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Abstract: This paper proposes and presents the first experimental demonstration of a high-precision indoor 2D and 
3D visible light positioning (VLP) system using an imaging multiple-input multiple-output (MIMO) configuration with 
supervised artificial neural network (ANN). The proposed system utilizes four distributed transmitters and receivers 
with four photodiodes and an imaging optics. The experiments are conducted in a typical indoor environment with 
transmitter separations of 300 mm and a link distance of 1400 mm. The experimental results show 2D and 3D 
positioning accuracies of 3.7 mm and 51 mm, respectively. A simulation model is also developed for the VLP system 
to verify the experimental results. Further optimization of the VLP system in the simulation platform leads to improved 
2D and 3D positioning accuracies of 2 mm and 9.3 mm, respectively. The proposed system can seamlessly converge 
with existing lighting infrastructures and is also compatible with the imaging MIMO visible light communication (VLC) 
system, indicating the potential for practical implementation in integrated communications and positioning applications. 
 

1. Introduction 1 
Over the past decade, visible light communication 2 

(VLC) has emerged as a complementary technology to 3 
traditional radio frequency (RF)-based wireless 4 
communications. VLC leverages existing solid-state lighting 5 
infrastructure for high-speed wireless communication, thus 6 
offering advantages such as unlicensed spectrum operation, 7 
low power consumption, and reduced implementation costs 8 
[1]. Operating in the unlicensed spectrum while still 9 
maintaining low power consumption, this technology is 10 
expected to play a key role in upcoming 6G networks, 11 
demonstrating high-speed transmission capabilities and 12 
compatibility with various communication systems. In 13 
addition, it also offers an alternative for integrating aerial, 14 
submarine, and indoor networks for 6G and beyond [2]. 15 
Among its many applications, indoor and outdoor visible 16 
light positioning and navigation are promising areas. 17 

Positioning technologies have recently attracted 18 
significant attention due to their applications in wide-ranging 19 
monitoring, surveillance, or tracking. Compared to RF 20 
positioning technologies, visible light positioning (VLP) 21 
offers unique advantages of high-accuracy due to shorter 22 
wavelengths and less sensitivity to multipath propagation, 23 
zero electromagnetic interference (EMI), and dual 24 
functionalities of illumination and positioning [1].  25 

VLP systems utilize photodiodes (PDs) or image 26 
sensors (IS) receivers to provide indoor positioning solutions. 27 
PD-based VLP systems offer advantages such as fast 28 

response times, compatibility with communications, and 29 
suitability for real-time applications and varying lighting 30 
conditions. Existing PD-based VLP techniques can be 31 
classified into two main categories: distance-based and 32 
distance-free [3], [4]. Distance-based techniques include the 33 
use of received signal strength (RSS) to estimate the distance 34 
between the receiver (Rx) and the transmitter (Tx) [5]. Other 35 
distance-based techniques employ time of arrival (TOA) [6] 36 
and time difference of arrival (TDOA) [7]; both require 37 
precise synchronization between transmitters and receivers, 38 
resulting in increased system complexity. Furthermore, angle 39 
of arrival (AOA) based techniques require diversified angles 40 
and a relatively large number of receiver devices to operate 41 
effectively [8]. Distance-free techniques are independent of 42 
geometric distance measurements, but often require more 43 
complex hardware and configuration. One commonly 44 
adopted distance-free technique uses RSS values as 45 
fingerprint features for indoor positioning [9]. 46 

In contrast to PD-based VLP systems, IS-based VLP 47 
systems capture the images of the modulated intensity of LED 48 
luminaires and subsequently process them using image 49 
processing algorithms to estimate the position [10]. This 50 
enables the extraction of detailed features, the improvement 51 
in interference rejection, and the elimination of multipath 52 
reflections [11]. Furthermore, cameras are extensively 53 
incorporated into consumer devices, such as smartphones, 54 
enabling VLP systems to use existing hardware. However, 55 
these systems are subject to several challenges, including 56 
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slower response times generally unsuitable for high-speed 1 
communication due to their limited frame rates and 2 
sensitivity to lighting conditions, which can affect the 3 
accuracy and difficulty of employing them in real-time 4 
systems, which limits their effectiveness in specific scenarios. 5 

Advanced solutions for accurate VLP have been 6 
proposed based on machine learning and deep learning 7 
(ML/DL), i.e., linear or higher-order regression [12]. Various 8 
algorithms, such as K-nearest neighbor (KNN), support 9 
vector machine (SVM), and artificial neural network (ANN) 10 
[13], are showcasing promising outcomes and achieving mm 11 
levels of accuracy, thereby offering potential solutions for 12 
VLP. These techniques are often used in fingerprint-based 13 
systems, where a database of RSS values and their 14 
corresponding coordinates is pre-collected. ANNs, for 15 
instance, are trained using the offline fingerprint data. Once 16 
trained, ANNs can accurately predict a user's location in real-17 
time based on new RSS measurements. The Multi-Layer 18 
Perceptron (MLP) network, often configured with a single 19 
hidden layer, is a commonly chosen ANN architecture for 20 
conducting localization tasks [14], [15]. 21 

The spatial diversity provided by multiple PDs 22 
improves the robustness of the positioning system against 23 
obstacles and interference, which are common factors in 24 
indoor environments [16]. Moreover, the literature shows the 25 
use of multiple PDs in experimental VLP systems to improve 26 
positioning accuracy, as detailed in Table I. For example, 27 
tilted PDs were proposed to improve the accuracy of VLP 28 
systems [17], where a localization error of 35 mm was 29 
obtained. Furthermore, a ML technique is combined with 30 
multiple detectors to provide higher accuracy. In [18], four 31 
PDs and RSS-based fingerprinting with a Weighted K-nearest 32 
neighbors (WkNN) algorithm were employed to demonstrate  33 
positioning errors of 8.3 mm and 20.45 mm with four and two 34 
luminaires, respectively. A VLP system based on a single 35 
LED and multiple silicon solar cells employing AOA and a 36 
long short-term memory neural network (LSTMNN) model 37 
has achieved an average positioning error of 17.8 mm, and 90% 38 

of the experimental data had a positioning error within 39 
~29 mm [19]. A theoretical approach based on 16 LED lamps 40 
and a grid of 361 receivers with three ANNs to estimate 3D 41 
positioning from RSS has achieved an average distance error 42 
of 0.4 mm [20]. In [21], the authors proposed a VLP system 43 
based on four evenly distributed LED emitters and a MLP for 44 
2D positioning with an estimation of the root-mean-square 45 
(RMS) errors as 10.3 mm and 13.3 mm for LOS and non-LOS 46 
links, and 19.8 mm and 21 mm for 3D localization. In [22], 47 
the authors propose a deep residual shrinkage network 48 
(DRSN) with a single LED and 4-PDs. The system achieves 49 
an accuracy where 90% of the errors are below 23.5 mm in 50 
simulations and below 100 mm in experiments.  51 

The LiFi-based integrated communication and 52 
positioning paradigm is expected to be a key technology for 53 
6G networks [23]. In VLC/LiFi technologies, numerous 54 
studies have shown high-speed communications utilizing 55 
multiple-input multiple-output (MIMO) configurations and 56 
accurate VLP positioning facilitated by a distributed 57 
illumination infrastructure [24]. The optical MIMO receiver 58 
can be realized using imaging and non-imaging 59 
configurations [25]. Imaging MIMO systems are preferred 60 
over non-imaging MIMO configurations due to enhanced 61 
data rate scalability, compactness, and a well-conditioned 62 
channel H-matrix [25], [26]. However, to the best of the 63 
authors' knowledge, there has been no previously published 64 
work demonstrating imaging MIMO configurations for 65 
highly accurate VLP. This paper is the first attempt to 66 
showcase highly accurate 2D/3D VLP using imaging MIMO 67 
setups. While this paper primarily focuses on proof-of-68 
concept demonstrations of VLP using such configurations, 69 
the overarching objective is to exhibit integrated 70 
communications and positioning in future iterations.  71 

Hence, the novelty and original contributions of this 72 
paper are as follows:  73 
 To the best of the authors’ knowledge, this is the first 74 

experimental demonstration and simulation study of 75 
imaging optical MIMO configuration for 2D/3D 76 

Table 1: Key experimental parameters for imaging VLP system overview of diversity receiver based VLP systems and original 
contribution of proposed work. 

Reference/year Technique 
Type of 
Study 

Number 
of Txs 

Number 
of PDs 

Room 
dimensions (mm) 

L×W×H 
3D 

Compatible 
with 

communications 
 

Accuracy 

[17], 2018 RSS Simulation 1 4 3000×3000×1250 No No 35.0 mm @ 90% CDF 

[18], 2021 
RSS fingerprinting 
with fabricated data 

and ML 
Experimental 4 4 1200×1200×1600 No No 8.3 mm @ 90% CDF 

[19], 2022 
AOA with 
LSTMNN 

Experimental 1 4 400×400 No No 29.0 mm @90% CDF 

[20], 2018 
Three different 
ANNs (one for 

each axis) 
Simulation 16 

361 
 (19 ×19) 

4000×4000×3000 Yes No 0.4 mm @90% CDF 

[21], 2022 
RSS fingerprinting 

(ML) 
ANN 

Simulation 4 1-4 5000×5000×5000 Yes No 
19.8 mm @ 90% CDF (LOS-3D) 
10.3 mm @ 90% CDF (LOS-2D) 

[22], 2024 
Deep residual 

shrinkage network 
(DRSN) 

Experimental 
& Simulation 

1 4 3600×3600×3000 Yes No 

23.5 mm @90% CDF 
(Simulation) 

100 mm @90% CDF 
(Experimental) 

Our work 
RSS fingerprinting 

MLP-ANN with 
Imaging receiver 

Experimental 
& Simulation 

4 4 400×400×120 Yes Yes 
2 mm (2D) @90% CDF 
9 mm (3D) @90% CDF 
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positioning. Furthermore, this is the first study of 1 
utilizing the supervised ANN with imaging MIMO for 2 
VLP. 3 

 This paper provides a comprehensive study of the impact 4 
of defocusing the lens position in the receiver on VLP 5 
performance; clearly demonstrating the trade-off 6 
between the field of view (FOV) and positioning 7 
accuracy 8 

 This is the first experimental demonstration to verify the 9 
improved 2D and 3D positioning accuracy due to 10 
imaging spatial diversity provided by multiple PDs. 11 

 This work demonstrates the potential of imaging MIMO 12 
VLP configuration for integrated sensing and 13 
communication applications, aligning with future 6G 14 
network requirements. 15 

The subsequent sections of this work are organized as 16 
follows: section 2 provides a detailed description of the 17 
proposed VLC positioning system, including the 18 
experimental setup and the signal processing for the ANN 19 
algorithm. Section 3 presents the results obtained from both 20 
laboratory measurements and simulations evaluating the 21 
accuracy of the 2D/3D positioning system. Finally, section 4 22 
presents the conclusions of this work by summarizing the 23 
feasibility and accuracy of the proposed 2D/3D VLP system 24 
and identifying the main challenges for further research. 25 

2. System description and experimental setup  26 
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 27 
Fig. 1. Multi-PD VLP system with an imaging receiver: (a) 28 
Schematic diagram; (b) Photograph of the laboratory setup. The 29 
insets show the geometrical distribution of the transmitters and 30 
receivers. 31 
 32 

Fig. 1(a) depicts the experimental setup of the VLP 33 
system proposed in this work, including the Tx and Rx 34 
configurations, the signal processing procedure at the Rx, and 35 
position estimation based on ANN, which will be described 36 
in detail in this section. The experimental parameters are 37 
summarized in Table II. The proposed VLP system employs 38 
a 4 × 4 imaging MIMO configuration that utilizes white LEDs 39 
as Txs and an imaging receiver with a PD array as Rx, in a 40 
similar arrangement to other MIMO-VLC imaging systems 41 
[27], [28]. 42 

 43 
2.1. Transmitter 44 

 45 
The VLP system utilizes four symmetrically 46 

distributed Txs, spaced 300 mm apart, serving as illumination 47 
sources and signal transmitters for position estimation. Each 48 
transmitter comprises an LED (Samsung LM561C) and a 49 
reflector (LEDiL EMILY-W), producing a 40° beam 50 
divergence. The LED operates with an average bias current 51 
of 75 mA, creating a luminous flux of 46 lumens. Modulating 52 
signals are generated by four arbitrary waveform generators 53 
(AWGs), whose outputs are converted into unipolar signals 54 
adding DC voltages using bias-Tees (MINI-CIRCUITS, 55 
ZFBT-4R2GW-FT+). Thus, a non-negative amplitude of the 56 
signal is ensured to modulate the intensity of each LED. Since 57 
the distance between the ceiling and the detector plane in the 58 
2D VLP configuration is fixed at 1400 mm, the 40° 59 
divergence gives rise to a circular coverage area of 60 
approximately 817 mm2 (510 mm radius) for each transmitter. 61 
 62 

2.2. Receiver 63 
 64 

Our imaging MIMO VLP configuration employs a 65 
plano-convex aspheric singlet lens (THORLABS, 66 
ACL2520U) with a 25 mm diameter and a 20.1 mm focal 67 
length as the imaging optics. A PD array with four 68 
independent elements is used as the receiver, as shown in 69 
Fig. 1. As stated in [29], the FoV can be improved by 70 
defocusing (i.e., placing receivers at the offset distance (foffset) 71 
towards the lens from the focal plane) instead of placing the 72 
receiver at the focal plane. Then, the receiver can achieve a 73 
wider FoV to support improved localization while 74 
maintaining a sufficient signal-to-noise ratio (SNR) for 75 
reliable positioning operation. Hence, we utilized the focal 76 
offset (foffset) of 4 mm, providing a FoV of 37.5°, which 77 
closely matches the transmitter beam divergence of 40°. The 78 
signal output from each PD is independently amplified by a 79 
trans-impedance amplifier (TIA) (MAX3665) followed by a 80 
low-noise amplifier (LNA) with a 20-dB gain (MINI-81 
CIRCUITS, ZFL-1000LN+). A 4-channel digital 82 
oscilloscope captures the signal, with each channel 83 
corresponding to each amplified PD output, followed by 84 
offline processing. The maximum SNR in our setup is 85 
measured as 51.9 dB. 86 
 87 
Table 2: Key experimental parameters for imaging VLP 88 
system.  89 

Parameter Value 
LED SAMSUNG LM561C 
 Bias current 𝐼 75 mA 
 Bias voltage 𝑉ୈେ 3.3 V 
 Flux 43 lm @75 mA 
Reflector LEDiL CA11934_EMILY-W 
 External diameter Ø 26 mm 
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Parameter Value 
 FWHM 40° 
RX lens Thorlabs ACL2520U-A 
 Diameter Ø25 mm 
 Focal Length 𝑓 20.1 mm 
 Back Focal Length 𝑓  12mm 
PD First Sensor QP5.8-6-TO5 
 Number of elements  4  
 Active area of each PD 1.44 mm2 

 Responsivity 0.4 A/W @632 nm 
 Element gap 50 µm 
Amplifier Mini-Circuits ZFL-1000LN+ 
 Gain 19.9 dB 
 Noise Figure 2.9 dB 

General 
 Discrete frequencies 200, 400, 600, 800 kHz 
 No. of transmitters, MTx 4 
 No. of receivers, NRx 4 

 
Test Area 
 

3D 540 × 540 × 120 mm3  
2D 410 × 410 m2 

 1 
2.3. VLP channel 2 

 3 
For the MIMO configuration with 𝑁்௫  transmitters 4 

and 𝑀ோ௫ receivers, the received signal can be calculated as: 5 
 6 

𝐒 ൌ 𝐇𝐗  𝐧;    (1) 7 
 8 

where H is the 𝑁்௫ ൈ 𝑀ோ௫ channel matrix; X is the 𝑁்௫ ൈ 1 9 
transmitted signal vector; n is the 𝑀ோ௫ ൈ 1 noise vector and S 10 
is the 𝑀ோ௫ ൈ 1  received signal vector. Note that for the 11 
imaging optical MIMO communication system, 𝑀ோ௫  𝑁்௫. 12 
However, such a requirement is not necessary for the VLP-13 
only applic_ations, though a higher number of Rx improves 14 
the positioning accuracy, as detailed in Section III. The 15 
channel gain from each Tx to each Rx, known as the channel 16 
H-matrix, is given by:  17 

 18 

𝐇 ൌ

⎣
⎢
⎢
⎡ ℎଵଵ ℎଵଶ

ℎଶଵ ℎଶଶ

⋯ ℎଵேೣ
… ℎଶேೣ

⋮ ⋮
ℎெ౮ଵ ℎெ౮ଶ

⋱ ⋮
… ℎெ౮ே౮⎦

⎥
⎥
⎤

;  (2) 19 

 20 
where ℎ is the channel gain from the jth transmitter to the ith 21 
receiver element. The channel gain information is related to 22 
RSS and can be used for positioning estimation. 23 

For simplicity, we have employed frequency division 24 
multiplexing (FDM) with four discrete frequencies to 25 
distinguish the signals from individual LEDs instead of time 26 
division multiplexing (TDM), where a low-frequency 27 
sinusoid signal is transmitted in time sequence from each 28 
transmitter [27]. The Fast Fourier Transform (FFT) is applied 29 
to the received signal to compute the RSS corresponding to 30 
each transmitter. This operation is necessary to separate the 31 
FDM signals from multiple transmitters and prepare the 32 
inputs to the ANN for further processing. 33 

 34 
2.4. Artificial Neural Network model 35 

 36 
As shown in Fig. 2, a fully connected feedforward 37 

backpropagation supervised multi-layer perceptron (MLP) 38 
ANN with one input layer, one hidden layer, and one output 39 
layer is implemented for 2D/3D positioning estimation. The 40 
number of neurons in the input layer equals 41 
𝑀ோ௫ ൈ  𝑁்௫ corresponding to the channel H-matrix for a 42 

particular position in (2). The output layer has a linear transfer 43 
function with two/three neurons corresponding to 2D/3D 44 
positioning, respectively. A detailed description of the ANN 45 
structure and corresponding training algorithm, including the 46 
optimization process for the hidden layer, can be found in 47 
[21]. Based on the optimization, the hidden layer has 32 48 
neurons with a sigmoid transfer function. The sigmoid 49 
transfer function is selected for its capacity to introduce non-50 
linearities into the model, enabling the network to learn from 51 
the training data. A dataset containing different RSS matrices 52 
paired with their corresponding positions is used to train the 53 
ANN, which jointly represents the spatial distribution of RSS. 54 
During training, the network adjusts its weights to minimize 55 
errors between the estimated and actual positions. This is 56 
achieved by backpropagation, where the error gradient is 57 
propagated backward through the network, allowing the 58 
optimization of the neural network parameters [30]. While 59 
various algorithms can be used with backpropagation to 60 
update the weights and biases of the MLP-ANN, we 61 
specifically use the Levenberg-Marquardt algorithm due to its 62 
superior convergence speed and minimal epoch requirements 63 
compared to alternative methods [31]. 64 

 65 
Fig. 2. Schematic diagram of ANN model for VLP. 66 

3. Results and Discussion 67 
3.1. Experimental results  68 

 69 
Fig. 3. (a) CDF of geometrical error of the proposed 2D VLP system 70 
using different numbers of training points. Location of the measured 71 
and estimated points by the ANN algorithm using different numbers 72 
of points: (b) 627 and (c) 157. 73 
 74 
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The experiment aimed to evaluate the accuracy of the 1 
proposed 2D/3D positioning system by conducting 2 
measurements within the predefined areas. A grid of 2D 3 
points with a geometric spacing of 15 mm was created to 4 
evaluate the positioning accuracy. Hence, by measurements, 5 
we collected 784 points within a 410 × 410 mm2 area. This 6 
geometric spacing was chosen to balance a detailed spatial 7 
analysis with the practical constraints of measurement time. 8 
The system was evaluated based on the geometrical error's 9 
cumulative distribution function (CDF). Unless otherwise 10 
specified, we will use a CDF of 0.9 to specify the positioning 11 
error throughout the paper. 12 

Fig. 3(a) shows the empirical CDF of the positioning 13 
error for different numbers of ANN training data. Training 14 
ANN with 80% of the dataset (627 points) resulted in a 15 
positioning error of 3.7 mm. Conversely, reducing the 16 
number of training data to 60%, 40%, and 20% of the dataset 17 
led to performance degradations and increased positioning 18 
errors of 4.9 mm, 12.6 mm, and 31.6 mm, respectively. 19 
Figs. 3(b) and (c) present the spatial distributions of errors 20 
across the test area. The figures compare the actual locations 21 
(denoted by crosses) with the locations estimated by the 22 
proposed system (represented by points). In Fig. 3(b), 627 23 
training points were employed, and a smaller spread of the 24 
estimated positions around the actual positions is observed, 25 
indicating a higher overall positioning accuracy. In 26 
comparison, Fig. 3(c) shows the results when 157 training 27 
points were used, representing 20% of the dataset. This figure 28 
shows a sparser distribution of estimated positions, reflecting 29 
the degradation in system performance due to the smaller 30 
training dataset size. 31 

 To assess the 3D positioning accuracy, measurements 32 
were conducted within a 540 × 540 × 120 mm³ space. The 33 
grid is structured by points spaced 30 mm apart, with 361 34 
points for each 2D plane and five different vertical levels, i.e., 35 
five 2D planes spaced 30 mm apart. The dataset comprises 36 
1805 measurement points, 80% of which were used to train 37 
the ANN, and the remaining 20% were used to test and 38 
validate the algorithm.  39 
 40 

 41 
Fig. 4. CDF of geometrical error of the proposed 3D VLP system, 42 
including the detail of individual x-, y-, and z- plane in the 3D 43 
positioning. The inset shows the 3D scatter plot of the test and 44 
estimated positioning points. 45 

Fig. 4 shows the geometric error in the x-, y- and z-46 
planes. The positioning accuracies in the x- and y-planes are 47 
comparable, where the error is close to 15 mm. As expected, 48 
the accuracy in x- and y-planes is similar to the value in 2D 49 
positioning experiments presented in Fig. 3 for a similar 50 
number of training points (314). In contrast, the z-plane has a 51 
significantly higher error of ~51 mm. This difference in error 52 
between the dimensions is due to the reduced number of 53 
training points in the z-plane, which results in lower 54 
positioning accuracy. The inset in Fig. 4 visually compares 55 
30 test points (crosses) and the estimated positions (dots) in 56 
that plane. 57 

Fig. 5 demonstrates the impact of the receiver 58 
diversity on the accuracy of 2D and 3D positioning. In the 59 
case of 2D positioning, the positioning errors are 30 mm, 60 
6 mm, 5 mm, and 3.7 mm for one, two, three, and four PDs, 61 
respectively (see Fig. 5(a)). Similarly, Fig. 5(b) shows that 62 
the 3D positioning errors are 78 mm, 61 mm, 60 mm, and 63 
51 mm for one, two, three, and four PDs, respectively. This 64 
clearly illustrates the advantage of a PD array receiver system 65 
with imaging optics in enhancing positioning accuracy. We 66 
anticipate further enhancements in 3D positioning by 67 
increasing the number of training points along the z-plane, as 68 
shown in the following section. 69 
 70 

 71 
Fig. 5. CDF of geometrical error of the proposed VLP system with 72 
different diversity order NRx = 1-4 for: (a) 2D VLP and (b) 3D VLP. 73 
 74 

3.2. Simulation results  75 
 76 

The ZEMAX OpticStudio software is employed to 77 
verify and further extend the experimental results. The 78 
simulation scenarios replicate the experimental 79 
configurations and components described in the previous 80 
section, while optical powers and shot noise are adjusted to 81 
match the laboratory measurement conditions. For 2D 82 
positioning, simulations were conducted in a 410 × 410 mm2 83 
area using the same grid and number of points as in the 84 
experiment. However, the imaging optics system was 85 
optimized by varying foffset, i.e., distance of the lens from its 86 
focal point towards the detectors to modify the size of the 87 
image formed at the receiver, to study the impact on 88 
positioning accuracy. 89 

Fig. 6(a) presents the CDF of the positioning error of 90 
the 2D-VLP system for foffset ranging from 0 to 6 mm. As in 91 
the case of experimental work, 80% of the dataset is used to 92 
train the ANN, and the remaining 20% is used for testing. The 93 
solid line represents the CDF obtained from laboratory 94 
measurements, showing excellent agreement with simulation 95 
results, with a positioning error of 3.7 mm at foffset = 4 mm. 96 
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This correspondence validates the accuracy of the simulation 1 
model in replicating the experimental setup, allowing further 2 
extension of the experimental findings. The positioning error 3 
initially decreases with increasing foffset, reaching a minimum 4 
error of approximately 2.6 mm at foffset = 2 mm; beyond this 5 
point, the error begins to increase. For instance, the 6 
positioning errors for foffset of 3 mm and 4 mm are ~2.9 mm 7 
and 3.5 mm, respectively.  8 
 9 

 10 
Fig. 6. (a) CDF of geometrical error from simulations for different 11 
focal offsets between the lens and the photodetectors (black curve 12 
corresponds to experimental results). Spatial distribution of the 13 
geometrical error for: (b) foffset = 4 mm (c) foffset = 2 mm and (d) 14 
foffset = 0 mm. The yellow circles represent the location of the four 15 
transmitters. 16 
 17 

Figs. 6(b), (c), and (d) show the spatial distributions of 18 
the geometric error for an offset of 4 mm, 2 mm, and 0 mm, 19 
respectively. Figs. 6(b) and (c) reveal a relatively uniform 20 
distribution of positioning errors across the measured area. In 21 
contrast, Fig. 6(d) corresponding to foffset = 0 mm shows a 22 
notable variation in error distribution, with certain regions 23 
exhibiting significantly higher errors, particularly in the 24 
center. These areas of increased error are due to lower 25 
received signal intensity, as the image of Tx does not fall into 26 
any of the PDs due to narrow FoV (discussed further below). 27 

Fig. 7 provides a further analysis of the imaging 28 
MIMO VLP system. The simulation of the spatial intensity 29 
distribution (incoherent irradiance W/m2) depicts the 30 
received optical intensity at the image plane. The red lines 31 
represent the PD array in the image plane. The first row (Figs. 32 
7(a), (b), (c)) depicts the images formed when the detector is 33 
located at the geometrical center formed by the transmitters. 34 
The second row (Figs. 7(d), (e), (f)) represents the images 35 
formed when the receiver is positioned directly below one of 36 
the transmitters. Each column represents a foffset of 4 mm, 37 
2 mm and 0 mm (from left to right). As observed, the focal 38 
offset significantly impacts the spatial distribution of 39 

intensity. The clearest image is formed when the receiver 40 
plane is at the focal point (foffset = 0 mm). However, the 41 
images from the transmitters are outside the PDs, 42 
significantly reducing the received power. On the other hand, 43 
at foffset = 4 mm, the images formed from the transmitters 44 
overlap significantly and are difficult to distinguish (this 45 
overlap leads to substantial inter-channel interference, 46 
resulting in a higher condition number for the MIMO H-47 
matrix). In contrast, foffset = 2 mm proves to be the optimal 48 
configuration, showing a clearly separated image from the 49 
four transmitters. Hence, as in the case of the imaging MIMO-50 
VLC system [31], the condition number of channel H-matrix 51 
affected the positioning accuracy, and optimization of the 52 
optic system is necessary to obtain the best condition number.  53 
 54 

 55 
Fig. 7. Simulation of the image formed by the transmitters at the 56 
detector plane for different foffset and different locations. First row: 57 
The receiver is at the geometric center of the four transmitters and 58 
foffset is: (a) 4 mm, (b) 2 mm, and (c) 0 mm. Second row: The receiver 59 
is located directly under one of the transmitters and foffset is: (d) 4 60 
mm, (e) 2 mm, and (f) 0 mm. The red lines represent the PD array 61 
of four elements at the imaging plane. 62 
 63 

Furthermore, the impact of SNR on the VLP 64 
performance is shown in Fig. 8, where the position accuracy 65 
has been estimated for the best-case configuration 66 
foffset = 2 mm under an SNR range of 25–60 dB. As expected, 67 
the accuracy of the system decreases as the SNR decreases. 68 
In particular, the accuracy decreases from ~2 mm to 69 
~16.9 mm when the maximum SNR reduces from 60.9 dB to 70 
25.9 dB. However, the SNR has only a marginal impact on 71 
the positioning at high SNR, e.g., position accuracy decreases 72 
from 2 mm to 2.4 mm when SNRs are 60.9 dB and 50.9 dB, 73 
respectively. The insets illustrate the SNR distribution over 74 
the measurement area for a single transmitter and a single PD 75 
from the array. Note the significant drops in SNRs towards 76 
the edge of coverage areas.  77 

Finally, simulations for both 2D and 3D positioning 78 
were carried out in an enlarged area of 600 × 600 × 240 mm3 79 
under the same configuration as employed in the laboratory 80 
(foffset = 4 mm) for estimating the potential accuracy of the 81 
experimental 3D positioning system with a larger number of 82 
dataset points. The simulation grid is structured by points 83 
spaced 15 mm apart in the horizontal and vertical dimensions. 84 
This configuration results in a total of 1681 points in each of 85 
the 2D planes. The grid was divided vertically into 17 86 
different levels (±120 mm from the 2D level); thus, the 87 
simulation dataset comprises 28577 points for 3D. As in all 88 
other cases, 80 % of the dataset (22861) is used to train the 89 
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ANN, and the remaining 20% is used for testing (5715). 1 
Fig. 9 displays the CDF of the 3D positioning along the x-, y- 2 
and z-planes, as well as the combined total positioning error. 3 
 4 

 5 
Fig. 8. CDF of the geometric error from simulations with a 6 
configuration of foffset = 2 mm and 1513 dataset points for different 7 
SNR = 60.9–25.9 dB. Insets show the SNR distribution within the 8 
measurement area for one LED and one PD from the array for the 9 
best-case scenario of: (i) 60.9 dBm and (ii) 30.9 dBm.  10 
 11 

The x- and y-planes errors are similar and relatively 12 
low, with positioning errors of ~6.9 mm. The z-plane, on the 13 
other hand, exhibits a greater error of 15.0 mm. The total 3D 14 
positioning error, which combines the errors of all three axes, 15 
is 16.8 mm, which is significantly lower than the 16 
experimental results of 51 mm. This improvement is due to 17 
the higher density of training points in the z-plane in the 18 
simulation, which allows for a more accurate representation 19 
of the measurement space and shows the potential of our 20 
approach for further improvement under larger training 21 
schemes.  22 

 23 

 24 
Fig. 9 CDF of geometrical error for 3D VLP from simulations with 25 
a configuration of foffset = 4 mm and 28577 dataset points. 26 

4. Conclusions 27 
This paper presents an experimental demonstration of 28 

a high-accuracy 2D and 3D VLP system using an optical 29 
imaging MIMO system with supervised ANN. Experimental 30 
results show the impact of the number of training points and 31 
the spatial diversity on positioning accuracy, leading to 32 
3.7 mm and 51 mm for 2D and 3D positioning accuracy, 33 
respectively.  34 

  The experimental work is validated and further 35 
extended by simulations. The simulation results allow to 36 
estimate the required number of training points and evaluate 37 
the impact of the system noise. Furthermore, the study 38 
underscores the critical role of optimizing the imaging optics, 39 
particularly the focal offset, in achieving high-accuracy 40 
positioning. Using the experimental parameters under an 41 
optimized system configuration, the simulations 42 
demonstrated a minimum positioning error of 2.0 mm and 9.3 43 
mm for 2D and 3D positioning, respectively. Therefore, high-44 
accuracy 2D/3D positioning has been demonstrated in a 45 
scalable imaging MIMO configuration as a promising 46 
solution for integrated positioning and communications 47 
applications. These advantages lead the proposed VLP 48 
imaging MIMO system as a promising solution for future 6G 49 
networks requiring high-precision indoor positioning 50 
capabilities. 51 
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