an action of Aut(C) on s E F Der*(C) given by 

f() - { fi-1
sofo( x ), z = x EX 

S Z - 1 ) h- sif1(a , z = a E G. 

for each a E G(x,y), which makes 

a pre-crossed module. 

6: F Der*(C) - Aut(C) 

f1(a) = so(x) +a+ 8s1(a) - so(Y), 
h(c) = (c + s18ctso(J3c), c EC. 

Proof: Now, we will show that 

F Der*(C) x Aut(C) - F Der*(C) 
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(s, J) ~ sf 

is an action of Aut(C) on F Der*(C). 

f( ) -{ f1-
1
sofo(x), z = x EX 

s z - f2-1sd1(a), z=aEG. 

In fact this give rise to an action over groupoid: 

sfg(z) ={ (fg)o=:so(fg)~(x) = 9o- 1 fo-:sofogo(x) = 9o-1 sof09o(x) = (sa1°) 90 (x), z = x EX 
(f 9 h s1 (f g h (a) = 91 -l !1 - s if191 (a) = 91 -l s/ 1 91 (a) = ( s/1 ) 91 (a), z = a E G 

and 

1( ) _ { J-1sol(a) = so(x),z = x EX 
s z - - 1 ( ) ( ) G' I s1I a = s1 a , z = a E T. 

Let .6.(s) = f. Then .6.(sf) = J, where J(a) = s/0 (x)+a+8s/(a)-s0 f0 (y). We can show 

sf as the following diagram: 

Is sf E FDer*(C)? Clearly one can see f3sa1°x = x and /3s/ 1 (a) = f3(a) . Also we should 

have to show that s f(a + b) = sf(at + sf(b). We have 

by definition of J and 

](a) +](b) = s/(x)+a+8s/(a)+b+8s/(b) -s/( z) 

= s/(x) +a+ b- b + 8s/(a) + b + 8s/(b) - s/(z) 

= s/(x) +a+ b + 8(s/(a/ + s/(b)) - s/(z) 

= l(a+b) 

32 



So s1(al + sf(b) = sf(a + b) and also we can obtain 

I(a) = -s0 (x) +](a)+ s/(y) - os1(a) . 

1-1 (sof(x) + f(a) + Ds(fa) - s/(y)) 

f- 1 sof(x) + f - 1 f(a) + f- 15s(!a)- .r-1 s/(y)) 

s/(x) +a+ 5f-1sif(a) - s/(y) 

sa1(x) +a+ 5s/(a) - s/(y) 

Hence 6(s1)(a) = J- 1 6s.f(a). □ 

The fact that 6 : F Der*(C) --t Aut(C) is a precrossed module is a special case of results 

of Brown-Gilbert [6], which applies t he monoiclal closed structure of the category of crossed 

complexes introduced by Brown-Higgins in [11]. In fac t the description of 6 : F Der*(C) --t 

Aut(C) is carried out explicitly in Brown-Gilbert [6] Proposition :J.:3, but only for the case 

C is a crossed module over a group. 

1.4 Braided regular crossed modules and 2-crossed 
modules 

1.4.1 Introduction 

In this section our object is to give the explicit relationship between braided regular crossed 

modules and 2-crossed module. This indicates a possible further context for development 

of work on holonomy. The following material can be found in Brown and Gilbert [6]. 

We begin with a review of basic facts that we need on monoidal closed categories. Let 

C be a monoida.l closed category with tensor product-@ - , identity object I , and internal 
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ho~ functor H0/11 (see (40]). Then for all objects A, B , C of C there exists a natural 

bijection 

0: C(A © B , C) - C(A, HOM(B, C)), 

which, together with the associativity of the tensor product, implies the existence in C of 

a natural isomorphism 

0: H0!11(A © B, C) - HO!l1(A, H0!11(B, C)). 

Further, the bijection 

0: C(H0!11(A, B) © A , B) - C(HOM(A, B), HOM(A, B)) 

shows that there is a unique morphism 

E.4 : HOJ\IJ(A, B) © A - B 

such that 0( E.4) is the identity on HOJ\.1(A, B); EA is called the eval-uation morphism. Then 

for all objects A, B, C of C, there is a morphism 

(H0!11(B , C) © HO!lf(A, B)) 0 A - HOM(B, C) © (HOM(A, B) © A) 

- HOl,J(B, C) © B - C. 

This corresponds under 0 to a morphism 

,'ABC : H0!11(B, C) © H01'1(A, B) - H0.~1(A, C) 

which is called composition. 

VVe write EN D(C) for H0!11(C, C). There is a morphism 'l]C : I - EN D(C) cor­

responding to the morphism >. : I © C - C. The main result we need is the following 

[29]. 

Proposition 1.4.1 The morphism 17c and the composition 

µ = ,ccc: END(C) ©END(C) - END(C) 

make END( C) a monoid in C. 

34 



1.4.2 Regular Crossed Modules and 2-crossed modules 

The following definitions are due to Brown and Gilbert [6]. 

Let M be a monoid. A biaction of .M on the crossed module C = (C1 , C2 , 8) with 

point set Co consists of a pair of commuting left and right actions of A1 on the set C0 and 

the groupoids C1 and C2 compatible with all the structure. Specifically we have functions 

A1 x Ci----+ Ci and C; x A1----+ Ci for i = 0, 1, 2, denoted by (m, c) r-t m.c and (c, m) r-t c.m, 
4 

such that 

M1 : each function M x Ci ----+ Ci determines a left action of A1 and each function 

C; x A1 ----+ C; determines a right action of .M and these act ions commute; 

/112 : each action of A1 preserves the groupoid structure of C\ over C0 and in particular 

the source and target maps a , {3 : C1 ----+ C0 are .M-equivariant relative to each action; 

M3 : each action of 1'1 preserves the group operations in C'2 and if c E C2(x) and m EM 

then m.c E C2(m.x) and c.m E C2 (x.m); 

A14 : each action of .M is compatible with the action of C1 on C2 so t hat if c E C2 (x ), 

a E C1(x,y), and m E A1 then 

( ·a)-(· )a.mEC(· )· :z . . m - x.m. 2 x.m. , 

A1s the boundary homomorphism o : C2 ----+ C1 is .M-equivariant relative to each 

action. 

The crossed module C is semiregular if the object set Co is a monoid and there is a 

biaction of Co on C in which Co acts on itself in its left and right regular representations. 

A semiregula.r crossed module in which C0 is a group is said to be regular. Note that 

every crossed module of groups is regular. 

Let C be a semiregular crossed module. We write the monoid C0 multiplicativily with 

identity element e. A braiding on C is a function C1 x C1 ----+ C2 , written (a, b) r-t {a, b}, 
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which satisfies the following axioms (here a, a', b, b' E C1 , c, c' E C2 and x, y E C0 ): 

B1 : {a, b} E C2((/3a)(/3b)), {Oe, b} = 013b, {a, Oe} = 013ai 

B2 : {a, b + b'} = {a, b}f3a.b' + {a, b'}; 

B3: {a+ a', b} = {a', b} + {a , b'}a'.f3b; 

B4: 8{a, b} = -(f3a.b) - a.a.ab+ o:a.b + a./3b; 

Bs : {a, 8c'} = -(f3a.c') + (aa.c't·Y if c' E C2(y); 

Bs: {8c, b} = -(c.abY·b + c.(Jb if c E C2(p); 

B1: x.{a, b} = {x.a, b}, 

{a,b}.x = {a,b. x }, 

{a.x,b} = {a ,x.b}. 

Joyal and Street have defined a notion of braiding for an arbitrary monoidal cate­

gory and in particular have considered braided categorical groups. These are equivalent to 

braided crossed modules, with the bracket operation in [28] given by (a, b) ~ {a-1 , b}a. 

This difference is merely one of notational conventions. 

The axioms B1 , ... , B7 a.re evidently closely related to the axioms given by Conduche 

[19]. This relationship is given by Brown and Gilbert [6]. 

Recall from [19] that a 2-crossed module consists , in the first instance, of a complex 

of P-groups 

and P-equivariant homomorphisms, where the group P acts on itself by conjugation, such 

that 

is a crossed module, where NJ acts on L via P. We require that for all l E L , m E M , and 

n E P that (zmr = (lnr". Further, there is a function<,>: M x _M __. L, called a Peiffer 

lifting, which satisfies the following axioms: 

P1 : 8 < mo, m1 >= mo - 1m 1 -
1m0m 1 &mo, 
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Let 2 - Crs./111 od denote the category of 2-crossed modules. Then the equivalence 

of Theorem 2.2 in [6], together with Conduche's equivalence [19] between the categories 

2 - CrsM ocl and the category of simplicial groups with Moore complex of length 2, yields 

a composite equivalence between 2 - CrsM od and CrsJl!fodaR-

Let C = ( C1 , C2 , 8) be a regular crossed module. The 2-crossecl module associated to C 

is defined to be the Moore complex of the simplicia.l group S(C). Denote by I< the costar 

in C1 at the vertex e E Co, that is, l\. = {a E C1 : f3a = e}. Then Xis the subgroup kero:0 

of S(C)i with group operation given for any a, b E I< by 

ab= b + (ci.crb) . 

The source map a : J{ - Co is a homomorphism of groups and is C0 -equiva.riant relative 

to the biaction of C0 on C1 . Note that the new composition ext.ends the group structure 

on the vertex group C1 (e) so that C1 (e) is a subgroup of K : it is plainly the kernel of o:. 

Further, C0 acts diagonally on I<: for all a E I< and p E C0 we set aP = p-1 .a.p. (there 

should be no confusion with the given action of C0 on C2 which we denote in a similar way.) 

Then the homomorphism a : J( - C0 is C0-equivariant relative to the diagonal action on 

J{ and the conjugation action of the group C0 on itself. Now C0 also acts diagonally on 

the vertex group C2( e) and so we have a complex of groups 

in which c5 and o: are C0-equivariant. We know that c5: C2 (e) - C1(e) is a crossed module: 

we claim that J{ acts on C2 (e), extending the action of C1 (e) ~ J(, so that c5: C2 - J( is 

a crossed module. 
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We define an action (c,a) - c!a by c!a = (c.aat where c E C2(e) and a EK. This is 

indeed a group action and 8 is K-equivariant. Moreover, the actions of C2(e) on itself via 

J( and by conjugation coincide, for 8: C2(e) ---+ C1 (e) is a crossed module and so for all 

c,c' E C2(e), 

c!8c' = (c.a(8c'))8
c' = (c.e) 0

c' = - c' + c + c' . 

Therefore the map 8 : C2 (e)---+ J( is a crossed module. Further the action of Co on C2(e) 

is compatible with that of J(. 

The final structural component of a 2-crossed module that we need is the Peiffer lifting, 

which is provided by the braiding. For suppose that Chas a braiding{,} : C1 x C1 ---+ C2. 

Then the map J( x ]{---+ C2 (e) given by (a,b) - {a-1 ,b}!a =< a, b > is a Pieffer lifting. 

Therefore we have the 2-crossed module 

C2(e)---+ 1{---+ Co 

which is indeed the Moore complex of S'(C). 

Then we show how a 2-crossed module give rises to a braided regular crossed module. 

So we begin with a 2-crossed module 

and construct from it, in a functorial way, a regular, braided crossed moduleC = (C1 , C2 , 8). 

The group of object of Co is just the group P. The underlying set of elements of C1 

is G x P with source and target maps a(g,p) = o(g)p and f3(g, p) = p. The groupoid 

composition in C1 is given by (g1,P1) + (g2 ,P2) = (g1g2,P2) if ])1 = 8(g2)P2• The underlying 

set of elements of C2 is L x P with composition ([1 ,p) + (!2 , p) = (l1 l 2 ,p) . The boundary 

map 8 : C2 ---+ C1 is given by 8(1,p) = (81,p) and the action of C1 on C2 is given by 

(l,p)(g,q) = (l9,q) if p = fJ(g)q. This does define a crossed module over (C1 ,C0 ) and a 

biaction of C0 on C is obtained if we define 

p.(g,q) = (gP-1,pq),(g,q).p= (g,qp), 
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p.(l, q) = (lP-1 ,pq), (l, q).p = (g, qp), 

where (g, q), (l, q) E C2 and p E C0 = P and therefore C with this biaction is regular. The 

braiding on C is given by 

where <, >: G x G - L is the Peiffer lifting. 

\Ve do not use the notion of 2-crossed module in later work on holonomy, as the de­

velopment of the local version of the theory exposed below needs further work. However 

we give the full theory here to show the results on automorphisms of crossed modules over 

groupoids corresponding to Theorem 3.4 of Brown and Gilbert [G] . 

1.5 !-Derivations 

In this section we give an explicit description of a 2-crossed module equivalent to AUT(C) 

in the case C is a crossed module over a groupoid. 

1.5.1 END(C) 

Let C = (C,G,8) be a crossed module of groupoids, regarded as a 2-truncated crossed 

complex with object set X. We form the crossed module CRS(C): this is again 2-truncatecl 

and we denote it by E: E2 - E1 - Eo. 

An explicit description of E may be extracted from [11]. The object set E0 is just 

Crs(C) = End(C), the set of endomorphisms of the crossed module C = ( C, G, 8). We 

shall usually denote elements of E0 by a single letter f and its components (.f0 , .f1 , .f2), 

where these are morphisms of X, G, C, respectively. 

Now E 1 consists of all homotopies of C = (C, G, 8). Such a homotopy is completely 

specifed by a triple (so, s1, J), where so : X - G, f E E0 , and s1 : G - C is an ! ­

derivation, s~ for all a, b E G, s1(a + b) = s1(a)f(b) + s1(b). The source and target maps 
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are given by 

and 

where J0 is defined by 

and 

J0 (a) = so(x) + J(a) + 8s1(a) - so(y) 

J0(c) = (.f(c) + S1D(c)rso(JJ(c)) 

J0 (x) = ,B(so(x)) 

for all a E G(x,y), c E C(x) and x,y EX. 

It is straightforward to check t hat J0 E £ 0 , i.e., it is a morphism C -► C. 

The groupoid structure on £ 1 is given by 

( so, s1, J0
) + ( to, t1, f) = ( ( s * t )o, ( s * t )i , f) 

where for all a E G, x E X. 

( t) () { (s*t)o(x)=so(x)+to(x), z =xEX, c:=0 
8 * ( z = (s * t)1(a) = t1(a) + (s1(a)) to(/1a ), z = a E _G(1:,y) c = 1 

An element of E2 is a section of ,8. Each consists of a pair (s2 , .f) where s2 is a section 

and J E £ 0 . The groupoid structure on £ 2 is 

a E G( x, y). We can show that (s2 is an J-deri vat ion as follows: 
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= ( - s2(x))f(a+b) + s2(y)f(b) _ s2(y)f(b) + s2(z) 

- ((-s2(x))f(a) + s2(y))f(b) - s2(y)f(b) + s2(z) 

= ((s
2
(a))f{b)+(s

2
(b) 

Finally, the action of E1 on E 2 is 

and, moreover, 

(i) (((s2,J0)(so,si,J) = -(so,s1,f) + ((s2,f0) + (so,s1,f) 

(ii) (s2, f)((t 2 ,n = -(t2, f) + (s2, f) + (t2, f) 

In fact, 

where 

On the other hand, 

(((s2 ,fo){so ,si.f) = ((s 2so, f) 

= (8(S280 ),(s2 'o,f) 

((s2•o)(a) - (-S280 (x))f(a) + S2 80 (y), a E G(x,y) 

- (- s2(x )8°(x))f{a) + s2(Y )8°(y) 

_ -s2(x)5o(x)+f(a) + (s/o)(y) 

- (so - l * 8(s2) * so, s1 - i * (s2 * s1 , f) 

- (8(s280
), S1 -l * (s2 * S1, .f) 

So we have to show that 
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Here 

we have 

Then 

(8(s2),(s2,f0
) + (s0 ,s1 , f) 

(o(s2) * so, (s2 * s1, f). 

((s2 * s1)(a) + (s1 -1(a))(S(s2)•so)(y) 

= S1(a) + (-Sz(x)fo(a) + S2(v))so(y) + (s1 -l(a))(8(s2)•so)(y) 

s1(a) - s2(x)fo(a)+so(Y) + s2(Y)so(y) + (-s1(arso(Y)lS(s2)•so)(y) 

s1(a) _ s2(x)f0(a)+so(Y) + s2(Y)so(Y) + (-s1(a)rso(Y)+(8(s2))•so(Y) 

S1(a) - S2(x)10(a)+so(Y) + S2(v) so(Y) + (-s1(a))C'>(s2•o)(y) 

s1(a)- s2(x)10(a)+so(Y) + s2(y}5D(Y) - s2(Y)so(Y) - s1(a) + s2(y)3°(Y) 

-sz(x)f0(a)+so( y)- S(s1(a)) + 82 (y)5o(y) 

-s2(x)5°(x)+f(a) + s250 (y), by the definition of J0 (a) 

= (s2 •o (a). 

For the second axiom of crossed module, 

(sz, J)((t2,f) = (sz, J)(S(t2),(,2,f) 

(s/(t2),J) 

= (t2-l * S2 * t2,J) 

(t2-1,J) + (s2,f) + (t2,J) 

as is required. Hence ( : E2 ~ E 1 is a crossed module. 
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Proposition 1.5.1 {6} The composition map 1 : E © E - E together with the map 

r, : 0 - E adjoint to ..\ : 0 © ( C, G, o) - ( C, G, o) make E a monoid in the category of 

crossed complexes. 

Proof: This is merely a special case of Proposition 1.4.1. □ 

So by Proposition 1.5.2, E is semiregular and braided. To determine the biaction of 

E 0 and the braiding we have to understand the composition map , explicity. A direct 

calculation leads to the following non-trivial components for the bimorphism determining 

,: 

Eo x Eo - Ea 

Eo x E1 - E1 

E1 x Eo - E1 

E1 X E1 - E2 

Eo x E2 - E2 

E2 x Eo - E2 

(fi, h) ~ f1h, 

U1, (so,s1,J)) ~ (f1so,f1-'h ,fif) 

((so, s1, f), h) ~ (soh , s1h, f h), 

((so, s1, f) , (to, t1, J')) ~ (sito , J J') 

(!1,(s2,J)) ~ U1( s2),fif), 

((s2, J), !2) ~ (s2, f !2). 

These maps give a biaction of E0 on E and a braiding E1 x E 1 - £ 2 • The monoid structure 

on E0 is the usual composition of maps. 

1.5.2 AUT(C) and 2-Crossed Modules 

Let A = AUT(C), the full subcrossed module of E on the object set A0 = Aut(C) of 

automorphisms of the crossed module C = (C,G,o). Thus Ao is the group of units of Eo 

and A inheri ts from E the structure of a regular, braided, crossed module [6] 

Now an element of A 2 is a section over an automorphism of C = ( C, G, o) and consists 

of a pair ( s2 , J) where s2 is a section and J E A0 . An element of A1 is a homotopy over 

an automorphism of C = ( C, G, o) and consists of a triple ( s0 , s 1 , J) where s0 is a section, 

f E Ao, and ·s1 is an !-derivation G - C such that the endomorphism J0 of C = ( C, G, o) 
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which gives the source object of (so, s1 , f) is actually a.n automorphism. Clearly J0 is an 

automorphism of C = (C, G, 8) if and only if 

g(a) = so(x) + f(a) + 8s1(a) - so(Y) 

g(c) = (f(c) + s18(c)tso(/3(c) 

g(x) = aso(x) 

for a.11 a E G(x, y), c E C(:r), x EX defines an automorphism of C = (C, G, 8) . 

For f E Ea, denote by Der1(C) the set of !-derivations 

Proposition 1.5.2 If .f is an mdomorphism of G' then Der1(C) is a monoid with compo­

sition 

(s * t)o(x) = so fo(,1; ) + tof-1(:r) 

(s * t)i(a) = t1(a) + si(toa(a) +a+ f- 18ti(a) - t0 (/3( a))10(/3a ) 

and identity element c1 : a 1--t 1, c0 : x 1--t 1, for all a E G and x EX . 

Proof: We defined a monoicl structure on the set F Der(C) of free derivations in the 

Section 2.3. Now if f is an automorphism of G and s is an 'J-cleriva.tion, then sJ- 1 = 

( so fo -l , sif1 -l) is a. derivation: hence we can use f to transport general composition on 

F D er(C) defined in Proposition 1.3.3 to Der1(C) and the result _is as stated. This general 

composition is of course recovered by ta.king f = I . □ 

Proposition 1.5 .3 Let f be an automorphism of the crossed module C = (C, G, 8) and let 

s be an ! -derivation. Then the following are equivalent. 

(i) s is a unit in the monoid Der1(C), 

(ii) g(a) = s0(x) + f(a) + 8s1(a) - s0 (y) is an automorphism of G, 

(iii) g(c) = (f(c) + s18(c))-so(/3(c) is an aidomorphism of C. 
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Proof: For f equal to the identity automorphism of C = ( C, G, c5) this result has been 

given in Theorem 1.3.5. Nows is a unit in Der(C) if and only if sJ-1 is a unit in Der(C) and 

by Theorem 1.3.5 this is equivalent to gJ-1 being an automorphism of G or of C: since f 

is an automorphism of C = (C, G, c5), this is in turn equivalent tog being an automorphism 

of G and of C. D 

vVe write Der• 1(C) for the group of units of Der1(C) and s-1 for the inverse of s E 

Der* 1(C). If f is the identity, we write F Der*(C) for Der* 1(C). An element of A1 is now 

seen to consist of a triple (s0 ,s1 ,J) where s0 E IVJ(C) , f E Aut(C) , and s1 is a derivation. 

Theorem 1.5.4 The regular crossed mod1de A = AUT(C) corresponds via the equivalence 

of Theorem 2.2 in {6} to the 2-crossed module 

IYJ(C) ~ F Der*(C) ~ Aut(C) 

fi(a) = so(x) +a+ 8s1(a) - so(y) 

h(c) = (c + s18(c)tso(J3(c) 

fo(x) = aso(x ) 

for a E G(x,y) 1 c E C(y) and x EX. 

Proof: The costar in the groupoid A1 at the identity automorphism I of C may be 

identified as a set with F Der*( C) and the group structure on the costar is given by ( s0 , s1 ) * 

(to, t1) = (so* to, s1 * t1) where 

t1(a) + sif1(a)to(Y) 

t1(a) + s1(to(x) +a+ c5t1 (a) - t0(y))to(Y) 
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- t1(a) + s1(to(x)tHti(ci)-to(Y) + s1(a)8ti(ci)-to(y) + s1(8t1(a)tto(Y))s1to(x) 

t1(a) + s1(to(x))"Hti(a) + s1(a)8ti(ci) + s1(8t1(a))to(Y) + s1(-to(y)) 

ti(a) + s1(to(x)")6ti(a) - t1(a) + s1(a) + t1(a) + s1(8t1(a)) - s1(to(y)) 

= i1(a) - i1(a) + s1(to(x)" + t1(a) - t1(a) + s1(a) + t1(a) + s1(8t1(a)) - s1(to(y)) 

s1(to(x)" + s1(a) + i1(a) + s1(8t1(a)) - s1(to(y)) 

for a E G(x,y). The vertex group A2(J) is identified with the group M(C) with ((s2 ) = 

(8s2,(s2 ) as required. Note that Aut(C) acts on FDer*(C) by 

proved in Theorem 1.3.6 and on .M( C) by s2Uo.fi,h) = .r-1 sd. The action of F De,*(C) 

on 1'1(C) is simply s~so,sd = s;0 and the Peiffer lifting is given by 

< (so,s1),(to,i1) > = {(so,s1 t1,(to,ti) }!(so,s1) 

( {( So - l , ( S1 -l )5° -i), ( to, t i )} . .6.(so, S1) )(so,si) 

-1( -1 t ) S1 So * O * So 

□ 

This concludes the description of the functor 2 - Crsl\llod --t C,sM odBR· 

We give above the full definitions and proofs of the algebraic structure, because, we 

believe it will help the reader to see explicitly the algebra that is involved, and to make 

this work independent of the papers Brown and Higgins [11] and Brown and Gilbert [6]. In 

particular, this makes our work independent of the equivalence between crossed complexes 

a.nd w-groupoids which is used by Brown-Higgins in [11]: We quote fr~m op.cit p:2 which 
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discusses the formulae for the tensor product. "Given formulae (3.1) , (:3.11) and (3. 14), 

it is possible, in principle, to verify all the above facts within the category of crossed 

complexes, although the computations, with their numerous special cases, would be long. 

We prefer to prove these facts using the equivalent category w-Grd of w-groupoids where 

the formulae are simpler and have clearer geometric content". 

Thus we have in the above carried out a portion of this verification. For the braided 

part of the structure, we are however using facts from Brown and Gilbert [6] . In any case, 

in this thesis we will not be studying the localisation theory for M(C). The extension of 

later theory to this 2-crossecl module would be a.n interesting topic for further study. 
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Chapter 2 

Special Double Groupoids and 
Crossed Modules 

2.1 Introduction 

In this chapter, we deal with double groupoicls especially special double groupoids. A dou­

ble groupoid is a groupoid object in the category of groupoids: that is, a double groupoid 

consists of a set 'D with two groupoid structures over H a.ncl V, which are themselves 

groupoids on the common set X , all subject to the compatibility condition that the struc­

ture maps of each structure on 'D are morphisms with respect to the other. Elements of 'D 

are pictured as squares 

•---- • 
h2 

in which v1 , v 2 E V are the source and target of w with respect to the horizontal structure 

on 'D, and h1 , h2 E H are the source and target with respect to the vertical structure. 

Double groupoids were introduced by Ehresmann in the early 1960's [22, 23], but pri­

marily as instances of double categories, and as a part of a general exploration of categories 

with structure. Since that time their main use has been in homotopy theory. Brown-Higgins 

[8] gave the earliest example of a "higher homotopy groupoid" by associating to a pointed 
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pair of spaces (X, A) a special double groupoid with special connection p(X, A). In such a 

double groupoid, the vertical and horizontal edge structures H and V coincide. In terms of 

this functor p, [SJ proved a Generalized Van Kampen Theorem , and deduced from it a Van 

Kampen Theorem for the second relative homotopy group 1r2(X, A), viewed as a crossed 

module over the fundamental group 1r1 (A). 

The main result of Brown-Spencer in [16] is that a special double groupoid with special 

connection whose double base is a singleton is entirely determined by a certain crossed 

module it contains; crossed modules had arisen much earlier in the work of J.H.C White­

head [49] on 2-climensional homotopy. This result is easily extended to give an equivalence 

between arbitrary special double groupoicls with special connection and crossed modules 

over groupoids; this is included in the result of [9]. This is the resul t we explain in the 

next section as it is essential for later work. 

Further, we introduce a definition of linear coadrnissible section for the special double 

groupoid 'D(C). We prove that the groups of linear coa.drnissible sections and free inver tible 

derivation maps are isomorphic. 

2.2 Double Groupoids 

In this section, we review the definition of double groupoicl [17]. 

A double groupoid 1) = (D, H, V, X) consists of four related groupoicls 

(V, X, ao, .Bo,., e) (H, X, 0:1, .81, ., J) 

as partially shown in the diagram 

n==::v 

! l ! ! 
H==:x 
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and satisfying 

(i) ai/3j = /3iai, O'.iO'.j = O'.jO'.i, /3i/3j = /3i/3i for i,j = 0, 1 

(ii) ao(la) = eao(a), /3o(la) = e,60(a) 

a1(0b) = fa 1(b), ,81(0b) = f.B1(b)· 

(iii) Oe,, = l r, for x EX, and this square is written 0, 

(iii) ai, /3i are morphisms of groupoids for i = 0, 1. 

(iv) (Interchange Law) 

• • • 

I V I v' I 
• • • 

I w I w' l 
• • • 

whenever v, v', w, w' ED and both sides are defined. 

The element of 1) are called squares and the elements of H and V respectively are 

called horizontal and vertical edges. The elements of X are called points. 

Condition (i) allows us to represent a square as having bounding edges pictured as 

while the edges are pictured as 

• aEH e ao(a) - .Bo(a) 

a1 ( b) • 

lbEV 
.61(a) • 
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It is convenient to represent the structures +o, +1 on V, respectively vertically and hori-

zontally, by composition of squares as follows; 

• • 

j V 

I h1 
• • 

j w j 
• 

h2 • 

and 
• • • 

I 
V Iv, v' jv, 

• • • 
where of course v +1 w is defined if and only if /31 v = a1 w, and v +o v' is defined if and only 

if f3ov = aov' . The inverse for +1 on 1) is written w r--+ - 1 w; the inverse for +o is written 

w i--+ -ow, So if w E 1J has faces given by 

those of - 1 w and - 0w are given by 

and 
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It is convenient to use matrix notation for composition of squares. Thus if v, w satisfy 

/3ov = aow, we write 

[ v w ] for v +o w 

and if /31 v = a 1 u, we write 

[ vu l for V +1 U 

More generally, we define a subdivision of a square w in 1) to be a rectangular array 

( Wij), 1 :::; i :::; m, 1 :::; j :::; n, of squares in 1) satisfying 

/3owi,j -1 = C\'oWij , 1 :::; i :::; m, 2 :::; j :::; m 

such that 

Definition 2.2.1 A morphism f: 1J = (D,H, V,X) - D' = (D',H', V',X') of double 

groupoids consists of four functions f4 : D - D', h : H - H', h : V - V', Ji : X - X' 

which preserve the structure. 

So we have a category DGrpd of double groupoicls. 

2.3 Brown-Spencer Theorem 

This section considers the relationship between crossed modules and double groupoids as 

given in [16]. 

The main result of Brown-Spencer in [16] is that a special double groupoid with special 

connection whose double base is a singleton is entirely determined by a certain crossed 

module of groups. This result is easily extended to give an equivalence between arbitrary 
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special double groupoids with specia.l connection and crossed modules over groupoids; this 

is included in the result of [9] . 

We here give this extended result as in [11] and [1:3]. The method which is used here 

can be found in [16]. 

Let 1) = (D, H, V, X) be a double groupoid. We show that 1) determines two crossed 

modules over groupoids. 

Let x E X and let 

H ( x) = { a E H : ao (a) = f3o (a) = :i:}. 

We define V(:i:) similarly. vVe put 

and 

so that IT(D, H, :i:) and IT(D, V, x) consist of squares with bounding edges given by 

• ---➔• 

fx 

and 

•-----,--➔• 

fx 

for some a E H and b E V. IT( D, H, x) and IT( D, V, x ) have group structures induced from 

+o, and +1 . Then IT(D, H) = {IT (D, H, x) : x E X} and IT(D, V) = {IT(D , V, x) : x E X} 

are totally i~transitive groupoids over X. 
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Clearly maps 

c : IT(D, H) --t H 

and 

fJ: IT(D, V) --t V 

defined by c(w) = a 1 (w) and fJ(v) = a0 (v) , respectively, are homomorphisms of groupoids. 

Proposition 2 .3 .1 Let V = (D, H, V, X) be a double groiLpoid then 

,(D) = (IT(D,H),H,t:) 

,'(D) = (IT(D, V), V, o) 

may be given the struct1tre of crossed modules. 

Proof: We define an action of H on Il (D, H) as follows. Let b E H(x, y) and w E 

IT(D, H, x) and put 

as in the diagram. 

It easy to see that this gives an action of Hon Il(D, H). Clearly 

- b + a1(w) + b. 

Supposev E IT(D,H,x) anclc(v) = b. Then ti and - 0v+0 w+0 v havecommonsubdivision 

l ~~ ; ~ l 
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and so wb = - v +ow +o v. 

We have shown that, ,(D) is a crossed module. A similar proof holds for , '(D). □ 

Clearly I is a functor from the category of double groupoicls to the category of crossed 

modules. 

A special double groupoid is a double groupoicl T> but with the extra condition that 

the horizontal and vertical groupoid structures Hand 11, on edges, coincide. These double 

groupoids will, from now on, be our sole concern, and for these it is convenient to denote 

the sets of points, edges and squares by X , G, D. The identities in G will be written l x 

or simply 1. The source a.nd target maps G --t X will be written a, f3. 

By a morphism f : T> --t T>' of special double groupoicls is meant functions f : D --t D', 

f: G --t G', J: X --t X ' which commute with all three groupoid structures. 

Definition 2.3 .2 Let T> be a special double groupoid. A special connection for T> is a 

function i : G --t D such that if a E G then i(a) ha.s boundaries given by the following 

diagram 

·---~• 
1 

Further, if b E G and a+ b is defined and 

then the law ( *) is called transport law of the special connection i. This can be expressed 
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as: Y(a + b) is given by the diagram 

a b • • • 

l· T(a) 11 l b [1 
b • • • 

lb 

1 

lb T(b) l 1 Qb 

•---•--- · 1 1 

and 

(Y(a) +o lb) +1 (Ob +o Y(b)) = (Y(a) +1 Ob) +o (l& +1 Y(b)), by interchange law 

= (Y(a) +1 Ob) +o Y(b), 

= Y(a + b). 

By transport law (*) we have for x E X (remembering that lo., = Oo., is abbreviated to 

so that Y( Ox) = 0 . Then applying transport to Y(-a +a) we may obtain various identites 

relating Y(-a) and Y(at 1 for example Y( -a) : 

- a 
• • 

ll 1(-+ 
• • 1 

and Y(a) - 1 : 

1 • • 

[-a T(a)+ 
• • a 
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A morphism f : 'D ---t 'D' of special double groupoid with special connections i, i' is said 

to preserve the connections if hi' = i f 1 . 

The category DGrpd! has objects the pairs ('D, i) of a. special double groupoid 'D with 

special connection, and arrows the morphisms of special double groupoids preserving the 

connection. If ('D, i) is a.n object of DGrpd! , then vve have a crossed module ,fD) by 

Proposition 2.3.1. Clearly , extends to a functor from DGrpd! to CrsM od, the category 

of crossed modules. The ma.in result on double groupoids is: 

Theorem 2.3.3 The functor 1 : DGrpd! ---t CrsM od is an equivalence of categories {16}. 

Proof: Now, we will show how special double groupoids a.rise from crossed modules 

over groupoids. 

Let C = (C,G,8) be a crossed module over groupoids with base set X. We define a 

special double groupoicl 1J(C) a.s follows. First, H = V = G with its groupoid structure, 

base set X. The set 1J(C) of squares is to consist of quintuples 

•--a- +~ 

such that w 1 E C, a, b, c, d E G and 

The source and target maps on w yield cl and a, respectively, and vertical composition is 
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For the horizontal structure, the source and target maps on w yield b and c, and the 

composition is 

It is straightforward to check that these operations are well-defined, i.e., that with the 

above data 

o(w~ + w/) = -a' - b' - b + d + C + c' 

for which condition (i) of crossed module is needed. It is also easy to check that each of 

these operations defines a groupoid structure on 'D(C) with object maps, 

a - Oa = ( 1 : a ~ a) , 

a - la = ( 1 : 1 : 1) 

for +o and +1, respectively. The verification of the interchange law requires condition (ii) 

for a crossed module, as follows. 

( w +1 u) +o ( v +1 z) = ( w +o v) +1 ( u +o z) 
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whenever v, u, w, z E 'D(C) and both sides are defined. 

and 

( tt1 + w/ : b + b' ::, c + c') +o ( z1 + v/ : c + c' 

( 

c' k I I cl + e . ) ( 1l1 + W1 ) + Z1 + V1 : b + b ] + { 
a' + I.· 

So we have to prove that 

( 1) 

This is equivalent to 

But 8z1 = - k - c' + i + l a.nd soi+ l = c' + k + 8z1 . Let x = wj+k. Then 

,. + tV (c1
+k)Sz1 _ tV (c'+k) + ,. ~1 1 - 1 ~1 · (2) 

Put x = w/+k, (2) is equivalent to 

Z + X Sz1 _ X +,. 
1 · - · ~1 

which is equivalent to 

This proves that the two operations +o and +1 satisfy the interchange law. 

The special connection T : G---+ 'D(C) for 'D(C) is given by 
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Recall that by a transport law we mean that if a, b E G and a + b is defined, then 

So the verification of the transport law is trivial. 

This completes the description of 7J( C) and it is clear that D extends to a functor 

D : CrsM od -+ DGrpd!. It is immediate that ,D : CrsM od -+ CrsM ocl is naturally 

equivalent to the identity. We now prove that D, is naturally equivalent to the identity. 

Let (7J, Y) be an object of DGrpd!. Let E = D,(D) . Then Eo = D0 , E1 = D1 . We 

define ¢ : E -+ D to be the identity on E0 and E1 and on E2 by 

¢ (w1 : b 1 c) = i(b) +o l a +o W1 - o i(c) 

(for 8(wi) = -a - b +cl+ c) as shown in the diagram 

• ---~•---~ • ---➔• -----➔• 

1 a 1 1 

which clearly has the correct bounding edges. Clearly¢ is a bijection E 2 -+ D2 , so to prove 

¢ is an isomorphism it suffices to prove that ¢ preserves +o, + 1 and connections. 

For + o we have, by definition of wi and using the above notation (II): 

i(b) +o l a+i + w/ + V1 -o i(j) 

i(b) +o l a +o li -o li +o tv1 +o 1, +o V1 - i(j) 

i(b) +o la +o W1 - o i(c) +o i(c) + o li +o V 1 - i(j) 

¢ ( W1 : b ~ C) +o qJ ( V 1 : C : j) 
For +1 we have using the notation of equation ( I) 

¢(wi'+w/: b+b' :, c+c') = i(b+b')+ola,+o(w/+w/)-_oi(c+c') (III) 
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while on the other hand 

The equality of (I I I) and (VI) follows from the fact that by the transport law the right 

hand sides of both (I I I) and (VI) have the common subdvision 

[ 
i(b) lb' -lb' la w le, 
ob' 'T(b') -lb' la O l e' 

Finally ¢ preserves the connection since 

¢ ( 0: a : 1) = i(a) +oh +o - i(l) = i(a). 

Since the naturality of ¢ in the category DGrpcl! is clear, we have now proved that 

¢ is a natural equivalence from D, to the identity functor. This completes the proof of 

Theorem. D 

2.4 Linear coadmissible sections 

In this section, we introduce the definition of linear coadmissible section for the special 

double groupoid V(C) corresponding to a crossed module C, and we prove that the group 

of all linear coadmissible sections and the group of coadmissible hornotopies (invertible free 

derivations) are isomorphic. 

In V(C), given w = ( w1 : b ~ c), we need only specify w1 and three of a, b, c and d, 

as this determines the last side as well so for example we may write w = ( w1 : b a c ) , 

for such aw, where d = b +a+ 8( w1 ) - c and still specify the element w precisely. We use 

this shorthand convention below. 

Definition 2.4.1 Let C = ( C, G, 8) be a crossed module and let V(C) be the corresponding 

double groupoid. A linear coadmissible section cr = (cr0 ,cr1 ) : 0 - V(C) of V(C) 
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written also 

is a pair of maps 

such that 

(i) if x EX, /3o-0(x) = 1:, and if a E G', then /3o-1(a) = f3a. 

(ii) if a, b, a+ b E G, then 

o-(a + b) = O'(a) +o o-(b) 

(iii) oo-0 : X--+ X is a. bijection, oo- : G' --t G' is a.n automorphism. 

A linear coadmissible section can be given by the following diagram 

o-o-( a) 
•---- • 

[a,(x) a(a) [a,(y) 

Proposition 2.4.2 Let I''D(C) denotes the set of all linear coadmissible sections. Then a 

group structure on I''D( C) is defined by the multiplicat-ion 

( ) ( ) _ { (a-* r)o(x) = (o-oaro(x)) + ro(x), z = x E )(, t: = 0 
a- * 

7 
( z - ( a- * r) (a) = ( a-ar (a) ) + 1 r (a) , z = a E G' ( x , y) t: = l 

for o-, r E f'D(C) 

Proof: We show that (a-* r) is a linear map. i.e., 

( a- * T) ( a + b) = ( a- * r) (a) +o ( a- * r) ( b). 
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In fact, 

o-(cn(a + b)) + 1 T(a + b), by definition * 

= o-(aT(a) +o aT(b)) + 1 (T(a) +o T(b)), by linearity of a, T 

- (o-aT(a) +o o-aT(b)) + 1 (r(a) +o r(b)) , by linearity of a-

- ((o-ar)(a) + 1 T(a) +o (aar(b)) + 1 T(b)), by interchange law 

( a- * T) (a) +o ( a- * T) ( b) 

An inverse element a-1 of a is defined a.s follows, for a E G, :r E X, 

vVe have to show that 0--
1 is linear. Let a, b, a+ b E G. It follows that 

Hence 0--
1 E f'D(C). D 

-a(aa-r1(a) -o a(aa-r1 (b)) 

o--1(a) +o o--1(b)) 

Proposition 2.4.3 Let C = (C, G, 8) be a crossed module over a groupoid and lets be an 

invertible free derivation with .6.(s) = f. If we write 

ao(x) = so(x) 

( 
f1(a) ) 

o-(a) = s1(a) : so(x) a so(Y) ' 

then a- = (o-0,o-1) is a linear coadmissible section ofV(C). 
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Proof: The condition (i) and (iii) are clear from the definition of invertible free derivat ion. 

For the linearity condition (ii ), let a E G(x, y), b E G(y ,z). Then 

o-(a+b) = 

o-(a) +o o-(a) . 

D 

Conversely, if o- = (o-0 , o-1 ) is a linear coadmissible section of 'D(C) ck,fined by 

o-o( :r) = so( :r) 

( 
!1 (a) ) 

o-(a) = s1(a): so(x) a so(y) . 

then (so, s 1 ) is a coadmissible homotopy for the crossed module C. 

Corollary 2.4.4 The groups of linear coadmissible sections and free invertible derivation 

maps are isomorphic, i.e., 

F Der*(C) ~ I''D(C) . 

Proof: Let a be a linear coa.dmissible sect ion. We define a map p(o-) = (o-0 , o-1 ) . 'Ne have 

to show that (o-0 , o-1 ) E F Der*(C), i.e., (o-0 , o-1 ) is an invertible free derivation (coadmissible 

homotopy). 

Let a E G ( x, y), we write 
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by Definition 2.4.3. Then 

00"1(a) = -a - O"o(x) + cw(a) + O"o(y) 

and 

aO"(a) = O"o(a) +a+ 00"1(a) - O"o(y) 

is an automorphism of G. Hence (O"o,0"1) E FDer*(C) by Propositionl.3.5. 

Also we have to show that 0"1 is a derivation map, i.e., 

for a E G(x, y), b E G(y, z). In fact, since O"(a + b) = O"(a) +o <7(b), we have 

and also we have 

Hence 

Moreover pis a group homomorphism, since 

Conversely, let ( s0 , s1 ) be an invertible free derivation ( coadmissible homotopy) for a crossed 

module C = (C,G,8) such that .6.(s) = f. We also define a map 

( 
fi(a) ) 

w(so ,s1)(a) = s(a) = s1(a) : s0 (x) a s0 (y) : 
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for a E G(x.y). Clearly s(a) E 'D(C). 

Moreover s is a linear map,i.e., 

s(a + b) = s(a) +o s(b) 

as in Proposition 2.4.2. Hence s E f'D(C). Also we have to show that w is a group 

homomorphism. 

So 

for (s0 ,s1 ) E FDer*(C) and 

for a E f'D(C), i.e., 

□ 

w(so * to, s1 * t1)(a) , 

(s * t)(a), by definition of w 

sat(a) +1 t(a), by defini tion of * 

w(so,s1)(at(a)) +1 w(to, l1)(a), 

(u.-•(so, s1) * w(to, t1))(a). 

F Der*(C) ~ f'D(C). 
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Chapter 3 

V-Locally Lie Double Groupoids 

3.1 Introduction 

In generalising holonomy to dimension 2, we ha.ve to show how the formal definitions and 

results correspond to some intui tion. What we find is that the search for a formulation of 

a definition which works mathematically also clarifies the intuition. 

Note that for the I-dimensional case of groupoids, Pradines stated a. differential version 

involving germs of locally Lie groupoids in [4-:3], and formula.tee\ this in terms of adjoint 

functors. A version for locally topological groupoids was given in Aof-Brown [l] and the 

modifications for the differential case were given in Brown-Mucuk [14-]. Our general aim is 

to consider analogous methods for the case of crossed modules and double groupoids. 

The steps that are required are as follows: 

(i) We need to formulate the notion of a locally Lie structure on a double groupoid 

'D(C) that is corresponding to a crossed module C = (C,G,8) with base space X . For this 

reason, here ( G, X) is supposed to be a Lie groupoid and that there is a. smooth manifold 

structure on a set VV such that X ~HI~ C. Then ('D(C) , Hi e) ca.n given as a locally Lie 

groupoid over G, where 

we= {w = ( w1 : b ! c): /3(b) = o:(a),/3(a) = (3(c) = (3(w1), d = b+a+8(w1)-c,w1 E W} 

is a subset of 'D(C) and a, b, c E G. 
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(ii) Next, we are replacing local coaclmissible sections of a groupoid by local linear 

coadmissible sections of a special double groupoid. We define a product on the set of all 

local linear coadmissible sections. This easily leads to a 2-dimensional version of r( G) to 

r('D(C)), again an inverse semigroup. 

(iii) Now we form germs of [s)a, where a E G, s E r('D(C)). We find this gives a 

groupoid J('D(C)) over G. 

(iv) A key matter for decison is that of the final map 'I/; and its values on [s]a- This is 

related to the question of deciding the meaning of the generalisation to dimension 2 of the 

term " enough local linear coaclmissible sections ". 

Recall that, in the groupoicl case, we ask that for any a E G' there is a local linear 

coadmissible section s such that f3a E D(s) and s/3a = a. Under certain conditions, we 

require s to be smooth and such that as is a diffeomorphism of open sets. The intuit ion 

here is that a E G can be regarded as a deformation of /3a, and s gives a "thickening" of 

this deformation. 

In dimension 2, we therefore suppose given a E G'(x,y) and b E G(z,x), c E G(w,y) 

and 101 E C(y ). 
b + a + 8 ( wi) - c . . .......... • 

Then a local coadmissible section will be "through w = ( w1 : b a c) " if s0 x = b, s0y = c 

and s1a = w1 . Our "final map" 'I/; will be a morphism from J('D(C)) to a groupoid. This 

groupoid 'D(C) will be one of the groupoid structures of the double groupoicl associated to 

the crossed module C = (C,G,8). We write 

( 
f1(a) ) 

'1/;( [s)a) = s(a) = s1(a): so(x ) a so(y) , 
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so that the value of 'lj.J on [s]a does use all the information given bys = ( s0 , s 1 ) at the arrow 

a E G. This explains why our theory develops crossed module and double groupoids in 

parallel. 

3.2 Local Coadmissible Homotopies 

In this section, our aim is to localise the concept of the coa.dmissible homotopy given in 

Chapter 1. Note tha.t for the 1-dimensional case, the concept of local coa.clmissible section 

is due to Ehresmann [21] and modified by l\fackenzie [37] . 

In order to cover both the topological and differentiable cases, we use the term er 
manifold for r ~ -1, where the case r = -1 deals with the case of topological spaces 

a.nd continuous ma.ps, with no local assumptions, while the case 1· ~ 0 dea.ls as usual 

with er manifolds and er maps. Of course, a C0 ma.pis just a. continouous map. 'vVe then 

abbreviate er to smooth. The terms Lie group or Lie gronpoid\\'ill then involve smoothness 

in this extended sense. By a local diffeomorphism f : l\1 -t N on er manifolds M, N we 

mean an injective partial funct ion with open domain and range a.nd such that f and 1-1 

are smooth. 

One of the key differences between the cases r = -1 or O and r ~ 1 is that for 

r ~ 1, the pullback of er maps need not be a smooth submanifold of the product, and 

so differentiability of maps on the pullback cannot always be defined. \Ve therefore adopt 

the following definit ion of Lie groupoid. Mackenzie [37] discusses the utility of various 

definitions of differential groupoid. 

A Lie groupoid is a topological groupoid G such that 

(i) the space of arrows is a smooth manifold , and the space of objects is a smooth 

submanifold of G, 

(ii) the source and target maps o:, /3 are smooth maps and are submersions. 

(iii) the domain G n.e G of the difference map is a smooth submanifold of G x G, and 
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(iv) the difference map d is a smooth map. 

Recall that coadmissible homotopies were defined in Chapter 1. Here we define the 

local version. 

Definition 3.2.1 Let C = (C, G, o) be a crossed module such that (G, X) is a Lie groupoid. 

A local coadmissible homotopy s = (s0 , s1) on U0 , U1 consists of two partial maps 

so : X -> G s1 : G -> C 

with open domains U0 ~ X, U1 ~ G, say, such tha.t cr(U1 ), /3(Ui) ~ Uo and 

(i). If x E U0 , then /3s0 (x) = x. 

(ii). If a, b, a+ b E U1 , then 

we say s1 is a local derivation. 

(iii) If a E U1 /3s1(a) = /3(a), 

(iv) if Jo, f 1 are defined by 

fo(x)=aso(x), xEUo, 

f1(a) = soa(a) +a+ 8s1(a) - sof3(a), a E U1. 

then Jo, f 1 are local diffeomorphisms and Ji - l, Ji are linear. 

A local coadmissible homotopy s defined as above will be denoted by s : f '.:::'. I and, we 

will write U0 = D(so), U1 = D(s1) and called them jointly the domains of s, this can be 

illustrated by the following diagram. 
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Suppose given open subsets V0 ~ X and ½ ~ G such that o{v'i.),,8(½) ~ V0 . Let 

t : (¼, ½) ~ (C, G) be a local coadmissible homotopy on V0 , V1 with t : g '.::::'. I. Let 

s : f '.::::'. I be as above. Let D(s *t)o = Vo ng0 - 1(U0) and D(s * t)i = ½ ng1 - 1(U1) n,B-1(¼). 

Now we can define a multiplication of s and t in the following way 

(s * t)o(x) = sogo(x) + to(x), x E D(s * t)o 

Lemma 3.2.2 The product function s * t is a local coadmissible homotopy. 

Proof: 

We will prove that the domain of s *tis open. In facL, if a E Vi , g1 (a) E U1, ,B(a) E V0 , 

then a E ½ n g1- 1(U1) n ,0-1(Va) is an open set in G and also if :1: E Va and go(x) E U0 

then x E Vo n g01 
( Uo) is open in X, so the domain of ( .s * t) is open. One can show that 

,B(s * t)o(x) = ,6(x), for x E D(s * i}0 

,B(s * t)i(a) = ,6(a), for a E D(s * i)i 

and (s * t)i is a derivation map as in Proposition 1.3.3. i.e. , 

(s * t)i(a + b) = (s * t)i(al + (s * t)i(b) 

for a,b,a+ b E D(s *t)i. We define maps h0 ,h1 as follows: 

ho(x) = fogo(x) = a(s * t)o(x) for x E D(s * t)0 

h1(a) = f1g1(a) = (s * t)o(aa) +a+ 8(s * t)i(a) - (s * t}0(,Ba), for a E D(s * t)i. 

Since ho, h1 are compositions of local diffeomorphisms, they are local diffeomorphisms. 

D 
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Proposition 3.2.3 Let .llh(C) denotes the set of all local coadmissible homotopies of a 

crossed module C = ( C, G, ,5) such that ( G, X) is a Lie grottpoid. For each s, t E ML(C), 

s * t E ML(C) and for each s E ML(C), lets : f '.::::'. I and let 

(3.1) 

Then s-1 E ML(C), and with this product and inverse element the set ML(C) of local 

coadmissible homotopies becomes an inverse semigroup. 

Proof: The proof is very similar to that for the groupoicl case given in the Appendix. D 

3.3 Local linear coadmissible sections 

Recall that linear coaclmissible sections were defined in the previous chapter. Here we 

define the local version. 

Definition 3.3.1 Let C = (C,G,,5) be a crossed module of groupoids with (G,X) a Lie 

groupoid, and let 'D(C) be the corresponding special double groupoid. 

A local linear coadmissible section a= (a0 , ai): G-> 'D(C) , written 

consists of two partial maps 

ao : X -> G a1 : G -> C 

with open domains U0 ~ X , U1 ~ G, say, such that a(U1 ), /3(U1) ~ Uo and 

(i). If x E U0 , then f3a0 (x) = x, and if a E U1, then /3a1(a) = f3a. 

(ii). If a, b, a+ b E U1 , then 

a(a + b) = a(a) +o a(b) 

72 



we say O' is local linear, 

(iv) if fo, Ji are defined by 

fo(x) = aO'o(x), x E Uo, 

f1(a) = aO'(a), a E U1. 

Then Jo, f 1 are local diffeomorphisms and Ji, f 1 -l are linear. 

A local linear coadmissible section can be illustrated by the following diagram. 

Given open subsets Vo~ X and Vi~ G such that a(Vi),,B(V1 ) ~ V0 , let T be a local 

linear section with domain Vo and 1/i. Let O' be as above and let D(O'*T)o = V0n(ar0 t 1 (U0 ) , 

D(O' * 7)1 = a E Vin (cnt1 (U1 ) n ,3- 1 (V0 ). Now we can define a multiplication of O' and 

T in the following way 

(O' * T)(a) = O'(aT)(a) + r(a), a E D(O' * T) 

(O' * r)o(x) = O'o(aTo)(x) + To(x), x E D(O'·* T)o 

Lemma 3.3.2 The proditci function O' * T is a local linear coadmissible section. 

Proof: The key point is to prove that the domain of O' * T is open. In fact, if a E V1 , 

aT(a) E U1 , ,B(a) E V0 , then a E Vin (aT) - 1 (Ui) n ,3-1(¼) is an open set in G and also if 

x E ¼ and ar0(x) E U0 then x E Von (aTot1(U0 ) is open in X, so domain of (O' * T) is 

open. 

The remaining part is easily done as follows. 
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vVe show that (a-* r) is a linear map as in Proposition 2.4.2. i.e., 

for a, b, a+ b E D(o- * r). Also we have to show that if x E D(o- * r)0 

In fact, 

and if a E D(o- * r), then 

D 

f3(o- * r)o(x) = f3(x). 

,B( o-oaro( 1:) + ro( :i.·) ) 

f3ro( x) 

X 

(3(0-ar(a) +1 r(a)) 

,Br( a) 

a 

Proposition 3.3.3 Suppose C is a crossed module (C,G,8) such that (G,X) is a Lie 

groupoid. Let r L('D( C)) denote the set of all local linear coaclmi.ssible sections of 'D( C). For 

each o-, r Er L('D(C)), a-* r E fi('D(C)) and for each a- E fi('D(C) ), let 

o-_1 (z) = { o--1 (a) = -o-(aa-t1 (a), z = a E U1 

o-o-1 (x) = -o-o(cro-o)-1 (x)), z = x E Uo (3.2) 

Then with thi.s product and inverse operation, the set r i ('D(C)) of local linear coadmissible 

sections becomes an inverse semigro1tp. 
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Proof: Inverse of CJ is a linear coadmissible section, because it is a composition of the 

linear map a and ( cw t 1 . □ 

Proposition 3.3.4 Let ( s0 , s1 ) be a local coadmissible homotopy for a crossed module C = 

(C,G,8) and let V(C) be the corresponding doitble groupoid. A partial maps is defined by 

s = (so, s1) : G-+ V(C) 

/ ( .f1 ( (l) ) 
s (a)= (so,s1)(a) = s1(a): so(x) a s0(y) · 

Then ( s0 , s) J shortly s' is a local linear coadmissible section. 

Proof: It is easy to see from the definitions of local coaclm issible sections, local coaclmis­

sible homotopies and Proposition 2.4.3 □ 

Corollary 3.3.5 The inverse semigroups of local coadmissible homotopies and local linear 

sections are isomorphic. 

Proof: Proof as in Corollary 2.4.4 □ 

Throughout the next two chapters, we will deal with the linear coadmissible sections 

rather than coadmissible homotopies. 

3.4 V-locally Lie Double Groupoid 

Let C = (C, G, 8) be a crossed module such that (G, X) is a Lie groupoid. Let V(C) be 

the corresponding double groupoid. Let I'(V( C)) be the set of all local linear coadmissible 

sections and let l1V be a subset of C such that l,V has the structure of a manifold and 

/3 : W -+ X is a smooth surmersion. 
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Let 

where a, b, c E G. Here the set lV0 can be considered as a repeated pullback, i.e. , if 

G3 = {(b,a,c): a(a) = /3(b),/3(a) = /J(c)} 

is a pullback, then 
i,vc-a3 
l !P~2 

l,lf ~ X 

is a pullback, so vV0 has a manifold structure on it, because /3 and /31r1 are smooth and 

surmers10ns. 

We can represent an element w E l1V 0 by the following diagram: 

Clearly l,VG ~ vV X G X G X G and w0 ~ 'D(C). 

A local linear coadmissible section (s0 ,(s0 ,s1 ) ) as given in Proposition 3.3.4, ors' for 

short is said to be W -smooth if Im(s1) ~ Wand s0 , s 1 are smooth. Let r r(W0 ) be the 

set of local linear vl/-smooth coadmissible sections. We say that the triple ( a , /3, lV0) has 

enough smooth local linear coadmissible sections if for each w = ( w1 : b ! c) E 

vV0
, there is a local linear smooth coadmissible section s : f ~ I with domains ( U0 , U1 ) 

such that 

(i). s/J(w) = w, a(w) = f1(a) ; s1/J(w) = w1 = s1(a), s0 /3(a) = c, s0 a(a) = b. 

(ii). the values of s lie in w0 

(iii) . sis smooth as a pair of function U0 = D(so) - G and U1 = D(s1 ) - vV0 . 
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We call such ans a local linear smooth coadmissible section through w. 

Definition 3.4.1 Let C = (C, G, o) be a crossed module over a groupoid with base space 

X and let 'D(C) be the corresponding double groupoid. AV-locally Lie double groupoid 

structure ('D(C), vV0 ) on 'D(C) consists of a smooth structure on G,X making (G,X) a 

Lie groupoid and a smooth manifold l1V, vV ~ C such that if 

as in *, then 

S1)- W 0 = - 1 vV0
. 

S2)- G ~ vv0 ~ 'D(C), 

S3 ). the set (vV0 n.a lV0 )n d-1(H1°) = Hide is open in (lV0 n13 1110 ) and the restriction 

to lVdG of the difference map 

d : 'D(C) n13 'D(C) -t 'D(C) 

(w,v) 1--7 w-1 v, 

is smooth. 

S4 ). the restriction to lV0 of the source and targ~t maps a and /3 are smooth and the 

triple ( a, f3, lV0 ) has enough local linear smooth coaclmissible sections, 

S5 ). vV0 generates 'D(C) as a groupoid with respect to +1 . 

Also one can define locally Lie crossed module structure on a crossed module by con­

sidering the above Definition 3.4.1. 

Let C = ( C, G, o) be a crossed module over a groupoid with base space X. A locally 

Lie crossed module structure ( C, vV, o) on C consists of a Lie groupoid structure ( G, X) 

and a subset W of C with a smooth structure on lV such that W is G-equivariant and 

C1 ) (C, W) is a locally Lie groupoid, 
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C3 ) the restriction to W of the map 8 : C --+ G is smooth, 

C4 ) the set WA = A-1 (W) n CW n13 G) is open in l✓v n13 G and the restriction to 

Aw : WA --+ W of the action A : C ni3 G --+ C is smooth. 

Cs) Let 

vV = {(w; b, a, c): w E lV, a, b, c E G, (3(a) = (3(w), a(a) = (3(b), f3(c) = f3(a)}. 

We say that W has enough local smooth coadrnissible homotopies if for all (w; b, a, c) E 

lV there exists a local smooth coadmissible homotopy ( s0 , s1 ) such that s1 (a) = w, s0 (3( a) = 

c, s0 a(a) = b. 

Let us compare the above two definitions. 

First of all, in the definition of locally Lie crossed module, conditions C3 and C4 gives 

rise to the difference map 

d : 7J(C) n13 1J(C) --+ 1J(C) 

which is smooth. In fact, 

C3 , C4 for locally Lie crossed module, because the formulae for d involves + and the action 

Aw. 

The condition C1 ) that ( C, l,V) is a locally Lie groupoid, which includes Hf generates C. 

The other equivalent condition can be stated as follows: We first prove that if W generates 

C and is G-~quivariant, then i,vc generates 1J( C) with respect to +1 . 
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Let w = (, : b ! c) E 'D(C). We prove by induction that if, can be expressed as a 

word of length n in conjugates of elements of W then w can be expressed as 

where wi = ( ,; : b; :: c;) E lVG, for i = 1, ... ,n, and 1; E iv. 

This is certainly true for n = 1, since w E wa if and only if, E W. 

d • • 

(, w' le - e 
h • ·r (1 w" 

• 0 (l 

,' 
Suppose 1 = 1

1 + (e where , ' can be expressed as a word of length n in conjugates of 

elements of iv and ( E iv. 

Let h = a+{;~/ - e, and let w" = (~/: 1 ~ e) . Then w" E 'D(C) and so w" can be 

expressed as a word of length n in elements of lVG, by the inductive assumption. 

Let w' = (( : b ~ c - e). Then w' E 'D(C), since 

b( - b( - ,' + ~r)-e 

-b(,'t e + o(,te 

e - {;,' - e + e + {;, - e 

e - (-a+ h + e) - a - b + d + c - c 

e-e - h+a - a-b+d+c-e 

-h-b+d+c-e 
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and ( E W . Clearly w = w' +1 w", and so w can be expressed as a word of length n + l in 

conjugates of elements of vV0 . 

Conversely, suppose we generates 'D(C) with respect to +1 . 

Let I E C and let w = ( 1 : 1 ~ 1) . Then w E 'D(C). Since w0 generates 'D(C), we 

can write 

where wi = Ci), 'Yi E HI, for i = l , · · ·,n and wi E vVe. Then 

\Ve get 

So vV generates C. 

In the definition of V-locally Lie double groupoid, condition S4 transfers as follows: 

Let ( a, /3, W 0 ) have enough local linear smooth coadmissible sections. Then for each 

w = ( 1 : b a c) E vV0 there exists a local linear smooth coadmissible section s such that 

sf3(w) = w,. i. e., there exits (s0 ,s1 ) that is a local coadmissible homotopy for the crossed 

module C = (C,G,5). So for (w;b,a,c) defined as above, there exists a local smooth 

coadmissible homotopy s = ( s0 , si) such that s1 (a) = w , s0 ci:a = b, s0 /3a = c. 

Lemma 3.4.2 Suppose s , t E I'(vV0
) , a E G and s( a) = t( a). Then there is a pair of 

neighbourhoods (Uo, U1 ), where U0 is a neighbo1trhood both of a(a) and /3(a) and U1 is a 

neighbourhood of a such that the restriction of s * t-1 to (U0 , U1 ) lies in r(We). 

Proof: Since s and tare smooth and s(a) = t(a), then (s(a), t(a)) E 1,ve n,a vve. This 

gives rise to maps 

(so, to): D(so) n D(to) - G n,a G and (s, t): D(s1 ) n D(ti) - we n,a we 
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which are smooth. But by condition (S3) of Definition 3.4.1, cw0 n,a 1v 0
) n d-1 (1,Ve) 

is open in we n,a we and ( G, X) is a (globally) Lie groupoid. Hence there exist open 

neighbourhoods U1 of a in G, U0 of a(a), /3(a) in X such that (s, t)(U1 ) s;;; ("W0 n,a vVe) n 

d-1 (W0
) and (so, t0 )(U0 ) s;;; (G n,a G) n d-1(G). Hence d(s, t)(U1) is contained in we and 

d(so, to)(Uo) is contained in G. This gives (s * t-1 )(U1 ) s;;; l,Ve and (s * t - 1 )o(Uo) s;;; G. So 

s * r 1 E r(w0 ). □ 

3.5 Germs 

Lets, t be two local linear smooth coadmissible sections with domains, respectively, ( U0 , U1 ) 

and ( U~, U{) and let a E U1 n U{. We will define an equivalence relation as follows: set 

s ~a t if and only if U1 n U{ contains an open neighbourhood 11i of a such that 

and a(½),/3(V1) s;;; Vo. 

Let l a('D(C)) be the set of a.11 equivalence classes of ~a and let 

J(V(C)) = U{Ja('D(C)): a E G}. 

Each element of l a('D(C)) is called a germ at a and is denoted by [s]a for s E f('D(C)), 

and J ('D(C)) is called the sheaf of germs of local linear smooth coadmissible sections of the 

double groupoid 'D(C). 

Proposition 3.5.1 Let J(V(C)) denote the set of all germs of local linear smooth coadmis­

sible sections of the double groupoid V(C). Then J(V(C)) has a natural groupoid structure 

over G. 

Proof: Let s, t E f ('D(C)) and s : f c::: I , t : g c::: I. The source and target maps are 

a([s]a) = fi(a) 
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,B([s]a) = a 

and the object map is a t---t [c]a, the multiplication * is 

and inversion map is 

D 

Remark: One can give a sheaf topology on J('D(C)) defined by taking as basis the sets 

{[s]a: a E Ui} for s E f('D(C)), U1 open in G. With this topology J('D(C)) is a topological 

groupoid. ·v,.re do not use the sheaf topology since this will not give 1¥ 0 embeclclecl as an 

open set. 

Suppose now that ('D(C), H10) is a V-locally Lie double groupoid. Let P(Hl 0 ) be the 

subset of fL('D(C)) consists of local linear coaclmissible sections with values in Hf G and 

which a.re smooth. Let P('D(C), iv0 ) be the sub inverse semigroup of fL('D(C)) generated 

by rr(lV0 ). Then P('D(C), vV0 ) is again an inverse semigroup. Ifs E rr('D(C), lV0 ), then 

there are si E rr(ltV0 ), i = 1, • • •, n such that 

So let F('D(C)) be the subsheaf of J('D(C)) of germs of elements of P('D(C), vV0 ). Then 

F('D(C)) is generated as a subgroupoid of J('D(C)) by the sheaf F(vV0
) of germs of 

element of rr(vV0 ). Thus an elements of F('D(C)) is of the form 

Let 1/;: J(D(C))--+ D(C) be the final map defined by 

( 
f1(a) ) 

1/;([s]a) = s(a) = s1(a): so(x) a so(Y) , 
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where s is a local linear coadmissible section. Then '1/; is a groupoid morphism. In fact, let 

s: f ~ I , t : g ~ I , then 

Then 

7J,( [s * t]a) 

(s*t)(a) 

- sat(a) +1 t(a) 

s(g1(a)) +1 t(a) 

1,b[s]91 (a) +1 '1/; [t ]a-

'1/;(J"D(C)) = D(C), 

from the axiom S4 of a V-locally Lie double groupoicl on 'D(C) in Definition 3.4.1. 

Let 10 = F(H! G) n J{ er '1/;, where as usual 

J{ er '1/; = {[s]a : '1/;[s]a = l a} 

We will prove that 10 is a normal subgroupoicl of F('D(C)). 

Lemma 3.5.2 The set 10 = F(T,,VG) n I{ er ~' is a wide subgr01ipoicl of the groupoid 

F(D(C)). 

Proof: Let a E G. Recall that c : I ~ I is the constant li nea.1: sect ion. Then [c]a is the 

identity at a for F(D)(C) and [c]a E lo. So lo is wide in F(D(C)). 

Let [s]a, [t]a E lo(a, a), wheres and ta.re local linear smooth coa.clmissible sections with 

a E D(s1 ) n D(ti) and a(a),,B(a) E D(so) n D(to). 

Since 10 = F(HfG) n J{ er '1/;, then we have that 

i) [s]a, [t]a E F(T1V0 ) and so we may assume that the images of s and t are both con­

tained in w0 ands, t are smooth by definition of germs of local linear smooth coa.dmissible 

sections. 
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ii) [s]a, [t]a E J( er 1/; and this implies that 1/;([s]a) = 1/;([t]a) = la E 'D(C) which gives 

s( a) = t( a) = la by definition of the final map. 

Therefore (s(a), t(a)) E i,ve n,a i,ve and d(s(a), t(a)) = s(a) - 1 t(a) = la E we which 

implies that 

Since s and t are smooth, then the induced maps 

are smooth. But, by condition (83 ) of definition 3.4.l , (ltlle n,a we) n d- 1 (lVe) is open 

in Hie n,a we. Since (G,X) is a globa.!ly Lie groupoid, there exist open neighbourhoods 

U1 of a in G, U0 of a(a), f](a) in X and a(Ui),/3(U1 ) ~ Uo such that 

(so, to)(Uo) ~ (G n/3 G) n d-1 (G) 

which implies that (s,t)(U1 ) ~ d- 1 ( lVe) and (s0 ,t0 )(U0 ) ~ d- 1 (G). Thus (s * r 1 )(U1 ) ~ 

we and (s * t - 1)o(Uo) ~ G, and hence [s * r 1]a E F(vve). Since s(a) = t(a), then 

[s * r 1]a E J( er 1/;. Therefore [s * r 1]a E J0(a, a) and this completes the proof. D 

Lemma 3.5.3 The groupoid J0 is a normal subgroupoid of the groupo-id F(V(C)). 

Proof: Let [k]a E J0 (a, a) and let [s]a E Jo(b, a), s : g ~ I where k, s are local smooth 

coadmissible sections with b = f 1 (a) and f]k(a) = ak(a) = f]s(a) =a.Moreover k(a) = la. 

Since F(V(C)) is generated by F(vVe) , then 
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where a 1 = a, ai+l = f;(ai), i = 1, · · ·, n. [si]a; E F(vVG) , where we may assume that the 

images of the si, i = l , ... , n are contained in vVG and are smooth. 

[snlan * • •' * [s1]a1 * [k]a * ([snlan * '. ' * [s1]a,t1 

[sn]an * · · · * [s1]a1 * [k]a * [s1]a1 -l * · · · * [sn]a,,-
1 

[sn]an * · · · * [s1
]a1 * [k]a * [(s1

t
1
]Jia1 * · · · * [( snt 1]Jian=b 

[s * k * s-1 ]b E Jo (b, b). 

In fa.ct, now, since k-1 (a) = -l~(J- 1 (a)) = -k(a), then k-1 (a) = -k(a) . But k(a) = l a, 

by definition of J0 ; hence k-1 (a) = la E - 1 vVa. 

Since, by condition S1 of definition 3.4.1, wa = - 1 w a, then k(a) E wa. Since 

[s]a E J0(b, a), then we may assume that the image of s is contained in H/G ands is a local 

linear smooth coadmissible section. So s( a) E wa, and therefore 

(s(a), -1k(a)) E lVG n11 lVG, (so(:r), - ko(x)) E G n11 G 

and d(s(a), - 1k(a)) = s(a) +1 k(a) = (s * k)(a) = s(a). Also d(s0 (x), - k0 (x)) = s0(x) + 
ko(x) =(so* ko)(x) = so(x). Hence (s(a), - 1k(a)) E W 0 d and (so(x), -ko(x)) E Gd, for 

y E X, By the smoothness of J,:- 1 and s, induced maps 

are smooth. Hence there exists a pair of open neighbourhoods ( U0 , U1 ) where a( a), ,6( a) E 

U0 in X, and a E U1 in G such that 

(s,k- 1 )(U1 ) ~ vVa0 , (so,ko- 1 )(Uo) ~ Go 

(s(U1) -1 k-1 (U1)) ~ H1a, (so(Uo) - ko- 1 (Uo)) ~ G. 

Therefore [s * k]a E J0 (vVa). 

Thus we may assume that the image of s * k is contained in l1VG and s * k is a local linear 

smooth coadmissible section. Since ,B(s * k)(a) = ,Bs(a) = ,Bk(a) = a and (s * k)(a) = s(a) . 
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Then ((s*k)(a),s(a)) E wan/3ltVG and so d((s*k)(a),s(a)) = (k*s)- 1 s(a) = la Ewa. 

and ((s * k)(a),s(a)) E vVdG· Similarly a E G(x,y), for x,y EX, ((s * k)0(x),s0 (x)) E Gd. 

Since s and s * k are smooth, then they induce a smooth map 

((s * k)0 , s0): D(k0 ) n D(s0 )--+ G n/3 G. 

But wad and Gd are open in H/G n/3 vVG and G n/3 G, respectively. Hence there exists a 

pair of neighbourhoods ( U~, U;) of a( a), ,8( a) E U~ in X and a E U{ in G such that 

which implies that 

Therefore [s*k]a*[s]a-1 = [s*k]a*[s-1
]9 i(a)=b = [s*k*s-1]b E J(b,b). But [s*k*s-1]b E 

(I{ er</>)(b, b), since (s * k * s - 1 )(b) = lb, Hence [s * k * s-1 Jb E .J0 (b, b) and so J0 is a normal 

subgroupoid of J"('D(C)). D 

We define the quotient groupoid 

Hol('D(C), Wa) = F('D(C))/Jo 

and call this the holonomy groupoid of the V-locally Lie double groupoid ('D(C), vVG) 

on 'D(C). Let p : J"('D(C)) --+ H ol('D(C), vVG) be the quotient morphism, and write 

< s >a for p[s]a, Then the final map 'l/; : J('D(C)) --+ 'D(C) induces a surjective morphism 

</>: H ol('D(C), vVG)--+ 'D(C) such that</>(< s >a)= s(a). 
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Chapter 4 

The Holonomy Groupoid of 
(D(C), wG) 

4.1 Introduction 

In this chapter, we deal with some local Lie structures on a special double groupoid V(C) 

corresponding to a crossed module C = ( C, G, 8) -namely such a local Lie structure is a 

Lie groupoid structure on the groupoid (G, X) of V(C), and a manifold structure on a 

certain subset vV0 of the set of squares, satisfing certain conditions. This Lie groupoid 

Hol(V(C), vV0 ) is called the holonomy groupoid of the V-locally the Lie double groupoid 

(D(C), vV0 ). Further, we state a universal property of Lie groupoid H ol(V(C), H1°) in 

Theorem 4.2.8. 

4.2 Lie Crossed Modules and Double Lie groupoid 

We devote this section to a brief survey of Lie crossed modules and Double Lie groupoids.We 

state a part of a Lie version of Brown-Spencer Theorem given in Brown-Mackenzie [13]. 

It is reasonable to recall the definition of Lie groupoicl in this section. A Lie groupoid 

(G,X) is a topological groupoid such that 

(i) the space G of arrows is a smoot½._ manifold , and the space X of objects is a smooth 

submanifold of G, 
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(ii) the source and target maps a, /3 are smooth maps and are submersions, 

(iii) the domain 

of the difference map 

Gn,a G = {(a , b) E G x G: f3a = f3b} 

d: G n,a G-+ G 

(a,b) Ha- b 

is a smooth su bmanifold of G x G, and 

(iv) the difference map d is a. smooth map. 

Moreover, the anchor map, i.e., the map 

[,]:G-XxX 

a H (aa,/3a) 

is a. Lie groupoid morphism of G to the coarse groupoid X x X. Simil iarly, the manifold 

G n ,a G is a wide subgroupoid of the coarse groupoicl (G x G, G), and the difference map 

d: G n0 G ---t G 

is a Lie groupoid morphism over /3 : G -+ X. 

4.2.1 Lie Crossed Module 

Definition 4 .2.1 Let G, C be two Lie groupoids over the same object set and let C be 

totally intransitive. Then a Lie action of G on C is given by a partially defined smooth 

function, written (c,a) H ca, which satisfies 

1. ca is defined if and only if /3( c) = a( a) , and then (3( ca) = /3( a) , where a, /3 are 

respectively the source and target maps of the groupoid G. 

2. (c1 + c2)a = C1a + C2a and (ex)a = ey 
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for all c1,c2 E C(x,x), a1 E G(x,y), a2 E G(y,z). 

Further, the domain 

C n G = { ( c, a) : f3c = aa} 

of the action 

cna-c 

is a smooth manifold. Image of C in G is not required to be closed, see [:38, 13]. 

Definition 4.2.2 A Lie crossed module of groupoids consists of a pair of Lie groupoids 

C, Gover a common object set with a Lie action of G on C, together with a smooth functor 

8 : C -----+ G which is the identity on the object set and satisfies 

1. 8 (ca) = -a + 8 c + a 

2, Coci = - C1 + C + C1 

for c,c1 E C(x,x), a E G(x,y). 

Note that f38(c) = /3(c) = a(c), since 8 is a functor over the identity and a = /3 on C. 

Image of C in G is not required to be closed, see [38, 13]. 

Example 4.2.3 Every Lie groupoid G give ri se to a Lie crossed module over groupoids, 

with G acting on its inner group bundle. In fact, let G be a Lie groupoid over X and 

let JG be the inner group bundle of G, i.e., JG = UxExG(x ). Then clearly JG is a Lie 

subgroupoid of G. The inclusion map i: JG -----t G is a smooth homomorphism, and G acts 

on JG smoothly by conjugation: 

JGnG -----t JG 

( c, a) 1-t ca = -a+ c + a. 

Hence C = (JG, G, 8) is a Lie crossed module over a groupoid. 
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A Lie crossed module of groups is a Lie crossed module of groupoids as above in 

which C, G are Lie groups. Examples given in Chapter 1 can be stated as examples of Lie 

crossed modules of groups. 

Also we can define a category of Lie crossed modules of groupoids. Let C = ( C, G, 8), 

C' = ( C', G, 8') be two Lie crossed modules with same base space X. A morphism f : C - C' 

consists of a pair of smooth Lie groupoid homomorphism (.fi, h) such that the following 

diagrams commute: 

CnG-C C I C' 

/x/1 1/ ~ / 
C'nG-C' X 

The monoid of all morphisms from a crossed module ( C, G, 8) to itself is called the 

endomorphism monoid of (C,G,8), and denoted by End(C,G,8) . Its maximal subgroup 

is the group A1tt(C, G, 8) of automorphisms of C = (C, G, 8) . 

4.2.2 Double Lie Groupoid 

In differential geometry, double Lie groupoids, but usually with one of the structure totally 

intransitive, have been considered in passing by Praclines [44, 4-5]. In general, double Lie 

groupoids were investigated by K.Niackenzie in [:39] and Brown and Mackenzie [13]. 

Recall that a double groupoid consists of a quadruple of sets (D, H, V, X), together 

with groupoicl structures on H and V , both with base X, and two groupoid structure 

on D, a horizontal with base V, and a vertical structure with base H, such that the 

structure maps (source, target, difference map, and identity maps) of each structure on D 

are morphisms with respect to the other. 

Definition 4 .2.4 A double Lie groupoid is a double groupoid 'D = (D; H, V, X) to­

gether with differentiable structures on D, H, V and X, such that all four groupoid struc-
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tures are Lie groupoids and such that the double source map D - H Xa V = {(h, v) : 

ah(h) = av(v)} , cl - (av(d),aH(cl)) is a surjective submersion, where av,aH are source 

and target maps on D. 

A morphism of double Lie groupoids (4>, 4>H, 4>v, 4>x) : (D'; H', V' : X') -+ 

(D; H, V : X) is a quadruple of smooth maps, 4> : D' - D, 4>H: H' - H, 4>v : V' -+ V, 

4>x: X'-+ X such that (4>,4>H), (4>,<I>v), (<I>H,<I>x) , (<I>v,<I>x) are morphism of their 

respective groupoids. 

vVe give two examples which are found in Brown-Mackenzie [1:3]. Later , these will be 

used in the proof of Theorem 4.2.7. 

Example 4.2.5 For any manifold X, the product manifold X x X ha.s a natural Lie 

groupoid structure, where (x, y) has source x, target y, and the composition is (x, y)(z , 'tl) = 

(x, u), defined if y = z. This is known as the pair or coarse groupoid on X. If (G,X) is 

a Lie groupoicl, then G x G can be considered both as the Cartesian product groupoid on 

base X x X, and as the pair groupoid on base G. These two structures constitute a double 

Lie groupoid. 
GxG-.=':XxX 

11_11· 
G ___ -X 

Given any double Lie groupoid T> = (D, H, V, X) , the anchor [, ]v : D -+ -H x H 

together with id: H - H, [, ]11 : V - Xx X, id: X - X is a morphism of double 

groupoids 7) = (D, H, V, X) -+ (H x H, H, X x X, X). Similarly, the vertical morphism is 

V = (D,H, V,X) - (V x V, V,X x X,X). 

Example 4.2.6 Let H and V be Lie groupoids on the same base X , and suppose that 

the two anchors [, ]h : H - X x X and [, ]11 : V - X x X are transversal as smooth maps; 
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that is , the tangent bundle of X x X is generated, at each point, by the images of the 

tangent maps to [, ]h and [, ]v- Then the pullback of 

VxV ! [.)v x[,]u 

HxH--X4 
(,]h X[,]h 

may be regarded as defining either the pullback groupoid [, ]h O (V x V) on base H or 

the pullback groupoid [, ]/*(H x H) on V. These two structures constitute a. double Lie 

groupoid which is denoted by □(H, V), and whose elements are squares 

•---+• 

with hi, h2 E H, v1 , v2 E V and source and targets matching as shown. If H = V we 

write □H for □(H, H). Ta.king H =Xx X, the pair groupoid on X, we obtain the double 

groupoid (X4, X 2
, X2, X) in which all four groupoid structures are pair groupoids. 

Theorem 4 .2. 7 {16} Let C = ( C, G, 8) be a Lie crossed module with base space X and let 

the maps k : [, ]**(G x G)---+ Gt>< JG and id t>< 8: Gt>< C---+ Gt>< JG are transversal (see {13}, 

p.29). Then the corresponding special double groupoid D(C) is a double Lie groitpoid. 

Proof: Let C = (C,G,8) be a fixed Lie crossed module. Let JG = UxEXGx be the 

inner group bundle of G (sometimes called the gauge group bundle). Form the semi-direct 

product group Gt>< JG on base X; this consists of all pairs (a,c) with f3(a) = /3(c), and 

composition 

(a, ci) + (b,c2 ) =(a+ b,c/ + c2) 

defined if f3(a) = a(b). Next, form the pullback Lie groupoid [, ]··(G x G) of the Cartesian 

square groupoid over its own anchor; this admits the double groupoid structure □G . as 
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given in Example 4.2.6 but we are here considering it merely a.s an ordinary groupoid. 

Define a map 

k: [,]**(G x G) -t Gt>< JG, (b,a,c,d) - (a, -a - b + d + c) 

where a, b, c, cl are arranged as 

a 

with our usual orientation; in particular, d is the source and a the target. Now k is a 

regular fibration over a : G -t X , and 8 is base-preserving, so we can take the pullback in 

the category of Lie groupoids of the diagram 

vVe obtain a groupoid 'D(C) whose element are -5-tuples (w, b, a, c, d) such that (b, a, c, d) E 

[, ]**( G x G) and w E C with (3( w) = (3( a) and 8( w) = - a - b +cl+ c. To keep the notation 

clear, we rewrite ( w, b, a, c, d) as 

(w: b ~ c) 
The source and target of this element are d and a, respectively, a.nd the composition is 

defined in Chapter 2. Now 'D(C) becomes a double groupoid by defining a horizontal 

structure as in Chapter 2. D 

We now start with a statement of the theorem, the proof of which then occupies this 

and the next two sections. 

Theorem 4.2.8 Let C = (C,G,8) be a crossed module and let V(C) be the corresponding 

double groupoid. Let (V(C), vVG) be a V-locally Lie double groupoidfor the double group~id 
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D(C). Then there is a Lie groupoid Hol(D(C), W 0 ), a morphism 

'lj): Hol(D(C), W 0 )--, D(C) 

of groupoids, and an embedding 

i : vV0
--, H ol(D(C) , vV0

) 

of w 0 to an open neighbourhood of Ob(H ol(D(C), lV0 )) = G, such that 

(i} 'lj) is the identity on G, 'lj)i = lwa , 'lj) - 1 l(wa) is open in H ol(D(C), W 0), and the 

restriction 'lpwG : 'lj) - 1 (vV0) --r w0 of 1/J is smooth. 

(ii) if A = ( A, B, 8') is a Lie crossed mod1de with object set X and /L : D( A) --, D( C) 

is a morphism of groupoids such that 

(a) JL is the identity on objects; 

(b) the restriction f-Lwa : /L-1(l1V0 ) --, l+'G is smooth and p-1 (H10) is open in D(A) 

and generates D(A) as a gr01tpoid. 

(c) the triple (cr.,(J, D(A)) has enough local linear smooth coadmissible sections; 

then there is a unique morphism IL': (D(A), B, +1 ) --, H ol(D(C), W 0 ) of Lie groupoids 

such that 'lj)Jl' = JL and 1L'(w) = (i/L)(w) for w E /L- 1(liV0). 

Lemma 4.2.9 Let w E vV0 , and let s and t be local linear smooth coadmissible sections 

through w. Let a = (Jw. Then < s >a=< t >a in H ol(D(C), Hl 0
_). 

Proof: By assumption sa = ta = w. Let b = aw. ·without loss of generality, we may 

assume that s and t have the same domain (Uo, U1 ) and have image contained in w0 and 

G, respectively. By Lemma 3.4.2, s * r 1 E I'(l1V0 ). So [s * t-1 
]b E J0 . Hence 

D 
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4.3 Lie groupoid structure on H ol(V(C), we) 

The aim of this section is to construct a topology on the holonomy groupoicl H ol('D(C), i,ve) 

such that Hol('D(C) , we) with this topology is a Lie groupoid. In the next section we 

verify that the universal property of Theorem 4.2.8 holds. The intuition is that first of all 

VV0 embeds in H ol('D(C), l1V0 ), and second that H ol('D(C), l1Ve) has enough local linear 

coadmissible sections for it to obtain a topology by translation of the topology of we. 

For our construction of the topology on H ol('D(C), we ), we remind the reader of the 

following well-known facts in the theory of clifferentia.l topology see [5, 18, 3, 2]. 

Let W be a topological space and let X be a set. A TV-chart ( U, x ) on X is an injective 

partial function x : W -t X with open domain U ~ W, and a W-atlas on X is a family 

{(U;,x;) : i E J} of ftV-charts on X such that the family {x; (Ui) : i E J} covers X 

and if i,j E / is such that x;(U;) n Xj(Uj) is non-empty, then the change of coordinates 

X; - 1 Xj : {;l/ -t Hf is a partial diffeomorphism of an open subset of W onto an open subset 

of l,V. It is easy to prove that X can be given a topology in a unique way, which is the 

initial topology on X with respect to all the W-charts { ( U;, x ;) : i E J} such that each U; 

is open and any lV-chart on X is a homeomorphism. 

Let s E f('D(C) , we). vVe define a partial function Xs : i,ve - H ol('D(C) , W 0 ). The 

domain of Xs is the set of w E liV0 such that a(w) = a E D(s1 ) and a(a),J3(a) E D(so ). 

The value Xs( w) is obtained as follows. Choose a local linear sm·ooth coadmissible section 

0 through w. Then we set 

By Lemma 3.4.2, Xs( w) is independent of the choice of the local linear smooth coad­

missible section 0. 

Lemma 4.3.1 Xs is injective. 
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Proof: Suppose XsV = XsW, Then {3w = {3v = a, say and asav = asaw. By definition 

of s, av = aw = d, say. Let 0, ()' be local linear smooth coadmissible sections through w 

and v respectively. Then we now obtain from XsV = XsW that 

and hence, since Hol(D(C) , we) is a. groupoid, tha.t <()>a=<()' >0 • Hence v = 0(a) = 

()'(a)= w Ewe. □ 

Lets E f(D(C)). Thens defines a. left translation Ls on 'D(C) by 

Ls(w) = s(a(w)) +1 w. 

This is an injective partial function on D(C). The inverse Ls - i of Ls is 

and Ls -l = Ls-1. vVe call Ls the left translation corresponding to s. 

So we have an injective function Xs from an open subset of vVe to JI ol(V(C), vVe). By 

definition of Hol(D(C), Hie) , every element of Hol(V(C) , vVe)) is in the image of Xs for 

some s . These Xs will form a set of charts and so induce a topology on H ol(V(C), vVe) . 

The compatibility of these charts results from the following lemma., which is essential to 

ensure that Hie retains its topology in H ol(D(C), H1e ) and is open in H ol(V(C), l1Ve). As 

in the groupoid case [1], this is a key lemma. 

Lemma 4.3.2 Lets , t E P(D(C), vVe). Then (Xtt 1Xs coincides with Lri , left translation 

by the local linear smooth coadmissible section T/ = r 1 * s, and Lri maps open sets of vVe 

diffeomorphicially to open sets of i,ve. 

Proof: Suppose v , w E vve and XsV = XtW, Choose local linear smooth coadmissible 

sections () and ()' through v and w respectively such that the images of() and 0' are contained 

in we. Since XsV = XtW, then {3v = {3w = a say. Let O'V = b, aw= C. 
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Since XsV = XtW, we have 

< S * 0 >a=< t * 0' > a 

Hence there exists a local linear smooth coadmissible section ( with a E D( () such that 

[(]a E Jo and 

[s * 0]a = [t * 0']a[(]a. 

Let r, = t-1 *S. Then in the semigroup f('D(C), vV) we have from the above that 'r/*0 = 0'*( 

locally near a. So we get w = (0' *()(a)= 0'(a) +1 ((a)= 0'(a) +1 la= (77 * 0)a = 77av +1 v. 

This shows that (xtt 1 Xs = L11, left translation by 17 E r('D(C)), i.e., 

(Xtt 1
( < S * 0 >pv=a) 

(r1 * s * 0)(a), 

(17 * 0)(a), since 17 = C 1 * s 

77(a-(0(a)) +1 0(a), by definition of * 

77(a(v)) +1 v, since 0(a) = v 

= L11 (v), by definition of Lw 

However, we also have 77 = 0' * ( * 0-1 near av. Hence L.,, = Lo,L(Lo-1 near v. Now Lo-1 

maps v to la, L( maps l a to la, and Lo, maps la tow. Namely, 

Lo-1(v) - 0-1 (a-(v ))+1 v 

- -10(a0t1 (av) +1 v, by definition of 0-1 

- 10(;3(v)) +1 0(;3v), since 0(;3v) = v 

((a(la)) +1 la, by definition of L( 
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and 

0'(a(la)) +1 la, by definition of L01 

0'(a) +1 la, since 0'(a) = w 

w. 

So these left translations are defined and smooth on open neighbourhoods of v, la and l a 

respectively. Hence LTJ is defined and smooth on a.n open neighbourhood of v. □ 

We now impose on Hol(D(C), lVe) the init ial topology with respect to the charts Xs 

for a.11 s E r(D(C), we). In this topology ea.ch element h E H ol(D(C), we) has an open 

neighbourhood diffeomorphic to an open neighbourhood of l ;3h in ive. 

Lemma 4.3.3 T,Vith the above topology, H ol(D(C), l1Ve) is a Lie groupoid. 

Proof: Source and target maps are smooth: In fa.ct, for w E we, 

It follows that O'.H and f3H are smooth. 

Now we have to prove that 

dH : H ol(D(C), liVe) n,a H ol(D(C), ltVe) --+ H ol(D(C), We) 

is smooth. Let< s >a,< t >aE Hol(D(C), liV0 ). Then Xs(la) =< s >a,Xt(l a) = < t >a, 

and if T/ = s * t-1 , then XTJ(lb) =< s * t-1 >b where b = (3t( a). Let v E D(x&), w E D(x1), 
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with (3v = (3w = c, say and let 0 and 0' be elements of r(vV0 ) through v and tv respectively. 

Let d = f3(t * 01)(c). Then 

x1) -ldH(Xs X Xt)(v,w) - x1)-1 dH(Xs(v),Xt(tv)) 

x1) -ldH( < s * 0 >c, < t * 0' >c), by definition of Xs, Xt 

x;1( < (s * 0) * (t * 0't1 >d), by definition of dH 

(77-1
) * (s * 0) * (t * 0't1(d), by definition of X1J - i 

((s * r 1r 1
) * (s * 0) * (t * 0't1 (d), since 17 = (s * r 1

) 

(t * s-
1 * s * 0) * (t * O1t 1 )(d) 

((t * 0) * (t * 0't1)(d) 

- ((t * 0)(a(t * 0')-1 (d) +1 (t * B't1 (cl) 

(t * 0)i(c) -1 (t * 0')(a(t * 01t 1 )(d), since a(t * 01
)-

1(d) = C 

t(a01(c) +1 0(c) - 1 (t(a0'(c) +1 0'(c)) 

- (t(a(v)) +1 v - 1 (t(a(w)) +1 w) 

L1(v) -1 L1(w) 

- D(v, w), 

say. The smoothness of this map D at (la, la) is now easily shown by writing t = tn * · · · *t1 

where t; E P(vV0 ) and using induction and a similar argument to that of Lemma 3.5.3. 

D 

4.4 The Universal Property of Hol(D ( C), we) 

In this section we state and prove the main theorem of the universal property of the 

morphism 1/; : H ol(V(C), W0 ) -+ V(C). Note that for the case of groupoids rather than 

crossed modules, Pradines (43] stated a differential version involving germs of locally Lie 
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groupoids in [43], and formulated the theorem in terms of adjoint functors. No information 

was given on the construction or proof. A version for locally topological groupoids was 

given in Aof-Brown [l], with complete details of the construction and proof, based on 

conversations of Brown with Pradines. The modifications for the differential case were 

given in Brown-Mucuk [14]. 

The main idea is when we are given a V-locally Lie double groupoicl ('D(C), vV0
) of a 

double groupoid 'D(C) for a Lie crossed module C and given a Lie crossed module A and a 

morphism 

fl : V(A) - 'D(C) 

with suitable conditions, we can construct a morphism 

where H ol(V(C), vV0 )) is a holonomy groupoid of a locally Lie crossed module, such that 

'lj)µ' = /l· 

We prove that such a morphism Jl' is well-defined , smooth and unique. Now let (V(C), l1V0 ) 

be a V- locally Lie double groupoid as above. 

Theorem 4.4.1 If A= (A,B,8') is a Lie crossed mochtle and /l V(A)-. V(C) is a 

morphism of groupoids such that 

i). fl is the identity on objects; 

ii).the restriction µwe : p-1(lV0 ) -. vV0 of fl is smooth, /t-1(vV0 ) is open in V(A) 

and generates V(A) as a groupoid. 

iii). the triple ( a , ,6, V( A)) has enough local smooth coadmissible sections. 

Then there exists a unique morphism 

of Lie groupoids such that 'lj)fl' = /l and fl'(w) = ift(w) for w E /L-1(vV0 ). 
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Proof: Since, by condition (i), p 1 = l e, then G = B and X = X' which implies that 

µ(G) = G, µ(X) = X. But G ~we~ V(C), by condition (S2 ) of Definition 3.4.1. Hence 

µ(G) ~ i,ve ~ V(C). So it follows that G ~ µ- 1 (vVe) ~ V(A). 

Let w E V(A). The aim is to define µ'(w) E Hol(V(C), l1Ve). 

But, by condition (ii), µ-1(l,Ve) is an open set of V(A). Hence µ- 1(vVe) is an open 

neighbourhood of Gin V(A). Since /l - 1 (vVe) generates D(A), we can write w = wn +1 

· · · +1 w1, where /l (wi) Ewe, i = l,,,., n. 

Since (a, /3, V(A)) has enough local linear smooth coaclmissible sections, by condition 

(iii), we can choose local linear smooth coadmissible sections 0; through w;, i = 1, ... , n, 

such that they are composable and their images are contained in .a-1 (W0
). 

Because of the condition (ii), the smoothness of fl on /l-
1 ( l1V0 ) implies that /l0; is a 

local linear smooth coadmissible section through /t ( w;) E vV0 whose image is contained in 

Hl 0 . Therefore /l0 E P(V(C) , lV0 ). Hence we can set 

and prove the following lemmas. 

Lemma 4.4.2 fl'(w ) is independent of the choices which have been made. 

Proof: Let w = Vm +1 · · ·+1 v1 , where /lVj Ewe and j = 1, · · · , rn, /3(w) = c. Choose a set 

of local linear smooth coadmissible sections 0' i through 'Vj such that the 0' j are composable 

and their images are contained in p-1 (vVe) . 

Let 0' = 0'm * · · · * 0't. Then µ0' E P(V(C), l,Ve), and so< µ0' >eE Hol(V(C) , vVe) . 

Since by assumption, 0(c) = 0'(c) = w E V (A), then (0 (c), 0'(c)) E V(A) n,a V(A) and 

dA(0(c),0'(c)) = 0(c) - 1 0'(c) = l e. Hence (0(c),0'(c)) E dA-1.a-1 (vVe) because l e E 

fl -1 (We). 

Because A is a Lie crossed module and the corresponding double groupoid V(A) is a 

double Lie groupoid, the difference map dA : V(A) n,a V(A) --+ V(A) is smooth. Since 
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µ-1 (vV0 ) is open in 'D(A) , by condition (ii), then dA -l p-1 (vV0 ) is open in 'D(A) n,a 'D(A). 

But, by the smoothness of 0 and 0', the induced map (0, 0'): D(0) n D(0')--+ 'D(A) n,a 

'D(A) is smooth. Hence there exists open neighbourhoods N of c in G and N0 of a(c) ,,B(c) 

such that (0,0')(N) ~ (dA-1 /t-1)(vV0 ). This implies that 0 * 0'-1(a01N) ~ µ-1(W0 ), and 

so, after suitably restricting 0, 01
, which we may suppose done without change of notation, 

we have that 0*01
-

1 is a local linear smooth coadmissible section through l d E 'D(A) and its 

image is contained in µ- 1 (W0
). Sop( 0 * 01

-
1

) is a local linear smoot h coadmissible section 

through l d E vV0 , and its image is contained in w 0 . Therefore [1t(O * 01
-
1)]d E J c(vV0 ) . 

Since 0(c) = 01(c), then 1P[1t0]c = 1f, [p01]c. But 1/J and fl are morphisms of groupoids; 

hence 1P[p(0*0'-1)]d = l d, and so [p(0* 01
-
1)]d E ]{ en/; . Therefore [p(0*01

-
1)]d E JC(vV)n 

J{erV' = J0 . Since f l is a morphism of groupoids, we have [p(O * 0'- 1)]d E Jc. Hence 

< JL(0 * 01
-

1
) >d= ld E Hol('D(C), l1V0

)), and so 

which shows that p'w is independent of the choices made. D 

Lemma 4.4.3 p1 is a morphism of groupoids. 

Proof: Let u = w +1 v be an element of 'D(A) such that ·w = Wn +1 . .. +1 w1 and 

V = Vm + 1 ... +1 V1, where Wi,Vj E p- 1(vV0 ) , i = l,···, n and) = l , · · · ,m. Then 

U = Wn +1 ' · ' +1 W 1 +1 Vm +1 ' ' ' +1 V1, 

Let 0;, 0'; be local linear smooth coadmissible section through w; and Vj respectively 

such that they are composable and their images are contained in p- 1(W0 ) . Let 0 = 

0n * · · · * 01 and 01 = 01 
m * · · · * 01

1 , l'i. = 0 * 0'. Then l'i. is a local linear smooth coadmissi ble 

section through u E 'D(A) , and p0, /t01
, fll'i. E P('D(C) , W0 ), and /LK = p0 * µ01

, since fl is 

a morphsim of groupoids. 

Let a= ,Bw, b = ,Bv. Then < fll'i. >a=< µ0 >a< µ0 >b and so p' is a morphism. D 
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Lemma 4.4.4 The morphism p' is smooth, and is the only morphism of groupoids such 

that 'lj;p' = f.L and µ'w = (ip)(w) for all a E /t-1(lV0 ). 

Proof: 

Since (aA,.BA, 'D(A)) has enough local linear smooth coa.clmissible section, it is enough 

to prove that µ' is smooth at l a for all a E G. Let c denote the linear coadmissible section 

c : G - 'D(C), a 1-t la and Co : X - G, x 1-t lx, 

Let a E G. If w E ft-1(vV0 ) ands is a local linear smooth coa.clmissible section through 

w, then ft1
'W =< ps >{3w= Xc/l(w). Since fl is smooth, it follows that p' is smooth. 

The uniqueness of ft' follows from the fact that /L1 is determined on /t-1 (lV0 ) and that 

this set generates 'D(A). 

D 

This completes the proof of our main result, Theorem 4.2.S. D 

103 



Chapter 5 

Conclusions and suggestions for 
further work 

The way of proceeding further has been discussed by the writer and Ronald Brown. 

5.1 2-Groupoids 

5.1.1 Introduction 

For a 2-dimensional version of holonomy, there a.re a. number of possible choices. It seems 

reasonable therefore to attend to those whose algebra is better understood. There are at 

least six categories equivalent to that of crossed modules over groupoids. We consider the 

possibility of a theory for one of the equivalence categories 

CrsM od ~ DGrpd! ~ 2 - Grpd. 

The equivalence of 2-groupoids and crossed modules over groupoids is a 2 dimensional case 

of a result due to Brown and Higgins [10]. 

5.1.2 2-Groupoids 

2-groupoids are special cases of the so-called 2-categories originally due to Ehresmann [23] 

and see also Kelly and Street [30]. The 2-categories with invertible 1-cells and 2-cells 

are called 2-groupoids. In another way of defining it, a 2-groupoid may be thought of as 
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a double groupoid in which all the vertical edge arrows are identities. So a 2-groupoid 

consists of a set H with groupoid structures over H1 and Ho and H1 is also a groupoid on 

Ho all subject to the compatibility condition that the structure maps of each structure on 

H are morphisms with respect to the other. 

Full details of the following material has been written down seperately from the thesis. 

5.1.3 Equivalence of crossed modules and 2-groupoids 

As said earlier, the equivalence given in the title of this section is a 2-dimensional case of 

Brown and Higgins [10]. We give thjs equivalence briefly as follows. 

Let H be a 2-groupoid. Then it has a groupoid structure (H;,o:;,{3;,+i) for i = 0,1, 

satisfying the usual compatibility conditions. \Ve obtain a corresponding crossed module 

C = >.H, by X = H0 , G = H1 and C = {C(x)}.1-EX, where C(:i:) = {n EH: o:on = f3on = 

x,f31n = l x}- Then C = (C,G,8) becomes a crossed module vvith boundary 8(n) = o:1 (n), 

n EC. 

Conversely, let C = (C, G, 8) be a crossed module over a groupoid. \Ne can obtain a 

2-groupoid H = 0(C), with 2-cells forming the set 

G ~ C = { (a, c) : a E G, c E C (/3 (a))} 

with a 2-groupoid structure. The following theorem can be stated. 

Theorem 5.1.1 The functors 

>. : 2 - Grpd --t Crs.M ocl 

0: Crs!l1od --t 2 - Grpcl 

indicated above are inverse equivalences {1 OJ. 
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5.1.4 Homotopy for 2-groupoids 

The notion of homotopy for morphism of crossed modules over groups (groupoids) has been 

well known for many yea.rs, Whitehead [48], Brown and Higgins [11], Brown and Gilbert 

[6] and also see the first chapter of this thesis. This was put in the general context of 

a monoidal closed structure on the category of crossed complexes in Brown and Higgins 

[11]. The notion of homotopies for 2-groupoicls is essentially a special case of the notion of 

2-natural transformation due to Gray in [2,5]. 

The relation between homotopies for crossed modules over groupoicls and homotopies for 

2-groupoids can be explained by extending Theorem 5.1.1 to an equivalence of 2-categories. 

We can acid to this theory an analogue of Ehresmann 's product of ( co )-admissible 

sections. In the groupoid case, the latter can be consider as homotopies <7 : f ::: 1, 0 : 

g '.:::'. 1 : G -+ G, and the product <7 * 0 is a homotopy gf ::: 1, where f,g are here 

automorphisms. The same formulation holds in the 2-groupoid case, i.e., so that we have 

a product of coadmissible homotopies . 

Corresponding Lie and locally Lie notions may be developed, analogous to previous 

work. 

However, it turned out, in working with the appropriate sheaf of germs of local coad­

missible 2-homotopies, that we have to consider also the double groupoids associated to 

the 2-groupoid and the exposition becomes closely related to that given above for crossed 

modules. Thus there is a natural holonomy theory in the context of 2-groupoids. 

5.2 2-Crossed Modules 

Brown and Higgins proved tha.t the category of crossed modules has a monoidal closed 

structure. Then, for any crossed module C over a groupoid we can determine crossed 

modules EN D (C) and AUT(C) as in Chapter 1. Brown and Gilbert proved that A UT(C) 
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is a braided regular crossed module over the group Aut(C). We have studied this in detail 

in Chapter 1. But material on the braiding is relevant to studying the larger structure. 
/ 

We already have constructed 

Hol('D(C), lV0
) -t 'D(C), 

where Hol('D(C), vV0 ) is a Lie groupoid on G and 'D(C) is the corresponding double 

groupoid for the crossed module C = ( C, G, 6). This uses free derivations or linear coad­

missible sections. V\le have not used the inner derivations 

M( C) -t F Der*(C), 

described in Section 1.5. In the rest of Chapter 1 we did get as far a.s describing explicitly 

the maps and morphisms 

M(C) -t F Der*(C) -t Aut(C) . 

Also, the Peiffer lifting structure ,vhich makes this a. 2-crossed module is not used in the 

localisation part and we have therefore been content to show that the verification of the 

axioms follows from Brown and Gilbert [6]. The development of the local theory using the 

full structure of 2-crossecl modules requires further work. 

5.3 Double Holonomy Groupoids 

A natural question on globalisation is: Does there exist a Lie crossed module H ol( C, vV) 

with a universal property related to the diagram: 

Hol(C, vV)-<t>-..;.,C 

! l 
(G,X) (G,X) 

'Ne started with the idea of globalising a locally Lie crossed module ( C, vV, 6) for a crossed 

module C = (C, G, 6). The latter is a concept not difficult to define. In carrying out 
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such a conjectured globalisation project, it became clear that our methods did not pro­

duce a global crossed module. Instead, we have produced from ( C, W, 6) a holonomy Lie 

groupoid Hol(V(C), vVG), using all the information in (C, liV,c5). It seems possible that 

this Lie groupoid is a pa.rt of a Lie 2-crossed module. Thus the examination of local theory 

a.nd crossed modules seems to lead outside crossed modules a.nd to some more complex 

structure. This is probably related to work of L. Breen on stacks of groupoids. 

So the area requires considerably more work to develop and reveal the underlying 

structures. This thesis is intended as a start in this important direction. 
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Appendix 

Inverse semigroup 

It is standard that inverse semigroups are natural generalisations of groups, encoding in­

formation about partial rather than global symmetries. See for more information, "Inverse 

Semigro1tp Theory", by M.V. Lawson [35) . 

Vve give the verification that our semigroups of local coadrnissible sections form an 

. . 
mverse sem1group. 

Definition .0.1 A semigroup S is said to be inverse if for each s E S there exists a 

unique element called the inverse of s, denoted by s-1
, satisfying s = ss-1 s a.nd s-1 = 

Example .0.2 Let X be a er-manifold and let M(X) denote the set of all diffeomorphisms 

between open subsets of X. vVe define a multiplication on NI(X) as follows: Let I: U - V, 

and let g : V' - vV' be two diffeomorphisms, where U, V, U', W' are open subsets of X . 

Then we define a composition, 

gl : 1-1 (V n V') - g(V n V'). 

With this composition, M(X) becomes an inverse semigroup, i.e., for each (f : U - V) E 

M(X) there exist (f-1 
: V - U) E M(X) such that I= I 1-1 I and 1-1 = 1-1 I 1-1

. Note 

the key point that .r-1 I= Iu, I 1-1 = Iv . 
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Definition .0.3 A local coadmissible section of a groupoicl G with base space X is a 

functions : U-+ G from an open subset U of X such that s satisfies; 

(i) /Jsx = x, for x EX, 

(ii) as(U) is open in X, and 

(iii) as maps U homeomorphically to /3s(U). 

The first point of this Appendix is to show that the set A/( G) of local coadmissible 

sections of a groupoid G such that X = Ob( G) is a. topological space has the structure of 

inverse semigroup under the * multiplication of Ehresmann. 

Proposition .0.4 The set l\1(G) of local coadmissible section of a groupoid G is an inverse 

semzgroup. 

Proof: We can easily verify that if s-1 is as given earlier, then s- 1 * s * s- 1 = s- 1
, 

s * s-1 * s = s. Then we have only to verify uniqueness . So suppose s' satisfies s = s * s' * s 

and s' = s' * s * s'. vVe have to show that s' = s-1
. 

Let us start with s * s' * s = s, where as : U-+ V. We need to prove that D(s') = V. 

Let y EV. Then there is an x such that as(x) = y. If s'(y) not defined, thens* s' * s(x) 

is not defined and sos* s' * s-=/ s. This proves V ~ D(s'). 

Suppose s'(y) is defined. Let x = as'(y). Then s(x) is defined, since s' * s * s' = s'. So 

x E U, and soy EV, i.e., D(s') ~ V. Hence D(s') = V . 

Finally, y = /Js(x),s(x') + s'(y) + s(x) = s(x) implies s(:r') + s'(y) l y, so s(x') 

s'(y)-1. 

D 
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