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Summary 
This thesis examines the analysis of digitised optical skin cancer images. Its aims are to 

develop a new method of skin lesion boundary detection that meets the need for reliable 

automated boundary detection; to develop and assess shape analysis methods that are 

suitable for skin lesion diagnosis and can be related to human shape perception to allow 

application of expert knowledge; and to develop methods of creating simulated skin le­

sion images to allow study of the behaviour of boundary detection methods. 

Methods for analysing lesion shape are presented and tested on real and synthesised 

shapes. The effect of boundary noise on shape analysis is investigated and shown to in­

crease the bulkiness and textural and structural fractal dimensions. It is shown that the 

necessity of using high resolution shapes and the effect of noise on fractal dimension 

measurement indicates that it may not be suitable for assessing lesion shape. 

A new method for locating and isolating a lesion within a skin image is presented, 

which provides an image containing the lesion and surrounding skin, but excluding 

background objects, with an indication of the lesion's size. This method correctly iden­

tified all of the lesions in a test set. Its extension to images containing multiple lesions is 

also discussed. 

An edge focusing algorithm for skin lesion boundary detection, which uses either 

Laplacian of Gaussian (LoG) or Canny edge detection, is presented and tested on real 

images. This is a new application of edge focusing, which uses new methods to control 

the boundary during focusing and to select the output boundary, using image contrast. 

By combining this algorithm with the process of isolating lesions, a system that can find 

lesion boundaries in a range of images is produced. Testing using real and verification 

images indicate that it is capable of working on a wide range of images. 

A new method for synthesising simulated skin lesion images is presented and used to 

assess the edge focusing algorithm using an area based comparison method. Using pa­

rameters, derived from real images, the lesion location and isolation method correctly 

identified all the simulated lesions. The performance of the LoG and Canny edge focus­

ing algorithms is shown to decrease as the lesion boundary becomes less distinct. 

The development of a computer based tool to perform or assist in the diagnosis of skin 

cancer and how the research presented in this thesis would be incorporated into such a 

tool is discussed. Further research into the measurement techniques, required to obtain 

diagnostic and prognostic information, is outlined and the use of this information in 

providing diagnosis and prognosis is examined. 
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Chapter 1 

Introduction 

Skin cancer is potentially fatal and the incidence of its deadliest form, melanoma1
, is 

increasing across the world (63, 9, 60, 13, 59, 34, 40]. Early diagnosis and treatment are 

essential as it is easiest to cure when it is caught in its early stages, which results in the 

best prognosis. However, early accurate diagnosis of skin cancer, particularly mela­

noma, is difficult and requires specialists with considerable training and experience, 

making it expensive (40, 60, 63]. Skin cancer is often inaccurately diagnosed by human 

experts, who find it difficult to agree on the presence of particular diagnostic and prog­

nostic features (40, 60]. Automated or assisted diagnosis has the potential to reduce the 

mortality rate by allowing more reliable and earlier assessment. 

Although the safest treatment procedure would be to excise all lesions, this is not practi­

cal because of the time and expense involved (21]. The high cost of excision combined 

with the effects of inaccurate diagnosis makes it essential that diagnosis is highly sensi­

tive (very few false negatives, i.e. very few dangerous lesions are missed) and highly 

specific (very few false positives, i.e. very few benign lesions are misclassified as dan­

gerous). Mass screening requires high sensitivity, but high specificity is not as important 

as suspicious lesions can be considered in more detail [61]. However, it is important, in 

mass screening, to ensure that the number that require expert diagnosis is kept small to 

minimise costs. 

The effects of incorrect or late diagnosis on the prognosis combined with the cost of di­

agnosis and unnecessary treatment makes the automated diagnosis of skin cancer attrac­

tive. Computerised diagnosis could bring high accuracy and consistency combined with 

relatively low cost. Even if the performance of a computerised system is not good 

enough to perform automated diagnosis, it could still assist in diagnosis and mass 

screening [53]. 

1 The terms malignant melanoma and melanoma are used interchangeably. 
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In the development of a computer based diagnostic system, a number of factors must be 

considered to ensure that it can usefully and practically perform or assist diagnosis. The 

system must be reliable and consistent, which is achievable by ensuring that it is tolerant 

of the conditions in which it is used and that it can cope with the wide range of skin 

features. To be useful in a clinical environment it must be easy to use, have low equip­

ment and usage costs and able to operate reasonably quickly. 

Even when a computerised system is suitable for use in a clinical environment, i.e. when 

the performance, reliability, usability and costs are acceptable, there may be resistance 

to its use by doctors and patients. Whilst doctors may be familiar with using computer­

ised tools, such as ultrasound scanners, to assist in diagnosis, currently they are not ac­

customed to accepting a diagnosis from a computerised system. In addition, doctors may 

find it difficult to interpret new information, from an automated system, and to relate 

this to their perception of the disease [ 11]. The diagnosis task may be de-skilled by 

automation, hence this may be resisted by doctors and patients may also find it difficult 

to accept. To increase the acceptability, an automated system should be extensively 

tested and be able to explain its actions. 

Human diagnosis is mainly performed by visual assessment of the lesion, and is the 

easiest, quickest and cheapest method [59, 40). Consequently, knowledge exists of hu­

man methods and the diagnostic and prognostic factors which are considered important. 

Optical skin images can easily be obtained and digitised either indirectly by digitisation 

of photographic slides or directly from video cameras and digital photographic cameras. 

These factors make it attractive to develop image processing techniques to aid diagnosis. 

To analyse skin lesion images, segmentation is necessary to identify the different parts 

of the image. The most important form of this is the accurate and reliable identification 

of the lesion's boundary [36, 30, 77] enabling the division of the image into lesion, skin 

and other background features, thereby ensuring that colour and texture measurements 

are carried out only on the lesion. In addition, given the boundary, the important diag­

nostic factor of lesion shape can be analysed [59, 40, 63, 34). Boundary detection is 

made difficult by the highly variable nature of lesion images (e.g. lesion size and nature, 

skin texture, presence of hair, etc.) and image capture conditions (e.g. lighting condi­

tions [21), background objects, etc.). The difficulty of automated boundary detection has 
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been noted by those attempting to construct automated diagnostic methods for skin le­

sions, who have found it necessary to use manual boundary detection [55, 29, 53] to 

obtain the necessary performance. Many of the diagnostic factors which they used (e.g. 

irregularity, asymmetry and area) had to be either manually estimated or calculated from 

the manually obtained boundaries. Consequently, their automated diagnostic methods 

rely on information provided by dermatologists. To increase the ease of use and repeat­

ability whilst reducing usage costs, it is desirable that diagnostic methods are fully 

automated and so do not rely on the presence of suitably trained dermatologists to pro­

vide information which could be obtained automatically. The inadequacy of current 

boundary detection methods, which has been noted by those constructing automated di­

agnostic methods [55, 29, 53] and by those developing the boundary detection methods 

[30, 36], shows the need to develop new boundary detection methods. 

Whilst developing a system, testing is necessary to ensure the acceptability of the meth­

ods used. Testing can ensure the system is built correctly and the correct system is built, 

i.e. the system performs as expected and the system does what is required [88]. Data 

(images) with known characteristics are required for this purpose [88]. Real images, 

being the most realistic, can be used as test data, however, when using real images it is 

difficult to find a "gold standard" with which to compare the test results. For the overall 

diagnosis histology provides a "gold standard", but it cannot provide measurements of 

particular image features. By synthesising images with known features, the performance 

of individual parts of the system can be assessed. 

Analysis of skin images uses image processing, which is a rapidly expanding field with 

a huge range of applications including image compression for TV transmission [38] , 

recognition of car number plates [38], enhancement of X-ray images [58] and human 

face recognition [15]. The growth in image processing has been assisted by the avail­

abili ty of cheap high performance computers and the decreasing costs of image capture 

(e.g. video cameras, digital cameras and image digitisation boards) and storage (e.g. 

hard disks and PhotoCDs). Digital image processing techniques, readily performed on 

computers, can be used in many tasks including the detection of edges, the analysis of 

texture and shape, the compensation of geometric deformation and the identification of 

regions by thresholding or region growing methods [38, 80, 85, 58]. 
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1. 1 Aims of this Research 
The broad aims of this research can be summarised by: 

• automatic boundary detection and shape analysis: to develop a method of skin 

lesion boundary detection and shape analysis algorithms which overcome the limita­

tions of existing methods with a view to improving the performance of automatic 

skin lesion diagnosis. 

• assessment methods: to develop an improved method of assessing the performance 

of boundary detection and shape analysis algorithms using simulated images with 

known characteristics. 

• comparison of methods of boundary detection and shape analysis: to use the 

above to compare methods of boundary detection and shape analysis with a view to 

selection of optimum methods and to gain understanding of the behaviour of the al­

gorithms. 

Fulfilling these aims is likely to improve the performance of automatic skin lesion diag­

nostic systems based on computerised analysis of optical skin images and facilitate the 

improvement of boundary detection and shape analysis algorithms through greater un­

derstanding of algorithm behaviour under known conditions. These aims must be pur­

sued within the constraints of the equipment (e.g. computing and image acquisition) 

which is reasonably available, affordable and suitable for use in an automated diagnostic 

system. At the start of this research, it was considered that the possible improvement in 

performance from colour did not justify the increased cost, complexity and computation 

associated with colour image acquisition and analysis (processing and storage). In addi­

tion, research in this area had already shown the potential for lesion boundary detection 

through the use of luminance [36, 77]. It was, also, decided to use 256 (8 bits) greylev­

els as suitable capture and processing equipment is readily available, affordable and rea­

sonably fast, and has already used by many researchers in this area (such as [12, 36, 77]) 

and other areas (such as [38, 48, 52]). 

1.2 Overview of the Thesis 

Chapter 2 provides the background for the research presented in the thesis and illustrates 

the difficulty of analysing skin images. It starts with an outline of the occurrence and 

causes of skin cancer. The skin's structure is described as background for an explanation 
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of the types of skin cancer and benign lesions. Current diagnostic methods are described 

together with their limitations and the necessity of accurate and early diagnosis along 

with treatment. The chapter concludes by describing the need for and requirements of a 

computer based diagnostic system. 

The digital image processing techniques, which are used for analysing optical skin can­

cer images, are briefly described in chapter 3. This is the background for the literature 

review, in chapter 4, and the research reported in this thesis. The topics briefly covered 

include the following: segmentation, contour tracing, thresholding, region growing, edge 

detection, texture, Fourier and inverse Fourier transforms, spatial filtering, frequency 

filtering, image histograms, morphology, principal component transform, colour, 

graphics operations, image processing software, data formats and image file formats. 

A review of published work on the computerised analysis of skin cancer images is pre­

sented in chapter 4. It begins by reviewing methods for the important and difficult task 

of identifying lesion boundaries. Methods for characterising lesion shape from these 

detected lesion boundaries are reviewed. Publications which use colour and texture to 

provide diagnostic information are briefly reviewed. A brief survey of methods of meas­

uring lesion 3-dimensional shape and thickness by image processing is given. The 

chapter finishes with a review of computerised diagnosis methods. 

Methods for analysing lesion shape to determine "roundness" and "roughness" are pre­

sented in chapter 5, where they are illustrated and tested on real and test shapes. A 

method of assessing lesion "roundness" by a bulkiness factor is explained. The meas­

urement of fractal dimension, which assesses "roughness", is examined and an auto­

mated method for assessing the large and small scale structure of a shape through fractal 

dimension is presented. In an automated diagnostic system, these techniques would be 

used after the lesion boundary had been found, but are presented here as the bulkiness 

measurement is used in chapter 6. 

Chapter 6 examines the problem of approximately locating and isolating a lesion within 

an image and presents a process which provides a cropped image containing the lesion 

and sufficient surrounding skin, but excluding background objects and skin features. 

This process starts with pre-processing and filtering, which aims to improve the quality 
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of the binary image thresholding used to separate the lesion from the background. A 

method for simplifying the thresholded image to make the identification, using shape, of 

the lesion easier and more reliable is explained. After creating a simplified thresholded 

image, the lesion is identified by size and shape. The chapter finishes with a description 

of the information generated to allow further analysis of the image. 

The detection of luminance edges in images, which forms the background for the re­

search presented in chapter 8, is examined chapter 7. It begins by outlining the limita­

tions of simple edge detectors, which make them unsuitable for lesion boundary detec­

tion. The implementation of the convolution and zero crossing detection used in the 

Laplacian of Gaussian (LoG) edge detector is described in detail. A description of the 

implementation of the Canny edge detector and associated non-maxima suppression is 

given. Two methods for converting a map of the edges in an image (generated by either 

the LoG or Canny edge detectors) into the co-ordinates of the isolated edges are pre­

sented. The effects of image border erosion on the output of edge detectors are discussed 

and a method for reducing its impact is reported. The processing of irregularly shaped 

image regions is discussed and the use of a mask image for this task is explained. 

Chapter 8 presents a new edge focusing algorithm for skin lesion boundary detection, 

which uses the information provided by the process described in chapter 6. The algo­

rithm is outlined and then the process by which the algorithm generates a series of 

boundaries is explained using LoG edge detection. A method for selecting a suitable 

boundary from this series is given. The modifications necessary to change from using 

LoG to Canny edge detection are explained. The chapter ends by describing the testing 

of the algorithm on real images. 

A method for synthesising simulated skin and lesion images is presented in chapter 9. 

This method is divided into three parts: shape generation, boundary transition modelling 

and texture generation. The creation of shapes similar to those of lesions based on ellip­

ses with random large and small scale irregularities is explained. A method for creating 

an indistinct transition between the synthesised lesion and synthesised skin is presented. 

The synthesis of skin and lesion textures from measurements of real skin and lesion 

textures is discussed and a method presented for performing this task. The combining of 

the synthesised lesion shape, boundary transition and texture is described. A method for 
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comparing a true boundary with an estimated boundary, which can be used to test 

boundary detection methods, is presented. The chapter concludes by describing the re­

sults of testing the edge focusing algorithm, presented in chapter 8, on simulated im­

ages. 

The development of a computer based tool to perform or assist in diagnosis of skin can­

cer is outlined in chapter 10. The discussion shows how the work presented in this thesis 

and other skin cancer image processing research would be incorporated into such a sys­

tem. It also indicates areas of future research and other research which may be applied to 

this area. The chapter begins by discussing the factors that should be considered whilst 

developing techniques for analysing skin cancer images. With these factors in mind, the 

development and use of these techniques is discussed. The use of real and simulated 

skin cancer images for assessing and testing a computerised diagnostic system is exam­

ined. The chapter concludes by considering the implicit and explicit acquisition and use 

of knowledge for the early detection and diagnosis of skin cancer. 

Chapter 11 focuses on the principal findings of this thesis and begins with the conclu­

sions of the literature review, which indicated where new research was required. It then 

outlines the main findings of this work, which include the results of the development 

and assessment of an edge focusing algorithm for skin lesion boundary detection and the 

development and use of simulated skin lesions in the assessment of this algorithm. The 

chapter concludes by outlining ideas for future research and development which could 

lead to a computerised diagnostic system for skin cancer. 

1.3 Contributions of this Research Work 
The contributions which this thesis makes to the computerised analysis of skin cancer 

may be summarised as: 

• Shape analysis: The automation of fractal dimension measurement to analyse large 

and small scale irregularities in lesion shape. A new method of creating shapes with 

known fractal dimensions was developed, which allows more reliable assessment of 

fractal dimension measurement methods. Using this method the effect of boundary 

noise on shape analysis was investigated and shown to increase the bulkiness and 

textural and structural fractal dimensions. It is shown that the necessity of using high 
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resolution shapes and the effect of noise on fractal dimension measurement indicates 

that it may not be suitable for assessing lesion shape. 

• Skin lesion locating and isolating: A new method for approximately locating and 

isolating a lesion within a digitised optical skin image. This method, which allows 

lesion analysis to be tolerant of image capture conditions and contents, correctly 

identified and isolated all of the lesions in a test set. 

• Skin lesion boundary detection: The development of a new edge focusing algo­

rithm for detecting lesion boundaries in monochrome images. This algorithm creates 

a series of boundaries of increasing detail from which a suitable boundary for the 

particular image is selected. The boundary selection criteria is based on the image 

contrast between just inside and just outside the boundary. These developments, 

combined with the lesion locating and isolating method, have made edge focusing 

suitable for lesion boundary detection on a wide range of images and may have made 

it suitable for other applications where automatic boundary detection is required for 

objects with boundaries which are not clearly defined. 

• Synthesis of skin lesion images: The synthesis of simulated images containing a le­

sion and surrounding skin using textures measured from real images. These simu­

lated images can be used to assess boundary detection algorithms using an area based 

measurement. These simulated images were used to compare two edge focusing al­

gorithms based on the Laplacian of Gaussian (LoG) and Canny edge detectors [45, 

10]. This comparison showed that as the boundary became less distinct the perform­

ance of both algorithms decreased. In addition, it showed that the Canny based edge 

focusing algorithm performed better than the LoG algorithm on small lesion shapes. 

However, on simulated lesion images with boundaries similar to those observed in 

real images both algorithms had good performance. The simulated lesion images and 

boundary comparison method could be used to compare the relative performance of 

different boundary detection algorithms and other algorithms such as shape analysis. 

This would enable the comparative testing, refinement and improvement of boundary 

detection and shape analysis algorithms, through gaining a better understanding of 

the behaviour of the algorithms under known conditions. 

To date three refereed publications have resulted from this work [17, 18, 19), which are 

reproduced in Appendix D. 



Chapter 2 

Skin Cancer, its Diagnosis and 

Computerised Diagnosis 

2. 1 Introduction 
This chapter introduces human and computerised diagnosis of skin cancer (in particular 

malignant melanoma1
) and provides the background which guided the research 

presented in this thesis. By describing the characteristics of skin, benign lesions and skin 

cancer it illustrates the difficulty of analysing skin images. The chapter is divided into 

the following seven sections: 

• skin cancer: The increasing occurrence of skin cancer together with its causes, 

including UV radiation, is described in this section. 

• skin structure: This section describes the skin's many functions and its structure. 

• non-melanoma skin cancer: The most common and less dangerous non-melanoma 

skin cancers are described in this section. 

• melanoma skin cancer: The more dangerous melanoma skin cancers are introduced 

in this section. 

• benign lesions: This section lists some benign lesions which require distinguishing 

from skin cancer. 

• diagnosis, prognosis and management: Human diagnostic methods, including 

checklists, and the prognostic factors are described in this section together with the 

main treatment method (excision). 

• computer based diagnosis: This section outlines the need for and requirements of a 

computer based diagnostic system. 

1 The terms malignant melanoma and melanoma are used interchangeably. Melanoma 
can be known as cutaneous melanoma. 
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2.2 Skin Cancer 
Skin cancer, such as melanoma, is the most common form of cancer in the US [9] and 

across the world its incidence is increasing. Between 1979 and 1989 there was an 82% 

increase in melanomas in Scotland [13]. In Australia, the lethal mix of fair skins, from 

people of North European ancestry, and sunshine has made it 10 times as common as in 

northern Europe [13]. Most melanomas occur in fair-skinned, blue-eyed, red or blond­

haired individuals; the incidence in black people is much lower. A relationship exists 

between sun exposure and the number of people who develop melanoma, and there 

seems to be a correlation between melanomas and brief intense exposure to UV which 

occurs long before the cancer appears [63]. There is also evidence of a hereditary 

component in some melanomas [9]. 

Some of the blame for the increasing occurrence of melanomas may lie with the 

thinning of the ozone layer [74] , but a large part of the blame lies with beach holidays 

and the myth of the healthy tan [13]. As melanoma takes 10-20 years to develop there 

has been insufficient time for the thinning of the ozone layer to have had a significant 

impact [74]. The increasing number of reports may reflect better reporting or the 

popularity of suntans in the 1970's and 1980's (74]. 

Ultraviolet (UV) radiation (wavelength: 250 to 400nm) is biologically very important as 

it causes most of the changes in the skin associated with ageing, sunburn, skin cancer 

and other skin diseases [63, 34]. It is divided into three types: UVA (320-400nm), UVB 

(280-320nm) and UVC (250-280nm). UVC is not currently important as most it is 

filtered out by the ozone layer, but it will become more important if the ozone layer 

becomes thinner [63]. Sunburn, suntan and ageing are affected by UVB and UVA, 

which can be blocked by sunscreens. All forms of skin cancer are becoming more 

frequent due to increasing exposure to UV and carcinogenic substances, and to an 

increasingly 'elderly' population [63]. 

2.3 Skin Structure 
The skin, with a typical surface area of 1.8 m2, is one of the largest organs, making up 

about 16% of body weight (34], and is frequently damaged as it forms the first layer of 

defence against disease and mechanical injury [63]. It contains many cell types which 

can malfunction, giving rise to many different types of skin diseases [63]. Skin disease 
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is very common, making 10-15% of the general practitioner's work, in the UK, and is 

the second commonest cause of loss of work [63). The skin's functions are [63, 34]: 

• protection against water loss and gain, mechanical injury, toxic substances and 

micro-organisms. 

• reduction of UV penetration. 

• thermal regulation through heat lost by sweat evaporation and dermal blood supply 

control. 

• heat conservation by body hair and insulation by body fat. 

• assistance in the synthesis of vitamin Dusing UVB. 

• assistance in immune surveillance. 

• provision of sensory input for touch, pressure, vibration, pain, itch and temperature 

by a high density of nerves. 

• provision of a surface for grip. 

The skin's structure and thickness vary with site; it can be divided into three main 

layers: epidermis, dermis and subcutis, which are illustrated in Figure 2-1 and described 

below [34, 63]: 

• Epidermis 

The epidermis provides mechanical, micro-organism and water protection; it can be 

divided into four layers (from the inside outwards): basal cell layer, prickle cell layer, 

granular layer and horny layer (stratum corneum). Most of the cells in the basal layer 

divide and move outwards to provide a protective layer of strong, but flexible dead 

cells (the horny layer or stratum corneum). The basal layer also contains melanocytes, 

which synthesise melanin (a dark protective pigment which is a natural sunscreen and 

gives the skin its colour), and cells concerned with touch. The prickle cell layer 

contains cells which have migrated upwards from the basal layer and immune system 

cells. In the granular layer, the cells moving outward are strengthened and cemented 

together to form the horny layer. The stratum corneum is composed of polyhedral 

sheets of overlapping dead cells, which give the skin its small scale texture (skin 

creases), and are eventually shed from the skin surface. In some diseases, the 

formation of this structure may be disturbed preventing the shedding of cells and 

changing the skin creases. UVB is mostly absorbed by the stratum corneum, but 



2.3 Skin Structure 12 

some of it photo-oxidises melanin and stimulates melanocytes to produce more 

melanin. 

• Dermis 

The dermis, below the epidermis, provides mechanical protection and contains many 

specialised structures. These structures include hair follicles, nerves, sweat glands, 

immune cells, blood and lymphatic vessels. Cells in this layer synthesise collagen 

and elastin fibres which provide mechanical strength and elasticity respectively. 

• Subcutis 

The subcutaneous layer contains loose connective tissue and fat, which provides 

insulation. 
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2.3 Skin Structure 

Figure 2-1: Labelled skin cross-section, adapted from Marks [63]. 
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Figure 2-2: Non-melanoma skin cancers [69) . (a) Basal cell cancer. (b) Squamous 
cell cancer. 
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2.4 Non-melanoma Skin Cancer 
Skin cancer can be divided into non-melanoma (basal cell cancer and squamous cell 

cancer, which are the most and second most common) and melanomas which are less 

common but more dangerous, as they spread quite rapidly (9, 63]. Most non-melanoma 

skin cancers can be cured. 

• Basal cell cancer1 (34, 9, 63] Figure 2-2(a) 

This slow growing painless skin cancer usually occurs in areas where the skin has 

been exposed to the sun and commonly on the face in elderly and middle-age people. 

It is often pigmented and may later be pink, flesh, red, blue, or ivory coloured. In an 

early phase, it may appear as a small raised bump with a smooth shiny appearance. It 

may spread to tissues around the cancer, but usually does not spread to other parts of 

the body. 

• Squamous cell cancer2 (34, 63, 9] Figure 2-2(b) 

This usually occurs in areas where the skin has been exposed to the sun, often on the 

top of the nose, forehead, lower lip, and hands. It is more common in men than in 

women and mainly occurs in people over 55 years old. The tumour is a firm irregular 

fleshy growth which may feel scaly, bleed or develop a crust. It can rapidly increase 

in size creating a large lump which may form an ulcer and, if untreated, may spread 

to the surrounding lymph glands. 

2.5 Melanoma Skin Cancer 
Malignant melanoma arises in the melanocyte cells (in the basal layer of the epidermis), 

which it is named after, and can occur anywhere on the body, but most commonly on the 

back, chest, abdomen, and lower legs (9 , 34, 63]. It can occur in pre-existing cells, most 

often a mole, which may begin to enlarge, become mottled, and develop an irregular 

surface or borders , or a variety of colours (variegated colouring). The melanoma may 

also itch, burn, or bleed easily. Solar UV radiation is believed to the single most 

important cause, but as up to half of lesions do not occur on sun-exposed sites other 

1 Basal cell cancer is also known as basal cell carcinoma3
, basalioma and basal cell 

epithelioma 4 . 
2 Squamous cell cancer is also known as squamous cell carcinoma3 and squamous cell 
epithelioma 4 . 
3 carcinoma: malignant tumour derived from skin tissue. 
4 epithelioma: skin cancer. 
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factors play a role [63]. The effects of a brief intense sun exposure, causing sunburn, 

may account for occurrence of melanoma on areas of skin that are only occasionally 

exposed to the sun [63]. When melanoma is at an early stage it is easily cured by prompt 

surgical excision, hence its early diagnosis is very important [59, 63, 40, 34]. 

Melanomas have been divided into groups, with different biological behaviour and 

therefore prognosis, depending on their growth patterns and appearance. 

• Superficial spreading malignant melanoma [40, 34] Figure 2-3(a) 

This form primarily affects people in their forties and fifties, and in the UK over 50% 

of melanomas are of this type. It commonly occurs on the legs and backs in women, 

who are twice as likely to be affected as men, and on the trunk, particularly the back, 

in men. It is macular1 with an irregular outline, may be notched and may have 

variable colour with hues of tan brown, black, blue, grey and may be white or pink in 

patches where there is tumour regression. Thin curable lesions do not distort skin 

creases or cause loss of hair, but these features will occur where there is significant 

tumour activity within the dermis. 

• Nodular melanoma [40] Figure 2-3(b) 

These represent about 25% of melanomas, affect middle aged people and are more 

common in men. They commonly occur on the head, neck, and torso and are difficult 

to diagnose early. In later stages, when they are thick and have a poor prognosis, they 

are termed "nodular" with spherical "blue-berry" like nodules2 with a relatively 

smooth surface, a relatively uniform blue-black colour and may bleed and ulcerate3
. 

In earlier stages, they are small (diameters of around 0.5 cm or less), dark and appear 

regular, but closer examination of the border frequently reveals notching or streaking 

of the pigment on one edge. Sometimes they can be almost completely de-pigmented, 

but even in these a rim of pigment is usually left. It is important that these 

melanomas are detected in the earlier stage, as they are curable by excision. 

• Lentigo malignant melanoma [40] Figure 2-3(c) 

These account for about 10% to 20% of all melanomas and usually occur in people in 

their seventies on sun-damaged skin, mainly, on the face. They are slowly evolving, 

initially tan-coloured, flat lesions whkh can resemble stains. As they develop they 

1 macule: a localised area of colour change without elevation or infiltration [34]. 
2 nodule: a solid elevation of the skin with a diameter greater than 5mm [34]. 
3 ulcer: an area of skin loss extending through the epidermis into the dermis [34]. 
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increase in size and may change colour with dark brown or black areas appearing and 

the pigmentation may regress to leave blue-grey or white patches. The border can be 

very irregular and a fine pattern of black lines may cross it. For many months or years 

it can grow in the epidermis, but should be detected before any increase in thickness 

when it may have metastasised1
. 

• In-situ melanoma [ 40] 

This type can occur on any part of the body in younger people and is confined solely 

to the epidermis. They are a flat poorly bounded asymmetrical lesions with, notched, 

scalloped or jagged borders and mottled brown pigmentation which can be tinged 

with blue, black or pink. Diagnosis and excision of these lesions can lead to a 

complete cure. 

• Acral lentiginous melanoma [40, 34, 59] Figure 2-3(d) 

These are the least common type (approx. 5%) of melanoma in the UK, but are the 

commonest type in Black and Oriental people. They occur on the palms (palmar), 

soles (plantar), and under the nails on fingers and toes (subungual). The tumour can 

appear as dark brown or black spreading patch and have features of the previously 

described types. It is more biologically aggressive than the other types, is often 

diagnosed late and has poor survival figures. 

1 metastasis: the spreading of disease, especially cancer cells, from one part of the body 
to another. 
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(b) 

(c) (d) 

Figure 2-3: Malignant melanoma. (a) Superficial spreading malignant melanoma 
[34]. (b) Nodular melanoma [63]. (c) Lentigo malignant melanoma [34]. (d) Acral 
lentiginous melanoma [34]. 

(a) (b) 

(c) (d) 

Figure 2-4: Benign lesions. (a) Benign melanocytic naevus [34]. (b) Seborrhoeic 
wart [63]. (c) Dermatofibroma [34). (d) Vascular malformation [63). 



2.6 Benign Lesions 18 

2.6 Benign Lesions 
Diagnosis of pigmented skin lesions is difficult [63], since other skin diseases, including 

the following, may have similar physical characteristics to melanoma. The 

differentiation of melanoma and the following conditions and basal cell cancer is 

important as these diseases are benign and basal cell cancer, although locally malignant, 

is virtually never fatal [59]. However, melanoma is a potentially fatal disease, which in 

an early stage is easily cured [63]. 

• Benign melanocytic naevi1 (benign pigmented moles) [63] Figure 2-4(a) 

Moles, which exist in range of shapes and sizes, are very common in white people 

and are the result of clustering of melanocytes. Generally, they are less variegated in 

colour and have smoother outlines than melanoma. It is unusual for benign 

pigmented moles to transform into malignant melanoma, but if any the diagnostic 

signs are present it may be a melanoma [59]. The dysplastic naevi type of mole 

indicates a greatly increased ri sk of melanoma, especially when a relative has had this 

disease [63, 40]. Dysplastic naevi may be confused with melanoma as they may be 

over 7mm in diameter with an irregular edge and variable pigmentation [34]. 

• Seborrhoeic warts2 Figure 2-4(b) 

These occur very often in people over 50 and are frequently located on trunk [59]. 

They have a "stuck on" appearance with usually a sandy brown colour, but may be a 

darker greyish brown or black [59]. Their shape is generally round or oval with a 

well-defined edge and they may be papular or nodular [34]. As their diameter may be 

greater than 1cm (with a history of increasing size) and they may have some colour 

variation [59], they can be confused with nodular melanoma, but may be 

distinguished by the number of lesions [34] and their warty appearance [63]. 

• Dermatofibroma3 Figure 2-4( c) 

These occur in young adults, most commonly women on the lower legs, and have a 

brownish colour with diameters of 5-lOmm [63, 34]. They are of no serious clinical 

significance, but are sometimes mistaken for melanomas [63]. 

1 Types of benign melanocytic naevi include congenital naevi, dysplastic naevi, acquired 
naevi and compound naevi. 
2 Seborrhoeic warts are also known as seborrhoeic keratosis or basal cell papillomas4

. 
3 Dermatofibroma is also known as histiocytoma or sclerosing haemangioma. 
4 papilloma: a nipple-like projection from the skin surface [34]. 
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• Vascular malformations1 [59] Figure 2-4(d) 

These deeply pigmented dome-shaped lesions, which are sharply demarcated from 

the surrounding skin, may be confused with nodular melanoma. They may occur 

anywhere on the body at any age and may be distinguished by having red rather than 

brown pigment. 

2. 7 Diagnosis, Prognosis and Management 
The early diagnosis of melanoma is important as in the early stages it is relatively easy 

to treat and patients have survival rates of near 100% [59]. Checklists have been 

proposed as an aide-memoire to assist in its diagnosis. MacKie [59] proposed the 

original seven-point checklist, which was adopted by the Cancer Research Campaign: 

1. Itch: Minor itch or other change in sensation. 

2. Size: A lesion greater than 1 cm in largest diameter. 

3. Increasing size: A history of growth or other change in a pigmented lesion m an 

adult. 

4. Shape: An irregular outline. 

5. Colour variation2
: Irregular and varied colours. 

6. Inflammation: Inflammation in or at the edge of the lesion. 

7. Crusting or bleeding. 

A lesion with three or more of the points in the checklist is considered suspicious and 

those with four or more points highly likely to be a melanoma. This list was revised [60] 

to emphasise the importance of change in size, shape, or colour which makes the 

checklist more memorable and useful: 

Major signs 

Change in size 
Change in shape 
Change in colour 

Minor si ns 

Inflammation 
Crusting or bleeding 
Sensory change 
Diameter 7 mm or more 

1 Vascular malformations are also known as angiomas. 
2 Colour variation can be referred to as variegated colouring (VC). 
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Lesions with one or more of the major signs warrant referral and those with one or more 

of the minor signs warrant further consideration. The American Cancer Society's 

ABCDE checklist is very similar to the seven-point checklist [ 40]: 

• Asymmetry: One half of the tumour does not match the other half. 

• Border Irregularity: The edges are ragged, notched, blurred. 

• Colour: Pigmentation is not uniform. Shades of tan, brown and black are present. 

Dashes of red, white and blue add to the mottled appearance. 

• Diameter: greater than 6 mm and growing. 

• Elevation: elevated by 2 mm or more over the surrounding skin. 

These checklists provide a guide to assist diagnosis, but are not sufficiently sensitive to 

never miss any melanomas [ 40]. Their primary purpose is to provide the general 

practitioner with guidance as to when to refer a suspected melanoma to a specialist. 

They also help in public education, which is important as patients frequently delay 

consulting a general practitioner about new or changing pigmented lesions, which can 

lead to treatment being delayed until the melanoma has a poor prognosis [59]. Both 

checklists are biased towards detecting superficial spreading melanomas, which are 

slow-growing and consequently their detection is less important than faster growing 

nodular melanoma [40]. 

After excision, the tumour thickness (Breslow thickness) between the deepest 

identifiable melanoma cell and the overlying skin surface can be measured by staining 

sections through the centre of the lesion. It can also be measured without excision by an 

experimental instrument called the 'nevoscope', which is described in chapter 4, and by 

high frequency ultrasound, which only gives accurate measurements for some lesions 

[87]. Breslow [ 4] found the thickness to be the single most important guide to 

prognosis, as is shown in the following table [9]: 

thickness: 0.75 mm or less 5-year cure rate: almost 100% 
10-year survival rate: 95% 

thickness: 0.76 mm to 1.50 mm 5-year cure rate: 85% 
10-year survival rate: 75% 

thickness: 1.51 mm to 4.0 mm 5-year cure rate: 65% 
10-year survival rate: 30% 

thickness: 4.0 mm or greater 5-year cure rate: 20% 
10-year survival rate: no greater than 15% 
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The prevention of death from malignant melanoma, or any disease, can be brought about 

by either primary or secondary prevention [61]: 

• Primary prevention is the prevention of the development of the disease, which in 

melanoma is public education in the avoidance of excessive sun exposure. This is a 

very long term activity as the interval between the start of a tumour and the 

development of melanoma may be longer than 20 years. 

• Secondary prevention is the prevention of deaths from the disease by either 

improved therapy or by earlier diagnosis. 

Melanoma is a curable cancer if it is diagnosed and treated early, before it has spread 

beyond the initial site. Surgery, in which the lesion and a margin of surrounding skin are 

excised, is the primary treatment for melanoma. Other methods such as radiotherapy and 

chemotherapy have been less successful [34]. This absence of significant advances in 

the non-surgical treatment of advanced melanoma mean that efforts to reduce mortality 

must rely on early diagnosis of thinner lesions and also on primary prevention [61]. 

2.8 Computer Based Diagnosis 
It is important that melanomas and other pigmented lesions are diagnosed accurately and 

early, as melanoma is curable if treated early. Accuracy is also important as although the 

safest route would be to remove all pigmented lesions, it is not practical to do this 

because of the time and expense [21]. Current human diagnosis is relatively inaccurate; 

even specialists are only 50% to 85% accurate when compared with histopatholgists 1 

[40, 60, 61]. Small flat lesions, which are likely to be curable, are particularly hard to 

diagnose; one study concluded that clinicians were only 50% accurate when compared 

with histopatholgists [ 40]. Clinicians also find it difficult to agree on the presence of 

signs in pigmented lesions and, in particular, whether lesions are irregular or not [40]. 

Family doctors, in the UK, are unlikely to see more than one melanoma in 10 years, and 

hence cannot be expected to accurately diagnose melanoma [40]. These factors make the 

idea of computerised assistance attractive and important. Even if the accuracy is not 

1 histopathology: a branch of pathology2 concerned with the tissue changes characteristic 
of disease. 
2 pathology: the branch of medicine that studies the causes and nature and effects of 
diseases. 
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high enough to pe1form automated diagnosis, it could assist in diagnosis and mass 

screening. Even the basic provision of image storage will probably assist in assessing 

changes in a lesion [60]. The high cost of excision, combined with the effects of 

inaccurate diagnosis, make it essential that diagnosis is highly sensitive (very few false 

negatives , i.e. very few dangerous lesions are missed) and highly specific (very few false 

positives, i.e. very few benign lesions are misclassified as dangerous) . 

Computerised diagnosis may be useful in screening or surveillance: 

• Screening is the systematic examination of a population, which may be confined to 

one geographic area [61]. Individuals in this population may be selected for screening 

by age, sex, family history of melanoma or other factors. 

• Surveillance is the examination at regular intervals of individuals for the 

development of new pigmented lesions, which may be malignant melanoma [61]. 

The labour intensive nature of surveillance means that it is currently confined to 

research centres and individuals with a known high risk of developing melanoma 

[61]. 

Both of these activities would be assisted by image storage, and computerised diagnosis 

or assistance could bring decreased costs through increased speed and accuracy. 

However, it is important that any screening or surveillance operation is fully supported 

with treatment and that it brings proven survival benefit [61]. The increasing occurrence 

of melanoma and the effect of early treatment on mortality make it an ideal candidate for 

screening [40, 9]. Because of its seriousness no early melanoma should be screened out 

and thus sensitivity is more important than specificity [60] as suspicious lesions can be 

considered in more detail. 

For a computer based system to be useful and practical in assisting or performing 

diagnosis it is important, as well as being accurate and reliable, that it meets a number of 

other requirements: 

• ease of use: To be useful in a clinical environment it must be easy to use, so that the 

operator does not require specialist knowledge in the areas of computing and image 

processing. 
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• tolerance of image capture conditions: To be usable in a clinical environment it 

must be tolerant of lighting variations (such as flash highlights), camera set-up and 

position, image background and equipment noise. 

• reasonable equipment and operating costs: This ensures that it can be widely used. 

• speed: Data (image) acquisition must be rapid and results must be produced in a 

reasonable time, so that the operating cost is minimised. 

• repeatability: The same results should be generated for different images of the same 

lesion. 

• robust: Robustness increases its usability by reducing the necessity for re-capturing 

images and reducing the need to control tightly the image contents and capture 

conditions. This is important as the nature of the problem (the wide range of skin 

images and capture conditions) creates images that contain a wide range of lesion 

size and nature, skin and lesion texture, hair, etc. 

The checklists, described earlier, provide guidance for the measurements which should 

be performed. However, they do not show the complete picture, as specialists use their 

experience to perform diagnosis, which makes obtaining and using their methods very 

difficult. 

Computerised diagnosis (e.g. expert systems or neural networks) requires accurate and 

consistent assessment of lesion features. This assessment cannot be reliably carried out 

by humans. Hence, computerised analysis of the lesion is required to obtain the 

necessary diagnostic measurements. Optical skin images provide the best method of 

assessing lesions as they can provide the necessary measurements quickly, easily and 

cheaply, and allow human diagnostic knowledge to be used. 

An important first step in automatic diagnosis is to accurately and reliably find the 

boundary of a lesion and this thesis concentrates on this problem. An accurate boundary 

allows the image to be segmented into lesion, skin and other background, which ensures 

that colour and texture measurements are carried out only on the lesion image. In 

addition, given an accurate outline, the important diagnostic factor of lesion shape can 

be analysed to provide quantitative measurements of size, asymmetry [90] and border 

irregularity [36, 12]. 



Chapter 3 

Image Processing 

3. 1 Introduction 
Digital image processing enhances or extracts information from spatially sampled and 

intensity quantised images for either human or automatic interpretation. This chapter 

provides the background in image processing for the literature review and research 

presented in this thesis. The background covered includes common image processing 

terminology, methods and the choice of programming languages and file formats. It 

briefly describes the following areas: 

• notation and terminology. 

• image connectivity. 

• segmentation. 

• contour tracing. 

• image thresholding. 

• region growing. 

• edge detection. 

• texture. 

• Fourier and inverse Fourier 

transforms. 

• spatial filtering. 

• frequency filtering. 

• image histograms. 

• morphology. 

• principal component transform. 

• colour. 

• graphics operations. 

• image processing software. 

• data formats. 

• image file formats. 
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3. 1 Notation and Terminology 

The basic notation and terminology for image processing, used in this thesis, are 

described in this section and the notation is listed in appendix A. 

To capture a digital image the output from a camera must be digitised both spatially and 

in amplitude, by the processes of image sampling and grey-level quantisation 

respectively. Images are usually sampled on a regular rectangular grid which may vary 

from 640 by 480 for VGA graphics on an IBM PC to 3072 by 2048 for PhotoCD 

images. Images are usually quantised into an integer power of two number of grey­

levels, and in this research monochrome images with 256 (28) grey-levels were used. 

256 grey-levels are commonly used as this facilitates the easy, cheap and quick capture, 

storage and processing of images with standard hardware. If G = number of possible 

grey-levels in the image, then the maximum range of grey-levels in an image is 0 to L = 

G-1. For a particular image, the maximum and minimum intensity are denoted by /1111n 

and l 11wx respectively. Each image is considered as an array of numbers, with a width of 

M and a height of N, where each number represents a single picture element or pixel 

which represents the brightness (or grey-level) of a single point (the intensity of the 

point x, y is denoted by i(x, y)). The orientation and range of the image co-ordinates is 

illustrated in Figure 3-1. The Euclidean distance between any two points ((x1, y 1), (x2, 

y2)) in an image is given by: 

(3.1) 

X 

0,0 
_. M-1 

LJ 
(x,,y,) 

y! ~ (X2,Y2) 

N-1 

Figure 3-1: Image notation. 
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3.2 Image Connectivity 
Image connectivity describes the spatial relationship between adjacent pixels and is 

important in establishing the boundaries of regions and the extent of edges. The 

neighbours of a pixel are classified as direct neighbours (d-neighbours or 4-way 

neighbours) if the neighbouring pixels share a side and as indirect neighbours (i­

neighbours or 8-way neighbours) if they only touch at a corner [38, 76, 80]. The 

notation for the positions of neighbouring pixels, ct-neighbours and i-neighbours is 

shown in Figure 3-2. 

An i-path is a sequence of pixels in which each is an i-neighbour of the previous one. A 

d-path is a similar sequence in which each is restricted to be a ct-neighbour of its 

predecessor. A closed path occurs when the first and last pixels are the same. A region 

is i-connected if for every pair of pixels in the region there is an i-path between them 

which uses pixels in the region only. Similarly the region is d-connected if there is a d­

path between its pixels. The contour or i-contour of a region is the set of pixels in the 

region which has at least one neighbour not in the region. Afull region has more than 

four pixels with a simple i-contour and the difference between the region and its i­

contour is ct-connected. This definition excludes regions with contours which are 8-way 

connected to themselves at any point. 

a b C 
7 0 1 

d e f 
6 p 2 

gs h 1 

4 3 

Figure 3-2: Image connectivity. P = central pixel. Direct neighbours are shaded. 
a-i = pixel names. 0-7 = order in which pixels are stored for operations involving 
the neighbours of a pixel. 
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3.3 Segmentation 

Segmentation separates the constituent parts in an image, which can identify the areas of 

interest for a particular application and consequently is dependent on that application 

[38]. Generally, automatic segmentation is one of the most important and difficult tasks 

in image processing and is usually the process which leads to the eventual success or 

failure of an application. Segmentation is based on the recognition of discontinuities and 

similarities in image features. This may be the grey-levels themselves in the case of edge 

detection or thresholding (discontinuity) and region growing (similarity). Alternatively, 

it may be based on texture analysis or a combination of features. Once segmentation has 

been performed, the image will be divided into regions of connected pixels. Each region 

has an area given by the number of pixels contained within the region's boundary and a 

perimeter given by the length of its boundary. 

3.4 Contour Tracing 
Contour tracing (or contour following) finds the co-ordinates of the external and 

internal contours of a region and is used in finding the locations of isolated regions in a 

thresholded image [76, 80]. The brief description given here is based on Pavlidis' 

method [76] and uses the relative neighbour positions shown in Figure 3-3. 

The first stage of contour tracing is to find an initial pixel on the contour which has at 

least one direct neighbour not in the region. This initial pixel can be found by any 

method, but is often found by a top-to-bottom, left-to-right scan of the image. A search 

direction (S) determines where to search for the next contour point and is initially set to 

6 (vertically downwards) (Figure 3-3). The neighbouring pixels are examined in the 

order S-1, S and S+ 1, which ensures that the leftmost available pixel is selected. If the 

3 2 1 

4 p 0 

5 6 7 

Figure 3-3: Relative neighbour positions used in contour tracing. P = central 
pixel. [76] 
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pixel at a position corresponding to one of these search directions is in the region then 

contour tracing moves onto that pixel and changes the search direction. The change in 

search direction depends on which pixel it moves to: S-1, Sand S+l change to S-2, S, 

S+ 1 respectively. If none of the three neighbouring pixels are in the region then the 

search direction, S, is changed to S+2. The searching of neighbouring pixels and 

changing of the search direction is performed at most three times, which ensures that the 

search does not continue indefinitely for regions with only one pixel. 

This method produces a closed i-path and follows external contours anti-clockwise and 

internal contours clockwise, which allows them to be distinguished. It can trace external 

and internal contours when combined with an algorithm which, after finding the 

external contour, searches for the internal contours [76]. This is not described here as it 

is not used in this thesis. 

3.5 Image Thresholding 
Thresholding is a simple and extensively used method of image segmentation, which 

can separate objects from a different intensity background by reducing the number of 

intensity levels in an image and can be applied to grey-scale and colour images [38, 80]. 

Binary thresholding converts an image into a binary image and multi-level thresholding 

isolates different intensity ranges. Thresholding labels all of an intensity range with the 

same value, which for binary thresholding results in all values less than or equal to the 

threshold being set to black and all values greater than the threshold being set to white. 

Multi-level thresholding assigns labels to more than two intensity ranges. Fixed level 

thresholding, in which the threshold is not dependent on the image, is the simplest form 

of thresholding, which can only be applied when the image capture conditions and 

image contents are tightly controlled. In most applications this is not possible as the 

illumination varies, hence the threshold must be adapted for every image. Adaptive 

thresholding methods can be divided into two classes: 

• global - threshold is dependent on the whole image and fixed across the image. 

• local - threshold is dependent on local image properties and may also be dependent 

on the whole image. 
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When performing local thresholding, the image may be divided into rectangular sub­

images and a threshold computed for each sub-image. These sub-image thresholds may 

be interpolated to give a continuous threshold across the whole image. Threshold 

selection may be based on the whole image or a subset of the image, such as those 

points with high edge gradients, hence may be less affected by the relative sizes of the 

objects and background. The relative sizes of the objects and background can affect the 

threshold calculation. Thresholding is used in section 6.4 for separating a lesion from 

the surrounding skin and binary global thresholding is illustrated in Figure 3-4. 

'" .. 

• 
(a) (b) 

Figure 3-4: Binary image thresholding. (a) Original image (744 by 487). 
(b) Thresholded image. 

3.6 Region Growing 
Region growing groups connected similar pixels into homogeneous regions [38] and is 

explained here as background for the literature review. The similarity between pixels 

may be determined by grey-level, texture, colour, etc. Each region grown starts from a 

seed point and is progressively grown outwards from this point to include neighbouring 

pixels until no more connected pixels similar to those in the region are found. To use 

region growing, a method of manually or automatically selecting the seed point is 

required. In addition, a method of determining the similarity between new points and 

those in the region is required. The simplest method of stopping region growing is to 

stop when no more similar pixels are found. However, this does not take account of a 

region's size and shape, which can be used when a model of expected region is 

available. 

3. 7 Edge Detection 

Luminance or colour discontinuities in an image are important as they can indicate the 

boundaries of objects or regions [38, 80]. An edge indicates where there is a boundary 
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between two regions with relatively distinct grey-level or colour properties. Edge 

detection is important in image processing and is considered in chapter 7, which 

describes some different types of edge detection techniques and their application. 

There are two basic approaches to edge detection: model fitting and differential 

detection [80]. In model based edge detection, a small region of the image is fitted to a 

model of an edge and if the fit is sufficiently close, an edge is considered to exist at that 

point. In a differential approach, derivatives of the original image are used to accentuate 

the spatial grey-level changes. Differential edge detectors can be divided into the 

following major categories: 

1. First Derivative Edge Detectors 

A spatial first differentiation of the image is performed and an edge is judged to be 

present if the local maximum gradient exceeds a threshold value. An example of this 

is the Canny detector [10] described in section 7.5. 

2. Second Derivative Edge Detectors 

The spatial second differential of the image is found and edges are indicated by the 

zero-crossings. An example of this is the Laplacian of Gaussian (LoG) detector [65, 

64] described in section 7.3. 

First and second derivative edge detectors differ in their recognition of extended ramp 

edges [80]. A first derivative edge detector, would mark an edge wherever the gradient 

(slope) exceeds a threshold; raising this threshold results in low amplitude edges being 

missed. With a second derivative edge detector, such as LoG, the edge (zero-crossing) 

will be marked at the mid-point of the ramp edge provided that the size of the LoG 

exceeds the slope width; when the LoG size is smal1er than the slope width, an edge is 

marked at each end of the slope. 

After obtaining a map of the edges in the image (an edge map), it may be necessary to 

obtain the co-ordinates of all of the edges in the image so that higher level processing 

can be performed. Two methods for performing edge tracing or following, which is the 

process of converting an edge map into the co-ordinates of the connected edges, are 

presented in chapter 7. 
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In a discrete image, an edge may lie between two pixels, hence a convention which 

marks the edges on the higher amplitude pixels is used [80]. The edge orientation 

nomenclature used in this thesis is illustrated in Figure 3-5. 

Figure 3-5: Edge direction. 8-way edge direction nomenclature.+= higher 
intensity pixels. 

3.8 Texture 
Texture is a property of the local spatial variation of image intensity, which is difficult 

to define quantitatively and qualitatively [38, 80, 58]. It is an area based property, hence 

its analysis depends on the size of the area and should be restricted to areas of relative 

uniformity. Qualitatively, texture measures properties such as smoothness and 

regularity. Analysis of texture may be used to segment an image into areas of uniform 

texture and identify image features. Three principal methods of texture analysis exist: 

• Statistical texture measures can analyse coarseness. Co-occurrence matrices ( or joint 

amplitude histograms of pairs of pixels) are one method of statistically analysing 

texture and examine the distribution of grey-levels and the relative positions of pixels 

with given grey-levels. Statistical analysis of these co-occurrences matrices yields the 

texture coefficients. 

• Structural texture analysis considers the arrangement of image primitives, such as 

lines, and uses rules to build the texture from arrangements of the primitives. 

• Spectral texture analysis considers the Fourier spectrum of an image. For example, 

the coarseness of a region is proportional to the spatial period of the texture, hence 

the shape of the Fourier spectrum should indicate the texture's coarseness. Although 
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this is true to a certain extent, difficulties can arise from changes in the spatial period 

and phase of texture pattern repetitions [80]. 

The analysis and synthesis of textures is used in chapter 9 to provide simulated skin and 

lesion textures. 

3.9 Fourier Transform 
The Fourier transform converts data from the spatial (or time) domain into the 

frequency domain and the inverse Fourier transform performs the opposite task of 

converting the frequency domain into the spatial domain [38]. The Fourier and inverse 

Fourier transforms for continuous functions are defined as: 

Fourier transform, ,r{f(x)} = F(u) = f:f(x)exp[-j2nux] dx 

Inverse Fourier transform, r 1 {F(u)} = f(x) = J: F(u)exp[j2nux] dx 

(3.2) 

(3.3) 

To apply a Fourier transform to discrete data (e.g. a digitised image) the discrete 

Fourier transform (DFT) is used: 

DFT, F(u) = _!_ If(x)exp[-j2nux] 
N x=O N 

(3.4) 

N-1 [ '2 ] 
Inverse DFT (IDFT), f(x) = ~F(u)exp 1 ;ux (3.5) 

where N = the number of samples. 

The number of multiplications and additions required to directly implement these 

equations is considerable and hence the transform is decomposed to give the fast Fourier 

transform (FFT), which is only of order Nlog2N compared with order N2
. This gives a 

considerable saving in computation over direct implementation, particularly when N is 

large. 

The equations presented above were for the one-dimensional Fourier transform, but to 

apply it to an image the two-dimensional transform is required. The two-dimensional 

Fourier transform is separable, hence it may be computed by two applications of the 
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one-dimensional transform, i.e. by first taking transforms along the columns of the 

image and then along the rows of that result. 

In image processing, the function f(x) (the image) is real, but the Fourier transform is 

generally complex, i.e.: 

F(u) = R(u) + jl(u) (3.6) 

which can be expressed in exponential form: 

F(u) = jF(u)lei<P(u) (3.7) 

where: jF(u)I = ✓ R2 (u) + / 2 (u) and </J(u) = arctan[ I(u) ] . 
R(u) 

The Fourier spectrum of f(x) is given by the magnitude function JF(u)J , </J(x) is the phase 

angle and the power spectrum or spectral density is given by the square of the spectrum, 

i.e.: 

P(u) = JF(u)i2 = R2 (u) + / 2 (u) (3.8) 

3. 10 Spatial Filtering 
Spatial filtering uses spatial masks (which are called spatial filters and are restricted to 

a spatially limited area) to operate directly on the image. Two forms of it exist: linear 

and non-linear filters [38]. The output of a linear filter is a linear combination of pixels 

under the mask with the following fo1m, which is the convolution of the mask with the 

image: 

(3.9) 

where w1 = filter coefficients, 
i(x1, y1) = grey-levels of the pixels under the mask. 

Non-linear filters also operate in a restricted neighbourhood, but generally directly use 

the grey-levels of the pixels in the neighbourhood and do not explicitly use coefficients. 

They do not use linear operations (i.e. addition and multiplication) to combine pixels in 

the neighbourhood and hence have outputs which are not linearly related to the input. 
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Three main types of linear filters exist: 

• low-pass filters : Attenuate high frequency components whilst leaving low 

frequencies untouched, which blurs the image. 

• high-pass filters: Attenuate low frequency components, which emphasises edges and 

other sharp details but reduces the overall contrast. 

• band-pass filters: Attenuate all but a selected band of frequencies . 

The one-dimensional frequency and spatial domain shapes of examples of these filters 

are shown in Figure 3-6. Low-pass filtering, in the form of average filtering, is used and 

described in section 6.3.1. Average filtering replaces each pixel by the average of itself 

and the pixels within its neighbourhood. (Examples of low-pass and high-pass filtered 

images are shown in Figure 3-7 and the filters used are shown in Figure 3-8.) Another 

form of linear filtering that enhances the visual quality of edges is unsharp masking, 

which is described in chapter 6. 

Non-linear median JUtering can be used for noise reduction and other non-linear filters 

include the max filter, which finds the brightest points, and the min filter, which does 

the opposite. The median filter replaces each pixel by the median of the points in its 

neighbourhood (including the point itself), which removes isolated spike noise but 

preserves edges. The efficient application of median filtering and examples of its 

operation are given in section 6.3.2. Iterative median filtering is the repeated application 

of a median filter until either it has been applied a specified number of times or a 

specified condition has been met. 
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Figure 3-6: Example 1-D filter frequency and spatial shapes. (a) Low-pass filter. 
(b) High-pass filter. (c) Band-pass filter. 

(a) (b) (c) 

Figure 3-7: Image filtering examples on a 132 by 100 image. (a) Original image. 
(b) Low-pass filtered image. (c) High-pass filtered image. 
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Figure 3-8: Example spatial filtering masks, used in Figure 3-7. (a) Low-pass 
average filter. (b) High-pass filter. 
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3. 11 Frequency Filtering 
To apply a frequency filter to an image, the image is Fourier transformed, to convert it 

into the frequency domain, and the frequency domain image multiplied by the frequency 

domain filter transfer function and the inverse Fourier transform taken to yield the 

filtered image [80, 38]. The same types of linear filtering (low-pass, high-pass, etc.) can 

be achieved by frequency filtering, but one domain may be more efficient than the other 

depending on the size of the masks and the method used. Convolution of a spatial image 

by a spatial filter is equivalent to multiplication of the Fourier transformed image by a 

frequency filter. By Fourier transforming the filter a spatial filter can be converted into a 

frequency filter and similarly a frequency filter can be converted into a spatial filter by 

the inverse Fourier transform. For large filters, frequency multiplication may be quicker 

than spatial convolution, but it requires more space to store the intermediate complex 

results. For small filters, spatial convolution is quicker and simpler. 

3.12 Image Histograms 
The histogram of an image gives an estimate of the probability of occurrence of each 

grey-level and can be obtained by counting the number of pixels with each grey-level 

[38, 80, 76, 58]. The normalised histogram provides an estimate of the probability of 

occurrence of each grey-level: 

h (k) = h(k) 
N MN 

(3 .10) 

where k = grey-level, 
h(k) = number of pixels in the image with the grey-level k. 

Manipulation of the histogram allows image enhancement including contrast and 

dynamic range improvement or thresholding. In a typical histogram some values of 

hN(k) may be zero, which means the full available intensity range is not being used, 

hence by reassigning the grey-levels the image may be enhanced. This histogram 

manipulation can be performed globally across the whole image, where a single 

histogram is used to control the modification of all the pixels, or locally, where a 

histogram is obtained for the neighbourhood of each pixel and that pixel's modification 

controlled by that local histogram. 
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An image may be thresholded using its histogram if assumptions are made about the 

shape of the histogram. When the image has two principal brightness regions the image 

histogram is the sum of the histograms of the two regions and may be bimodal, i.e. 

having two peaks corresponding to the two regions. In this case, the image may be 

segmented by placing a threshold between the two peaks. However in practice, it may be 

difficult to determine a suitable threshold from the unmodified histogram because it may 

have multiple peaks without clearly defined minima between the peaks. 

Histogram equalisation (or histogram linearisation) is a widely used technique which 

automatically improves image contrast by reassigning the grey-levels to make the 

resulting histogram as flat as possible, i.e. with approximately the same number of 

pixels at each grey-level [38, 58]. Ideally, there would be M: pixels at each grey-level, 

but in a quantised image the same number of pixels cannot be assigned to each grey­

level as that would involve a one-to-many mapping of some pixels. However, the 

available grey-levels can be reassigned with the following transformation: 

where hN(j) = normalised histogram for the original /'1 grey-level, 
sk = new grey-level which is assigned to the original kt11 grey-level, 
L = maximum possible grey-level, 

round(x) = round x to the nearest integer. 

(3.11) 

The summation in equation (3.11) is the normalised sum of number of pixels with grey­

levels less thank, which when multiplied by the maximum possible grey-level (L) gives 

the number of pixels with original grey-level k or less divided by ideal number of pixels 

at each grey-level. This indicates the grey-level with which the original grey-level k is 

replaced. This spreads the original grey-levels across the whole of the grey-level range 

instead of just a small part of it. The effects of histogram equalisation on an image and 

its histogram are shown in Figure 3-9. 

Histogram specification is an extension of histogram equalisation where the shape of 

the desired histogram is specified and may be used to highlight particular grey-level 

ranges [38]. Multi-dimensional histograms, such as bi-dimensional histograms, can be 



3.13 Morphology 38 
created where more than one variable is being considered, e.g. RGB data [38]. 

Thresholding now becomes the problem of finding clusters of points in the histogram. 
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Figure 3-9: Image histogram equalisation. (a) Original image (744 by 487) and 
histogram. (b) Histogram equalised image and histogram. 

3. 13 Morphology 
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Mathematical morphology [38, 41, 78] is a useful tool for image analysis, filtering and 

enhancement which can be applied to binary images, grey-scale images and three or 

higher dimensional data. Morphology uses set theory to modify the spatial form or 

structure of regions in an image to, for example, perform operations such as non-linear 

smoothing of a region's outline, texture analysis and extracting boundaries or skeletons. 

Important binary morphological operations are described here and this binary 

morphology may be extended to process grey-scale images. 

Dilation and erosion are the two basic operations which are the basis for most 

morphological operations. Binary dilation is defined as: 
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where IA = input binary image, 
Ins= binary structuring element image, 
Io= output binary image, 

Uns)x = translation of Ins by x = (xi, x2), 

iBs = reflection of Ins about the origin, i.e. rotation by 180° : 

iBs = {x,yl x = -x,y = -y for x,y EIBs }. 

39 

(3.12) 

The set operations in dilation are similar to the arithmetic operations in convolution, in 

that the structuring element I8s is rotated by 180° and moved over the input image. 

Binary dilation is used in chapter 8 for boundary quality measurement. Binary erosion is 

defined as: 

I A 0I Bs = {x I ( I Bs) x s I A} (3.13) 

Dilation and erosion expand and shrink an image respectively and can be combined to 

provide opening and closing: 

(3.14) 

(3.15) 

Both opening and closing are idempotent, i.e. applying them more than once has no 

further effect on the results. Opening smoothes region outlines, removes thin protrusions 

and thin connections between regions. Closing smoothes region outlines, eliminates 

small holes inside regions and fuses small gaps between regions. The effects of dilation, 

erosion, opening and closing are shown in Figure 3-10. Binary closing is used in chapter 

6 for simplifying a thresholded image. 



3 .14 Principal Component Transform 40 

(a) (b) (c) 

(d) (e) 

Figure 3-10: Binary morphological operations. (a) Original image (300 by 300). 
(b) Dilated with a 5 pixel disk. (c) Eroded with a 5 pixel disk. (d) Opened with a 5 
pixel disk. (e) Closed with a 5 pixel disk. 

3. 14 Principal Component Transform 
The principal component transform (PCT), which is also known as the Karhunen-Loeve, 

eigenvector or Hotelling transform, is an adaptive statistical method of converting 

signals into the sum of orthogonal functions such that each signal can be represented by 

a minimal sequence of uncorrelated coefficients [38, 80]. The resulting coefficients are 

arranged in order of importance. It can align 2-D objects with their principal axis and 

hence remove the effects of rotation which can make their recognition easier. As the 

component which contains the greatest variance is the first one and is followed by 

components containing decreasing variance, data may be compressed by discarding the 

later components. 

3.15 Colour 

This section describes the common colour models that are mentioned in the literature 

review in chapter 4. Colour models represent colours as a point in a 3-dimensional 

colour space and can be generally divided into two categories: hardware orientated 

models and manipulation orientated models [38, 80, 56]. The hardware orientated 

models are typically used for image capture (e.g. by a video camera) and display (e.g. on 

a screen or printer), and include RGB (red, green, blue) space for colour monitors and 

video cameras; CMY (cyan, magenta, yellow) for colour printers; and YIQ (luminance, 



3.16 Graphics Operations 41 
inphase, quadrature) for colour TV broadcast. Colour spaces orientated towards colour 

manipulation are used in image processing and image creation (e.g. raytracing or 

animation) and include RGB, HSI (hue, saturation, intensity), YIQ and HSY (hue, 

saturation, value). A brief description of some common colour models is presented in 

Table 3-1. 

Colour model Comments 
RGB (red, green, blue) Used in colour monitors and cameras. 
Normalised RGB (r, g, b) These are also known as RGB chromaticity co-ordinates. 
HSY (hue, saturation, Hue= dominant wavelength or pure colour, such as red or 
value) orange. 

Saturation= amount of white mixed with the colour, e.g. 
white mixed with red becomes pink. 
Value= amount of black mixed with the colour, e.g. black 
mixed with orange becomes brown. 
HSY is a polar co-ordinate model of a rotation of the RGB 
model. 

HSI/IRS (Hue, Saturation, Hue and saturation represent the chromaticity of a colour 
Intensity) or HLS (Hue, and when combined with the brightness (intensity) 
Lightness, Saturation) characterise the colour. HSI is a deformation of HSY 

produced by moving the white point. 
Lab system Frequently used for colourimetric measurements. 
(L*, a*, b*) L*, a* and b* are correlated with brightness, redness-

greenness and yellowness-blueness respectively. 
SCT (Spherical Co-ordinate Used by Umbaugh et al. [95] for automatic segmentation 
Transform) of colour skin for the detection of variegated colouring 

(discussed in section 4.4). 
{/1,hh} Used by Dhawan and Siscu [26] for segmentation of 

colour skin images (discussed in section 4.2). 

Table 3-1: Colour models and transforms. 

3. 16 Graphics Operations 
Graphical (or drawing) operations are useful in image processing and display, and this 

section describes the operations used in later chapters. Digitised images may be 

combined or masked by bitwise or logical operations such as AND, OR and XOR. 

Breshnam's line drawing algorithm [32] uses only integer arithmetic to draw discrete 

lines and a modified form of it is used in chapter 8. It draws lines along their shortest 

axis, so a pixel is drawn for every step. Also, it always draws in the same direction, 

which is that of increasing values on the shortest axis, i.e. either left to right or top to 

bottom. 
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The interior of a closed contour (or region) may be filled by afloodfill algorithm (which 

is also known as seed filling or contour filling by connectivity) that starts from an 

interior seed point [76, 35]. The algorithm works outwards from the seed point filling all 

the 4-way connected points and uses a stack to allow filling of concave shapes. This 

algorithm will not fill any unconnected regions and requires a seed point. Neither of 

these constraints are present in the parity check filling algorithm [76] , which fills 

regions line by line, using the fact that a line intersects any closed curve an even number 

of times. When the start of the line is known to be outside the region, counting the 

intersections with the contour can indicate which points are inside the region. For an 

odd number of intersections the point is inside the contour, otherwise it is outside. 

However, complications arise when the intersecting line is on a tangent to the contour 

and in this case each point of contact must be counted twice. Tangents and extrema 

(points which have only one 4-way connected neighbour on the contour) may be 

detected by examining the lines above and below the current line. This information 

allows filling of all full regions and the detection of the incorrect filling of regions 

which are not full. (The definition of a full region was given in section 3.2.) 

3. 17 Image Processing Software 
There are a wide range of packages and toolboxes for software image processing and 

this section gives a brief description of uses, capabilities and limitations of the packages 

used in this research. The C programming language [8] was used to develop nearly all of 

the programs used in this research and is extensively used in image processing and in 

the packages described in this section. This language was selected because of familiarity 

and experience with it, which allowed easy and quick development of programs; its 

flexibility and speed, which make it suitable for image processing tasks and the 

availability of image processing packages written in it. 

Some basic image processing operations were provided by the IPLIB 'C' library [84], 

which contains over 200 common image processing functions ranging from simple row, 

column and pixel manipulation to complex line extraction and component and texture 

recognition. The library is provided as source code, which required modification to 

make it suitable for the systems used. Whilst using this library, it was found to contain 

many bugs and the code was often difficult to follow. Consequently, many of the 

functions initially provided by this library were completely replaced with new 'C' code. 
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Mathematical morphology was described in section 3.13 and is used in later chapters. 

The initial development of programs involving morphology and some of the final 

programs used a morphology software package [78] written in 'C', which provides 

many morphological operations on both binary and grey-scale images. This software 

includes a 2-dimensional image morphology program, a 3-dimensional voxel image 

morphology program and a program for enhancement and noise reduction of 2-D 

images. It also provides script files which make it easier to use and a 'C' library for 

linking to new programs. 

MATLAB (MATrix LABoratory) [67] is an interactive program which can perform 

numerical analysis, matrix computation, signal processing and graphics, and uses an 

automatically resizeable matrix as its basic data type. Algorithms can be quickly 

expressed in its own programming language and stored in M-files, which may form part 

of an application specific toolbox. (For example the signal processing toolbox [66].) 'C' 

code, in the form of MEX-files, may be integrated into MATLAB to provide support for 

new data formats (e.g. image files) and to implement algorithms which are slow or 

difficult to implement in MATLAB. Although it can be quicker to develop an algorithm 

in MATLAB than in a conventional programming language, such as 'C', the quantity of 

data and computation in image processing makes MATLAB inefficient for this 

application. This situation is due to MATLAB being an interpreted language and its use 

of single precision floats for all operations which reduces its speed, increases storage 

requirements and are not necessary for many image processing operations. 

Consequently, MATLAB was only used occasionally for the initial development of 

ideas. 

Khoros [83, 82] is a software integration and development environment, which includes 

a visual programming language (Cantata), software development tools that extend the 

visual language and help in the creation of new applications, an interactive user 

interface editor, an interactive image display package, 2-D/3-D plotting, and an 

extensive suite of image processing, data manipulation, scientific visualisation, 

geometry and matrix operators. It is relatively quick and easy to set-up a sequence of 

image processing operations using the visual front-end (Cantata). However, although it 

is relatively easy to use existing Khoros tools, it is harder to develop new tools because 

of the complexity of the package. In addition, currently the front-end is unreliable and 
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some tools can be considerably slower than custom written software. It uses a 

specialised file format to store images and other data, which gives it considerable 

flexibility but does impose an overhead. As a consequence some of the individual image 

processing tools were used in this research and the front-end was used for small tasks. 

3. 18 Data Formats 
Table 3-II shows the data formats commonly used in image processing, with their size 

and the number range which they can represent. The images used in this research are 

stored in unsigned bytes; intermediate data and results are stored in an appropriate 

format. Bytes provide the most efficient storage and calculation, but do not have the 

range and accuracy of single and double precision floats. 

Name Size (bytes/bits) Range 
unsigned byte 1/8 0 to 255 
signed byte 1/8 -128 to 127 
single precision float 4/32 ±10-37 to ±1038 

double precision float 8/64 ±l0-307 to ±l03os 

Table 3-11: Data formats. 

3. 19 Image File Formats 
A wide range of file formats are available for storing images and these can be divided 

into two broad categories: lossy and lossless (or information preserving). The distinction 

between these categories is that the original image can be recovered exactly using a 

lossless format and approximately using a lossy format. However, images stored in a 

lossy format occupy considerably less storage space. The two main file formats used 

were chosen for their ability to store losslessly 256 grey-level images in the minimum 

space and for ease of data access. The simplest format used was the Portable Grey Map 

(PGM), which is used by the NetPBM toolbox [70). This format stores images in an 

uncompressed format and is very easy to read and write. However, the raw images can 

occupy considerable disk space, hence the more efficient GIF format was used. The GIF 

format supports up to 256 colours, which may be monochrome or colour, and uses 

compression to reduce the file size. The GIFLIB 'C' source code library [28) was 

adapted to read and write these files. On a simple (binary) image, such as that shown in 

Figure 3-lO(a), the GIF format can be considerably more efficient than PGM and this 

case only takes 1975 bytes compared with 90101. (Both of these figures include a small 
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overhead for storage of non-image information.) Even on more complex images a 

considerable saving can be achieved. 

3.20 Conclusions 
This chapter has provided the background needed to understand the literature review 

and the research presented in later chapters. It has, also, documented the selection of 

tools and programming languages. Some of the areas covered in this chapter will be 

expanded upon in later chapters where necessary. 



Chapter 4 

Image based Skin Cancer Analysis -

Literature Review 

4. 1 Introduction 
This chapter reviews previous work on the computerised analysis of skin cancer images. 

The publications covered are roughly classified into the following areas: 

• boundary detection and segmentation: the segmentation of images to provide ac­

curate lesion boundaries and regions within the lesion. 

• shape analysis: the measurement of shape characteristics from the lesion boundary. 

• colour and texture analysis: the use of colour and texture to provide directly diag­

nostic information and to improve the measurement of other factors. 

• three-dimensional analysis: the determination of lesion three-dimensional shape 

and thickness. 

• diagnosis and prognosis: the use of measurements to aid diagnosis and prognosis. 

4.2 Boundary Detection and Segmentation 
Determining a lesion's boundary or segmenting a skin image is very important as it is 

the starting point for many measurements such as shape, texture and colour. As many 

diagnostically important measurements directly or indirectly depend on its accuracy, re­

liability and consistency, it is important that it is insensitive to image rotation, capture 

conditions (e.g. lighting, camera set-up and position) and skin and lesion variations. To 

ensure consistency and allow a system to function without the presence of a human ex­

pert, boundary detection should be performed automatically. The number of different 

approaches devised shows the complexity and difficulty of consistent and accurate 

boundary detection. 
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The simplest method of segmentation, used by Cascinelli et al. [ 11] and White et al. 

[98], has the investigator drawing a line around the perceived boundary of the lesion. 

This approach takes time and the results may be operator-dependent, which make it un­

suitable for inclusion in an automated system. 

To overcome these problems, Claridge et al. [12] semi-automatically segmented mono­

chrome lesion images by thresholding with the segmentations being confirmed by a cli­

nician. They did not state the fate of images which the clinician considered to be incor­

rectly segmented. This simple thresholding approach is limited by requiring operator 

confirmation and is sensitive to variations in lesion and skin intensity, which may cause 

non-lesion regions to be detected or the lesion to be broken into separate regions. 

A more sophisticated thresholding approach, which automatically identifies and sepa­

rates the lesion from other thresholded regions, was published by Ercal et al. [30]. They 

used an adaptive colour transform to change RGB (Red-Green-Blue) colour space into 

one in which the lesion may be separated by thresholding from the background skin. 

They found the lesion and skin indistinguishable in histograms obtained from RGB data 

because these histograms did not exhibit bi-modality. An iterative median filter was 

used to reduce the effect of noise (caused by the presence of hair, flash reflections, etc. 

and variations in image quality due to lighting and film changes) and to improve lesion 

border visibility. By histogramming and approximate colour segmentation two windows 

inside and outside the lesion were identified, which provided the colour means and vari­

ances needed for segmentation. They tested a number of colour transforms, including 

the one used by Dhawan and Sicsu [26] which is described later, and found the follow­

ing linear X transform allowed effective segmentation: 
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(4.1) 

VR, vc, v8 = colour variances between tumour and non-tumour windows, 

vR = I(rr(i,j)-rNr(i,j))2, VG = L(gr(i,j)- gNr(i,j))2 , 
i,j i,j 

V8 = L(br(i,j)-bNT(i,j))1 
i,j 

rT, gT, bT = red, green and blue values in the tumour window, 
rNT, gNT, hNT = red, green and blue values in the non-tumour window, 

i.e. background skin. 

This transform produced weights and results similar to the Principal Component Trans­

form (PCT) [38] without the computational cost of the PCT. After applying this trans­

form, the image was thresholded using: 

(4.2) 

where µT, µNT= mean of X within the tumour and non-tumour window. 

The tumour boundary was found by contour tracing the tumour region formed by region 

growing from a known tumour point and removing all other areas. This prevented the 

inclusion of erroneous areas which were unconnected to the tumour region and any 

holes in the tumour region. They considered these boundaries to be generally rougher 

than hand drawn ones, hence each boundary was smoothed by creating a new boundary 

from a cubic spline with control points that were 10 points apart on the original bound­

ary. The number of points between control points was heuristically obtained and hence 

did not change with image scale. The points between the control points were discarded 

and hence the smoothed boundary may not have been as accurate as it would have been 

had all the points been used in smoothing it. A dermatologist rated 82% of the bounda­

ries from 61 colour images as "good" or "excellent" . Melanoma images gave the worst 

performance of 77% and the best performance of 100% was for intradermal nevus, 

hence they considered the method to be good but not universal. 

Another approach for finding lesion boundaries is to use the edges caused by intensity 

changes across the lesion boundary, which may be less sensitive to overall intensity 
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variations. Perednia et al. [77] used this approach by defining the boundary as the zero­

crossing of the convolution of a fixed sized Laplacian of Gaussian (LoG) function with 

the image. Using monochrome images in which the lesions only occupied a small area, 

sub-pixel boundaries were obtained by quadratic interpolation of the zero-crossings of 

an LoG convolution on user selected regions of the image. The low resolution (of the 

order of 10 to 25 pixels per lesion diameter) was intended to overcome problems intro­

duced by hair, wrinkles, shadows and other small-scale image "noise". The LoG func­

tion's scale was determined from the lesion size that was to be detected and the cam­

era's point spread function (PSF). The camera's PSF was modelled by a Gaussian func­

tion whose size was set from the edges detected in the image of nine black squares. 

Measurements of camera PSF were intended to compensate for camera variations. Area 

and perimeter were calculated from the boundaries and the effects of changes in imaging 

conditions on these measurements determined. They found the errors due to repeated 

imaging, repeated focusing, and varying position to be small and the errors caused by 

image rotation to be negligible. This method was not fully automated as the area con­

taining the lesion was user selected. The lesions were assumed to occupy only a small 

image area and consequently may not have contained sufficient pixels to make any other 

measurements, such as texture analysis. The LoG filter may remove noise, but at the 

same time its fixed size blurs the boundary reducing its accuracy. Although sub-pixel 

boundaries were obtained, the fixed scale of the LoG filter and the very small image 

area occupied by the lesions meant that the boundaries could not have been as accurate 

as those obtainable with a larger scale image. 

An alternative method of searching for intensity changes, which can be applied to le­

sions occupying a larger proportion of the image, was published by Golston et al. [36]. 

They outlined an overall approach and described a radial search algorithm for finding 

lesion boundaries in monochrome images. Their overall approach combined boundaries 

found by a number of primitive boundary characteristics, such as colour, luminance and 

texture, using confidence levels. The basis for this approach was that each individual 

characteristic would not work reliably on all images, but a combined approach would be 

able to cope with all images. The four main steps of their radial search algorithm are: 

1. Determine flash threshold. An adaptive flash threshold allows identification of ar­

eas that are bright due to flash reflections. 
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2. Perform radial search. Search for the first significant sustained jump in average 

luminance along a number of equally spaced radial lines. When searching for a sus­

tained change, individual pixels with intensities greater than the flash threshold are 

ignored. This search uses two parameters: jump threshold (minimum increase in lu­

minance considered significant) and sustained length (minimum number of consecu­

tive pixels, excluding pixels classified as flash, that satisfy the jump threshold). 

These parameters are initially set high to minimise the chances of detecting false 

edges, but are relaxed and new searches performed if a boundary point is not found. 

3. Test boundary points for obvious errors. The length of each radial line is com­

pared with its neighbours and any lines which are significantly different from their 

neighbouring lines are ignored. 

4. Connect confirmed boundary points into a closed curve using a quadratic B-spline 

curve. 

The radial search starts from the lesion's approximate centroid, which is assumed to be 

the centre of the image. For the algorithm to function successfully, the lesion boundary 

must be radially connected, i.e. each radial line must cross the boundary only once, 

which they estimated to be violated in only 1 % of images. In their twenty test images, 

seventeen were rated as "good" or "excellent" by a dermatologist. However, in a later 

publication [90] on asymmetry detection only a 54% success rate was achieved for the 

radial search algorithm. 

Dhawan and Sicsu [26] published a segmentation algorithm which combines intensity, 

colour and texture information with the intention of providing better results than using 

each feature separately. Before attempting segmentation they applied the following 

transform to go from the captured RGB colour space to {/1, h h} colour space (see 

Table 3-1): 

Intensity, 

Colour variation, 

Deviation from the mean colour, 

/I= R +G+B 
3 

2G-R-B 
! 3 = ----

2 

(4.3) 

(4.4) 

(4.5) 



4.2 Boundary Detection and Segmentation 51 
The intensity segmentation on the /1 component was performed using a modified multi­

resolution pyramid [43] which combined inter-level and intra-level information. Re­

gions with areas greater than a predetermined minimum area were extracted from this 

multi-resolution pyramid. The two /2 and h images were histogram equalised before 

their texture was examined using a new generalised co-occurrence matrix, which com­

bined edge magnitude and orientation. Histogram analysis of a texture contrast measure, 

based on two sizes of overlapping windows, was used to label the pixels, with the in­

tensity segmentation assisting in the labelling when the label could not be decided from 

the texture analysis alone. The two texture segmentations, obtained from the /2 and h 

images, were combined with an AND operation and very small regions merged with 

similar adjacent regions. The texture and intensity based segmentations were similarly 

combined to provide the final intensity, colour and texture based segmentation. Testing 

on simulated and real images showed that the extraction of all the regions with different 

colours and/or textures was possible on the simulated images. However, the region 

boundaries found on the simulated images were not as well defined as the input images. 

They considered the final segmentation of real images to be close to that of human per­

ceived boundaries. 

No "gold standard" exists for lesion boundary detection as there is no easily identifiable 

change between lesion and skin, which causes inter- and intra- observer variations. 

However, useful boundaries can be acquired provided that the methods are consistent. 

To test consistency repeated images of the same lesion under different conditions 

(lighting, rotation, scale, etc.) are required. These are not easily obtained in a clinical 

situation where taking repeated images may not be possible. Another approach to assess­

ing performance is to use simulated images, which was used by Dhawan and Sicsu [26]. 

By specifying the boundaries during simulation, boundary detection methods can be 

tested. Dhawan and Sicsu's [26] simulated images represented colour shades and tex­

tures, but they did not specify how the images were produced. 

The wide range of approaches taken illustrates the complexity and difficulty of consis­

tent and accurate boundary detection. Manual boundary determination [ 11, 98] is time 

consuming and may not be consistent, making it unsuitable for an automated system. 

Semi-automated simple thresholding [12] is affected by lighting variations, which are 

difficult to control, and by lesion image intensity variations. More sophisticated colour 
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thresholding [30] should overcome the problem of identifying the lesion, but although 

giving good overall results gave worst performance on the most important type, mela­

noma. Another approach for finding boundaries is to use the edges caused by intensity 

changes across the lesion boundary, which was used by Perednia et al. [77] and Golston 

et al. [36]. Perednia et al. [77] used LoG edge detection, on small user selected parts of 

an image, to find the boundary. Their semi-automated method uses lesion images which 

may be too small for analysis of shape, colour and texture. However, they did determine 

that errors due to repeated imaging, repeated focusing, varying position and image rota­

tion were small or negligible, which indicates that LoG edge detection may be suitable 

as part of a boundary detection method. Golston et al.'s [36] radial search algorithm ini­

tially gave an overall success rate of 85%, but in a larger test set only a 54% success rate 

[90]. Their method uses two assumptions which may not be valid: the lesion is centrally 

placed in the image and the boundary is radially connected. Dhawan and Sicsu's [26] 

complicated intensity, colour and texture segmentation algorithm gave boundaries in 

real images which were considered close to those perceived by humans. No detailed in­

formation on its performance was given, hence it is difficult to give an overall assess­

ment. 

4.3 Shape Analysis 
Lesion shape is an important diagnostic factor which appears in the diagnostic checklists 

described in chapter 2. Two shape characteristics are considered to be particularly im­

portant: asymmetry and boundary irregularity, consequently research has concentrated 

on characterising these. It is known that dermatologists as well as patients find it diffi­

cult to agree on whether a lesion exhibits irregularity [ 40]. This makes computer based 

assessment important as the computer can provide quantitative and consistent measure­

ments without being influenced by external factors such as the perceived diagnosis. To 

compare different sized lesions, possibly taken at different scales, it is necessary for 

shape measurements to be independent of size, rotation and position and be unaffected 

by the discrete nature of the boundaries being assessed. 

White et al. [98] semi-automatically measured asymmetry by a bilateral symmetry index 

which varied between zero and one. A vertical line was drawn manually, by a physician, 

through the centre of the image and the absolute difference in the number of pixels on 

either side of the midpoint line summed for a series of horizontal lines one pixel apart 
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and then this total divided by the lesion's area. This method is not fully automated, as 

the boundary was manually obtained by the method described in section 4.2. The 

method does not attempt to find the axis of symmetry, hence is affected by image rota­

tion and changes in the vertical line's position due to intra- and inter- person variations. 

They also assessed border irregularity using the following equation: 

B=-p-
1 2,fiA 

where P = perimeter, i.e. length of the boundary, 
A = area, i.e. number of pixels enclosed. 

(4.6) 

This produces a rotation and scale invariant ratio, which has a minimum of one for a 

circle, of the lesion's perimeter to the perimeter of a circle with the same area as the le­

sion. Tests using a very small number of malignant and benign lesions suggested that 

these indices, combined with colour measurements (described in section 4.4), would 

prove helpful in recognising in-situ melanoma. 

Stoecker et al. [90] automated lesion asymmetry detection, by finding the axis of great­

est symmetry from one of the principal axes through the centroid. (The principal axes 

are also used in calculating the bulkiness, which is discussed later in this section and in 

section 5.3.) The principal axis with the minimum moment of inertia was assumed to be 

the axis around which the shape was closest to being symmetrical. After finding this 

axis, the shape was filled and rotated to align this axis with the x-axis. This rotated 

shape was reflected in the x-axis and the absolute difference in area between the two 

sides found. The rotated shape was also separately reflected in the y-axis and another 

absolute area difference found. These two absolute area differences were used to pro­

duce an asymmetry index (A1): 

A=~';" 
I A 

where Mmin = minimum of the two absolute area differences, 
A= area. 

(4.7) 

The image rotation was performed by direct forward rotation (i .e. each pixel was 

mapped from the un-rotated image to the rotated image), which can cause omission of 

some pixels in the rotated image, hence the forward rotation was followed by a back-
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ward rotation to correct this problem. This problem could have been overcome by rotat­

ing using a fast algorithm, described in Glassner [35], which uses shears together with 

anti-aliasing. Test lesion boundaries were obtained using either the radial search algo­

rithm or manually. A threshold value of A1 was used to discriminate between symmetric 

and asymmetric lesions. The threshold was set to minimise the number of tumours 

which were misclassified. Using a test set of 85 skin tumour images, they compared this 

method with a dermatologist's assessment of asymmetry and found agreement in about 

93% of the images. 

Golston et al. [37] used the irregularity index: 

where P = perimeter, i.e. length of the boundary, 
A = area, i.e. number of pixels enclosed, 

(4.8) 

to classify lesion boundaries as irregular or regular. (Ercal et al. [29] also used this index 

in a neural network diagnosis method which is discussed in section 4.6.) This index is 

scale and rotation independent and theoretically has the lowest value of one for a circle. 

It is the inverse of the circularity index (or thinness ratio) described by Pratt [80] and is 

p2 
similar to the compactness ratio [38], which is defined as C = - . It is also the square 

A 

of the irregularity index used by White et al. [98] (equation (4.6)), so should have simi­

lar performance to the earlier index. They chose an empirical threshold, which would 

depend on the implementation method, of 1.8 on the basis of initial test images; hence 

lesions with B1 greater than 1.8 were considered to be irregular and those with less to be 

regular. The method was tested on 60 boundaries found by the radial search algorithm 

(described in section 4.2) and an 87% agreement with classifications provided by a der­

matologist obtained. 

Golston et al.' s [37] and White et al. ' s [98] irregularity indices only characterise overall 

irregularity. To obtain a better assessment of lesion irregularity Claridge et al. [ 12] 

measured it on two scales using the structural and textural fractal dimensions, which 

characterise the overall shape and detailed shape respectively. The fractal dimension 

was assessed by Flock's morphological dilation method [31] (described in chapter 5) 

and used two fixed points to determine where the textural dimension ended and the 
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structural dimension started. Claridge et al. [ 12] also assessed the overall shape by a 

'bulkiness' measurement [68] , which is a dimensionless shape factor that compares a 

shape's area with the area of an 'equivalent ellipse'. The 'equivalent ellipse' is an ellipse 

with the same moment of gyration (moment of inertia about the centre of gravity) as the 

original shape (described in section 5.3). The 'bulkiness' is smaller for benign lesions, 

as these tend to be more circular or elliptical in shape. Their test data consisted of 

monochrome digitised colour slides of 43 melanomas and 45 benign lesions, which 

were confirmed using histology. Using a test set of the silhouettes (produced by the 

method described in section 4.2) they achieved 91 % sensitivity (malignant lesions clas­

sified as malignant or true positives) and 69% specificity (benign lesions classified as 

benign or true negatives) when the two fractal dimensions were combined with the 

bulkiness measurement. They found that bulkiness was more sensitive and more specific 

than the structural and textural fractal dimensions. In addition to the computer assessing 

the lesions, 119 dermatologists assessed the lesion silhouettes for irregularity and ma­

lignancy, and the dermatologists were found to be on average more specific but less 

sensitive than the computer assessment. The lesion silhouettes were normalised in size 

so the dermatologists could not use size to assist in determining malignancy. They con­

cluded that irregularity alone was a strong discriminating factor for the studied melano­

mas and that the gross undulations (i.e. structural dimension) were more significant than 

small irregularities (i.e. textural dimension). 

In order to automate the analysis of skin lesions, the shape assessment methods must not 

rely on human assistance. White et al.' s [98] bilateral symmetry index does not meet 

this criteria as the axis of symmetry was found manually. However, their bilateral sym­

metry index could be used with a method which finds the axis of symmetry automati­

cally. Stoecker et al. ' s [90] method automated the measurement of asymmetry and gave 

a good agreement with a dermatologist, hence is suitable for an automated system. 

White et al. [98] and Golston et al. [37] assessed overall lesion irregularity with Golston 

et al. [37] finding a good agreement with a dermatologist. Both of these methods com­

pare lesions with circles, which results in lesions with elliptical, but smooth shapes, 

giving higher irregularity indexes than similar lesions with circular shapes. Claridge et 

al. [12] overcame this problem and distinguished between irregular shape and irregular 

border by using the 'bulkiness' [68], structural fractal dimension and textural fractal di­

mension. They concluded that the large scale irregularity (structural fractal dimension) 
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was more important in identifying melanomas than the bulkiness and small scale irregu­

larity (textural fractal dimensions). Their assessment of large scale irregularity is more 

robust than the previous methods as it is unaffected by small errors in the lesion bound­

ary position. 

4.4 Colour and Texture Analysis 
Colour and texture have been used to obtain diagnostic information (e.g. identification 

of variegated colouring) and have been suggested as methods of improving the meas­

urement of other factors. Colour analysis would allow quantitative instead of qualitative 

statements, such as bluish and reddish, to be made concerning lesions. This section dis­

cusses how colour and texture analysis has been applied to skin lesion images; colour 

and texture are also used in some of the segmentation and diagnosis methods described 

in sections 4.2 and 4.6. 

Texture analysis alone has not been used for skin lesion image analysis, but Dhawan and 

Sicsu [26] used texture in conjunction with intensity to segment the image. Dhawan [24] 

used texture and colour to identify pigmentation patterns. Texture may assist in segmen­

tation, identification of variegated colouring and locating skin creases. 

Cascinelli et al. [11] digitised colour slides (with standardised film and lighting) and 

examined the histograms, bi-dimensional histograms and Fourier spectra of the images 

in RGB (Red-Green-Blue) and HSV (Hue-Saturation-Value) colour spaces. By applying 

a threshold to the histograms the difference between melanoma and non-melanoma 

could be enhanced. The colour analysis was used by an expert system, which is de­

scribed in section 4.6, to discriminate between melanoma and non-melanoma. White et 

al. [98] also examined the RGB histograms and obtained the means and standard devia­

tions of the RGB data. Assessment using a very small test set suggested that these 

measurements would be helpful in recognising in-situ melanoma. 

Herbin et al. [ 42] considered the quantitative assessment of colour in skin images. They 

digitised colour images to which global illumination co1Tection (constant across the 

whole image) and local illumination correction (varying across the image) were applied 

by reference to a digitised image of a sheet of white paper. By using a chromameter, a 

comparison of colour assessment obtained from human observers, directly digitised 
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from a video camera and from a digitised colour slide was performed. They concluded 

that although the assessment from digitised colour slides was not as good as that ob­

tained directly from the digitised scene, both were better than human observers. The 

colour quantisation from digitised images was found to be less precise than from a 

chromameter. However, the quantisation from digitised images was adequate and would 

permit other measurements such as area which cannot be performed with the pinpoint 

colour measurements of a chromameter. 

Umbaugh et al. [95] described the automatic colour segmentation of skin lesion images 

and the detection of variegated colouring (VC) in the segmented images. The training 

and test images were labelled in blocks by a dermatologist to allow identification of 

specific features and masking of areas which were not of interest. The images were 

analysed in the non-linear spherical co-ordinate transform (SCT) colour space (Table 3-

1), which represents colours by two angles and a brightness value (which was ignored). 

The two colour angles were quantised and the image resolution reduced to reduce the 

storage and processing requirements. The colour quantised and averaged image was fil­

tered to remove small objects, fill in holes and smooth object outlines. After this, con­

tinuous blocks of the same colour were labelled to identify the different objects and a 

simple heuristic rule, based on the number of objects present and their colouring, used to 

identify variegated colouring. On a test set of 160 images this rule gave a 73% agree­

ment with a dermatologist on the presence or absence of variegated colouring. The heu­

ristic rule gave 47% sensitivity (VC correctly identified) and 85% specificity (absence of 

VC correctly identified). This method is not completely automated as it relies on the 

masking information provided by a dermatologist. 

In a later publication [93], Umbaugh et al. replaced this simple rule by the use of auto­

matic rule induction. An automatic rule induction tool using the ID3 algorithm was used 

to create a decision tree from the features extracted from a training set of images. The 

automatic induction rule using 18 measurements gave at best 60% sensitivity (VC cor­

rectly identified) and a specificity (absence of VC correctly identified) just under 100%. 

Using the heuristic rule on the test set used for the automatic rule induction only gave a 

26% sensitivity and 78% specificity. Hence, the automatic induction method gave much 

better results than achieved by the simple heuristic rule used in [95]. 
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The automatic colour segmentation algorithm was developed further in Umbaugh et al. 

[94] which compared the effectiveness of the spherical co-ordinate transform (SCT) 

with a two-dimensional split and a principal component transform (PCT) with a three­

dimensional split (in six different colour spaces). Automatic rule induction (ID3) was 

used to create rules for identifying six features (tumour, crust, hair, scale, shiny and ul­

cer) which were considered important by a dermatologist. The PCT 3-D split was shown 

to be more effective than the SCT 2-D split for identifying the six features. 

The effectiveness of neural network and rule induction methods in identifying VC were 

compared in a publication which used the SCT [27]. No overall conclusion of the most 

effective method was reached as the relative performance varied with the training and 

test set sizes. A peak accuracy of 80% was obtained using the neural network, which is 

not very impressive considering that 80% of the data set was non-variegated tumours. 

Herbin et al. [ 42] showed that performance of colour identification from digitised im­

ages was sufficient to be used in an automated system. Identification of variegated col­

ouring and six image lesion features (tumour, crust, hair, scale, shiny and ulcer) was 

shown to be possible by Umbaugh et al. in [95, 93, 94] and by Durg et al. [27]. 

4.5 Three-dimensional Analysis 
Breslow thickness (tumour thickness) is a very important guide to prognosis and tumour 

volume may be even more significant [33]; both can only usually be determined after 

excision. To simplify tumour volume measurement, White et al. [98] semi-automated its 

measurement from a series of step-sectioned slides prepared from an excised lesion. The 

slides were digitised under a microscope and the tumour perimeter manually marked on 

a computer screen. A wire-frame model of the tumour was created from this, which al­

lowed a three-dimensional view of the tumour and measurement of its volume. 

This method only allowed volume assessment after excision, hence preventing its use in 

diagnosis. To allow diagnostic use of tumour volume Dhawan et al. [25, 23] constructed 

a 'nevoscope' which could capture multiple views of a lesion non-invasively without 

excision. Three images of the skin at 90° (vertical), 180° (glancing) and at 45° were 

digitised and used in a limited view computed tomography algorithm to reconstruct the 

three-dimensional shape of the lesion. The lesion was transilluminated by fibre optics 
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which pressed into the skin. In addition to recovering the thickness and volume, limited 

details of the internal structure were recovered by the computed tomography algorithm. 

4.6 Diagnosis and Prognosis 
After analysing a lesion image diagnosis and prognosis may be attempted. This analysis 

may assist human diagnosis by providing consistent, accurate and objective measure­

ments [21], but this assumes that an expert is present and has been trained in the use of 

this additional information. Hence, research has attempted to construct systems which 

can provide diagnosis and prognosis. Even a simple system may provide assistance in 

estimating a patient's prognosis once a melanoma is diagnosed [98]. 

Cascinelli et al. (11] constructed the first prototype of a simple expert system, which 

seemed to be able to discriminate between melanoma and non-melanoma in most in­

stances. They considered it difficult to split the reasoning behind the clinical evaluation 

into very simple rules which could be entered into the expert system. Their system was 

not sufficiently developed to allow quantitative assessment of its performance, but it 

gave "encouraging results". 

Ercal et al. [29] used a multi-layer perceptron neural network, trained using back­

propagation, to achieve above 80% correct classification of malignant and benign le­

sions in colour digitised skin lesion images. Fourteen features were used to discriminate 

between malignant melanoma and three types of benign lesion. The features assessed 

irregularity, asymmetry, RGB colour variances, relative RGB chromaticity of the tumour 

relative to the surrounding skin, the spherical colour space co-ordinates (SCT) and (L *, 

a*, b*) colour space co-ordinates (Table 3-I). All of these features required accurate de­

tection of the lesion boundary, which was performed manually as they considered the 

accuracy of automatic boundary detection to be insufficient. The tumour size was not 

included in the feature set as the slides were obtained from various sources and photo­

graphed under varying magnifications. They found that including manually estimated 

approximate tumour sizes did not improve the diagnostic accuracy. Using training and 

test sets taken from 240 images they achieved a maximum sensitivity of 79.6% and cor­

responding specificity of 86.3%. 
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Kjoelen et al. [53) evaluated the performance of two artificial intelligence (AI) methods: 

rule induction by the ID3 algorithm and a polynomial network. The polynomial network 

combines the neural network concept with statistical regression techniques and consists 

of interconnected nodes that compute their outputs from a number of inputs. Sixteen 

features were extracted from digitised colour images and these included irregularity, 

asymmetry, variance of the RGB components, relative chromaticity of three colour 

components (relative to the colour of the surrounding skin), spherical colour co­

ordinates (SCT), HSI colour co-ordinates (Table 3-1), elevation (greater than 2mm 

above surrounding skin) and area (tumour diameter exceeding 6mm). The last two fea­

tures were estimated by a dermatologist. The overall performance of the rule induction 

method was found to be better than the polynomial network, but the absence of atypical 

moles in the training set dramatically improved the performance of both methods. Using 

251 images a maximum sensitivity of 72 % was achieved. 

Dhawan [24) analysed the images obtained from the top view of lesions imaged by the 

'nevoscope' . The prognostic and diagnostic features of lesion thickness, 3-D size, colour 

and margin, boundary and surface characteristics were combined with the patient's his­

tory (occurrence of melanoma or dysplastic nevi in the family, life style, skin type, etc.) 

to provide diagnosis and prognosis using knowledge databases, for early detection of 

melanoma, developed with the assistance of dermatologists and published case studies. 

The lesion was separated from the skin by a background subtraction algorithm, which 

used adaptive histogram-based region growing. After separation from the skin, the le­

sion colour was processed to obtain saturation and hue measurements used for spectral 

analysis in the high-level analysis system. After these pre-processing stages, the lesion 

image was segmented into regions by a modified multi-resolution pyramid and these 

regions merged and split to provide fewer sub-optimal but more "meaningful" regions. 

Rule-based low-level analysis was then used to label these regions with appropriate 

symbolic labels using features including area, average grey-level value and centroid. A 

pigment-pattern analyser considered the colour and texture of each region to create 

patches with consistent textures and colours. The knowledge database for the adequate 

classification of colour and texture (pigmentation patterns) commonly found in skin le­

sions, for the pigment-pattern analyser, was created from a training set. A rule-based 

expert system provided the high-level analysis by combining features from low-level 

segmentation, rule-based image analysis, historical patient data (such as the history of 
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melanoma incidence in the family) and current patient information (such as the lesion's 

site on the body) to provide probabilities of particular lesion types. Particular features, 

such as thickness, were assigned scores and these scores totalled and thresholded to de­

tect melanoma. The final output contained the probabilities of particular lesion types, 

the reasoning and the feature measurements used. The performance was not assessed 

because the high-level diagnosis and prognosis expert system was not complete. 

These publications show that the construction and use of explicit expert systems is diffi­

cult and their performance is poor [ 11, 24]. This is caused by the difficulty of obtaining 

and representing, in a form suitable for entry into a computer, the necessary complete 

dermatological knowledge. However, Ercal et al. [29] and Kjoelen et al. [53] showed 

that implicit knowledge acquisition and use by artificial neural networks, rule induction 

and polynomial network may be suitable for melanoma diagnosis. Explicit and implicit 

knowledge capture and use, in diagnosis, are discussed and compared in section 10.3. 

4. 7 Conclusions 

The first stage in analysing a lesion image is segmentation to identify the lesion bound-

ary accurately, consistently and reliably. This is important as diagnostically significant 

measurements of lesion shape, size, colour and texture depend on the boundary. The 

highly variable nature of skin images makes this problem difficult and hence many 

boundary detection methods [11 , 98, 12, 30, 77, 36, 26] have been proposed. Assessing 

the performance of these methods is difficult as there is no "gold standard" for lesion 

boundaries. However, some of these methods [30, 36] have been visually assessed by 

dermatologists and their performance judged to be inadequate for an automated system, 

particularly on potentially fatal melanomas. In addition, researchers attempting to con­

struct automated diagnostic methods for skin lesions [29, 53] have found it necessary to 

use manual boundary detection as they considered the performance of automatic bound­

ary detection to be inadequate. The inadequate performance and the difficulty in assess­

ing performance indicates two areas where research is required: new boundary detection 

methods and performance assessment methods. Consequently, a new boundary detection 

method using edge focusing was developed and is presented in chapter 8. To assess this 

boundary detection method, a method of producing simulated skin images and an area 

based measure were developed (chapter 9). 
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Lesion shape is diagnostically important [59, 60, 1, 63, 34, 40] and hence its automatic 

and reliable assessment is necessary for a computerised diagnostic system. Overall ir­

regularity has been assessed by methods [98, 37] which compare the lesion with a circle. 

However, these methods assign higher measurements to lesions with elliptical, but 

smooth shapes, than similar lesions with circular shapes. This problem was addressed by 

Claridge et al. [12] using 'bulkiness' [68] and consequently this is extended upon in the 

next chapter. In addition to assessing overall irregularity, it is necessary to have meas­

urements of large and small scale irregularity [11, 40, 63]. Claridge et al. [12] obtained 

this by fractal dimension analysis [62, 51]. However, they only assessed the accuracy of 

their measurements on two shapes and did not automatically separate the large and small 

scale irregularity. Both of these problems are addressed in the automatic method pre­

sented in the next chapter. 



Chapter 5 

Shape Analysis 

5. 1 Introduction 
In chapter 2 the importance of lesion shape, in particular roundness, irregularity and 

asymmetry, as a diagnostic factor [59, 60, 1, 63, 34, 40] was described. In this chapter 

methods of assessing roundness (by bulkiness) and irregularity (by fractal dimension) 

are presented and illustrated with test shapes and real lesion shapes. The impact of noisy 

shapes on these shape analysis methods is assessed and conclusions drawn on the suit­

ability of these methods for skin lesion diagnosis. In an automated diagnosis system 

these techniques would be used after the lesion boundary had been found, but are pre­

sented here as the bulkiness measurement is presented as part of a method of skin lesion 

location in chapter 6. The lesion boundaries used to illustrate this chapter were obtained 

using the edge focusing algorithm presented in chapter 8. However, in the initial devel­

opment of these methods, boundaries were obtained by binary thresholding (using each 

image's average intensity) followed by removal of isolated pixels and boundary tracing. 

5.2 Review of Shape Analysis Methods 
There are many methods of analysing shape which lead to a range of shape descriptors 

[80, 38, 75]. To use existing human knowledge in the assessment of skin lesions, it is 

necessary that the shape measurements used can be related to human perception of 

shapes. For example, human diagnostic methods (section 2.7) identify irregularity and 

"roundness" as important diagnostic indicators. In addition, as the scale and rotation of 

the lesion shapes are variable the shape measurements must be scale (size) and rotation 

invariant. 

A review of published methods of analysing skin lesion shapes was given in section 4.3. 

In this section, these methods and shape analysis methods used in other research areas 

are examined, and appropriate methods of assessing lesion shape chosen. 
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White et al. [98] and Golston et al. [37] assessed lesion irregularity using equations (4.6) 

and (4.8) respectively. Both of these assess overall irregularity by comparing the shape 

with an equivalent circle and are rotation and scale invariant. There are other methods of 

comparing a shape with a circle, such as the compactness ratio [80], but all of these 

methods have the disadvantage of assigning higher measurements to elliptical shapes 

than to similar circular shapes. This problem can be overcome by measuring bulkiness 

[68], as used by Claridge et al. [12] , which gives a rotation and scale invariant index un­

affected by the elliptical nature of some lesion shapes. A method for measuring bulki­

ness, which is an enhancement of Medalia's [68] method, is presented in the next sec­

tion. 

These methods of assessing shape give only an overall description of shape. In mela­

noma diagnosis, it is necessary to distinguish between large and small scale irregularity 

[ 11 , 40, 63]. To assess both of these, it is necessary to use other methods. Fourier de­

scriptors [38, 75] provide a method of assessing shape at a range of scales. In this 

method, the Cartesian co-ordinates of a boundary are considered as complex numbers, 

with the x and y co-ordinates represented as the real and imaginary parts respectively 

and these complex numbers Fourier transformed to give a frequency space representa­

tion of the shape. The original shape or an approximation can be reconstructed with the 

inverse Fourier transform. By examining particular frequencies, the shape can be as­

sessed. To measure large and small scale irregularity using Fourier descriptors would 

require selection of an arbitrary frequency threshold to separate the two. Although 

Fourier descriptors can capture a great deal of information about a shape they are very 

difficult to relate to human perception of shape [85]. Fractal dimension analysis [62, 51] 

can characterise both large and small scale irregularity in a way which is better in this 

respect. It was used by Claridge et al. [ 12] to characterise lesion shape, and is explained 

and an automatic measurement method presented later in this chapter. 

5.3 Bulkiness Measurement 
Bulkiness is a dimensionless shape factor indicating the similarity of a shape to an el-

lipse, first described by Medalia [68] and used by Claridge et al. [12] to characterise 

melanoma outlines. Here, the method described by Medalia is modified slightly, to sort 

the boundary points into strips and to allow skipping of duplicated points. The co­

ordinate output from lesion boundary detection methods is generally a continuous list in 
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the order in which the boundary is traced, i.e. co-ordinates which are adjacent in the co­

ordinate list are spatially adjacent in the image. The original Medalia method required 

the co-ordinates to be arranged in strips parallel to the x-axis, hence the co-ordinates 

were sorted to re-arrange them into this state. After sorting, any duplicate points were 

skipped to prevent them from affecting the measurements. In addition to measuring 

bulkiness, the method determines the centroid and area of the shape and the aspect ratio 

(ansiometry), orientation and axes lengths of the equivalent ellipse. 

Bulkiness (BL) is defined as: 

B = area of the equivalent ellipse 

L area of the original shape 
(5.1) 

where the equivalent ellipse has the same moment of gyration as the original shape. 

The following description shows how to obtain the bulkiness, and is illustrated in Figure 

5-1 with examples in Figure 5-2. To analyse the whole shape, it is processed in strips 

parallel with the x-axis, which allows the shape moments to be calculated in terms of the 

moments of these rectangular strips. To obtain the co-ordinates of these rectangles, the 

boundary co-ordinates are sorted into strips with increasing y and increasing x, i.e. 

sorted using: 

(5.2) 

Each rectangular strip's start and end x co-ordinates (x10 and X1i;) are found by sequen­

tially scanning the sorted co-ordinate list for pairs of co-ordinates with the same y value. 

y 

centroid (xc;yd 

b-axis 

equivalent ellipse 

principle angle 

a-axis 

-------------•x 
Figure 5-1: Equivalent ellipse. 
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In this process, duplicate points are skipped and horizontally adjacent points are amal­

gamated into one strip. After finding each strip's start and end co-ordinates, the calcula­

tions described in appendix B are performed to give the following: 

Shape area: A 
Centroid: xe, Ye 
Moment of inertia about the x '-axis parallel to the x-axis through the centroid: CM20 

Product moment about x' and y' axes: CM11 
Moment of inertia about the a-axis: MA20 

Radius of gyration about the a -axis: rAgy 
Radius of gyration about the b-axis: rBgy 

These yield the axis lengths of the equivalent ellipse and the principle angle, 0, between 

the a-axis and the x-axis: 

d =d =4rA B L gy 

Note: d8 is always larger than dA, 
dL = Largest diameter of the equivalent ellipse. 
ds = Smallest diameter of the equivalent ellipse. 

(
CM -Mli ) 0 = arctan 20 '"2o 

CMII 

(5.3) 

(5.4) 

(5.5) 

Note: To prevent domain errors when CM11 or (CM20 - CM11) is zero then 0 is set to 

zero without computing the arctan. 

Finally, the aspect ratio and bulkiness can be obtained: 

A . A - dB spect ratio: R -
dA 

(5.6) 

4n rA ,, rB,, 
Bulkiness: BL = g) s> 

A 
(5.7) 

To find the effect of small perturbations in the boundary position on the measurements 

described in this chapter, the methods were tested with boundaries having added radial 

Gaussian distributed noise. To add the noise each point on the original boundary was 

displaced radially by a Gaussian distributed random distance and after removing any 

duplicate points any gaps in the boundary were bridged by cubic spline interpolation (as 

described in chapter 8). The standard deviation of the Gaussian distributed numbers was 

set as a percentage of the average radius of the equivalent ellipse (which is found during 
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the bulkiness measurement), which allowed the noise to scale with the size of the shape. 

This method models the effects of small displacements in the boundary, but does not 

attempt to model larger inaccuracies in the boundary. This allows testing of the effects 

of slightly misplaced boundaries, but does not consider the effects of the boundary de­

tection method failing to find a reasonable lesion boundary, i.e. one near the true bound­

ary. The bulkiness measurement is inherently scale invariant and hence the effects of 

changing the image scale were not tested. 

The effect of adding Oto 5% radial Gaussian distributed noise to the shapes in Figure 5-

2 is shown in Figure 5-4 and an example of each shape with 5% noise is shown in 

Figure 5-3. These graphs show that the average bulkiness increases as the standard de­

viation of the added noise increases, which is the expected result of the noise increasing 

the roughness of the boundary and so decreasing the similarity of the shape to an ellipse. 

As the added noise increases the differences between shapes with the same level of 

noise added increases and hence the standard deviation of the bulkiness measurement 

also increases, which can be seen in Figure 5-4. 
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(b) 

(c) 

Figure 5-2: Bulkiness of examples shapes with their equivalent ellipses and princi­
pal axes. (a) A rectangle with a bulkiness of 1.047 and an aspect ratio of 1.5. 
(b) Melanoma outline with an area of 7098 and 338 boundary points, a bulkiness of 
1.122 and an aspect ratio of 1.736. (c) Benign lesion outline with an area of 1090 
and 116 boundary points, a bulkiness of 1.105 and an aspect ratio of 1.282. Note: 
the images are not shown at the same scale. 

(a) (b) 

(c) 

Figure 5-3: Example shapes from Figure 5-2 with 5 % radially distributed Gaus­
sian noise. (a) Noisy rectangle with a bulkiness of 1.744. (b) Noisy melanoma out­
line with a bulkiness of 2.406. (c) Noisy benign lesion outline with a bulkiness of 
1.631. Note: the images are not shown at the same scale. 
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Figure 5-4: Graphs of bulkiness against% noise for the example shapes shown in 
Figure 5-2. (a) Rectangle. (b) Melanoma outline. (c) Benign lesion outline. The er­
ror bars are for ± the standard deviation of a set of 100 shapes. 
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5.4 Boundary Irregularity 
A lesion's outline irregularity is a known diagnostic factor, a smooth outline being likely 

to have a better prognosis than a rough outline. The measurement of irregularity by de­

termining the structural and textural fractal dimensions, which represent the large and 

small scale irregularity respectively, is described in this section. 

The term fractal dimension was coined by Mandelbrot [62] to denote the space filling 

ability of a curve. In the two-dimensional boundaries considered here, it describes the 

plane filling ability of the boundary. The fractal dimension of a two-dimensional object 

varies from one for a circle to two for a disc (filled circle), which indicates it completely 

fills a two-dimensional plane. The boundary length of a fractal shape depends on the 

measurement scale (resolution) and this change in boundary length can be used to de­

termine the fractal dimension. The fractal dimension is given by one minus the gradient 

of the Richardson plot [51], which is a log-log plot of the estimated boundary length 

against the measurement scale. At larger measurement scales, the gradient represents the 

structural fractal dimension and at smaller measurement scales, the textural fractal di­

mension. The boundary length estimate and measurement units are normalised with re­

spect to the maximum Feret's diameter (fD) [51], which makes the fractal dimension 

measurement dimensionless. Feret' s diameter is the maximum width of shape in a given 

direction, hence the maximum Feret's diameter is the largest distance between any two 

points on the boundary. 

To prepare the Richardson plot, it is necessary to calculate estimates of the boundary 

length at different measurement scales. A range of methods exist for performing this, 

including structured walk techniques and Minkowski sausage logic [51]. 

Structured walk techniques create an irregular polygon by stepping around the boundary 

of the shape [51]. The final vertex of the polygon is joined to the start vertex to form a 

closed contour. The length of this polygon's boundary gives the estimated boundary 

length at a particular scale. By changing the length of the steps used to place the poly­

gon's vertices, the measurement scale is changed. The vertices can be manually placed, 

using a compass, by the three methods: 



5 .4 Boundary Irregularity 71 

• Inswing structured walk: always pivot the compasses from the outside of the 

boundary inwards towards the first contact with the boundary. 

• Outward swing structure walk: always pivot the compasses from the inside of the 

boundary outwards towards the first contact with the boundary. 

• Alternate swing structure walk: alternate between swinging inwards and outwards. 

These methods can produce different boundary estimates, with the alternate swmg 

method leading to an intermediate length between the inswing and outswing techniques. 

These techniques are suitable for manually measuring the boundary length and hence 

fractal dimension, but are not easy to automate. These three methods create polygons 

with equal length sides (excluding the last side), however there is no fundamental ad­

vantage in using equi-sided polygons, provided that the side length varies in an unbiased 

manner. 

A simple unbiased method for placing the polygon's vertices is to move, around the 

boundary, a fixed number of points between each vertex. By changing the starting point, 

an average value for the boundary length at a particular scale can be obtained. The num­

ber of points stepped over, between each vertex, controls the measurement scale. This 

method is referred to, in this thesis, as "Structured walk with fixed steps". A slightly 

more complex method overlays the boundary with a series of parallel lines and uses the 

intersection of these lines as the vertices of the polygon, which is illustrated in Figure 5-

5. It is implemented by searching the boundary co-ordinates for points with y co­

ordinates equal to a starting value plus a multiple of the step size. This method is re­

ferred to as "Structured walk with parallel lines". Both structured walk methods create a 

(a) (b) 

Figure 5-5: A structured walk. (a) At a large scale. (b) At a small scale. 
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number of boundary length estimates for a particular step size, hence the average and 

standard deviation can be obtained. 

In Minkowski's sausage logic [51], each boundary point is surrounded by a disc (filled 

circle) and these circles merge to form a ribbon covering the boundary. The ribbon's 

area can be measured, without knowing how many circles there are, and this area di­

vided by the diameter of the circles gives a boundary length estimate. The circle's di­

ameter is the scale at which the boundary has been measured. Fractal dimension meas­

urement using Minkowski's sausage logic can be implemented using morphological di­

lation with a disc [31]. Between each boundary length estimation the current boundary 

area is dilated by a small disc, which creates a series of boundaries with increasing area. 

The boundary length estimate is the area covered divided by the step size, which can be 

obtained from the number of dilations performed and the disc size. The dilation used in 

the original method is time consuming, hence was replaced by the placing of a discrete 

disc, with a diameter equal to the current step size, centred on each boundary co­

ordinate. To ensure that the discrete disc's centre is in the middle of a pixel 1, i.e. it has a 

centre pixel , and it is horizontally and vertically symmetric, only odd step sizes can be 

used. This allows the disc's centre to be precisely placed on the discrete boundary. The 

discrete disc is a discrete approximation of a filled circle, hence its area is not nr2 which 

makes the boundary estimate, particularly at small step sizes, inaccurate. To compensate 

for this the disc area was measured and used to estimate the diameter of the discrete disc 

(disc diameter = 2-J(meas. area)/ n ). This improved the boundary estimates at small 

step sizes. This method is referred to as "Flook' s method" [31 ]. 

In fractal dimension measurement, the boundary length is estimated over a range of step 

sizes. For the first structured walk method the largest usable step size is one that reduces 

the shape to a triangle, which corresponds to the number of points in the boundary di­

vided by three. For the structured walk with parallel lines, the largest usable step size is 

equal to the shape's height. Kaye [51] recommended using a maximum step of 0.3J0 to 

avoid the inaccurate results which can come from examining boundaries at large scales, 

caused by the polygon being a poor approximation of the shape in the structured walk 

methods. For a reasonable size shape, the number of potential step sizes is considerable. 

1 For example, the central pixel of a disk of 5 pixels diameter is at (3, 3). A disk of 4 
pixels diameter does not have a central pixel. 
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At each of these a number of boundary estimates may be made, each requiring signifi­

cant computation and hence to reduce the computation required the following three 

methods of selecting the integer step sizes were tested: 

1. Linear steps: All values between the minimum and maximum step sizes inclusive. 

2. Power of two steps: All powers of two between the minimum and maximum step 

sizes inclusive. 

3. Logarithmic steps at 15 points per decade: Logarithmically (base 10) spaced points at 

15 points per decade between the minimum and maximum step sizes inclusive. 

After creating the Richardson plot, its gradient is measured to find the fractal dimen­

sions. Claridge et al. [ 12], who measured the fractal dimension of lesion shapes, ob­

served that the breakpoint between the textural and structural dimensions always oc­

curred, for their data, within a small range of step sizes. Hence, they used values below 

the minimum of this range to obtain the textural dimension, those above the maximum 

to obtain the structural dimension and ignored the data inside the range. To find the 

fractal dimensions automatically, a multi-segment line can be non-linearly fitted to the 

Richardson plot using all of the data. This allows the breakpoint between the textural 

and structural dimensions to be determined automatically. A non-linear fit is required as 

an Ns segment line, of the form shown in Figure 5-6 and the following equations, is not 

linearly dependent on its 2Ns parameters. 

y 

-
a(I ) 

segment 1 segment 2 

a(3) 

Figure 5-6: Multi-segment line. 

a(5) 

/ segment Ns 

~--+-----:► X 

a(7) 
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For the first segment: 

y = a(l) + a(2)x 

___!Q_ = 1 _!l_ = x dy = 
da(l) ' da(2) ' da(3) 

= dy =0 
da(2Ns) 

For the nth segment: 

11-l 

y = a(l) + Ia(2i)(a(2i + 1)-a(2i-1)) + a(2n)(x- a(2n-1)) 
i=l 

___!Q_ = 1 _!]_ = a(3) dy = x- a(2n-1) 
da(l) ' da(2) ' da(2n) 

dy _ = dy = O 
da(2n + 1) .. · da(2n) 

For i = 3 to 2n-1 odd only: dy( ') = a(i - 1) - a(i + 1) 
da i 

For i = 3 to 2n-1 even only: dy_ = a(i + 1) - a(i- 1) 
da(z) 

where a(l) = y intercept of segment 1, 
a(2n) = gradient of segment n, 

a(2n-1) = x co-ordinate of start of segment n, 

dy·) = differential of y with respect to the ith parameter. 
da(i 

74 

(5.8) 

(5.9), (5.10), (5.11) 

(5.12) 

(5.13), (5.14), (5.15) 

(5.16) 

(5.17) 

(5.18) 

The Levenberg-Marquardt method [81] of non-linear least-squares fitting was used to fit 

the multi-segment line. This is an iterative method whjch requires an initial estimate of 

the function parameters (a()), an estimate of the standard deviation of each point and the 

ability to calculate the differential of y with respect to each of the parameters at a par­

ticular x. The following equations set these initial parameters to give each line segment 

approximately the same number of points and set the breakpoints, between line seg­

ments, to coincide with measured data points and the line segment gradients using exist­

ing points. 
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y( ~ )-y(l) 
a(2)= s , a(l)=y(l)-x(l)a(2) 

x( ~ )-x(I) 
(5.19), (5.20) 

and for i = 2 to Ns 

(5.21), (5.22) 

where np = the data points, i.e. the number of fractal dimension measurements. 

To test the accuracy and measurement time of the fractal dimension (FD) measurements, 

shapes with known fractal dimensions are required, hence lesion shapes cannot be used 

as their FDs are not known. Claridge et al. [12] used a circle (FD = 1) and a Triadic 

Koch curve [62] (FD = 1.262, shown in Figure 5-7(b)). With these shapes, they found 

their method had an average error of 2.3%. However, this error measurement was ob­

tained using only two shapes, with the Triadic Koch curve having a fractal dimension 

much higher than that of lesion shapes. To discriminate between benign and malignant 

lesions they used a structural fractal dimension of 1.070 and a textural fractal dimension 

of 1.075. Consequently, it is important to assess the accuracy using shapes with FD's 

nearer to these values than the Triadic Koch curve to obtain a better idea of the accu­

racy. In addition, to obtain a more reliable assessment of accuracy it is necessary to use 

more test shapes. 

Both of these problems can be addressed by using the five test shapes, shown in Figure 

5-7, with FD's between 1 and 1.262. These shapes have the same fractal dimension at 

all measurement scales, so only one fractal dimension can be measured. When measur­

ing a single fractal dimension, a straight line linear least square fit [81] was used, in­

stead of non-linear fitting of the multi-segment line previously described. 

The last four shapes shown in Figure 5-7 are Koch curves [62] and were constructed by 

the method described here, which is illustrated in Figure 5-8 by a Triadic Koch curve. 

The shape construction starts with the initiator (Figure 5-8(a)), which controls the 

overall shape. To create a first approximation of the Koch curve, each side of the initia­

tor is replaced by a scaled, rotated and translated version of the generator (Figure 5-8(b)) 
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to give the shape shown in Figure 5-8(c). This process of replacing each side of the cur­

rent shape with the generator is repeated an infinite number of times to create a Koch 

curve. Figure 5-8 shows the first four iterations of this process. To create an approxi­

mate curve, which is suitable for assessing the FD measurement, this process is stopped 

once the side length is less than the available resolution. 

(a) Circle with FD = 1.000. (b) Koch curve with FD = 1.065. 

(c) Koch curve with FD= 1.131. (d) Koch curve with FD= 1.196. 

(e) Triadic Koch curve with FD= 1.262. 

Figure 5-7: Fractal dimension analysis test shapes. Note: The shape boundaries are 
drawn 3 pixels wide. 
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_____/\__ 
(a) Initiator. (b) Generator. 

~ 
(d) Second iteration. ( e) Third iteration. 

Figure 5-8: Koch curve generation. 

The fractal dimension of a Koch curve is controlled by the generator, as this controls the 

increase in boundary length with increasing resolution, and is given by [62]: 

f, 
_ 1ogN 

v -
log ½ 

(5.23) 

where N = the number of segments in the generator. For the Triadic Koch curve, N = 4. 
r = the ratio of the length of the generator segments to the length of the whole 

generator. For the Triadic Koch curve, r = ½ . 

Equation (5.23) gives the fractal dimension for a shape with a known generator, how­

ever by specifying either N or r the method presented here can create a generator which 

gives a specified fractal dimension. To allow a generator, of the shape shown in Figure 

5-9, to be easily constructed by a regular method, the number of segments (N) is set to 

an even number. Once the number of segments is fixed, the fractal dimension is con­

trolled by the ratio (r) of the generator length (gL) to the segment length (sL)- For con­

venience, the generator length is fixed, at for example one, hence the segment length can 

be found by: 
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I I _____ I'- ____________ I'- ______ _ 

8c 8c 8c 

gL 

Figure 5-9: Generator construction, for a 4 segment generator. 

where gL = generator length, 
N = number of segments in the generator, 
f O = desired fractal dimension. 
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(5.24) 

From the segment length and the number of segments, the remaining dimensions can be 

calculated and the generator constructed in a shape similar to Figure 5-9: 

0 _& 
OG -

N 

where gL = length of the whole generator, 
gH = generator height. 

(5.25) 

(5.26) 

Before analysing the shapes just described, their boundaries must be converted to the 

same form as real lesion boundaries. This conversion was performed by rounding the 

boundary co-ordinates to the nearest integer and removing any points which were not on 

the shape's exterior by contour tracing an image of the shape. This process made the 

boundary similar to those from real images, which allowed testing on more realistic 

data. 

Before comparing the three methods, it is necessary to decide on the size of the test 

shapes and the starting and stopping measurement scales. As the test shapes are discrete 

approximations, the fractal dimensions will not exactly match the theoretical ones. To 

minimise this difference larger scale test shapes can be used, but they bring the penalty 

of larger computation times. Hence, one shape (the Triadic Koch curve) was tested at a 
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number of sizes (250 to 1500 in steps of 250), with all the three methods, to assess the 

effects of changing the shape size and the effects of changing the starting scale. The size 

of the Triadic Koch curve was set by the side length of the initiator. As the shape's size 

increased the accuracy of the fractal dimension measurement increased, but the compu­

tational time also increased. Hence, it was necessary to find a compromise between 

shape size and computation time. By examining the Richardson plots of the shapes, it 

was possible to estimate the minimum usable step size. Below the minimum step size, 

the downward gradient of the Richardson plot decreased (i.e. the fractal dimension de­

creased) due to the boundary becoming more Euclidean. On the basis of these initial 

tests, it was decided to use an initiator side length of 1000 and a minimum step size of 

3% of the maximum Feret's diameter. 

Table 5-1 presents the results of testing the three fractal dimension analysis methods 

with the three step size selection methods on the five test shapes, shown in Figure 5-7. 

Flook's method (method 3) gave the best overall performance with all step selection 

methods, except with the "power of two steps". The slightly greater accuracy of method 

2 ("structured walk with parallel lines") using the "power of two steps" over method 3 is 

not significant as the measurement is only based on, in these examples, three or four 

points. The very small number of points used in the "power of two steps" method makes 

it unusable when the textural and structural dimensions are required. This method was 

included in the tests to show the effect of using a very small number of points which re­

quires very little computation. 

These test results compare favourably with the errors obtained by Claridge et al. [12]. 

They obtained errors of 2.0% and 2.6% for a circle and Triadic Koch curve respectively, 

compared with errors of 0.5% and 0.4% for the method selected here. They also used 

Flook's method [31] , but their implementation was different in using repeated dilations 

by a small disc. It is not possible to compare the results for the three shapes with FDs 

between 1.065 and 1.196 with Claridge et al. [ 12] as they only used two test shapes. 

When using only two test shapes, it is difficult to assess the measurement accuracy, es­

pecially when neither of the shapes has FDs similar to those they measured for melano­

mas and benign lesions. 

On the basis of these tests "Flook's method" with logarithmic step sizes, at 15 points per 

decade, was selected as the most appropriate method for assessing skin lesion shape. 
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Figure 5-10 shows Richardson plots, for a malignant and benign lesion, created using 

"Flook's method" . The test shapes were higher resolution versions of those shown in 

Figure 5-2(b) & (c). Structural and textural fractal dimensions were found using the 

non-linear fitting method presented earlier. 

The effects of adding radial Gaussian distributed noise to these shapes is shown in the 

graphs in Figure 5-11. (The addition of radial Gaussian distributed noise was described 

in section 5.3.) These show the textural fractal dimension increasing as the size of the 

added noise increases, which is the expected effect of the noise increasing the small 

scale variability of the shape. The structural fractal dimension also increases, although 

not as much as the textural dimension. As the added noise increases the differences be­

tween shapes with the same level of noise added increases and hence the standard de­

viation of the fractal dimension also generally increases. Theoretically, the structural 

fractal dimension should be unaffected by the addition of small scale Gaussian noise as 

there is no change in the large scale shape. However, these tests indicate that, in this 

method, the structural dimension is affected by small scale Gaussian noise. Another 

problem is the difficulty of assessing its accuracy with test shapes, with known fractal 

dimensions, similar to lesions. In this thesis, this problem has been addressed with a 

method which creates shapes with a specified fractal dimension. Although, these shapes 

have fractal dimensions similar to lesions, they do not have overall shapes similar to 

those of lesions. To obtain lesion boundaries with sufficient resolution for measuring 

boundary length over a reasonable scale range, it was necessary to use high resolution 

images. In practical system, it may be difficult to use images of such a high resolution 

because of the capture, storage and processing requirements. These problems indicate 

that fractal dimension measurements may not be suitable for assessing lesion shape. The 

fractal dimension measurement is inherently scale invariant, as it scales with the maxi­

mum Feret's diameter and hence the effects of changing image scale were not tested. 
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Shape Fractal dimension 
Theoretical Method 1: Structured walk with fixed steps 

linear ste JS power of 2 steps log base 10 steps 
value % error value % error value % error 

Circle 1.000 1.005 0.5% 1.005 0.5% 1.004 0.4% 
Koch 1.065 1.047 1.7% 1.044 2.0% 1.045 1.9% 
curve 1 
Koch 1.131 1.069 5.5% 1.077 4.8% 1.070 5.4% 
curve 2 
Koch 1.196 1.070 10.5% 1.071 10.5% 1.071 10.5% 
curve 3 
Triadic 1.262 1.208 4.3% 1.207 4.4% 1.209 4.2% 
Koch 
curve 
Average % error 4.5% 4.4% 4.5% 
Shape Fractal dimension 

Theoretical Method 2: Structured walk with parallel lines 
linear ste JS power of 2 steps Jog base 10 steps 
value % error value % error value % error 

Circle 1.000 1.066 6.6% 1.059 5.9% 1.057 5.7% 
Koch 1.065 1.108 4% 1.097 3% 1.101 3.4% 
curve 1 
Koch 1.131 1.118 1.1% 1.121 0.9% 1. 113 1.6% 
curve 2 
Koch 1.196 1.1 19 6.4% 1. 115 6.7% 1.109 7.3% 
curve 3 
Triadic 1.262 1.266 0.3% 1.261 0.1 % 1.265 0.2% 
Koch 
curve 
Average % error 3.7% 3.3% 3.6% 
Shape Fractal dimension 

Theoretical Method 3: Flock' s method 
linear steJs power of 2 steps log base 10 steps 
value % error value % error value % error 

Circle 1.000 1.005 0.5% 1.006 0.6% 1.005 0.5% 
Koch 1.065 1.045 1.9% 1.044 2.0% 1.045 1.9% 
curve 1 
Koch 1.131 1.076 4.9% 1.077 4.8% 1.077 4.8% 
curve 2 
Koch 1.1 96 1.078 9.9% 1.078 9.8% 1.078 9.8% 
curve 3 
Triadic 1.262 1.257 0.4% 1.257 0.4% 1.256 0.4% 
Koch 
curve 
Average % error 3.5% 3.5% 3.5% 

Table 5-1: Comparison of theoretical and measured fractal dimensions, for the test 
shapes in Figure 5-7. Note: The measured fractal dimensions will not exactly match 
the theoretical ones, as discrete approximations of the shapes were used. 
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Figure 5-10: Example Richardson plots for a malignant and benign lesion. 
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Figure 5-11: Effects of adding radial Gaussian noise on the fractal dimensions of a 
malignant and benign lesion. (a) Melanoma. (b) Benign lesion. The error bars are 
for ± the standard deviation of a set of 100 shapes. 
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5.5 Conclusions 
This chapter described the measurement of two shape parameters which are known to be 

useful in diagnosing skin cancer. A method of obtaining bulkiness, which is an en­

hancement of the method proposed by Medalia [68], was presented. The measurement 

of fractal dimension was discussed and an implementation of "Flook' s method" [31] 

used to find the structural and textural dimensions of lesion shapes. To select this 

method, three methods of fractal dimension measurement were tested on shapes with 

known fractal dimensions. To create these test shapes, a new method of creating shapes 

with specified fractal dimensions was presented. Using the test shapes "Flook's method" 

was shown to give the best overall performance. The application of these shape meas­

urements in a diagnostic system is discussed in chapter 10. 

The creation of shapes with known fractal dimensions allowed the assessment of the 

fractal dimension measurement methods on shapes with fractal dimensions comparable 

with those of real lesions. This allowed more reliable assessment of the fractal dimen­

sion measurement methods which was not possible in the previous application of fractal 

dimension measurement to lesion analysis [12]. 

The effects of adding radially distributed Gaussian noise to the shapes under assessment 

was investigated. The bulkiness and fractal dimension were shown to increase with in­

creasing Gaussian noise, which demonstrates the importance of accurate boundary de­

tection. The effects of noise on the fractal dimension measurement and the necessity of 

using high resolution shapes indicated that it may not be suitable for assessing lesion 

shapes. However, bulkiness does not require the use of such high resolution shapes and 

hence is more suited to assessing lesion shapes. 

The lesion boundaries used initially to test these methods were obtained by binary 

thresholding of monochrome skin images. However, this method was observed to be 

inaccurate and unreliable in finding boundaries on many images. Hence, a more reliable 

and accurate method of determining lesion boundaries was required. Methods for 

achieving this are described in the following chapters. 



Chapter 6 

Skin Lesion Location and Isolation 

6. 1 Introduction 
This chapter examines the problem of approximately locating and isolating lesions in an 

image. This process is important as it allows the lesion analysis to be tolerant of image 

capture conditions and image contents. An image may contain many background objects 

(e.g. clothing and rulers) which require identification as extraneous image areas so that 

the area containing a lesion can be identified and separated from the rest of the image. 

This chapter presents a process which can locate and isolate a single lesion and provide 

the following information, which is required or useful in the analysis of that lesion: 

• cropped image containing a single lesion with sufficient surrounding skin image to 

allow accurate processing, but excluding background objects and other skin features. 

• approximate location of the lesion within the cropped image and the location of the 

cropped image within the original image. 

• lesion size and shape measurements. 

The process, illustrated in Figure 6-1, was developed for images containing a single le­

sion and its extension to images containing multiple lesions is discussed in the chapter 

10. It is essentially the locating of a number of dark regions (lesions), which can be 

characterised by their size, shape, intensity and texture, on a light background (skin). 

The process is described in the order in which it is performed. At each stage alternative 

methods are described, evaluated, compared and the most appropriate method and its 

associated parameters presented. To enable this evaluation, all of the methods read and 

produce 256 grey-level images. This allowed each stage to be developed independently 

and the intermediate outputs to be examined. 
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Figure 6-1: Lesion selection process. 
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6.2 Illumination Compensation 
\ 

Skin images may have non-uniform illumination, which causes difficulties in identifying 

the lesion by affecting the binary thresholding of the images. One technique for reducing 

the impact of non-uniform illumination is described in this section and its usefulness 

assessed in sections 6.4.3 and 6.6. 

6.2.1 Tilt Removal 

Tilt removal, which was performed by a Khoros [83] program, can compensate for a 

constant illumination gradient. It is performed by computing a least square best fit plane, 

of the form /( x,y) = Ax+ By+ C, for the original image and subtracting this plane 

from the image. This sets the average intensity of the image to zero, but this can be re­

stored by adding the average intensity of the original image which ensures that the out­

put occupies a similar range to the input. An example tilt removal is shown in Figure 6-

2. Tilt removal is suited to images with unknown uniform illumination gradients, such 

as that caused by non-uniform lighting. 

(a) (b) 

Figure 6-2: Image tilt removal using Khoros on a 668 by 480 image. (a) Before. 
(b) After. 

6.3 Image Filtering 
The thresholding, described in section 6.4, is affected by the edges and high frequency 

components of an image. By filtering the image these can be modified which changes 

the thresholding and hence the ability to identify the lesion. Three image filtering meth­

ods (low-pass filtering, median filtering and unsharp masking) are described in this sec­

tion and tested in conjunction with thresholding methods in section 6.4.3. 
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6.3.1 Linear Low-pass Filtering 

Low-pass filtering attenuates high frequencies whilst leaving low frequencies unaf-

fected, thereby blurring the image. A simple form of low-pass filtering, average filter­

ing, which replaces each pixel by the average of itself and its neighbours, is described in 

this section. 

An average filter finds the average of the pixels in a square neighbourhood centred on 

the current output pixel. Hence, for an n by n filter n2 values must be added for every 

pixel in the image, which may be a time consuming task. However, by using a running 

average filter the average computation can reduced to n additions and n subtractions per 

pixel. This method updates the average by removing the effect of the left-hand column 

and adding the effect of the right-hand column as the image is processed in a left to 

right, top to bottom scan. At the beginning of each line, the average is calculated for the 

whole neighbourhood. The neighbourhood is progressively truncated at the edges of the 

image to ensure that it is contained within the image. This truncation changes the effect 

of the filter near the image borders, but allows all of the image to be filtered and has less 

effect on the output than surrounding the image with zeros. 

Low-pass filtering blurs the image, reducing the sharpness of edges and may affect the 

performance of thresholding. The effects of average filtering are shown in Figure 6-3. 

(a) (b) 

Figure 6-3: Low-pass filtering of an example image (246 by 210) using a 7 by 7 
running average filter. (a) Original image. (b) Low-pass filtered image. 
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6.3.2 Median Filtering 
A median filter replaces each point in the image with the median of all the points in a 

rectangular window centred on that point. This non-linear filtering, described in section 

3.11, removes isolated spike noise but preserves distinct edges, which overcomes the 

problems of low-pass filtering. 

To find the median the values of all the pixels in the filter window must be sorted, 

which is a time consuming process even for a small filter. For example, for a 5 by 5 

pixel filter 25 values are sorted for every point in the image, which with a Shell sort [81] 

would in the worst case take 125 operations (Shell sort requires o(N 312
) operations). 

For a reasonable sized image and filter this is impractical and consequently the histo­

gram based method, described below, was used. 

Efficient image median filtering can be achieved using the running median algorithm 

published by Huang et al. [44], which uses the histogram of the pixels in an m by n filter 

window to find the median. As the image is scanned from left to right this histogram is 

updated to remove the effect of n left-hand column pixels and add the effect of the new 

n right-hand pixels. The remaining central m n - 2n pixels in the window are un-

changed. At the beginning of each line the histogram is initialised for the first window. 

The published algorithm does not filter the image borders of m/2 and n/2 pixels at the 

left/right and top/bottom respectively. Although it is not possible to filter this area ex­

actly, the algorithm can be adapted to allow partial filtering of this area, by truncating 

the filter window near the image borders. This truncation assumes that the data outside 

the image would have no effect on the median. 

The results of filtering an example image, with and without filter truncation, are shown 

in Figure 6-4. While median filtering preserves edges, unsharp masking can enhance the 

visual appearance of edges. 



(b) 

(c) 

Figure 6-4: 2-D median filtering using a 15 by 15 window on a 246 by 210 image. 
(a) Original image. (b) Median filtered without filter truncation. (c) Median 
filtered with filter truncation. 

6.3.3 Unsharp Masking 

The performance of skin image segmentation by thresholding may be affected by the 

nature of the edges in an image. Unsharp masking, which is a form of edge crisping 

(high boost filtering) used in astronomy, can enhance the visual appearance of edges 

[80]. An unsharp masked image is created from the weighted difference of the unfiltered 

and low-pass filtered images: 

. ( ) C ·c ) 1- c . ( ) luM x,y =--1 x,y --- l l P x ,y 
2c-1 2c-1 

where iwJ_x, y) = unsharp masked image at x, y, 
iLP(x, y) = low-pass filtered image at x, y, 

c = weighting constant: 0.5 ~ c ~ 1 . 

(6.1) 

The unsharp masked image has wider edges with overshoot and undershoot as illus­

trated in Figure 6-5. The unsharp masking process is shown on an example image in 
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using a simple running average filter (section 6.3.1) to perform the low-pass filtering. 

The sharpening effect is increased by either decreasing the weighting constant, c, or by 

increasing the degree of low-pass filtering. 

(a) Original data 

~[ 
• 

~ 
• 

l -1 
0 50 100 150 

(b) Low-pass filtered 
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(c) Unsharp masked 
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Figure 6-5: 1-D unsharp masking using an 1-D running average filter with length 
71 points and c = 0.55. The 1-D running average filter is 1-D equivalent of the filter 
described in section 6.3.1 

(a) (b) 

Figure 6-6: Unsharp masking using a 7 by 7 average filter and c = 0.6 on a 246 by 
210 image. (a) Original image. (b) Unsharp masked image. 
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6.4 Binary Image Thresholding 
Binary thresholding can separate objects from a different intensity background by con-

verting grey-scale images into binary images. Two global thresholding methods are de­

scribed in this section and their performance assessed in combination with the image 

filtering methods described in section 6.4.3. Only global thresholding methods were 

tested as there is insufficient a priori knowledge to allow parameters to be deduced for 

local thresholding methods. 

6.4.1 Histogram based Thresholding 
A simple nonparametric and unsupervised method of selecting a threshold from an im-

age's normalised histogram was published by Otsu [72]. The description given here uses 

the histogram rather than the normalised histogram and is based on the description given 

by Low [58]. The first stage of the method is the formation of the cumulative histogram: 

k 

hc(k) = Lh(j) 
j =O 

where k = grey-level, 
h(j) = number of pixels in the image with grey-level j. 

From this the means of the pixels with grey-levels between O and i can be found: 

where mc(i) = mean of pixels with grey-levels between O and i, 
l = mean grey-level of the whole image, 
L = maximum possible grey-level. 

(6.2) 

(6.3) 

(6.4) 

The threshold (To) is set at the grey-level which maximises the following expression: 

hc(To)(m0 (To)- l)2 
MN - hc(To) 

An example of an image thresholded by this technique is shown in Figure 6-7. 

(6.5) 
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(b) 

Figure 6-7: Histogram based thresholding on a 652 by 478 image. (a) Original 
image. (b) Image thresholded at 172. 

6.4.2 Edge Gradient based Thresholding 
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The threshold selection technique published by Kittler et al. [52] uses the edge gradients 

instead of histogram analysis. Two variations of the technique were tested: 

1. The whole image ( excluding a single pixel border) is used in calculating the thresh­

old. (Kittler W) 

2. Only pixels with high edge gradients are used to find the threshold. (Kittler HG) 

In the first case, the values of sMc and s1c (from equations (6.6) and (6.7)) are used to 

obtain the threshold using equation (6.8). The edge gradients are calculated from the dif­

ference of the adjacent pixels. Thus: 

sum of the maximum edge gradients: 

sMG = I>M(x,y) 
all pixels (x,y) 

sum of the product of the intensity and maximum edge gradient: 

SIG = ~)(x,y)iM(x,y) 
all pixels (x,y) 

and the threshold: 

where i(x, y) = image intensity at x, y , 

iH(_x, y) = horizontal gradient at x, y = Ii( x - 1, y) - i( x + 1, y )I, 
ii{x, y) = vertical gradient at x, y = li(x,y- 1)- i(x,y + 1)1 , 

iM(x,y) = maximum gradient atx,y = max{ltix,y) l, ltv(x,y)I} ·. 

(6.6) 

(6.7) 

(6.8) 
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In the second case, an estimate (a) of the standard deviation of the edge gradients is 

obtained by calculating SMG for the whole image: 

" J2ii SMG a=----
4 MN 

(6.9) 

Then sMa and s,a are calculated for those pixels with edge gradients greater than 6& and 

these values used to obtain the threshold using equation (6.8). Assuming that the non­

edge pixels have a Gaussian distribution then over 99.99% of them are removed by the 

6& threshold (52]. Figure 6-8 shows this technique used on an example image and the 

performance of this technique is evaluated in the next section. 

• 

• 
(b) 

.. 

• 
--
(c) 

Figure 6-8: Edge gradient thresholding on a 652 by 478 image. (a) Original image. 
(b) Thresholded image (177) using the whole image. (c) Thresholded image (143) 
using pixels with high edge gradients. Threshold values are shown in brackets. 
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6.4.3 Selection of Filtering and Thresholding Method 

The thresholding method used in this application must meet the following criteria: 

1. It must find a threshold for every image. 

2. The selected threshold must separate the lesion from the background. 

The precise segmentation of the image and resulting exact shape of the lesion are not 

important as the exact boundary is found by the process presented in chapter 8. How­

ever, the lesion's shape must be sufficiently accurate to allow it to be identified. The 

separation of the lesion from the background was visually assessed by examining the 

original image and thresholded image side by side. Figure 6-8 shows a successful seg­

mentation and Figure 6-9 shows an image in which the lesion cannot be separated from 

the background. In Figure 6-9(a), a pen mark can be seen around the lesion. This mark 

is also present in the thresholded image (Figure 6-9(b)) and is, unfortunately, connected 

to the area representing the lesion. Therefore, the lesion cannot be separated from the 

background, which may prevent its identification and give an incorrect indication of its 

extent. The slightly darker area around some of the image border is also present in the 

thresholded image. However, this can be separated from the lesion as it is not connected 

to the lesion. 

To find a suitable combination of thresholding and filtering methods, the separation of 

the lesion from the background was visually assessed in 12 test images. The test set, 

which is shown in Appendix C, was chosen to represent a wide range of skin images 

and to include some multiple images of the same lesion to insure that the process was 

(a) (b) 

Figure 6-9: Example of an unsuccessful segmentation of the lesion from the 
background. (a) Original image (666 by 502). (b) Image thresholded with Kittler 
W thresholding (196) after filtering with a 3 by 3 average filter (section 6.3.1). 
Threshold value is shown in brackets. 
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tolerant of different image conditions. This visual assessment was performed by display­

ing each original image along side the images produced by a single thresholding method 

used in conjunction with 13 filters. The three thresholding and 13 filtering methods are 

listed in Table 6-1 and Table 6-11. The visual comparison was performed on the original 

images and those with illumination tilt removal applied. The thresholding methods were 

selected to have simple implementation and rapid execution, to allow their use in practi­

cal systems, and not to require a priori knowledge of the image. The three main filtering 

methods (low-pass, median and unsharp masking) were chosen for their effect on the 

thresholding and for their simple implementation and rapid execution. Filter parameters 

were chosen to maintain or improve lesion visual appearance and to give reasonable 

execution times. 

Table 6-III and Table 6-V show, for the original and tilt removed images respectively, 

the success rate of separating the lesion from the background for each thresholding and 

filtering method. Although many of the methods separated the lesion from the back­

ground consistently the resulting lesion shape was sometimes not similar to the visually 

perceived shape. Hence, for each image and thresholding method the filtering method 

which provided the region that was most similar to the visually perceived lesion shape 

was selected. In some images two or more different filtering methods produced indistin­

guishable results, so all of the best filtering methods were selected. In addition to the 

visual examination of the thresholded images, the number of regions in each thresholded 

image was counted. When more than two methods produced visually similar lesion re­

gions the one with fewer non-lesion regions was selected as best. By selecting the 

method with fewer non-lesion regions, the expense of analysing the additional regions 

was reduced and the chances of a non-lesion region being incorrectly identified as the 

lesion was reduced. Table 6-IV and Table 6-VI show the percentage of the images for 

which each filtering method was selected as best. (Note: as multiple filtering methods 

could have been selected for each image thresholding method the rows of this table may 

not total to 100%.) 

Summaries of the effects of the different thresholding and filtering methods are 

presented in Table 6-1 and Table 6-11 respectively. On the basis of these tests, the Kittler 

HG thresholding method with filtering by 7 by 7 median filter was selected. (Note: With 

these filtering and thresholding methods, the image shown in Figure 6-9(a) can be 
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successfully segmented, i.e. the lesion can be separated from the pen mark.) Although 

the visual similarity of the lesion regions in the thresholded image and the original 

images from the illumination tilt removed images was greater than that of the images 

without tilt removal the ability to separate the lesion from the background was only 

slightly better. Consequently, it is difficult, with these test images, to decide whether the 

illumination tilt removal is worth the extra computational expense. Hence, this decision 

is left until the lesion identification performance is assessed in section 6.6. 

Thresholding method Section Comments 

Kittler W 6.4.2 The number of regions in the images thresh-
olded by this method was generally greater than 
the number produced by the other two methods. 

Kittler HG 6.4.2 This method almost always found thresholds 
which were lower than Kittler W and Otsu. 

Otsu 6.4.1 This method generally found thresholds which 
were lower than Kittler W. 

Table 6-1: Thresholding methods. 

Filtering method Section Comments 

Unfiltered NIA These images often contained many small 
regions. 

Average 3x3 6.3.1 The number of regions generally decreased 
Average 5x5 6.3.1 with increasing filter size. 
Average 7x7 6.3.1 
Median 3x3 6.3.2 The number of regions generally decreased 
Median 5x5 6.3.2 with increasing filter size. 
Median 7x7 6.3.2 
Unsharp masking avg. filter 6.3.3 The unsharp masked images with c = 0.8 were 
3x3 C = 0.6 generally better than those with c = 0.6. Also, 
Unsharp masking avg. filter 6.3.3 those using the smaller average filters were 
3x3 C = 0.8 better. Both of these factors produce images 
Unsharp masking avg. filter 6.3.3 with less unsharp masking, i.e. with less edge 
5x5 C = 0.6 emphasis. Generally, the unsharp masked 
Unsharp masking avg. filter 6.3.3 images produced poorer segmentations than 
5x5 C = 0.8 any of the other methods. 
Unsharp masking avg. filter 6.3.3 
7x7 C = 0.6 
Unsharp masking avg. filter 6.3.3 
7x7 C = 0.8 

Table 6-11: Filtering methods. 
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Thresholding Unfiltered Average filtered 
method 

3 by 3 5 by 5 7 by7 
Kittler W 67% 67% 75% 75% 
Kittler HG 92% 92% 92% 92% 
Otsu 75% 67% 75% 75% 

Median filtered 
3 by 3 5 by 5 7 by 7 

Kittler W 58% 67% 75% 
Kittler HG 92% 92% 92% 
Otsu 75% 75% 75% 

Unsharp masked using an average filter 
3 by 3 3 by 3 5 by 5 5 by 5 7 by 7 7 by 7 
c = 0.6 c = 0.8 c = 0.6 c = 0.8 c = 0.6 c = 0.8 

Kittler W 50% 58% 50% 50% 58% 58% 
Kittler HG 75% 75% 67% 75% 67% 75% 
Otsu 75% 75% 58% 67% 50% 75% 

Table 6-111: Percentage success in visually separating the lesion from the back­
ground. 

Thresholding Unfiltered Average filtered 
method 

3 by 3 5 by 5 7 by 7 

Kittler W 0% 0% 50% 50% 
Kittler HG 0% 0% 17% 50% 
Otsu 0% 0% 33% 67% 

Median filtered 
3 by 3 5 by 5 7 by 7 

Kittler W 0% 0% 83% 
Kittler HG 0% 0% 75% 
Otsu 8% 17% 58% 

Unsharp masked using an average filter 
3 by 3 3 by 3 5 by 5 5 by 5 7 by 7 7by7 
c = 0.6 c = 0.8 c = 0.6 c = 0.8 c = 0.6 c = 0.8 

Kittler W 0% 0% 0% 0% 0% 0% 
Kittler HG 0% 0% 0% 0% 0% 0% 
Otsu 0% 0% 0% 0% 0% 0% 

Table 6-IV: "Best" thresholding and filtering methods. 
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Thresholding Unfiltered Average filtered 
method 

3 by 3 5 bv 5 7 by7 

Kittler W 75% 83% 100% 100% 

Kittler HG 92% 92% 100% 100% 

Otsu 92% 92% 100% 100% 

Median filtered 
3 by 3 5 by 5 7 by 7 

Kittler W 75% 100% 100% 
Kittler HG 92% 100% 100% 

Otsu 92% 92% 92% 
Unsharp masked using an average filter 
3 by 3 3 by 3 5 by 5 5 by 5 7 by 7 7 by7 
c = 0.6 c = 0.8 c = 0.6 c = 0.8 c = 0.6 c = 0.8 

Kittler W 58% 67% 58% 67% 58% 67% 

Kittler HG 83% 92% 83% 92% 67% 92% 

Otsu 83% 83% 83% 83% 83% 83% 

Table 6-V: Percentage success in visually separating the lesion from the back­
ground for illumination tilt removed images. 

Thresholding Unfiltered Average fi ltered 
method 

3 by 3 5 by 5 7 by 7 

Kittler W 0% 0% 58% 83% 

Kittler HG 0% 0% 58% 75% 

Otsu 0% 0% 17% 75% 

Median filtered 
3 by 3 5 by 5 7 by7 

Kittler W 0% 0% 100% 

Kittler HG 0% 0% 92% 
Otsu 0% 0% 92% 

Unsharp masked using an average filter 
3 by 3 3 by 3 5 by 5 5 by 5 7 by 7 7 by7 
c = 0.6 c = 0.8 c=0.6 c = 0.8 c = 0.6 c = 0.8 

Kittler W 0% 0% 0% 0% 0% 0% 

Kittler HG 0% 0% 0% 0% 0% 0% 

Otsu 0% 0% 0% 0% 0% 0% 

Table 6-VI: ''Best'' thresholding and filtering methods for illumination tilt re­
moved images. 
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6.5 Simplification of the Thresholded Image 
The image thresholding generates a complicated segmented image containing a number 

of regions. The lesion itself may be broken into separate regions because of variations in 

intensity, possibly caused by variegated colouring, may have internal holes and have a 

very irregular boundary which is unrepresentative of its true shape. These factors make 

identifying the lesion difficult or even impossible if it has been broken into separate re­

gions. To overcome this problem, a "simplification" process that meets the following 

requirements is required: 

1. Preserve approximate region shape and size - to allow each region to be identified. 

2. Merge adjacent regions - lesions can vary in intensity, causing the global thresholding 

to break these lesions in two or more adjacent regions or generate inlets. Amalgamat­

ing these regions and removing the inlets enables lesion identification. 

3. Smooth region outlines - to remove small scale irregularities which can appear after 

the global thresholding, but retain the overall region shape to allow identification. 

4. Remove isolated very small regions - isolated regions that are too small to be lesions 

may be removed. This can be performed either at this stage or during the lesion iden­

tification. 

A simple and quick method that meets the first three of these requirements is binary 

morphological closing [38, 41, 78]. Binary closing, which was introduced in section 

3.14, smoothes region outlines and at the same time preserves approximate region shape 

and size (fulfilling requirements three and one respectively.) It also fuses small gaps 

between regions, which allows adjacent regions to be merged into larger regions 

(requirement two). It does not fulfil the fourth requirement of removing isolated small 

regions, but this can be performed during the lesion identification. Before "simplifying" 

the image, the image intensity is inverted (i.e. black and white are swapped) because in 

the original thresholded images the black lesion is classified as background. This allows 

binary closing to be applied as the closing affects the white foreground regions. 

Binary closing uses a structuring element whose shape and size control its effects. In 

this application, the orientation of area of interest, i.e. the lesion, is not known hence the 

structuring element's effect should be direction independent. This criteria leads to the 

use of a circular structuring element which has equal effect in all directions. Hence, 
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(b) 

Figure 6-10: Binary closing, on a 652 by 478 image, with a 9 pixel diameter disc. (a) 
Original thresholded image. (b) Closed image. Note: black and white have been 
swapped in these images to allow clearer printing. 

discrete discs (filled circles) with odd sized diameters were tested as structuring 

elements. The odd disc diameter ensured that the discs always had a discrete centre. 

By comparing Figure 6-lO(a) and Figure 6- lO(b) the effects of binary morphological 

closing with a disc can be seen. The outlines of the lesion region and the other regions 

have been smoothed. In addition, it can be seen that small gaps between regions have 

been bridged, e.g. the three very small regions on the right-hand side of the image are 

fused into one region. 

The structuring element's size is dependent on the distance between the regions that re­

quire merging, on the degree of outline smoothing required and the size of the smallest 

lesion that is to be reliably analysed. Smaller sizes lead to less smoothing and the image 
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possibly containing more regions. This lack of smoothing may result in the lesion ap­

pearing to have a very irregular boundary that is not representative of its actual shape. 

Larger disc sizes increase the degree of smoothing and possibly reduce the number of 

regions. Reducing the number of regions removes regions which could be mistakenly 

identified as the lesion and also reduces the processing time required to identify the le­

sion. However, using a disc size which is too large would result in the lesion being 

merged with an adjacent region and also increases the processing time for the morpho­

logical closing. 

To find a suitable disc diameter the thresholded images, from the test set used earlier, 

were visually examined without binary closing and with closing with odd disc diameters 

from 3 to 21 pixels. This range of diameters was used as dilating by a single pixel pro­

duced results very similar to the original images and diameters larger than 21 pixels 

caused many of the lesions to be amalgamated with adjacent regions. The thresholded 

images were produced by Kittler thresholding after filtering by a 7 by 7 median filter, 

which was found in section 6.4.3 to give the best separation of the lesions from their 

backgrounds. In addition to a visual examination of the thresholded images and corre­

sponding original images, which showed whether the lesion was identifiable, the num­

ber of regions in each thresholded image was counted. This generally showed that as the 

disc size increased the number of regions present in the thresholded image decreased as 

adjacent regions became amalgamated. Table 6-VII and Table 6-Vill show the results of 

assessing the structuring element diameter without and with illumination tilt removal. 

The "best" structuring element diameter was that which gave regions most similar to the 

visually perceived lesion boundary. In many images two or more structuring element 

diameters produced indistinguishable results, so all of the "best" diameters were se­

lected. (Note: As a range of disc diameters were sometimes selected the second row of 

both tables does not sum to 100%.) 

For the test images without illumination tilt removal structuring elements with diameters 

3 to 9 pixels (and without binary closing) were the most reliable at allowing the lesion to 

be identified. In particular, a structuring element disc of 9 pixels consistently gave the 

"best" segmentation of the image and is consequently the most suitable structuring ele­

ment diameter for these images. When the test images had illumination tilt removal 

applied before filtering and thresholding, structuring elements with diameters 3 to 9 
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pixels (and without binary closing) were the most reliable. Consequently with these test 

images, a discrete disc with a diameter of 9 pixels was the most suitable structuring 

element for binary closing. The larger disc diameter was chosen as it reduces the num­

ber of regions in the thresholded images. An example of closing with a 9 pixel diameter 

disc was given in Figure 6-10. 

The structuring element's diameter is dependent on the test images used, hence the di­

ameter found in these tests may not always be the most suitable. However, these tests 

show the advantages of applying binary closing, with a disc, to the thresholded images 

before lesion identification is attempted. At this stage, the performance difference be­

tween the illumination tilt removed images and original images was small and hence the 

choice of method was left until lesion identification performance was assessed (section 

6.6). 

Structuring element diameter 
none 3 5 7 9 11 

Lesion identi- 92% 92% 92% 92% 92% 75% 
fiable 
"Best" disc 67% 67% 67% 67% 92% 58% 
size 

Structuring element diameter 
13 15 17 19 21 

Lesion identi- 75% 75% 75% 75% 75% 
fiable 
"Best" disc 58% 58% 58% 58% 58% 
size 

Table 6-VII: Disc size for binary closing. 

Structuring element diameter 
none 3 5 7 9 11 

Lesion identi- 100% 100% 100% 100% 100% 83% 
fiable 
"Best" disc 58% 67% 67% 75% 75% 67% 
size 

Structuring element diameter 
13 15 17 19 21 

Lesion identi- 83% 83% 83% 83% 83% 
fiable 
"Best" disc 75% 75% 75% 75% 83% 
size 

Table 6-VIII: Disc size for binary closing with illumination tilt removal. 
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6.5.1 Isolated Pixel Removal 
Single isolated pixels, which are too small to be of interest, are left intact by the binary 

morphological closing. This section describes how these isolated pixels may be re­

moved. The only benefit of removing isolated pixels is that it reduces the number of re­

gions present and consequently reduces the time required to identify the lesion. The 

isolated pixels are removed by setting those white pixels with no white neighbours to 

black. 

6.6 Lesion Identification 
One of the regions in the simplified thresholded image should be a lesion, which can be 

identified using the following general characteristics which lesions possess: 

• low aspect ratio - artificial objects, such as rulers, tend to have higher aspect ratios. 

• smooth outline - artificial objects tend to have sharp corners. 

• elliptical - lesions are more elliptical in shape than most artificial objects. Bulkiness 

(section 5.3) is used to assess the smoothness and similarity to an ellipse. 

• larger than a minimum size - if the lesion is too small it cannot be reliably analysed 

and is not significant. 

• completely contained in the image - when the lesion is not completely contained in 

the image it cannot be reliably analysed. 

• darker than the surrounding skin - this is used during the binary thresholding. 

These factors and testing on real images led to the heuristic algorithm which is pre­

sented here. The algorithm examines all of the regions (found by a left to right, top to 

bottom scan) to decide which is a lesion based on the characteristics listed above. 

Each region's external boundary is traced to create a list of boundary co-ordinates [76] 

(section 3.5) and this boundary used to delete the region. The region is deleted by either 

drawing the boundary, in black, if it has less than 4 points or by repeatedly flood filling 

(section 3.17) using each non-black boundary point as a seed point. 

After finding each region's boundary it is characterised by a bounding rectangle which 

surrounds the region and just intersects with its boundary, its bulkiness (section 5.3), 

aspect ratio (the ratio of the equivalent ellipse's two diameters) and its size (the average 
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of the equivalent ellipse's two diameters expressed as a percentage of the average width 

and height of the whole image). The bulkiness and aspect ratio are both scale and rota­

tion invariant and the size scales with the size of the image. To find suitable parameters 

for identifying lesions, all of the regions in a test set of thresholded images (excepting 

very small regions with widths or heights less than or equal to two pixels) were analysed 

to find the above parameters. (The 12 test thresholded images were produced by the fil­

tering and thresholding methods selected at the end of section 6.4.3 from the test images 

introduced at the beginning of that section and were binary morphological closed by a 9 

pixel diameter disc.) The results of this analysis are shown in Table 6-IX and Table 6-X 

for lesion and non-lesion regions respectively. These show that the range of bulkiness, 

aspect ratio and size is similar for the lesions in the original and illumination tilt re­

moved images. However, for the non-lesion regions these measurements have consid­

erably greater range and the bulkiness and aspect ratio are generally higher. From these 

measurements, the maximum allowed bulkiness and aspect ratio for a lesion were set to 

1.3 and 2 respectively and the minimum size set to 4%. Using the following method on 

each region these settings produced a 100% success rate, on the 12 test images intro­

duced in 6.4.3, at identifying the lesion in the original and illumination tilt removed im­

ages: 

1. Ignore regions with widths/heights less than or equal to 2 pixels. These very small 

regions are too small to be lesions. 

2. Find the bulkiness, aspect ratio and size of the region. 

3. Ignore regions with high bulkiness or aspect ratios. 

4. Ignore regions which are smaller than the minimum size. 

5. Of the remaining regions, that with the smallest bulkiness was selected as the lesion. 

The ability of the process, described in this chapter, to identify the region containing the 

lesion was the same for both the original and illumination tilt removed images. Hence, it 

was decided that the illumination tilt removal was not worth the extra computation and 

was not used. However, it is possible that tilt removal will make lesion identification 

more robust in the presence of uniform illumination gradients, but this is dependent on 

the lesions having uniform intensity. The highly variable nature of lesion images makes 

this unlikely, so it is much better to uniformly light the original scene. The extension of 

this lesion identification method to images containing multiple lesions is discussed in 

chapter 10. 
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It should be noted that this I 00% success rate was obtained on a small test set and the 

performance on a larger test set is unlikely to be as good. However, the method, possibly 

with different parameters, would still be applicable on other images. 

Original images 
Minimum Maximum 

Bulkiness 1.02 1.17 
Aspect ratio 1.14 1.87 

Size 4.38% 73.7% 

Illumination tilt removed images 
Minimum Maximum 

Bulkiness 1.02 1.27 
Aspect ratio I. 11 1.88 
Size 5.05% 62.39% 

Table 6-IX: Lesion shape identification parameters. 

Original images 
Minimum Maximum 

Bulkiness 0.96 6.47 
Aspect ratio 1.03 6.47 
Size 0.54% 74.98% 
Illumination tilt removed images 

Minimum Maximum 
Bulkiness 0.99 7.74 
Aspect ratio 1.05 18.89 

Size 0.54% 74.11 % 

Table 6-X: Non-lesion region shape parameters. 
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6. 7 Output Information 
Once the lesion has been identified in the cleaned, thresholded image the following 

information is required to enable its further analysis: 

• A sub-image (from the original input image) containing the lesion and sufficient sur­

rounding image. The image border enables comparison of the lesion with the skin 

and provides data for image processing techniques, such as edge detection, to func­

tion correctly. 

• Approximate lesion size. 

• Approximate lesion location, which is indicated by an area that completely contains 

the lesion. 

The following description of how to obtain this information is based on the Laplacian of 

Gaussian (LoG) edge focusing algorithm (described in detail in chapter 8), but could be 

adapted for other edge detectors or alternative analysis methods. 

An estimate of the lesion's size is required to set the edge detector's size to just detect 

the lesion, but not overlook any part of the lesion. If the edge detector's size is set incor­

rectly the following can happen: 

• much too large - no boundary or an incomplete boundary is found and the lesion is 

overlooked. 

• slightly too large - initial boundary is not correctly placed and the initial edge detec­

tion takes longer, but the boundary can be found. 

• slightly too small - initial boundary is not correctly placed and extra edges may be 

detected, but the lesion boundary can be distinguished. 

• much too small - many edges are detected and the lesion boundary cannot be found. 

The estimate of the lesion's size should indicate the size of the smallest dimension of 

the lesion. During the lesion identification an equivalent ellipse, which is aligned with 

the lesion's outline, is obtained and this ellipse's smallest diameter can be used as an 

estimate of the lesion' s minimum width. (The equivalent ellipse is shown in Figure 6-

12.) The size of the LoG edge detector (which is specified by its space constant ( crsc)) is 

set from the ellipse's smallest diameter by the following equation (see chapter 7): 
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d 

(j =-S-
SC 4.J2 (6.10) 

where ds = smallest diameter of the equivalent ellipse. 

The above equation assumes that the lesion is a ridge edge and sets crsc to place the 

edges (zero-crossings) detected by an LoG convolution on the sides of the ridge, which 

is illustrated in Figure 6-11 (a). Although a real lesion image would not have this inten­

sity profile, this assumption will give a suitable space constant on a range of lesion in­

tensity profiles. For example, using the same <Jsc on a pulse edge (Figure 6-1 l(b)) gives 

edges which are within <Jsc of the sides of the pulse. It is possible to set the space con­

stant by assuming other shapes, but this method was successful when used with the LoG 

edge focusing algorithm. 

In the edge focusing algorithm <Jsc is successively decremented by 0.5 to generate a se­

quence of boundaries. (The reason for decrementing by 0.5 is explained in chapter 8.) 

(a) Roof edge of width 2w 
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(b) Pulse of width 2w 
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Figure 6-11: LoG output. (a) Ramp edge of width 2w. From the width of this ramp 
edge using equation (6.10) crsc = 14.142. Using equation (6.11), the <Jsc which would 
be used for this edge is 13.828. (b) Pulse edge of width 2w, with LoG output with 
<Jsc = 13.828. 
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When using equation (6.10), the sequence is different for every different sized lesion. 

To allow comparisons between different images it is convenient to have a fixed se­

quence of CJsc values. Consequently, CJsc is rounded to the nearest multiple of 0.5 plus 

the minimum crsc less than the value obtained from equation (6.10): 

(6.11) 

where Smin = minimum permitted LoG sensitive region in pixels, which is defined in 
chapter 8 as 8, 

L x J = floor - the largest integer less than x. 

The lesion is approximated by an image oriented bounding box L (shown in Figure 6-

12), which completely contains the lesion and just intersects its boundary. This simpli­

fies the image processing as it is generally easier to process a rectangular area than an 

irregularly shaped area; however extra image area, which may not be of interest, is in­

cluded. Box L must contain the boundary detected by the LoG operator at the starting 

scale, as edges outside this box are ignored. However, additional edges inside the lesion 

bounding box can be dealt with by the edge focusing algorithm. Even in the ideal case 

where the lesion boundary in the cleaned thresholded image is the boundary finally 

found by the edge focusing algorithm, the initially detected boundary will not coincide 

with the boundary in the cleaned thresholded image. This edge displacement is dis­

cussed in chapter 8 and can be allowed for by considering the idealised case when the 

box L is a black filled area. The edges detected at the initial scale will not coincide eve­

rywhere with the box's boundary and will be displaced by up to CJsc [92] outwards from 

the box near the corners. To allow for this potential displacement, a border of I CJsc 7 1 

pixels is added to box L to give box A. This displacement of I CJsc l assumes that the 

boundary has a large curvature at all points, which is very unlikely to happen and conse­

quently this border will be larger than necessary. However, the edge focusing algorithm 

(chapter 8) is tolerant of this extra border area being included. 

To find the size of the required cropped image C, a border is added around the bounding 

box A. The size of this border is determined by the area required for the correct func­

tioning of the edge detector and is half the detector's width (MLoG), which for the LoG 

1 Ix l = ceiling - the smallest integer greater than x. 
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detector is 6-J2,asc (this is rounded to the nearest odd number, as the filter width must 

be odd to allow its actual use on an image). 

When the lesion is near the edge of the original image, the required cropped image may 

not be completely contained within the original image. In this case, analysis may be in­

accurate or not possible. When the bounding box A is not within the original image, the 

lesion cannot be guaranteed to be contained within the image and hence analysis is not 

possible. When the cropped image C is not completely within the original image, analy­

sis may be less accurate or not possible depending on the techniques used. The maxi­

mum percentage of the image which can be filled by the lesion before the required 

cropped image overlaps the original image's edge can be obtained by making assump­

tions about the lesion's shape and location. When the lesion is centrally placed and the 

image is square, the situation shown in Figure 6-13 occurs. The minimum width (M) of 

the original image is: 

-J2, 
M = 3w+2w+20'sc = (5+-)w 

2 

where w = 2-J2,asc = size of the LoG sensitive region. 

This gives a maximum lesion diameter of 35% of the original image width: 

2M 
Max. lesion diameter = 2w = 

5+ .J2 
2 

= 35% of M 

(6.12) 

(6.13) 

The edge focusing algorithm can work when the required cropped image exceeds the 

original image, but initial edge detection may not be as accurate as some of the image 

data required is not available. 
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Figure 6-12: Lesion output information (not to scale). 
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Figure 6-13: Maximum lesion size (not to scale). 
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6.8 Conclusions 
This chapter described a method of analysing an arbitrary image containing a single le-

sion to generate a cropped image containing the lesion with sufficient surrounding im­

age and an indication of the lesion size, location and bounding area. This information is 

the starting point for further analysis of the lesion, such as boundary detection which can 

be performed by the edge focusing algorithm presented in chapter 8. The further devel­

opment of the method presented in this chapter is discussed in chapter 10. 

The process presented in this chapter used the following sequence of operations: filter­

ing, thresholding, simplification, lesion identification and information output. At each 

stage alternative methods were presented, tested and the most appropriate selected. 

Three types of image filtering methods, with a range of parameters, were tested with 

three thresholding methods to find an appropriate combination of filtering and thresh­

olding which separated the lesion from its background. After separating the lesion from 

its background, a method, using binary morphological closing, for simplifying the 

thresholded image was evaluated. This allowed the lesion to be identified using heuristic 

rules based on shape. Finally, the size and position of a cropped image, containing the 

lesion and sufficient surrounding image, was calculated together with the starting edge 

detection scale for the LoG edge focusing algorithm. 

The work in this chapter, described in the previous paragraph, showed that Kittler 

thresholding in conjunction with a 7 by 7 median filter is a suitable method of segment­

ing lesion images to allow identification of the lesion. After morphological closing with 

9 pixel diameter disc, heuristic rules, based on shape and a test set of 12 lesion images, 

provided a I 00% success rate at identifying the lesion and providing a cropped lesion 

containing image. 



Chapter 7 

Edge Detection Methods and their 

Implementation 

7. 1 Introduction 

This chapter examines the detection of luminance edges m images and explains the 

techniques used in the edge focusing algorithm described in the next chapter. It does not 

consider the detection of edges in colour images and those caused by texture changes. 

Edge detection was introduced in section 3.8 and is expanded upon in this chapter by 

studying the first three stages shown in Figure 7-1: 

1. Edge detection. 

The first section considers a selection of simple edge detectors, by explaining their 

implementation and limitations. In later sections, a second derivative (Laplacian of 

Gaussian) and a first derivative (Canny) edge detector are examined in detail by ex­

plaining their implementation. 

2. Edge localisation. 

Edge localisation generates an edge map from the edge detector's output, which gives 

the location of edges and may indicate their direction. For first derivative edge detec­

tors non-maxima suppression is used (section 7.5.2) and for second derivative edge 

detectors zero-crossing (ZC) detection is used (section 7.4). 

input 
image 

edge 
detection 

Figure 7-1: Edge analysis. 

edge 
localisation 

line co-ordinate 
generation 

higher level 
processing 
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3. Edge co-ordinate generation. 

Two methods for converting an edge map into the co-ordinates of the connected 

edges are presented in section 7.6. The first of these methods uses the edge direction 

information, provided by the ZC detection, to assist in following edges and the sec­

ond method uses the relative position of the previous point on the line to guide the 

edge tracing and is used for the non-maxima suppression output. 

The problems of image border erosion and processing irregularly shaped areas are dis­

cussed in sections 7.7 and 7.8. 

7.2 Simple Edge Detectors 
Simple edge detectors can be based on small filters, such as those shown in Table 7-I 

[80], which are convolved with an image to give images indicating the local horizontal 

and vertical gradients. The horizontal and vertical gradients from these heuristically ob­

tained filters can be combined to yield edge intensity and direction. An example of a 

common simple edge detector, the Sobel operator, applied to a lesion image is shown in 

Figure 7-2. 

There are two problems with simple edge detectors: variable directional sensitivity and 

inability to accurately detect edges in noise. Their sensitivity to edges varies with direc­

tion, for example the Sobel operator is 1.06 times more sensitive to diagonal edges than 

horizontal and vertical edges [80]. Their sensitivity to noise is caused by the small area 

(3 by 3 pixels) used and can be alleviated by properly increasing their size; however this 

is difficult as the filters are heuristically obtained [80]. The example image in Figure 7-2 

shows that although the lesion border can be seen, many other edges have been detected. 

None of the simple edge detectors can localise edges to a single pixel and differ in their 

directional sensitivity, localisation ability and their probability of correct edge detection. 

These problems led to the investigation of more complex edge detectors such as those 

described in the next section. 
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Operator Horizontal gradient Vertical gradient 

Roberts 

l: 
0 :ll l:1 

0 

:1 
1 1 

0 0 

Prewitt { 0 -11 l-1 - 1 

~1] 0 -1 ! 0 0 
3 

0 - 1 1 1 

Sobel 

: l~ 
0 -11 l-1 - 2 ~ll 0 - 2 ! 0 0 

4 1 1 0 - 1 2 

Frei-Chen 

l 1 
0 -1] [-1 --Ji ~ll 1 ,Ji 0 --Ji 1 0 0 

2+,ff, 1 0 - 1 2 +,ff, 1 ,Ji 

Table 7-1: Simple edge detectors. 

(a) (b) 

Figure 7-2: Sobel edge detection. (a) Original image (246 by 210). (b) Edges 
detected by a Sobel operator. 
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Marr and Hildreth [65, 64] suggested using the zero-crossings in the output of a Lapla-

cian of Gaussian (LoG) operator for edge detection based on the human visual system. 

They argued that to build a description of an image required the location of edges at a 

range of different scales, which the combination of the two parts, Laplacian and Gaus­

sian, of the LoG operator can provide. The Laplacian function is a second order differ­

ential operator which can detect intensity changes and the Gaussian part blurs the image, 

effectively wiping out all structure at scales much smaller than the space constant crsc. 

The two-dimensional form of the LoG operator, shown in Figure 7-3(a), is: 
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V2 G(x,y) = 
4 

2- ; exp - ~ 1 ( (x2 
+ 

2 
)] ( x 2 + 2) 

2nc;-SC a SC 2a SC 

(7.1) 

where <Jsc = space constant (standard deviation) of the Gaussian. 

Edges are indicated by zero-crossings in the output of the convolution of this function 

with the image and can be located by the process described in section 7.4. This operator 

can be scaled, using <Jsc, to vary its sensitivity to small edges and is rotationally invari­

ant, i.e. it is equally sensitive to edges in all directions. 

The sensitive region of the filter (w), which indicates the size of features detected, has a 

width of 2.fiasc and is the central positive region of the filter, which is shown in 

Figure 7-3(b). Features with a width smaller than w have their edges displaced and may 

become fused with the edges from adjacent features. This fusing is useful in obtaining a 

global description of an image as small details are not present in the output. The overall 

width (MLoc) of the filter is set at 3w [ 45] and for implementation, MLoc is rounded to 

the nearest odd number larger than 3w, which ensures the filter has a central point. 

The filter can be applied by directly convolving a 2-D mask with the image, which for 

large <Jsc is impractical, as it requires M Loc2 multiplications and additions per pixel and 

is too time consuming. For example, the mask size for <Jsc = 10 is 85 by 85 which re­

quires 7225 multiplications and additions per pixel. To overcome this problem, the 2-D 

LoG can be decomposed into the sum of two separable 1-D filters [ 45]: 
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(a) (b) 

Figure 7-3: Laplacian of Gaussian, with <Jsc = 1. (a) 2-D shape. (b) 1-D shape 
showing sensitive region (w) and overall width (3w). 
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(7.2) 

where 

1 ( ·2 J ( ·2 J !ii(i) = $ 2 1--l -2 exp _z_2 ' 

2,rasc a sc 2asc 
(7.3) 

1 ( ·
2 J h:i(i) = $ 2 exp _z - 2 • 

2,rasc 2asc 
(7.4) 

4MLoc multiplications and additions per pixel are required for this version, but the num­

ber of multiplications can be reduced by a factor of two by noting that the filters h 1 and 

h2, shown in Figure 7-4, are symmetric. The separated LoG filter is applied using the 

following steps: 

1. Calculate maximum and minimum filter outputs. 

The input to the LoG filter is an unsigned byte image and for convenience and to 

minimise the storage requirements the output is scaled to fit into a signed byte. The 

scaling is found by calculating the worst case maximum and minimum outputs by as­

suming an input of 255 for +ve and O for -ve filter coefficients for the maximum out­

put and visa versa for the minimum output. Single precision floats were used for the 

filter and intermediate storage. An integer convolution kernel was not used, as it is 

not possible to ensure that the sum of the filter coefficients is always zero whilst re­

taining the filter shape. The zero-crossings will be offset if the filter coefficient sum 

is non-zero. 

2. Generate filters h 1 and h2, using equations (7.3) and (7.4). 

0.4~-----------,,,.-------, 0.4 

0.3 ..... . 0.3 

0.2 · 0.2 ......... 

0.1 

0,---. 0 

-0.1 -0.1 

-0.2 
5 -5 0 5 

- 0.2'-----------'-- --------' 
- 5 0 

(a) h1 (b) h2 

Figure 7-4: Separated LoG, with crsc = 1. (a) h1• (b) h2• 
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3. Partition the convolution to use the available memory. 

For an image of M by N two sets of intermediate storage of M by ( N + L 3w I 2 J) are 

required, which may occupy considerable memory. To reduce the memory usage, the 

calculation can be partitioned into vertical slices with widths that are calculated from 

the available memory and image height. 

4. Perform convolution on each slice. 

The image is row convolved with the two filters h1 and h2 and the output of these 

convolutions column convolved with the other filter, i.e. convolution h1 output con­

volved with h2. The output of the last two convolutions are summed and scaled to 

provide the final output. 

Figure 7-5 shows the results of applying the above steps to generate an image in which 

edges are indicated by zero-crossings. In this example, the image was convolved with an 

LoG filter with crsc = 8 which gave an overall filter width of 69 pixels. (Note: DC pad­

ding, which is described in section 7.7, was used during this convolution to improve the 

quality of edges near the image borders.) In Figure 7-5(b), small positive and negative 

numbers are shown by bright red and bright green respectively; larger numbers are rep­

resented by darker colours. At this edge detection scale, the zero-crossings indicating 

the approximate lesion boundary and other edges inside and around the lesion can be 

seen. LoG convolution, in conjunction with zero-crossing detection, is used as part of an 

algorithm for finding lesion boundaries which is presented in chapter 8. Consequently, 

the features of fixed scale LoG edge detection are discussed at the beginning of that 

chapter. 

(a) (b) 

Figure 7-5: Example LoG output, with crsc = 8 and w = 22.6. (a) Original image 
(246 by 210). (b) Output of LoG convolution with DC padding. 
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7.4 Zero-Crossing Detection 
In second derivative edge detection, the locations of the edges are indicated by zero-

crossings in the output and, ideally, edges would be marked where the output is zero and 

a zero-crossing occurs. However, in real images the zero-crossing points are unlikely to 

occur at the discrete points (pixels) at which the output is sampled. In the one­

dimensional case, zero-crossings are detected by searching for two adjacent points of 

opposite sign or three adjacent points of which the middle one is zero and the outer two 

have opposite signs [ 45]. In the two-dimensional case, care must be taken to ensure that 

continuous, accurately placed edges are generated and extraneous points are not pro­

duced, i.e. there is a single response to a zero-crossing. In the discrete 2-D domain there 

are a number of methods for marking the zero-crossing points, which include the follow­

ing: 

I . Cross-shaped zero-crossing rule. 

A simple zero-crossing rule [46) can be created by considering a cross-shaped region: 

A 

C X D 

B 

The central pixel X is marked as a zero-crossing if AXB or CXD contains a zero­

crossing. By mapping 0, -ve and +ve to 0, 1 and 2 respectively, this can be imple­

mented as a 27 element look-up table, shown in Table 7-II, which shows two sets of 

rules. Figure 7-6(a) shows the result of applying the first set of rules, which produce 

double thickness edges and some extraneous edges, as a result of +- and -+ transi­

tions being marked when both the +ve and -ve points are in the centre. The second 

set of rules , which are illustrated in Figure 7-6(b), are a modification removing the 

possibility of double thickness edges by marking the edge on the positive pixel when 

a +- or -+ transition occurs. Both of these methods have the disadvantage that edges 

may not be accurately placed, as the magnitude of the LoG output and diagonal zero­

crossings are not considered. The next method uses four points to find the zero­

crossings and indicates the edge direction. 
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Pixel pattern Edge presence 
Rule Set 1 Rule Set 2 

000 no edge no edge 
00- no edge no edge 
00 + no edge no edge 
0-0 no edge no edge 
0 - - no edge no edge 
0-+ edge no edge 
0 + 0 no edge no edge 
0 +- edge edge 
0++ no edge no edge 
- 00 no edge no edge 
- 0 - no edge no edge 
- 0 + edge edge 
- - 0 no edge no edge 
- - - no edge no edge 
- - + edge no edge 
- + 0 edge edge 
- +- edge edge 
- + + edge edge 
+00 no edge no edge 
+ 0 - edge edge 
+ 0 + no edge no edge 
+ - 0 edge no edge 
+ - - edge no edge 
+-+ edge no edge 
++ 0 no edge no edge 
+ + - edge edge 
+ + + no edge no edge 

Table 7-11: Cross-shaped zero-crossing rule look-up table. 

Figure 7-6: Cross-shaped zero-crossing rule output, for the image shown in Figure 
7-5. (a) Rule set 1. (b) Rule set 2. 
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2. Pratt Zero-crossing Patterns. 

These rules, suggested by Pratt [80], are shown in their original form in Figure 7-

7(a). For implementation the bottom two lines of rules can be combined and edge di­

rection added as shown in Figure 7-7(b). The example output shown in Figure 7-8 

shows that double thickness edges are generated in horizontal and vertical directions, 

but the rules always result in continuous contours. The double thickness edges are 

due to duplication between rules A/CD, E/GH, I/KL and M/OP. These rules indicate 

edge direction, but do not create single thickness edges or use the magnitude, so pro­

duce multiple responses to a single edge and inaccurately place edges. The next 

method addresses both of these problems. 

+ + + 
+ (±) - + (±)+ - EB + +EB + 

+ + + 

+ + + + + 
+Et)- -EB+ - EB + + (±) - -!, + (±) - ➔+ (±) + t -(±)+~ +(±)+ 

+ + A+ E+ I+ M-

+ + + 
+EB- - Et) - - EB + - Et) - \i +EB-?' -EB+ "- -EB+~ +EB-

+ B+ F+ J - K -

+ + 
+8- - 8- -8+ -8- -!, +®-➔-®-t -®+~-®-

+ CD- GH+ KL- OP-

EB = 0 or + Et) = 0 or+ ®=any value 

8 = 0 or- 8 = 0 or-

(a) (b) 

Figure 7-7: Pratt zero-crossing patterns. (a) Original patterns. (b) Simplified 
patterns with edge direction. 

,...,.... 

Figure 7-8: Zero-crossings detected using Pratt zero-crossing patterns, for the 
image shown in Figure 7-5. 
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3. Huertas and Medioni Zero-crossing Detection. 

This sophisticated method [ 45] produces i-connected edges with 8-way directional 

information and is based on 11 predicates, which decide the direction and location of 

an edge point based on the signs and magnitudes of the pixels in a 3 by 3 area. For 

every point in the image (except for a one pixel border) the following two steps are 

applied: 

A. Predicate selection 

The appropriate predicate is selected using the binary decision tree shown m 

Figure 7-10 based on the sign of the surrounding points. 

B. Predicate application 

The original published predicates, with a few minor corrections 1, are shown in 

their original form in Figure 7-11, which combines selection and application. They 

are difficult to implement from these diagrams and their output contains gaps and 

incorrect directional information. The predicates were modified to remove the 

gaps and yield correct directional information by studying faults in the output of 

the original predicates and making appropriate modifications. These modified 

predicates are shown in Figure 7-12 in the form of binary decision trees, which are 

easier to understand and implement. An example output of the modified predicates 

is shown in Figure 7-13. 

While testing these rules, it was found that there were sometimes gaps in the edges. 

Examination of the LoG output for the affected areas showed that the presence of ze­

ros in the LoG output sometimes affected the performance of the modified HM zero­

crossing predicates. To overcome this problem, the scaling in the final stage of the 

LoG convolution was modified. This modification changed the scaling of any value 

which originally scaled to zero and remapped it to ±1 when it was greater than 

0.0001 *(the value which exactly mapped to one). After applying this empirical 

modification, the presence of edge gaps was reduced considerably. These modified 

HM predicates produce accurately placed edges, as they consider both sign and 

magnitude, and are used in the edge focusing algorithm presented in the next chapter. 

1 Predicate B: The edge direction for the last case was changed from South to North. 
Predicate D: Plus in pixel b changed to minus. 
Predicate J: In the third line the output pixel f was highlighted. 
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Figure 7-9: Pixel names. 
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Figure 7-10: Zero-crossing decision tree. Pixel names are shown in Figure 7-9. 
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Figure 7-12: Modified HM zero-crossing predicates, shown as binary decision 
trees. Pixel names are shown in Figure 7-9. 
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Figure 7-13: Zero-crossings detected by the modified HM zero-crossing predicates, 
for the image shown in Figure 7-5. 

7.5 Canny Edge Detection 
The Canny edge detector [10] is a first derivative edge detector with different properties 

from the second derivative LoG edge detector. The Canny and LoG detectors differ in 

their detection of ramp edges (see section 3.8) and their detection of curved edges 

(discussed later in section 8.6). These differences mean that one may be more appropri­

ate than the other for a particular application, hence both were investigated. 

Canny [10] took an analytic approach to designing a first derivative edge detector, based 

on a numerical optimisation of finite anti-symmetric function for detecting a one­

dimensional continuous step edge of a given height in white Gaussian noise. Three cri­

teria were used in optimising the function: 

I. Good detection. The function should have a low probability of failing to mark real 

edge points and a low probability of marking non-edge points. 

2. Good localisation. The points marked as edges should be as close as possible to the 

centre of the real edge. 

3. Single response. There should only be one response to an edge. 

The numerically obtained function is similar to the first derivative of a Gaussian 

(g'(x) ), which is shown in Figure 7-14(a), and for implementation this anti-symmetric 

function is used: 

-x (-x2 

J g'(x) = J2ii 3 exp --2 21rcrc 2ac 
(7.5) 

where crc = scale of the edge detector. 
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The performance of g'(x) is slightly worse than that of the optimal operator, obtained 

by numerical optimisation, however this difference would probably be difficult to detect 

in real images and g'(x) can be computed with much less effort in two dimensions [10]. 

7.5.1 Application of Canny Edge Detection to an Image 

The edge detection function g'(x) was designed for 1-D edges, and is anti-symmetric so 

cannot be directly extended to two-dimensions as the corresponding 2-D operator would 

not be rotationally symmetric [10, 92]. However, by applying a Gaussian projection 

function (Figure 7-14(b)) perpendicular to the edge detection function the detector can 

be applied to 2-D images: 

1 (-x2 

J g(x)= .J2i, exp --
2 2rcac 2ac 

(7.6) 

where crc = standard deviation of the Gaussian function. 

The combination of detection (g'(x)) and projection (g(x)) functions allows the loca­

tion and orientation of all of the edges in a 2-D image to be found by two perpendicular 

edge detectors [92]. 

In the following operations used to apply Canny edge detection the filter coefficients, 

horizontal, vertical and overall gradients were stored as double precision floats and the 

final edge strength and direction maps, produced by the non-maxima suppression, were 

scaled to fit into an unsigned byte. 

0.4 0.4 

0.3 0.3 

0.2 0.2 

0.1 0.1 

01----- 0 

-0.1 .......... . -0.1 . .. 

-0.2 · -0.2 

-5 0 5 -5 0 5 

(a) (b) 

Figure 7-14: Gaussian functions. (a) First derivative of Gaussian. (b) Gaussian. 
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1. Filter width calculation. 

Both g(x) and g'(x) have infinite extent, so must be truncated before application to 

an image. The filter widths can be obtained by considering the area under each func­

tion. The area under g(x) from minus infinity to plus infinity is one and the area un-

der g'( x) from zero to plus infinity is one. From the integrals the following expres­

sions can be obtained for the number of coefficients required for half the filter width, 

including the central point: 

(7.7) 

(7.8) 

where gw = number of coefficients in half the Gaussian filter, 
dgw = number of coefficients in half the first derivative of Gaussian filter, 

cp = portion of the area under the curve which is included, which is set to 0.99, 
erfinv(x) = inverse error function [91]. 

2. Calculate filter coefficients. 

The filter coefficients are computed using the symmetry of g(x) and the anti-

symmetry of g'(x). The following expressions use the integral to obtain an average 

value for each coefficient: 

~ erf((x+0.5)/.J2,ac )-erf((x-0.5)/.J2,ac ) 
g(x) =-~----'-2-~---~ 

~,( ) exp(- (x +0.5)2 /2a/ )-exp(-(x-0.5)2 /2a/) 
g X = 

ac.fi:i 

where g( x) = estimate of g( x) , 
g'(x) =estimate of g'(x), 
erf(x) = error function [91], 

erfc(x) = l - e1f(x) = complementary error function [91]. 

(7.9) 

(7.10) 

(7.11) 

(7.12) 



7 .5 Canny Edge Detection 129 
The final coefficients, obtained by integrating from x to infinity, contain the area un­

der the rest of the curve which ensures that the total area is correct. The sum of these 

coefficients is used to obtain the maximum edge strength, which is used in the non­

maxima suppression. 

3. Gaussian smoothing in the vertical direction by convolution. 

The Gaussian function's symmetry enables the number of multiplications to be re­

duced. 

4. Calculate horizontal gradient ix. 

The horizontal edge gradient is obtained by convolving the first derivative of Gaus­

sian with the vertically Gaussian smoothed image. The smoothing (projection) and 

detection functions are associative and so can be applied in either order. The detec­

tion function is anti-symmetric and is zero valued at its centre, which reduces the 

number of multiplications and additions required. 

5. Gaussian smoothing in the horizontal direction. 

6. Calculate vertical gradient iy. 

7. Calculate edge strength, es(x,y) = .Jix(x,y)2 + iy(x,y)2 
• 

8. Non-maxima suppress. This is described in section 7.5.2. 

After non-maxima suppression, hysteresis thresholding [10] based on the edge strength 

can be used to remove isolated false edge points and generate continuous edges. This is 

not described as the edge focusing algorithm uses other assumptions which are specific 

to the problem to remove unnecessary points. 

7.5.2 Non-maxima Suppression in the Gradient Direction 

When using a first derivative edge detector, such as Canny, the edges are indicated by 

maxima in edge gradients. To produce an edge map it is necessary to locate these 

maxima by comparing each point with its two neighbours (a 1 and a 2) which are along 

the edge gradient direction and at unit distance from the point. To calculate these two 
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points, the non-maximum suppression performs the following process, using a 3 by 3 

neighbourhood, at every point: 

1. Check edge strength. 

The edge strength is examined and those points with very small edge strengths are 

ignored, as they correspond to very weak (faint) edges. When used in the edge focus­

ing algorithm, presented in the next chapter, the minimum edge strength was set to 

half the minimum representable output, as any value smaller than this would be 

rounded to zero. In other applications, the minimum edge strength may be set to 

larger values to prevent the detection of weak edges. 

2. Determine amplitudes of the two neighbouring points a 1 and a2• 

The horizontal and vertical edge gradients of the central point give the edge direction 

which determines the location of the two neighbouring points a 1 and a2, which are 

placed on the lower and higher intensity sides of the edge respectively. From neigh­

bouring points' location, the four points in the 3 by 3 neighbourhood needed to calcu­

late the edge strengths of the neighbouring points (a1 and a2) can be found. Figure 7-

15 shows the points used for an edge pointing in an approximately south-east direc­

tion. The edge strengths of a 1 and a2 were obtained by bilinear interpolation [81] of 

the four appropriate edge strengths. Bilinear interpolation is simple to implement and 

provides reasonable interpolation which varies smoothly from pixel to pixel. How­

ever, the gradient of the interpolated function has discontinuities at the boundaries of 

each pixel, e.g. when point a 1 moves from pixel b to c. 

a b 

Figure 7-15: Non-maxima suppression. Hatching shows the points used for 
calculating a1 and a2• 
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3. Check for maxima in gradient direction. 

If the central point's edge strength is greater than or equal to a1 and is greater than a2, 

it is marked as an edge and its edge direction calculated from the vertical and hori­

zontal edge gradients. The edge strength and direction were scaled, using the maxi­

mum edge strength, to fit into an unsigned byte. The placing of a 1 and a2 on lower 

and higher intensity sides of the edge respectively combined with the greater than or 

equal test for a1 ensures that edges are marked on the higher intensity side. 

As the non-maxima suppression uses a 3 by 3 neighbourhood, it is necessary to increase 

the size of the area over which the edge gradients are calculated by adding a single pixel 

border. When a mask (see section 7.8) is used to specify where edges are required, the 

mask must be dilated by one pixel to allow for this. 

Figure 7-16 shows the results of Canny edge detection using the methods described in 

this section. Comparison of Figure 7-16 and Figure 7-13 illustrates the differences be­

tween similarly scaled Canny and LoG edge detections. The two detectors place the le­

sion boundary differently due to the differing effects of curved edges [92]. (This is dis­

cussed later in section 8.6.) 

\ ' 

,........1 

(a) {b) 

Figure 7-16: Canny edge detection, with crc = 8. (a) Original image (246 by 210). 
{b) Canny edge detector output. 
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7.6 Edge Tracing 
Edge tracing (following) converts an edge map, containing isolated edges, into co-

ordinate lists which are an early stage in analysing an image and can be used for calcu­

lating parameters such as a region's area. Edge tracing is distinct from contour tracing, 

which traces region boundaries and was used in section 6.6. The output of edge tracing 

should be either continuous i-paths or d-paths with closed contours and isolated edges 

identified. Closed contours and crossing line segments must not affect its operation. The 

edge direction or line direction, which are the direction of each point and the direction 

obtained from the relative position of the previous point on the line respectively, may 

assist in following an edge. The edge map should contain a single response for each 

edge; multiple responses can be removed during the zero-crossing detection or non­

maxima suppression. The methods described here do not bridge gaps in edges, which is 

considered in the next chapter, and can be used to trace multiple edges. When tracing 

multiple edges, each edge is deleted after it has been found and the process repeated. 

7 .6.1 Edge Tracing using Directional Information 

This method uses 8-way directional information and i-connected (8-way) edges, which 

are provided by the modified Huertas and Medioni zero-crossing method (described in 

section 7.4 ), but could be used with other edge detectors that provide edge direction 

output. Its first stage is to find a starting pixel anywhere on an edge by using a left to 

right, top to bottom scan of the image. Once this starting pixel has been found, its 

neighbours are determined. The edge tracing is performed on an 8-way connected image 

and thus two types of neighbours exist: i-neighbours and d-neighbours, which simplifies 

finding the next point on an edge, as the search can be reduced to examining two direc­

tions: north and northeast. The current point's edge direction is used to rotate it and its 

neighbours by a multiple of 90°, so it points either in a north or northeast direction, 

which aligns it with Figure 7-17(a) or Figure 7-17(b) respectively. A list of directions to 

available next points is created, with those involving the smallest turn first, by searching 

in the order shown in Figure 7-17. The directions to the next points are rotated back to 

compensate for the rotation performed to align the current point in a north or northeast 

direction. This pre- and post- rotation reduces the complexity by removing the require­

ment for two sets of four similar rules. From these directions, the co-ordinates of avail­

able next edge points are obtained and these points checked against the points already 
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Figure 7-17: Edge trace, using edge direction, search order. (a) For north. (b) For 
northeast. 

visited to ensure that closed contours are detected and each part of the edge is traced 

once. After removing points already visited the first remaining next point, which is the 

one requiring the smallest change of direction, is used as the next point on the edge. 

This process is repeated for the rest of the edge and once the end of the edge is reached 

the search continues in the opposite direction from the start of the edge. To allow the 

same set of rules to be used again, the direction of the current point and its neighbours 

are rotated by 180°. Once both sections of the edge have been traced, the co-ordinates 

are re-arranged to follow the direction of the edge and to be continuous, i.e. each co­

ordinate in the list is next to its spatial neighbours. 

7.6.2 Edge Tracing for 4-way Connected Edges without using Directional Infor­
mation 

This method is designed ford-connected (4-way) edges, which are provided by the non-

maxima suppression method used in Canny edge detection, and does not use edge di­

rection. When the previous method was tested on the output of the non-maxima sup­

pression method some edge points were missed because the edges tended to be 4-way 

connected. Hence, this new method was developed and the differences from the previ­

ous method are explained here. It is similar to the previous method, except that each 

pixel's edge direction is not used and instead the relative position of the previous pixel 

on the line is used to guide the search for next point, on the basis that the line will con­

tinue in the direction it is already going or will make the smallest possible turn, with 4-

way connected points preferred. The relative position of the previous point on the line 

determines the direction in which the line is travelling, except at the start where the line 
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Figure 7-18: Edge tracing, without edge direction, search order. P = previous 
point. (a) For horizontal and vertical directions. (b) For diagonal directions. 
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is assumed to be going horizontally in the positive x direction. This relative position is 

used to rotate the neighbourhood by a multiple of 45° to place the previous point in 

position P shown in Figure 7-18. The next point is searched for in the order shown in 

Figure 7-18(a) or (b) depending on whether the previous point is horizontally/vertically 

or diagonally adjacent to the current point. A list of possible next points is created in 

order of smallest turn first. The first point, which has not been visited already, is used as 

the next point on the line. The same pre- and post- rotation is used to simplify the search 

for the next point and the edge can be traced in two sections in the same manner as used 

in the previous method. 

7. 7 Image Border Erosion 

When a mask of M by M pixels is convolved with an image, LM / 2J pixels are lost 

from the border, as output from this area would require data from outside the image. For 

small filters this may not be significant; however, for large filters , for example edge de­

tectors which use 20-30% of the image, this loss is significant. For example, an LoG 

filter with crsc = 10 requires a mask of 85 by 85 which when convolved with a 512 by 

512 image results in an output image of 428 by 428 which is a 30% loss in image area. 

The significance of this loss depends on the importance of the information in the image 

borders and the size of the mask. The loss complicates the building of an image descrip­

tion based on information from several scales as some information will be missing at 

larger scales. The examples in this section are based on LoG edge detection, but similar 

problems occur for other filter based edge detectors. 
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To obtain information from the image borders, assumptions based on the available im­

age data must be made about the area outside the image. The data outside the image can 

be assumed to be similar to that inside the image, so may be approximated by a simple 

function. Any approximation made must have minimal impact on edges inside the im­

age, i.e. it must not create new edges and have minimal impact on the location, direction 

and strength of existing edges. As a minimum requirement, a uniform input image must 

produce a uniform output. The following methods, which are illustrated in Figure 7-19, 

can be used to handle image borders [89]: 

1. Zero padding or constant padding. 

This is the simplest form of padding, where the image is surrounded by zeros or an­

other constant value. An example of zero padding for edge detection is shown in 

Figure 7-1 9( c ). It can generate extra false edges, especially for bright regions near the 

image border, as a result of false luminance changes. It may also interfere with other 

edges near the border, causing their location, direction and strength to change. This 

method is simple, but inadequate because it can introduce extra edges and cause sig­

nificant distortion of existing edges. 

2. DC padding by border replication. 

In this method, the image is extended by replicating the border pixels. This is a zero 

order 1-D extension and assumes that the border pixels are representative of the local 

image. Figure 7-19( d) shows the edges detected using an LoG convolution which in­

corporates DC padding. With this method, a constant input produces a constant out­

put. Hence, it is an improvement on the first method, but remains simple to imple­

ment. Edges parallel to the image border are less affected than edges at oblique an­

gles, as luminance changes across and parallel to the border are not generated. 

3. Extension by a higher order approximation. 

It is possible to extend the border by a higher order extension such as a quadratic or 

cubic spline, which could increase the accuracy of the edge location and strength at 

the expense of increased computation. This method was not tested because of the in­

creased computation involved. 

As the image padding is approximate it affects the location, strength and direction of 

edges near the borders. This effect can be reduced by combining the edges obtained on a 
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number of scales [3, 64]. At smaller scales, fewer edges are affected and those influ­

enced are less affected; at larger scales, more edges are affected with greater distortion. 

These methods may be incorporated into the image processing algorithm or be applied 

before any processing. If the image padding is applied before processing the padding is 

calculated only once, it increases the size of the image and is not adaptable to have 

minimal impact on a particular algorithm. When the padding is incorporated into the 

algorithm, it requires less memory and can be adapted to the algorithm. However, it in­

creases the complexity of the algorithm, hence possibly reducing its speed. DC padding 

was incorporated into the LoG and Canny convolution algorithms, described earlier in 

this chapter and used in the next chapter. 

0 

(a) (b) 

I__/ 

0 

0 0 
0 c:, 0 0 

0 0 

(c) (d) 

Figure 7-19: Image padding for LoG edge detection. (a) Original image (246 by 
210). (b) Edges detected without padding, 34 pixels are lost from each side. 
(c) Edges detected with zero padding. (d) Edges detected with DC padding. LoG 
performed with crsc = 8 giving a filter width of 69 pixels. 
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7.8 Image Processing of an Irregularly Shaped Area 
Whilst analysing an image, image processing may be required in only part of the image, 

i.e. the image is segmented into regions of interest and regions that are not currently of 

interest. For example, during coarse-to-fine or fine-to-coarse edge focusing, existing 

edges are refined by detecting edges on and adjacent to the existing edges. These regions 

can be defined in the following ways: a rectangular sub-image, an irregularly shaped 

area, a list of points and a list of points with their neighbourhoods (e.g. coarse-to-fine 

edge focusing). The rectangular sub-image case is a simple modification of processing 

the whole image. It is beneficial to minimise the number of points processed, as the ef­

fort in processing each point is considerably greater than that of selecting points. The 

following methods for processing an irregularly shaped area are intended for edge de­

tection, but could be used in other tasks: 

1. Process the whole image and use only the required output. 

This is the same as processing the whole image, but with a post processing stage 

which selects the required output. 

2. Process each point or sub-image individually. 

Each point is processed in turn, treating it as the whole image. This is slow as there is 

no sharing of information between adjacent points, but can be slightly improved by 

grouping vertically and horizontally adjacent points into rectangular sub-images. 

These sub-images do not share information with adjacent regions, which for a large 

scale edge detector introduces considerable inefficiency. 

3. Mask. 

Masks that specify where processing is required are drawn on rectangular sub­

images, which bound them. During processing, the mask is checked to determine if a 

particular point requires processing. By appropriately dilating a mask, the area which 

is needed, for example, for an edge detection convolution (Figure 7-20(b)) can be 

found from the area where edge detection (Figure 7-20(a)) is required. This method 

was used and is described in the next chapter. Masks are generally the fastest ap­

proach to processing an irregularly shaped area as only the necessary points are proc­

essed. 
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(a) (b) 

Figure 7-20: Example image processing masks. (a) Example edge detection for edge 
focusing. (b) A mask indicating where LoG convolution is required for the edge 
detection mask (a). 

7.9 Conclusions 
This chapter examjned some methods of edge detection and forms the background for 

the work presented in the next chapter. It started with a description of simple edge detec­

tors, such as Sobel, which showed their unsuitability for lesion boundary detection. The 

implementation of the LoG second derivative edge detector was described. Three meth­

ods of zero-crossing detection were examined and improved versions of the first two 

methods (a cross-shaped ZC detector [46] and Pratt's ZC detector [80]) were presented. 

The final , more sophisticated, method (Huertas and Medioni zero-crossing detection 

[45]) was found to give the best results and was refined to give more accurately placed 

and continuous zero-crossings. A clearer way of describing this method, using binary 

decision trees which allows easier implementation, was presented. An implementation 

of the Canny edge detector, which used integrals to find the number of coefficients and 

their values, was presented. In addition, an implementation of non-maxima suppression 

using bilinear interpolation was given. Two methods of edge tracing, which are suited to 

the output of the LoG and Canny edge detectors, were presented. The effects of image 

border erosion on edge detector output were considered and DC padding selected as the 

most suitable method of improving the output, near the image borders, for the LoG and 

Canny edge detectors. The image processing of irregularly shaped areas was examined 

and the use of masks selected as the most suitable method of processing these areas. In 

the next chapter, masks are used for a number of purposes and further explanations of 

their use are given where required. 



Chapter 8 

An Edge Focusing Algorithm for 

Skin Lesion Boundary Detection 

8. 1 Introduction 
Accurate and reliable boundary detection is important in the automated diagnosis of skin 

lesions, in order to segment the image into lesion, skin and other background, thereby 

ensuring that colour and texture measurements are carried out only on the lesion image. 

In addition, given an accurate outline, the important diagnostic factor of lesion shape 

[59] can be analysed to provide quantitative measurements of size, asymmetry [90], 

border irregularity [37, 12] (chapter 5) and roundness [12] (chapter 5). The characteris­

tics of skin images are very variable (e.g. , lighting source, lesion size and nature, skin 

texture, hair and background objects) which produces problems in obtaining methods 

which are reliable, repeatable and robust. In many cases, the position of the "best" 

boundary is very subjective. However, an objective and consistent definition of the 

boundary location, which can be reasonably implemented, is required for an image 

processing system. 

Researchers developing automated diagnostic systems [55, 29, 53] have found current 

automatic boundary detection methods to be inadequate. Consequently, they have used 

manual boundary detection as the starting point for many of their diagnostic measure­

ments. This means that they have not fully automated the diagnostic process as derma­

tologists are required for some diagnostic measurements. To increase the ease of use and 

repeatability whilst reducing usage costs, it is desirable to automate boundary detection 

to reduce the reliance manual input. To fulfil this requirement, this chapter presents a 

new algorithm for finding lesion boundaries, which starts with the information provided 

by the process described in chapter 6: an image containing the lesion with sufficient sur-
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rounding image with an indication of the approximate lesion size, location and bounding 

area. 

General filter based edge detectors, for example the Sobel [80] and the Laplacian of 

Gaussian (LoG) [65, 64] operators (chapter 7), with fixed sizes are unreliable because of 

the nature of the image. Small scale edge detectors provide large numbers of unwanted 

edges by detecting image features such as skin texture and hair. Even when a complete 

boundary can be found there are a large number of other edges present which makes it 

difficult to identify the genuine border. If the image is low-pass filtered or a large scale 

edge detector used the resulting boundary is less affected by the unwanted image fea­

tures, but the locational accuracy is reduced as a result of inadequate resolution. These 

effects are shown in Figure 8-1. A method that accurately finds the border and is tolerant 

of image noise is required. This can be achieved through the use of "edge focusing", 

which is the coarse-to-fine tracking of edges [3]. In this method, the final edges consist 

of refined versions of those detected by a large scale edge detector, but have the loca­

tional accuracy of those produced by a small scale edge detector. Bergholm [3] pre­

sented the mathematics used for the gradual edge focusing from coarse (large scale) 

edges to fine (small scale) edges and applied it to arbitrary general images. In the algo­

rithm presented here, edge focusing is applied to medical images, in particular skin le­

sion images, for the first time. The algorithm uses new methods to control the boundary 

during edge focusing and to select the output boundary. 

Two variations of an edge focusing algorithm, designed to find skin lesion boundaries, 

using LoG and Canny [10] edge detection were developed, because these two types of 

edge detector (first and second derivative) have different properties. These two scaleable 

edge detection methods were described in the previous chapter and their differences in 

detecting ramp and curved edges are explained in sections 3.8 and 8.6 respectively. The 

algorithm is presented using the LoG edge detector and then the modifications required 

to use the Canny edge detector are explained. 
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Figure 8-1: Fixed sized edge detection, using LoG operator. (a) Original image (246 
by 210). (b) Large scale edge detection <:Ysc = 8./2. (c) Medium scale edge detection 

<:Ysc = 4./2. (d) Small scale edge detection <:Ysc = .fi. 

8.2 Algorithm Outline 
The edge focusing algorithm starts by applying a large scale LoG edge detector to the 

lesion bounding rectangle in the cropped image, provided by the process presented in 

chapter 6. The initial lesion boundary is selected from the detected edges by the process 

explained in section 8.4. This boundary is gradually refined by decreasing the LoG's 

scale and at each step detecting new edges only adjacent to or on the existing boundary 

[3], thereby preventing the detection of new unwanted edges. At each step the boundary 

is "cleaned", by the same method used for selecting the initial boundary, which ensures 

a closed contour is always produced. This creates a series of boundaries, with increasing 

detail, from which the most suitable is selected by the method explained in section 8.5. 

The edge focusing algorithm is outlined in the following steps: 
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1. Initial edge detection - by performing LoG edge detection using the initial value of 

crsc from the process described in chapter 6. 

2. Edge cleaning - to select initial approximate boundary. The initial boundary selection 

and subsequent "cleaning" are performed by joining adjacent edges (using a cubic 

spline), selecting the largest closed contour and removing any redundant pixels (by 

drawing and re-tracing the boundary) to give an 8-way connected boundary. 

3. Store boundary. Keep a copy of the current boundary. 

4. While space constant crsc :2'. minimum space constant do steps 5 to 8. The minimum 

space constant ( <JscMi11 = 2,JI) corresponds to a filter sensitive region width 

( 2-Jiasc ) of 8 pixels, which was chosen to prevent the edge focusing detecting small 

scale skin texture. 

5. Decrease space constant by 0.5 - which ensures that the boundary moves, at most, 

one pixel [3]. This enables refinement of the existing edge, whilst preventing detec­

tion of new unwanted edges. 

6. LoG edge detection on and adjacent to existing boundary. 

7. Boundary cleaning - to join gaps in the boundary and remove unneeded edge points 

(see step 2). 

8. Store boundary. Keep a copy of the current boundary. 

9. Selection of the "best" boundary - This relies on examining the image near the 

boundary. The boundary with the greatest contrast between the average intensity just 

inside and just outside the border is selected, corresponding to a minimum in the in­

tensity ratio because the lesion is darker than the surrounding skin. The width of the 

area is based on the size of the initial edge detector and so scales with the lesion size. 

8.3 Initial and Subsequent Edge Detections 
The initial edge detection is performed in the lesion bounding rectangle, identified by 

the process described in chapter 6, and produces edges such as those shown in Figure 8-

3(a). The edge map (which indicates the position and direction), produced by the LoG 

convolution and zero-crossing, is traced, by the method described in the previous chap­

ter, to create co-ordinate lists with the isolated lines and closed contours identified. Al­

though the LoG is a rotationally invariant second derivative operator and hence always 

produces closed contours in an unrestricted image [92], the image is restricted, hence 

non-closed contours, i.e. isolated lines, can occur because part of a contour may be out­

side the image. This in conjunction with the ZC detection (section 7.4) occasionally 
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marking edges incorrectly creates isolated lines and closed contours which are proc­

essed, by the method explained in the next section, to create the initial boundary. After 

processing, the initial boundary will be a closed contour around the lesion providing that 

the lesion is completely contained within the lesion bounding rectangle and it has been 

correctly identified from the other closed contours. 

Subsequent edge detections are performed on and adjacent to the current boundary, us­

ing a three pixel wide line mask created from the current boundary to identify where 

edge detection is required. This edge detection mask is sized and placed to just surround 

the current boundary, with sufficient space to include a two pixel margin to allow the 

zero-crossing detection to work correctly. An example boundary and edge detection 

mask are shown in Figure 8-2(a) and Figure 8-2(b). The mask was originally created by 

drawing the current boundary and morphologically dilating it by one pixel. However, 

binary dilation is a time consuming operation, so instead, the edge was drawn directly 3 

pixels wide. (The advantages of this approach are discussed in section 8.5.) From the 

edge detection mask, a mask indicating where LoG convolution is required can be ob­

tained by dilating with a 5 by 5 square. This adds two pixels to either side of the 3 pixel 

width line, giving a total width of 7 pixels. The width of the line is determined by the 

area required to allow the modified HM zero-crossing detection (section 7.4) to func­

tion. Each zero-crossing predicate uses a 3 by 3 pixel area and usually places its output 

in the centre of that area. However, some predicates do not place their output in the 

centre, hence an extra pixel is required to accommodate this. Hence, when edges are to 

be detected across a 3 pixel wide line, the convolution is performed across a line 7 pix­

els wide. The convolution mask, shown in Figure 8-2(c), is directly obtained from the 

current boundary without the intermediate creation of the edge detection mask to reduce 

the complexity and save time. 

The LoG convolution is performed by 1-D convolutions to reduce the computation (see 

section 7.3). Although the final output is only required in the area specified by the con­

volution mask, the second set of 1-D column convolutions uses the output of the set of 

first 1-D row convolutions from outside this area. To create the mask for the first set of 

1-D convolutions, the convolution mask is vertically dilated downwards and upwards by 

half the filter width (rounded down to the nearest integer). This is illustrated in Figure 8-

2( d) for a filter of 21 pixels wide, i.e. it is vertically dilated by 10 pixels. 
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After performing the convolution, the zero-crossing predicates are applied where any 

part of the 3 by 3 predicate area overlaps the three pixel wide edge detection mask. This 

creates a new edge map which is traced (section 7.6.1) and the resulting co-ordinate lists 

processed to create a new lesion boundary with greater detail. Between each edge detec­

tion stage the space constant ( <Jsc), which controls the detail of the edges produced, is 

reduced by 0.5. This ensures the boundary moves at most by one pixel [3], which en­

ables it to be re-detected on the next pass while not introducing spurious edges not con­

nected to the lesion boundary. 

(a) 

(c) (d) 

Figure 8-2: Edge detection masks. (a) Original boundary. (b) Edge detection mask, 
which is (a) drawn 3 pixels wide. (c) Convolution mask, which is (a) drawn 7 pixels 
wide. (d) Mask for the first set of 1-D convolutions, which is (c) vertically dilated 
by 10 pixels each way. 
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8.4 Boundary Selection and Cleaning 
The edges detected initially and at later stages do not always form a closed contour 

around the lesion, for the reasons explained in the previous section, and hence require 

processing to ensure that there is only one complete closed contour. The initial edge 

map should contain the lesion boundary, but may also contain other edges (e.g. Figure 8-

3(a)), hence the lesion boundary must be identified and processed to create a closed 

contour (e.g. Figure 8-3(b)). The initial edges and subsequent edges may contain gaps 

and extraneous pixels, caused by the omission of faint edges with very small gradients 

and imperfections in the ZC detection (see Figure 8-4(a) & (c) for an example of edge 

gaps and extraneous pixels respectively and Figure 8-4(b) & ( d) for the "cleaned" ver­

sion of these edges). Consequently, the processes described in this section are used to 

bridge gaps (section 8.4.1), select the correct boundary (section 8.4.2) and remove ex­

traneous pixels (section 8.4.3) and are used in the order in which they are explained. The 

co-ordinate lists created by edge tracing the edge map are used by this boundary selec­

tion and cleaning process, which takes a minuscule amount of time compared with the 

edge detection. 
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(a) (b) 

Figure 8-3: Example of cleaning of an initial boundary on a 548 by 510 image. (a) 
Raw initial boundary, from LoG edge detection with crsc = 31.328, overlaid on the 
image. (b) Initial boundary after cleaning. Note: Edges are drawn 3 pixels wide. 

(a) (b) 

(c) (d) 

Figure 8-4: Example boundary faults. (a) Part of a raw boundary, showing a gap, 
overlaid on the image. (b) Boundary after cleaning, showing the effects of cubic 
spline joining. (c) Part of a raw boundary, showing extraneous pixels, overlaid on 
the image. (d) Boundary after cleaning. Note: Edges are drawn one pixel wide. 
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8.4.1 Edge Joining 
Edge joining bridges gaps, such as those shown in Figure 8-4(a), to create a single edge 

that retains all of the co-ordinates of the original edges and includes extra interpolated 

points to bridge the gaps. These interpolated points should be 8-way connected to them­

selves and the sides of the gap, and also be arranged so that each point is next to its spa­

tial neighbours in the co-ordinate list. 

The 8-way direction edge map, produced by ZC detection, can be processed before edge 

tracing by Robinson edge linking [80) to remove single pixel gaps and delete inconsis­

tent edge points. This method examines the map in 3x3 blocks and adds or removes the 

central pixel on the basis of the edge direction of its neighbours. This approach was not 

used as it can only handle single pixel gaps. 

As no a priori information exists about the shape of each isolated edge or closed con­

tour the edges cannot be fitted to an existing model. However, it is known that the lesion 

boundary is a closed contour, and hence all of the edges can be joined to create closed 

contours. In the initial edge detection one of these contours will be the lesion boundary; 

in subsequent edge detections the edges should join to create a single contour. To ensure 

that the correct edges are joined the following steps are used: 

1. Build end list: Create a list of the edge ends (which excludes closed contours), 

containing the co-ordinates of the end point and a link to the original edge. 

2. While there are isolated ends, which are reasonably close, do steps 3 and 4: The 

largest Euclidean distance (equation (3.1)) between isolated ends was set at 50% of 

the average of the width and height of the image. 

3. Find the nearest ends: Search the end list to find the pair of ends which are closest, 

i.e. have the smallest Euclidean distance between them. The ends can be on the same 

edge, except when the edge has three or fewer points, which prevents very small 

edge fragments turning into very small closed contours with no points inside them, 

when they may be better joined to other edges. 

4. Join the two ends and update the end and edge lists: The edge list is updated by 

removing one of the edges and adding the new points and the removed edge to the 

remaining edge. The end list is updated by removing the two ends which have been 

joined and modifying the end of the remaining edge to reflect the addition of the 
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joining and other edge's points. When an edge is joined to itself a closed contour is 

created, which is removed from the end list. The two methods tested for creating the 

joining points are described in sections 8.4.1.1 and 8.4.1.2. 

Before creating the connecting line, its length is required to allow allocation of space to 

store its co-ordinates. This length does not include the line's end points as they already 

exist in the original data. The co-ordinates must be generated in order from the begin­

ning point to the end point, to ensure that the co-ordinates of the resulting joined line are 

continuous. 

8.4.1.1 Straight Line Joining 

In this method, discrete straight lines are generated by a modified Bresenham's line 

drawing algorithm [32] (section 3.17). The algorithm was modified to exclude the two 

end points and to always draw the line from its starting point to end point. Whereas, the 

original algorithm draws from the end which it is most efficient. The number of gener­

ated points is simply the smallest of the horizontal and vertical lengths of the line minus 

two (to remove the end points). This method is simple, but does not generate smooth 

lines and creates discontinuities in the first derivative. 

8.4.1.2 Cubic Spline Joining 

This method uses cubic splines to provide interpolation which is smooth in the first de-

rivative both within the edge gap and at its boundaries [81]. Hence, they can provide 

smooth and continuous joins between edges. 

The lines being connected and the connecting line are multi-valued as they may contain 

points which have the same x or y co-ordinates as another point on the line. Conse­

quently, they co-ordinates cannot be generated from the x co-ordinates. This leads to the 

use of a parametric spline [7] where both the x and y co-ordinates are a function of a pa­

rameter t. The values of the parameter t are generated from the Euclidean distance be­

tween the points, starting with an initial value oft= 0 [7]: 

t;+1 =t; +✓(x;+1-x;)2 +(Y;+1 - Y; )2 

t1 = 0 for (x1, y1) 
(8.1) 
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The 'C' routines in Press et al. [81] were used to generate a natural cubic spline, which 

has zero second derivatives at both of its boundaries, and does not require knowledge of 

the first derivative at the end of the edges being connected. 

The co-ordinates of the edges being connected were combined and arranged to place the 

ends to be connected next to one another. When a line is connected to itself (i.e. a closed 

contour is being created) the points are re-arranged to place the gap in the middle of the 

line (to give equal numbers of points on either side of the gap). As the connecting and 

existing edges are multi-valued two different cubic splines are created for the x and y co­

ordinates, which are both functions of the parameter t (eqn. (8.1)). The generated co­

ordinates are those of pixels in a discrete image and consequently must be rounded to 

integer values. To prevent duplicate points being created, each point is compared (after 

rounding to the nearest integer) with the start, end and previously generated points. 

When it is equal to the end point the process is stopped and if it is equal any previous 

points or the start point it is discarded. 

The t values required to generate a continuous line, without duplicate points, cannot be 

directly determined because the relationship between the parameter t and the x and y co­

ordinates is not linear. Consequently, the required values of t are estimated from the 

number of points, excluding the end points, needed to create a straight line (as described 

in the previous section) and the values of t on either side of the gap. The number of 

straight line points is multiplied by a sampling rate of four, which was found empirically 

to be sufficient to give an estimate of the number of points in the gap. The t increment is 

obtained from the difference in t on either side of the gap divided by this estimate. The 

length of the connecting line is obtained by generating and discarding the points and this 

length used to allocate space for the connecting co-ordinates which are then calculated 

again. This method of counting and re-calculating the co-ordinates is used because it 

simplifies the management of the co-ordinate storage at the expense of some repeated 

calculation. 

This method is the one which was implemented since it provides smooth joins with the 

existing edges and was felt to be worth the additional computation and coding complex­

ity (compared with the straight line joining described in section 8.4.1.1). The connecting 

edges created by this method can sometimes be 4-way instead of 8-way connected, 

which is not required in this application and hence the edges are converted to 8-way 
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connected ones by the process explained in section 8.4.3. (This is illustrated in Figure 8-

5.) 

Figure 8-5: Closed contour cleaning. White = fully cleaned boundary with contour 
cleaning, black= additional pixels left in the partially cleaned boundary. Note: The 
edge is drawn one pixel wide. 

8.4.2 Lesion Boundary Selection 

Once any gaps in the edges have been bridged, the edge which is most likely to be the 

lesion boundary must be selected and all other edges discarded. This stage is only neces­

sary in the initial edge detection when there may be a large number of extraneous edges 

( e.g. Figure 8-3). The lesion boundary is selected on the basis that it is the largest closed 

contour (i.e. with the greatest number of boundary points) and all other isolated edges 

and closed contours are discarded. 

8.4.3 Lesion Boundary Cleaning 

The closed contour which has been selected as the lesion boundary may contain extra-

neous points which are not required, such as those shown in Figure 8-5. These extrane­

ous points are generated by imperfections in the ZC detection and edge joining proc­

esses. The imperfections in edge joining were discussed at the end of section 8.4.1.2 and 

illustrated in Figure 8-5. The problems caused by the ZC detection were discussed in 

section 8.4 and illustrated in Figure 8-4. 

At this stage, the only remaining edge is a single closed contour. To remove the 

unnecessary edge points this contour is drawn and filled, and this filled image boundary 

traced to generate 8-way connected co-ordinates. A parity check filling algorithm [76] 

(section 3.17) was used as this does not require a starting point inside the boundary. 

However, when the region is not full (see section 3 .3 for the definition of a full region) 
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this algorithm fails and hence a seed filling algorithm [76, 35] (section 3.17) was used 

with the contour's centre of gravity as the starting point. The filled boundary is contour 

traced using a contour tracing algorithm [76] (section 3.5) to provide the lesion 

boundary co-ordinates. 

The effect of this is illustrated in Figure 8-5 and although proportionally it only affects a 

small part of the boundary it improves the algorithm' s reliability by removing pixels 

which cause the boundary to become double thickness. These extraneous points are 

added by imperfections in the ZC detection and edge joining processes and if not re­

moved then in subsequent edge focusing passes extra edges may be generated. 

8.5 Selecting a Suitable Boundary 
The previously described steps create a series of boundaries (illustrated in Figure 8-6) 

with decreasing edge detection scale and increasing detail. As the edge detection scale 

decreases the boundary detail increases as the edge is affected by smaller intensity 

variations. The edge moves towards areas of higher intensity gradient, which should rep­

resent a more accurate lesion boundary. However, as can be seen in Figure 8-6(e), the 

boundary at very small edge detection scales becomes very irregular and follows minor 

intensity variations which are considered by humans to be unimportant. It is difficult to 

identify the "best" boundary, but the chosen boundary must be a reasonable approxima­

tion of the lesion outline which can be consistently chosen. Using a human perceived 

boundary is not possible as this prevents automation of the lesion diagnosis process and 

their boundaries can vary considerably and may be influenced by other factors, such as 

the lesion's diagnosis. Identifying the "best" boundary is difficult, but the chosen 

boundary must be a reasonable approximation of the lesion outline which can be consis­

tently chosen. To select this "best" boundary a new "boundary quality" measure, which 

gives a consistent and objective measure of the quality of the boundary, was calculated 

for each prospective boundary. 

The unconstrained images being considered may contain features which could affect the 

choice of the "best" boundary. The area surrounding the lesion may contain other skin 

features, such as hair or background non-skin objects, some of which are removed by 

the image cropping performed during the process described in chapter 6. Parts of the 

lesion may produce "highlights", which are generally caused by non-diffuse lighting 
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reflected from smooth areas. These highlights can be confused with skin when they are 

"close" to the boundary since they may have similar brightness to that of the skin. This 

may result in the edge focusing excluding these areas from the lesion at smaller scales. 

Consequently, to make the algorithm robust to such problems a "best" boundary needs 

to be selected, which may not be that produced at the smallest scale. 

The inner part of the lesion can vary considerably in intensity, texture and size, so is not 

used in choosing the boundary. The area around the lesion may contain features which 

are not "plain" skin, so it is necessary to use only the area near the lesion boundary, pre­

venting unwanted features inside and around the lesion from influencing the choice. 

Using a large area could de-sensitise the boundary quality measurement as changes 

caused by a small movement of the boundary would have little impact as they would be 

swamped by the rest of the large unchanged area. 

The first method tested measured the standard deviation of the area outside the boundary 

and was based on the assumption that the area just outside the "best" boundary would 

have the smallest standard deviation since it would incorporate a minimum of lesion im­

age. However, this approach selected boundaries with large space constants which re­

sulted in only approximate outlines. Consequently, a second method which assessed the 

boundary by measuring the characteristics of the image just inside and just outside the 

lesion was tested. The boundary with the best contrast between the area just inside and 

just outside the boundary was selected by calculating the ratio of the average intensities 

of these two areas. Both of these methods are affected by the size of the measurement 

area and must be adaptable to a range of lesion sizes. To provide this adaptation, the 

width of the initial edge detector is used to provide an estimate of the approximate le­

sion size and the measurement area width set at a percentage of this width. 

The boundary quality measurement is performed on irregularly shaped areas which can 

be specified by two masks: just inside and just outside the boundary. A different pair of 

masks is required for each boundary in the series, which makes the time taken to gener­

ate them a consideration. These masks are generated by the following process, which is 

illustrated in Figure 8-7: 
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1. Draw a single pixel boundary outline: Figure 8-7(a). 

2. Dilate the boundary with a disc: Figure 8-7(b). 

3. Create a filled boundary from the image in Figure 8-7(a), using the method de­

scribed in section 8.4.3: Figure 8-7(c). 

4. Logically AND the dilated boundary with the filled boundary to give the area just 

inside the boundary, including the boundary itself: Figure 8-7(d). 

5. Exclusive-OR the image of the area just inside the boundary with the filled boundary 

to give the area just outside the boundary: Figure 8-7(d). 

Initially the dilation, in step 2, was performed using a 'C' morphology library [78]. 

However, this was found to be taking over 99% of the time required to measure the 

boundary quality. Hence, to reduce the time this stage was replaced by a method which 

placed a copy of a disc centred on each point in the boundary. (This idea is also used in 

the creation of the edge detection masks in section 8.3.) This took approximately 1
/ 169 of 

the time required by the original method. 

To select the percentage measurement area width, a test set of the images created by 

processes presented in chapter 6 were visually assessed. For each image, the boundary 

for 25%, 50% and 100% was superimposed on the original image. These three new im­

ages were displayed simultaneously to allow their visual comparison to identify which 

boundaries were either unacceptable, acceptable or good, i.e. some significant part of the 

lesion was omitted, the boundary was usable or the boundary closely matched the visu­

ally perceived boundary. On the basis of these tests, the results of which are summarised 

in Table 8-1, a measurement area width of 50% was selected. An example of LoG edge 

focusing is shown in Figure 8-6. 

% of initial edge detector width used as the Unaccepta Acceptable Good 
boundary area ble 
25% 0% 44% 56% 
50% 0% 22% 78% 
100% 0% 44% 56% 

Table 8-1: Width of the area used for selecting a suitable boundary. 
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Figure 8-6: Edge focusing on an example image (548 by 510). (a) Initial boundary 
detected. (b) Boundary at about two thirds of the initial scale. (c) Boundary at 
about one third of the initial scale. (d) Final selected boundary. (e) Boundary at a 
space constant smaller than the selected boundary. (f) Graph of contrast ratio 
against space constant. The best contrast is given by the minimum on this graph as 
the ratio was calculated by dividing the average image intensity inside the 
boundary by that outside. The squares show the size of the edge detection filter: 
outer - area of the image used for each edge point, inner - sensitive region of the 
filter. The calculation of the filter and sensitive region widths was described in 
section 7.3. Note: Lesion boundaries and filter widths are drawn 3 pixels wide. 
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(a) (b) 

(c) (d) 

(e) 

Figure 8-7: Boundary quality measurement mask generation. (a) Boundary drawn 
1 pixel wide. (b) Boundary dilated by a 21 pixel diameter disk. (c) Filled boundary. 
(d) Image (b) logically ANDed with image (c) to give the area just inside the 
boundary, including the boundary itself. (e) Image (b) logically XORed with image 
(d) to give the area just outside the boundary. 
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8.6 Use of Canny Edge Detection 
In the first part of this chapter, an edge focusing algorithm for skin lesion boundary de-

tection using LoG edge detection was described. In this section it is demonstrated that 

other edge detectors can be used, taking the Canny edge detector [ 1 OJ as an example. 

Canny edge detection, which was described in the previous chapter, is a first derivative 

edge detector and hence has different properties from the LoG. The edges detected by 

Canny have different positions from those detected by LoG edge detection, which can 

be seen by comparing Figure 8-3 with Figure 8-8. Both LoG and Canny accurately place 

their detected edges for straight edges, however for curved edges they differ in their 

edge placement [97, 92]. For a black square on a white background, which is illustrated 

in Figure 8-9(a), the LoG detector displaces its edge outwards near the corner at a dis­

tance related to the true edge curvature and detector space constant. The Canny detec­

tor's edge di splacement is in the opposite direction, consequently the edges are inside 

the square, which is shown in Figure 8-9(b). A consequence of these differing edge dis­

placements is that the results of using the edge focusing algorithm with the two edge 

detectors would be expected to be different. 

Three parts of the edge focusing algorithm required modification to adapt it to use the 

Canny edge detector. The basic edge detection (LoG convolution and zero-crossing de­

tection) was replaced by convolution with Gaussian and first derivative of Gaussian 

functions followed by non-maxima suppression to locate the edges. The output of the 

non-maxima suppression is different from the zero-crossing detection in two ways: it 

can provide both edge direction and strength, and its output tends to be 4-way connected 

whereas the zero-crossing detection method used generates 8-way connected edges. The 

edge tracing method using edge direction, which was described in section 7 .6.1, was 

designed to trace 8-way connected edges and on 4-way connected edges may miss some 

edge pixels. This omission of some pixels creates a number of extraneous edge points, 

which caused difficulties in the boundary cleaning stage by causing some correct edge 

points to be discarded which resulted in the cleaned edge being sometimes inaccurately 

placed. As a consequence a different edge tracing method (explained in section 7.6.2) 

was used which does not use edge direction and is biased towards 4-way connectivity. 

This method correctly traces the edge generated by the non-maxima suppression and 

hence includes all of the edge pixels. 
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Canny' s edge detector produces edge strength, which was used in the initial edge detec­

tion to remove "weak" edges. For the initial edge detection and subsequent passes, the 

minimum edge strength was set at 1
/ 512 of the maximum possible edge strength. 

The same step size (0.5) as is used for LoG and thus the edge moves at most 1 pixel [3] 

between edge focusing steps. Consequently, the same three pixel wide line mask is used, 

but as the non-maxima suppression only requires a one pixel border around this area the 

mask is only dilated by one pixel to provide the area where the edge detection convolu­

tions are performed. This is different from the LoG detection where the mask was di­

lated by two pixels because of the functioning of the zero-crossing detection. 

An example of Canny edge focusing is shown in Figure 8-10. 
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(a) (b) 

Figure 8-8: Initial boundary for Canny edge focusing. (a) Raw initial boundary, 
with crc = 31.328, on a 548 by 510 image. (b) Boundary after cleaning. Note: Edges 
are drawn 3 pixels wide. 

(a) crsc = 25.828 (b) crc = 25.828 

Figure 8-9: Edge displacement for curved edges. (a) LoG edge detection. (b) Canny 
edge detection. The detected edge is shown in black. The original black 128 by 128 
square, on a white background (256 by 256), is shown in grey. 
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Figure 8-10: Canny edge focusing on an example image (548 by 510). See Figure 8-
8(b) for the initial boundary detected. (a) Boundary at about two thirds of the 
initial scale. (b) Boundary at about one third of the initial scale. (c) Final selected 
boundary. (d) Boundary at a space constant smaller than the selected boundary. 
(e) Graph of contrast ratio against space constant. Note: Lesion boundaries are 
drawn 3 pixels wide. 
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8. 7 Testing the Edge Focusing Algorithm 

The testing of the algorithm was divided into two parts: verification and validation tests, 

which can be summarised by [88]: 

• Verification: Are we building the system right? 

Does the algorithm do what it is expected to do? This can be tested by using a set of 

simple images for which the boundary is known, e.g. the image shown in Figure 8-

11. This phase of testing involves ensuring that the boundary is "sensible", which 

was defined as the boundary being continuous and contained within the original im­

age. This testing was performed during the algorithm development, to ensure that the 

component parts functioned as expected, and on the complete algorithm to ensure 

that the components integrated correctly. Verification testing does not attempt to en­

sure that the produced boundary is useful. 

• Validation: Are we building the right system? 

Does the algorithm do what we want it do? To answer this much harder question we 

must decide where the lesion boundary is. One possibility is to use the boundary 

provided by a human, possibly an expert. However, the boundaries produced by hu­

mans are inconsistent in that they can vary considerably from person to person and 

between different presentations of the same image to the same person. The bounda­

ries can be influenced by external factors , such as what the perceived diagnosis is. 

The edge focusing algorithm's boundaries were assessed by visual assessment by a 

non-expert, which checked that the boundaries were in the vicinity of the visually 

perceived boundary. 

Another method of approaching this problem is to create simulated images which 

contain "artificial" skin and lesions, which enables specification of the lesion bound­

ary location. This method of assessing the edge focusing algorithm is used in the next 

chapter where the creation of simulated images is considered. 

The generated boundaries must be consistent: different images of the same lesion 

should produce similar boundaries. Meeting this criteria will ensure that the system is 

tolerant of image capture conditions, which ensures that it can be used in a clinical 

environment where the image capture conditions cannot be accurately controlled. Un­

fortunately due to the small available test set it was not possible to test the boundaries 

for consistency. 
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(a) <Jsc = 20.328 (b) cr SC = 2.828 

Figure 8-11: Example verification image of a circle (diameter 128 pixels), 
illustrated with LoG edge focusing. (a) Initial boundary. (b) Final boundary. The 
original black circle, on a white background, is shown in grey. 

8.8 Conclusions 
This chapter has presented an edge focusing algorithm for skin lesion boundary detec-

tion. Two variations of the algorithm using the LoG edge detector and the Canny edge 

detector were presented and the testing of the algorithm on artificial images and real im­

ages was described. Using real images it was not possible to assess visually the relative 

performance of these two alternatives, but they are compared in the next chapter. This 

algorithm can be combined with the work described in chapter 6 to produce a system 

which is capable of finding lesion boundaries on a wide range of images. From the test­

ing performed the algorithm was shown to be tolerant of image capture conditions and 

capable of working on a wide range of images. 

This algorithm is a new application of edge focusing, which controls the boundary dur­

ing focusing and selects the output boundary, using image contrast. The lesion boundary 

is "cleaned" during focusing by bridging gaps in the boundary and removing extraneous 

pixels, which allows it to function on indistinct boundaries where without this 

"cleaning" process it is unable to maintain a continuous boundary. The final boundary is 

selected using image contrast, which enables a suitable boundary to be automatically 

chosen from the series of boundaries created by edge focusing. Through these develop­

ments, edge focusing has been made suitable for lesion boundary detection and may also 

be suitable for other applications where automatic boundary detection is required for 

objects with boundaries which are not clearly defined. 



Chapter 9 

Image Synthesis and Edge Focusing 

Test 

9. 1 Introduction 
This chapter discusses the synthesis of simulated monochrome skin and lesion images, 

which are required to investigate the behaviour of the methods presented in the last 

chapter and chapter 6. Test images are required where the characteristics can be con­

trolled, so that the output of a boundary finding method may be compared with the 

known input. This comparison allows assessment of algorithm performance under a 

range of image conditions, which can be created by adjusting the parameters of the im­

age synthesis process. This assessment of algorithm performance can be used to com­

pare different algorithms, such as the LoG and Canny edge focusing algorithms pre­

sented in the last chapter, and could also assist in algorithm development by identifying 

image conditions under which an algorithm succeeds or fails. Previously, algorithm per­

formance has validated by human assessment [30, 36], which is prone to the problems 

discussed in section 8.7. By the creation of simulated lesion images and automation of 

boundary quality assessment, these problems can be overcome thereby improving the 

assessment of the performance of boundary detection and other algorithms. The infor­

mation obtained from this assessment can be used to help develop new methods and en­

hance existing methods. 

In this chapter, the performance of LoG and Canny edge focusing algorithms and the 

lesion isolation and location method is assessed using simulated skin lesion images. 

However, although considered desirable, due to time constraints it was not possible to 

extend this chapter to cover the assessment of other skin lesion boundary detection 

methods (such as [12, 30, 77, 36, 26]) and other boundary detection methods (such as 
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[50, 54, 73]). Such an assessment would have compared the relative performance of 

edge focusing and other algorithms and could have identified their strengths and weak­

ness. This would have demonstrated whether the edge focusing algorithm provides an 

improvement over boundary detection methods that have previously been applied to 

skin lesions. The assessment would have enabled the comparative testing, refinement 

and improvement of boundary detection and shape analysis algorithms, through gaining 

a better understanding of the behaviour of the algorithms under known conditions. In 

addition, again due to time constraints it was not possible to extend the shape generation 

to synthesise images with "benign" and "malignant" boundaries, which would have al­

lowed the assessment of the effects of different boundary detectors and shape classifiers 

on the accuracy of computer classification of such boundary types. This would have 

demonstrated whether the edge focusing algorithm and shape analysis methods pre­

sented in this thesis were an improvement over published algorithms previously applied 

to skin lesions. 

The new image synthesis method presented in this chapter is performed in three stages: 

• Shape generation - the creation of a shape similar to that of a lesion. This simulated 

lesion shape is used to create a mask which controls the mixing of skin and lesion 

textures. 

• Boundary transition - the modelling of the transition between skin and lesion, by 

controlling the mixing of skin and lesion texture, by modifying the mask created by 

the shape generation. 

• Texture generation - the synthesis of textures which are similar to skin and lesion 

from measurements of real skin and lesion textures. The skin and lesion were as­

sumed to have different, but uniform textures. 

The simulated image is created by using the shape image, with the boundary transition 

applied, to control the mixing of skin and lesion textures. 

A method of comparing true and estimated boundaries, based on the area which they 

enclose, is then presented. This is used to assess the edge focusing and lesion location 

and isolation methods described in previous chapters. A summary of their performance 

on a range of skin and lesion textures and boundary transitions is given. 
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Dhawan and Sicsu [26] synthesised simulated skin and lesion images, which they used 

to visually assess their segmentation method. They did not specify how these images 

were created, but their illustrations showed images containing overlapping ellipses of 

varying colours and textures. These images appear not to have been created from meas­

urements of real lesion images and had clear transitions from skin to lesion. The meth­

ods presented here use measurements from real images to create suitable skin and lesion 

textures and blur the boundary between skin and lesion to make it more representative 

of real images. In this chapter, methods from other image processing areas are adapted, 

where appropriate, for use in the synthesis of simulated skin and lesion images. 

9.2 Shape Generation 
This section describes the creation of a binary image which contains a lesion-like shape. 

In addition to the binary image, the shape's boundary co-ordinates are stored as the true 

boundary, to allow their comparison with any estimated boundary. The method creates a 

simple shape based on an ellipse with random large and small scale irregularities, using 

parameters which were heuristically chosen to create shapes similar to lesion outlines. 

It would be possible to analyse the real lesion shapes and create a model for synthesising 

lesion boundaries. However, this approach requires accurate boundaries for building a 

lesion shape model. These accurate boundaries cannot be obtained before the boundary 

finding method has been shown to be accurate by testing on simulated images. Conse­

quently, the accurate boundaries are not available for developing a model at this stage 

and hence shape synthesis cannot be based on real lesion shapes. However, it is impor­

tant, to allow reasonable testing, that the simulated shapes are visually similar to real 

lesion shapes. To achieve this objective Dhawan and Sicsu [26] used overlapping ellip­

ses with synthetic textures (which were not modelled on real lesion textures) to create 

the simulated images used to assess their multi-channel intensity, colour and texture 

segmentation algorithm (section 4.2). This approach created images with an approxi­

mately elliptical shape with large scale irregularities, but without any small scale irregu­

larity. The method presented here creates simulated approximately elliptical shapes with 

both large and small scale irregularities. 
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The parameters shown in the following three stages used to create lesion-like shapes 

with large and small scale irregularities were heuristically chosen for an image of 512 by 

512 pixels. 

1. Primary shape 

The primary shape is an ellipse, with a random size, random aspect ratio and random 

angle placed at a random position in the image, e.g. Figure 9-l(a). The ellipse's mi­

nor axis size, aspect ratio and centroid were controlled by Gaussian distributed ran­

dom numbers with means of 90, one and the image's centre respectively. These ran­

dom numbers had standard deviations of 25, 0.25 and 51.2 (10% of image width) re­

spectively. 

2. Large scale irregularity 

The ellipse was sampled, a fixed number of times (8), at uniformly spaced angles 

starting at a random angle. These sampled points were displaced radially by a Gaus­

sian distributed random distance (with zero mean and a standard deviation of 30 

pixels) and re-connected to create a shape with large scale irregularities. The parts of 

the boundary that required interpolation were found by searching the list of boundary 

co-ordinates for spatially non-adjacent points, i.e. those points adjacent in the co­

ordinate list, but with an Euclidean distance of greater than ,Ji between them. The 

two non-adjacent points and all the other sampled points were connected by 

parametric cubic spline interpolation (section 8.4.1.2) with the two non-adjacent 

points placed in the centre of the spline. The sampling, radial displacement and inter­

polation creates an approximately elliptical shape with large scale irregularities, such 

as that shown in Figure 9-1 (b) . 

3. Small scale irregularity 

The shape with large scale irregularities was re-sampled more frequently (16 times) 

at uniform points in the co-ordinate list. These points were radially displaced and in­

terpolated by the previously described method, to give the final shape (e.g. Figure 9-

l(c)). The points were selected directly from the co-ordinate list rather than by angle 

(which was used for the large scale irregularities) because of the difficulty of finding 

points at particular angles in a Cartesian co-ordinate system. Although, the points 

could have been converted to polar co-ordinates (where it would have been easier to 
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find points at particular angles), this was not attempted as it would only have pro­

duced a different random shape at the expense of extra computation. 

The random numbers were generated from a single seed for the whole shape, which al­

lowed the re-creation of the same shape from the seed value. The Gaussian distributed 

random numbers [81] used were limited to ±3cr, where cr is the standard deviation of the 

distribution. This prevented the creation of unreasonable shapes and the placing of the 

lesion outside the image, but does not affect most shapes as the ±3cr limit includes over 

99% of the Gaussian curve. 

(a) Ellipse: aspect ratio= 1.36, (b) 
major axis= 138.7 pixels, minor axis= 102.0, 
angle of major axis to vertical (anti-clockwise)= 0.900 radians (51.6°) 

(c) 

Figure 9-1: Creation of synthesised lesion shape in a 512 by 512 image. (a) Starting 
ellipse. (b) Ellipse after adding radial Gaussian distributed noise (with standard 
deviation of 30) at 8 sampling points and spline interpolating between the points. 
(c) Second sampling, radial Gaussian noise (with standard deviation of 5) adding 
and interpolation. Black and white represent lesion and skin respectively. 
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9.3 Boundary Transition 
This section describes the creation of a boundary transition between the simulated lesion 

and the surrounding simulated skin. The transition is simulated by modifying the shape 

image which controls the intensity mixing of skin and lesion texture. 

The presence of an indistinct transition between skin and lesion, in real images, makes 

the segmentation of lesion from skin harder. Consequently, to ensure that the simulated 

images are similarly difficult to segment, the transition between simulated skin and le­

sion must also be indistinct. In this stage, the problem of requiring an accurate boundary 

before the accuracy of the boundary detection method has been determined also occurs. 

Consequently, a method of providing an indistinct skin-lesion transition that does not 

rely on numerical analysis of real images is required. The simple method presented here 

creates a boundary transition using a low-pass filter. By visually examining real images 

and the simulated boundary transitions, a wide range of realistic boundary transitions 

without the necessity of lesion measurements can be created. Once the performance of 

the boundary detection method has been assessed it may be possible to create better 

simulated images using the additional data which could then be obtained. 

A first order low-pass butterworth filter was used to blur the synthesised lesion shape 

image, created by the method presented in the previous section. By changing the filter's 

cut-off frequency (expressed as fractions of the sampling rate), which represents the 

point where the filter's output is 50%, the sharpness of the boundary transition can be 

changed. The butterworth filter was applied, in the frequency domain, to the simulated 

lesion shape image by Khoros [82] programs. The one-dimensional effect of the filters 

tested is shown in Figure 9-2 and two example boundary transitions are shown in Figure 

9-3. The cut-off frequencies were chosen to create boundary transitions visually similar 

to those in real images. 
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Figure 9-2: 1-D boundary transitions. 
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Figure 9-3: Example boundary transitions. Filtered with cut-off frequencies of 
(a) 0.0156, (b) 0.00781. The original synthesised shape is shown in Figure 9-l(c) 
and original boundary is drawn in black. 
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9.4 Texture Generation 
This section considers the creation of synthesised skin and lesion textures which are 

visually similar to real skin and lesion textures. To maximise the "realism" of the syn­

thesised images only bi-directional methods, i.e. those which can analyse a texture and 

synthesise a new similar texture, were considered. The performance of the texture syn­

thesis was assessed visually by comparison with the original texture. 

Texture is a property of the local spatial variation of image intensity, which is difficult 

to define qualitatively and quantitatively [38, 80, 58]. (An introduction to texture was 

provided in section 3.9.) It is measured over a spatially restricted area and texture meas­

urements must be restricted to areas of uniform texture. Hence, it is necessary to estab­

lish the boundary of uniform texture region before making texture measurements. In this 

work no attempt was made to segment skin images automatically to obtain the relevant 

textures . Instead, 64 by 64 pixel texture samples were taken manually. In addition to 

skin and lesion textures, other samples were taken from textured surfaces and one tex­

ture (fieldstone) was taken from the Brodatz texture album [6, 5]. The Brodatz field­

stone texture was chosen as it is the closest in this "standard" texture set to lesion tex­

ture. The other textures were chosen to be easy to distinguish visually, to facilitate the 

development and initial assessment of the texture creation methods. Examples of test, 

skin and lesion textures are shown in Figure 9-4. 

In this application, the exact reproduction of the original texture is not required, as this 

would not allow the creation of a range of simulated textures from one real image. 

However, it is important to have synthesised textures which are visually similar to real 

lesion and skin textures. It is possible to measure the similarity between individual pix­

els in synthesised and original textures, but it is much harder to give an overall assess­

ment of the visual similarity of the textures. Thus, visual comparison of the original and 

synthesised textures is necessary. Visual texture comparisons were performed by creat­

ing composite images containing the original texture in the centre surrounded by syn­

thesised texture (illustrated in Figure 9-5). The image (Figure 9-5(b)) controlling the 

mixing of the original and synthesised textures was created by low-pass first order but­

terworth filtering an image of a 64 by 64 pixel black square on a white 128 by 128 pixel 

background (Figure 9-5(a)). By low-pass filtering the image controlling the mixing of 

the two textures, the edge between the two textures was de-emphasised. This reduced 
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the visual impact of the discontinuity between the two textures and made it easier to 

compare visually the original and synthesised textures. Examples of a texture match and 

mismatch are shown in Figure 9-S(c) and (d) respectively. 

The creation of simulated skin images requires textures which are visually similar to real 

skin and lesion textures. This means a method that can analyse a real texture and syn­

thesise a similar new texture is required. In image compression similar texture creation 

methods are used, but in this application (unlike image compression) the size of the data 

(parameter space) representing the texture and time required for analysis and synthesis 

are not important. Iversen and L¢nnestad [48] surveyed a range of texture analy­

sis/synthesis methods for use in image compression. They assessed the visual perform­

ance, the size of the parameter space and analysis/synthesis times of the following 

methods: 

• Markov models: the texture is modelled by a stationary first order Markov chain. 

• Autocorrelation and histogram models: the texture model contains the image his­

togram and the autocorrelation function. 

• Linear autoregressive models: each texture pixel is modelled by the sum of a linear 

combination of the intensities of points in its neighbourhood and Gaussian noise. 

• Fractal models: the texture's irregularity is modelled by its fractal dimension. 

• Spectral models: the model is the same as the linear autoregressive model, except 

the neighbourhood and weights estimation are different. 

The Markov models were found to have unsatisfactory visual performance and large pa­

rameter spaces, but with small analysis and synthesis times. The performance of the 

autocorrelation method was better and it uses a small parameter space, but has a time 

consuming synthesis algorithm. The linear autoregressive model was judged to give the 

best visual performance with a reasonably sized parameter space. The only problem 

(which is not relevant in this application) with this method is the very slow analysis al­

gorithm. The performance of the fractal model was very poor, as expected since it had 

only one parameter and hence Iversen and L¢nnestad [48] did not thoroughly investigate 

it. The spectral model they investigated had a small parameter space, but did not per­

form visually as well as the linear autoregressive model. 
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Iversen and L0nnestad's [48] survey showed that the linear autoregressive texture model 

was a possible texture creation method. In addition to this method, it was decided to in­

vestigate a method based on the average power spectrum of the image. 

(e) (f) 

Figure 9-4: Example texture images. (a) Chair covering. (b) Floor. (c) Table top. 
(d) Fieldstone. (e) Lesion. (f) Skin. 
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(c) (d) 

Figure 9-5: Visual texture comparison method. (a) 128 by 128 pixel masking image 
with central 64 by 64 pixel black square. (b) Masking image after low-pass 
filtering. (c) Example of matched textures. (d) Example of mismatched textures. 
The original texture is in the centre of the image with the synthesised texture 
surrounding it. Both examples use the same original texture. 
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9.4.1 Power Spectrum Texture Model 

The first method investigated used the texture's average spatial frequency power spec-

trum for analysis and synthesis. 

• Analysis 

MATLAB's spectrum [66] function was used to measure the power spectrum for 

each row and column of the image. These were averaged to produce a power spec­

trum for the whole image. Figure 9-6 shows the power spectra for the example tex­

tures in Figure 9-4. The image mean and standard deviation were also measured. 

MATLAB's spectrum function uses Welch's averaged periodogram method [71], 

which divides the signal into overlapping sections, each of which is detrended (i.e. a 

straight line fitted to the data and then subtracted to give a mean of zero and average 

gradient of zero), Hanning windowed [2] and zero padded [81]. Each 32 point section 

is discrete Fourier transformed [38] and the average magnitude output squared pro­

vides an estimate of the power spectrum. 

• Synthesis 

MATLAB's fir2 [66] function was used to create a 10th order finite impulse response 

(FIR) filter from the average power spectrum [2]. This was used to filter an image 

containing pixels with uniformly distributed random intensities in the range [0, 1] 

inclusive. The output image from this filter was scaled to have the same mean and 

standard deviation as the original texture. It was also rounded to the nearest integer 

and limited to the range (0, 255], to convert it into the same format as the original 

texture. The synthesised textures for the example textures in Figure 9-4 are shown in 

Figure 9-7. 

These textures were not visually similar to the original textures, hence a better method 

was required. The poor quality of the synthesised textures may be due to the loss of the 

phase information. In addition, the use of an average of the horizontal and vertical spec­

trums, which was based on the assumption that the texture had similar properties in 

horizontally and vertically, may have lost important information. These effects were not 

investigated further as the next method presented gives significantly better results which 

are acceptable for this application. 
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Power spectrum for chair image 

image mean=174.6 

image std. dev.=41.21 

0.1 0.2 0.3 0.4 
Freq. - 0.5 = half sampling freq. 

Power spectrum for table top image 

image mean=187 

image std. dev.=20.15 

0.1 0.2 0.3 0.4 
Freq. - 0.5 = half sampling freq. 

Power spectrum for lesion image 

image mean=81.95 

image std. dev.=29.22 

0.1 0.2 0.3 0.4 
Freq. - 0.5 = half sampling freq. 
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Power spectrum for floor image 

image mean=173.6 

image std. dev.=37.83 

0.1 0.2 0.3 0.4 
Freq. - 0.5 = half sampling freq. 

Power spectrum for fieldstone image 

image mean=65.31 

image std. dev.=33.03 

0.1 0.2 0.3 0.4 
Freq. - 0.5 = half sampling freq. 

Power spectrum for skin image 

image mean=196.5 

image std. dev.=10.07 

0.1 0.2 0.3 0.4 
Freq. - 0.5 = half sampling freq. 
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Figure 9-6: Example texture power spectrums. (a) Chair covering. (b) Floor. 
(c) Table top. (d) Fieldstone. (e) Lesion. (f) Skin. 
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Figure 9-7: Example power spectrum synthesised textures. (a) Chair covering. 
(b) Floor. (c) Table top. (d) Fieldstone. (e) Lesion. (f) Skin. 



9.4 Texture Generation 176 

9.4.2 Linear Autoregressive Texture Model 

In this method the intensity of a texture point is estimated from the sum of a linear 

combination of the intensities of points in its neighbourhood, represented by the weights 

( a), and Gaussian noise. The model used here is a modification of the method described 

by Iversen and L~nnestad [48] (which is an enhancement of the method developed by 

Delp et al. [16]), with the addition of the measurement of image mean and standard de­

viation. The scale of texture analysed/synthesised is controlled by the size of a causal 

neighbourhood (nd - illustrated in Figure 9-8) which is specified by the neighbourhood 

distance d11 and contains N11 pixels: 

d, 

N,, =41:> =2d11 (d11 +l) (9.1) 
i=I 

For example, when d11 = 2 the neighbourhood contains N,1 = 12 pixels which are labelled 

0 to 11 in Figure 9-8 and are processed in that order. The neighbourhood is causal, so 

that each pixel in a left to right, top to bottom scan can be created from the already syn­

thesised pixels. To make the neighbourhood causal, the bottom right pixels are not used 

which can be seen in Figure 9-8, where the bottom right four pixels are not used. 

The analysis is performed in two stages and was tested with the analysis limited to 

pixels where the whole of the neighbourhood, shown in Figure 9-8 fitted within the 

image and with the neighbourhood allowed to wrap at the image edges by considering 

the image to be toroidal. Equations (9.2), (9.5) and (9.6) are for the latter wrapped 

28 29 30 
27 15 16 
26 14 6 
25 13 5 
24 12 4 
4 3 2 
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8 9 10 22 38 
2 3 11 23 39 
x~ 1 2 3 4 

Figure 9-8: Neighbourhood (nd) for the point (x, y) for the linear autoregressive 
texture model. dn = neighbourhood distance. 
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method, but can be easily changed to the former unwrapped method. The two stages of 

the analysis are: 

1. Measure weights (a, a vector of length Nil), image mean (l ), image standard devia­

tion ( a1), image minimum (/m;ll) and maximum Umru:): 

(9.2) 

1 (N-1 M-1 N-1 M-1 J 
a,= MN-l ~~i(x,y)2 -l~~i(x, y) (9.3) 

where nd(x, y) = Neighbourhood pixels for point (x, y) in a vector in the order shown in 
Figure 9-8, 

xr = Transpose of vector or matrix x. 

The weights (a) are set using the least squares method, hence equation (9.2) is derived 

from the squared error between the original pixel value and the pixel value created by 

the model [I 6]. The matrix inversion in equation (9.2) was performed by LU decom­

position with backsubstitution using 'C' code from Press et al. [81]. When using single 

precision floating point arithmetic and some textures, in particular skin textures, this 

matrix inversion was unstable because the matrix was nearly singular. This instability 

caused the weights (a) to be inaccurate which led to large noise means and standard 

deviations. This was overcome by using double precision in all of the operations. 

2. Estimate noise mean ( n) and standard deviation ( crll). At each available pixel calcu­

late the residual r(x, y), which is the difference between the original image (i(x, y)) 

and that estimated by the weights (a) of the texture model , which have just been 

measured: 

r(x, y)= i(x,y)- n/ (x,y)a (9.4) 

This provides an estimate of the noise mean and standard deviation: 

} N- 1 M - 1 

n= - IIr(x,y) 
MN y=O x=O 

(9.5) 

1 (N-1 M-1 N- 1 M- 1 J 
a 11 = M N - l ~~r

2
(x,y) -n~~r(x,y) (9.6) 
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The noise mean and standard deviation are created from the difference between the 

original texture and the texture synthesised by the model. Consequently, they indicate 

the closeness of the model to the original texture with small noise means and standard 

deviations indicating better fits. 

The synthesis algorithm uses the weights and Gaussian random noise to generate a 

texture, i'J{x, y), given by: 

(9.7) 

where ng(x, y) = Gaussian distributed noise with standard deviation er,, and mean n. 

The random numbers used to create the Gaussian distributed noise were generated from 

a single seed for the whole texture. This allowed the re-creation of the same texture 

from the same seed and the creation of different, but visually similar, textures from the 

same measurements with different seeds. The synthesised texture is created from left to 

right, top to bottom to ensure that the neighbourhood is usually within the already cre­

ated texture. At the top, left and right edges of the image the neighbourhood, shown in 

Figure 9-8, extends outside the synthesised texture. In this situation, the part of the 

neighbourhood outside the synthesised texture must be initialised with known values. 

Iversen and L¢nnestad [ 48] tried three methods of initialising this area: uniformly dis­

tributed random numbers in the range Umin, I111ax], synthesising values using additional 

autoregressive models for the initial rows and columns, and the mean of the original im­

age, l . They concluded that using the mean of the original image produced the visually 

best results. Two of their methods and two new methods were tested for setting the ini­

tial values: 

l. image mean, / . 

2. uniformly distributed random numbers in the range Umin, I111ax]. 

3. Gaussian distributed random numbers with mean l, standard deviation a1 and lim­

ited to the range Umin, lmaxl 

4. Gaussian distributed random numbers with mean l, standard deviation a1 and lim­

ited to the range [O, 255]. 
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The input textures are grey-scale images limited to the range 0 to 255 and the output im­

ages need to be limited to the range Oto 255 (to be the same as the real images). Using 

the linear autoregressive synthesis method the output texture is not limited to this range, 

hence a method of restricting the range was required. There are two basic approaches to 

this: limit the output during the texture generation or limit after the texture generation. 

Limiting during texture generation causes the modified output to be fed back into the 

synthesis process and hence alters later output. The following methods for limiting the 

output during generation were tested: 

I. No limiting during generation. 

2. Noise limited to ±3cr,,. 

3. The output including the noise is limited to the range [/111i11 , I111ax]-

4. The output, including the noise, is limited to l ±3a1. 

5. The output, including noise, is limited to the range [0, 255]. 

The following post-processing methods for limiting the output after generation were 

tested: 

I. Output is limited to the maximum and minimum possible pixel values [0, 255]. 

2. Output is limited to the original texture minima and maxima [/min, I111axl-

3. The output range is scaled into the range [0, 255]. 

4. The output is compressed to have the same mean and standard deviation as original 

image and then is limited to the range [0, 255]. 

5. The output is adjusted to have the same mean as the original image and the synthe­

sised minima and maxima mapped into the range [/111i11 , I111ax]. 

The large number of combinations of options (200) prevented exhaustive testing to find 

the visually best generation and measurement method, hence preliminary testing (using 

a neighbourhood distance of 3), on a small number of textures, was used to eliminate 

options which were clearly unusable. This showed that the second initialisation method 

(uniformly distributed random numbers) consistently produced unrealistic textures, in 

particular creating bars near the image border. The image border is where the impact of 

the initialisation method can be most clearly seen as the neighbourhood mostly contains 

the initialisation values. The second output limiting method (limiting to [/111i11, ImaxD 
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created patches of either /111;11 or I111ax in the synthesised texture which were not present in 

the original. These two methods were not investigated any further. 

The effect of allowing the texture measurement to wrap around the image was tested by 

using the first initialisation method, the first limiting method and the first post­

processing method. These methods were chosen as they involve least modification of 

the method and hence should have the smallest impact on the results. At neighbourhood 

distances (d11) of 3, 4 and 5 the synthesised textures of the wrapped and unwrapped 

measurements were very difficult to discriminate visually. However, the wrapped meas­

urement produced a visually better texture at a neighbourhood distance of 10. The per­

formance of the unwrapped measurement would be expected to decrease as the neigh­

bourhood distance increases, since it uses less of the image as d11 increases. Subsequent 

tests used the wrapped measurement method. 

After the elimination of the clearly unusable options, the remaining options were tested 

in the following order: 

I. Comparison of initialisation methods one, three and four, whilst using the first limit­

ing method and the first post-processing method. 16 lesion and skin textures were 

compared visually. This comparison showed the first initialisation method (using l) 

to be the best. The other two methods sometimes generated bars near the image edges 

and the overall visual similarity with the original texture was lower. The image mean 

was used for the rest of the tests. 

2. Comparison of the five limiting methods and the four post-processing methods, 

whilst using the image mean initialisation method. For each of 16 textures, the 20 

combinations of options were displayed with the original texture. This comparison 

clearly showed the third post-processing method (scaling the output to the range [0, 

255]) to be unusable. The first post-processing method of limiting the output to the 

range [O, 255] had poor performance compared with the remaining two methods 

(methods 4 and 5). The difference between the five limiting methods was not clear, 

so these tests were repeated with only post-processing methods 4 and 5 and a wider 

range of textures. These tests showed post-processing method 4 to be slightly better 

and method 4 to be the visually best limiting method. 
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The overall method chosen was the following: 

• Wrapped measurement. 

• Initialisation method: 1. image mean. 

• Limiting during generation method: 4. limiting to l ± 3a1 • 

• Post-processing method: 4. output compressed to the same mean and standard devia­

tion as original image and then limited to the range [O, 255]. 

After determining the most suitable method the appropriate neighbourhood size was 

chosen. Large neighbourhood sizes should create better synthesised textures by captur­

ing more of the large scale texture structure. However, the texture measurement and 

synthesis times increase more than linearly with the neighbourhood distance, hence it is 

useful to use the smallest acceptable neighbourhood distance. To assess visually the best 

neighbourhood distance, 17 skin and lesion texture samples were assessed at neighbour­

hood distances of 1 to 6, 8, 10, 12, 14, 16, 18 and 20. It was difficult to decide, in nearly 

all images, which was the best neighbourhood distance. Some textures, even at the 

larger neighbourhood distances, lacked the highlights and large scale structure present in 

the original textures. 

The mean and mode of the visually best neighbourhood distances (d11) were 13.3 and 14 

for skin texture, 16 and 14 for lesion texture and overall 14.3 and 14. To ensure reason­

able quality synthesis of most of the textures, a neighbourhood distance of 16 was cho­

sen. Increasing the neighbourhood distance above the minimum acceptable did not de­

grade any of the synthesised textures. The synthesised textures for the images shown in 

Figure 9-4 are given in Figure 9-9 with noise means and standard deviations. Comparing 

corresponding textures in Figure 9-4 and Figure 9-9 shows that the size of the noise pa­

rameters (mean and standard deviation) indicates the degree of visual similarity between 

the synthesised and original textures. For example, Figure 9-4(a) (chair covering) and 

Figure 9-9(a) with a large noise standard deviation, are not as visually similar as Figure 

9-4(c) (floor) is to Figure 9-9(c) which has a smaller noise standard deviation. Compar­

ing Figure 9-7 and Figure 9-9 clearly shows the superiority of the linear autoregressive 

method, which is used in the rest of this chapter, over the power spectrum method. 
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(a) n = 0.0207 O"n = 13.2 

(c) n = 0.00321 a-,,= 6.45 (d) n = 0.127 a-,,= 21.5 

(e) n = 0.0131 O"n = 4.09 (f) n = 0.00148 O"n = 1.94 

Figure 9-9: Example linear autoregressive synthesised textures. (a) Chair covering. 
(b) Floor. (c) Table top. (d) Fieldstone. (e) Lesion. (f) Skin. A neighbourhood 
distance of 16 was used for all these images. n and O"n are noise mean and 
standard deviation respectively. 
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9.5 Creation of the Simulated Image 
To create the simulated skin image the lesion shape with the boundary transition, skin 

and lesion texture were combined. The synthesis process starts by creating a suitable 

lesion shape (section 9.2, e.g. Figure 9-lO(a)) in which black and white represent lesion 

and skin respectively. A boundary transition is applied (section 9.3, e.g. Figure 9-lO(b)) 

to simulate the indistinct transition between skin and lesion. This simulated lesion im­

age with a boundary transition controls the mixing of the skin and lesion textures. The 

two textures are intensity mixed with the blurred lesion shape image controlling the 

proportion of each texture present in the output image. This means where the blurred 

lesion image is white only skin texture is present and where it is black only lesion tex­

ture is present. In intermediate grey areas, the intensity of each texture varies with the 

intensity of the blurred lesion image. The complete sequence of images is illustrated in 

Figure 9-10. 
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(a) 

(c),_ ________ _ (d) 

(e) 

Figure 9-10: Example of the generation of a simulated image. (a) Lesion shape 
from Figure 9-l(c). (b) Blurred lesion shape from Figure 9-3(a). (c) and (d) 
synthesised skin and lesion textures created from textures shown in Figure 9-4(e) 
and (f). (e) Synthesised image. These images are 512 by 512 pixels. 
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9.6 Comparison of True and Estimated Boundaries 
The work described so far in this chapter and in chapters 6 and 8 allows the creation of a 

simulated skin-lesion image and the determination of a lesion's boundary. This creates 

true and estimated boundaries which can be compared to measure the performance of 

the boundary finding method. The true boundary, in the simulated images, is the co­

ordinates of the outside of the shape created in section 9.2. A method for comparing 

these boundaries based on the area which they enclose is presented in this section. 

The true and estimated boundaries are unlikely to have the same number of points, 

hence a direct comparison between the corresponding points, on each boundary, is not 

possible. Even in cases where the two boundaries have the same number of points, it 

would be difficult to decide which are the corresponding points. It is possible to re­

sample each boundary on a number of radial lines from the boundary's centre, creating 

two new sets of points, which could be compared by the radial distance between them. 

This would not use all of the boundary points and hence is an approximation which may 

be inaccurate, hence was not investigated. 

To obtain an accurate comparison between boundaries of different lengths, the area 

which they enclose can be used. This allows measurement of the area which they have 

in common (true-and-estimated area or true positive region), the area which is covered 

by the true boundary and not covered by the estimated boundary (true-not-estimated area 

or false negative region) and the area which is covered by the estimated boundary and 

not covered by the true boundary (estimated-not-true area or false positive region). To 

make these independent of lesion size they are expressed as a percentage of the true le­

sion area. 

These measurements are performed by creating images with the relevant areas filled in 

and counting the filled pixels, as illustrated in Figure 9-11. Filled true and estimated 

boundaries are created by the method described in the previous chapter in section 8.4.3. 

The true and estimated boundary areas are logically ANDed to create the true-and­

estimated area. This true-and-estimated area is logically exclusive-ored with the esti­

mated area to create the estimated-not-true area. The true-not-estimated area is created 

by logically exclusive-oring the true-and-estimated area with the true area. 
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(a) Synthesised image. (b) True boundary. 

(c) Estimated boundary. ( d) True-and-estimated area. 
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(e) Estimated-not-true area. (f) True-not-estimated area. 

Figure 9-11: True and estimated boundary comparison. (a) True boundary. 
Area= 46769 pixels. (b) Estimated boundary. Area = 47444 pixels. (c) True-and­
estimated area = 46034 pixels or 98.4% of the true area. (d) Estimated-not-true 
area = 1410 pixels or 3.0% of the true area. (e) True-not-estimated area = 735 
pixels or 1.6% of the true area. 
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9. 7 Testing of the Edge Focusing Algorithm on Synthesised Images 
This section describes the tests performed on the edge focusing algorithm and lesion lo-

cation and isolation method presented in chapter 6. In the synthesised images, there are 

three main factors that can be independently controlled: 

• lesion shape - each shape can be re-created by using the same parameters and the 

same seed for the random number generator. As the shape generation is a quick proc­

ess, the lesion shapes were created as required. 

• boundary transition - this is performed by low-pass filtering and hence can be time 

consuming. Consequently filtered lesion shapes were created only once. 

• skin and lesion texture - for larger neighbourhood sizes the linear autoregressive 

texture analysis can be time consuming. The synthesis takes less time, but still is time 

consuming, hence the use of texture analysis and synthesis was kept to a minimum. 

The skin and lesion textures were analysed and synthesised in pairs taken from the 

same image, to ensure they matched in scale and lighting. 

The edge focusing algorithms (LoG and Canny) were tested on a total of 120 images. To 

perform tests on a range of lesion shapes, boundary transitions and skin/lesion textures 

in a reasonable computation time the following sequence was used: 

1. shape generation - 10 lesion shapes were created, which provided the true boundary. 

2. boundary transition - 4 sets of boundary transitions were created for each lesion 

shape. The first set had no filtering applied. 

3. texture generation - 3 skin/lesion texture pairs were synthesised, using the linear au­

toregressive method described earlier, for each of the 10 lesion shapes giving a total 

of 30 skin and lesion texture images. Each of the synthesised skin/lesion textures, 

created from the same measurements, was different as different random number 

seeds were used for each. The set-up given at the end of section 9.4.2 with a neigh­

bourhood distance of 16 was used for the skin and lesion textures. 

4. for each of the 4 boundary transitions do steps 5 to 11. 

5. for each of 3 skin/lesion textures do steps 6 to 11. 

6. for each of the 10 lesion shapes do steps 7 to 11. 

7. create the synthesised image by mixing the skin and lesion textures. 



9.7 Testing of the Edge Focusing Algorithm on Synthesised Imagesl88 

8. identify the simulated lesion and determine the starting space constant using 

the process described in chapter 6. 

9. edge focusing algorithm - both LoG and Canny edge focusing were tested. 

10. selection of the best boundary - the method described in the previous chap­

ter using the average intensity just inside and outside the boundary was 

used. 

11. comparison of the true and estimated boundaries - this was described in the 

previous section. 

The parameters used for the lesion location and isolation process were those presented 

in chapter 6, which were found by analysing real images. Although, better performance 

may have been achievable by using analysis of the simulated images to set these parame­

ters, this method is more realistic as the training set is independent from the test set. 

Similarly, the size of the area used in selecting the most suitable boundary was set by 

the analysis of real images presented in chapter 8. 

The lesion location and isolation process correctly identified all simulated lesions. A 

summary of the boundary comparison results is presented in Table 9-I and Table 9-II 

and summarised in Table 9-ill. These show the performance, indicated by the common 

true-and-estimated area, of the edge focusing algorithm decreases as the boundary blur­

ring increases. For the LoG edge focuser the estimated-not-true area, which represents 

the area outside the true lesion boundary that is included, increases faster than the true­

not-estimated area, which indicates the area inside the lesion that is not included. The 

reverse holds for the Canny edge focuser. This difference between LoG and Canny is the 

expected effect of the differing edge displacements, which was described in section 8.6 

and illustrated in Figure 8-9. For curved edges the LoG edge detector places its edge on 

the higher intensity side (i.e. skin) and the Canny edge detector places its edge on the 

lower intensity side (i.e. lesion). 
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The average performance of the LoG and Canny edge focusers were statistically similar1 

for the true-and-estimated area and true-not-estimated area measurements. However, the 

Canny edge focuser performed statistically significantly better in the estimated-not-true 

area. This difference was mainly caused by errors on small lesion shapes. In particular, 

one shape caused most of the poor performance for the estimated-not-true area, for the 

LoG edge focuser. This shape always had the highest percentage estimated-not-true area 

for all textures and boundaries. This shape only occupied about one fifth of the image 

width and height, causing it to be blended into the white background with the smoother 

boundary transitions. Hence, this image was not particularly realistic and once it had 

been removed the estimated-not-true area had an average of I 3.2% and standard devia­

tion of 13.3%. This performance is still statistically worse than the Canny edge focuser, 

but is much closer and has a much smaller standard deviation. This shows the impor­

tance of checking that a lesion image is large enough to analyse. 

Figure 9-12 shows typical examples of the simulated images with the four boundary 

transitions together with the true boundary, LoG edge focusing boundary and Canny 

edge focusing boundary. These examples illustrate the choice of boundary transitions 

used to create the simulated images. It can been seen from these images that applying no 

boundary transition (Figure 9-12(a)) results in unrealistic and easily analysed images. 

This is reflected in the high performance of both edge focusing algorithms. Figure 9-

12(b) and Figure 9-12(c) illustrate more realistic boundary transitions which are typical 

of most real images and result in less accurate boundaries. The final boundary transition, 

illustrated in Figure 9-12( d), was chosen as an extreme value to show the effects of 

analysing very difficult images which occur infrequently. In this case, the boundary is 

very difficult to identify visually and the corresponding edge focusing performance is 

not as good. 

1 An F-test [75] was used to determine if the samples (LoG and Canny edge focuser area 
comparisons) had significantly different variances. For samples with significantly dif­
ferent variances, the Student's t-test for significantly different variances [75] was used 
to determine the similarity between the sample means. For samples with similar vari­
ances, the Student's t-test for similar variances [75] was used to determine the similarity 
between the sample means. 
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Boundary % true-and-estimated % estimated-not-true % true-not-estimated 
transition area area area 

cut-off mean std. dev. mean std. dev. mean std. dev. 
freq. 
none 99.6 0.7 1.8 1.1 0.4 0.7 

0.0156 94.1 3.1 8.0 5.2 5.9 3.1 
0.0078 89.2 4.0 18.0 11.5 10.8 4.0 
0.0039 83.0 9.0 52.4 94.2 17.0 9.0 

Table 9-1: Performance of the LoG edge focusing algorithm on simulated images. 

Boundary % true-and-estimated % estimated-not-true % true-not-estimated 
transition area area area 

cut-off mean std. dev. mean std. dev. mean std. dev. 
freq. 
none 99.8 0.2 1.5 0.8 0.2 0.2 

0.0156 92.8 4.0 3.2 2.0 7.2 4 .0 
0.0078 88.7 5.0 5.5 3.7 11.3 5.0 
0.0039 80.8 10.5 8.0 7.8 19.2 10.5 

Table 9-11: Performance of the Canny edge focusing algorithm on simulated 
images. 

Edge focus- % true-and-estimated % estimated-not-true % true-not-estimated 
ing method area area area 

mean std. dev. mean std. dev. mean std. dev. 
LoG 91.5 8.0 20.0 50.8 8.5 8 

Canny 90.5 9.2 4.6 5.1 9.5 9.2 

Table 9-111: Average performance of the LoG and Canny edge focusing algorithms 
on simulated images. 
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(a} ___ ~-

b) 

(d) 

Figure 9-12: Example simulated skin images with true, LoG edge focusing and 
Canny edge focusing boundaries. Each set of images shows, from left to right, the 
simulated image, true boundary, LoG edge focusing boundary and Canny edge 
focusing boundary. (a) No boundary transition. (b) Boundary transition cut-off 
frequency = 0.0156. (c) Boundary transition cut-off frequency = 0.0078. 
( d) Boundary transition cut-off frequency = 0.0039. 
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9.8 Conclusions 
This chapter has described the synthesis of simulated skin and lesion images and the 

comparison of a true boundary with an estimated boundary. This allowed the testing of 

the edge focusing algorithm presented in the previous chapter and the work presented in 

chapter 6. 

The simulated images were synthesised in three stages: shape generation, boundary 

transition and texture generation. Lesion-like shapes were created by a new method us­

ing ellipses with random large and small scale irregularities. A range of boundary tran­

sitions were created by controlling the intensity mixing of the skin and lesion textures 

with a low-pass filter which "blurred" the lesion shape. Lesion and skin textures were 

synthesised from measurements of real skin and lesion. Two basic methods of texture 

synthesis were investigated using visual comparison of the original and synthesised 

textures. The first method using an image' s power spectrum produced textures which 

were not visually similar to the original textures. A number of variants of the second 

method (linear autoregressive texture synthesis) were developed and tested to select the 

most suitable version for this application. Using the selected variant, the effect of the 

neighbourhood size on the visual quality of the synthesised skin and lesion textures was 

tested to select the most suitable neighbourhood size. With this method of linear autore­

gressive texture synthesis and neighbourhood size, the textures were visually similar to 

the original textures. Extensions of this approach and the use of texture in segmentation 

are discussed in the next chapter. 

A new method for comparing true and estimated boundaries, using the area enclosed, 

was presented. This method in conjunction with the simulated skin lesion images was 

used to test the lesion isolation and location method (from chapter 6), and to test and 

compare the LoG and Canny edge focusing algorithms. The simulated lesion images and 

boundary comparison method could also be used to compare the relative performance of 

the edge focusing algorithm and other boundary detection algorithms. However, al­

though considered desirable, due to time constraints it was not possible to undertake this 

work, which is described at the beginning of this chapter (section 9 .1 ). In addition, again 

due to time constraints it was not possible to synthesise images with "benign" and 

"malignant" boundaries, which would have allowed the assessment of the effects of dif­

ferent boundary detectors and shape classifiers on the accuracy of computer classifica-
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tion of such boundary types. Both of these areas of work could have demonstrated 

whether the edge focusing algorithm and shape analysis methods presented in thesis 

provide an improvement over the results of using published algorithms previously ap­

plied to skin lesions. 

Using the parameters, derived from real images, given in chapter 6, the lesion location 

and isolation method correctly identified all the simulated lesions. Assessment of both 

the LoG and Canny edge focusing algorithm showed that the true-and-estimated area 

(i.e. the area which the estimated and true boundary have in common) decreased as the 

boundary became less distinct. For the LoG edge focuser, the estimated-not-true area 

(i.e. the area outside the true boundary which is included) increased faster than the true­

not-estimated area (i.e. the area inside the true boundary that is not included). The re­

verse was found for the Canny edge focuser, which is the expected effect of the differing 

edge displacement of LoG and Canny edge detectors, which was described in section 

8.6. The average performance of the LoG and Canny edge focusers was statistically 

similar for the true-and-estimated area and true-not-estimated area measurements. How­

ever, the Canny edge focuser performed statistically significantly better in the estimated­

not-true area measurements due to better performance on small lesion shapes. Overall, 

on simulated lesion images with boundaries similar to those observed in real images 

both algorithms had good performance. 



Chapter 10 

Development of Computerised Skin 

Cancer Diagnosis 

10. 1 Introduction 

This chapter discusses the development of a computer based tool to perform or assist in 

the diagnosis of skin cancer. The discussion shows how the work presented in this thesis 

and other skin cancer image processing research could be incorporated into such a sys­

tem. It indicates areas of future research and other research which may be applied to this 

area. 

The chapters starts by discussing the factors that should be considered whilst developing 

techniques for analysing skin cancer images. With these factors in mind, the develop­

ment and use of these techniques is discussed. The use of real and simulated skin cancer 

images for assessing and testing the measurement techniques is examined. The chapter 

concludes by considering the implicit and explicit acquisition and use of knowledge for 

the early detection and diagnosis of skin cancer. 

10.2 Measurement Techniques 

To perform computerised diagnosis of skin cancer, it is necessary to measure lesion 

features. The measurement techniques, the selection of features to be measured and the 

points to be considered in developing and using these techniques are discussed in this 

section. It would be possible for a human to assess a lesion and enter measurements into 

a diagnostic system. However, it is difficult for humans to make consistent judgements 

[39, 59, 60] and there may not be a suitable human available, since considerable training 

is required. Consequently, the techniques discussed here are required to perform this 

assessment. 
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A number of requirements that a computerised diagnostic system must fulfil to be useful 

in a clinical environment were described in section 2.8 and are summarised here: 

• ease of use. 

• tolerance of image capture conditions. 

• reasonable equipment and operating costs. 

• speed. 

• repeatability. 

• robustness. 

In the development of an automated diagnostic system, the question of which measure­

ments are required must be considered. Human experts can provide guidance on the 

types of measurements required and knowledge of the effectiveness of these measure­

ments (when performed by humans). Hence, the initial measurement selection can come 

from the areas that human experts consider useful, which includes those in the check­

lists described in chapter 2. These checklists indicate that lesion shape is particularly 

important and hence accurate, reliable and robust methods of locating lesion boundaries 

are very important. 

The work described in this thesis was based on the application of image processing 

techniques to digitised optical skin images, which can be acquired easily by non­

invasive and non-contact methods, making them quick, easy and cost effective to obtain. 

Current human diagnostic methods [58, 59, 33, 62] are largely based on the visual as­

sessment of lesions, hence knowledge already exists which can assist in the develop­

ment of image processing methods. Although the analysis of skin images has these ad­

vantages, there are some diagnostic factors that it cannot measure. Consequently, it may 

be necessary to use image analysis in conjunction with other techniques to obtain suffi­

cient information to perform accurate and reliable diagnosis. One major factor that can­

not be measured by the analysis of a single external optical skin image is the Breslow 

thickness (tumour thickness) [4, 9], which was described in section 2.7. The Breslow 

thickness can be measured by an instrument called the 'nevoscope' [24, 22], which was 

described in chapter 4, and is only an experimental technique. High frequency ultra­

sound can also measure Breslow thickness, but only gives accurate measurements for 

some lesions [86]. Historical factors such as previous cases of skin lesions in the patient 
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or the patient's family, life style, age, sex, etc. need to be manually entered into a com­

puter based diagnostic system. 

Whilst developing any system it is necessary to ensure that it does what is expected 

(verification) and it does what we want it to do (validation) [87]. (Verification and vali­

dation were discussed in more detail in section 8.7.) This testing should exercise the 

system on data (images) that are similar to those on which it will operate. It is important 

to have separate, statistically independent, training (development/verification) and test 

(validation) data (image) sets [21]. This allows unbiased results to be obtained for the 

test set, which then can give a more reliable indication of future performance. However, 

this may be difficult to accomplish because of the difficulties in collecting sufficient im­

ages and the time required to process them. Two approaches to creating test data exist: 

black-box and white-box testing [87]. In black-box testing only an external description 

of the system, without information on the internal structure, is used to create test data. 

However, in white-box testing knowledge of the internal structure (i.e. source code) as­

sists in the construction and acquisition of test data. Test images require known charac­

teristics, which can be provided by image synthesis (in which the characteristics can be 

tightly controlled) and images which have already been diagnosed. However, only the 

overall diagnosis can be obtained (by histology) for the real images as diagnostic meas­

urements cannot be consistently and objectively found by humans. It is difficult to test a 

computerised skin cancer diagnostic system in a clinical environment until it is com­

pletely developed, hence separately captured images are required to develop and test it. 

Some testing of tolerance to image capture conditions may be accomplished by altering 

already captured images. For example, the effects of image rotation, image scaling and 

lighting changes could be applied by image processing techniques. 

During development it would be useful to store all information about a particular lesion 

together in a "feature file" [92], i.e. a database. Then, separate programs, which com­

municate via this "feature file", can be used to develop the measurement techniques. 

This facilitates development by allowing analysis techniques to be independently devel­

oped at different times by different people. 

To automate the examination of patients with a large number of lesions, a computer 

controlled "skin scanning" robot could be developed [24], which would be able to 
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identify individual lesions, determine their characteristics and whether they were new or 

changed. Development of such a robot would require research into methods for locating 

the same lesion at different times as well as methods to perform diagnostic analysis. 

Knowledge of the features of a particular lesion alone may not be sufficient to re-locate 

it because of the changes which may have occurred in those features and the 

inaccuracies in assessing the features . Consequently, the relationship of a particular 

lesion to its neighbours (the "constellation" pattern) could assist in its location [78]. 

This analysis of the "constellation" pattern could also be used without a robot to identify 

the lesions within the field of view of a manually aimed camera. Although a "skin 

scanning" robot would be able to examine a large number of lesions more rapidly than a 

manually operated camera, its development, equipment and operating costs would be 

much higher than that of a manual system. 

The following sections discuss the work presented in this thesis and further work that 

could be undertaken to develop a computerised skin cancer diagnosis system, taking into 

account the points considered above. The sections are presented in roughly the order that 

they would be used in a system, which is similar to the order in which the topics were 

presented earlier in this thesis. 

10.2.1 Skin Lesion Location and Isolation and Scale Measurement 

Approximately locating, isolating and determining the scale of a lesion is the first stage 

in an automated diagnostic system. Location and isolation are the processes of finding 

the part of the image containing the lesion and separating that area from the surrounding 

image. It does not cover finding an accurate boundary for the lesion, which is a more 

complex task discussed in the next section. This process increases the usability, reliabil­

ity and robustness of a system by reducing the constraints on the contents of the cap­

tured images, so they are not confined to containing skin and lesion alone, and allows 

images to contain multiple lesions. This tolerance and robustness would make a system 

easier to use by reducing the requirement for careful preparation before capturing an im­

age. 
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A process for locating and isolating a single lesion was described in chapter 6 and is 

summarised by: 

1. Image filtering - median filter. 

2. Binary thresholding. 

3. Image simplification - by binary morphological closing - to produce a cleaned 

thresholded image. 

4. Lesion identification - by shape and size. 

5. Output information - cropped image, lesion bounding box and lesion size. 

This process could be extended to images containing multiple lesions by enhancing the 

lesion identification process. This enhanced process could follow the steps listed below 

and would start from the cleaned thresholded image: 

1. Background characterisation - characterise the image background (skin) to allow 

comparison of suspected lesions areas with the skin for identification and diagnosis. 

Other objects, such as clothing, must be distinguished from the skin at this stage to 

prevent their inclusion in the skin characterisation. The binary inverse of the cleaned 

thresholded image could act as a mask to indicate areas which may be skin, but this 

may include parts of the image that are not skin. Consequently other methods, such 

as texture analysis, may be required to identify skin areas. 

2. Object characterisation - assign each region, in the segmented image, characteristics 

based on its size, shape (irregularity, bulkiness, etc.) and grey-level/colour features 

(texture, average value, etc.). 

3. Removal of unmistakably non-lesion objects - remove objects which, by the virtue of 

characteristics such as shape and colour, are clearly not lesions (e.g. clothing and rul­

ers). 

4. Removal and ranking of the remaining areas - use further analysis to remove any re­

maining non-lesion areas and rank the suspected lesions in order of importance. 

This enhanced process would improve the reliability of the identification, allow analysis 

of multiple lesion images and provide diagnostic information. Each suspected lesion 

identified by this process would then be examined in detail. 
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The process presented in chapter 6 uses an image oriented box to represent the lesion. 

An irregular shaped area, provided by a mask, would be more representative of the le­

sion shape and may improve the lesion's analysis. The allowance for edge displacement 

(see section 6.7) would be incorporated by binary dilation with a disc. This should 

slightly reduce the time required for the first stage of the edge focusing and may im­

prove its reliability. 

Lesion size is diagnostically very important, hence the measurement of image scale is 

necessary. Placing a calibrated ruler near the lesion (to ensure it is at the same distance) 

would be the simplest and easiest method of determining image scale. By using a ruler 

of a known colour, compensation for camera set-up and lighting could also be per­

formed. Another method of measuring scale and skin curvature would be by stereo­

scopic imaging [48) , but this has the drawbacks of increased equipment costs, increased 

computation and reduced ease of use. Other methods of determining the distance of the 

skin from the camera, and hence the lesion size, include laser range finders, ultrasound 

and camera focus [48). 

To be reliable and robust, a computerised system must be able to determine when meas­

urements from an image are unusable and be able to inform the user of how to improve 

the image. These checks should be performed early in the processing, so time is not 

wasted taking unusable measurements. Two main faults in captured images are likely to 

be inappropriate lesion size and unsatisfactory lighting conditions, which both could be 

identified during the initial processing discussed in this section. For example, when the 

lesion either fills too much or too little of the image it is unusable, and the system must 

ask the user to capture another image at more appropriate scale. When the system con­

trols some parts of the equipment (e.g. camera set-up and lighting) it would be able to 

make adjustments to minimise or remove the detected problems. 

10.2.2 Boundary Detection 
Locating a lesion's boundary is important as it directly allows measurement of the diag-

nostically important factors of lesion size, asymmetry, roundness and border irregularity. 

(The measurement of roundness and irregularity were described in chapter 5.) It also 

allows measurements of colour, colour variations and texture to be performed only on 

the lesion not on a combination of lesion and skin. In addition, many of the points in the 
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diagnostic checklists, described in chapter 2, can only be assessed once the lesion's 

boundary has been found. The variable nature of skin images makes it difficult to pro­

duce boundary detection methods which are reliable, repeatable and robust. In many 

cases the border is very subjective, not clearly defined and may even be difficult for the 

human eye to detect consistently. The lesion boundary found by an automated system 

may be different from that perceived by a human expert, who can be affected by the un­

derlying diagnosis when determining the boundary. This difference between the auto­

matically and human determined boundary is not important, provided that the automati­

cally determined boundary is consistently and reliably found. Human experts are not 

generally aware of their methods of boundary detection which makes it difficult to de­

velop algorithms directly based on their methods. However, experts can provide knowl­

edge which may guide the development of algorithms. 

The wide range of skin images encountered by a computerised analysis system may pro­

duce difficulties in finding a single boundary detection method which is reliable and ac­

curate on all images. To test the performance of algorithms and to discover whether 

multiple algorithms are necessary will require a test set containing a reasonable number 

of real test images taken under a range of conditions together with simulated images. 

This test set should contain multiple images of some lesions to ensure that boundaries 

are consistently found. The detected boundaries may be compared with one another and 

with the true boundary, when available, by the enclosed area based comparison method 

presented in section 9.6. To ensure that the algorithms are image rotation invariant, it 

will be necessary to present the same image at a number of angles. If a single method 

which is reliable and accurate on all images cannot be found then a hybrid approach will 

be required which combines the results from a number of methods [35]. To combine 

boundaries from different methods or select a single method, confidence levels are re­

quired for the whole boundary and for boundary segments. These confidence ratings will 

allow the selection of either a whole boundary or the combining of the best segments of 

a number of boundaries. 

In chapter 8, an edge focusing algorithm for skin lesion boundary detection was 

presented. This algorithm, although appearing to be robust, is too slow to be used in a 

practical system, because of the computation required to perform the large convolutions 

used in the edge detection. In comparison with the convolution, other parts of the 
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algorithm take very little time and hence do not require speeding up. One approach to 

reduce the time required is to parallelise the algorithm, so the time consuming 

operations are performed on a number of processors. An alternative method would be to 

change the FIR (finite impulse response) filter based edge detector to one based on an 

IIR (infinite impulse response or recursive) filter, which should give similar results but 

require less computation as fewer multiplications and additions are used for each pixel 

[19, 85, 95]. 

The edge focusing algorithm produces a series of boundaries from which a boundary for 

the particular lesion is selected. Enhancement of its performance, i.e. reliability and ac­

curacy, may be achievable in two areas: boundary generation and boundary selection. 

The boundary generation is affected by the sharpness of lesion boundary which varies 

between lesions and may vary within an individual lesion, hence a boundary obtained by 

a small scale edge detector is sometimes most appropriate and at other times the bound­

ary may not be as clearly defined so a less precise boundary produced by a large scale 

edge detector is the best that can be obtained. Currently, the boundary is assessed as a 

whole, hence, although the selected boundary may be the best available out of the series 

of boundaries created, it may not be the best possible boundary that can be created. By 

measuring the quality of each segment of the boundary as it is created, it may be possi­

ble to use the large scale boundary where the boundary is not clearly defined and the 

small scale boundary where it is better defined. The boundary sharpness information, 

that would be required to implement this, may also be diagnostically useful and may be 

obtainable from the edge strength across the boundary (i .e. the intensity gradient). The 

edge focusing method uses either an LoG or Canny edge detector, which place their out­

put at a distance from the true edge, dependent on the edge curvature and space con­

stant. (For straight edges, both LoG and Canny are correct.) By combining the LoG and 

second derivative in gradient direction, which displace their outputs in opposite direc­

tions, the PLUS operator [96] can be created which provides greater accuracy for curved 

edges. The boundary selection method, used in chapter 8, was based on the average 

contrast between an area just inside and just outside the boundary. Alternative boundary 

selection methods may use the edge strength, texture measurements or a combination of 

these. 
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The edge focusing method is based on the image intensity, but there are other methods 

of image segmentation which use texture. Texture may be used directly to segment an 

image by classifying each part of the image or indirectly by transforming the image into 

another domain where the boundary is better defined and another method, such as the 

edge focusing algorithm or thresholding, may be applied. An example of a texture based 

transform is the co-occurrence (or spatial grey-level dependence matrices) transform 

[38] which emphasises the differences between typical and atypical image features. 

Texture analysis is discussed in more detail in the following section and in chapter 9. 

Snakes (or active contour models) [49, 53, 72] may be suitable for finding lesion 

boundaries. A snake is deformed by "forces" resulting from its geometry (distance be­

tween points, curvature, etc.) and from the image (intensity gradient, i.e. edge strength). 

These "forces" can be used to form an energy function which can be iteratively mini­

mised to find the boundary. The snake is able to lock onto edges and localise them accu­

rately whilst remaining continuous because of the geometry "forces", hence can use 

smalJ scale detail to find an accurate boundary. Snakes require initialisation by placing 

them near the desired boundary, which in lesion boundary detection could be taken from 

the cleaned thresholded image produced in the lesion localisation and isolation process 

presented in chapter 6. 

10.2.3 Texture Analysis 
Texture may be used in segmentation (i.e. finding the lesion boundary), for obtaining 

diagnostic information and to perform measurements for image synthesis. Texture when 

combined with grey-level intensity and colour may improve the segmentation. 

In chapter 9, the linear autoregressive texture model was shown to synthesise reasonably 

a range of lesion and skin textures. The quality of the synthesised textures is evidence 

that the model is a reasonable representation of the texture. Hence, it could be used to 

distinguish between different lesion and skin textures for segmentation and diagnosis. 

Currently, the texture analysis and synthesis are performed on rectangular areas, which 

is not a problem for synthesis as the texture can be cropped to the required shape after 

synthesis. However, it prevents analysis of the whole of a lesion or skin area and thus 

reduces the accuracy of the texture measurement and resulting synthesised texture. To 
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increase the accuracy, the texture measurement could be enhanced to analyse irregularly 

shaped areas, specified by a mask. 

Variegated colouring, which can occur in melanomas, could be detected by texture 

analysis. "Skin creases", which are important as they may indicate the lesion's devel­

opment stage [39], may also be detected by texture. 

10.2.4 Shape Analysis 
Lesion shape is a diagnostically important factor, which appears in both MacKie's and 

the American Cancer Society's diagnostic checklists. In chapter 5, methods of measur­

ing roundness and irregularity through bulkiness and fractal dimension were presented 

and tested. These tests showed that bulkiness was a robust and suitable method of as­

sessing lesion shape. However, fractal dimension measurement was shown to require 

high resolution data, which may not be available, and to be affected by the addition of 

Gaussian noise. Asymmetry is another important shape factor which Stoecker et al. [89] 

measured using the principal axes, image rotation and image mirroring. The principal 

axis obtained during the bulkiness calculation and a fast shear based image rotation al­

gorithm [34] could be used to realise this method. 

10.2.5 Colour Analysis 
Colour could directly provide diagnostic information (e.g. identifying variegated colour-

ing) and could improve the measurement of other factors. Colour may also provide as­

sistance in identifying skin and lesion by separating them from background features, 

such as clothing, which are likely to have notably different colours. 

For colour to be diagnostically useful, calibration may be necessary to ensure consis­

tency between images, which may have been captured in different conditions. When 

used for a less diagnostically important task, such as approximately identifying skin and 

lesion, calibration may not be required. Calibration could be performed whilst measur­

ing the image scale, by the method explained in section 10.2.1, and combined with 

global compensation using a separate! y digitised white reference image [ 41]. Using 

automatic colour calibration would increase the reliability and ease of use by removing 

the requirement for separate calibration. 
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To use colour diagnostically, it is necessary to know and examine the important colour 

ranges. The image capture colour space (probably RGB) may be converted by a fixed 

transform to an analytically more useful space, such as HSV (hue, saturation, value). 

Alternatively, the colour space may be changed for each image by an adaptive trans­

form, such as Principal Component Transform [37]. 

A normal colour camera, which can capture a standard range of colours, has the advan­

tages of low-cost and low-complexity, but may capture colours which are not useful and 

may not obtain sufficient detail in diagnostically useful colours. Filters with a mono­

chrome camera can capture particular colour ranges, which gives increased information 

about these colours, but this is more complex than a colour camera. Consequently, a 

colour camera without filters would be better, provided that its performance was ade­

quate. However, the spatial resolution of colour cameras is less than that of similarly 

priced monochrome cameras. 

10.2.6 Synthesis of Skin and Lesion Images 

The synthesis of simulated skin and lesion images, which was described in chapter 9, is 

required to create test images with tightly controlled characteristics so that measure­

ments can be compared with a known input. The image synthesis was considered in 

three parts: shape generation, boundary transition and texture generation. Simulated le­

sion shapes were created from randomly placed ellipses with random diameters with 

random large and small scale irregularities. A low-pass filter was used to create the 

transition between skin and lesion. Skin and lesion textures were generated by a linear 

autoregressive texture model which used the analysis of real skin and lesion images to 

create the synthesised textures. The simulated images allowed the assessment of the 

edge focusing algorithm using area based measurements. 

Enhancement of the three image synthesis parts and the addition of extra parts to im­

prove the "realism" of the synthesised images could be performed in a number of areas: 

improving the quality of the synthesised skin/lesion textures, improving the lesion shape 

synthesis, improving the modelling of the transition between skin and lesion, addition of 

other skin features, synthesis of images containing multiple lesions, addition of non-skin 

features and modelling of image capture conditions. To maximise the "realism" of the 

synthesised images, the nature and probabilities of occurrence of particular features 



10.2 Measurement Techniques 205 

should be set by studying real images. This principle was used in the selection of a bi­

directional texture synthesis method, i.e. a method which could analyse a real texture 

and synthesise a similar new texture. However, this approach may not be appropriate 

where it is difficult to obtain accurate measurements from real images, e.g. in the lesion 

shape synthesis. 

In chapter 9, a linear autoregressive texture model was shown to synthesise a range of 

lesion and skin textures. This texture analysis method uses matrix inversion which was 

performed by double precision floating point LU decomposition with backsubstitution 

[80]. It was found that double precision arithmetic was necessary to prevent the matrix 

inversion becoming unstable on some textures. Different and possibly better results may 

be obtained using a different matrix inversion method, such as singular value decom­

position [80]. 

The addition of measurement scale (i.e. centimetres per image pixel) to the texture 

analysis and synthesis would allow the creation of similar textures at a range of scales, 

which would allow the evaluation of the effects of capturing the same lesion at different 

scales. Incorporation of the measurement scale may be achievable by an extension of the 

linear autoregressive texture model. By spatially varying the texture, variations in skin 

and lesion textures and the transition between skin and lesion could be modelled. 

The current lesion shape synthesis method (section 9.2) is not based on measured lesion 

shapes, but contains the major shape components of most lesions: an approximately el­

liptical shape with large and small scale irregularities. To use measured lesion shapes 

for synthesis requires accurate boundary measurements, however the boundary detection 

method's accuracy needs to be assessed on simulated images before accurate shape 

measurements can be provided. Consequently, the approximate approach of creating 

shapes with reasonable shapes and sizes was used in section 9.2. Even with approximate 

real lesion boundaries the lesion size and large scale structure may be set as these do not 

depend on accurate lesion boundaries. 

The transition between skin and lesion was simulated by using a low-pass filter to 

smooth the lesion shape image, which controlled the intensity mixing of the lesion and 

skin textures. This simple approximation provided a wide range of boundary transitions, 
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but is not based on numerical analysis of real boundary transitions because of the diffi­

culty in analysing real boundary transitions. To enhance this stage, it may be possible to 

model the lesion/skin transition by finding and modelling the intensity gradient perpen­

dicular to the lesion boundary. This model could control the blurring of the lesion shape 

image by controlling the intensity gradient between lesion and skin in this image. 

The shape, texture and boundary transition synthesis methods could all be extended to 

model different types of lesions, i.e. benign and malignant ones. For the shape synthesis, 

this would involve the adjustment of the parameters to enable the generation of different 

types of boundaries. Similarly, the boundary transition would be changed by adjustment 

of its parameters. However, it may difficult to select suitable values for the parameters 

of the shape and boundary transition synthesis methods. Texture synthesis would use 

sample textures captured from different classes of lesions to generate different synthetic 

textures. When this is implemented it would be possible to assess the effects of different 

boundary detectors and shape classifiers on the accuracy of computer classification. This 

would make it possible to discover whether changes in boundary detection and shape 

measurement were likely to improve the performance of automatic skin lesion diagnos­

tic systems based on computerised analysis of optical skin images. 

Synthesis of images containing multiple lesions would assist in the evaluation of the le­

sion location and isolation process discussed in section 10.2.1. This enhancement of the 

current image synthesis process would require an extra image mixing stage for each 

additional lesion and a new texture for each lesion. 

Hair, which commonly appears in real images, may affect the performance of boundary 

detection methods, texture analysis methods, etc., hence it may require simulation. The 

effects of hair may be captured in the skin/lesion texture analysis and synthesis. How­

ever, to synthesise hair more realistically and to assess the effects of the presence of hair 

may require a separate process. The first stage in synthesising hair would be its identifi­

cation and localisation, which because of the small size of individual hairs may not be 

possible using colour and texture, which require reasonably large areas to assess. How­

ever, edge or ridge detection may be able to locate individual hairs and after localisation 

the shape and placement of individual hairs could be modelled to allow creation of col­

oured and textured lines to simulate it. 
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The addition of non-skin features, such as clothing and calibrated scales, would allow 

testing of system robustness and the ability to find and analyse a calibration scale. The 

modelling of non-skin features would require analysis of real images to determine the 

types of features which occur. The effects of image capture conditions, such as non­

uniform lighting and camera set-up, could be applied as a post-processing stage to the 

simulated images. 

10.3 Diagnostic Methods 
After using a computer to acquire diagnostic measurements, a human expert could per-

form diagnosis, but they would require additional training to use the additional informa­

tion [11]. Even with additional training, this approach may not be successful as, al­

though computerised measurements may be more reliable than human assessment, cur­

rent human diagnosis is relatively inaccurate [39, 59, 60]. In addition to these problems, 

human experts are expensive due to the extensive training required. Consequently, com­

puter based measurements should be combined with computerised diagnosis to give cost 

efficient, reliable and accurate early diagnosis. 

For a computerised system to perform or assist diagnosis, diagnostic knowledge must be 

captured. This is an important and difficult task, which can be performed either explic­

itly or implicitly. To explicitly capture knowledge, human experts are questioned to ob­

tain their knowledge, which is then translated into a formal structure for entry into the 

system. In contrast, implicit knowledge capture acquires information directly from a 

training set. 

Expert systems [14, 23] can use explicitly captured knowledge in the form of rules (or 

heuristics) to provide or assist diagnosis. Scores may be associated with the rules to 

allow calculation of probability of the resulting diagnosis. The chain of reasoning used 

in reaching a diagnosis can be explained by backtracking through the rules that were 

triggered (used), which allows an expert to review the diagnosis. The extensive and 

complex knowledge, obtained from training and experience, used by human experts may 

be difficult to acquire and condense for use in an expert system because experts are 

often unaware of the details of their thought processes. This makes explicit knowledge 

acquisition difficult, hence systems that capture (learn) knowledge from examples are 

required. However, explicitly obtained expertise can guide the construction of a 
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computerised skin cancer diagnostic system by assisting in the choice of measurements 

and providing diagnosed training sets. 

Two methods of implicit knowledge capture are rule induction and artificial neural net­

works. Rule induction generates decision trees, which form an expert system, from the 

training data [14). Although, like other expert systems, rule induction systems can pro­

duce their chain of reasoning, this explanation may not be fully comprehensible as the 

individual rules may be difficult to understand. Artificial neural networks [56, 46), 

which are inspired by the structure of biological nervous systems, contain simple non­

linear computational elements (neurons) that are densely interconnected. They can learn 

using supervised training, in which the training set contains input-output pairs, or unsu­

pervised training in which inputs are grouped into self-similar classes. Some neural 

networks can adapt to new training examples, without re-processing the existing training 

set, which is not typical of traditional statistical techniques. In addition, they can be 

more robust than statistical methods when the input data is generated by a non-linear 

process and has a strongly non-Gaussian distribution. Neural networks are particularly 

suited to recognising patterns in noisy data, which is important in this application as 

digital skin images contain many sources of noise. After training, the network should be 

able to generalise from the data in the training set to give correct responses to new un­

seen data. In the diagnosis of skin cancer, the overall system would be trained in a su­

pervised manner as it needs to classify lesions into a small number of predetermined 

classes. In theory, a neural network could learn directly from a skin image and associ­

ated diagnosis. However, in practice this is not possible because the very large quantity 

of input data would require an impractically large network. Consequently, pre­

processing is required in the form of the measurement techniques discussed in the pre­

vious section. 

10.4 Conclusions 
This chapter has placed the work presented in this thesis in the context of the develop-

ment of a complete computerised skin cancer diagnosis system. It has outlined areas of 

future research, which could lead to this computerised diagnosis system. The two parts 

of such a diagnostic system were discussed: measurement techniques and diagnosis 

methods. The factors that should be considered whilst developing measurement tech­

niques were examined. It concluded that although there are a lot of advantages to using 
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optical skin images, there are some diagnostic factors, such as historical information and 

the Breslow thickness [4, 9], which it can not provide. To ensure the quality of a com­

puter based diagnostic system, it is important to have test images with known diagnosis 

and characteristics to allow extensive testing. It may be necessary to have multiple or 

hybrid boundary detection algorithms to handle the wide range of skin images. Texture 

may be used in segmentation, for obtaining diagnostic information and to perform 

measurements for image synthesis. Lesion shape is a diagnostically important factor, 

hence, it will be necessary to develop and/or use more shape analysis methods. Colour 

could directly provide diagnostic information and could improve the measurement of 

other factors. To use colour, it may be necessary to perform calibration and use an ap­

propriate colour space to extract the relevant information. To allow further investigation 

of analysis methods, it would be useful to extend the image simulation method to create 

more realistic skin lesion images by improving the quality of each of its stages and by 

adding other features (including the synthesis of benign and malignant lesions), which 

are based on analysis of real skin images. 

The inaccuracy and expense of current human diagnosis [39, 59, 60] means that it will 

be necessary to combine computer based measurements with computerised diagnosis to 

give cost effective, reliable and accurate early diagnosis. To build a computerised diag­

nostic system it will be necessary to implicitly and/or explicitly capture diagnostic 

knowledge. This chapter has presented guidance on producing a computerised diagnos­

tic system for skin cancer, which may be realisable by combining this research with fu­

ture research and development. 
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Conclusions 

This thesis has considered the analysis of digital optical skin cancer images and has pre­

sented methods for analysing lesion shape, locating and isolating lesions, determining 

lesion boundaries and synthesising simulated lesion and skin images. These methods 

would form parts of a computerised system for diagnosing skin cancer. In order for a 

computerised image analysis system to be practically usable it must be tolerant of its 

operating conditions. This is particularly important in the analysis of optical skin images 

as it is difficu lt to control the image contents and capture conditions. The research in 

this thesis has aimed to include this tolerance at all stages. 

The literature review showed that, although many lesion boundary detection methods 

have been proposed [11 , 98, 12, 30, 77, 36, 26], researchers attempting to construct 

automated diagnostic methods for skin lesions [29, 53] have found it necessary to use 

manual boundary detection as they considered the performance of automatic boundary 

detection to be inadequate. In addition, those methods [30, 36] that have been visually 

assessed by dermatologists were judged to be inadequate for an automated system, par­

ticularly on potentially fatal melanomas. Performance assessment is very difficult as 

there is no "gold standard" for lesion boundaries. The inadequate performance and the 

difficulty in assessing performance indicates two areas where research is required: new 

boundary detection methods and performance assessment methods. Consequently, a new 

boundary detection method was developed and assessed by a new method using simu­

lated skin images. 

Two methods of assessing lesion shape were presented and tested on real and artificial 

shapes. The "roundness" of a lesion was assessed by the bulkiness, which was obtained 

by an enhancement of the method proposed by Medalia [67]. A new method of creating 

shapes with known fractal dimensions allowed the assessment of fractal dimension 

measurement methods on shapes with fractal dimensions comparable with those of real 
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lesions. This allowed more reliable assessment of the fractal dimension measurement 

methods, which was not previously possible. This assessment showed that an implemen­

tation of "Flook's method" [30] was the most suitable, of three methods tested, for 

measuring structural and textural dimensions of lesion shapes. Radially distributed 

Gaussian noise applied to test shapes was used to assess the effects of errors in the loca­

tion of lesion boundaries. This assessment showed the bulkiness to increase with the 

increasing noise, which is the expected effect of increasing the boundary irregularity. 

This combined with the textural and stmctural fractal dimensions increasing with in­

creasing Gaussian noise shows the importance of accurate boundary detection. The ef­

fects of noise on fractal dimension measurement and the necessity of using high resolu­

tion shapes in its measurement indicated that it may not be suitable for assessing lesion 

shapes. 

Before attempting a detailed analysis of a lesion it is necessary to separate it from the 

rest of the image, which prevents the unnecessary and possibly inaccurate analysis of 

parts of the image that are not of interest. To do this, a process was developed to isolate 

a single lesion and produce an image containing the lesion and sufficient surrounding 

skin with an indication of lesion size, location and bounding area. This process was 

able, using shape based heuristic rules, to correctly identify and isolate all of the lesions 

in a test set and also, using the same parameters, isolate all of the lesions in simulated 

skin lesion images, which were created to test this process and the edge focusing lesion 

boundary detection algorithm. 

Initial examination of lesion boundary detection problem showed that fixed scale edge 

detectors are not suitable. When a small scale edge detector is used large numbers of 

unwanted, accurately located, small scale edges are detected and when a large scale edge 

detector is applied the boundary can be identified, but it is not possible to accurately lo­

cate it. Consequently, an edge focusing algorithm for lesion boundary detection was de­

veloped, which combines the advantages of small and large scale edge detection. This 

algorithm is a new application of edge focusing, which automatically controls the 

boundary during focusing and selects the output boundary, using image contrast. 

Through these developments, edge focusing was made suitable for lesion boundary de­

tection and may also be suitable for other applications where automatic boundary detec­

tion is required for objects with boundaries which are not clearly defined. By combining 
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this algorithm with the process of isolating lesions, a system that can find lesion 

boundaries in a range of images was produced. Two variants, using Laplacian of Gaus­

sian (LoG) and Canny edge detection, of this system were tested on real and simulated 

images. The tests with simulated skin images, which are described in the next para­

graph, were used to compare the performance of the two variants. During the develop­

ment of this algorithm, an improved zero-crossing detection method, with improved 

edge placement accuracy and edge continuity, was created with a clearer method of 

presentation which allows easier implementation. 

In the development of any system it is important to test it with data of known character­

istics, which makes testing with real images difficult. To overcome this problem the 

creation of simulated test images by a three stage process (shape generation, boundary 

transition modelling and texture generation) was investigated. For the shape generation, 

ellipses with random large and small scale irregularities were found to be suitable le­

sion-like shapes. A linear autoregressive texture model was found to create simulated 

grey-scale textures that were visually similar to lesion and skin textures. Low-pass filter­

ing was used to control the combining of simulated lesion and skin textures to create an 

indistinct boundary between lesion and skin. This process created a range of images 

which were used to test the edge focusing algorithm by comparing the boundary of the 

simulated lesion with the detected boundary using a new area based measurement. This 

method could also be used to assess other lesion boundary detection methods and be 

used in other applications. Using parameters, derived from real images, the lesion loca­

tion and isolation method correctly identified all the simulated lesions. Assessment of 

both the LoG and Canny edge focusing algorithms showed that the true-and-estimated 

area (i.e. the area which the estimated and true boundary have in common) decreased as 

the boundary became less distinct. For the LoG edge focuser, the estimated-not-true area 

(i.e. the area outside the true boundary which is included) increased faster than the true­

not-estimated area (i.e. the area inside the true boundary that is not included). The re­

verse was found for the Canny edge focuser, which is the expected effect of the differing 

edge displacement of LoG and Canny edge detectors. The average performance of the 

LoG and Canny edge focusers was statistically similar for the true-and-estimated area 

and true-not-estimated area measurements. However, the Canny edge focuser performed 

statistically significantly better in the estimated-not-true area measurements due to better 
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performance on small lesion shapes. Overall, on simulated lesion images with bounda­

ries similar to those observed in real images both algorithms had good performance. 

Although it was considered desirable, it was not possible due to time constraints to ex­

tend this work to cover the assessment of other skin lesion boundary detection methods 

(such as [12, 30, 77, 36, 26]) and other boundary detection methods (such as [50, 54, 

73]). Such an assessment would have compared the relative performance of edge focus­

ing and other algorithms and could have identified their strengths and weakness. This 

would have demonstrated whether the edge focusing algorithm provides an improve­

ment over boundary detection methods that have previously been applied to skin lesions. 

The assessment would have enabled the comparative testing, refinement and improve­

ment of boundary detection and shape analysis algorithms, through gaining a better un­

derstanding of the behaviour of the algorithms under known conditions. In addition, al­

though desirable, again due to time constraints it was not possible to synthesise images 

with "benign" and "malignant" boundaries, which would have allowed the assessment 

of the effects of different boundary detectors and shape classifiers on the accuracy of 

computer classification of such boundary types. 

The use of the research presented in this thesis and further research in a complete com­

puterised skin cancer diagnosis system was discussed. This discussion examined the 

additional research that could be undertaken and the factors that should be considered 

whilst doing this research. It was concluded that although there are a lot of advantages to 

using optical skin images, there are some diagnostic factors, such as historical informa­

tion and the Breslow thickness [4, 9], which it can not provide. To ensure the quality of 

a computer based diagnostic system, it is important to have test images with known 

characteristics and diagnosis to allow extensive testing. It may be necessary to have 

multiple or hybrid boundary detection algorithms to handle the wide range of skin im­

ages. In addition to intensity, it may be possible to use texture or colour information to 

provide diagnostic information. Lesion shape is a diagnostically important factor, hence, 

it will be necessary to develop and/or use more shape analysis methods. To allow further 

investigation of analysis methods, it would be useful to extend the image simulation 

method to create more realistic skin lesion images by improving the quality of each of 

its stages and by adding other features which are based on analysis of real skin images. 

The inaccuracy and expense of current human diagnosis [39, 59, 60] means that it will 
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be necessary to combine computer based measurements with computerised diagnosis to 

give cost effective, reliable and accurate early diagnosis. To build a computerised diag­

nostic system it will be necessary to implicitly and/or explicitly capture diagnostic 

knowledge. The discussion showed that, by combining this research with future research 

and development, a computerised diagnostic system for skin cancer could be produced. 

11. 1 Suggestions for Future Research 

The research presented in this thesis could be continued in a number of areas with the 

goal of automating the diagnosis of skin cancer. This future research was discussed in 

the previous chapter on the development of computerised skin cancer diagnosis and is 

summarised here: 

• Extension of the lesion location and isolation process, described in chapter 6, to deal 

with images containing multiple lesions and to use grey-level and colour features to 

assist in identifying lesions. This extension should also incorporate the automatic 

measurement of lesion size and compensation for camera set-up and lighting. 

• Further development of boundary detection algorithms through the extension of the 

edge focusing algorithm, presented in chapter 8, and the creation of new methods is 

required. For the edge focusing algorithm to be usable in a practical system its exe­

cution time must be reduced, which may be performed by changing from an FIR edge 

detector to an IIR detector [19, 85, 95]. Enhancement of the edge focusing algo­

rithm's pedormance, i.e. reliability and accuracy, may be achievable in two areas: 

boundary generation and boundary selection. As the algorithm proceeds the detail in­

creases across the whole boundary and hence although the selected boundary may be 

the best of those available, it may not be the best possible one which could be cre­

ated. By measuring the quality of each boundary segment as it is created, it may be 

possible to use a large scale boundary where it is not clearly defined and a small scale 

boundary where it is better defined. The boundary sharpness information required to 

implement this may also be diagnostically useful and may be obtained from the edge 

strength (i.e. the intensity gradient) across the lesion's border. The algorithm selects a 

boundary using a quality measurement which is critical and application specific. 

Further work is required to devise quality measurements for this application based on 

features, such as colour, intensity and texture, which can be applied to the whole and 

parts of a boundary to enable selection of the most suitable one and generation of an 
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overall confidence measure. The wide range of skin images may produce difficulties 

in finding a single method that is reliable and accurate on all images, hence it may be 

necessary to combine or select the boundaries from different methods using confi­

dence levels. New methods could be developed using texture and techniques such as 

active contour models [50, 54, 73]. 

• An additional shape analysis method could be developed to assess lesion asymmetry 

(89]. 

• The use of colour directly and indirectly to provide diagnostic information was not 

considered in this thesis, but is an area of future research. Colour could assist in im­

age segmentation and the identification of variegated colouring, but calibration may 

be necessary to ensure consistency. 

• Development of the synthesis of simulated skin and lesion images could occur in the 

following areas: enhancement of the synthesised skin and lesion textures, improve­

ment of the lesion shape synthesis, enhancement of the modelling of the transition 

between skin and lesion, addition of other skin features, synthesis of images contain­

ing multiple lesions, addition of non-skin features and modelling of image capture 

conditions. The nature and probability of occurrence of particular features should be 

set by studying real images, which would maximise the "realism" of the simulated 

images. The shape, texture and boundary transition synthesis methods could all be 

extended to model different types of lesions, i.e. benign and malignant ones. With 

this development it would be possible to assess the effects of different boundary de­

tectors and shape classifiers on the accuracy of computer classification. This would 

make it possible to discover whether changes in boundary detection and shape meas­

urement were likely to improve the performance of automatic skin lesion diagnostic 

systems based on computerised analysis of optical skin images. 

• The texture analysis and synthesis method presented in chapter 9 could be extended 

to allow analysis of irregularly shaped areas and incorporation of scale and colour in­

formation. Texture analysis could also be used for segmentation and acquiring diag­

nostic information. 

• After acquiring diagnostically important measurements, diagnosis and prognosis may 

be obtainable using explicit (e.g. expert systems (14, 23]) and implicit (e.g. rule in­

duction (14] and artificial neural networks (56, 46]) artificial intelligence methods. 

This research should be guided by the methods used by human experts. 
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Notation 

Variable Section Comments 

a 9.4.2 Linear autoregressive texture model weight. 

crsc 7.3 Sigma - space/scale constant for LoG convolution. 

(jSCMin 8.2 Minimum space constant for LoG edge detection. 
(j Standard deviation. 

crc 7.5 Scale of the Canny edge detector. 

cr1 9.4.2 Image standard deviation. 

(jN 9.4.2 Noise standard deviation. 

µ Mean. 
A Area, i.e. number of pixels enclosed. 
A1 4.2 Asymmetry index. 
AR 5.3 Aspect ratio. 
As 5.3 Strip area. 
a1, a2 7.5.2 Edge strengths of the two neighbouring points in Canny non-

maxima suppression. 
a(i) 5.4 i1h parameter of multi-segment line. 
Bi 4.3 Border irregularity. 
BL 4.3, 5.3 Bulkiness. 
C 4.3 Compactness ratio. 
CMu 5.3 i

th 
moment about the x'-axis andl moment about the y'-axis 

of the whole shape. 
C 6.3.3 Weighting constant used in unsharp masking. 
Cp 7.5. l Portion of the area under the curve which is included. 
DE(X1, YI, X2, 3.2 Euclidean distance between two points. 
Y2) 
dgw 7.5.1 Number of coefficients in the first derivative of Gaussian filter 

used in Canny edge detection. 
dL,dB 5.3 Largest diameter of the equivalent ellipse. 
ds, dA 5.3 Smallest diameter of the equivalent ellipse. 
dn 9.4.2 Neighbourhood distance for texture analysis and synthesis. 
es(x, y) 7.5.1 Edge strength atx, y = ✓ix (x,y)1 +i/x,y)1

. 

!F{f(x)} = 3.10 Fourier transform of f(x). 

F(u) 

r 1 {F(u)} = 3.10 Inverse Fourier transform of F(u). 

f(x) 

lfv 5.4 Maximum Feret' s diameter. 
G 3.2 Number of possible grey-levels in the image = 256. 
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Variable Section Comments 
g(x) 7.5.1 Gaussian function. 
gw 7.5.1 Number of coefficients in the Gaussian filter used in Canny 

edge detection. 
h(i) 3.13 Histogram, i.e. number of pixels in the image with grey-

level i. 
h1(i), h2(i) 7.3 Separated parts of the LoG filter. 
hc(i) 6.4.1 Cumulative histogram. 
hN(i) 3.13 Normalised histogram. 
H,S,I 3.16 Hue, saturation and intensity. 
H,L,S 3.1 6 Hue, lightness and saturation. 
H,S, V 3.16 Hue, saturation and value. 
l 6.4.1 Image mean intensity. 
I Whole of the image. 
Ii, /z, h 3.16,4.2 Colour space. 
IA 3.14 Input binary image used in morphology. 
lss 3.14 Binary structuring element image used in morphology. 
IF Filtered image. 
/ LP Low-pass filtered image. 
lmin 3.2 Minimum intensity of an image. 
lmax 3.2 Maximum intensity of an image. 
lo 3.14 Output image. 
iF(X, y) 3.11 Filtered image at (x, y). 
i'J{x, y) 9.4.2 Output texture image. 
ik The k1h grey-level. 
i(x, y) 3.2 Image atx, y. 
iH(X, y) 6.4.2 Horizontal gradient at x, y in Kittler thresholding = 

Ji ( X - l, y ) - i ( X + I, y )I . 
iv(x, y) 6.4.2 Vertical gradient at x, y in Kittler thresholding= 

Ji(x,y -1)-i(x,y + l)J. 

ix(x, y) 7.5.1 Horizontal gradient at x, y in Canny edge detection. 
iy(x, y) 7.5.1 Vertical gradient at x, y in Canny edge detection. 
iM(X, y) 6.4.2 Maximum gradient atx, y = max{lix(x,y~t(x,y)I} · 

iLp(X, y) 6.3.3 Low-pass filtered image at x, y. 
i uM(X, y) 6.3.3 Unsharp masked image at x, y . 
k 3.13 Grey-level. 
L 3.2 Maximum possible grey-level, L = G-1. 
M 3.2 Image width. 
MloG 7.3 Width of LoG filter. 
Mu 5.3 i

th 
moment about the x-axis and /h moment about the y-axis of 

the whole shape. 
MA;o 5.3 i

1h 
moment about the a-axis of the whole shape. 

MB0; 5.3 /h moment about the b-axis of the whole shape. 
ma(i) 6.4.1 Mean grey-level between O and i. 
msu 5.3 i'

h 
moment about the x-axis and/h moment about the y-axis of 

the current strip. 
N 3.2 Image height. 
NII 9.4.2 Number of neighbours for texture analysis and synthesis. 
Ns 5.4 Number of parts in multi-segment line. 
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Variable Section Comments 
nd(x, y) 9.4.2 Neighbourhood for point i(x, y) for texture analysis and 

synthesis. 
nv 5.4 Number of data points. 
p 4.3 Perimeter, i.e. boundary length. 
P(u) 3.10 Power spectrum. 
R,G,B 3.16 Red, green and blue values. 
r,g,b 3.16 Normalised RGB values. 
r(x, y) 9.4.2 Residual at (x, y). 
rAgy 5.3 Radius of gyration about the a-axis. 
rBgy 5.3 Radius of gyration about the b-axis. 
Sk 3.13 New grey-level which is assigned to the original kth grey-level. 
SMC 6.4.2 Sum of the maximum edge gradients CiM(x, y)). 
S1c 6.4.2 Sum of the product of the image (i(x, y)) and maximum 

gradient CiM(x, y)). 
To 6.4.1 , Threshold. 

6.4.2 
t 8.4.1.2 Parameter for parametric splines. 
w 7.3 Sensitive region width of LoG filter. 
W; 3.11 Filter coefficients. 
X 4.2 X-transform. 
x,y 3.2 Image co-ordinates, usually from O to N-1 and O to M-1 

Symbol Comments 

LxJ Floor - the largest integer less than x. 

fxl Ceiling - the smallest integer greater than x. 

round(x) Round to x to the nearest integer. 

lxl Absolute value of x. 

j Reflection of I about the origin. 

X Estimate of x . 
(/)x Translation of I by x = (x1, x2). 

erf(x) Error function. 
erfc(x) Complementary error function. erfc(x)=l - erf(x). 
erfinv(x) Inverse error function. 

x = erfinv(y) satisfies y = erf(x) for -1 ~ y ~ I, - oo~x~oo. 
XT Transpose of vector or matrix x. 
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Bulkiness Measurement 

The calculations used in bulkiness measurement (section 5.3) are described in this ap­

pendix. For axes names see Figure 5-1. The following steps are applied to each strip in 

turn, where x1o and x1,; are the strip's start and end x co-ordinates: 

Strip area: As = X1,; - X1o 

Strip's moment1
: about the x-axis: ms10 = As y 

This simplification can be used as the strip has unit thickness. 
x .2 -x 2 +x .+x 

Strip's moment about the y-axis: ms01 = 111 10 111 10 

2 

(B.1) 

(B.2) 

(B.3) 

The strip is considered to be composed of a series of squares of unit area. The discrete 
summation from x10 to x1i; inclusive of the distance of the each square from the y-axis 
gives the strip's moment about the y-axis. 
Strip's moment of inertia about the x-axis: ms20 = As y2 
Strip's moment of inertia about the y-axis: 

X1,;(X1,; + 1)(2xhi + 1)-x10 (x10 + 1)(2x10 + 1) 
mS02 = 

6 
Strip's product moment: ms11 = ms10 y 

As each strip is processed the following can be accumulated: 

Shape's area: A = L,. As 
for all strips 

Shape's moment about the x-axis: M 10 = I.ms10 
for all strips 

1 The notation used for moments is: 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

msu = {h moment about the x-axis and the l moment about the y-axis of the current 
strip. 
MiJ = i1h moment about the x-axis and the l moment about the y-axis of the whole 
shape. 
CMu = fh moment about the x '-axis and the l moment about they' -axis of the whole 
shape. 
MA;o = i1h moment about the a -axis of the whole shape. 
MB01 = /h moment about the b-axis of the whole shape. 
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Shape's moment about the y-axis: M 01 = :Iims0, 

for all stnips 

Shape's moment of inertia about the x-axis: M20 = Iims
20 

for all strips 

Shape's moment of inertia about the y-axis: M02 = Ims02 
for all strips 

Shape's product moment: M11 = Ims11 
for all strips 

Once all the strips have been processed the centroid (xc, Ye) can be found: 

M M 
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(B.9) 

(B. 10) 

(B.11) 

(B.12) 

X =-O_l 
C A ' Y 

__ ,_o 
c-

A 
(B.13) , (B.14) 

The moments can be shifted to be about the centroid by the parallel axis theorem [90]: 

Moment of inertia about the x '-axis parallel to the x-axis through the centroid: 
CM20 = M 20 -yc MIO (B. 15) 

Moment of inertia about they' -axis parallel to the y-axis through the centroid: 
CM02 = M02 - Xe M IO (B .16) 

Product moment about x' and y' axes: CM11 =M,
1
-xc MIO (B.17) 

From these the moment of inertia about the a and b axes can be obtained: 

Moment of inertia about the a-axis: MAi0 = cm2 + t 
Moment of inertia about the b-axis: MB02 = cm2 - t 

where: 

1 f 
. . CM20 + CM02 average centra moment o mertia: cm2 = --='----~ 

2 

(B.18) 

(B. 19) 

These allow the calculation of the shape's radii of gyration, which are the same as those 

of the equivalent ellipse: 

Radius of gyration about the a-axis: rA = ✓ MAio 
gy A (B.20) 

Radius of gyration about the b-axis: rB
8
Y = ✓ M~20 (B.21) 
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Skin Lesion Location and Isolation 

Test Images 

This appendix shows the test images used in developing the lesion locating and isolation 

process presented in chapter 6. 
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The following refereed publications, which are reproduced here, have resulted from this 

work. 
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W . E. Denton, A. W. G. Duller, and P. J. Fish. Robust Boundary Detection for 

Skin Lesions. In IEEE Eng. in Medicine & Biology 17th Annual Conference, 

IEEE, Montreal, 20-23 Sept 1995. 

W. E. Denton, A. W. G. Duller, and P. J. Fish. Synthesis of skin images for image 

processing validation. In Proc. of 9th Int. Conf. on Biomedical Engineering, pages 

445-447, 1997. 
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BOUNDARY DETECTION FOR SKIN LESIONS: AN EDGE FOCUSING ALGORJTHM 

W E Denton, A W G Duller and P J Fish 

University of Wales, Bangor, UK 

ABSTRACT 

The accurate location of the boundary of skin lesions is 
an important first step in the automatic diagnosis of 
malignant melanoma. The use of standard edge detectors 
for skin lesion boundary detection has serious 
shortcomings since those giving sufficiently detailed 
borders are sensitive to spurious small scale structure 
e lsewhere in the image while those which ignore small 
scale structure involve low-pass filtering which loses 
border detail. Edge focusing uses edge detectors of 
progressively smaller scale, each focusing only in the 
region of the boundary estimated by the previous 
detector. This results in a series of boundary position 
estimates of increasingly finer scale while eliminating 
spurious edges resulting from noise and other image 
detail The selection of the "best fit" boundary is made 
by comparison of the contrast between narrow regions 
just inside and outside the boundary or from the 
variance of image intensity in the latter region. 

INTRODUCTION 

Accurate and reliable outline detection is important in 
the automated diagnosis of skin lesions, in order to 
segment the image into lesion, skin and other 
background, thereby ensuring that colour and texture 
measurements are carried out only on the lesion image. 
In addition, given an accurate outline, the important 
diagnostic factor of lesion shape, Mackie ( I), can be 
analysed to provide quantitative measurements of size, 
asymmetry, Stoecker et al (2), and border irregularity, 
Golston et al (3) and Claridge et al (4). The 
characteristics of skin images are very variable (e.g. 
lighting source, les ion size and nature, skin texture, hair, 
background objects) and this produces problems in 
obtaining methods which are reliable, repeatable and 
robust. In many cases the position of the "best'' 
boundary is very subjective. However, an objective and 
consistent definition of the boundary location, which can 
be reasonably implemented, is required for an image 
processing system. 

A number of methods have been proposed to solve the 
lesion boundary detection problem. However, none of 
the methods have proved sufficiently reliable on a 
sufficiently wide range of images. A radial search, 

Golston et al (6), from the centre of the lesion, for a 
sustained change in image brightness has been attempted 
for boundary determination. This method can be 
inaccurate if the transition between lesion and 
background is not reasonably sharp. It assumes that no 
radius intersects the border more than once (radial 
connectedness) and may not repeatable in that a 
different border may be found if the image is rotated. 
Thresholding, preceded by filtering and a colour 
transform, followed by region growing and contour 
tracing and smoothing has been used by Ercal et al (5). 
In this method, the colour transform and threshold level 
is based on the colour of two windows which have been 
identified to be inside and outside the lesion. These 
windows are found by histograrnming and approximate 
colour segmentation. It is applicable to some classes of 
lesions, but not a ll. Fixed size Laplacian-of-Gaussian 
edge detection, with sub-pixel interpolation, has been 
used by Perednia (7) for boundary detection, but suffers 
from the problems described below. 

General filter based edge detectors such as the Sobel 
operator or the Laplac ian-of-Gaussian operator, Huertas 
and Medioni (8), with fixed sizes are unreliable because 
of the nature of the image. Small scale edge detectors 
provide large numbers of unwanted edges by detecting 
image features such as skin texture and hair. Even when 
a complete boundary can be found there are a large 
number of other edges present which makes it d ifficult 
to identify the genuine border. If the image is low-pass 
filtered or a large scale edge detector used the resulting 
boundary is less affected by the unwanted image 
features, but the locational accuracy is reduced as a 
result of inadequate resolution. 

A method that finds the border accurately but is tolerant 
of image noise is required and this can be achieved 
through the use of "edge focusing". In this method the 
final edges consist of refined versions of those detected 
by a large scale edge detector but have the locational 
accuracy of those produced by a small scale edge 
detector. 

LESION ISOLATION 

Before "edge focusing" can be performed the 
approximate lesion location and size are required to set 
the initial Laplacian-of-Gaussian space constant and 
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allow processing of only the relevant part of the image. 
This is achieved through bi-level thresholding, Kittler et 
al (9), (after median filtering using a 7x7 window) 
followed by binary morphological closing, using a 10 
pixel diameter disc, (to smooth region outlines, 
eliminate small holes in regions, fuse short gaps between 
regions) and region identification. Each region in the 
thresholded image is characterised by its shape 
(bulkiness, Medalia (JO), and aspect ratio) and size and 
these factors are used to determine which is likely to be 
a lesion. The minimum diameter of the equivalent 
ellipse (from the bulkiness calculation) is used to set the 
initial Laplacian-of-Gaussian space constant (cr) to j ust 
detect the lesion (minimum diameter = two times the 
width of the sensitive region of the filter, i.e. 
2 • 2 ..fi u ) . The location of a rectangle which surrounds 
the lesion and a llows for the uncertainty in the edge 
location is calculated from the space constant and the 
location of the thresholded region. This rectangle is used 
to produce an image which contains the lesion and 
sufficient surrounding image (half the filter width 
(3 • ..fiu) around the rectangle) to allow the initial edge 
detection, to be perfonned without requiring data from 
outside the image. Figure I (a) shows the region selected 
in an example image. 

EDGE FOCUSING 

To find the initial boundary a large scale Laplacian-of­
Gaussian edge detection is performed on the clipped 
image within the rectangle which is assumed to contain 
the lesion. The lesion boundary is then selected from the 
edges detected by the method described below. The 
basic edge focus ing step is to gradually refine the 
boundary by decreasing the space constant and at each 
step detecting new edges only adjacent to or on the 
existing boundary, Bergholm ( 11). The reduction in the 
space constant is 0.5 which ensures that the boundary 
moves, at most, one pixel. This enables refinement of 
the existing edge, whilst preventing detection of new 
unwanted edges. The edges produced by this process do 
not necessarily form a c losed contour and a further 
"cleaning" stage is required after each edge refinement. 
The initial boundary selection and subsequent 
"cleaning" are perfom1ed by j oining adjacent edges 
(using a cubic spline), selecting the largest c losed 
contour and removing any redundant pixels (by drawing 
and re-tracing the boundary) to give an 8-way connected 
boundary. 

Thus a progressively better estimate of the edge is 
obtained as the edge detection scale is reduced. This 
process continues to a minimum space constant, which 
corresponds to a filter sensitive region width of 8 pixels. 
This size is chosen to prevent the edge focusing 
detecting small scale skin texture. 

With the type of unconstrained images that are being 
considered, problems are encountered due to parts of the 
lesion producing "highlights". These are generally 
caused by lighting which is non-diffuse falling on 
smooth areas of the lesion. With the algorithm as 
described these highlights are often confused with skin if 
they are "close" to the boundary since they generally 
have an intensity which is near that of the skin. To make 
the edge focusing robust to such problems it was found 
necessary to choose the "best" boundary which in some 
cases was not that produced using the minimum space 
constant. 

Two approaches have been developed for this which 
both rely on examining the image near the boundary. 
The first selects the boundary which has the greatest 
contrast between the average intensity just inside and 
just outside the border, corresponding to a minimum in 
the intensity ratio because the lesion is darker than the 
surrounding skin. The graph of intensity for the lesion in 
figu re !(a) is shown in l (c) and the selected boundary is 
shown in l(b). The second method examines the 
variation of the image j ust outside the border by 
calculating the standard deviation of the intensity in that 
area. The "best" boundary is then chosen on the 
assumption that the skin has a lower standard deviation 
than mixed skin/lesion. The width of the area is based 
on the size of the initial edge detector, so it scales with 
the lesion size. 

Figure 2 shows some of the generated boundaries for an 
example image and the following summarises the 
method: 

I . Median filtering - to reduce image noise, but 
preserve the lesion border 

2. Thresholding 
3. Morphological closing - to clean the image 
4. Region identification by size and shape - to find the 

lesion 
5. Lesion location indication 
6. Initial space constant calculation - from the 

approximate lesion diameter 
7. Image cropping - to include the lesion plus sufficient 

surrounding image 
8. Initial edge detection 
9. Edge cleaning- to select initial approximate 

boundary 
10. While space constant :1: minimum space constant do 

steps 11 and 12 
11. Edge detection on and adjacent to existing boundary 
12. Boundary c leaning - to join gaps in the boundary and 

remove unneeded edge points 
13. Selection of "best" boundary 
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DISCUSSION 

The proposed method produces visually accurate 
continuous boundaries for a range of images and does 
not make assumptions, such as radial connectedness 
about the lesion shape. It is tolerant of lesion size and 
the presence of other unwanted objects in the initial 
image. The initial selection of the area which contains 
the lesion enables it to be used on images which are not 
centred on the lesion and contain other objects or 
multiple lesions. Accuracy is obtained by find ing the 
fina l boundary using a small scale edge detector while 
robustness is acquired through starting the edge focusing 
on a large scale. Without the boundary "cleaning" good 
results can be obtained on lesions with clearly defined 
boundaries. However, the "cleaning" is required to give 
the algorithm reliability on a wide range of images. 

Currently, a Laplacian-of-Gaussian, which is a second 
order derivative edge detector, is used but fi rst order 
derivative edge detectors, such as Canny ( 12) or those 
based on II R filters (for example Sarkar and Boyer 
( 13)), could be used in a similar algorithm. The first 
derivative edge detectors may be more sensitive to 
lighting changes, but a considerable time saving would 
be obtained by using an IIR filter edge detector and the 
edge strength, which is easily obtained from a first order 
derivative edge detector, may be useful in evaluating the 
border quality. 

The selection of the most suitable boundary is based on 
boundary quality measurements, which arc critical and 
application specific. Further work is required to devise 
quality measurements for this application based on 
features, such as colour, intensity and texture, which can 
be applied to parts of the boundary and to the whole 
boundary to enable selection of the most suitable 
boundary and generation of an overall confidence 
measure. 
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Figure I : (a) Example image showing the area selected for processing. Outer rectangle is complete area being processed. 
lnner rectangle is the area in which the initial edge detection is performed. (b) Clipped image showing the fi nal selected 
boundary. (c) Graph showing the contrast ratio between the area just inside and outside the lesion. The area is 50% of 
the sensitive region of the starting edge detector, which in this case is I 6 pixels either side of the border. Note: Lesion 
boundaries and rectangles are drawn three pixels wide. 
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(a) 

(c) 

Figure 2: Edge focusing on an example image. 
(a) Initial boundary detected. 
(b) Boundary at about one two thirds of the initial scale. 
(c) Boundary at about one third of the initial scale. 
(d) Final selected boundary. 

□ 

(b) 

@] 

(d) 

The squares show the size of the edge detection filter: outer- area of the image used for each edge point, inner-

sensitive region of the filter. The fi lter widths and sensitive region widths are calculated from 6 • ✓2,u and 2 • ✓2, u 
respectively. Note: Lesion boundaries and filter widths are drawn 3 pixels wide. 
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ROBUST BOUNDARY DETECTION FOR SKIN LESIONS 

W E Denton, A W G Duller and P J Fish 

School of Electronic Engineering and Computer Systems, University of Wales, 
Dean Street, Bangor, GWYNEDD LL57 !UT, UK 

Abslr/lcl - Standard edge detectors fo r skin lesion bound­
a ry detection h ave serious shortcomings. T hose giving 
sufficiently detailed borders a re sensitive to image noise 
including spurious sma ll scale structure and those tolera nt 
of noise involve low-pass filtering which loses border 
deta il. Edge focusing a llows accura te lesion boundary 
detection whilst being insensitive to image noise. 

Keywor1/s - skin lesions, bou ndary detection, edge focusing 

I. INTRODUCTION 

Accurate and reliable outline detection is important in the 
automated diagnosis of skin lesions, in order to segment the 
image into lesion, skin and other background, thereby ensur­
ing that colour and texture measurements are carried out only 
on the lesion image. In addition, given an accurate outline, the 
important diagnostic factor of lesion shape [I] can be 
analysed to provide quantitative measurements of size, 
asymmetry [2], and border irregularity, [3] and (4]. The 
characteristics of skin images are very variable (e.g. lighting 
source, lesion size and nuture, skin texture, hair, background 
objects) and this produces problems in obtaining methods 
which are reliable, repeatable and robust. 

General fi lter based edge detectors, for example the Lapla­
cian-of-Gaussian (LoG) operator [5], with fixed sizes are 
unreliable because of the nature of the image. Small scale 
edge detectors provide large numbers of unwanted edges by 
detecting image features such as skin texture and hair. Even 
when a complete boundary can be found there are a large 
number of other edges present which makes it difficult to 
identify the genuine border. If the image is low-pass filtered 
or a large scale edge detector used the resulting boundary is 
less affected by the unwanted image features, but the loca­
tional accuracy is reduced as a result of inadequate resolution. 
A method that finds the border accurately but is tolerant of 
image noise is required and this can be achieved through the 
use of"edge focusing". In this method the final edges consisl 
of refined versions of those detected by a large scale edge 
detector but have the locational accuracy of those produced 
by a small scale edge detector. 

II. METHOD 

The following summarises the method: 

I. Median filtering (7x7 pixel window) - to reduce image 
noise, but preserve the lesion border. 

2. Bi-level thresholding [6]. 
3. Morphological closing, using a IO pixel diameter disc - to 

clean the image by smoothing region outlines, eliminating 
small holes in regions and fusing short gaps between 
regions. 

4. Region identification by size and shape - each region in 
the thresholded image is characterised by its shape 
(bulkiness [7] and aspect ratio) and size and these factors 
arc used to determine which is likely to be a lesion. 

5. Initial LoG space constant (a) calculation - set to just 
detect the lesion - ../2 /4 times the minimum diameter of 

the equivalent e llipse (from the bulkiness calculation). 
6. Lesion location indication - the location of a rectangle 

which surrounds the lesion and allows for uncertainty in 
the edge location is calculated from the space constant and 
the location of the thresholded region. This rectangle is 
used to produce an image which contains the lesion and 
sufficient surrounding image to allow the initial edge 
detection to be performed without requiring data from 
outside the image. 

7. Image cropping - to include the lesion plus sufficient sur­
rounding image. 

8. Initial boundary detection - by performing LoG edge de­
tection using the initial value of a from step 5. 

9. Edge cleaning - to select initial approximate boundary. 
The initial boundary selection and subsequent "cleaning" 
are performed by joining adjacent edges (using a cubic 
spline), selecting the largest closed contour and removing 
any redundant pixels (by drawing and re-tracing the 
boundary) to give an 8-way connected boundary. 

10. While space constant~ minimum space constant do steps 
11 to 13. The minimum space constant corresponds lo a 
filter sensitive region width (2✓2u) of 8 pixels. This size 
is chosen to prevent the edge focusing detecting small 
scale skin texture. 

11. Decrease space constant by 0.5 - which ensures that the 
boundary moves, at most, one pixel [8]. This enables re­
finement of the existing edge, whilst preventing detection 
of new unwanted edges. 

12. LoG edge detection on and adjacent to existing boundary. 
13. Boundary cleaning - to join gaps in the boundary and 

remove unneeded edge points (see step 9). 
14. Selection of "best" boundary - This relies on examining 

the image near the boundary. The boundary which has the 
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greatest contrast between the average intensity just inside 
and just outside the border is selected, corresponding to a 
minimum in the intensity ratio because the lesion is darker 
than the surrounding skin. The width of the area is based 
on the size of the initial edge detector and scales with 
lesion size. 

Figure l(a) shows a "raw" image with lesion. The final image 
boundary and graph of inside/outside boundary border 
intensity ratio are shown in figures l(b) and l(c) respectively. 
Figure 2 shows the estimated boundary at the start, during and 
at the end of the edge focusing process on a second lesion. 

111. RESULTS AND DISCUSSION 

The proposed method produces visually accurate continuous 
boundaries for a range of images. It is tolerant of lesion size 
and the presence of other unwanted objects in the initial im­
age. The initial selection of the area which contains the lesion 
enables it to be used on images which are not centred on the 
lesion and contain other objects or multiple lesions. 

REFERENCES 

[I] R M Mackie, "An illustrated guide to the recognition of 
early malignant melanoma," Department of Dermatology, 
University of Glasgow, 1986 

(b 

[2] W V Stoecker, W W Li and R H Moss, "Automatic De­
tection of Asymmetry in Skin Tumors," Computerized Medi­
cal Imaging and Graphics, vol. 16, no. 3, pp. 191-197, 1992 

[3] J E Golston, W V Stoecker, R H Moss and J P S Dhillon, 
"Automatic Detection of Irregular Borders in Melanoma and 
Other Skin Tumors," vol. 16, no. 3, Computerized Medical 
Imaging and Graphics, pp. 199-203, 1992 

[ 4] E Claridge, P N Hall, M Keefe and J P Allen, "Shape 
analysis for c lassification o f malignant melanoma," J. Biomed 
Eng. , vol. 14, pp. 229-234, 1992 

(5] A Huertas and G Medioni, "Detection of Intensity 
Changes with Subpixel Accuracy Using Laplacian-Gaussian 
Masks," PAM!, vol. 8, no. 5, pp. 65 1-664, 1986 

[6] J Kittler, J Illingworth, J Foglein and K Paler, "An 
Automatic Thresholding Algorithm and its Performance," 
IEEE Proc. Seventh Int. Conf Pattern Recognition, vol. I , 
pp. 287-289, I 984 

[7] A I Medalia, "Dynamic Shape Factors of Particles,'' Pow­
der Technology, vol. 4, pp. 117-138, 1970 

[8] F Bergholm, "Edge Focusing," PAM!, vol. 9, no. 6, pp. 
726-741, 1987 

(c) 
Boundary Quality 

0.445 ~~~--~---~ 

0.44 

0.435 

0.43 

0.425 

3 4 5 6 7 8 9 10 11 12 
space constant 

Fig. I: (a) "Raw" image with lesion containing rectangle. (b) Cropped image with final boundary. (c) Intensity ratio versus filter 
space constant. 
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Fig. 2 : Image with lesion boundary and filter size ( 6 • ..fiu square). (a) Initial boundary (b) Intermediate (c) Final. 
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SYNTHESIS OF SKIN IMAGES FOR IMAGE PROCESSING VALIDATION 
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Abstract 

Our work on t he development of a diagnostic aid for skin can­
cer has involved work in a number of a reas including, accurate 
lesion border detection, lesion shape analysis, skin line texture 
measurements and colour measurements. A major requirement 
of these sub-systems is the ability to validate their performance 
against a set of images which have known clmracteristics. This 
is not possible using images of real skin lesions since t heir true 
characteristics arc insufficiently well defined. T his paper dis­
cusses the development of methods for generating synthetic im­
ages of both skin and lesions which can have tightly controlled 
characteristics particularly in terms of being a known size and 
having a known boundary position. 

Two methods for modelling skin/lesion texture were inves­
tigated , a 2D power spectrum model and a linear autoregres­
sive model. Examples showed that the power sp<.-ctrum method, 
while being computationally attractive, did not produce textures 
which were sufficiently visually similar to real skin . leading to 
the selection of the autoregressive method. 

Synth<.-sised images have b<.'Cn used to compare an <.'<.lge focus­
ing boundary detector using Canny and Laplacian of Gaussian 
edge detectors which iu·e both shown to h,we advantages depend• 
ing on the type of lesion being analysed; Canny being preferable 
for small and ill-defin<.'<.I lesions. 

INTRODUCTION 

This paper d iscusses the synthesis of simulated 
monochrome skin and lesion images, which are re­
quired to investigate the characteristics of lesion seg­
mentation algorithms which have been developed in 
previous work (1][2]. Test images are required where 
the characteristics can be controlled, so that the out­
put of a boundary finding algorithm may be compared 
with t he known input. This comparison allows assess­
ment of algorithm performance under a range of im­
age conditions, which can be created by adjusting the 
parameters of the image synthesis process. In addi­
tion, test images can assist in algoritlun development 
by identifying image conditions under which an algo­
rithm succeeds or fa ils. 

PREVIOUS WORK 

Dhawan and Sicsu (3] synthesised simulated skin and 
lesion images, which they used to visually assess their 
segmentation method. They did not specify how these 
images were created , but their illustrations showed im­
ages containing overlapping ellipses of varying colours 
and textures. These images appear not to have been 
created from measurements of real lesion images a11d 
h,irl r lr,ir t.r,rnsitinns frnm s kin tn IPsinn. 

LESION SYNTHESIS 

The new image synthesis method presented is per­
formed in three stages: 

• Shape generation: the creation of a shape similar to 
that of a lesion. 
• Boundary transition: the modelling of the transition 
between skin and lesion, which will control the mixing 
of skin and lesion textures. 
• Texture generation: the synthesis of textures which 
are similar to skin and lesion from measurements ol 
real skin and lesion textures. 

Shape generation 

Shape generation consists of producing a binary im­
age which contains a lesion-like shape together with the 
shape's boundary co-ord inates. The method creates a 
simple shape based on an ellipse with random large 
and small scale irregularities, using parameters which 
are heuristically chosen to create shapes similar to le­
sion outlines. The primary shape is an ellipse, with a 
random size, aspect ratio and angle placed at a random 
posit ion in the image. The ellipse's minor axis, aspect 
ratio and centroid are controlled by Gaussian random 
nun1bers giving a range of lesion sizes between 15 and 
170 pixels. To create large scale irregularity the ellipse 
is sampled, a fixed number of times (8), at uniformly 
spaced angles starting at a random angle. These sam­
pled points are displaced radially by a random distance 
(with zero mean and standard deviation of 30 pixels) 
and re-connected to create a shape with large scale ir­
regularities. Finally, small scale irregularity is created 
by re-sampling more frequently (16 times) at uniform 
points in the co-ordinate list. These points arc radially 
displaced and interpolated to give the final shape (see 
figure 1). 

Fig. 1. Typical synthesised lesion shape mask (left), with bound­
ary transition (centre) and final imago (right). 
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Boundary Transition 

A boundary transition between the lesion and the 
surrounding skin is simulated by modifying the shape 
image which controls the intensity mixing of skin and 
lesion texture. A first order low-pass butterworth fil­
ter is used to blur the synthesised lesion shape image. 
The cut-off frequencies a re chosen to create boundary 
transitions visually similar to those in real images. An 
example transition is shown in figure 1. 

Texture generation 

The most difficult part of creating synthesised lesion 
images is producing skin and lesion textures which are 
visually similar to real skin and lesion textures. To 
maximise the realism of the synthesised images only 
bi-directional methods, i.e. those which can analyse 
a texture and synthesise a new similar texture, were 
considered. The performance of the texture synthesis 
was assessed visually by comparison with the original 
texture. 

Iversen and Lonnestad [4] surveyed a range of tex­
ture analysis/synthesis methods for use in image com­
pression. They assessed the visual performance, the 
size of the parameter space and analysis/synthesis 
times of the following methods: 

• Markov models: the texture is modelled by a sta­
tionary first order Markov chain. 
• Autocorrelation and histogram models: the texture 
model contains the image histogram and the autocor­
relation function. 
• Linear autoregressive models: each texture pixel is 
modelled by the sum of a linear combination of the 
intensities of points in its neighbourhood and Gaussian 
noise. 
• Fractal models: the texture's irregularity is modelled 
by its fractal dimension. 
• Spectral models: the model is the same as the linear 
autoregressive model, except the neighbourhood and 
weights estimation are different. 

The Markov models were found to have unsatisfac­
tory visual performance and large parameter spaces, 
but with small analysis and synthesis times. The per­
formance of the autocorrelation method was better and 
it uses a small parameter space, but has a time con­
suming synthesis algorithm. The linear autoregressive 
model was judged to give the best visual performance 
with a reasonably sized parameter space. The only 
problem (which is not relevant in this application) with 
this method is the very slow analysis algorithm. The 
performance of the fractal model was very poor, as ex­
pected since it had only one parameter. The spectral 
model they investigated had a small parameter space, 
but did not perform visually as well as the linear au­
toregressive model. 

Linear Autoregressive Texture Model 

In this method the intensity of a textme point is es­
timated from the sum of a linear combination of the 
intensities of points in its neighbourhood, represented 
by the weights and Gaussian noise. The model used 
here is a modification of the method described in [4] , 
with the addition of the measurement of image mean 
and standard deviation. The scale of texture anal­
ysed/synthesised is controlled by the size of a causal 
neighbourhood. The optimum neighbourhood distance 
was determined visually and was chosen to be 16 pixels 
for both skin and lesion textures. 

Comparison of True and Estimated Boundaries 

Once a simulated lesion has been created the true 
and estimated boundaries can be compared to measure 
the performance of the boundary detection method. 
The method used to compare these boundaries is based 
on the area which they enclose since the true and esti­
mated boundaries are unlikely to have the same num­
ber of points, hence a direct comparison between the 
corresponding points on each boundary is not possi­
ble. Three areas are used, the area which they have in 
common (true positive region) , the area which is cov­
ered by the true boundary and not by the estimated 
boundary (false negative region) and the area which 
is covered by the estimated boundary and not by the 
true boundary (false positive region). To make these 
independent of lesion size they are expressed as a per­
centage of the true lesion area. Examples are shown in 
figure 2. 

a) 
, .,,... .......... 

'- - -
c) 

/ 

,I 

b) 

- .., 
d) 

Fig. 2. A comparison of the true and estimated boundaries for 
a simulated lesion, a) true lesion, b) true positive, c) false 
negative, d) false positive 

Results 

The edge focusing algorithm described in [l] is used 
to demonstrate the use of synthesised lesion images. 
Two forms of edge detection are compared within the 
edge focusing framework, namely, Canny and Lapla­
cian of Gaussian (LoG) based edge detectors. Figure 3 



Appendix D Publications 232 
shows a number of simulated lesions together with the 
true boundary and those calculated by the LoG and 
Canny edge focusers. The three examples show in­
creasingly diffuse boundaries, the blurring filter cut-off 
frequencies being respectively, 0.0156, 0.0078, 0.0039 
(top to bottom). The Canny result (bottom right) is 
something of an anomaly as the boundary chosen by 
the edge focusing algorithm was the very first of the 
sequence of boundaries produced by the algorithm. In 
contrast the LoG result for the bottom lesion is too 
highly detailed. Both of these results highlight prob­
lems associated with the boundary selection procedure 
within the edge focusing algorithm. 

• • • • • • 
• 

Fig. 3. Examples of simulated lesions: from left to right, lesion, 
true boundary, LoG boundary, Canny boundary 

In the synthesised images, there are three main fac­
tors that can be independently controlled, the lesion 
shape, the boundary transition and the textures of the 
skin and lesion. The tests reported in this paper were 
performed on a set of 120 synthesised images made up 
from 10 lesion shapes, 4 boundary transitions and 3 
skin/lesion textures. All of the textures used were syn­
thesised using linear autoregressive model. A summary 
of the boundary comparison results is presented in ta­
ble l. As expected the true positive area reduces as the 
boundary blurring increases. For the LoG, the false­
negative area increases more rapidly than the false­
positive, for Canny the converse is true. This is to be 
expected as for curved edges the LoG edge detector 
places its edge on the higher intensity side (i.e. skin) 
and the Canny edge detector places its edge on the 
lower intensity side (i.e. lesion). The average perfor­
mance of the LoG and Ca1my edge focusers are statis­
tically similar for the true-positive and false-positive 
area measurements. However, Canny performed sta­
tistically significantly better in the false-negative area 
which was mainly caused by errors on small lesion 
shapes. In particular , one shape caused most of the 
poor performance for the false-negative area, for the 
LoG edge focuser. This shape only occupied about one 

fifth of the image width and height, causing it to be 
blended into the white background with the smoother 
boundary transitions. Hence, this image was not par­
ticularly realistic and once removed the false-negative 
area had a mean of 13.2% and standard deviation of 
13.3%. This performance is still statistically worse 
than the Canny edge focuser, but is much closer and 
has a much smaller standard deviation. 

Low % True % False % False 
pass pos. area neg. area pos. area 

cut-off mean SD I mean SD I mean SD 
freq. Laplacian of Gaussian edge detection 
none 99.6 0.7 1.8 1.1 0.4 0.7 

0.0156 94.1 3.1 8.0 5.2 5.9 3.1 
0.0078 89.2 4.0 18.0 11.5 10.8 4.0 
0.0039 83.0 9.0 52.4 94.2 17.0 9.0 

Canny edge detection 
none 99.8 0.2 1.5 0.8 0.2 0.2 

0.0156 92.8 4.0 3.2 2.0 7.2 4.0 
0.0078 88.7 5.0 5.5 3.7 11 .3 5.0 
0.0039 80.8 10.5 8.0 7.8 19.2 10.5 

Table 1 Edge focusing results 

CONCLUSIONS 
This paper has described the synthesis of simulated 

skin and lesion images and the comparison of a true 
boundary with an estimated boundary. This allowed 
the comparison of two edge focusing algorithms. Two 
basic methods of texture synthesis were investigated 
using visual comparison of the original and synthesised 
textures. The first method using an image's power 
spectrum produced textures which were not visually 
similar to the original textures. A number of variants 
of the linear autoregressive texture synthesis were de­
veloped and tested to select the most suitable version 
for this application. A boundary comparison method 
based on area was used to compare the Canny and LoG 
version of the edge focuser. The LoG edge focuser per­
formed slightly better for better defined lesion while 
performance was considerably better for false-negative 
areas for small lesions with the Canny based detector. 
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