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Abstract 

 

One of the biggest challenges in Supply Chain Management (SCM) is to forecast sporadic 

demand. Our forecasting methods’ arsenal includes Croston’s method, SBA and TSB as well as 

some more recent non-parametric advances, but none of these can identify and extrapolate 

patterns existing in data; this is essential as these patterns do appear quite often, driven by 

infrequent but nevertheless repetitive managerial practices. One could claim such patterns 

could be picked up by Artificial Intelligence approaches, however these do need large training 

datasets, unfortunately non-existent in industrial time series. Nearest Neighbors (NN) can 

however operate in these latter contexts, and pick up patterns even in short series. In this 

research we propose applying NN for supply chain data and we investigate the conditions under 

which these perform adequately through an extensive simulation. Furthermore, via an empirical 

investigation in automotive data we provide evidence that practitioners could benefit from 

employing supervised NN approaches. The contribution of this research is not in the 

development of a new theory, but in the proposition of a new conceptual framework that brings 

existing theory (i.e. NN) from Computer Science and Statistics and applies it successfully in an 

SCM setting. 

Keywords: Supply Chain; Logistics; Demand Forecasting; Exponential Smoothing; Nearest 

Neighbors; 
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Forecasting Supply Chain sporadic demand                                                                  

with Nearest Neighbor approaches 

1. Introduction 

One of the biggest challenges in Operations Management (OM) is to forecast as accurately as 

possible the sporadic/intermittent demand faced in most supply chain and logistics operations. 

Assuming we are not in a made-to-order supply context, then forecasters are facing true 

uncertain stochastic demand. The reason that makes the forecasting task so challenging has to 

be attributed to the dual uncertainty faced by decision makers due to the sporadic nature of 

both the actual demand volume as well as the timing of demand arrivals; the latter do not occur 

during each and every period of time and as such there are many periods in time with zero 

demand. 

Especially for logistics operations where the spatial dimension comes into the equation, the 

appearance of sporadic demand is more often, as prima facie regular demand at the aggregate 

manufacturing or distribution-centre level becomes intermittent when demand is realised 

through the alternative geographical channels. Furthermore the alternative direct retailing 

channels through online and digital media create more ‘channel products’ for which demand 

needs to be forecasted and stock to be replenished. 

There have been a few forecasting methods tailored for such data that have been developed 

over the last forty years (Petropoulos et al. 2014), mostly exponential smoothing approaches 

like Croston’s method (1972), Syntetos and Boylan approximation–SBA (2001) and more 

recently a method developed from Teunter, Syntetos and Babai–TSB (2011). A handful of more 

advanced but at the same more complex non-parametric methods has also been proposed over 

the years but these do not necessarily outperform the former (Syntetos et al. 2015).  

In general the assumption is that the aforementioned intermittent series present no trend or 

autocorrelation, no seasonality or cycles - in essence none whatsoever structural component 

that could be identified via a formal statistical procedure. However, this for practitioners just 

does not make sense as they do know that very often they apply the same tactics when they 

order, replenish or produce products and services; it is just that these are happening in non-

periodic lags and thus becomes very difficult to spot them in the past of a time series. Attesting 

to that, Altay with Litteral and Rudisill have provided evidence of existence of trend (2008) and 

correlation (2012) in intermittent data and proved that these features significantly affect 

forecasting and stock control performance.  

Unfortunately, none of the proposed to date methods can pick up one-off (or more frequent) 

patterns existing in the past of a series, patterns that may appear quite often due to irregular 

but repetitive managerial practices. Artificial Intelligence and other computationally intensive 

approaches (Haykin, 1998) that could pick up such patterns have been successfully applied in 

other disciplines like finance, economics, marketing and computer science. These methods 

however do rely on very large training datasets in order to predict satisfactorily, thus are not fit-

for-purpose in our context where lengthy series are perceived as quite a luxury. Nevertheless 

there is one non-parametric regression smoothing method that does not require large training 

data sets: Nearest Neighbors (NN), which are capable of producing forecasts even when only 

just two or three observations are available. 
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In this research we propose applying NN for supply chain data and we investigate the 

conditions under which these perform adequately through an extensive simulation on 480 time 

series where we control for intermittence levels, frequency, plurality and type of patterns, and 

level of noise.  Furthermore via an empirical investigation in automotive data over 3000 SKUs 

we provide evidence that practitioners could benefit from employing supervised NN approaches 

- supervised in the sense that you only allow the patterns to be identified if there is some 

evidence that these patterns do exist - this in this paper is achieved through an adjusted 

cumulative autocorrelation function.  

The contribution of this research is not in the development of a new theory, but in the 

proposition of a new conceptual framework that brings existing theory (i.e. NN) from Computer 

Science and Statistics and applies it successfully in an SCM setting. The proposed framework 

comes with a series of limitations as it should be applied only when evidence of existence of 

patterns is apparent, and even so not left unsupervised rather than applied only in the part of 

the dataset that exhibits higher autocorrelations. Ceteris paribus, we still believe that we live in 

a world where humans drive data, through their action and behaviours eventually do introduce 

infrequent patterns in time series data; and as such we do believe there is merit for 

practitioners and academics to consider our proposition and further research it in the future.  

The remaining of the paper is structured as follows: section two revisits the background 

literature while section three presents the conceptual framework of the NN method and gives 

an illustrative example of how the method could be used in a SCM context; section four 

compares the newly proposed method with other classical parametric approaches. Section five 

gives the results of an extensive empirical evaluation across a real large dataset from RAF. 

Section six discusses the implications for SCM theory and practice, while the last section 

concludes and provides the roadmaps for future research. 

 

2. Background Literature  

The first part of the literature review revisits the most important methods for forecasting 

intermittent demand. The second part focuses on successful applications of Nearest Neighbors 

in various contexts. 

2.1. Forecasting Supply chain sporadic demand 

For intermittent data, simple techniques such as Naïve, Moving Averages and Simple 

Exponential Smoothing (SES) have been quite popular among practitioners over the years due 

to their simplicity and accuracy but most importantly the ability to handle non-demand 

observations without the need of time series transformations (Petropoulos et al. 2013).  The 

first method tailored to intermittent data came from John Croston in his seminal article Croston 

(1972) proposing a decomposition of the data into two subseries, one for the positive demands 

(excluding the zeros) and one for the arrival intervals. Syntetos and Boylan proposed (2001) 

and evaluated successfully (2005) SBA: a bias-correction approximation to the Croston method. 

More recently, Teunter et al. (2011) suggested the TSB decomposition method that builds on 

the separate extrapolation of the non-zero demands and the probability to have a demand; with 

this method being very useful in cases of obsolescence.  
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A handful of non-parametric methods has been proposed over the years, most notably from 

Willemain et al. (2004) with a bootstrapping approach that captures potential auto-correlations 

of the underlying demand patterns and simultaneously accounts for variability not observed in 

the original demand sample through the patented ‘Jittering’ process. AI approaches have been 

also proposed; most often Artificial Neural Networks (Gutierrez et al 2008) but these do need 

very large training datasets. In any case, there is no sufficient empirical evidence that these 

methods are more accurate from the simpler ones (Syntetos et al. 2015).  

More recently, Nikolopoulos et al. (2011) proposed the ADIDA non-overlapping temporal 

aggregation forecasting framework that was successfully evaluated both in terms of forecasting 

accuracy as well as of stock control performance (Babai et al., 2012). The proposed framework 

is now perceived as a “forecasting-method improving” mechanism that through frequency 

transformations helps methods achieve better accuracy performance. The first theoretical 

developments for the framework appeared recently in the literature (Spithourakis et al., 2014; 

Rostami-Tabar et al., 2013, 2014). Kourentzes et al. (2014) extended this idea by means of 

estimating time series structural components across multiple frequencies and optimally 

extrapolate and combine them; with empirical results being quite promising for long-term 

forecasting. Petropoulos and Kourentzes (2014) also proposed forecasting method 

combinations on the aforementioned context with improved forecasting performance.  

2.1 Nearest Neighbors 

Nearest Neighbor approaches (NN/NNs, Härdle1 1992) are quite popular in the forecasting 

literature (Green 2002), largely because of their intuitively appealing simplistic nature and 

theoretical attributes (Yakowitz 1987). They are generally found to present distinct advantages 

versus their alternatives for non-linear fluctuations, since, while their parameters are linear in 

nature, NNs can capture the complex non-linear patterns among neighbours (Yankov et al. 

2006), thus predicting composite non-linear behaviors in a fairly accurate manner. Hence, NN 

methods have been applied to time-series and cross-sectional data in a wide variety of domains 

and have often been found to outperform alternative, most of the time far more complex 

approaches. However to the best of our knowledge these have never been applied in an SCM 

sporadic demand context. We hereafter review some of the most indicative works in the most 

common domains.  

Economics & Finance 

In his attempt to beat the ‘tenacious’ random walk model in forecasting exchange rates, Mizrach 

(1992) combines k-NN estimators (using the outcomes from ‘k’ closest past cases=the 

neighbors) with a locally weighted regression procedure. He finds an improvement in the 

forecast accuracy in just one out of the three rates examined, a result which is however not 

robust to further empirical scrutiny.  Along the same lines, Jaditz and Sayers (1998), compare 

out-of-sample forecasts between a best fitting global linear model and a local-information 

nearest-neighbor forecasting methodology on money supply data. They report just marginally 

smaller Root Mean Squared Errors for NNs than those from simple linear autoregressive (AR) 

models. 

                                                           
1 This is by many academics considered the most complete reference book describing the theoretical foundations as well as 
many practical applications of Nearest Neighbors for smoothing, classification and forecasting. 
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More recent studies have offered considerable merit for the use of NN estimates in financial 

forecasting. In an attempt to predict short term Foreign Exchange rates, Meade (2002) 

compares the accuracy of a linear AR-GARCH model (Engle, 1982) to three NN methods and 

locally weighted regressions. He reports higher accuracy for the NN approaches, which is also 

found to improve, as the data frequency increases from daily to half-hourly.  

In another study of US listed company share prices and dividends, Kanas (2003) compares the 

forecasts generated by parametric standard and Markov regime switching models with the ones 

produced by a simultaneous (multivariate) nearest-neighbour (SNN) approach and ANNs and 

finds SNN to perform similarly to the others in terms of accuracy, but not as well as the Markov 

switching model in terms of forecast encompassing. In a recent study of short term stock price 

reactions to equity offering announcements, Bozos and Nikolopoulos (2011) compare forecasts 

by parametric, non-parametric models and expert judges and conclude that k-NN methods 

ranked high in terms of economic performance of the forecasts, despite their forecast accuracy 

being relatively lower.  

Analytics (Marketing, Logistics) 

Similar attention has been paid by researchers in the broader areas of commerce, business and 

communications: In their competition among a large set of techniques employed to forecast TV 

audience ratings and respective advertising spending around special events, Nikolopoulos et al. 

(2007) report that a 3-NN model outperformed multiple linear regression and the more 

computationally-demanding neural networks ANNs.  They attribute the superiority of the k-NN 

model to its ability to identify more complex interactions across the input variables and filter 

out more noise in the observations.  In another example from marketing literature Mulhern and 

Caprara (1994) combine a multivariate NN model with regression analysis to forecast market 

response, using  store scanner data for a consumer packaged good. Their results suggest that 

such an approach has obvious advantages versus the more traditional Box-Jenkins analysis as it 

allows time effects (traditionally filtered out in ARIMA models) to be integrated into the causal 

relationships.   

In the field of logistics Smith et al. (2002), combine k-NN methods with heuristically improved 

forecast generation methods, to predict 15-minute traffic flow rates from the outer loop of the 

London’s Orbital Highway M25.  They report that their k-NN nonparametric regressions 

outperform naïve forecasts, but not those of the seasonal ARIMA models. Along similar lines, 

Sun et al. (2003), using 5-min interval traffic data from the US-290 highway in Texas, find k-NN 

methods to perform better than kernel smoothing, but not as well as local linear methods.  

Natural Systems  

In the seminal collection of  forecasting competitions during the early 1990s by the Santa Fe 

Institute (Weigend and Gershenfeld 1994), with datasets drawn from a range of disciplines (e.g. 

laser lab results, physiological data, astrophysical data, etc.),  k-NN methods were found to 

perform very well in terms of prediction error, even among more computationally-sophisticated 

and data-intensive methods. Specifically, Sauer’s (1994) 4-NN local linear fitting algorithm 

ranked just second among fourteen competing approaches for a univariate dataset generated by 

a far-infrared-laser in a chaotic state.  k-NN approaches have also been successfully applied in a 

variety of forecasting  extreme weather-related phenomena (Brabec and Meister 2001).  
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3. A conceptual framework for the application of k-NN in SCM sporadic time series  

NN approaches are a very simple way for forecasting the impact of future events by looking at 

the past for the impact of similar or analogous events (Green, 2002). In pattern recognition       

k-NN is a non-parametric method for classification that predicts class memberships based on 

the k closest training examples – the neighbors.  In a time series extrapolation context, finding 

the neighbours requires ranking in terms of similarity historic sequences of observations, to the 

most recent sequence of observations; in the same fashion that the autocorrelation function ACF 

does. Similarity ranking of course necessitates the use of a metric of distance; various metrics 

such as Euclidian norms have been used in order to measure distance in the n-D space (Hardle, 

1992). n-D space metrics are required since our sequences could involve several (n) 

observations  

3.1 The framework 

For a time series Yt, t=1..N , where YN≠02, let Now(N – l + 1, N)  be a row-vector of length l that 

consists of the latest sequence on non-zero observations starting from the last observation N 

and moving backwards to N-l+1. 

Let Neighbor(N - Lag – l + 1, N - Lag) be any row-vector of the same length l taken from the past of the 

series when we move backwards for a specific Lag. This latter vector is allowed to contain zero 

values.  

In order to measure the distance D of the neighboring vector (noted as Neighbor) from the 

present one (noted as Now), we do use the standard Euclidean norm, as follows: 

D = ||Now(N – l + 1, N)  -  Neighbor(N - Lag – l + 1, N - Lag)|| = √(∑ (𝑌𝑁−𝑖 − 𝑌𝑁−𝐿𝑎𝑔−𝑖
𝑙−1
𝑖=0 )2)                              (1) 

The bigger the value of D the less similar the respective neighbour is to the present vector. D is 

also called the neighboring function. Distances are calculated for all possible neighbors from the 

past of the series and a ranking is created from the Nearest Neighbor to the less similar ones. 

Ties are being allowed as many neighbors can actually have exactly the same distance from the 

present vector. 

If Neighbor(N - Lag – l + 1, N - Lag) is the Nearest Neighbor NN to the present vector Now(N – l + 1, N)  

according to the constructed ranking then: 

FN+1 = YN-Lag+1                                                                                                                                            (2) 

would be the one-step ahead forecast for the NN1 method that uses only one neighbour. The 

flexibility of the NN approaches allows us to use as many neighbors as we want and with 

whatever weights we want to weigh them. Typical selections include an odd number of 

neighbors, usually up to a maximum of five or seven neighbors, with either equal weights or 

with an exponentially decaying function giving respective weights as the neighboring distance D 

is decreasing. Kernel functions like the Triangular or Epanechnicov are used very frequently to 

produce the respective weights as well (Haerdle, 1992). The final forecast is constructed by 

                                                           
2 If YN=0 then we use the Naïve method so as to produce the one-step ahead forecasts, and we are waiting until YN+m≠0 
(m>0) so as to apply the framework.  The underlying principle is that we are interested to identify patterns and 
neighbors when there is ‘activity’ in the series, thus at the so-called ‘issue points’ where we have non-zero demand. The 
framework can easily be expanded to work for present sequences containing zero values as well. 
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applying these weights in the actual data points right after the neighboring vectors. For example 

if we use an exponential function with basis α and use k neighbors, the one-step ahead k-NN 

forecast becomes: 

Fk-NN,N+1 = (∑ 𝑎𝑖𝑘
𝑖=1 YN-Lagi+1) / ∑ 𝑎𝑖𝑘

𝑖=1 , 0<α<1                                                                                   (3)     

where Lag1 is the lag of the nearest  neighbor, Lag2 the lag of the second nearest neighbor, etc.                                                                                                                      

3.2 An illustrative example 

The proposed framework with the use of only one NN - usually noted as NN1 model or 1-NN 

model, is graphically illustrated in figure 1. 

 

Figure 1. An example of how the proposed NN1 method would work on a sporadic SCM time 

simulated weekly series.  

In this simulated example we do have a sporadic time series with 13 weekly observations (one 

quarter of a year), of which six are zero-values and seven non-zero values. The 14th value is kept 

as a holdout so we do use only the first thirteen observations so as to produce a one-step ahead 

forecast for the fourteenth observation that is equal to 1. The actual volumes are ranging from 0 

to 3 units and the inter-demand intervals from 0 to 5 weeks. 

Following the aforementioned conceptual framework, the present row-vector Now contains the 

latest non-zero values in observations 12 and 13 and is equal to [2,3] with length l=2 (as the 11th 

observation is equal to zero). We are now going to compare this row-vector with all possible 

row vectors of sequential observations of length l=2 from the past of the series as illustrated in 

Table 1: 
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Present row-vector:  Now(12, 13)  = [ 2,3] 
 

Observations Neighbor 
row-vector 

Distance 
D 

Forecast 
F14 

Ranking 

1,2 [0,2] √5 Y3=3 3 
2,3 [2,3] 0 Y4=1 1 
3,4 [3,1] √5 Y5=0 3 
4,5 [1,0] √10 Y6=2 8 
5,6 [0,2] √5 Y7=2 3 
6,7 [2,2] 1 Y8=0 2 
7,8 [2,0] 3 Y9=0 3 
8,9 [0,0] √13 Y10=0 9 

9,10 [0,0] √13 Y11=0 9 
10,11 [0,0] √13 Y12=2 9 
11,12 [0,2] √5 Y13=3 3 

Table 1. The NN algorithm: finding the Neighbors, calculating the distances D and Ranking. 

We do notice that in observations 2 and 3 there is the vector [2,3] (‘checked’ bars in figure 1, 

second row in table 1), that is a ‘perfect match’ to the present vector in observations 12 and 13; 

this is obviously the nearest neighbor. We do also notice that in observations 6 and 7 there is 

the vector [2,2] that with a distance D = sqrt((2-2)2 + (2-3)2) = 1  is the second nearest neighbor. 

In a similar fashion table1 is constructed and the neighbors are ranked, where many ‘ties’ do 

occur in this specific example. Alternatively we can use other non-Eucledian norms for 

measuring the distance like the sum of the absolute differences of the respective vector 

elements. 

We also do notice that the proposed neighboring function gives the same score D for vectors 

[2,0] and [0,2] as it does not apply different weights depending on the order of appearance of 

the two elements of the vectors. We could also generalise the neighboring function for allowing 

the introduction of weights for the respective elements of the vectors: 

       D* =||Now(N – l + 1, N)-Neighbor(N - Lag – l + 1, N - Lag)|| 

 =√(∑ 𝑤𝑖(𝑌𝑁−𝑖 − 𝑌𝑁−𝐿𝑎𝑔−𝑖
𝑙−1
𝑖=0 )2)/∑ 𝑤𝑖

𝑙−1
𝑖=0                                                                             (4) 

This way we could give more weight for example to the respective differences to the very last 

observation, that according to the forecasting literature is the one containing most of the 

important information; and thus the historic consistent success of the Naïve forecasting method 

in forecasting evaluations. 

In order to produce the forecast for the hidden 14th observation we use the actual observations 

right after the end of the vector of each of the respective neighbors as illustrated in table 1; thus: 

FNN1, 14 = Y4 = 1, and                                                                                                                                (5)                                

FNN2, 14 = (Y4+Y8)/2 = ½                                                                                                                         (6) 

We could also instead of using equal weights for the two nearest neighbors of the NN2 model (or 

2-NN), to use ad-hoc weights so as to weigh more the nearest neighbor, for example: 
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  FNN2*, 14 = (3Y4+Y8)/4 = ¾                                                                                                                     (7) 

resulting in a 75% weight for the nearest neighbor and 25% for the second nearest neighbor. 

Alternatively we could use an exponential function or a kernel function for the respective 

purpose (see equation (3)). 

If we wanted to include the third nearest neighbor, we would need to take another ad-hoc 

decision as to either include any (randomly) of the five equally third nearest neighbors, or (for 

the sake of consistency) use the average forecast of those five neighbors. As in any averaging 

exercise, the more elements included in the averaging, the more the smoothing that is applied 

and as a result the closer the final forecast would be to the mean of the data. 

 

4. Forecasting simulated series with NN versus parametric methods  

In order to see how the NN methods perform in a large dataset rather than a single time series 

as in the aforementioned illustrative example, and versus established benchmarks, as well as 

investigate the conditions under which we would expect the NN methods to perform well, we 

use a simulated dataset3. We start our simulation with four different types of patterns of lengths 

2, 2, 3, and 4 periods respectively, and do control for three characteristics that often prevail 

sporadic time series: 

 frequency and plurality of patterns:  low frequency and singularity, where for every 

pattern in the time series there is one more repetition of that same pattern; high 

frequency and singularity, where for every pattern in the series there are four more 

repetitions of it; and high frequency and plurality, where for every pattern in the time 

series there is one more repetition of it and three more different patterns present (to the 

original and in-between them) - making pattern recognition very difficult!  

 level of intermittence: low where 50% of the data points represent non-zero demand; 

and high where only 20% of the data points represent non-zero demand thus 80% of the 

data are zeros. 

 levels of noise: low noise and high noise; for each level of noise there are 10 instances 

created for the series using different randomisation seeds 

All these characteristics are superimposed under a factorial setup thus creating a pool of 

4x3x2x2x10=480 series where each series is coded separately for identification and respective 

aggregate analysis. The length of the series varies from 8 to a 100 data points. We do use 50% of 

each series as a holdout over which we do a rolling evaluation of one-step ahead forecasts over 

the remaining periods. We do use two metrics of forecasting performance, the Mean Error (ME) 

that is a proxy of the bias of the produced forecasts from every method and the Mean Squared 

Error (MSE) that is a proxy of the accuracy and more specifically of the variance and the 

respective uncertainty of the provided forecasts. 

                                                           
3 The simulated dataset and the respective coding for the three control features (patterns, intermittence, noise) may be 
accessed at http://www.forlab.eu/forecasting-software  
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We do produce forecasts with five NN approaches: a) NN1, b) NN3 with equal weights, c) NN3* 

with three nearest neighbors but with the nearest one getting a weight of 50% and the 

remaining two 30% and 20% respectively, d) NN4 with equal weights, c) NN4* with four 

nearest neighbors but with the nearest one getting a weight of 30% and the remaining three 

40%, 30%. 20% and 10% respectively. NN1 is the most selective of the NN approaches as it uses 

only one neighbor so as to extrapolate.  

 

 
NN1 

 
NN3 

 
NN3* 

(0.5,0.3,0.2) 
NN4 

 
NN4* 

(0.4,0.3,0.2,0.1) 
ME 

 -4.046 -1.984 -2.775 -0.359 -1.919 
MSE 

 1260.569 1123.011 1053.325 1164.179 1059.522 
 

Table 2a. All 480 simulated series: forecasting performance of NN methods in terms of ME and 

MSE 

We then produce forecasts with four popular parametric approaches: SES, Croston, SBA, TSB for 

a wide range of their parameters with smoothing constant α ranging from 0.05 to 0.30 (step 

0.05) and β for TSB set to 0.054. We do yet again present the performance both for ME and for 

MSE in table2b. 

 Methods Smoothing constant 
0.05 0.10 0.15 0.2 0.25 0.30 

ME SES 0.187 0.076 -0.017 -0.055 -0.047 -0.005 
SBA 5.458 4.397 3.566 2.877 2.289 1.775 

Croston 6.211 8.736 5.795 5.856 6.035 6.311 
TSB  0.501 -0.060 0.020 -0.161 -0.312 -0.438 

MSE 
 

SES 1289.911 1336.125 1379.609 1419.622 1456.529 1490.945 
SBA 1452.946 1455.140 1464.756 1476.931 1490.159 1503.851 

Croston 1471.743 1598.683 1515.813 1544.678 1575.842 1609.207 
TSB  1287.995 1306.861 1290.671 1293.825 1297.739 1302.198 

Table 2b. All 480 simulated series: forecasting performance of parametric methods in terms of 

ME and MSE. 

Comparing tables 2a and 2b we notice that overall and across the 480 simulated series NN3* is 

the most accurate method in terms of MSE while TSB is the best from the parametric methods. 

In fact, all five NN variants are more accurate than any parametric method. In terms of ME 

however parametric methods do better with the best NN one being NN4 that was better than 

SBA and Croston but significantly worse than SES and TSB. This is expected as these two latter 

parametric methods have been shown to be statistically unbiased. 

What we can also add when we interpret the results of Table 2a and 2b is that when a single α 

value is used (as in practice), then for this α value we look at both the ME and MSE 

simultaneously. In that case, NN does better than even TSB because for the MSE = 1287.995, the 

ME is 0.501 so higher than that of NN if we compare with the two values for NN4 for ME and 

MSE (-0.359, 1164.179). If we opt for a low bias which is given by SES, then the MSE is much 

                                                           
4 Results under other beta values have also been generated for TSB but not reported here for the sake of economy of 
space, as they do not lead to different insights. 
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higher than that of NN. So in all cases, it is clear using this argument that NN is the best for this 

dataset. 

To a certain extent, we were anticipating that in a set of simulated data NN methods would 

illustrate superior forecasting performance; and this bring to the more interesting question: 

what are the conditions favouring (and not) the use of the NN framework? 

4.1 Conditions for superior performance of NN approaches  

Of all the potentially 12 combinations of: 

  (frequency and plurality of patterns ) x (level of intermittence ) x (level of noise) 

when the plurality is set to singular - that is when there is only pattern in the series that is 

repeated more or less frequently, then the NN methods always perform better than the 

parametric ones; this is the case for all 8 such combinations tested in our simulation. 

Parametric methods can outperform the NN ones only when faulty patterns do exist in the 

series, so in the simulated series where for every true repetition of a pattern there are three 

other different patterns present in the series. The result for those cases are as follows: 

 

NN1 
 

NN3 
 

NN3* 
(0.5,0.3,0.2) 

NN4 
 

NN4* 
(0.4,0.3,0.2,0.1) 

ME -6.670 -2.152 -3.773  0.727 -2.170 

MSE 1940.323 1337.214 1359.634 1272.409 1269.507 

Table 3a. 40 simulated series with plurality of patterns, low intermittence and low noise: 

forecasting performance of NN methods in terms of ME and MSE 

 Methods Smoothing constant 
0.05 0.10 0.15 0.2 0.25 0.30 

ME SES  2.751  2.227  1.8403  1.584  1.431  1.353 
SBA  3.489  2.287  1.328  0.545 -0.106 -0.658 

Croston  4.344  3.978  3.855  3.921  4.140  4.491 
  3.383  2.732  2.222  1.831  1.542  1.338 

MSE SES 1345.282 1392.534 1443.422 1495.313 1547.728 1600.654 
SBA 1315.522 1343.224 1372.963 1404.202 1436.613 1469.993 

Croston 1324.351 1360.207 1398.894 1440.993 1487.146 1538.094 
TSB 1340.940 1345.616 1354.375 1366.230 1380.541 1396.910 

Table 3b. 40 simulated series with plurality of patterns, low intermittence and low noise: 

forecasting performance of parametric methods in terms of ME and MSE 

Here yet again, the lowest MSE of SBA is obtained for α = 0.05. For the same α, ME of SBA is 

3.489 that is higher than that of NN obtained for the lowest MSE. So, for α =0.3, NN is better than 

SBA overall. 

For the 80 series where intermittence is low - and thus there are many non-zero demand values 

in the data,  in the case of high noise, parametric methods are slightly better (Tables 3a/3b) 

while when noise is low NN methods are slightly better (Tables 4a/4b). 
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NN1 
 

NN3 
 

NN3* 
(0.5,0.3,0.2) 

NN4 
 

NN4* 
(0.4,0.3,0.2,0.1) 

ME -6.871 -4.616 -5.255 -2.122 -4.032 

MSE 1071.484 927.110 923.809 910.429 893.287 

Table 4a. 40 simulated series with plurality of patterns, low intermittence and high noise: 

forecasting performance of NN methods in terms of ME and MSE 

 Methods Smoothing constant 
0.05 0.10 0.15 0.2 0.25 0.30 

ME SES -1.362 -0.834 -0.5179 -0.283 -0.101  0.040 
SBA -5.306 -4.622 -4.155 -3.805 -3.523 -3.280 

Croston -5.081 -4.123 -3.348 -2.661 -2.012 -1.370 
TSB -1.078 -1.178 -1.263 -1.334 -1.396 -1.450 

MSE SES 889.494 920.872 949.225 974.439 997.053 1017.728 
SBA 912.595 906.205 906.378 909.986 915.671 922.762 

Croston 912.116 905.135 905.271 909.710 917.335 927.734 
TSB 884.638 885.375 886.316 887.411 888.630 889.959 

Table 4b. 40 simulated series with plurality of patterns, low intermittence and high noise: 

forecasting performance of parametric methods in terms of ME and MSE 

For the 80 series where intermittence is high - and thus there are very few non-zero demand 

values in the data,  in both the case of low and high noise, parametric methods are clearly better 

than the  NN methods (Tables 5a/5b  and 6a/6b respectively). 

 

NN1 
 

NN3 
 

NN3* 
(0.5,0.3,0.2) 

NN4 
 

NN4* 
(0.4,0.3,0.2,0.1) 

ME -0.032 -2.934 -2.176 -1.065 -1.719 

MSE 3474.202 1957.513 2068.298 1985.325 1985.345 

Table 5a. 40 simulated series with plurality of patterns, high intermittence and low noise: 

forecasting performance of NN methods in terms of ME and MSE 

 Methods Smoothing constant 
0.05 0.10 0.15 0.2 0.25 0.30 

ME SES  2.876  2.490  2.1319  1.853  1.660  1.542 
SBA  4.278  2.994  1.933  1.042  0.276 -0.397 

Croston  5.291  5.005  4.945  5.070  5.346  5.747 
TSB  3.523  2.830  2.274  1.833  1.487  1.220 

MSE SES 1744.364 1802.792 1864.087 1924.609 1983.687 2041.558 
SBA 1724.997 1752.986 1786.699 1824.098 1863.488 1903.444 

Croston 1738.474 1778.430 1824.714 1876.899 1934.522 1997.092 
TSB 1746.324 1744.605 1748.404 1756.031 1766.261 1778.197 

Table 5b. 40 simulated series with plurality of patterns, high intermittence and low noise: 

forecasting performance of parametric methods in terms of ME and MSE 

Here one also can claim that for α = 0.05, it is true that SBA gives lower MSE but it results in 

higher bias than NN. Only a full efficiency analysis could prove what is clearly better but 

nevertheless there are arguments for NN in almost all provided results. 

 

NN1 
 

NN3 
 

NN3* 
(0.5,0.3,0.2) 

NN4 
 

NN4* 
(0.4,0.3,0.2,0.1) 

ME -3.252  0.069 -0.453  2.285  0.766 

MSE 1597.075 1081.939 1126.280 1105.073 1091.883 

Table 6a. 40 simulated series with plurality of patterns, high intermittence and high noise: 

forecasting performance of NN methods in terms of ME and MSE 
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 Methods Smoothing constant 
0.05 0.10 0.15 0.2 0.25 0.30 

ME SES -1.340 -0.907 -0.6262 -0.391 -0.189 -0.019 
SBA -5.131 -4.664 -4.388 -4.206 -4.077 -3.975 

Croston -4.865 -4.096 -3.490 -2.955 -2.449 -1.947 
TSB -0.886 -1.053 -1.197 -1.324 -1.435 -1.534 

MSE SES 1033.686 1069.901 1102.3333 1130.971 1156.516 1179.909 
SBA 1058.587 1049.415 1047.643 1049.649 1053.855 1059.478 

Croston 1058.592 1048.845 1046.697 1048.877 1054.051 1061.664 
TSB 1032.883 1032.501 1032.464 1032.690 1033.121 1033.721 

Table 6b. 40 simulated series with plurality of patterns, high intermittence and high noise: 

forecasting performance of parametric methods in terms of ME and MSE 
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5. Empirical evaluation via forecasting a real large-scale dataset: Automotive spare parts 

Given the obvious advantage of NN methods when a pattern that is about to repeat itself exists 

in the past of a time series, the real question becomes: what is the potential accuracy loss if we 

leave the NN methods to produce forecasts unsupervised in a large dataset? 

To answer this question, we employ an empirical database that consists of the individual 

monthly demand histories of 3000 SKUs covering 24 consecutive months from the automotive 

industry. Descriptive statistics (across all SKUs) are given in Table 9. 

 

3000 SKUs 
Demand Intervals Demand Sizes Demand per period 

Mean St. Deviation Mean St. Deviation Mean St. Deviation 

Min 1.043 0.209 1.000 0.000 0.542 0.504 

25%ile 1.095 0.301 2.050 1.137 1.458 1.319 

Median 1.263 0.523 2.886 1.761 2.333 1.922 

75%ile 1.412 0.733 5.000 3.357 4.167 3.502 

Max 2.000 1.595 193.750 101.415 129.167 122.746 

Table 7. Descriptive statistics of the empirical data 
 
Note from Table 7 that this dataset consists of low-volume demand items with low degree of 
intermittence. In fact, the average inter-demand interval ranges from 1.04 to 2 months and the 
average demand size (positive demands excluding the zeros) is between 1 and 194 units. This 
results in an average demand per unit time period ranging from 0.5 to 129 units. 
 

From the 24 data points in each series we use the last 11 as a holdout over which we do a rolling 

evaluation of one-step ahead forecasts (over these 11 periods). We do use the same metrics as 

in the simulation in the previous section and evaluate exactly the same NN approaches and 

respective parametric benchmarks. 

  

 

 
NN1 

 
NN3 

 
NN3* 

(0.5,0.3,0.2) 
NN4 

 
NN4* 

(0.4,0.3,0.2,0.1) 
ME 

 
0.059 0.050 0.061 -0.024 0.011 

MSE 
 

129.050 90.603 93.489 84.627 85.526 

Table 8a. 3000 Automotive series: forecasting performance of NN methods in terms of ME and 

MSE 

 Methods Smoothing constant 
0.05 0.10 0.15 0.2 0.25 0.30 

ME SES -0.066 -0.068 -0.066 -0.062 -0.057 -0.052 
SBA -0.005 -0.107 -0.206 -0.304 -0.403 -0.503 

Croston 0.108 0.120 0.136 0.153 0.171 0.189 
TSB -0.056 -0.064 -0.069 -0.073 -0.075 -0.076 

MSE SES 74.970 75.269 76.339 77.859 79.673 81.702 
SBA 75.010 74.923 75.481 76.396 77.512 78.747 

Croston 75.173 75.199 75.917 77.077 78.542 80.239 
TSB 75.069 75.033 75.554 76.422 77.523 78.795 

Table 8b. 3000 Automotive series: forecasting performance of parametric methods in terms of 

ME and MSE. 
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We note in tables 8a and 8b that the best parametric method in terms of accuracy is scoring 

74.970 (MSE for SES) while the best NN method is scoring worse at 84.627 (MSE for NN4). This 

compiles in 12.88% worse performance over the 3000 series in terms of the specific metric 

employed. We will now calculate if this difference is amplified or narrows when the NN methods 

are applied to that part of the dataset with series that illustrate more repetitive patterns. To that 

end we now try to identify series within this dataset that contain more patterns than others. We 

do use the standard autocorrelation function (ACF) (equation 8) for that purpose, but not 

applied to each original series. 

                            𝑟𝑘 =
∑ (𝑦𝑡−�̅�)(𝑦𝑡−𝑘−�̅�)𝑛

𝑡=𝑘+1

∑ (𝑛
𝑡=1 𝑦𝑡−�̅�)2                                                                                                        (8) 

If this metric is applied to each original series, a series with lots of occurrences of zero-

observations will present high ACF. We instead are interested in repeated non-zero patterns of 

length of two or more. As such we first strip from every series all non-zero sequences of length 

one (single occurrences) and then all remaining zero values. We then apply the ACF function in 

this modified series. We do allow for ACF to be calculated from lag=2 up to the max lag that 

maybe calculated in each series given the respective length. To account for the total 

autocorrelation in every series we introduce a cumulative metric in terms of an ACF scoring 

function defined as the ∑ rk
p−1
k=2  (sum from lag 2 to lag p-1 where p is the length of the series). 

We then rank the 300 series of the automotive dataset according to their ACF scoring and select 

the upper quartile of this non-parametric distribution - the top 25% of the series in terms of the 

exhibiting autocorrelations in non-zero patterns of length of two or more. These 750 series are 

series that have more patterns and as such the NN variants should perform better than when 

applied unsupervised in all 3000 series.  

 
NN1 

 
NN3 

 
NN3* 

(0.5,0.3,0.2) 
NN4 

 
NN4* 

(0.4,0.3,0.2,0.1) 
ME 

 
-0.047 0.029 0.010 0.055 0.039 

MSE 
 

5.372 3.539 3.674 3.292 3.337 

Table9a. ACF top-quartile (750 Series) of the 3000 Automotive series: forecasting performance 

of NN methods in terms of ME and MSE. 

 

 
Methods 

Smoothing constant 
0.05 0.10 0.15 0.2 0.25 0.30 

ME SES -0.024 -0.022 -0.019 -0.016 -0.014 -0.012 
SBA 0.024 -0.012 -0.044 -0.074 -0.103 -0.132 
Croston 0.059 0.058 0.061 0.067 0.074 0.081 
TSB -0.024 -0.024 -0.023 -0.023 -0.023 -0.022 

MSE SES 3.353 3.283 3.279 3.314 3.374 3.450 
SBA 3.379 3.293 3.255 3.250 3.268 3.302 
Croston 3.385 3.295 3.251 3.243 3.261 3.298 
TSB 3.381 3.321 3.289 3.276 3.278 3.290 

 

Table 9b. ACF top-quartile (750 Series) of the 3000 Automotive series: forecasting performance 

of parametric methods in terms of ME and MSE. 
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We note in tables 9a and 9b that the best parametric method in terms of accuracy is scoring 

3.243 (MSE for Croston) while the best NN method is scoring worse at 3.292 (MSE for NN4). 

This compiles in just 1.51% worse performance over the 750 series in terms of the specific 

metric employed and that difference is actually reverted with NN4 being 1.81% better that the 

winner of the entire 3000 series SES when evaluated over just the 750 series (MSE at 3.352). 

What we can also add when we interpret the results of Table 9a and 9b (and that is clear) is that 

when an α value is used (as in practice) i.e. here 0.2, then for this α value we look at both the ME 

and MSE. In that case, NN does better than even TSB because (for the MSE=3.243) NN has a 

lower bias which is an argument in favour of NN. 

Thus our argument is by and large supported: if NN are left unsupervised over a dataset cannot 

really improve accuracy, but if applied only on a specific part of a dataset exhibit higher levels of 

cumulative ACFS and therefore potential existence of repetitive patterns, then NN are en par 

with top parametric methods.  Converting this finding into tangible guidance for academics, 

practitioners and software designer we suggest that the proposed framework should be used 

quite selectively: 

 Use either TSB or SBA as the default forecasting method for all the products and 

services in your dataset, and do flag up the ones where there is definite knowledge that 

a pattern do exist in the past and would at some point reappear: for these do use the 

NN approach 

 

 

6. Implications for SCM theory and practice 

In many respects, this work can be seen as a contribution towards bridging the gap between SCM 

theory and practice. It provides the conceptual and theoretical framework for forecasting 

sporadic series with at least one historic pattern that is about to repeat itself: something that in 

practice is actually happening almost every day, and that to date could only be dealt through 

judgmental interventions in statistical forecasts. We do also believe that there are some direct 

implications for both SCM theory and practice coming out of this study. 

Implications for SCM theory 

 A new framework: the contribution of this research is not in the development of a new 
theory, but in the proposition of a new conceptual framework that brings existing theory 
from Computer Science and Statistics in the SCM setting. This to the best of our 
knowledge has not been done in the past and as such it is a contribution by itself. 

 Interdisciplinarity: the proposed interdisciplinary framework brings together concepts 
from three disciplines: a) Computer Science and AI with the concept of automated 
unsupervised learning from past events/patterns, b) Statistics with the concepts of non-
parametric regression smoothing techniques, and c) SCM with the sporadic nature of 
demand time series.  

 Simplicity: the proposed framework is very simple to use and very easy to understand 

and thus drives science and theory away from ‘black box’ solutions and towards 

identifying causality in inferential tasks.  Also NN can work with very small training sets 

something that no other AI methods can do. Furthermore it follow the KISS5 paradigm as 

                                                           
5 Keep It Sophisticated Simple 
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the proposal is as simple as possible so as to successfully identify patterns in the past of 

a time series. 

Implications for SCM practice 

 Solving an everyday practical problem: the proposed framework addresses an everyday 

practical problem that SCM and OM practitioners have to deal with. Repetitive patterns 

do exist in SCM data and unfortunately the existing forecasting methods cannot capture 

these, and in order to cope with this problem judgmental adjustments on statistical 

forecasts have to be part of everyday practice. 

 Automation: a problem that needed human intervention and expert judgment can now 

to a large extent be sorted automatically  

 Interpretation: practitioners do understand how this framework works as they do apply 

that in practice anyway. By and large NN are based on the representativeness heuristic 

that practitioners do use all the time (Tversky & Kahneman, 1974). 

 Simplicity: the approach can work with very few data something very convenient for 

practitioners, as very rarely they do have enough historic data for the demand of each of 

their products and services. Furthermore the method can be adopted so as to look for 

neighbors in other time series as well and not strictly just in the past of one time series, 

something very useful for complementary and substituting products and services 

 Flexibility: the framework allows the users to adjust the method to their needs by 

selecting the number of neighbors and by changing the neighboring function to their 

needs 

 Implementation: the proposed framework should superimpose a default method for 

forecasting sporadic demand like SBA or TSB and triggered only if evidence of patterns 

exist in the series. 

  

http://en.wikipedia.org/wiki/Representativeness_heuristic
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7. Conclusions & Further Research 

In this research we have proposed a conceptual framework for applying NN for supply chain 

data. Furthermore we investigated the conditions under which the method can perform 

adequately. Our findings suggest that practitioners can benefit from employing NN approaches; 

however these methods should not be left unsupervised in large datasets rather than run in a 

selective mode where a standard parametric method is the default (SBA or TSB) and the NN is 

used only in the presence of reliable information attesting for the existence of patterns. 

From the theoretical underpinning of the proposed framework as well as the provided 

illustrative examples and the extensive simulations, we believe it became evident that the NN 

methods can help towards improving the forecastibility of sporadic time series when applied 

selectively. If the proposed NN method runs unsupervised in large datasets, our empirical 

evidence suggests that we could be facing up to 12.88 % deterioration in terms of forecasting 

accuracy performance that however is disappearing if applied to the part of the dataset 

containing series with repetitive patterns. Thus, we reiterate the predicament that we are facing 

here: the NN should only allowed to run when we do know that a pattern existed in the past and 

it is about to recur. 

The simulations also highlighted that in the presence of high plurality of patterns - where most 

are not repeated, NN methods' performance deteriorates significantly especially if 

simultaneously high levels of intermittence are present; however if the latter fall into average 

levels then NN methods and parametric ones perform en par. 

There are clear implications for SCM and OM theory and practice from this research, most of 

which result from the simplicity and intuitively appealing nature of the proposed 

interdisciplinary framework. 

As far as the future research on this topic is concerned, we do suggest that: 

 The framework should be expanded to work also with present sequences containing or 

ending in zero values  

 Fully automate the use of the framework in large datasets without supervisions through 

identifying which series in a dataset do have some patterns that may be starting 

reappearing.  
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