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Downregulation of early visual cortex
excitability mediates oscillopsia suppression

ABSTRACT

Objective: To identify in an observational study the neurophysiologic mechanisms that mediate
adaptation to oscillopsia in patients with bilateral vestibular failure (BVF).

Methods: We directly probe the hypothesis that adaptive changes that mediate oscillopsia sup-
pression implicate the early visual-cortex (V1/V2). Accordingly, we investigated V1/V2 excitabil-
ity using transcranial magnetic stimulation (TMS) in 12 avestibular patients and 12 healthy
controls. Specifically, we assessed TMS-induced phosphene thresholds at baseline and cortical
excitability changes while performing a visual motion adaptation paradigm during the following
conditions: baseline measures (i.e., static), during visual motion (i.e., motion before adaptation),
and during visual motion after 5 minutes of unidirectional visual motion adaptation (i.e., motion
adapted).

Results: Patients had significantly higher baseline phosphene thresholds, reflecting an underlying
adaptive mechanism. Individual thresholds were correlated with oscillopsia symptom load. During
the visual motion adaptation condition, no differences in excitability at baseline were observed,
but during both the motion before adaptation and motion adapted conditions, we observed signif-
icantly attenuated cortical excitability in patients. Again, this attenuation in excitability was stron-
ger in less symptomatic patients.

Conclusions: Our findings provide neurophysiologic evidence that cortically mediated adaptive
mechanisms in V1/V2 play a critical role in suppressing oscillopsia in patients with BVF.
Neurology® 2017;89:1179–1185

GLOSSARY
BVF 5 bilateral vestibular failure; TMS 5 transcranial magnetic stimulation; VOR 5 vestibular-ocular reflex.

Bilateral vestibular failure (BVF) is a collective term used to describe patients with total or sub-
total loss of function of either the vestibular end organs or the vestibular cranial nerve. Because
the vestibular-ocular reflex (VOR) provides gaze stabilization during head movements, avestib-
ular patients lose this ability1 and experience an illusionary movement of the visual world, called
head movement–induced oscillopsia.2

Patients report that over time the oscillopsia diminishes.3–7 Previous work has suggested that
this compensatory process involves in part the generation of plastic oculomotor changes to
improve gaze stability during head movements3,6,8,9 and perceptually mediated compensatory
mechanisms such that avestibular patients become desensitized to visual motion.5 These afore-
mentioned changes have additionally been shown to correlate with clinical outcome meas-
ures.6,10 Hence, gaining an understanding of the underlying neurophysiologic mechanisms
that underpin adaptation to oscillopsia not only has a theoretical scientific importance but also
is of critical clinical significance.5,10–14

To date, the neurophysiologic mechanisms that underpin centrally mediated adaptation
to oscillopsia remain obscure. Previous neuroimaging findings have demonstrated that
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functional plasticity in the visual (V1/V2
and V5/MT) cortex contributes to adapta-
tion after BVF.15–18 On the basis of the

aforementioned findings, we hypothesize
that neurophysiologic mechanisms associ-
ated with the early visual cortex mediate os-
cillopsia suppression. Accordingly, here we
directly assessed visual cortical excitability
in both vestibular patients and matched
healthy controls using transcranial magnetic
stimulation (TMS).

Given that avestibular patients have an absent
VOR and thus are continuously exposed to ret-
inal image slip, we predict on the basis of previ-
ous findings in normal individuals19,20 that (1)
patients may have a more adapted (i.e., less
excitable) visual cortex19,20 at rest (i.e., baseline
threshold) compared to controls; (2) given that
patients are less susceptible (i.e., already desen-
sitized) to visual motion,5 implementation of
a visual motion adaptation paradigm20 would
have a less potent modulatory effect on cortical
excitability in patients compared to healthy con-
trols; and (3) if such findings are relevant to the
central changes mediating oscillopsia adaptation,

Table Summary descriptive of the patients with bilateral vestibular failure

Patient Age, y Sex Etiology Rehabilitation
Baseline phosphene threshold,
% maximum stimulation intensity

1 66 F Idiopathic Y 56

2 56 F Idiopathic Y 56

3 63 M Idiopathic Y 82

4 73 M Idiopathic y 57

5 44 F Idiopathic Y 57

6 64 F Gentamicin Y 47

7a 58 F Idiopathic Y 58

8a 29 M Autoimmune Y 80

9a 60 M Idiopathic Y 85

10a 50 M Autoimmune Y 85

11a 59 M Idiopathic Y 83

12a 65 F Autoimmune Y 84

aPatients with the visual motion-induced disappearing phosphene phenomenon (see Results).

Figure 1 Experimental protocol

(A) Experimental protocol used for the visual motion adaptation paradigm. Participants were seated in a stationary (locked) Barany chair surrounded by a full-
field black and white curtain that was either stationary or rotated rightward (during motion conditions) at 308/s. Eye movements were recorded with electro-
oculography. Transcranial magnetic stimulation (TMS) was applied over the early visual cortex, and the curtain was viewed through the binoculars. The
participant’s head was fixed with clamps over the ears. (B) Timeline of the experimental protocol. Initially, we established the individual phosphene threshold
and then assessed baseline measures of cortical excitability by viewing the static curtain (i.e., baseline) with 20 TMS pulses followed by assessing cortical
excitability with 20 TMS pulses during rightward motion of the curtain at 308/s (i.e., motion preadaptation). We then adapted participants to rightward
motion of the curtain at 308/s for 5 minutes; immediately after this adaptation period, we assessed cortical excitability again during rightward visual motion
with 20 TMS pulses (i.e., motion adapted). OKS 5 optokinetic stimulus.
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then they should relate to oscillopsia symptom
load as measured with clinical questionnaires.

METHODS Patient and clinical demographics. Twelve

right-handed21 patients with BVF were recruited from a tertiary

referral clinic (Charing Cross Hospital) between November 2013

and December 2015 (7 men, age range 29–65 years; mean age

54.5 years, SD 11.9 years; table). All patients had a confirmed

diagnosis for at least 1 year before participating in the experiment,

and we ensured that there was no other neurologic disorder.

Absent vestibular function was confirmed by a positive head

impulse test bilaterally and a finely broken-up doll’s eye move-

ment (clinically), as well as absent VOR responses during

bithermal caloric irrigations and constant-velocity rotations

(908/s) in the dark (oculography). Hearing was also formally

assessed in all patients with a pure-tone audiogram and was found to

be within normal limits for their age. Twelve right-handed matched

healthy controls (7 men, age range 28–66 years, mean age 55 years,

SD5 11.1 years) with no neurologic or audiovestibular disease were

also recruited. All participants and healthy controls had normal or

corrected normal visual acuity. No participants had any TMS

contraindication.

Standard protocol approvals, registrations, and patient
consents. All participants provided written informed consent in

accordance with the requirements set out by the local ethics com-

mittee, which approved the study.

Visual cortical assessment with TMS. TMS was used to

assess V1/V2 excitability with perception-based phosphene

measures. Phosphenes are illusory flashes of light that can be

elicited via direct stimulation of the occipital cortex and reflect the

underlying cortical excitability.22–24 We applied single biphasic

TMS pulses (Magstim 200 stimulator, Magstim Co, Whitland,

UK) using a 70-mm butterfly-shaped coil over V1/V2. The coil

position was localized via a functional method as previously

described.25,26 Initially, we placed the coil centrally over the inion

with the coil handle turned laterally, and if required, we moved

the coil dorsally in 1-cm incremental steps until a bright, sta-

tionary, midline phosphene was perceived by the partici-

pant.19,20,27,28 All participants were naive to the hypothesis but

were told that the purpose of the experiment was to investigate

changes in the visual part of the brain after the complete loss of

inner ear balance function. All participants underwent a short

standardized training session in darkness to familiarize them with

phosphene detection.23 In this familiarization session, partic-

ipants were informed that after the stimulus (i.e., TMS pulse)

they may detect a phosphene and were asked to describe its shape,

size, intensity, and location on an imaginary clock face,28 the last

additionally monitoring accurate coil position. After localization,

the coil was secured in place with rigid clamps for the remainder

of the experiment. The participant’s head was also secured with

both a chin rest and foam ear pads (figure 1).

Establishing TMS visual cortical thresholds. We estab-

lished TMS thresholds using a modified binary search paradigm

that allowed us to determine the TMS intensity required to elicit

a phosphene 50% of the time during a trial sequence. This par-

adigm is an adaptive procedure in which an initial TMS pulse

is given at a value representing the bisection of an initial upper

Figure 2 Baseline cortical excitability

(A) Baseline phosphene thresholds in patients with bilateral vestibular failure (BVF; black bar) or healthy controls (gray bar)
presented in percent of the maximum transcranial magnetic stimulation (TMS) stimulator output. As shown, patients had
significantly higher baseline thresholds, i.e., needed higher-intensity TMS to elicit a phosphene, compared to healthy con-
trols. Error bars denote standard error. *Significant at p , 0.05. (B) Relationship between oscillopsia symptom score as
assessed with the validated questionnaire10 on the x-axis and the baseline phosphene thresholds presented in percent of
the maximum stimulator output on the y-axis. Higher oscillopsia scores were associated with lower phosphene thresholds.
The circled data points belong to the patients with BVF with the visual motion-induced disappearing phosphene
phenomenon (see Results).
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and lower boundary pair. These boundaries are continually up-

dated on the basis of the participant’s prior response to each

TMS pulse (i.e., a positive subjective response shifts the boundary

downward, whereas a negative response shifts the boundary

upward). Determination of the threshold is made when the par-

ticipant makes 3 consecutive alternative choices. Once deter-

mined, we proceed to ascertain its accuracy by applying 20

TMS pulses, each separated by 6 seconds. In response to each

pulse, participants were required to provide a binary response

(i.e., either yes or no) to whether they perceived a phosphene. If

the established threshold was correct, we observed between 8 and

12 yes responses. If the responses fell outside this range, the thresh-

old was re-established.20,28 (In the present study we did not asses

late visual cortex excitability [V5/MT] because of the associated

difficulties of perceiving moving phosphenes during visual motion.)

Experimental protocol. Both threshold detection (above) and

the visual motion adaptation experiment (figure 1) took place in

dim lighting with eyes open. Participants were seated and sur-

rounded by an 1.44-m-diameter drum that consisted of black and

white vertical stripes (i.e., optokinetic stimulus) at 0.1 cycle per

degree viewed at a fixed distance of 0.72 m (subtending a 308 field

of view), as depicted in figure 1.20 The drum was either stationary

during baseline or moving rightward at 308/s during both the

preadaptation and motion adapted conditions. We used only

rightward motion because previous work has demonstrated no

directional differences of motion on cortical excitability.20 Par-

ticipants viewed the drum through a pair of goggles fixed to the

chair to restrict peripheral visual field and hence illusory sensa-

tions of self-motion called vection (googles were removed during

the 5-minute adaptation phase).20 To further ensure that partic-

ipants did not develop vection during visual motion viewing,

participants planted their feet on the solid ground to reassure

them that they were stationary.29 Eye movements were recorded

with horizontal electro-oculography (figure 1).

Questionnaires. All patients completed a validated oscillopsia

scale questionnaire10 to assess the functional status and disability

secondary to oscillopsia. The scale required modification for 1

patient with orthopedic comorbidities that interfered with the

mobility part of the questionnaire. The modification to the ques-

tionnaire for this patient was performed blindly by a consultant

neurologist involved in the design of the original oscillopsia ques-

tionnaire (A.B.).

Data analysis. Results were analyzed offline by calculating the

probability of phosphene perception. For example, if a participant’s

50% baseline threshold [TMS intensity producing p (l) 5 0.5 at

baseline, i.e., 10 of 20 yes responses] increased to p (l)5 0.7 (14

of 20 yes responses), that would reflect a 20% increase in visual

cortical excitability. Statistical analysis was performed with SPSS

22 (SPSS, Inc, Chicago, IL).

RESULTS During establishment of baseline phos-
phene thresholds, we observed that patients with
BVF required a higher level of maximum stimulator
output to reach threshold compared to healthy con-
trols. In patients, the stimulator intensity required
to reach threshold was 69% of the maximum output
(SD 5 14.2) compared to 57% in healthy controls
(SD5 11.6) (p5 0.02, independent-samples t test;
figure 2A). In the patient group, we observed
a relationship between oscillopsia symptom load and
baseline TMS thresholds in that those patients with
high thresholds (i.e., low V1/V2 excitability) were
found to be symptomatically less troubled by
oscillopsia compared to those patients with higher
visual cortical excitability (i.e., lower thresholds;
R2 5 20.654, p 5 0.02; figure 2B).

Having established the TMS (50%) thresholds,
we now turn to the results of the visual motion adap-
tation paradigm. As expected, we observed no differ-
ences between patients and healthy controls during
baseline measures, indicating that the thresholds pre-
viously obtained were consistent (p . 0.05, t test;
figure 3). We then proceeded to investigate the effects
on visual cortical excitability during motion and after
visual motion adaptation. We observed that in pa-
tients the probability of phosphene perception
decreased during both preadaptation and postadapted
conditions compared to baseline (static) measures.
Conversely, in the healthy controls, we observed that
during preadaptation, the probability of perceiving
a phosphene increased, whereas after motion adapta-
tion, the probability of perceiving a phosphene
decreased (i.e., postadapted; figure 3).

We performed a 2 3 3 analysis of variance to
examine the variation of phosphene perception with
1 within-subject factor (motion condition, 3 levels:

Figure 3 Changes in cortical excitability during and after visual motion

Results from the visual motion adaptation paradigm. On the x-axis are the different measure-
ment conditions, namely baseline, motion preadapted, and motion adapted; the probability of
perceiving a phosphene is shown on the y-axis. Red line reflects the trend observed in
healthy controls; blue line reflects the trend observed in patients. There were no differences
in the probability of perceiving a phosphene at baseline between healthy controls and aves-
tibular patients, but there was a significantly lower probability of perceiving a phosphene
during both the motion preadapted and motion adapted conditions in avestibular patients
compared to healthy controls. Error bars denote standard error.
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baseline, motion preadaptation, and motion adapted)
and 1 between-subject factor (group: healthy controls
vs avestibular patients). We observed a main effect of
group (F1,115 8.16, p5 0.009) and condition (F2,225
3.23, p 5 0.049). There was also a condition 3

group interaction (F2,22 5 4.53, p 5 0.016). Post
hoc t tests revealed no difference between the groups
during baseline (patients: mean 5 0.48, SD 5 0.09;
healthy controls: mean 5 0.52, SD 5 0.06, p 5

0.18); however, there was a difference between pa-
tients and healthy controls during both motion pre-
adaptation (patients: mean 5 0.32, SD 5 0.32;
healthy controls: mean 5 0.61, SD 5 0.10, p 5

0.009) and motion adapted (patients: mean 5

0.29, SD 5 0.29; healthy controls: mean 5 0.50,
SD 5 0.14, p 5 0.043) conditions (figure 3).

Given the drop in the phosphene perception in
patients with BVF during visual motion onset, we
proceeded to inspect the data more closely. We iden-
tified a subset of avestibular patients in whom it was
not possible to elicit phosphenes during visual motion
(i.e., the preadaptation and motion adapted condi-
tions) despite the fact that in the baseline condition
there was no difference in the ability to perceive phos-
phenes. Thus, we probed this motion-induced “dis-
appearing phosphene” phenomenon further by
calculating each participant’s percentage change in
phosphene perception (probability of yes/no re-
sponses) from the baseline to the preadaptation

condition to assess the distribution of patient re-
sponses. We identified 6 patients who fell outside 3
SDs of the mean of the rest of the patients (n 5 6)
and all the controls (figure 4A). Furthermore, we
investigated the relationship between motion-
induced percentage change in phosphene perception
and oscillopsia scores and observed that patients with
disappearing phosphenes during motion had lower
symptom scores compared to patients with persisting
phosphenes during visual motion (R2 5 0.48, p ,

0.01 Pearson correlation; figure 4B).
Finally, the mean slow-phase velocity of the opto-

kinetic nystagmus was 268/s. No relationship
between optokinetic slow-phase velocity and phos-
phene perception was observed in any of the experi-
mental conditions (p . 0.05), as previously reported
in normal controls.20

DISCUSSION In this study, we probed the neuro-
physiologic mechanisms that underpin adaptation
(subjective improvement) to oscillopsia in avestibular
patients. We observed that patients with BVF have
a less excitable early visual cortex at baseline com-
pared to healthy controls. Moreover, we observed that
individual baseline cortical thresholds (V1/V2) were
found to be correlated with the degree of functional
disability associated with the oscillopsia. That is, less
symptomatic (i.e., better adapted) patients had a less
excitable visual cortex compared to more functionally

Figure 4 Changes in cortical excitability from baseline to motion

(A) The y-axis shows the percent change in the probability of perceiving a phosphene from baseline to the motion pre-
adapted condition. Blue shaded areas represent the healthy controls with an error bar of 3 SDs. The change for each patient
is represented by the red squares. Patients with disappearing phosphenes during visual motion onset fell outside the 3 SDs.
(B) The relationship between the percent change in the probability of perceiving a phosphene from the baseline to themotion
preadapted condition on the x-axis and the oscillopsia symptom score on the y-axis. BVF 5 bilateral vestibular failure.
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impaired patients (i.e., poorly adapted, higher cortical
excitability). This initial finding suggests that every-
day exposure to excessive retinal slip initiates a corti-
cally mediated compensatory process, resulting in
downregulation of V1/V2 excitability, similar to that
observed in healthy controls after prolonged visual
motion adaptation19,20 and during involuntary eye
oscillations.30 Given that such downregulation of
excitability correlates with the oscillopsia question-
naire scores, the findings indicate that background
visuo-cortical excitability levels may partly mediate
clinical recovery.

We then proceeded to examine the effects of
a visual motion adaptation paradigm on V1/V2 excit-
ability before and after adaptation. During visual
motion (before adaptation), we observed a significant
decrease in phosphene perception in patients, whereas
contrastingly, we observed an increase in healthy con-
trols. This finding in healthy controls is in agreement
with our previous findings that we attributable to
a nonspecific effect (i.e., generalized arousal or atten-
tion) in response to visual motion.19,20 Further group
differences in cortical excitability between patients
and healthy controls were found after adaptation. In
healthy controls, cortical excitability was reduced,
which again is in line with our previous reports in
young healthy controls,20 whereas in patients we
observed no differences in cortical excitability when
comparing the preadaptation and motion adapted
conditions. Hence, our results illustrate a dissociation
in behavior when comparing participants with and
without vestibular function. We postulate that the
dissociations observed may be attributable to the 2
following non–mutually exclusive explanations: there
is a preexisting cortical adaptation induced by the
constant retinal image slippage and oscillopsia in
patients,19,20 and avestibular patients are desensitized
to the influence of further visual motion,5,13 i.e.,
a ceiling effect.

As mentioned, post hoc inspection of the patient
data revealed a subset of patients who did not perceive
phosphenes during visual motion (disappearing phos-
phenes). To confirm that this was not attributable to
a technical artifact (i.e., coil or head movement), we
recalled 2 patients from this subgroup and repeated
the experiment. Once again, we observed the rapid
disappearance of the phosphenes during visual
motion within 10 to 15 seconds to values ,5% of
those observed in the first experimental session.
Moreover, in these 2 patients, we further increased
the stimulator intensity output by 10% above their
individual stimulator thresholds (close to the maxi-
mum possible stimulator output) during visual
motion, but this did not allow the visualization of
phosphenes. Ten seconds after the motion had
ceased, both patients could once again perceive

phosphenes at threshold. Notably, these 6 patients
exhibited a unique characteristic (figure 1B) in that
they had significantly higher baseline thresholds of
the early visual cortex compared to those patients
with persisting phosphenes and were less functionally
impaired by the oscillopsia.

Accordingly, centrally mediated oscillopsia adap-
tation after BVF may occur by downregulation of
V1/V2 cortical excitability. Moreover, we speculate
that it is possible that a similar cortical mechanism
may be active for the reduction of oscillopsia sec-
ondary to excessive eye movements such as congen-
ital nystagmus and nystagmus secondary to
brainstem disease.30–32 In addition, more marked
suppression of cortical excitability is associated with
enhanced functional recovery from oscillopsia and
reduced cortical responsiveness to visual motion.
Accordingly, patients with oscillopsia may benefit
from enhanced rehabilitation with repeated visual
motion paradigms to reduce cortical excitability,
which in turn improves functional outcome. Our
results may have potential future clinical implica-
tions for patient treatment via implementation of
pharmacologic or electric neuromodulation of
visuo-cortical excitability levels.
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