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ABSTRACT: Nursery grounds are valuable habitats providing sources of food and refuge 10 

during early life stages for many commercially caught marine fish. Distinguishing 11 

between different nursery grounds and identifying habitat origin using trace elemental 12 

concentrations in aragonite structures of teleost fish have proved valuable in fish ecology 13 

and fisheries. This study aimed to: (1) compare chemical signatures (elemental 14 

fingerprints) within sagittal otoliths of juvenile plaice (Pleuronectes platessa) sampled 15 

from known nursery habitats in the SE Irish Sea; and (2) assess their potential and 16 

robustness as natural tags for identifying nursery grounds for the putative SE Irish Sea 17 

plaice stock. Otoliths from 1-group juvenile plaice (6-15 cm total length) were obtained 18 

from 8 nursery grounds in coastal areas off North West England and North Wales 19 

(including Anglesey) between June and August 2008. Solution-based inductively-coupled 20 

plasma mass spectrometry determined the concentrations of 10 elements (Li, Na, Mg, K, 21 

Mn, Zn, Rb, Sr, Sn, Ba), with significant differences in otolith element composition 22 

observed between all nursery grounds. Cross-validation linear discriminant function 23 

analysis (CV-LDFA) classified fish to their nursery ground of capture (46.2% to 93.3%), 24 

with a total group CV-LDFA accuracy of 71.0%. CV-LDFA between regions (North West 25 

England and North Wales) classified fish with 82% accuracy. The discrimination of 26 

juvenile plaice from all 8 nursery grounds within the southeast Irish Sea using otolith 27 

microchemistry offers significant opportunities in the development of future effective 28 

fisheries management strategies through understanding the supply of juveniles from 29 

specific nursery grounds and adult plaice in the Southeast Irish Sea. 30 

 31 
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INTRODUCTION 34 

For many coastal fish species, the adult and juvenile life stages exhibit spatial 35 

segregation in habitat (Gillanders et al. 2003), where juveniles are often recruited into 36 

near shore nursery habitats through entrainment into surface water currents and gyres 37 

(Collas et al. 1997, Hamilton et al. 2008) and where, depending on the species, residency 38 

can vary from months to years (Vasconcelos et al. 2007, 2008) before migrating offshore 39 

to join adult populations (Brown 2006a, Fodrie & Herzka 2008). The ability to 40 

understand and track movement patterns of fish with complex life cycles is necessary if 41 

we are to estimate habitat ‘value’ in the context of new recruits to sustain the adult 42 

population (Beck et al. 2001). Furthermore, the importance of identifying which nursery 43 

areas are the most productive and their connectivity through larval and juvenile 44 

exchange should be considered if effective management protocols are to be implemented 45 

(Cowen et al. 2000, Vasconcelos et al. 2008, Cuveliers et al. 2010). However, mark and 46 

recapture studies on juvenile fish have provided some insight (e.g. Burrows et al. 2004, 47 

Pickett et al. 2004, Tupper 2007) but these methods can be labour intensive, logistically 48 

difficult to implement, with constraints including the small size of juveniles in 49 

comparison to the tags, high rates of juvenile mortality, low recapture rates and the 50 

requirement for large numbers of individuals tagged to yield meaningful results 51 

(Gillanders 2005, Brown 2006b, Herzka et al. 2009). However, techniques used to study 52 

natural tags such as trace-element chemistry in calcified structures in fishes are 53 

providing a wealth of information on population dynamics, movement patterns and early 54 

life history strategies (See reviews in Elsdon et al. 2008, Sturrock et al. 2012). 55 

The use of otolith microchemistry can be a valuable alternative to manual tagging in 56 

distinguishing between the habitats of origin in juvenile marine fishes (Thorrold et al. 57 

2001, Gillanders 2005, Brown 2006b). Due to the nature and composition of otoliths, 58 



3 

 

material deposited within the aragonite matrix is metabolically inert, not susceptible to 59 

resorption and remains unaltered after deposition (Thorrold et al. 1998, Campana 1999). 60 

Therefore, otoliths of juvenile fish that have long residency times within a particular 61 

habitat or nursery ground should reflect those physico-chemical characteristics of their 62 

surrounding environment and record a chronological record within the otolith matrix (de 63 

Pontual & Geffen 2002, Fodrie & Herzka 2008). Otolith microchemistry is proving to be a 64 

valuable natural tag in the study of fish ecology in general (Elsdon et al. 2008, Sturrock et 65 

al. 2012) and in particular, it has been successfully applied in identifying distinct otolith 66 

chemical signatures between different nursery grounds and in studying connectivity and 67 

movement patterns for a range of flatfish species (Geffen et al. 2003, Brown 2006a, b, 68 

Chittaro et al. 2009, Cuveliers et al. 2010, Nims & Walther 2014, Bailey et al. 2015). 69 

    The plaice Pleuronectes platessa is one of the most commercially important flatfish 70 

species landed by demersal fisheries in England and Wales, with populations along the 71 

west coast of the UK currently managed as either single or multiple International Council 72 

for the Exploration of the Sea divisions (ICES area VIIa and ICES areas VIIf and g, Dunn & 73 

Pawson 2002, Ellis et al. 2012). However, there is strong evidence to suggest that 74 

separate stocks exist within these divisions. Evidence of possible sub-stocks based on 75 

tagging studies identified different migratory patterns, differences in reproductive 76 

biology (fecundity, age at first maturity) and differences in growth patterns for the north 77 

eastern and western Irish Sea and within the south eastern Irish Sea (including Cardigan 78 

Bay and a small migratory contingent to the Bristol Channel and Celtic Sea) (Dunn & 79 

Pawson 2002, Fox et al. 2007, ICES 2014). 80 

Within the southeast Irish Sea, the main nursery grounds for juvenile plaice have been 81 

identified along the coastal waters of northwest England and North Wales (Dunn & 82 

Pawson 2002, Ellis et al. 2012), where the newly benthic-orientated juveniles spend 83 
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between 1 to 3 years before migrating offshore into deeper water (Nash et al. 1994, Dunn 84 

& Pawson 2002, Fox et al. 2007). In light of the commercial importance of this species, it 85 

is therefore the aim of this paper to identify whether the main plaice nursery grounds in 86 

the south-eastern Irish Sea exhibit distinct otolith microchemical signals and whether 87 

these naturally occurring chemical tags can be used to classify individual juvenile back to 88 

their nursery ground of origin. 89 

 90 

MATERIALS AND METHODS 91 

Sample Collection. Juvenile plaice (1-group) with a total length (TL) between 6 and 92 

15 cm were collected from 8 sites identified as main nursery grounds around the north 93 

coast of Wales and North West England (Dunn & Pawson 2002) during June and August 94 

2008 (Figure 1). 1-group plaice were chosen (as opposed to 0-group) to represent an 95 

integrated signal over 12 months and to account for any possible seasonal fluctuations or 96 

movements made during the first year within their chosen nursery ground. Sampling 97 

sites were selected due to their recognised importance as major nursery grounds for 98 

juvenile plaice within the putative South-East Irish Sea stock (Dunn & Pawson 2002, Fox 99 

et al. 2007). Fish were collected using two techniques: a push-net was used in water 100 

depths of < 1m; and, a nylon beach-seine net (Dimensions: depth 2.2 m cod end mesh 5 101 

mm), used in water > 1 m in depth. On capture, juvenile plaice were immediately 102 

euthanized using the Home Office Schedule 1 method and stored on ice within a portable 103 

refrigeration unit for transportation back to the laboratory where fish were frozen at -20 104 

oC until otolith extraction.  105 

Otolith Preparation. All equipment used in extraction, cleaning, and storage of the 106 

sagittal otoliths were non-metallic and pre-acid-washed in analytical grade 10% HNO3 107 

(>69% HNO3, Sigma Aldrich), triple-rinsed in ultra-pure 18 MΩ Milli-Q water (hereafter 108 
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referred to as Milli-Q) and dried under a laminar flow hood for 24 hours prior to use. 109 

Similarly, analytical tubes were prepared as outlined above with one minor alteration 110 

where they were acid-cleaned using a solution of 1% HNO3 / 0.5% HCl (both analytical 111 

grade).  To prevent the possible risk of zinc contamination, powder-free vinyl gloves 112 

(Shermond) were used during all sample procedures (Batley 1989, Friel et al. 1996, 113 

Dugan et al. 2008). 114 

A maximum of 15 fish, were collected from each of the 8 nursery grounds for otolith 115 

extraction and analysis. However, due to poor weather conditions at the time of 116 

collection, only 6 1-group plaice were caught at Hoylake. Both left and right sagittal 117 

otoliths were extracted using fine-tipped plastic forceps and cleaned of any adhering 118 

tissue using a fine-bristled nylon brush. Left and right sagittal otoliths were stored 119 

separately in 1.5 mL polypropylene micro-centrifuge tubes and dried under a laminar 120 

flow hood for 24 hours. Otoliths were immersed in a 3% hydrogen peroxide solution 121 

(30% H2O2 analytical grade) and sonicated for 5 minutes to remove organics (Brophy et 122 

al. 2003), triple-rinsed in Milli-Q and dried under a laminar flow hood for 24 hours. 123 

Individual otoliths were weighed to the nearest 0.001 mg (Mettler Toledo MX/UMX series 124 

5) and stored in micro-centrifuge tubes prior to analysis. 125 

Right sagittal otoliths were used for the chemical analysis and were dissolved in 0.1 126 

mL of a 50% HNO3 / 25% HCl solution and diluted to a volume of 5 mL with Milli-Q. 127 

Repeat samples (n = 12) using the remaining left sagittal otolith were analysed to 128 

determine if the elemental composition between otolith pairs was similar i.e. either 129 

otolith could have been used. 130 

 Calibration solutions were prepared using a commercial multi-element standard 131 

(SPEX-CertiPrep) diluted with Milli-Q to give concentrations of 100, 10, 1 ng ml-1 for the 132 

multi-element assessments. Elements observed at a higher concentration in otolith 133 
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material, such as Ca, Na and K, were measured using multi-element standards consisting 134 

of Ca levels measured at 200, 100 and 50 µg ml-1, with additional measurement of Sr, Na, 135 

K at 2000 and 200 ng ml-1 to extend the calibration range for these more abundant 136 

elements. The use of procedural blanks enabled limits of detection (LOD) tests to correct 137 

for instrument instability and/or signal drift and any non-spectral interference caused by 138 

the matrix (Vanhaecke et al. 1992, Wells et al. 2003). Measurements of samples, repeat 139 

samples and blanks were randomised to remove the possibility of systematic bias.  140 

Sample Analysis. Juvenile plaice otolith solutions were analyzed using an Agilent 141 

Technologies 7500 series inductively-coupled plasma mass spectrometer (ICP-MS) 142 

equipped with a quadrupole reaction cell combined with an ASX 500 series auto-sampler. 143 

LOD for each element were defined as the mean blank value plus 3 x standard deviations 144 

(Gray, 1989; Wells et al 2003). Twenty elements were determined: Li, Na, Mg, Al#, K, Ca, 145 

Mn, Fe*, Cu#, Zn, As*, Rb, Sr, Cd#, Sn, Cs#, Ba, La#, Pb#, U#. Elements affected by polyatomic 146 

interferences (*) and those falling below the LOD (#) were subsequently removed from 147 

any further analysis (Gray 1989, Evans & Ebdon 1990). Additionally, four samples were 148 

excluded due to their concentrations (µg g-1) being observed at higher levels than 149 

expected for all elements measured and thus believed to be contaminated. From the 150 

initial 20 elements measured, 11 were quantifiable and were found to be above 151 

theoretical limits of detection (LOD) at the 8 nursery grounds (Li, Na, Mg, K, Ca, Mn, Zn, 152 

Rb, Sr, Sn, and Ba).  153 

    Statistical Analysis. Elemental concentrations were expressed as µg g-1 otolith and 154 

were transformed to an element: Ca ratio (Forrester & Swearer, 2002, Swearer et al. 155 

2003, Brown 2006a b). Data for each element were analysed for univariate normality 156 

(Kolmogorov-Smirnov test) and homogeneity of variance (Levene’s test) (Minitab 157 

v.14.0), with the assumptions being met following Log10 transformation of all 10 158 
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elements. Prior to the analysis of elemental concentrations observed in juvenile plaice 159 

otoliths between nursery grounds an assessment of both left and right sagittal otoliths 160 

was performed. Results showed no significant differences in the elemental 161 

concentrations of the 10 elements between otolith pairs (Paired t-test; all P > 0.05). A 162 

combination of both univariate and multivariate statistical techniques were used to 163 

investigate single and multi-elemental fingerprints of the otoliths from each of the 8 164 

nursery grounds. To analyse and quantify the variation in elemental composition of 165 

juvenile plaice otoliths within and between the 8 nursery grounds a multivariate analysis 166 

of variance (MANOVA) using Wilks’ criterion was performed followed by pairwise 167 

comparisons between nursery sites. Examination of the differences in otolith chemical 168 

composition for each element between the 8 nursery grounds was conducted using a 169 

One-Way analysis of variance (ANOVA). Where the ANOVA indicated significant 170 

differences, pairwise comparisons (Bonferroni test) were used to identify which 171 

sampling locations differed from the other. Cross-validation linear discriminant function 172 

analysis (CV LDFA. SPSS v.16.0) was used to determine the accuracy with which juvenile 173 

plaice could be classified back to their nursery ground of capture and through 174 

geographical separation by region i.e. North West of England (NWE) and North West 175 

Wales (NWW) based on the element concentrations within their otoliths (Clarke et al. 176 

2007, Ramsay et al. 2011). Canonical score plots were used to provide a visual 177 

representation of the classification of individual fish back to their nursery ground. To 178 

evaluate the chance-corrected agreement between the actual and predicted site of 179 

capture, Cohen’s kappa statistic was calculated. Scores range between 0 and 1, with 0 180 

indicating no improvement to that achieved by pure chance and 1 indicating perfect 181 

agreement in classification to site (Titus et al. 1984, Ramsay et al. 2011). 182 

 183 
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RESULTS 184 

Observations of the elemental box plots (Figure. 2) indicated apparent differences 185 

between nursery grounds. Some elements indicated elevated concentrations at some 186 

sites, most notably Zn, Rb and Sn at Hoylake and Zn at Benllech Beach. Similarly, elevated 187 

peaks of Mn and Ba were observed at Ainsdale on Sea. Conversely, decreased Zn 188 

concentrations were detected at Penmaenmawr and Llandulas and decreased 189 

concentrations of Mg, K and Rb were observed at the three most westerly sites, Llandulas, 190 

Penmaenmawr and Benllech Beach. 191 

  Multi-elemental fingerprints of otolith chemistry were found to differ significantly 192 

between the 8 nursery grounds (MANOVA: F 10, 96 = 6.64, P < 0.001), with significant 193 

differences observed for the pairwise comparisons between the 8 nursery grounds 194 

sampled (Table 1). In addition, an ANOVA test on the otolith concentrations for each of 195 

the 10 elements measured indicated significant differences between the 8 nursery 196 

grounds (Table 2). For each element, post hoc Bonferroni pairwise comparisons between 197 

sites revealed significant differences between sites, most notably the elements Mn, Zn, Rb 198 

and Sn (Table 2). Sn exhibited the most variability between the 8 sampling locations (16 199 

out of 28 pairwise comparisons). Similarly, Rb showed significant differences in 200 

elemental concentrations between sites in 12 out of 28 pairwise comparisons (Table 2).  201 

Using CV LDFA, 71.0% of juvenile plaice were correctly classified back to their nursery 202 

ground of origin based on their elemental composition, with classification results ranging 203 

from 46.2% for Seascale to 93.3% for Penmaenmawr (Table 3). The first two canonical 204 

discriminant functions of the CV LDFA explained 73.2% of the total variance and were 205 

based on the differences in Li, K, Mn, Sr and Sn amongst the nursery grounds. Cohen’s 206 

kappa statistic indicated the chance corrected CV LDFA, classification was 0.66 (±0.1 207 

confidence intervals, CI’s) for all elements between sites. Classification results showed 208 
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that where incorrectly classified, many of the fish were assigned to an adjacent nursery 209 

ground (Table 3). For example, for fish collected from Heysham, 2 juvenile plaice were 210 

assigned to Seascale and 2 to Cleveleys, both adjacent sites to Heysham. Similarly, 2 211 

juvenile plaice from Cleveleys were assigned to the adjacent site at Heysham. Two sites 212 

along the North Wales coast, Llandulas and Benllech Beach both had 2 juvenile plaice 213 

assigned to Penmaenmawr (Table 3). Differences in between the 8 nursery grounds can 214 

be seen when the first two discriminant functions are plotted (Figure 3).  215 

Graphical separation using the 8 nursery grounds within the first two discriminant 216 

functions is more apparent in Figure 3 when the multielement fingerprints of the 107 217 

juveniles sampled were separated by region, with sites sampled from North West Wales 218 

(NWW) becoming distinguishable from those juvenile fish sampled from the North West 219 

of England (NWE). Cross-validation LDFA results indicated high classification accuracy of 220 

juvenile P. platessa with 82.2% (NWE: 53/63; NWW: 35/44) of cases correctly assigned 221 

to their regional location of capture for the NWE and NWW (Figure 3). Cohen’s kappa 222 

statistic indicated the CV-LDFA, classification was 0.64 (±0.1CI) for all elements between 223 

regional boundaries.   224 

 225 

DISCUSSION 226 

The use of otolith microchemistry in the present study allowed for the accurate 227 

classification of an inshore population of juvenile plaice (Pleuronectes platessa) collected 228 

from 8 nursery grounds along the North Western coast of England and Wales.  Using a 229 

multi-element approach (Li, Na, Mg, K, Mn, Zn, Rb, Sr, Sn, and Ba), significant differences 230 

were found between all sites indicating the potential use of these natural tags in 231 

distinguishing between individual nursery grounds for a coastal marine species (Rooker 232 

et al. 2001b, Forrester & Swearer 2002, Brown 2006b). Similarly, using a multi-element 233 
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approach (11 elements; Table 4), Geffen et al. (2003) reported high classification success 234 

for post-juvenile plaice collected from 5 sites in the eastern Irish Sea with their results 235 

revealing separation between groups of plaice that related to previously identified 236 

spawning grounds within the Irish Sea (Dunn & Pawson 2002). In general, otolith 237 

microchemistry in flatfishes has been very successful at identifying both individual fish 238 

back to site and between sites over differing geographical ranges i.e. 10s to 100s km (see 239 

Table 4). Furthermore, the results attained during this study are comparable with 240 

classification rates observed in similar otolith microchemistry studies in flatfish (range 241 

70 – 92%, see Table 4) over a similar spatial scale (100’s of km, see Table 4). 242 

A multi-element approach in discriminating between populations in different 243 

geographical locations has been regularly used in fishes (see Table 4).  However, otolith 244 

microchemistry studies in fishes have adopted two approaches, where the discriminant 245 

function analysis used to classify fish back to source has used all measured elements or 246 

has selected a reduced set of elements which were found to be statistically significant in 247 

discriminating between areas. A comparison between the two analytical approaches was 248 

conducted by Vasconcelos et al. (2007) who obtained high classification accuracies using 249 

a multi-element approach (Li, Na, Mg, K, Mn, Cu, Zn, Sr, Ba and Pb) that allowed 250 

discrimination between populations (Table 4). However, reducing the set of elements in 251 

their discriminant analysis failed to improve classification success and Vasconcelos et al. 252 

(2007) concluded that the best outcome was to use the larger dataset in the 253 

discrimination model. Adopting a similar analytical approach, the data from the present 254 

study were re-analysed to determine if classification success could be improved by 255 

analyzing a reduced set of statistically significant elements (in our case; Li, K, Mn, Sr, Sn). 256 

However, we also found no improvement in our classification success (CV-LDFA: 65.4%) 257 
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from our initial analysis using all the 10 elements which provided the most accurate 258 

discrimination between the 8 marine nursery grounds.  259 

Some studies using biogeochemical tags to discriminate between geographical 260 

locations have tended to focus on a small suite of elements that have similar ionic radii 261 

and ionic charge to calcium, e.g. Mn, Sr and Ba (Swearer et al. 2003, Hedges et al. 2004, 262 

Clarke et al. 2007) and which substitute for Ca in the otolith matrix e.g. Mg (Rooker et al. 263 

2001a, Swan et al. 2006). However, focusing solely on the use of those elements which 264 

are the primary drivers determining classification in microchemistry studies of 265 

freshwater and diadromous fishes (e.g. Sr and Ba, Table 4) may not be as robust for 266 

microchemistry analysis for fish sampled from marine waters (e.g. Mg, Mn, Sr, Ba: CV-267 

LDFA: 31.8% this study) (Brown & Severin 2009).  268 

To determine which elements are the primary drivers of spatial discrimination using 269 

otolith microchemistry in differing waterbodies is beyond the scope of this paper. 270 

However, a review of the elements used in such studies (Table 4) suggests that certain 271 

metals may contribute more to spatial discrimination within fresh, estuarine and marine 272 

waters. For instance, in estuarine environments, Mg, Mn, Sr and Cd are significant in 273 

discrimination between sites (Table 4) whilst studies identifying the movement between 274 

estuarine and coastal waters have identified Li, Mn, Rb and Sc as significant in 275 

discriminant analyses (Table 4). In the marine environment, Mn, Mg, Sr, Ba, Li, K and Pb 276 

have been identified as significant in discrimination (Table 4). Using elements such as 277 

lithium (due to its fluvial inputs from continents) and Rb (due to higher dissolved 278 

concentrations in marine waters) may be advantageous in discriminating fish from 279 

coastal/marine habitats from fish collected from freshwater/estuarine habitats (Brown 280 

2006a,b, Leakey et al. 2009). Similarly, Mn (due to its elevated particulate phase within 281 

the marine environment) may be beneficial in future studies in distinguishing fish from 282 
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other non-marine environments (Leaky et al. 2009). Additionally, Mn may be particularly 283 

useful in discriminating flatfish habitats due to the nature of their benthic lifestyle and 284 

their close proximity to the sediment. The resuspension of those sediments via 285 

bioturbation (Geffen et al. 2003) and the heavy metals associated with them may allow 286 

benthic fluxes of Mn to be reflected in their otolith chemistry (Leaky et al. 2009).     287 

One of the main obstacles found to limit the use of otolith microchemistry to identify 288 

movement patterns in marine fish appears to be the homogeneous distribution of the 289 

more reliably identified elements (Sturrock et al., 2012).  However, the use of a larger 290 

suite of  elements such as Na, Mg, K, Zn, Rb, Sr and Sn and those elements deemed likely 291 

to prove reliable geographical markers such as Li, Mn and Ba (Sturrock et al., 2012) may 292 

increase the complexity of the otolith elemental signature and extend the scope of those 293 

spatially explicit low level elements to allow for better classification results for fish 294 

sampled from marine environments (Geffen et al. 2003, Vasconcelos et al. 2007, Leakey 295 

et al. 2009, Sturrock et al., 2012, this study). This was apparent when looking at marine 296 

studies conducted within close proximity of each other (≤ 500Km Table 4), where a larger 297 

set of elements (between 5-11) were necessary to discriminate between sampling 298 

locations compared to studies conducted over larger geographical ranges (> 500Km) 299 

where 4-6 elements were used.  However, caution must be taken in using the elements 300 

just described in future studies as primary drivers and should only be used in the context 301 

of the results for individual sites where all elements measured from natural and 302 

anthropogenic inputs have been taken into account.    303 

As analytical costs decrease the application of a multi-tag approach, using a 304 

combination of trace elements and stable isotopes to observe movement patterns and 305 

assign origin of fish over geologically diverse environments are becoming increasingly 306 

used in migration studies. Studies of this nature have tended to look at population 307 
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connectivity to reconstruct migratory movements using elements such as Sr and Ba in 308 

conjunction with stable isotopes of δ13C and δ18O in freshwater environments (Walther 309 

& Thorrold 2008, Walther et al. 2008, Whitledge 2009). However, more recent studies on 310 

marine fish (including flatfishes) are also adopting a dual isotope (δ13C and δ18O) and 311 

multi-element approach to investigate otolith chemistry (e.g. Dierking et al. 2012, 312 

Kajajian et al. 2014, Wells et al. 2015). 313 

Site fidelity of Pleuronectes platessa 314 

One explanation for the high classification observed for the present study may be due 315 

to the life history patterns observed for juvenile plaice with their prolonged residency 316 

times on defined nursery grounds (Dunn & Pawson 2002) during their first years of 317 

growth. Juvenile (0-group) plaice have been found to exhibit both site fidelity and homing 318 

behavior for their chosen nursery ground (Burrows et al. 2004, Gibson et al. 2011), with 319 

tag and release studies indicating when displaced juvenile plaice will return to their site 320 

of capture (Riley 1973, Burrows et al. 2004). Although it is known that both 0-group and 321 

1-group plaice enter relatively deeper water to avoid colder temperatures during 322 

October-November, they return to shallower depths the following spring (Wennhage et 323 

al. 2001). In addition, Riou et al. (2001) has shown that 1-group plaice individuals are 324 

more numerous close to shore during spring and autumn. Total residency times on 325 

nursery grounds for juvenile plaice can range between 1 and 3 years before juveniles 326 

migrate into deeper water as they enter the sub-adult phase and begin the process of 327 

sexual maturity (Nash et al. 1994, Dunn & Pawson 2002, Fox et al. 2007).   328 

Thus, the spatial distribution patterns of juvenile plaice, combined with their site 329 

fidelity make them a perfect species to show spatial signals using otolith microchemistry. 330 

The utilization of integrated chemical signals from the various trace metals within the 331 

juvenile plaice otoliths along the North West coast of England and North Wales (including 332 
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Anglesey) suggest that both 1-group (the present study) and 2/3-group plaice (Geffen et 333 

al. 2003) move little from their chosen sites. If however juvenile place were found to 334 

move, evidence would suggest they move to sites which are in close proximity of each 335 

other e.g. within a chosen region, have similar geologies and therefore similar chemical 336 

signals. A factor which seems evident when we take into account the high classification 337 

accuracy observed within the regional areas for this study.  338 

Thorrold et al. (1988) have stated that in order to identify fish back to source, all 339 

source locations need to be sampled.  By way of explanation, within the context of the 340 

present study, to assess which nursery areas contribute the greatest proportions of 341 

juvenile fish to the adult stock requires the sampling of all possible sources of recruits. 342 

For the present study, it was not possible to sample all sources of juvenile plaice in the 343 

southeast Irish Sea as it is likely that these are not known. In addition, licensing 344 

conditions restricted how many sites could be sampled, and accessibility to some sites 345 

was difficult (e.g. within Morecambe Bay). However, fish were sampled from the major 346 

nursery grounds identified by previous studies (Dunn and Pawson 2002, Fox et al., 2007; 347 

Ellis et al. 2012) which are likely to produce the majority of recruits for the putative 348 

southeast Irish Sea stock. It is possible that plaice larvae derived from spawning grounds 349 

in the western Irish Sea may be transported onto nursery grounds in the eastern Irish Sea 350 

(Fox et al. 2009). However, we targeted 1-group plaice in our study to ensure that the 351 

dominant chemical signal measured in the otolith would be derived from the residency 352 

period on the nursery ground itself and any signal derived from the mother or the pelagic 353 

larval phase would be significantly diluted.  354 

Determining the connectivity between juvenile nursery grounds is critical if we are to 355 

understand recruitment patterns and the relative importance of different nursery 356 

grounds to the adult stocks (see review by Gillanders et al. 2003). The use of a multi-357 
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elemental otolith tag in the present study suggests that it may be possible identify adults 358 

to nursery ground, or region of origin by looking at the juvenile portion of the adult 359 

otoliths (Forrester and Swearer 2002, Cuveliers et al. 2010). Given the relative sizes of 360 

the otoliths derived from juvenile and adult plaice, it is likely that solution-based ICP-MS 361 

would be used on juvenile otoliths whilst laser ablation ICP-MS would be used to assess 362 

the otolith core of adults. The former approach would be used to obtain an integrated 363 

‘signature’ for the juvenile whilst the latter would be used to derive the juvenile 364 

‘signature’ for that fish. However, one must be cautious when using two different 365 

analytical techniques to determine otolith elemental concentrations as both methods will 366 

vary in their sensitivity and detection limits (see Campana 1999, de Pontual et al. 2000, 367 

Ludsin et al. 2006) which may affect which elements are available for inclusion in the 368 

discriminant analysis.  369 

The understanding of a stock’s structure, ecology and, more importantly, the exchange 370 

rates between spatially separated sub-populations of both juvenile fish and adults is 371 

essential for future management programmes if we are to continue sustainable fishing 372 

(Tanner et al. 2012). For one to effectively manage a species, a clear understanding of 373 

habitat importance and therefore its productivity in maintaining the population has to be 374 

identified (Chittaro et al 2009). The use of otolith microchemistry has helped in 375 

classifying juvenile plaice to individual nursery grounds for this study and the possible 376 

identification of a regional split hitherto unknown. Although the role of dispersal in 377 

marine population dynamics is still incomplete (Cook 2011), the use of natural chemical 378 

tags has enabled researchers to quantify these movements. Furthermore, the use of 379 

established baselines based on the elemental chemistry of these otoliths would further 380 

the understanding of movement and connectivity between nursery grounds. In doing so 381 

future assessments of those nursery grounds combined with changes over temporal 382 
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scales may assist in the understanding of their relative importance to adult stocks and 383 

assist in the prioritization of management and conservation of the more productive 384 

nursery grounds.  385 

The site fidelity observed in juvenile plaice suggests that they are likely to experience 386 

the same physical and biological conditions since settlement and this, combined with 387 

their natural homing trait (Burrows et al. 2004), makes them an ideal model to study 388 

inter-annual variability (i.e. temporal stability) of the elemental “tag” for local nursery 389 

grounds using otolith microchemistry. A recent study using otoliths extracted from 390 

juvenile plaice collected from two sites in North Wales found that the elemental 391 

concentration of Mg, Na, K, Sr and Ba varied little over an inter-annual (3-4 year) period 392 

(Marriott 2014), further strengthening the use of plaice as a study species to assess 393 

elemental changes over temporal scales. 394 

The identification of natal origin of South Eastern Irish Sea plaice will allow future 395 

management and conservation efforts to be directed towards prioritizing the more 396 

important nursery and juvenile habitats within this area (in the form of recruitment rates 397 

of juveniles to the adult population) and assist in future fisheries and integrated coastal 398 

management (Vasconcelos et al. 2007, Cuveliers et al. 2010). 399 
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Figure 1. Geographical locations of the 8 juvenile plaice Pleuronectes platessa nursery grounds (recognised by Dunn and 
Pawson 2002) along the North West coasts of England and North Wales sampled during the present study. 
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Figure 2. Box-plots for the 10 elements measured (µg g- 1) in otoliths of juvenile plaice Pleuronectes platessa collected from the 8 nursery grounds 
located in the south-eastern Irish Sea. Nursery grounds are defined as: Ss- Seascale (n = 13), He- Heysham (n = 15), Cl- Cleveleys (n = 15), As- 
Ainsdale on Sea (n = 14), Hl-Hoylake (n = 6), Lld- Llandulas (n = 15), Pen- Penmaenmawr (n = 15) and BB- Benllech Beach (n = 14).   
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Table 1. MANOVA results of comparisons of mean element: Ca ratios (Li, Na, Mg, K, Mn, Zn, Rb, 
Sr, Sn, Ba) in the otoliths of juvenile plaice Pleuronectes platessa from 8 nursery grounds along 
the eastern Irish Sea coast.  *P < 0.01; ** P < 0.001 
 

Site DF  Seascale Heysham Cleveleys Ainsdale 
on Sea 

Hoylake Llandulas Penmaenmawr Benllech 
Beach 

           

Seascale 10, 90 F  6.878 4.811 3.492 6.956 12.356 15.880 4.706 

 P  ** ** ** ** ** ** ** 

Heysham 10, 90 F 6.878  4.456 9.044 10.440 3.515 11.388 9.770 

 P **  ** ** ** * ** ** 

Cleveleys 10, 90 F 4.811 4.456  6.750 6.908 7.464 12.961 5.106 

 P ** **  ** ** ** ** ** 

Ainsdale on Sea 10, 90 F 3.492 9.044 6.750  11.594 12.415 18.570 10.015 

 P ** ** **  ** ** ** ** 

Hoylake 10, 90 F 6.956 10.440 6.908 11.594  17.039 24.204 10.730 

 P ** ** ** **  ** ** ** 

Llandulas 10, 90 F 12.356 3.515 7.464 12.415 17.039  7.569 12.214 

 P ** * ** ** **  ** ** 

Penmaenmawr 10, 90 F 15.880 11.388 12.961 18.570 24.204 7.569  7.999 

 P ** ** ** ** ** **  ** 

Benllech Beach 10, 90 F 4.706 9.770 5.106 10.015 10.730 12.214 7.999  

 P ** ** ** ** ** ** **  

F values are given for the MANOVA test for pairwise element: Ca ratios (Li, Na, Mg, K, Mn, Zn, Rb, Sr, Sn, Ba). 
DF, degrees of freedom. 
 

 
 

Table 2. ANOVA results for comparisons of elemental concentrations in the otoliths of juvenile 
plaice from the 8 nursery grounds sampled in the eastern Irish Sea. Sites which are significant 
from others are proceeded by >, sites in bold indicate significant difference at P < 0.001. Site 
codes (Ss, He, Cl, As, Hl, Lld, Pen and BB) are described in Figure 2. 
 

Element Site effect 
F 7, 99 = 

P Post hoc 
Pairs# 

Significance between-site differences 

     

Li 6.11 <0.05 6 As > He, Lld, Pen; Lld > Ss, Cl, BB 

Na 8.75 <0.05 9 Pen > Ss, Cl, As, Hl, BB; As, Hl > He, Lld 

Mg 6.77 <0.05 8 As > He, Lld, Pen, BB; Hl > Lld, Pen, BB; Pen > Cl 

K 9.20 <0.05 7 Pen > Ss, He, Cl, As, Hl, BB; Lld > As 

Mn 12.58 <0.05 11 Pen > He, Cl, As, Lld; BB > Ss, He, Cl, As, Hl, Lld; As > Ss 

Zn 9.56 <0.05 10 Hl > Ss, He, As, Lld, Pen; Lld > Cl, BB; Pen > Ss, Cl, BB 

Rb 12.20 <0.05 12 Hl > He, Cl; Lld, Pen, BB; Lld > Ss, He, As; Pen > Ss, He, Cl, As 

Sr 4.51 <0.05 4 He > Ss, As, BB; Ss > Lld  

Sn 18.09 <0.05 16 Hl > ALL; As >, Ss, Cl, BB;  Lld > Ss, Cl, BB; Pen > Ss, Cl, BB 

Ba 5.64 <0.05 5 As > Cl, Lld, Pen, BB; Cl > Ss 

#The number of pairs of sites (out of a total of 28 pairs) which indicated significant differences (P < 0.05) in element 
concentrations using Bonferroni post hoc comparisons. 
F values are given for the ANOVA test for site effects.
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Table 3. Percentage classification of juvenile plaice Pleuronectes platessa between nursery grounds using cross validation linear discriminate function 
analysis (CV-LDFA) using multi-elemental fingerprints Li, Na, Mg, K, Mn, Zn, Rb, Sr, Sn and Ba (µg g-1). Numbers in bold indicate percentage of correctly 
classified fish to their nursery ground of capture. Total n = number of individuals analysed with their total accumulated percentage correctly classified 
fish in parenthesis. Shaded panels indicate adjacent sites to which fish were attributed from their original site of capture. 
 

 
 

Predicted nursery ground 

Seascale Heysham Cleveleys 
Ainsdale 

on Sea 
Hoylake Llandulas Penmaenmawr Benllech Beach Total n 

Cross Validation Count          

Seascale 6 (46.2%) 0 2 2 0 0 0 3 13 

Heysham 2 8 (53.3%) 2 0 0 3 0 0 15 

Cleveleys 2 2 10 (66.7%) 0 0 0 0 1 15 

Ainsdale on Sea 1 0 0 13 (92.9%) 0 0 0 0 14 

Hoylake 1 0 1 0 4 (66.7%) 0 0 0 6 

Llandulas 0 2 0 0 0 11 (73.3%) 2 0 15 

Penmaenmawr 0 1 0 0 0 0 14 (93.3%) 0 15 

Benllech Beach 0 0 2 0 0 0 2 10(71.4%) 14 

         71.0 % 
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Figure 3. Allocation of juvenile plaice Pleuronectes platessa to their sampling sites based on 
linear discriminant function analysis observed in Table 3 using the elements Li, Na, Mg, K, 
Mn, Zn, Rb, Sr, Sn and Ba. 
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Table 4. Summary of recently published data examining the number of elements used in otolith microchemistry, the number tested and those significant to discriminate between 
movement patterns of fish from fresh, estuarine, coastal and marine waters using inductively-coupled plasma mass spectrometry (ICP-MS). Data are organised by water bodies. Est-
Coast = Estuarine and Coastal water. DFA = Discriminant function analysis. OES/AES = atomic emission spectrometry; LA = Laser Ablation; sb = Solution based.  

Water No Sites Distance  Elements measured Tested in DFA Significant elements Species Classification ICP-MS Author(s) 
Fresh 8 100Km# Na, K, Mg, Mn, Sr, Ba K, Mg, Mn, Sr, Ba K, Mn, Sr, Ba Perca flavescens 62% – 100% sb & AES Brazner et al. 2004 

Fresh 4 130Km Mg, Mn, Sr, Ba All Mg, Mn, Sr, Ba Salmo salar 84%-100% LA Veinott & Porter. 2005 

Fresh 4 170 Km Mg, Mn, Zn, Sr, Ba All Mg, Mn, Zn, Sr, Ba Salmo trutta 95%-97% LA Veinott et al. 2012 

Fresh 9 600Km Mg, Mn, Zn, Sr, Ba All Mn, Ba Oncorhynchus mykiss 91-96% LA Veinott & Porter. 2013 

Estuarine 2 
2 

200Km 
Li, Mg, Mg, Al, Fe, Mn, Co, Ni, Cu, Zn, Cu, Zn, 
As, Rb, Mo, Cd, Sn, Ba, Hg, Tl, Pb, Th, U. 

Mn, Sr 
As, Fe, Sr 

Mn, Sr 
As, Fe, Sr 

Solea solea 
73%  
79% 

LA De Pontual et al. 2000 

Estuarine 2 
2 

"̎ 
Li, Mg, Mg, Al, Fe, Mn, Co, Ni, Cu, Zn, Cu, Zn, 
As, Rb, Mo, Cd, Sn, Ba, Hg, Tl, Pb, Th, U. 

Mg, Cd 
Li, Mg, Rb, Cd, Th 

Mg, Cd 
Li, Mg, Rb, Cd, Th 

Solea solea 
89%  
91% 

sb De Pontual et al. 2000 

Estuarine 7 500Km Li, Mg, Mn, Cu, Sr, Ba, Pb All 
Mg, Mn* 
Mg, Ba* 

Solea solea, 
S. senegalensis 

71% – 81% LA Tanner et al. 2012 

Est-Coast 9 165Km# Mn, Cu, Sr, Ba, Pb Cu Cu Paralichthys californicus 76 & 86% sb Forrester & Swearer. 2002 

Est-Coast 9 "̎ Mn, Cu, Sr, Ba, Pb Pb Pb Paralichthys californicus 68 & 87% sb Forrester & Swearer. 2002 

Est-Coast 9 "̎ Mn, Cu, Sr, Ba, Pb Cu, Pb Cu, Pb Paralichthys californicus 81 & 84% sb Forrester & Swearer. 2002 

Est-Coast 18 500Km Li, Mn, Sr, Ba All Li, Sr** Pleuronectes vetulus 73-87% sb Brown. 2006b 

Est-Coast 18 "̎ Li, Mn, Sr, Ba All Sr** Citharichthys stigmaeus 58-89% sb Brown. 2006b 

Est-Coast 10-10 300Km Sr, Sc, P, Na, Y, Rb, Mn, Mg, Li All Li, Sc, Mn, Rb Solea solea 100% sb Leakey et al. 2009 

Est-Coast 10-10 "̎ Cu, Ni, Sc, Na, Y, Rb, Mn, Li All Li, Sc, Mn, Rb Merlangius merlangus 95% sb Leakey et al. 2009 

Est-Coast 13-5 "̎ Sc, Ba, Rb, Mn, Li All Li, Sc, Mn, Rb Dicentrarchus labrax 100% sb Leakey et al. 2009 

Est-Coast 17 5000Km# Li, Ca, Mn, Sr, Ba All Ba Polydactylus macrochir various LA Moore & Simpfendorfer. 2014 

Marine 3 1000Km# Li, Mg, Mn, Ca, Sr, Ba All Li, Mg, Mn Thunnus orientalis 75% & 100% sb Rooker et al. 2001b 

Marine 5 7000Km# Li, Mg, Mn, Ca, Sr, Ba All Li, Mg, Mn, Sr Thunnus thynnus 62% – 80% sb Rooker et al. 2003 

Marine 5 100Km# B, Mg, Al, Sc, Ti, Cr, Mn, Ni, Cu, Sr, Ba All Mg, Al, Sc, Mn, Ni, Sr, Ba Pleuronectes platessa 92% sb Geffen et al. 2003 

Marine 8 500Km Li, Na, Mg, K, Mn, Cu, Zn, Sr, Ba, Pb All Li, K, Mn, Zn Solea solea 67-100% sb Vasconcelos et al. 2007 

Marine 8 "̎ Li, Na, Mg, K, Mn, Cu, Zn, Sr, Ba, Pb All Na, Mg, Mn, Cu, Sr Solea senegalensis 75-100% sb Vasconcelos et al. 2007 

Marine 8 "̎ Li, Na, Mg, K, Mn, Cu, Zn, Sr, Ba, Pb All Li, Na, Mn Platichthys flesus 80-100% sb Vasconcelos et al. 2007 

Marine 8 "̎ Li, Na, Mg, K, Mn, Cu, Zn, Sr, Ba, Pb All Li, K, Mn, Ba, Pb Diplodus vulgaris 77-100% sb Vasconcelos et al. 2007 

Marine 8 "̎ Li, Na, Mg, K, Mn, Cu, Zn, Sr, Ba, Pb All Mg, Mn, Sr, Ba, Pb Dicentrarchus labrax 67-90% sb Vasconcelos et al. 2007 

Marine 4 300Km# Na, Mg, Mn, Co, Cu, Zn, Rb, Sr, Ba, Pb Na, Mg, Mn, Rb, Sr, Ba Mg, Mn, Ba Solea solea 72-100% LA Cuveliers et al. 2010 

Marine 21 200Km Mg, Mn, Zn, Sr, Ba, Ce, Pb All Mg, Zn, Sr, Ba, Ce, Pb*** Stegastes partitus 52% – 99% LA Chittaro & Hogan. 2013 

Marine 4 200Km Mg, Mn, Sr, Ba, Pb All Mn, Ba Merluccius productus 59% – 88% LA Chittaro et al. 2013 

Marine 4 1100Km Mg, Mn, Sr, Ba All Sr, Ba Gadus morhua 66% – 78% LA D’Avignon & Rose. 2013 

Marine 8 200Km Li, Na, Mg, K, Mn, Zn, Rb, Sr, Sn, Ba All Li, K, Mn, Sr, Sn Pleuronectes platessa 46-93% sb This Study 
# Distances are approximate linear measurements and are taken from the two furthest sampling locations. 
* Data taken from the inter-annual variability observed from the 1st and 2nd canonical variations for both species 
** Data taken from the regions reduced model for both species 
*** Data taken from the regions wide scale model 


