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group had similar stability decrease in lateral direction dur-
ing balance perturbations (p = 0.013). Statistically, the sta-
bility decreases were similar with eyes closed and open, 
but proportionally larger with eyes open in both directions. 
Both groups manifested significant adaptation (p ≤ 0.023) 
to the balance perturbations in anteroposterior direction, 
though this adaptation process could not compensate for the 
general stability deficits caused by ELBW on postural con-
trol. Hence, adolescent survivors of ELBW commonly suf-
fer long-term deficits in postural control, manifested as use 
of substantially more recorded energy on performing sta-
bility regulating high-frequency movements and declined 
stability with closed and open eyes both in anteroposterior 
and lateral direction. The determined relationship between 
premature birth and long-term functional deficits advocates 
that interventions should be developed to provide preven-
tive care in neonatal care units and later on in life.

Keywords  Low birth weight · Postural control · 
Childhood · Adaptation · Vision

Introduction

Through modern technical interventions and trained health-
care personnel, the survival rate of preterm-born infants has 
gradually improved over the last decades (Aylward 2005). 
This increase, especially of the survival rate of infants 
born with extremely low birth weight (ELBW ≤ 1000 g), 
has emphasized the necessity to learn more about this 
group’s neurophysiological development into adolescents 
and adulthood (Georgsdottir et  al. 2013). ELBW infants 
have elevated risk of suffering a number of deficits related 
to delayed neurodevelopment of the central nervous sys-
tem (CNS) and from brain injuries (Samsom and de Groot 

Abstract  The survival rates of infants born preterm 
with extremely low birth weight (ELBW ≤  1000 g) have 
gradually improved over the last decades. However, these 
infants risk to sustain long-term disorders related to poor 
neurodevelopment. The objective was to determine whether 
adolescents born with ELBW have decreased postural con-
trol and stability adaptation. Twenty-nine ELBW subjects 
performed posturography with eyes open and closed under 
unperturbed and perturbed standing by repeated calf vibra-
tion. Their results were compared with twenty-one age- and 
gender-matched controls born after full-term pregnancy. 
The ELBW group had significantly decreased stability 
compared with controls in anteroposterior direction, both 
during the easier quiet stance posturography (p  =  0.007) 
and during balance perturbations (p = 0.007). The ELBW 

H. Petersen (*) · A.‑T. Tulinius · E.‑J. Einarsson · Á. Haraldsson 
Faculty of Medicine, University of Iceland, 101 Reykjavík, 
Iceland
e-mail: hpet@hi.is

H. Petersen 
Department of Otorhinolaryngology, Landspitali University 
Hospital, Reykjavík, Iceland

I. Georgsdóttir 
The State Diagnostic and Counseling Centre, Kópavogur, Iceland

M. Patel · P.‑A. Fransson 
Department of Clinical Sciences, Lund University, Lund, Sweden

M. Patel 
Department of Neuro‑Otology, Imperial College London, 
London, UK

Á. Haraldsson 
The Childrens Hospital Iceland, Landspitali University Hospital, 
Reykjavík, Iceland



1652	 Exp Brain Res (2015) 233:1651–1662

1 3

2001). However, many of these disorders are commonly 
difficult to detect in early life, so numerous symptoms may 
remain undetected until school age (Georgsdottir et  al. 
2012). Hence, by determining likely relationships between 
levels of premature birth and deficits in neurodevelopment 
and in cognitive and physical functions, intervention meth-
ods can be developed to provide the correct preventive care 
in neonatal care units and later on in life (van Lunenburg 
et al. 2013).

Birth weight is one of the most common markers to 
rate the degree of premature birth. Infants born with low 
birth weight (LBW  <  2500  g) are generally born before 
37  weeks gestational age (Ritchie and McClure 1979), 
whereas infants born with extremely low birth weight 
(ELBW ≤ 1000 g) are mostly born before 34 weeks ges-
tational age. The most frequent deficits found after ELBW 
infancy are moderate-to-severe mental retardation, sensori-
neural hearing loss, blindness, cerebral palsy (CP) and epi-
lepsy. Infants born with ELBW have a 20–25 % incidence 
of these disabilities (Halsey et al. 1996; Bennett and Scott 
1997; Aylward 2005), whereas full-term-born infants have 
a 5  % incidence (Paneth 1995). Other common disorders 
that might be difficult to detect before school age are learn-
ing disorders, attention deficiency hyperactivity disorder 
(ADHD), behavioral problems, sensory and motor system 
underdevelopment and reduced muscle strength (Sam-
som et al. 2002; Foulder-Hughes and Cooke 2003). It has 
been estimated that as many as 50–70  % of infants born 
≤1500  g (VLBW) suffers one or several dysfunctions of 
a severity that tends to increase with smaller birth weight 
(O’Callaghan et al. 1996; Goyen et al. 1998; Taylor et al. 
2000). Brain structures involved in fine motor control such 
as the cerebellum, basal ganglia, corpus callosum, amyg-
dala and hippocampus are smaller in infants born preterm, 
even without apparent early brain damage (Maalouf et  al. 
1999; Peterson et al. 2000; Allin et al. 2001; Ferriero 2004; 
Brandt et al. 2005).

In children, the somatosensory, visual and vestibular 
systems are in a state of development, which may make 
these systems more susceptible to neurological long-term 
damage from unfavorable conditions in childhood (Kovacic 
and Somanathan 2008). For example, when visual field def-
icits occur in both eyes and overlap, the corresponding part 
of the visual cortex may no longer be appropriately stimu-
lated, which in turn can influence the long-term develop-
ment of the retinotopic organization of the visual cortex 
(Boucard et  al. 2009). Hence, modified or absent stimu-
lation of important cortical areas in childhood may affect 
long-term development.

The ability to maintain an upright stance is extensively 
dependent on capability to perform fine and complex 
motor control. The neural systems that regulate postural 
control continually integrate sensory information from 

visual, vestibular, proprioceptive and mechanoreceptive 
sensors and coordinate multiple motor outputs to muscles 
throughout the body (Lockhart and Ting 2007). One key 
component for postural control is the ability to adjust the 
motor programs and reflexive actions to stability-condition 
changes (Johansson and Magnusson 1991). The stability 
enhancement gained from this adaptive process depends 
upon the ability of the CNS to continually select the most 
accurate and important sensory information from the con-
fluence of signals received and proper process and integrate 
this information to get the best representation of body posi-
tion and movement (Fransson 2009).

A common method used to study complex sensorimo-
tor neurophysiological functions such as postural control 
is posturography with active balance perturbations. The 
balance perturbations make it easier to detect deficits and 
limitations in a subjects’ stability regulation (Johansson 
and Magnusson 1991). A well-known method to produce 
balance perturbations is to disrupt the somatosensory infor-
mation by applying vibration against muscles or tendons 
important for standing (Popov et al. 1996). Such vibration 
simultaneously increases the afferent signals from the mus-
cle spindles and creates a proprioceptive illusion that the 
vibrated muscle is being stretched. The responses thereafter 
are intended to return the vibrated muscle to its perceived 
original length (Goodwin et  al. 1972). Calf muscle vibra-
tion typically increases movements bidirectionally, though 
generally more in anteroposterior direction than in lateral 
direction (Eklund 1973). When repeated, balance perturba-
tions normally initiate an adaptive process, which decreases 
the necessary responsive movements and enhances the sta-
bility when the person learns to predict the characteristics 
of the destabilizing illusory effects and set their balance 
system to minimize these effects (Corna et al. 1999; Frans-
son 2009).

To date, it is largely unknown whether adolescents born 
with ELBW have a normal postural control with proper-
ties allowing them effective handling of balance perturba-
tions and operative stability control adaptation. In contrast 
to previous reports, this study aims to investigate postural 
control later in life when the balance control development 
should be completed and, therefore, more likely reflect the 
long-term conditions these ELBW subjects will live under 
as adult (Assaiante et al. 2005).

Our hypothesis is that postural stability likely is 
decreased in adolescents born with ELBW, particularly 
with eyes open since the visual and oculomotor systems are 
known to be affected by ELBW at 6–7 years of age (Atkin-
son and Braddick 2007). We also hypothesize that postural 
adaptation is affected after ELBW birth, as postural adapta-
tion depends upon attention and fine motor control (Patel 
et al. 2008). Detecting these derivatives from normal may 
improve the awareness of how complex the deficit pattern 
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might be after ELBW birth, promoting that better interven-
tion methods are designed to improve the general health 
and well-being of individuals born with ELBW.

Materials and methods

Subjects

The total number of births and survival of ELBW 
(<1000  g) preterm infants in Iceland in the years 1991–
1995 was obtained from the National Hospital Birth reg-
istry in Iceland. Exclusion criteria for participation in the 
study were mental retardation, sensorineural hearing loss 
and blindness, cerebral palsy and epilepsy. From the origi-
nal group, thirty-five teenagers still living in the selected 
area were eligible for participation, thereof six declined 
participation. All of the ELBW subjects were born before 
the 34-week gestation age, and 33 of the 35 subjects were 
treated with ampicillin and neomycin after birth. The final 
selectively recruited ELBW group comprised of twenty-
nine teenage participants, 25 females and 4 males of mean 
age 17.2 years old (SD 1.4 years), mean height 1.65 m (SD 
0.09 m) and mean mass 62.6 kg (SD 12.4 kg).

Twenty-one age- and gender-matched healthy partici-
pants, 18 females and 3 males of mean age 17.0 years old 
(SD 1.4 years), mean height 1.69 m (SD 0.07 m) and mean 
mass 64.7 kg (SD 7.7 kg) were recruited from local schools 
as control group for comparison. All in the control group 
were born after 37 gestational weeks and had a birth weight 
>2500 g. The control group had normal otological status, 
normal vestibular status and no history of any major injury 
or neurological disorder.

Signed consent was obtained from adult participants or 
from both the teenager and his/her parent/guardian. The 
experiments were all performed in accordance with the 
most recent Declaration of Helsinki and approved by Sci-
entific Ethical Committee and The Data Protection Author-
ity in Iceland. This study was part of a larger assessment on 
the long-term effects of preterm birth on social, neurologi-
cal and intellectual performance (Georgsdottir et al. 2012, 
2013; Jonsdottir et al. 2012).

Equipment

A custom-built force platform recorded torques and sheer 
forces with six degrees of freedom using force transducers 
with an accuracy of 0.5 N. A customized computer program 
controlled the vibratory stimulation and sampled the data 
of the individual measurements from the platform at 50 Hz. 
The vibrators had vibration amplitude of 1.0 mm and fre-
quency of 85 Hz, were 6 cm long and 1 cm in diameter and 
strapped over the gastrocnemius muscles of both legs.

Posturography assessment

Each subject stood barefoot on the force platform in a 
relaxed posture with arms folded across the chest. This pos-
ture was used to maintain consistency and to avoid inappro-
priate arm movements. The participant’s heels were 3  cm 
apart and feet positioned at an angle of 30° along guide-
lines on the platform. Participants were instructed to focus 
on a target 1.5 m in front of them at eye level or keep their 
eyes closed depending on the test condition. If the subjects 
used visual correction media such as glasses or contact 
lenses, then these were used also during the assessments. 
The participants listened to music through headphones in 
order to reduce possible movement references from exter-
nal noise sources and to avoid extraneous sound distrac-
tions (Petersen et  al. 1995). To ensure no prediction of 
the balance perturbation, all participants were naive to the 
stimulus and were not informed about the effect calf vibra-
tion would have on their balance.

The stability during the following two conditions was 
investigated in a randomized order, using a Latin Square 
design, by all subjects:

•	 Vibration of the calf muscles with eyes closed (EC);
•	 Vibration of the calf muscles with eyes open (EO).

Before the vibration commenced, a 30-s control period 
of quiet stance was recorded. The vibratory stimula-
tions were applied according to a pseudorandom binary 
sequence (PRBS) schedule (Johansson et al. 1988) during 
a period of 200 s making each trial 230 s long. The PRBS 
schedule defined the periodicity of stimulation pulses, 
where each pulse and each interval between pulses had ran-
dom time duration from 0.8  s up to 6.4  s, which yielded 
an FFT-validated effective bandwidth of the test stimulus in 
the region of 0.1–2.5 Hz. The PRBS sequence was selected 
because this randomized stimulation sequence is difficult 
to predict and therefore lessens the likelihood of preemp-
tive responses. An identical PRBS sequence was applied to 
all subjects during all tests, and the stimuli were simulta-
neously applied to the gastrocnemius muscles of both legs. 
A 5-min rest period was given to the subjects between EO 
and EC tests.

Analysis

Postural stability was measured by a force platform as 
the variance of anteroposterior and lateral torque values 
used toward the support surface. Recorded torque con-
tains the same information about movement fluctuations 
as the traditional method of calculating CoP (Patel et  al. 
2008). However, the information is presented in the form 
of energy used toward the support surface to maintain 
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stability (Johansson et al. 2009), and the data analysis pro-
cess includes that the values are always normalized before 
statistical analysis for anthropometrical variations in height 
and mass. Moreover, torque variance values correspond 
to the efficiency of standing (Riccio and Stoffregen 1988) 
(for a detailed explanation on torque and its relationship 
to standing postural control, see Patel et  al. 2008; Frans-
son 2009; Johansson et  al. 2009). The force platform 
recordings were divided into total torque variance, torque 
below 0.1  Hz (low frequency), and torque above 0.1  Hz 
(high frequency) using a fifth-order digital finite-duration 
impulse response filter, with filter components selected to 
avoid aliasing. These separations were used to distinguish 
better between smooth corrective changes of posture and 
voluntary movements (i.e., <0.1  Hz) and fast corrective 
largely reflexive movements made to maintain balance 
(i.e., >0.1 Hz) (Kristinsdottir et al. 2001). Torque variance 
values were normalized to account for anthropometric dif-
ferences between the subjects, using the subject’s squared 
height and squared weight (Johansson et  al. 2009). The 
squared nature of the variance algorithm made it necessary 
to use normalization with squared parameters to achieve 
unit agreement.

Mean values for all parameters were obtained for five 
periods for each trial condition: the quiet stance period 
(0–30  s), and from four 50-s periods (period 1: 30–80  s; 
period 2: 80–130  s; period 3: 130–180  s; period 4: 180–
230 s) during the vibration. The selection of 50-s analysis 
periods for a total of 200-s stimulation period was based on 
prior studies on how postural control is gradually affected 
by prolonged randomized vibratory proprioceptive stimu-
lation (Tjernstrom et  al. 2002). The vibration sequence 
was randomized, but each 50 s period contained a similar 
amount of long and short vibration pulses validated by 
fast Fourier transform analysis of spectral contents in the 
stimulation. Hence, the selected periods and perturbation 
sequence allowed analysis of whether the stability changed 
over time and possibly caused an adaptation to the unpre-
dictable balance perturbations.

Statistical analysis

The torque variance values during quite stance and dur-
ing balance perturbations were analyzed using repeated-
measures GLM ANOVA on log-transformed values. The 
log transformation made prior to the statistical analysis 
was done to reduce the nonnormal distribution of the data 
sets, produced partly by that the variance algorithm used in 
the data analysis includes calculating the sum of squared 
values. The main factors included in the GLM model were 
as follows: the effect of preterm ELBW birth (denoted 
‘ELBW’: yes or no [degrees of freedom (df) =  1], avail-
ability of visual information (‘Vision’: eyes closed or eyes 

open; df 1) and when applicable the period of vibration 
(‘Period’: periods 1–4; df 3).

The Mann–Whitney test (Altman 1991) was used for the 
post hoc statistical comparisons between groups. The Wil-
coxon matched-pairs signed-rank test (Altman 1991) was 
used for the post hoc statistical analysis of stability varia-
tions over time, i.e., the torque variance changes between 
Period 1 and Period 4 were evaluated to determine how 
assessed stability was affected by repeated vibratory stim-
ulation, quantifying the accumulated effects of adaptation 
(Patel et al. 2008). In the analysis, p values <0.05 were con-
sidered statistically significant.

Results

Quiet stance stability

The GLM ANOVA of the quiet stance stability in anter-
oposterior direction showed that the ELBW subjects 
had poorer stability compared with healthy controls as 
reflected by significantly higher total (p = 0.007, +53 %), 
low-frequency (p  =  0.018, +83  %) and high-frequency 
(p  =  0.022, +38  %) torque variance (Table  1). Vision 
increased anteroposterior stability in both the ELBW group 

Table 1   Statistical evaluation of torque variance values, reflecting 
the energy used during quiet stance toward the supporting surface, 
comparing subjects born with ELBW with controls

The notation “<0.001” means that the p value is smaller than 0.001. 
Values in bold show p values <0.05, and values in bold italic show p 
values <0.1. F values are presented within the squared parenthesis. 
The interaction values between main factors ELBW and vision are 
presented in the column denoted ELBW × vision

Torque variance p values

Quiet stance ELBW Vision ELBW × vision

Anteroposterior

 Total 0.007 [7.8] 0.033 [4.8] 0.794 [0.1]

 <0.1 Hz 0.018 [6.0] 0.403 [0.7] 0.247 [1.4]

 >0.1 Hz 0.022 [5.6] <0.001 [30.2] 0.170 [1.9]

Lateral

 Total 0.055 [3.9] 0.646 [0.2] 0.198 [1.7]

 <0.1 Hz 0.418 [0.7] 0.068 [3.5] 0.966 [0.0]

 >0.1 Hz 0.009 [7.3] 0.236 [1.4] 0.057 [3.8]

Fig. 1   Anthropometrical height and mass-normalized values for a 
total torque variance, b low-frequency torque variance and c high-
frequency torque variance with eyes closed and eyes open (mean 
and SEM) for subjects born with ELBW (n  =  29) and for con-
trols (n  =  21). The figures present the statistical findings made in 
the repeated-measures GLM ANOVA post hoc evaluation of the 
main factor ELBW. #p  <  0.1 (trends), *p  <  0.05, **p  <  0.01 and 
***p < 0.001

▸
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and controls, i.e., significantly reduced, total (p =  0.033, 
−32  %) and high-frequency (p  <  0.001, −40  %) torque 
variance. No significant interaction was found in the GLM 
ANOVA between the main factors investigated.

The analysis of quiet stance stability in lateral direction 
showed that the ELBW subjects had poorer stability also in 
this direction compared with healthy controls as reflected 
by significantly higher high-frequency torque variance 
(p  =  0.009, +48  %) (Table  1). Vision did not improve 
the quiet stance stability in lateral direction, and no sig-
nificant interaction was found between the main factors 
investigated.

The post hoc group-wise analysis of the GLM ANOVA 
findings confirmed generally poorer quiet stance stability in 
the anteroposterior direction in the ELBW group compared 
with controls, both with eyes closed and eyes open (Fig. 1). 
The analysis also confirmed decreased quiet stance stability 
in lateral direction in the ELBW group, though here only 
during tests standing with eyes open.

Perturbed stance stability

The GLM ANOVA showed that the ELBW group had 
poorer stability compared with controls in anteroposte-
rior direction, as reflected in significantly higher total 
(p  =  0.007, +78  %) and high-frequency torque variance 
(p = 0.003, +127 %) (Table 2). Vision increased stability 
in both groups, i.e., significantly reduced total (p < 0.001, 
−34 %), low-frequency (p = 0.043, −16 %) and high-fre-
quency torque variance (p < 0.001, −44 %). The significant 
Period factor of total (p  <  0.001, −35  %), low-frequency 
(p  <  0.001, −51  %) and high-frequency torque variance 
(p < 0.001, −21 %) shows that when repeated, the balance 
perturbations caused a lower stability challenge over time 
in both groups. Furthermore, the significant interaction 
between vision and period for high-frequency torque vari-
ance (p = 0.036) shows that the increase in stability over 
time was larger with eyes closed (−30 %) than with eyes 
open (−12 %) (see also Table 4).

In a further analysis of the effects of ELBW, the data 
were analyzed for eyes closed and eyes open tests sepa-
rately (Table 3). With eyes closed, the ELBW subjects had 
poorer stability compared with healthy controls, reflected 
by significantly higher total (p = 0.017, +59 %) and high-
frequency torque variance (p = 0.012, +69 %). Addition-
ally, the Period factor shows that the balance perturbations 
caused a lower stability challenge over time in all spectral 
categories, i.e., total (p  <  0.001, −39  %), low-frequency 
(p  <  0.001, −53  %) and high-frequency torque variance 
(p < 0.001, −30 %), in both groups. With eyes open, the 
findings were largely the same as with eyes closed, though 
the differences between groups were proportionally larger. 
The ELBW subjects had poorer stability compared with 

healthy controls, as reflected by significantly higher total 
(p  =  0.013, +97  %) and high-frequency torque variance 
(p =  0.006, +185  %). However, as shown by the Period 
factor, the stability adaptation over time with eyes open 
was effective only on total (p = 0.002, −30 %) and low-
frequency torque variance (p < 0.001, −50 %).

The analysis of the stability in lateral direction showed 
that the ELBW group, during balance perturbations, had 
poorer stability compared with controls as reflected in 
significantly higher total (p  <  0.013, +84  %) and high-
frequency torque variance (p  <  0.001, +93  %) (Table  2). 
Vision increased stability in both groups, i.e., significantly 
reduced total (p  <  0.001, −25  %) and high-frequency 
torque variance (p  <  0.001, −37  %). The nonsignificant 
Period factor shows that the balance perturbations caused 
about the same stability challenge over time.

In the further analysis of the effects of ELBW, sepa-
rately for eyes closed and eyes open, some findings were 
different from those found in anteroposterior direction 
(Table 3). With eyes closed, the ELBW subjects had poorer 
stability compared with healthy controls, as reflected by 
significantly higher total (p  =  0.030, +83  %) and high-
frequency torque variance (p = 0.004, +74 %). However, 
the nonsignificant Period factor shows that the repeated 
balance perturbations caused no stability improvements 
from adaptation as found in anteroposterior direction. With 
eyes open, the ELBW subjects had also poorer stability, as 
reflected by significantly higher total (p = 0.011, +85 %) 
and high-frequency torque variance (p < 0.001, +112 %). 
Again, however, the nonsignificant Period factor shows 
that the repeated balance perturbations caused no stability 
improvements from adaptation.

The post hoc group-wise analysis confirmed poorer sta-
bility in anteroposterior direction in the ELBW group com-
pared with controls during balance perturbations both with 
eyes closed and eyes open during most periods, though 
the differences between groups were somewhat more pro-
nounced with eyes open (see Fig. 1). The post hoc group-
wise analysis of the lateral data revealed that also the lat-
eral stability was poorer in the ELBW group both with eyes 
closed and eyes open during most periods, though again 
the differences between groups were statistically more pro-
nounced with eyes open.

Adaptation capacity

The analysis of the adaptation ability showed that healthy 
controls did significantly adapt to the balance perturbations 
in anteroposterior direction, as reflected in reductions of 
the measured torque variances in all frequency spectra with 
eyes closed (p ≤  0.014) and with eyes open (p ≤  0.023) 
(Table 4). The ELBW group also showed significant adap-
tation in all frequency spectra with eyes closed (p ≤ 0.008) 



1657Exp Brain Res (2015) 233:1651–1662	

1 3

and with eyes open (p ≤ 0.004), though the average quan-
titative improvements gained through adaptation tended to 
be smaller in the high-frequency range and larger in the 
low-frequency range compared with controls especially 
with eyes open.

When investigating the adaptation ability in lateral direc-
tion, neither healthy controls nor the ELBW group showed 
significant adaptation with eyes closed or eyes open. How-
ever, an inspection of the quantitative values suggests that 
the healthy controls tend to increase the stability in lateral 
direction over time, whereas the ELBW group instead 
tended to decrease the stability over time (Table 4). None 
of these changes reached significant levels though.

Discussion

Preterm birth presents a substantial challenge for the neu-
rodevelopment of the postural control systems, because 

the infants are born with an immature and more vulner-
able motor and sensory system, and because the infants 
commonly suffer brain injuries such as periventricular 
hemorrhage and leukomalacia or ventricular enlargement 
(Schmidt et al. 2003; Fallang and Hadders-Algra 2005). As 
a result, preterm birth commonly causes dysfunctional pos-
tural control with delayed onset and poor quality of early 
walking. The functional deficits observed up to the age of 
1 year are often associated with poorer neurodevelopmental 
outcome also later at 6–7 years of age (Fallang and Had-
ders-Algra 2005), expressed as problems with standing on 
one leg, poor hopping and clumsy walking (Sommerfelt 
et al. 1993). The present study shows that functional deficits 
of postural control from ELBW are not limited to younger 
children, but persist into adolescence, i.e., the deficits per-
sist after the developmental stages of postural control are 
completed. This finding is in keeping with other recent 
reports of persistent motor control problems in adolescents 
and adults after preterm birth and VLBW (Evensen et  al. 

Table 2   Statistical evaluation of torque variance values during balance perturbations comparing subjects born with ELBW with controls

#  The repeated-measures GLM ANOVA interaction combinations not presented contained no significant results or trends. The interaction values 
between main factors vision and period are presented in the column denoted Vision × period

Torque variance p values#

Balance perturbations ELBW Vision Period Vision × period

Anteroposterior

 Total 0.007 [8.0] <0.001 [62.0] <0.001 [29.3] 0.097 [2.9]

 <0.1 Hz 0.069 [3.5] 0.043 [4.3] <0.001 [28.2] 0.275 [1.2]

 >0.1 Hz 0.003 [9.7] <0.001 [97.3] <0.001 [18.1] 0.036 [4.7]

Lateral

 Total 0.013 [6.7] <0.001 [26.9] 0.386 [0.8] 0.339 [0.9]

 <0.1 Hz 0.397 [0.7] 0.099 [2.8] 0.133 [2.3] 0.648 [0.2]

 >0.1 Hz <0.001 [12.4] <0.001 [87.9] 0.475 [0.5] 0.092 [3.0]

Table 3   Statistical evaluation of torque variance values during balance perturbations, analyzing separately the data from tests standing with eyes 
closed and eyes open

#  The interaction values between main factors ELBW and period are presented in the column denoted ELBW × period

Torque variance p values#

Eyes closed Eyes open

Balance perturbations ELBW Period ELBW × period ELBW Period ELBW × period

Anteroposterior

 Total 0.017 [6.1] <0.001 [23.3] 0.308 [1.1] 0.013 [6.7] 0.002 [11.3] 0.443 [0.6]

 <0.1 Hz 0.119 [2.5] <0.001 [14.0] 0.113 [2.6] 0.100 [2.8] <0.001 [17.1] 0.483 [0.5]

 >0.1 Hz 0.012 [6.8] <0.001 [20.0] 0.423 [0.7] 0.006 [8.2] 0.063 [3.6] 0.236 [1.4]

Lateral

 Total 0.030 [5.0] 0.242 [1.4] 0.528 [0.4] 0.011 [7.0] 0.654 [0.2] 0.309 [1.1]

 <0.1 Hz 0.593 [0.3] 0.276 [1.2] 0.269 [1.3] 0.282 [1.2] 0.246 [1.4] 0.835 [0.0]

 >0.1 Hz 0.004 [9.1] 0.172 [1.9] 0.557 [0.4] <0.001 [12.8] 0.478 [0.5] 0.337 [0.9]
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2004; de Kieviet et al. 2009). Moreover, since presence of 
CP was one of the exclusion criteria in this study, persisting 
postural control issues into adulthood was not limited only 
to subjects suffering from severe lesions such as CP from 
preterm birth, but seemingly, subjects born with ELBW 
generally perform worse than controls. The postural control 
strategies in the ELBW subjects utilized a higher-frequency 
torque variance and a movement pattern, which consumes 
much more energy. The stability deficits had similar prop-
erties with closed and open eyes and in anteroposterior and 
lateral direction. However, the deficits were proportionally 
more pronounced versus controls with eyes open. Moreo-
ver, the stability decline was apparent already during the 
easier quiet stance posturography but more marked when 
being exposed to straining balance perturbations.

Decreased postural control has previously been reported 
after preterm birth with VLBW with eyes open and closed, 
though in that study the differences found were small com-
pared with a control group born after full-term pregnancy 
(Kluenter et al. 2008). Moreover, the study was performed 
on VLBW children of 7  years of age without major neu-
rological disorders. The postural control systems are gen-
erally not fully developed before 12  years of age (Assa-
iante et  al. 2005), so the properties of postural control in 

adolescence and adulthood and thus the full extent of defi-
cits experienced after completed development might not be 
discernible while the development still is ongoing, as is the 
case in young children.

One circumstance that should be noted is that females 
markedly dominated the ELBW group, and 25 out of 29 
ELBW subjects were girls. Whether this was an effect 
of random local variations or that females do dominate 
among those who survive birth of extremely low weight is 
an aspect that merits more research. The practical conse-
quences on the assessments and statistical analysis of the 
gender imbalance were addressed by performing anthro-
pometrical normalization of all recorded data before sta-
tistical analysis and by comparing all results to a gender-
matched control group. However, the gender imbalance 
may still have implications on the findings presented, in 
that the results might not accurately reflect the performance 
of males ELBW.

ELBW and postural control adaptation

The ability to adapt and habituate based on prior experi-
ences is important for human movement control, fall pre-
vention (Eccles 1986; Fransson et  al. 2003) and for the 
ability to enhance the performance during various human 
activities (Horak and Nashner 1986; Keshner et al. 1987). 
Postural control adaptation including optimizing integra-
tion of information from the visual, vestibular and soma-
tosensory receptors and motor coordination are complex 
processes, especially when information from any of the 
sensory systems is not reliable (Redfern et al. 2001). Neu-
rophysiological data associated with postural control tasks 
at young age indicate a reduced capacity to modulate the 
postural activity, which has been characterized by temporal 
disorganization of EMG responses (Fallang and Hadders-
Algra 2005). Moreover, during the last months of preg-
nancy, the cerebellum goes through a vital phase in which 
the hierarchy of motor activities and mechanisms that influ-
ences and maintains motor control is laid down (Brodal 
1998). Animal studies have also shown a reduction in the 
number of pyramidal cells in the hippocampus and Purkinje 
cells in the cerebellum (Mallard et al. 2000) and disturbed 
myelination of oligodendrocytes (Tolcos et al. 2011).

In this study, the adolescent ELBW subjects displayed 
an active and effective adaptation of postural control to the 
artificial balance perturbations, achieving the same propor-
tional enhancement of stability as observed in the control 
group. This finding suggests that the cerebellar and the 
other CNS structures used for short-term enhancements 
of motor programs and adjustments of reflexive stability 
responses may still largely be intact after premature birth. 
However, these adaptation processes had seemingly not 
the capacity or properties suitable to compensate for the 

Table 4   Statistical differences and the torque variance changes in 
percent found between vibration period 1 and vibration period 4 with 
eyes closed and eyes open for subjects born with ELBW and for con-
trols

The changes in percentage are presented within the squared parenthe-
sis, where (−) represent a reduction of the energy used over time and 
(+) an increase over time. The tables present the statistical findings 
made in the post hoc evaluation of the main factor period

P1 versus P4 Eyes closed Eyes open

Anteroposterior adaptation

Controls

 Total <0.001 [−38 %] 0.007 [−34 %]

 <0.1 Hz 0.014 [−41 %] 0.023 [−44 %]

 >0.1 Hz <0.001 [−38 %] 0.010 [−23 %]

ELBW

 Total 0.001 [−40 %] 0.002 [−26 %]

 <0.1 Hz <0.001 [−65 %] <0.001 [−56 %]

 >0.1 Hz 0.008 [−23 %] 0.004 [−1 %]

Lateral adaptation

Controls

 Total 0.166 [−10 %] 0.176 [−14 %]

 <0.1 Hz 0.276 [−12 %] 0.325 [−27 %]

 >0.1 Hz 0.100 [−12 %] 0.627 [−2 %]

ELBW

 Total 0.666 [+3 %] 0.882 [+23 %]

 <0.1 Hz 0.339 [+37 %] 0.481 [+11 %]

 >0.1 Hz 0.766 [−14 %] 0.498 [+22 %]
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deficits causing the general decline of postural control. 
Moreover, though it could not be confirmed statistically on 
group level, some individual ELBW subjects had marked 
difficulties to control and enhance the stability using adap-
tation in lateral direction, mostly with eyes open.

ELBW and vision

Vision generally provides a robust source of reliable sta-
bility information to postural control. The present study 
shows that ELBW subjects utilize visual information 
to improve stability, confirming that visual information 
served a vital role for enhancing postural control (Le 
and Kapoula 2008). However, although vision improved 
the stability, the ELBW subjects performed noticeably 
poorer compared with controls with eyes open than with 
eyes closed. Moreover, the relatively poorer stability with 
eyes open was apparent already during the easier quiet 
stance posturography but more pronounced when being 
exposed to straining balance perturbations. During quiet 
stance, the ELBW subjects used in anteroposterior direc-
tion on average only 3  % more energy with eyes closed 
compared with controls. However, the differences between 
groups increased to 73  % with eyes open. During bal-
ance perturbations, the corresponding differences between 
groups were 69 % with eyes closed and 185 % with eyes 
open. Hence, although visual information improved stabil-
ity, this additional information seemed to be used far less 
effective to enhance postural control in ELBW subjects, 
which advocate for more research to investigate in what 
ways ELBW compromises the ability to collect, analyze or 
utilize visual information for better postural control. One 
possible explanation could be that the visual information 
quality is compromised by the common deficits among 
VLBW children and adolescents of poorer visual func-
tions, including poorer visual acuity, stereoacuity, con-
trast sensitivity and more strabismus than controls (Powls 
et  al. 1997; Evensen et  al. 2009). Moreover, one of the 
common morbidities with premature birth is severe retin-
opathy, which to various degree may affect vision and in 
worst case cause blindness if not properly treated (Eckert 
et al. 2012). However, the complex combination of deficits 
observed with eyes open in this study also has many simi-
larities with those observed under severe alcohol intoxica-
tion (Modig et al. 2012), i.e., conditions under which the 
oculomotor functions are compromised (Fransson et  al. 
2010).

Spectral characteristics of ELBW subject’s postural control

From the standpoint of mechanical engineering, the fre-
quency domain characteristics of the physical actions taken 
to maintain stability may provide more detailed information 

about the properties and potential weaknesses of the move-
ment pattern used, e.g., about the contents of slow and rapid 
movements and ability to respond appropriately to balance 
perturbations. The present study revealed that primarily the 
high-frequency regulation activity of postural control was 
significantly increased in the ELBW subjects. Effective vis-
ual feedback can usually significantly reduce the require-
ments of using high-frequency movement to maintain sta-
bility, thus reducing both the energy requirement used for 
stability control and the physical strain on postural mus-
cles (Kristinsdottir et  al. 2001). The same effect was also 
found in the ELBW subjects, but vision was in these cases 
not near as effective to reduce the high-frequency activ-
ity as found in healthy controls. Similar extensive use of 
high-frequency activity with eyes open is commonly found 
among elderly with deficits in mechanoreceptive and pro-
prioceptive sensation in the feet and lower legs from factors 
such as polyneuropathy (Kristinsdottir et  al. 2001; Patel 
et al. 2009) or in subjects under severe alcohol intoxication 
(Modig et al. 2012). Hence, more research needs to be done 
to explain why ELBW subjects show the same pattern, sug-
gesting lack of or poor use of certain sensory information 
by postural control.

Postural control issues and neurological disorders

ELBW and low gestational age has been associated with 
three common morbidities: bronchopulmonary dysplasia, 
brain injury identified via ultrasound (periventricular leu-
komalacia or ventricular enlargement) and severe retinop-
athy (Schmidt et  al. 2003). However, even in the absence 
of identifiable CNS events, preterm birth is characterized 
by a potential disruption in the typical temporal and spa-
tial progression of development of brain structures. Peak 
brain growth, synaptogenesis and developmental regula-
tion of specific receptor populations (N-methyl-d-aspartate, 
AMPA, glutamate) are affected during the critical develop-
mental window that occurs around the time of premature 
birth (Huttenlocher and Dabholkar 1997; Bhutta and Anand 
2002). Therefore, the brain of the baby born prematurely 
is not organized in the same manner as that of a full-term 
infant (Ferriero 2004; Aylward 2005).

Vulnerable processes due to preterm birth include estab-
lishment and differentiation of subplate neurons, alignment, 
orientation, and layering of cortical neurons (Aylward 
2005). The subplate neuron layer is a transient structure 
that is located beneath the cortical plate and peaks in activ-
ity between 22 and 36 weeks of gestation (Back et al. 2001; 
Perlman 2003). Removal of subplate neurons profoundly 
affects cortical development and plasticity (Kanold 2009). 
This structure is important in cerebral organization because 
it is the area where growing axons from the thalamus 
and other key cortical sites “wait” because their ultimate 
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neuronal targets in the cortical plate have not yet been 
developed (Aylward 2005), and this is particularly true for 
the visual system (Kanold et al. 2003; Kanold 2009).

In MRI investigations of the brain structures in adults 
born with VLBW, the lateral ventricular volume and the 
ratio of gray to white matter were found to be significantly 
increased, the latter including widespread changes in the 
distribution of gray and white matter (Brandt et al. 2005). 
Several white matter regions, in particular the corpus cal-
losum, internal capsule and superior fasciculus have shown 
less integrity on fractional anisotropy maps in VLBW ado-
lescents compared with controls (Skranes et al. 2007). Fur-
thermore, lower IQs in children born preterm are related to 
poorer development of the caudate relative to the rest of the 
brain, independent of other lesions. These findings suggest 
that abnormal brain development after perinatal injury or 
postnatal nutritional deficits are responsible for cognitive 
deficits in preterm children (Abernethy et al. 2004) and for 
small white matter lesions (Abernethy et al. 2003).

The motor proficiency has been described as consistently 
poorer in very preterm and VLBW children than in norma-
tive samples, influencing both fine and gross motor skills (de 
Kieviet et al. 2009). However, the observable motor deficits 
may vary with age, i.e., decrease within the first years of 
development but then stabilize or increase later in develop-
ment (de Kieviet et al. 2009). Moreover, in children showing 
no apparent signs of dysfunction at a young age, functional 
deficit and motor problems may appear first with increasing 
age when the complexity of the motor tasks performed set 
higher demands on the neural functions (de Graaf-Peters and 
Hadders-Algra 2006). For example, some movement compo-
nents for the acquisition of motor abilities showed a different 
trend in the development of preterm infants when compared 
to full-term infants, e.g., the onset for the acquisition of the 
extensor and flexor patterns was slower and the distribution 
of the load bearing was less mature at 2 and 3 months of age, 
but not before (Gaetan and Moura-Ribeiro 2002). VLBW 
infants typically sit unsupported and walk later than full-term 
infants (Marin Gabriel et al. 2009). Moreover, higher weight 
and partly higher height have been identified as possible 
confounding factors increasing the risks of postural control 
problems (Evensen et al. 2004). A possible cause could be 
that the muscles produce lower strength, which may act as 
a limiting factor of activities involving the lower extremities 
(de Groot et al. 2012).
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