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ABSTRACT 

 

Controlled laboratory experiments reveal that the lower part of turbidity currents has the 

ability to enter fluid mud substrates, if the bed shear stress is higher than the yield stress of 

the fluid mud and the density of the turbidity current is higher than the density of the 

substrate. Upon entering the substrate, the turbidity current either induces mixing between 

flow-derived sediment and substrate sediment, or it forms a stable horizontal flow front inside 

the fluid mud. Such ‘intrabed’ flow is surrounded by plastically deformed mud; otherwise it 

resembles the front of a ‘bottom-hugging’ turbidity current. The ‘suprabed’ portion of the 

turbidity current, i.e. the upper part of the flow that does not enter the substrate, is typically 

separated from the intrabed flow by a long horizontal layer of mud which originates from the 

mud that is swept over the top of the intrabed flow and then incorporated into the flow. The 

intrabed flow and the mixing mechanism are specific types of interaction between turbidity 

currents and muddy substrates that are part of a larger group of interactions, which also 

include bypass, deposition, erosion and soft sediment deformation. A classification scheme 

for these types of interactions is proposed, based on an excess bed shear stress parameter, 

which includes the difference in the bed shear stress imposed by the flow and the yield 

stress of the substrate and an excess density parameter, which relies on the density 

difference between the flow and the substrate. Based on this classification scheme, as well 

as on the sedimentological properties of the laboratory deposits, an existing facies model for 

intrabed turbidites is extended to the other types of interaction involving soft muddy 

substrates. The physical threshold of flow-substrate mixing versus stable intrabed flow is 

defined using the gradient Richardson number, and this method is successfully validated 
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with the laboratory data. The gradient Richardson number is also used to verify that stable 

intrabed flow is possible in natural turbidity currents, and to determine under which 

conditions intrabed flow is likely to be unstable. It appears that intrabed flow is likely only in 

natural turbidity currents with flow velocities well below c. 3.5 m s-1, despite the fact that a 

wider range of flows is capable of entering fluid muds. Below this threshold velocity, intrabed 

flow is stable only at high density gradients and low velocity gradients across the upper 

boundary of the turbidity current. Finally, the gradient Richardson number is used as a 

scaling parameter to set the flow velocity limits of a natural turbidity current that formed an 

inferred intrabed turbidite in the deep-marine Aberystwyth Grits Group, West Wales, United 

Kingdom. 

 

(A) INTRODUCTION 

 

Sediment gravity flows, for example turbidity currents, debris flows and hybrid flows (Talling 

et al., 2004; Haughton et al., 2009; Baas et al., 2011), carry vast amounts of particulate and 

dissolved matter into the deep ocean (Talling et al., 2012). Indeed, turbidity currents are able 

to move larger volumes of sediment in one event than all of the world’s rivers achieve in one 

year (Talling et al., 2007). Most of this sediment is stored as turbidite deposits within 

submarine fans. Turbidites are not only an important sink for shallow marine and terrestrial 

sediment, but they also store environmentally significant amounts of carbon, nutrients and 

pollutants. From an economic point of view, sediment gravity flows are a risk to submarine 

communication cables and other engineering structures, and their deposits within submarine 

fans host the largest volumes of hydrocarbons on Earth (Weimer & Pettingill, 2007). This 

high environmental and economic significance of sediment gravity flows was recently 

reiterated in the proceedings of an international workshop (Talling et al., 2015), where 

scientists and practitioners made strong recommendations for future research on the back of 
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the latest technical developments for studying modern turbidity currents, and the integration 

with laboratory experiments, numerical modelling and outcrop studies. Talling et al. (2015) 

highlighted the importance of process-based studies of sediment gravity flows, with 

particular relevance to their distance of travel (e.g. Talling et al., 2010; Stevenson et al., 

2014b), and the role of cohesive clay in modulating the dynamic properties of sediment 

gravity flows and the textural and structural properties of the deposits of these flows (Baas & 

Best, 2002; Baas et al., 2009; Sumner et al., 2009; Baas et al., 2011). 

One of the key controls on the dynamic behaviour of sediment gravity flows and the 

properties of their deposits is the interaction of the flow with the substrate. At first order, this 

interaction comprises five main processes: bypass, deposition, erosion, mixing and injection. 

In strict terms, bypass denotes flow over a substrate without exchange of sediment between 

flow and bed but, in reality, some entrainment of bed material by the passing sediment 

gravity flow is common, tractional forces may reshape the bed into non-climbing bedforms 

and thin deposits may develop, for example in the tail of the flow (e.g. Mutti, 1985; Mutti & 

Normark, 1987; Cornamusini, 2004; Stevenson et al., 2015). Deposition of suspended 

sediment particles from a sediment gravity flow takes place if the shear velocity of the flow is 

smaller than the particle settling velocity. In sediment gravity flows that carry cohesive clay 

particles, the rate of deposition is controlled by the size of clay aggregates, or ‘floccules’. 

Deposition may take place en masse in clay-rich flows, if the clay forms a gel, i.e. a 

pervasive network of clay particle bonds (Winterwerp & van Kesteren, 2004; Baas et al., 

2011; Baas et al., 2016). The textural and structural properties of sediment gravity flow 

deposits are controlled by spatio-temporal changes in flow dynamics and sediment 

properties. Deposition often leads to a reduction in the density difference between the flow 

and the ambient water, and tends to cause a reduction in the travel distance of the flow. 

However, Baas et al. (2011, 2016) showed that deposition of cohesive clay from quasi-

laminar and upper transitional plug flow may lead to restoration of particle support by 

turbulence, and thus potentially a prolonged distance of travel.  
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Erosion of the substrate below a sediment gravity flow occurs if the bed shear stress of 

the current is greater than the critical bed shear stress for the movement of particles on the 

substrate, and the rate of entrainment of particles into the flow is greater than the rate of 

settling of particles onto the substrate. The bed shear stress depends on the density, the 

velocity and the turbulence structure of the sediment gravity flow, and the roughness of the 

substrate, while the critical bed shear stress is a function of the diameter, density and shape 

of the sediment particles, and the strength of the bed imposed by the presence of cohesive 

clay. Bed erosion fuels the sediment gravity flow with sediment, possibly also involving 

autosuspension (Bagnold, 1962); the resulting increase in excess density may lead to an 

increase in the travel distance of the flow. However, this assumes that the concentration of 

suspended sediment, in particular cohesive clay, does not pass the rheological threshold at 

which turbulent support becomes suppressed and matrix strength is also insufficient to 

support the sediment, thus promoting sediment settling (Baas et al., 2009, 2011; Baas et al., 

2016).  

Recently, Verhagen et al. (2013) and Baas et al. (2014) investigated the interaction of 

experimental turbidity currents with a soft muddy substrate. Besides bypass, erosion and 

deposition, Verhagen et al. (2013) and Baas et al. (2014) found three additional types of 

flow-bed interaction: deformation, mixing and intrabed flow. Substrate deformation occurred 

when the bed shear stress was high enough to plastically deform the substrate, mainly 

through interfacial waves, but too low to overcome the critical shear stress for substrate 

erosion. Mixing involved the incorporation of flow-derived sediment into the substrate mud 

without significant downstream transport of the mud, resulting in a deposit that comprised a 

chaotic, debrite-like, mixture of dispersed mud and mud clasts within flow-derived sediment, 

separated from the substrate by a scour surface (Baas et al., 2014). Injection in the form of 

intrabed flow describes the process by which the lower part of a dense turbidity current 

enters a more dilute substrate that behaves as a fluid mud. Within the substrate, the turbidity 
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current keeps its shape and thus continues to flow horizontally, only slowly mixing with the 

surrounding fluid mud (Baas et al., 2014).  

Baas et al. (2014) presented a facies model for intrabed turbidites (their fig. 3), but also 

concluded that a wider range of boundary conditions is required to delimit the thresholds of 

intrabed flow, as opposed to bed erosion and mixing. Here, new experimental data are 

presented that build upon the work of Baas et al. (2014) by investigating the effect of the 

cohesive strength of the substrate on flow-bed interaction. The specific aims of these 

experiments were: (i) to define the boundary conditions for different types of interaction 

between sediment gravity flows and soft muddy substrates; (ii) to extend the facies model for 

intrabed turbidites to other types of flow-bed interaction; and (iii) to delimit the physical 

sedimentological conditions for which the development of intrabed flow and intrabed 

turbidites is feasible in natural environments. 

 

(A) EXPERIMENTAL METHODOLOGY 

 

Fifteen laboratory experiments were conducted using a rectangular flume  4.5 m long, 0.22 

m wide and 0.5 m deep  at the Instituto de Pesquisas Hidráulicas, Universidade Federal do 

Rio Grande do Sul, Porto Alegre (Fig. 1; Table 1). This facility is tailor-made for turbidity-

current research, owing to: (i) large header tanks that allow the sustained release of 

separate sediment types  here cohesive and cohesionless sediment  across the width of 

the flume; (ii) a large-volume end section connected to a 0.5 m wide second channel running 

alongside the observation channel (Fig. 1); this configuration extends the transport path of 

the turbidity currents and thus minimises flow reflections; and (iii) an adjustable slope 

gradient. For the experiments described in this paper, small modifications were made to 

allow for the formation of soft muddy substrates and the release of cohesionless turbidity 
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currents across these substrates. Firstly, the slope gradient was set to 0 for all experiments. 

Subsequently, a 4.15 m long reservoir was formed by placing two blocks of polystyrene onto 

the floor of the flume. The block at the upstream end of the flume was 0.35 m long and it 

allowed the turbidity currents to flow over a fixed substrate before moving across the muddy 

substrate. Another block of polystyrene was placed at the downstream end of the flume to 

close off the reservoir and prevent spreading of the muddy sediment into the rest of the 

flume. The thickness of the blocks was 0.08 m in Runs 1 to 5 and 0.04 m in Runs 6 to 10 

(Table 1). No reservoir was prepared in control Runs 11 to 15, where the turbidity currents 

moved across the fixed, smooth floor of the flume.  

After filling the flume with fresh water to a depth of 0.50 m, vertical polystyrene walls were 

placed on top of the blocks to fully isolate the reservoir section from the rest of the flume. A 

gap in the base of the upstream wall permitted muddy sediment to be added to the reservoir 

from one of the header tanks. This header tank contained a kaolinite clay suspension with a 

volumetric concentration of 2.8 vol%, 0.220 m3 of which was released into the reservoir at a 

flow rate of ca 0.050 m3 per minute. The kaolinite had a median diameter, D50, of 7 m, with 

the particle size distribution spanning the clay and silt size classes (Wentworth, 1922); hence 

the reference to ‘mud’ in the present paper. Upon entering the reservoir, the kaolinite 

suspension quickly changed into a turbidity current that reflected repeatedly off of the 

polystyrene walls, eventually forming a dense mud suspension in the entire body of water. 

Bulk settling of the kaolinite commenced immediately after the sediment supply was 

switched off, with progressive release of clean water through the well-defined top of a 

developing cohesive bed. 

Just before the top of the consolidating mud reached the same height as the polystyrene 

floor in Runs 1 to 10, usually after several tens of minutes up to 1.5 hours, the polystyrene 

walls were removed, and the inflow pipe was connected to a second header tank that 

contained a mixture of fresh water and crushed coal. The crushed coal was cohesionless, 

had a density of 1190 kg m-3 and was poorly sorted, with a D50 of 55 m. As soon as the 
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surface of the soft mud was flush with the top of the mud reservoir, the coal suspension was 

added for 75 s at 0.050 m3 per minute onto the upstream polystyrene floor, where it quickly 

evolved into a turbidity current before entering the reservoir. The interaction of the turbidity 

currents with the fluid mud in Runs 1 to 10 was investigated at initial suspended coal 

concentrations, Cf,i, of 1%, 5%, 10%, 15% and 23% by volume, for each bed thickness 

(Table 1). These concentrations are equivalent to initial flow densities, f,i, of 1002, 1010, 

1019, 1029 and 1044 kg m-3, respectively. The same initial densities apply to the turbidity 

currents in control Runs 11 to 15. For flows carrying quartz-rich sediment with a sediment 

density of 2650 kg m-3, these densities are equivalent to volumetric suspended sediment 

concentrations of 0.1%, 0.6%, 1.8% and 2.7%, respectively. 

Sediment concentrations at selected heights within the kaolinite substrate and within the 

coal-laden turbidity currents were measured by means of ultra-high concentration meters 

(UHCM; Fig. 1). The UHCMs measure the attenuation of sound between an acoustic 

transmitter and receiver pair, placed at a known distance to one another, as a function of 

suspended particle concentration and particle type (e.g. Felix et al., 2005; Manica, 2012). 

Because UHCMs have a constant error independent of suspended sediment concentration, 

these instruments obtain the most accurate concentration data at sediment suspensions 

above ca 1 vol%. However, the UHCMs were unable to measure at the levels of highest 

suspended sediment concentration within the coal-laden turbidity currents with Cb,i = 15% 

and Cb,i = 23%. Before use in the present experiments, the UHCMs were calibrated for a 

wide range of concentrations of coal and kaolinite in fresh water, and polynomial best-fit 

functions of degree two were formulated to convert the standard voltage output of the 

UHCMs to volumetric sediment concentration. These best-fit functions approximated linear 

relationships between voltage output and sediment concentration, with R2 values of at least 

0.997.  Vertical profiles of mud concentration within the high-density and low-density 

substrate types, collected when the top of the deposits were flush with the polystyrene floor, 

are shown in Fig. 2. The 0.08 m thick substrate exhibited a linear vertical gradient in 
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sediment concentration, Cb,i, from ca 0.8 vol% (equivalent to a density, b,i, of 1013 kg m-3) 

near the mud-water interface to ca 5.3 vol% (1085 kg m-3) close to the base of the deposit. 

The 0.04 m thick substrate had a steeper vertical gradient, from ca 3.1 vol% (1050 kg m-3) 

just below the mud-water interface to ca 8.2 vol% (1131 kg m-3) at a height, z, of 5 mm 

above the base of the deposit (Fig. 2). These densities classify both substrates as fluid muds 

(Mehta, 2014). The temporal resolution of UHCM data collection during flow was 2 Hz. In 

Runs 1 to 10, the UHCMs measured sediment concentrations at z = -0.005 m below the fluid 

mud surface, and at z = 0.02 m, 0.07 m and 0.12 m above the fluid mud surface. In control 

Runs 11 to 15, the measurement heights were z = 0.005 m, 0.03 m, 0.08 m and 0.13 m 

above the floor of the flume. The UHCMs were positioned at a distance, x, of ca 3 m from 

the inflow pipe. 

Digital video was used to record the head velocity of the turbidity currents, as well as the 

types of interaction between flow and fluid mud, along the entire length of the reservoir. In 

order to extend the observations of flow-substrate interaction from the side-wall to the centre 

of the flume, a medical-grade ultrasound scanner (Brito et al., 2002; Del Rey, 2006) was 

focussed on the interface between the substrate and the turbidity current at x = 1.45 m within 

the flume (Fig. 1). The contrast in acoustic impedance between the coal–water and 

kaolinite–water mixtures was sufficiently high, especially in Runs 1 to 5, to track mixing 

processes between the turbidity currents and the fluid mud. 

The laboratory deposits exhibited a myriad of textural and structural sedimentological 

attributes. The development of these attributes during flow-substrate interaction and after the 

flow had been halted were described in detail, utilising the digital video recordings, the 

ultrasound scanner data and direct side-wall observations. These methods were also used 

to record the final spatial organisation of characteristic textural and structural features. 
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(A) RESULTS 

 

(B) Control experiments with fixed, smooth substrate 

 

(C) Observations 

 

The turbidity currents in Runs 11 to 15 carried coal at initial volumetric concentrations of 1%, 

5%, 10%, 15% and 23%, respectively (Table 1), and moved across the fixed, smooth floor of 

the measurement channel (Fig. 1). All flows displayed a well-defined, rounded head, and an 

upper boundary with Kelvin-Helmholtz instabilities both at the side-wall of the flume (Fig. 3) 

and in the centre of the flume (Fig. 4). The flow thickness, hf, decreased from 0.25 m to 0.12 

m, as Cf,i was increased from 1% to 23%.  

Figure 5A shows spatial changes in the head velocity of the turbidity currents between x = 

0.6 m and x = 3.4 m. After an initial flow acceleration, the head velocities varied slightly but 

consistent long-term trends were absent. The mean flow velocity increased from ca 0.04 m 

s-1 to ca 0.15 m s-1, as Cf,i was increased from 1% to 23% (Fig. 6).  

Time-series of suspended sediment concentration, Cf, collected at z = 0.005 m, 0.03 m, 

0.08 m and 0.13 m above the floor of the flume show a sharp rise in Cf upon arrival of the 

head of the turbidity current (Fig. 7); the time of arrival was progressively earlier with 

increasing Cf,i. In most flows, the suspended sediment concentration decreased, as distance 

from the floor of the flume increased, and Cf decreased with time, especially after the supply 

from the header tank was halted at 75 s. The thickness of the deposits that formed from 

suspension settling after the turbidity currents were stopped were 0.018 to 0.038 m in Run 

15 (Cf,I = 23%) to less than 1 mm in Run 11 (Cf,I = 1%). 
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(C) Interpretations 

 

The control Runs 11 to 15 produced non-cohesive turbidity currents that mimic the shape 

and behaviour of density currents described in numerous previous studies (e.g. Kuenen & 

Migliorini, 1950; Middleton, 1966a, 1966b, 1967; Simpson, 1982; Edwards 1993, Gladstone 

et al., 1998; McCaffrey et al., 2003; Manica, 2012). The mean head velocity increased (Fig. 

6) and the flow thickness decreased (Fig. 3), as initial suspended sediment concentration 

was increased, because excess density is the main driving force of turbidity currents. The 

increase in mean head velocity caused the flows to arrive progressively earlier at the 

location of the UHCMs (Fig. 7). Considering that the heads of the turbidity currents did not 

show any consistent flow deceleration along the length of the flume, it is inferred that the 

travel distance of the faster-moving higher-density flows is greater than the travel distance of 

the slower-moving lower-density flows. Settling of sediment from the turbidity currents is 

inferred to have resulted in the upward decrease in Cf, and in the temporal decrease in Cf, 

which was most prominent upon termination of sediment supply from the header tank (Fig. 

7). The lowermost UHCM in the flow with Cf,i = 23% was captured in the deposit that formed 

almost immediately after the head of this flow passed the UHCM, which explains the inability 

of the UHCM to measure reliable sediment concentrations after 25 s into Run 15. 

 

(B) Experiments with low-density fluid mud in reservoir 

(C) Observations 

The turbidity currents in Runs 1 to 5 transported sediment at initial volumetric concentrations 

of 1%, 5%, 10%, 15% and 23%, respectively (Table 1), across the 0.08 m thick fluid mud 

(Fig. 2). The shape and behaviour of the turbidity currents in these experiments were similar 

to those in Runs 11 t o15 with respect to distinct flow fronts, heads and bodies, and Kelvin-
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Helmholtz instabilities at the upper boundary (Figs 8 to 12). Furthermore, the heads of the 

flows were thinnest for the highest initial suspended sediment concentrations, if the interface 

between mud and coal on the digital videos is taken as the reference height (cf. Fig. 10A and 

B, Fig. 10D and E; Table 1). However, the main difference with the control runs was the 

interaction of the base of the turbidity currents with the underlying fluid mud. Flow-substrate 

interaction became more pronounced as Cf,i was increased, and the type of interaction also 

varied along the flow path of the turbidity currents.  

All the turbidity currents eroded into the fluid mud upon entering the mud reservoir (Figs 8 

and 9). The rate and depth of erosion increased, as Cf,i was increased, culminating in a final 

depth of erosion of 0.051 m for low-concentration Run 1 and 0.062 m for highest-

concentration Run 5, measured at x = 0.6 m. The erosional scours were concave upward 

and between 0.55 m and 0.65 m long. Some of the scoured mud was transported down the 

channel and deposited together with coal between x = 1 m and x = 2 m (Fig. 13B), but most 

of the mud was captured within the developing scour, where it mixed with coal from the base 

of the turbidity current and formed coal deposits with dispersed mud and mud clasts (Fig. 

13A). The mud clasts originated from fluid mud erosion (sensu Mehta, 2014) and from the 

disintegration of horizontal streaks of mud, up to 0.01 m thick, that had been incorporated 

into the head of the eroding flows (for example, at x = 0.8 to 1.2 m in Figs 8D, 8E, 9C and 

9D).  

A convex-upward bed pressure wave developed in front of all the turbidity currents (for 

example, Fig. 9B to D) and persisted along the channel, especially at high Cf,i. At x = 2.5 m, 

the height of the pressure wave was ca 0.006 m for Cf,i = 1%, increasing to c. 0.037 m for Cf,i 

= 23%. In the extreme case at Cf,i = 23%, the pressure wave was more than 1 m long and it 

had multiple crests (Fig. 11A).  
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The head of the turbidity current with Cf,i = 1% bypassed the intermediate and distal 

sections of the flume with minor erosion (Fig. 12A). Locally, the fluid mud was plastically 

deformed, forming small interfacial waves (cf. Verhagen et al., 2013; for example, at x = 1.9 

m in Fig. 10A). The body of the flow was depositional and left a graded coal-rich bed, 0.007 

m thick in the intermediate section of the flume, which contained some dispersed mud near 

the base (Fig. 13C). Part of this mud appeared in plumes above flame structures, but this 

relationship was more pronounced in the deposits of higher-density flows. The flame 

structures and closely associated load structures dominated the base of the deposit along 

the entire flume; these structures reached a maximum height at around x = 1.4 m (Fig. 13). 

The flame and load structures started to form during the final phase of flow and kept growing 

for several tens of minutes after the flow had stopped. The most distal deposits in Run 1 

were less than 0.005 m thick, and composed mainly of coal particles (Fig. 13D). 

The most conspicuous characteristic of Run 2 (Cf,i = 5%) was that 41% of the frontal part 

of the turbidity current moved underneath the fluid mud surface below the ultrasound 

scanner (Fig. 12B); this increased to 84% in Run 3 (Cf,i = 10%; Fig. 12C). Remarkably, the 

entire front of the turbidity current travelled inside the fluid mud over a length of ca 0.03 m in 

Run 4 (Cf,i = 15%; Fig. 12D) and ca 0.10 m in Run 5 (Cf,i = 23%; Fig. 12E), before emerging 

above the fluid mud. These intrabed currents (sensu Baas et al., 2014) had the same shape 

as ordinary turbidity currents; hence fluid mud was displaced over the front of the head, as if 

it was ambient water in classic bottom-hugging turbidity currents. This mud was incorporated 

into the flow at the point of emergence of the intrabed turbidity currents, forming long and 

persistent, horizontal, coal-bearing, mud layers encapsulated by the intrabed and suprabed 

flow portions (Figs 10E, 11B and 11C).  

Despite the distinct longitudinal variations in flow-substrate interaction, the head velocities 

of the turbidity currents in Runs 1 to 5 lacked consistent long-term accelerations or 

decelerations between x = 1.2 m and x = 3.4 m (Fig. 5C). The mean head velocity of the 
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turbidity currents increased from ca 0.06 m·s-1 (Cf,i = 1%) to ca 0.12 m·s-1 (Cf,i = 10% and Cf,i 

= 15%), before decreasing to ca 0.11 m·s-1 (Cf,i = 23%) (Fig. 6). 

Figure 14 shows time-series of suspended sediment concentration, Cf, within and above 

the fluid mud. The lowermost UHCM probe yielded the initial near-surface fluid mud 

concentration of ca 1 vol%, before the turbidity currents arrived below the ultrasound 

scanner. In Runs 2 to 5, a sudden jump in Cf-values to ca 2% at z = -0.005 m corresponded 

to the arrival of the bed pressure wave in front of the turbidity currents. A second jump in Cf 

at z = -0.005 m in Runs 2 to 5 signified the arrival of the head of the turbidity currents. Figure 

14A shows only the arrival of the turbidity current with Cf,i = 1%, as the vertical spacing of the 

UHCMs was too large to record the small pressure wave in Run 1. After the arrival of the 

head of the turbidity currents, the Cf-values for the lowermost UHCM remained at a raised 

level at Cf,i ≤ 10% until the supply from the header tank was halted, and the suspended 

sediment concentration started to decrease exponentially. The lowermost UHCM was unable 

to measure suspended coal concentrations in the head and body of the turbidity currents 

with Cf,i ≥ 15%, but the UHCM time-series for these flows do reveal the exponential decrease 

in suspended sediment concentration after the supply from the header tank was stopped. As 

in the control experiments, the Cf-values measured within the turbidity currents decreased 

with increasing distance above the substrate, and the suspended sediment concentrations 

decreased at all levels in the flows upon termination of supply from the header tank. The 

UHCM at z = 0.10 m in Runs 4 and 5 measured Cf-values in clear water above the top of the 

turbidity current, while the UHCMs at z = 0.08 m in Run 5 just touched the top of the 

current’s body.  

The deposits of the turbidity currents in Runs 2 to 5 decreased in thickness from several 

centimetres to several millimetres along the flow path. Downflow of the chaotic coal-mud 

deposits close to the point of inflow, which were similar to the proximal deposits in Run 1 (cf. 

Figs 13A and 15A), the deposits of the flows with Cf,i ≥ 5% had reproducible properties that 

were related genetically to the observed flow-substrate interaction. The mud incorporated at 
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the point of emergence of the intrabed turbidity currents was gradually, yet incompletely, 

mixed with coal within the body of the flows. This resulted in intrabed turbidites (denoted by 

‘I’) that comprised, from base to top: (I1) coaly mud, with both dispersed mud and mud 

clasts, formed by local mixing and erosion as well as minor supply from the proximal scour; 

(I2) muddy coal, representing the ‘intrabed’ flow portion; (I3) coal-bearing mud with a 

speckled appearance, representing the encapsulated mud layer; and (I4) mud-poor coal, 

representing the ‘suprabed’ flow portion and post-flow suspension settling (Fig. 15C). The I1 

division pinched out between x = 1 m and x = 2 m (Fig. 15C and D). The I2 and I3 divisions 

were also wedge-shaped, but continuous over a larger distance. The I4 division persisted to 

the end of the mud reservoir, sitting on top of the mud substrate at x > ca 3 m. 

The deposits of Runs 2 to 5 revealed a myriad of soft sediment deformation structures. 

Load structures (Fig. 15D), separated by flame structures (Fig. 15E), developed at the base 

of the turbidites near the end of the experiments. These deformation structures continued to 

grow after the flows had stopped, eventually reaching heights of up to 0.01 m. Mud particles 

were ejected into the overlying turbidite via fluid-escape pipes or sheets (Fig. 15B). This 

injected mud formed ‘frozen’ mud plumes in the I2, I3 and I4 divisions, and the mud often 

accumulated at the same level as the encapsulated mud in I2 to I4 beds. Some flame 

structures and overlying mud plumes leaned into the flow direction (Fig. 15E). 

 

(C) Process interpretations 

 

Physical reasoning dictates that differences in excess density drive the turbidity currents in 

the low-density fluid mud runs in the same way as in the control runs. However, flow-

substrate interaction, and in particular the development of intrabed flow, led to distinct 

differences in flow behaviour and deposit properties. The mean head velocity was higher 

and increased more rapidly with increasing Cf,i in Runs 1 to 3 than in Runs 11 to 13, which 
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carried sediment at similar initial concentrations (Fig. 6). In contrast, the rate of increase in 

mean head velocity from Cf,i = 10% (Run 3) to Cf,i = 15% (Run 4) was lower than in the 

corresponding control Runs 13 and 14. Moreover, the mean head velocity of the turbidity 

current in Run 5 (Cf,i = 23%) was lower than in Run 4, whereas the mean head velocity 

continued to rise from control Run 14 (Cf,i = 15%) to 15 (Cf,i = 23%) (Fig. 6). It is inferred that 

these differences are caused by substrate erosion and intrabed flow, which prevailed 

downflow of the proximal location of in situ mixing with substrate sediment. Erosion of mud 

from the substrate increased the density difference with the ambient water in Runs 1 to 3, 

thus increasing the head velocity relative to Runs 11 to 13. The excess density for intrabed 

flows moving through mud should be lower than for flows moving through ambient water. 

This might explain why the mean head velocities for Runs 4 and 5 were lower than for Run 

14 and 15. Intrabed flow was most prominent in Run 5 (Fig. 12), which caused this flow to 

move slower than the turbidity current in Run 4. Substrate erosion might have increased the 

excess density also in Runs 4 and 5, but the resultant increase in the head velocity was 

probably lower than the decrease in the head velocity from intrabed flow. The present 

authors hypothesise from the observed trends in head velocity that the travel distance of 

turbidity currents increases with the ability to entrain sediment from the fluid mud, but that 

the development of intrabed flow results in a shorter travel distance. A longer flume is 

required to test this hypothesis. 

The spatio-temporal trends in the suspended sediment concentrations for the UHCMs 

that measured above the substrate in Runs 1 to 5 mimic the trends observed in control Runs 

11-15. The UHCM that measured within the fluid mud at z = -0.005 m recorded the arrival of 

the bed pressure waves and the intrabed portion of the turbidity currents in Runs 2 to 5. It is 

unclear why the mud concentration in the bed pressure waves was twice as high as in the 

original substrate. This increase in mud concentration cannot be explained by admixture of 

coal, because the pressure waves travelled consistently in front of the turbidity currents. An 

alternative cause for the increase in concentration within the bed pressure wave is sourcing 
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of extra mud from deeper within the substrate, thus essentially generating a much lower 

vertical density gradient within the fluid mud, but the experimental data do not enable 

verification of this.  

The low-density fluid mud interacted with the coal-laden turbidity currents through four 

main processes: (i) substrate erosion and mixing at proximal locations; (ii) bypass and minor 

erosion at intermediate and distal locations in Run 1; (iii) intrabed flow and the development 

of a bed pressure wave at intermediate and distal locations in Runs 2 to 5; and (iv) soft 

sediment deformation at the base of developing turbidite deposits. These processes are 

inferred to be closely related to the rheological properties of the mud. Unlike sand, fluid mud 

has a bulk strength that depends on cohesive bonds between individual mud particles. This 

cohesive strength increases with increasing substrate mud concentration. Entrainment of 

cohesive mud is possible through the erosion of individual mud particles or small floccules 

(‘surface’ erosion of Mehta, 2014), the detachment of parcels of fluid mud from the crest of 

interfacial waves (‘fluid mud’ erosion of Mehta, 2014) and the erosion of pieces of mud from 

a firm bed (‘mass’ erosion of Mehta, 2014). Surface erosion and fluid mud erosion were 

observed at proximal locations in the present experiments, with the mud clasts denoting fluid 

mud erosion and the dispersed mud representing surface erosion and disintegration of the 

mud clasts by flow shear. The fact that the proximal deposits contained a large amount of 

mud clasts (for example, Fig. 15A), and that some mud clasts were transported along the 

flow path without disintegrating, suggests that the kaolinite was cohesive enough to produce 

strong clasts, despite their water content of up to 99%. Yet, the yield stress of the clay must 

have been lower than the bed shear stress of the flows to initiate fluid mud erosion. All 

turbidity currents in Runs 1 to 5 were visibly turbulent, although it cannot be ruled out that 

the higher-density flows were transient turbulent (sensu Baas et al., 2009), given the low 

Reynolds numbers of these flows (Table 1). This turbulent flow behaviour implies that mixing 

of mud and coal was possible from a hydrodynamic point of view. Further evidence for the 

considerable cohesive strength of the mud was the presence of long streaks of mud injected 
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into the turbidity currents (Figs 8D, 8E, 9C and 9D), the preservation of encapsulated mud in 

the I3 divisions of the intrabed turbidites (Fig. 15C and D) and the abundance of load and 

flame structures (Figs 13B, 15D and 15E). Together with the common presence of interfacial 

waves at the base of the turbidity currents and bed pressure waves in front of the turbidity 

currents, the load and flame structures indicate that the mud was plastically deformable 

under relatively weak horizontal shear or overburden pressure. The height of the flame and 

load structures appeared to have been controlled by the depth of erosion into the density-

stratified fluid mud (Fig. 2) and the thickness of the overlying deposit. The deposits at around 

x = 1.4 m were relatively thick and most of the original mud was preserved. Hence, the 

overburden pressure was relatively high and the substrate mud concentration immediately 

below the base of the deposits was relatively low; this explains the large flame and load 

structures at around x = 1.4 m. More distal deposits were thinner, and more proximal 

deposits were thicker, but rested on deeply eroded, firmer mud, hence the presence of 

smaller flame and load structures at these locations. A gradual increase in overburden 

pressure caused by continued deposition of suspended sediment explains why the flame 

and load structures kept growing after the sediment supply from the header tank had 

stopped. 

Intrabed flow is inferred to take place only if the density of the turbidity current is larger 

than the density of the muddy substrate, and if the cohesive strength of the mud is high 

enough to withstand, or at least delay, mixing the mud into the flow. This reasoning is 

supported by the observations. In Runs 4 and 5, where intrabed flow was most pronounced, 

the turbidity currents had initial densities that were significantly higher than the density of the 

mud just below the substrate (1044 kg m-3 for Run 5 and 1029 kg m-3 for Run 4 versus 1013 

kg m-3 for the mud substrate). The initial density of 1002 kg m-3 for the turbidity current in 

Run 1 was too low to trigger intrabed flow. The initial densities of the turbidity currents in Run 

2 and 3 were close to the density of the substrate (1010 kg m-3 and 1019 kg m-3 versus 1013 
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kg m-3) which explains why these flows moved partly below the top of the fluid mud, but 

lacked distinct intrabed flow.  

 

(C) Facies models 

 

The deposits of the experimental intrabed turbidity currents informed a facies model for 

intrabed turbidites, proposed by Baas et al. (2014), scaled to deposits that contain natural 

sand and mud instead of coal and kaolinite. Herein, this facies model is extended by 

including a proximal facies for mixed flow-derived and substrate-derived sediment (Fig. 16B 

and C). Also, a new facies model for non-intrabed turbidity currents moving across soft mud, 

based on Run 1, is proposed (Fig. 16A). The facies model for the turbidity currents that 

remained on top of the substrate is dominated by evidence for combined erosion and 

deposition in proximal locations, bypass, minor erosion and deposition in intermediate and 

distal locations, and basal soft sediment deformation along the entire flow path (Fig. 16A). 

The proximal facies comprises a scoured and loaded base, a lower division of thick, 

chaotically mixed sand, mud clasts and dispersed mud, and an upper division of normally 

graded sand. The lower division should not be mistaken for a debris-flow deposit; the mixed 

sand–mud was formed below a fully turbulent gravity flow by incomplete disintegration of 

eroded mud clasts and weak downflow transport of the eroded sediment. The upper division 

resembles a Bouma-type turbidite (Bouma, 1962), with evidence for gradual flow 

deceleration and suspension settling. The mixed sand–mud division wedges out in a 

downflow direction, with the mud clasts becoming increasingly smaller and less frequent. In 

the same direction, the flame and load structures tend to increase in size first, but then 

become smaller in parallel with gradually decreasing bed thickness. A division of muddy 

sand, which records the effect of minor erosion of the fluid mud, may be present between the 

mixed sand–mud division and the normally graded sand at intermediate locations. This 
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division rests directly upon the fluid mud beyond the point of termination of the mixed sand–

mud division. The muddy sand division eventually also pinches out, so that the most distal 

locations are characterised by thin, graded sand beds. 

The most proximal facies of turbidity currents that show intrabed behaviour (Fig. 16B and 

C) is similar to the proximal facies shown in Fig 16A, but the mixed mud–sand and normally 

graded sand divisions may be thicker, because intrabed flow is expected to be more 

common in relatively high-concentration and high-velocity turbidity currents. Complete 

intrabed turbidite I1 to I4 sequences prevail in locations where the turbidity current moves 

into the substrate and the distal extension of the proximal mixed sand–mud facies is 

preserved. As in the experimental deposits, an encapsulated mud layer (I3 division) 

separates the intrabed portion (I2 division) from the suprabed portion (I4 division) of the 

turbidite (Fig. 16C). The I2 division resembles a turbidite with abundant evidence of soft 

sediment deformation. The I4 division is expected to be a normally graded Bouma-type 

turbidite. Beyond the influence of substrate erosion, the full intrabed turbidite is replaced by a 

thinner, base-missing I2 to I4 turbidite. The most distal I4 facies (Fig. 16C) signifies 

termination of intrabed flow, possibly owing to re-emergence of the flow above the fluid mud 

surface or immobilization inside the fluid mud. 

 

(B) Experiments with high-density fluid mud in reservoir 

 

(C) Observations 

The turbidity currents in Runs 6 to 10 carried sediment at initial volumetric concentrations 

of 1%, 5%, 10%, 15% and 23%, respectively (Table 1), across the 0.04 m thick fluid mud 

(Fig. 2). In general, the dynamics of these flows, and their interaction with the fluid mud, can 

be described as intermediate between the flows over the fixed bed (Runs 11 to 15) and the 
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flows over the low-density fluid mud (Runs 1 to 5). Flow thickness decreased from 0.16 m to 

ca 0.08 m, as Cf,i was increased from 1% to 23% (Table 1). Head velocity showed some 

variations over short distances, but none of the turbidity currents experienced significant flow 

decelerations or accelerations between x = 1.2 m and x = 3.4 m (Fig. 5B). The mean head 

velocities increased from ca 0.06 m s-1 for Run 6 (Cf,i = 1%) to ca 0.14 m s-1 for Run 10 (Cf,i = 

23%) (Fig. 6). This rate of increase was slightly lower than for the fixed-bed runs, and the 

decrease in mean head velocity between Cf,i = 15% and Cf,i = 23% for the intrabed flows in 

Runs 4 and 5 was absent from Runs 9 and 10. Indeed, none of the side-wall videos (Fig. 

17), the ultrasound recordings (Fig. 18) and the UHCM data (Fig. 19) showed evidence for 

intrabed flow in Runs 6 to 10. Nonetheless, the turbidity current with Cf,i = 23% (Run 10) tried 

to move into the fluid mud in a few places (for example, Fig. 20A), but it only managed to 

disturb the mud for short distances, thereby forming short horizontal streaks of mud, before 

continuing on top of the substrate (Fig. 20). This process was rare compared to fluid mud 

erosion (sensu Mehta, 2014) at proximal locations and surface-type erosion (sensu Mehta, 

2014) to a depth of several millimetres elsewhere along the flow path. Erosion close to the 

point of entry also took place at Cf,i ≤ 15%, but the depths of the scoop-shaped scours (0.001 

to 0.005 m at x = 0.6 m; for example, Fig. 21A) were shallower than in Runs 1 to 5. Bypass 

of the head and deposition from the body and tail of the turbidity currents prevailed 

elsewhere in Runs 6 to 9. Bed pressure waves were confined to the turbidity currents with 

Cf,i ≥ 10% (Fig. 18). These waves were between 0.001 m and 0.0045 m high and less than 

0.1 m long, thus considerably smaller than in Runs 1 to 5.  

Figure 19 shows the time-series of suspended sediment concentration within and above 

the fluid mud for Runs 6 to 10. The lowermost UHCM probe remained within the substrate 

throughout Runs 6 to 9 (blue lines in Fig. 19A to D), where the mud concentration gradually 

increased with time. This increase was largest in Run 9, with the top of the fluid mud 

reaching a suspended sediment concentration of 4.6% after ca 8 minutes (Fig. 19D). In 

contrast, the UHCM data for the highest-concentration turbidity current in Run 10 shows a 
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rapid increase in sediment concentration at z = -0.005 m upon arrival of the head of the flow. 

The remaining UHCMs, positioned within the water column in Runs 6 to 10, also recorded 

the arrival of the turbidity currents. As in the other series of experiments, the turbidity 

currents became more dilute with time, especially after the sediment supply for the header 

tank had stopped, and as the height above the substrate increases. 

 

The deposits of the turbidity currents in Runs 6 to 10 resembled the turbidites formed in 

Run 1. However, the mixed coal–mud beds that formed within the proximal erosional scours 

were thinner, and the mud clasts were smaller, than in the low-density fluid mud Runs 1 to 5 

(Fig. 21A). Thin coal-rich beds prevailed at intermediate and distal locations. Proximal 

deposits had a thickness of 0.011 to 0.030 m, while the most distal deposits were less than 

0.005 m thick. Load structures, and some flame structures, were confined to locations where 

flow-substrate interaction was most pronounced, i.e. at proximal locations in all runs (Fig. 

21C), at intermediate and distal locations below the higher-concentration, higher-velocity 

Runs 8 to 10 (Fig. 21B), and below failed intrabed flow in Run 10 (Fig. 20B). These soft 

sediment deformation structures were up to 0.01 m high. Towards the end of several 

experiments, clouds of mud started to appear at the side-wall of the flume at a level just 

below the top of the coal deposits. These clouds continued to grow to a diameter of up to 

0.01 m, thereby merging with adjacent clouds, after sediment supply from the header tank 

had stopped. This process formed an almost continuous layer of pure mud and mixed mud–

coal, which was separated from the loaded mud fluid by a layer of pure coal (Fig. 21B and 

C). These mud clouds were different from the clouds found in Runs 1 to 5, in that they were 

not directly coupled to flame structures in the underlying mud. Instead, the mud seemed to 

have moved from the centre of the flume to the side-wall.  
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(C) Interpretations 

The increase in near-surface mud concentration from 1% in Runs 1 to 5 to 3% in Runs 6 to 

10 rendered the 4 cm thick fluid mud more cohesive than the 8 cm thick fluid mud and 

therefore significantly changed the flow-substrate interaction. It is inferred that the fluid mud 

was too dense to permit intrabed flow, because the initial densities of all turbidity currents in 

Runs 6 to 10 (1002 to 1044 kg m-3) were lower than the density of the mud at z = -0.005 m 

(1050 kg m-3). However, the initial density of the flow in Run 10 was sufficiently close to the 

density of the fluid mud to exhibit failed intrabed flow (Fig. 20). Instead of producing intrabed 

flow, the turbidity currents eroded the fluid mud, particularly upon entering the mud reservoir, 

and deposited coal onto the relatively firm substrate. However, the substrate was not firm 

enough to withstand soft sediment deformation by the overburden pressure of the gradually 

thickening coal deposits. Load structures were most common, and started to form near the 

end of the experiments, presumably when the deposits had reached a thickness large 

enough to cause an unstable inverse pressure gradient at its lower boundary. As in Runs 1 

to 5, settling of suspended coal was a slow process, explaining why the load structures kept 

on growing well after the flows had been halted. The clouds of mud within the turbidite 

deposits are interpreted as mud injections that were also related to overburden pressure. 

These injections were most likely to be initiated in the centre of the flume and then spread 

sideways towards the side-wall of the flume. The mud accumulated at a specific level within 

the coal deposits, where the density of the mud and the density of the coal deposits were 

approximately equal. The lower permeability of the relatively fine-grained sediment near the 

top of the graded coal deposits might have prevented the mud from extruding onto the bed–

water interface.  

The fluid mud experienced consolidation after the passage of and deposition from the 

turbidity currents in Runs 6 to 9, as suggested from the increase in sediment concentration 

measured by the UHCM at z = -0.005 m within the substrate (Fig. 19A to D). The rate of 

consolidation was highest in Run 9, which renders it likely that the overburden pressure of 
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the turbidite deposits not only caused soft sediment deformation, but also sped up the 

consolidation process. In run 10 with Cf,i = 23%, the turbidity current eroded down to a depth 

of at least 0.005 m, considering that the lowermost UHCM recorded the arrival of the head of 

this flow. 

The facies model for turbidites formed from the non-intrabed turbidity currents, shown in 

Fig. 16A, also applies to the flows in Runs 6 to 10. However, the chaotically mixed sand–

mud is expected to be thinner than for the softer fluid mud, because the flow cannot erode 

as far into the relatively firm mud. For the same reason, the length of the mixed sand–mud 

layer should be shorter than for facies associated with softer mud. Mud clasts within this 

division are expected to be relatively small and infrequent, because fluid mud erosion is 

confined to shallower depths. Locally, streaks of mud may be present near the base of 

sandy divisions at intermediate and distal locations, but relatively clean sand resembling 

Bouma-type turbidites should be dominant, because entrainment of mud from the firm 

substrate is limited. Load structures are common in this facies, but perhaps not as 

widespread as in equivalent facies for lower-density fluid muds. 

 

 (A) DISCUSSION 

 

(B) Classification of types of flow-substrate interaction 

 

The present experiments reveal that laboratory-scale turbidity currents experience a marked 

variety of types of interaction with a soft muddy substrate, ranging from erosion, bypass and 

deposition to local mixing, intrabed flow, and soft sediment deformation. Based on 

fundamental physical principles, we propose that five main factors determine the type of 

interaction (Fig. 22): (i) the erosive capability of the turbidity current versus the resistance to 
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erosion of the muddy substrate; (ii) the ability of the turbidity current to keep particles in 

suspension; (iii) the difference in density between the turbidity current and the soft muddy 

substrate; (iv) the stability of the turbidity current; and (v) the difference in density between 

the turbidite deposit and the substrate.  

The erosive capability of the turbidity current is governed by the bed shear stress, o, and 

the resistance to erosion of the fluid mud depends on the cohesive forces within the mud, 

which can be quantified by the yield stress, y. The fluid mud is exposed to erosion, if the 

bed shear stress is higher than the yield stress. Conversely, the fluid mud is stable, except 

possibly for plastic deformation, if the bed shear stress is lower than the yield stress. Figure 

22 uses the excess bed shear stress, , to parameterise these conditions:  

 

       (1) 

where  > 0 denotes plastic deformation at relatively low T-values and erosion at relatively 

high T-values, (sector I in Fig. 22) and  < 0 represents the stable substrate (sector II in Fig. 

22). The bed shear stress can be calculated from the mean flow velocity, U, and the density 

of the flow, f, via the quadratic stress law: 

 

       (2) 

where g is the gravitational constant and C’ is the Chézy coefficient. The Chézy coefficient 

depends on the grain roughness and the form roughness of the substrate. For invariably flat 

fluid muds, it can be assumed that C’ is governed by the grain roughness of the silt-sized 

and clay-sized particles within the mud. In the present study, C’ is kept constant at 100 m0.5 

s-1, which was calculated using procedures described by Van Rijn (1990). Furthermore, it is 
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assumed that the flow density and the mean flow velocity in Eq. 2 can be approximated by 

the initial density of the turbidity current, f,i, and the head velocity of the turbidity current, Uh, 

respectively. Empirical data are required to calculate the yield stress from the volumetric 

concentration of clay in the fluid mud. Wan (1982) proposed the following empirical 

relationship for kaolinite: 

 

      (3) 

where Cb is the volumetric sediment concentration within the substrate. The stable fluid mud 

at  < 0 might experience bypass or deposition of suspended sediment, depending on 

whether the turbidity current is sufficiently turbulent to support this sediment. These types of 

flow-substrate interaction are controlled by the ratio between the shear velocity of the flow, 

u*, and the particle settling velocity, ws. Bypass requires u* ≥ ws, and deposition takes place 

at u* < ws (sector II in Fig. 22).  

The turbidity current exhibits intrabed behaviour or mixing between flow-derived and 

substrate-derived sediment, if the density near the base of the flow is higher than the density 

close to the surface of the fluid mud. Conversely, the flow remains on top of the substrate, if 

the flow is less dense than the substrate mud. Figure 22 uses the non-dimensional excess 

density, , to parameterise these conditions:  

 

       (4) 

where b is the near-surface density of the fluid mud. The initial flow density, f,i, is assumed 

to be representative for the density near the base of the turbidity current. Hence, > 0 

represents intrabed flow or mixing (sector III in Fig. 22) and < 0 signifies flow on top of the 
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substrate (sectors I and II in Fig. 22). The difference between intrabed flow and mixing is 

inferred to depend on the stability of the flow inside the fluid mud. Intrabed flow is stable only 

if the mud that is swept over the top of the submerged flow is mixed into the flow slowly (for 

example, Fig. 12E), whereas intrabed flow is unlikely if this mixing process is rapid, as at 

proximal locations in the experiments with low-density fluid mud. The degree of stability of 

the upper boundary of turbidity currents is governed by the gradient Richardson number, Rig: 

 

      (5) 

where d is the density difference between the flow and the fluid mud acting over a vertical 

distance dz, g is the gravitational constant (g = 9.8 m s-1) and du is the difference in velocity 

between the flow and the displaced mud. Rig ≥ 0.25 denotes a stable boundary, whereas Rig 

< 0.25 signifies an unstable boundary (e.g. Stacey & Bowen, 1988; Buckee et al., 2001). 

Equation 5 shows that the stability of the boundary increases as a function of increasing 

density gradient and decreasing velocity gradient. Therefore, intrabed flow should dominate 

in lower right corner of sector III in Fig. 22, and mixing should prevail in the upper left corner 

of the same sector. 

Soft sediment deformation by way of the development of load, flame and injection 

structures requires that the density of the turbidite deposit is higher than the density of the 

upper part of the substrate mud. This late depositional to post-depositional process forms an 

integral part of the facies models shown in Fig. 16, but it may obscure sedimentological 

evidence for other types of interactions, for example where extruded substrate mud 

accumulates in the I3 division of intrabed turbidites (Fig. 15E), and load structures deform 

overlying stratification (Fig. 21B).  
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The type of flow-substrate interaction for  < 0 and  > 0 (sector IV in Fig. 22) is unclear. 

The experiments did not cover this condition, but intrabed flow is probably not possible for 

bed shear stresses that are lower than the yield strength of the soft, muddy substrate. 

Instead, the flow may bypass the site and loading may start earlier than in sectors I and II, 

because a deposit is not required to develop the inverse density gradient. 

The experimental data comply with the classification of the flow-substrate interaction 

types in Fig. 22. As shown above, all turbidity currents that moved into the high-density fluid 

mud reservoir, as well as the flow with Cf,i = 1% that moved into the low-density fluid mud 

reservoir, lacked intrabed flow, because the flow density was lower than the substrate 

density (Table 1; Figs 12A and 18). Moreover, the front of the turbidity currents with Cf,i ≥ 

15% moved inside the low-density fluid mud (Fig. 12D and E), because the density of these 

flows was significantly higher than the near-surface density of the fluid mud. The bed shear 

stress of all the turbidity currents that negotiated the low-density fluid mud reservoir, and the 

flow with Cf,i = 23% that encountered the high-density fluid mud reservoir, were higher than 

the yield stress of the fluid mud, which explains the dominance of erosion, even in the slow-

moving currents (Table 1). The absence of erosion of the high-density fluid mud at 

intermediate and distal locations in the turbidity currents with Cf,i ≤ 15% also complies with 

the calculated -values (Runs 6 to 9 in Table 1). Turbulence production at the abrupt 

transition from the fixed polystyrene substrate to the soft mud may have promoted the 

erosion of the fluid mud at the proximal location in these flows. 

Equation 5 was used to estimate the stability of the intrabed portions of the turbidity 

currents in Runs 4 and 5 (Fig. 12D and E). The density gradient d/dz was based on the 

difference in the mean density of the flow and the mean density of the overlying fluid mud 

over a vertical distance of 0.025 m, assuming that no mud was mixed into the intrabed flow. 

The same vertical distance was applied to du/dz, where the velocity of the intrabed flow was 

obtained from the ultrasound recordings and it was assumed that the velocity of the 

displaced mud was very small, hence du ≈ u. The intrabed portion of the turbidity current in 
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Run 4 (Cf,i = 15%) was only 0.03 m long (Fig. 12D), suggesting that the upper boundary 

quickly entrained the mud displaced over the top of the flow. This interpretation is supported 

by the low gradient Richardson number (Rig = 0.07), which implies an unstable upper 

boundary of the flow. The gradient Richardson for Run 5 (Cf,i = 23%) was just above the 

threshold value of 0.25 for a stable upper boundary (Rig = 0.26), which is reflected in a 

relatively long intrabed portion for this turbidity current (Fig. 12E).  

  

(B) Intrabed flow in natural turbidity currents 

 

(C) Rationale 

The flume experiments were conducted with low-velocity turbidity currents and dilute 

substrates. Fluid mud can reach densities of up to ca 1250 kg m-3 (e.g. Winterwerp & van 

Kesteren, 2004; Mehta, 2014), which is equivalent to a volumetric kaolinite concentration of 

ca 15.5% and a yield stress of 4.8 N m-2 (Eq. 3; Wan,1982). Because muddy substrates start 

to behave as solids above 1250 kg m-3 (Mehta, 2014), it is assumed here that intrabed flow 

is not possible under these conditions, and that mass erosion (sensu Mehta, 2014) should 

prevail instead. The velocity of natural turbidity currents can reach up to several tens of 

metres per second (Talling et al., 2013), which is two orders of magnitude larger than the 

head velocity of the experimental turbidity currents described in the present paper. These 

distinct differences between natural turbidity currents and the experimental turbidity currents 

bring into question: (i) how common fluid muds are in the natural environment; (ii) how 

feasible intrabed flow is for natural turbidity currents; and (iii) provided that intrabed flow is 

possible, how stable it is in the natural environment? 
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(C) Fluid mud in natural environments 

 

Widespread evidence exists for the presence of fluid mud, formed by rapid sedimentation of 

mud or liquefaction of mud deposits, in natural environments (e.g. Whitehouse et al., 2000; 

Winterwerp & van Kesteren, 2004). Fluid mud has been found mostly in harbours and 

navigation channels (e.g. Verlaan & Spanhoff, 2000; McAnnally et al., 2007a,b), at river 

mouths (e.g. Kineke et al., 1996; Traykovski et al., 2000) and on the shoreface and 

continental shelf (e.g. Wells & Coleman, 1981; Wheatcroft & Borgeld, 2000; Anthony et al., 

2010), and also in deep ocean basins (e.g. Cacchione et al., 2006; Amy et al., 2007; Ito et 

al., 2014; Stevenson et al., 2014a). Here, it is assumed that fluid mud in the natural 

environment covers a similar density range as fluid mud in the laboratory, and that, at first 

order, empirical relationships between mud concentration and yield stress are valid for scale 

models in the laboratory and prototypes in the natural environment. However, fluid mud is 

subjected to consolidation by gradual loss of pore water, which causes the fluid mud to 

evolve into a solid mud. Characteristic time-scales are hours to days for forming freshly 

consolidated, dilute, fluid mud (b = 1000 to 1050 kg m-3), weeks for forming weakly 

consolidated fluid mud (b = 1050 to 1150 kg m-3), months for forming moderately 

consolidated, dense fluid mud (b = 1150 to 1250 kg m-3), and years to hundreds of years for 

forming highly consolidated mud, stiff mud and hard mud (b > 1250 kg m-3) (Mehta, 2014). 

These timescales for the maintenance of fluid mud are short compared with most other 

timescales in sedimentary geology. Therefore, special circumstances are required to make 

fluid mud available for interaction with turbidity currents. More or less continuous supply of 

fine-grained sediment by bottom currents, such as on the continental shelf adjacent to the 

modern Amazon River (Anthony et al., 2010), and deposition of clay-rich sediment from 

different types of sediment gravity flow at a high recurrence rate within deep marine basins, 

may maintain substrates with fluid–mud properties for prolonged periods of time. 

Liquefaction of mud deposits, by, for example, earthquakes, storm waves, tsunamis and 
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shear imposed by bottom currents and sediment gravity flows, also produces soft muddy 

substrates that might be susceptible to intrabed flow behaviour (e.g. de Wit & Kranenburg, 

1997; Manica 2012; Jia et al., 2014; Baas et al., 2016). Contained and confined basins are 

particularly suitable for the development of thick fluid muds, because clay-sized sediment 

tends to be trapped within these basin types (Amy et al., 2007). The presence of a sill across 

which the sediment gravity flows enter such basins may further promote the initiation of 

intrabed flow, especially where an onlap relationship between the soft basin mud and the 

firmer sediment of the sill is present. It should be emphasised, however, that any depression 

in the basin floor serves as a possible container for fluid mud, whereas sloping basin floors 

are less likely to sustain the highly mobile fluid mud. 

Under the assumption that conditions suitable for fluid mud development are available, 

the feasibility of intrabed flow in natural turbidity currents is assessed by taking a three-way 

approach. Firstly, Eq. 4 is used to show that natural turbidity currents are capable of moving 

inside fluid muds. Secondly, Eq. 1 is used to determine which types of flow-substrate 

interaction are most likely for full-scale turbidity currents of different density and velocity. 

Thirdly, Eq. 5 is used to estimate the thresholds of intrabed flow behaviour versus flow-

substrate sediment mixing for natural turbidity currents.  

 

(C) Feasibility of intrabed flow 

 

Figure 23 compares the density of turbidity currents with the density of soft muddy 

substrates. The substrate density covers the entire stability range of fluid mud and extends 

into relatively low-density solid substrates at >1250 kg m-3. The flow density covers low to 

high-concentration turbidity currents carrying an arbitrarily chosen maximum of 24% quartz-

rich sediment. Figure 23 also shows lines of equal head velocity, for which the bed shear 

stress is equal to the yield stress of the fluid mud, following the quadratic stress law (Eq. 2). 
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For turbidity currents that are less dense than the muddy substrate, each line of equal 

velocity separates eroding flow to the left (0 > y) from non-eroding flow to the right (0 < y). 

For example, a turbidity current with a head velocity of 0.8 m s-1 and a density of 1100 kg m-3 

erodes the substrate only if the substrate density is lower than 1131 kg m-3. Erosion can also 

be achieved by increasing the flow density, but the near-vertical orientation of the lines of 

equal head velocity suggests that such a change has a significantly smaller effect on the 

excess bed shear stress than reducing the substrate density, or increasing the head velocity. 

The bold dashed line in Fig. 23 represents the conditions for which the flow density is equal 

to the substrate density. Intrabed flow and mixing of flow-derived and substrate-derived 

sediment are possible only above this line, i.e. at f > b, provided that 0 > y. As expected, 

dense flows are particularly prone to intrabed flow or mixing when flowing across a fluid 

mud. In fact, all high-density turbidity currents that carry quartz-rich sediment at a volumetric 

concentration of 15% or higher should have the tendency to flow inside freshly, weakly or 

moderately consolidated fluid mud. The lines of equal head velocity for turbidity currents that 

move faster than ca 2 m s-1 are outside the density range of fluid mud composed of kaolinite 

(Fig. 23). This implies that such fast-flowing currents are able to enter any fluid mud, 

provided that the flow is denser than the substrate. The lines of equal velocity in Fig. 23 are 

valid only for kaolinite, which is a relatively weakly cohesive clay mineral. Bentonite, on the 

other hand, is strongly cohesive, and therefore has a higher yield stress than kaolinite (Wan, 

1982): 

 

      (6) 

This higher yield stress would shift the line of 4 m s-1 into the fluid-mud regime in Fig. 23. 

Hence, turbidity currents that move at 2 to 4 m s-1 should no longer be capable of entering 

moderately consolidated bentonite mud. In general, however, the above conclusions on the 
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capability of turbidity currents to enter fluid muds composed of kaolinite also apply to 

bentonite and presumably to more moderately cohesive clay minerals, such as illite, as well.  

 

(C) Stability of intrabed flow 

 

It thus appears from the above theoretical considerations that a wide range of natural 

turbidity currents is susceptible to sector-III type interaction with fluid muds. However, stable 

intrabed flow, as opposed to mixing of sediment from the flow with mud from the substrate, 

requires that the gradient Richardson number across the upper boundary of intrabed flow is 

higher than 0.25. Equation 5 indicates that a stable boundary is more likely in slower flows. 

Because the head velocity of natural turbidity currents can be much higher than the head 

velocity of laboratory currents, it is hypothesised here that stable intrabed behaviour in 

sector-III turbidity currents is less common in prototypes than in scale models and, therefore, 

I1 to I4 facies models (Fig. 16B) are confined to relatively weak turbidity currents. This 

hypothesis was tested by calculating Rig-values for typical ranges of d/dz, f, and du/dz. It 

seems unlikely that turbidity currents can enter a muddy substrate down to more than a 

couple of metres, primarily because overburden pressure in fluid muds will cause the density 

and strength of the substrate to increase rapidly with depth below the sediment surface until 

a solid bed (sensu Mehta, 2014) is established, for which intrabed flow has been discarded. 

Values of dz in natural flows are therefore assumed to range from ca 0.1 m to ca 1.0 m in 

the Rig-calculations, whereas laboratory flows should be limited to 0.01 < dz < 0.1 m. Based 

on the available data for turbidity currents in modern environments, accumulated by Talling 

et al. (2013), flow velocities in the range of 0.5 m s-1 to 40 m s-1 were tested. The substrate 

densities used in the calculations covered the entire range of freshly, weakly and moderately 

consolidated fluid mud, and flow densities ranged from 1005 kg m-3 to 1400 kg m-3, as in Fig. 

23. The results of the Rig analysis for dz-values of 1.0, 0.1 and 0.01 m are summarised in 
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Fig. 24A, B and C, respectively. Each graph shows curves that represent Rig = 0.25, based 

on f - b, uf - ub, and f -values of 1025, 1100, 1200, 1300 and 1400 kg m-3, and extend 

only to conditions where the substrate density is higher than 1000 kg m-3, the density of 

fresh water. These curves separate a flow regime with a stable upper flow boundary and 

intrabed flow for lower uf - ub and higher f - b from a flow regime with an unstable flow 

boundary and mixing of flow-derived and substrate-derived sediment for higher uf - ub and 

lower f - b. As in the experiments described above, it was assumed that the velocity of the 

mud swept over the top of the intrabed flows is close to zero, hence uf - ub effectively 

reduces to uf.  

Figure 24 shows that the threshold velocity for intrabed flow is governed mainly by dz, but 

there is also a considerable dependence on the difference between flow density and 

substrate density, especially for low values of f - b. In contrast, the threshold velocity for 

intrabed flow varies only slightly with the absolute density of the flow. The main conclusion 

drawn from Fig. 24 is that stable intrabed flow requires relatively low flow velocities, despite 

the fact that most natural turbidity currents are well able to enter fluid muds (Fig. 23). Mixing 

of flow-derived and substrate-derived sediment should prevail in all turbidity currents that 

move faster than 3.5 m s-1, assuming that dz = 1 m is a reasonable upper limit for the density 

and velocity gradients. The upper limit of intrabed flow decreases, as f - b is decreased, 

because a smaller density gradient renders the upper flow boundary less stable. For 

example, a decrease in the density gradient from 400 kg m-3 per metre to 150 kg m-3 per 

metre reduces the upper limit of intrabed flow from 3.5 m s-1 to ca 2.0 m s-1 (Fig. 24A). As 

changes in the velocity gradient lead changes in the density gradient [i.e. (du/dz)2 versus 

d/dz in Eq. 5], a steeper velocity gradient reduces the maximum velocity for intrabed flow 

even further. For dz = 0.1, which is likely to apply to relatively large laboratory currents and 

relatively small natural currents, stable intrabed flow is predicted at flow velocities below ca 1 

m s-1 for large density gradients and down to several tenths of m s-1 for small density 

gradients. Turbidity currents at a scale similar to the experimental flows presented herein, for 
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which dz is of the order of 0.01, are predicted to show stable intrabed behaviour only at flow 

velocities below 0.1 to 0.3 m s-1, again depending on the density gradient. These 

calculations of intrabed flow thresholds are based on densities just below the top of the mud 

substrate. However, the experiments showed that intrabed flow tends to find a level within 

the fluid mud where the substrate density is closer to the flow density. The Rig-analysis might 

therefore overestimate the values of f - b, and the maximum velocities for stable intrabed 

flow might be somewhat lower than those shown in Fig. 24. 

The results of the Rig-analysis thus support the hypothesis here that stable intrabed 

behaviour in sector III turbidity currents is restricted to relatively weak flows. None of the 

‘powerful’ currents in the dataset of Talling et al. (2013) (for example, in the Grand Banks 

area, in the Zaire and Goaping Canyons, and off Nice airport in the Mediterranean) would be 

able to produce stable intrabed flow, if such flows enter a fluid mud. On the other hand, the 

‘weak’ flows, and possibly some of the flows of ‘intermediate’ strength (u < ca 1.5 m  

s-1; Talling et al., 2013), would have the potential to produce stable intrabed flow, especially 

for large positive gradients in density. 

 

(C) Estimating flow properties from deposit properties of an intrabed turbidite  

 

Baas et al. (2014) described an inferred I2 to I4 intrabed turbidite from Clarach Bay in the 

Silurian Aberystwyth Grits Group in West Wales, United Kingdom (Fig. 25A). The I2 division 

of this turbidite consists of a 0.07 m thick muddy sandstone with small load and flame 

structures at its base and pervasive convolute lamination. This muddy sandstone is overlain 

by an irregular, 0.01 m thick, sandy mudstone, interpreted as the I3 division, and a 0.015 m 

thick I4 division, consisting of normally graded sandstone loaded into the underlying 

mudstone. This bed stands out from a sedimentary sequence that is dominated by hybrid 
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event beds (Fig. 25B; Talling et al., 2004; Haughton et al., 2009,) in that: (i) the intrabed 

turbidite consists of a thin, continuous, mudstone enveloped by thicker sandstones, whereas 

the hybrid event beds comprise a thick mud-clast rich contorted sandstone (formed by a 

debris flow) sandwiched between thin cleaner sandstones (formed by turbidity currents); (ii) 

the intrabed turbidite lacks the clasts and rafts present near the top of the mud-rich 

sandstone in the hybrid event beds; (iii) the intrabed turbidite has load and flame structures 

at its base, where the hybrid event beds often have flutes and grooves, suggesting a firm 

local substrate, unsuitable for intrabed flow; and (iv) the I3 division of the intrabed turbidite is 

continuous upflow for at least 17 m until it bends upward to the former bed–water interface – 

interpreted as the point where the turbidity currents entered the substrate – so it is more 

likely that this division represents a mud injection rather than an elongate mud clast.  

Considering that this intrabed turbidite was ca 0.1 m thick, of which the intrabed flow 

portion was 0.07 m, the present authors infer that the turbidity current that entered the 

substrate and produced the I2 to I4 deposit had a relatively low velocity, and it was probably 

somewhat larger than the experimental turbidity currents described herein. It is not possible 

to determine a precise velocity and a precise density difference with the muddy substrate for 

this turbidity current, but estimates can be made from the properties of the deposit. The load 

and flame structures within the natural intrabed turbidite were smaller than within the 

experimental intrabed turbidites, while the deposit was roughly twice as thick as the 

experimental deposits. This combination of a lower depth of loading and a higher overburden 

pressure suggests that the fluid mud had a relatively high density, perhaps within the 

‘intermediate strength’ category of Mehta (2014). In turn, this implies that the density 

difference between the flow and the muddy substrate was relatively low. Furthermore, dz-

values for the intrabed portion of the turbidity current were probably well below 0.1 m, even if 

post-depositional consolidation is taken into account. By applying the above Rig-analysis 

(Fig. 24), these low values for f - b and dz can be shown to restrict the maximum velocity 

at which intrabed flow is stable for this turbidity current to approximately 0.3 to 0.8 m s-1.  
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(C) Further advances 

 

Further field examples of intrabed turbidites, together with more detailed and larger-scale 

experimental research, are clearly needed to test the present, largely theoretical, approach 

of delimiting the thresholds of intrabed flow and the other types of interaction between 

sediment gravity flows and soft muddy substrates. In particular the effect of density 

stratification (i.e. with Rig > 0.25) on the development and maintenance of intrabed flow in 

high-density turbidity currents, transitional flows (sensu Baas et al., 2009, 2011) and debris 

flows, is an important avenue for further research, because such highly stratified flows have 

been inferred to result from flow deceleration in distal parts of submarine fans (e.g. McCave 

& Jones, 1988; Talling et al., 2013). Despite the fact that the scaling model presented herein 

predicts the behaviour of the experimental flows well, further development of the scaling 

model is required. Firstly, the flow velocity in Eqs 2 and 5 is based on the head velocity of 

the turbidity currents. It would be more accurate to use the height-averaged velocity in the 

head of the current. However, the front of the head of the intrabed turbidity currents was 

seen to plunge into the substrate. It can therefore be assumed that the flow velocity, and 

thus the bed shear stress, immediately behind the front of the head controls the plunging 

process. For reasons of continuity, this velocity should be similar to the head velocity. 

Secondly, the excess bed shear stress parameter in Eq. 1 relies on the yield strengths 

calculated with Eqs 3 and 6. These equations ignore differences in the rheological properties 

of kaolinite and bentonite caused by differences in chemical composition and external 

parameters, such as water temperature, salinity and pH. In Fig. 23, the boundary velocities 

for fluid mud that contains kaolinite (near-vertical black curves) and bentonite (near-vertical 

red curves) may therefore move to the left or right, depending on whether these clays are 

more cohesive or less cohesive than the clay minerals on which Eqs 3 and 6 were based. 

However, these changes should not change the principal conclusion that, based on density 

differences between flow and substrate, a large range of turbidity currents are able to move 
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into fluid mud. Thirdly, the gradient Richardson number (Eq. 5) has been developed for 

Newtonian fluids. However, fluid muds may behave as non-Newtonian fluids, with yield 

strengths of up to 5 N m-2 for kaolinite and 22 N m-2 for bentonite. For these yield strengths, 

mixing between substrate-derived and flow-derived sediment may be more difficult than 

predicted by the gradient Richardson number, thus effectively expanding the range of flow 

velocities at which intrabed flow could be stable. Fourthly, the preservation of the I3 division 

in intrabed turbidites depends on the degree of turbulent mixing within the encapsulating flow 

and the cohesive strength of the encapsulated mud before final deposition. For relatively 

low-density and fast-moving sediment gravity flows, in which turbulence is fully developed, 

as well as for weakly cohesive clay types and low-concentration encapsulated mud 

suspensions, the encapsulated mud may mix with sediment from the suprabed and intrabed 

portions of the flow. This would render the preservation of I3 divisions within intrabed 

turbidites less likely than for high-density, turbulence-attenuated flows and turbulence-free 

debris flows, and for strongly cohesive clay types and highly concentrated encapsulated mud 

suspensions. Effectively, this mixing process might reduce the range of velocities for which 

recognisable I1 to I4 facies are able to form. The I3 divisions shown in Fig. 15C and D were 

composed of coal-bearing mud, which suggests that some mixing occurred while the 

substrate mud was encapsulated by these experimental flows. In contrast, mixing between 

the encapsulated mud and the intrabed and suprabed portions of the flow that formed the 

deposit in the Aberystwyth Grits (Fig. 25A), may have been weaker, because the I3 division 

is composed mainly of fine-grained sediment.   

Notwithstanding these limitations, the facies model presented in Fig. 16 can be used as a 

guide to recognising intrabed turbidites in core and outcrop. By building a database of 

intrabed turbidites of different size, different internal organisation and from different basin 

types, it should be possible to further investigate the relationship between deposit signature 

and flow forcing, and determine the sedimentary environments where intrabed turbidites are 

most likely to be generated and preserved.   
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(A) CONCLUSIONS 

 

The results of the laboratory-scale experiments with turbidity currents moving into soft 

muddy reservoirs reveal predictable changes in the interaction between flow and muddy 

substrate. The types of interaction, which include bypass, erosion, deposition, intrabed flow, 

mixing and soft sediment deformation, are governed by the properties of the flow, the 

sediment and the substrate. Bypass and deposition depend on the ratio between shear 

velocity and particle settling velocity, whereas erosion requires that the bed shear stress is 

larger than yield stress of the mud in the substrate. Soft sediment deformation, in particular 

the formation of load, flame and injection structures, depends on the weight of the 

developing turbidite bed and the density of the muddy substrate. The novel processes of 

intrabed flow and mixing between flow-derived and substrate-derived sediment are governed 

by the difference in density between the flow and the substrate and by the difference in 

velocity between the flow and the mud displaced by the flow when it enters the substrate. A 

theoretical framework for defining the physical sedimentological thresholds of the various 

interaction types, and resultant deposit signatures, was validated using the experimental 

data and then used to scale flow-substrate interaction to turbidity currents under natural 

conditions. This analysis shows that: (i) many natural turbidity currents are expected to either 

erode or enter into muddy substrates that behave like fluid mud; (ii) intrabed flow is unlikely 

to occur in firm substrates; (iii) intrabed flow is stable only in relatively weak natural turbidity 

currents that move at a speed well below 3.5 m s-1; and (iv) the head velocity of a natural 

turbidity current that formed an inferred intrabed turbidite in the deep-marine Aberystwyth 

Grit Group of West Wales, United Kingdom, may have been between 0.3 m and 0.8 m s-1.   
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FIGURE CAPTIONS 

Table 1. Experimental parameters. 

 

Fig. 1. Schematic diagram of the experimental set-up. UHCM = ultra-high concentration 

meter. 

 

Fig. 2. Vertical distribution of volumetric sediment concentration in the 8 cm thick low-density 

fluid mud substrate and the 4 cm thick high-density fluid mud substrate.  

 

Fig. 3. Video images of the turbidity currents that moved across the fixed smooth bed in the 

control Runs 11 to 15. Horizontal scale is in centimetres. Flow was from right to left. 

Fig. 4. Series of ultrasound images of the front of the turbidity currents that moved across 

the fixed smooth bed in the control Runs 11 to 15: (A) Run 11, Cf,i = 1%; (B) Run 12, Cf,i = 

5%; (C) Run 13 Cf,i = 10%; (D) Run 14, Cf,i = 15%; and (E) Run 15, Cf,i = 23%. Each 

component image is 0.062 m wide. Black horizontal lines denote the floor of flume. Flow was 

from right to left. 
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Fig. 5. Head velocity of turbidity currents against distance along flume for: (A) control Runs 

11 to 15; (B) high-density fluid mud Runs 6 to 10; and (C) low-density fluid mud Runs 1 to 5. 

 

Fig. 6. Mean head velocity of all turbidity currents against initial suspended sediment 

concentration. Note the decrease in mean head velocity for the 23% flow that moved inside 

the low-density fluid mud (blue curve). 

 

Fig. 7. Time-series of UHCM-derived sediment concentrations at different heights above the 

bed in the control experiments: (A) Run 11, Cf,i = 1%; (B) Run 12, Cf,i = 5%; (C) Run 13 Cf,i = 

10%; (D) Run 14, Cf,i = 15%; and (E) Run 15, Cf,i = 23%.  

 

Fig. 8. Video images of the turbidity currents that moved into the low-density fluid mud 

reservoir, x = 0.4 to 1.6 m: (A) Run 1, Cf,i = 1%; (B) Run 2, Cf,i = 5%; (C) Run 3 Cf,i = 10%; 

(D) Run 4, Cf,i = 15%; and (E) Run 5, Cf,i = 23%. Flow was from right to left.  

 

Fig. 9. Series of video images showing the progression of the turbidity current with Cf,i = 

23% (Run 5) upon entering the low-density fluid mud reservoir: (A) t = 6.9 s; (B) t = 9.6 s; (C) 

t = 12.7 s; (D) t = 16.5 s; and (E) t = 27.3 s, where t denotes time since the start of the 

experiment. Flow was from right to left. 

 

Fig. 10. Characteristic profiles and flow-substrate interactions for the turbidity currents that 

moved in the low-density fluid mud reservoir, x = 1.8 to 2.9 m: (A) Run 1, Cf,i = 1%; (B) Run 

2, Cf,i = 5%; (C) Run 3 Cf,i = 10%; (D) Run 4, Cf,i = 15%; and (E) Run 5, Cf,i = 23%. Flow was 

from right to left. 
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Fig. 11. Series of video images showing the progression of the turbidity current with Cf,i = 

23% (Run 5) in the middle of the low-density fluid mud reservoir: (A) t = 14.3 s; (B) t = 24.3 s; 

and (C) t = 39.0 s, where t denotes time since the start of the experiment. The arrows point 

to multiple crests in the bed pressure wave. Flow was from right to left. 

 

Fig. 12. Series of ultrasound images of the front of the turbidity currents that interacted with 

the low-density fluid mud in Runs 1 to 5. (A) Run 1, Cf,i = 1%; (B) Run 2, Cf,i = 5%; (C) Run 3 

Cf,i = 10%; (D) Run 4, Cf,i = 15%; and (E) Run 5, Cf,i = 23%. Note the intrabed flow in Runs 4 

and 5. Each component image is 0.062 m wide. Black horizontal lines denote the original 

bed level before the arrival of the bed pressure wave. Flow was from right to left. 

 

Fig. 13. Final deposit of Run 1 (Cf,i = 1%). (A) Proximal scour fill of incompletely mixed coal 

and mud. (B) Pronounced load and flame structures around x = 1.4 m. (C) Relatively thin 

deposit with small load and flame structures and small amounts of dispersed mud and mud 

clasts at around x = 2.7 m. (D) Distal, thin, coal-rich, deposit with small-scale soft sediment 

deformation. Scale bars are 0.02 m long in all pictures.  

 

Fig. 14. Time-series of UHCM-derived sediment concentrations at different heights below 

and above the top of the fluid mud in: (A) Run 1, Cf,i = 1%; (B) Run 2, Cf,i = 5%; (C) Run 3 Cf,i 

= 10%; (D) Run 4, Cf,i = 15%; and (E) Run 5, Cf,i = 23%. 

 

Fig. 15. Characteristic properties of the final deposits in Runs 2 to 5. (A) Coal with dispersed 

mud and mud clasts deposited on the erosional mud surface in the proximal section of the 

reservoir in Run 2. (B) Fluid escape structures supplying flame structures below the base of 
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the turbidite in Run 5. (C) Complete I1 to I4 intrabed turbidite sequence (right) evolving to 

base-missing sequences by progressive pinching out of the I1 and I2 to I3 divisions (left) in 

Run 3. Note the mud clasts at the top of the I1 division. (D) Poorly developed I2 to I4 

sequence, where loading folded the overlying sediment layers (Run 2). (E) Flame structures 

and load structures at the base of the turbidite in Run 5. Note the plumes of mud above the 

flame structures. Scale bars are 0.02 m long in all pictures.  

 

Fig. 16. (A) Facies model for the deposits of turbidity currents that interact with a soft muddy 

substrate, but flow on top of the substrate. (B) Model for intrabed turbidity current dynamics. 

Note that the mud (in grey) is encapsulated by the intrabed portion (in orange) and the 

suprabed portion (in yellow) of the turbidity current, forming the layer of sandy mud (in 

brown). (C) Facies model for intrabed turbidites. See text for explanation. 

 

Fig. 17. Selected images of turbidity currents that moved across the high-density fluid mud 

reservoir: (A) Run 7, Cf,i = 5%; and (B) Run 9, Cf,i = 15%. Flow was from right to left. 

 

Fig. 18. Series of ultrasound images of the front of the turbidity currents that interacted with 

the high-density fluid mud in Runs 6 to 10: (A) Run 6, Cf,i = 1%; (B) Run 7, Cf,i = 5%; (C) Run 

8 Cf,i = 10%; (D) Run 9, Cf,i = 15%; and (E) Run 10, Cf,i = 23%. Each component image is 

0.062 m wide. Black horizontal lines denote the original substrate level. Flow was from right 

to left. 

Fig. 19. Time-series of UHCM-derived sediment concentrations at different heights below 

and above the top of the fluid mud in: (A) Run 6, Cf,i = 1%; (B) Run 7, Cf,i = 5%; (C) Run 8 Cf,i 

= 10%; (D) Run 9, Cf,i = 15%; and (E) Run 10, Cf,i = 23%. 
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Fig. 20. Failed intrabed flow in high-density fluid mud Run 10 (Cf,i = 23%). (A) Instead of 

moving into the fluid mud, the flow only disturbs the mud for short distances, thereby forming 

short horizontal streaks of mud, as shown in the fourth image from the top. (B) Pronounced 

soft sediment deformation structures associated with failed intrabed flow. Flow was from 

right to left. 

 

Fig. 21. Characteristic properties of the final deposits of Runs 6 to 10. (A) Proximal scour 

surface with load structures in Run 7. (B) and (C) Mud injections in the upper part of coal-

rich deposits in Run 8. 

 

Fig. 22. Schematic graph summarising different types of interaction between turbidity 

currents and soft muddy substrates, based on the excess bed shear stress parameter, , 

and the excess density parameter, . See text for explanation. 

 

Fig. 23. Graph showing the thresholds of different types of interaction between the base of 

turbidity currents and the top of muddy substrates for different substrate densities, flow 

densities and head velocities. Bold dashed line represents flow = bed. Vertical dashed line 

and open circles denote boundary between fluid mud and solid bed, and experimental Runs 

1 to 10, respectively. Continuous black and red lines represent b = y for different head 

velocities for kaolinite and bentonite, respectively. Roman numerals refer to different types of 

interaction, as in Fig. 22. 

Fig. 24. Stability diagrams for stable intrabed flows versus mixing between flow-derived and 

substrate-derived sediment, based on the density difference between flow and mud swept 

over the top of the flow, f - b, the velocity difference across the upper boundary of the flow, 
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uf - ub, the vertical distance dz, and the density of the flow,  f: (A) dz = 1 m; (B) dz = 0.1 m; 

and (C) dz = 0.01 m. Note that stable intrabed flow is possible only at velocity differences of 

3.5 m s-1 or smaller. 

 

Fig. 25. (A) Field example and interpretative drawing of an I2 to I4 intrabed turbidite in the 

Aberystwyth Grits Formation (Clarach Bay, Wales, UK). The picture on the right shows the 

same bed as the picture on the left, but 17 m upflow, where the I3 division (between the thin 

black lines) bends upward and then meets the former sea floor. Note that this picture shows 

a vertical section and a bedding-plane section of the turbidite, so in the upper right, the I3 

division has an apparent dip angle that is higher than the real dip angle of ca 10º. (B) 

Examples of hybrid event beds in the Aberystwyth Grits Formation (Clarach Bay, Wales, 

UK). H1 to H5 refer to the hybrid event bed model of Haughton et al. (2009), where the H1 

and H4/H5 divisions were formed by high-density and low-density turbidity currents, 

respectively, and the H3 division represents a debris flow. Modified after Baas et al. (2014). 
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Table 1. Experimental parameters. 

Run Cf,i f,i Uh hf Reh IP y 0   Substrate 

  (vol %) 
(kg m

-

3
) 

(m s
-1

) (m) (-) (%) N m
-2

 N m
-2

 (-) (-)   

1 1 1002 0.062 0.120 7262 0 0.001 0.015 11.04 -0.010 LD fluid mud 

2 5 1010 0.093 0.140 11328 41 0.001 0.035 36.43 -0.003 LD fluid mud 

3 10 1019 0.117 0.100 8571 84 0.001 0.056 42.59 0.007 LD fluid mud 

4 15 1029 0.119 0.075 5424 100 0.001 0.058 61.43 0.016 LD fluid mud 

5 23 1044 0.114 0.055 2820 100 0.001 0.054 41.39 0.031 LD fluid mud 

6 1 1002 0.056 0.160 8746 0 0.039 0.013 -0.68 -0.046 HD fluid mud 

7 5 1010 0.076 0.140 9258 0 0.055 0.023 -0.58 -0.039 HD fluid mud 

8 10 1019 0.094 0.110 7575 0 0.046 0.036 -0.22 -0.030 HD fluid mud 

9 15 1029 0.106 0.080 5154 0 0.055 0.046 -0.16 -0.021 HD fluid mud 

10 23 1044 0.141 0.085 5390 0 0.065 0.083 0.28 -0.006 HD fluid mud 

11 1 1002 0.040 0.250 9761 - - 0.006 - - Smooth, fixed 

12 5 1010 0.060 0.240 12529 - - 0.015 - - Smooth, fixed 

13 10 1019 0.074 0.180 9758 - - 0.022 - - Smooth, fixed 

14 15 1029 0.132 0.130 10429 - - 0.072 - - Smooth, fixed 

15 23 1044 0.146 0.120 7879 - - 0.089 - - Smooth, fixed 

 
Cf,i = initial coal concentration in turbidity current 

f,i = initial density of turbidity current

Uh = mean head velocity of turbidity current over muddy substrate at x = 0.12 to 0.34 m 

hf = thickness of head of turbidity current at x = 0.25 m, excluding intrabed flow 

Reh = Reynolds number, based on Uh, hf and viscosity for solid suspensions (Guth & Simha, 
1936) 

IP = proportion of intrabed flow at front of turbidity current 

y = yield stress 

0 = bed shear stress 

 = excess bed shear stress parameter 

 = excess density parameter 

LD = low-density, HD = high-density 
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