A Machine Learning Approach for Physical Activity Recognition in Cystic Fibrosis
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
Fersiynau electronig
Dogfennau
- A Machine Learning Approach for Physical Activity Recognition in Cystic Fibrosis
Fersiwn derfynol wedi’i chyhoeddi, 820 KB, dogfen-PDF
Trwydded: CC BY-NC-ND Dangos trwydded
Dangosydd eitem ddigidol (DOI)
This study aimed to develop and validate machine learning models to predict intensities in children and adolescents with cystic fibrosis (CF) across different accelerometry brands and placements. Thirty-five children and adolescents with CF (11.6 ± 2.8 yrs; 15 girls) and 28 healthy youth (12.2 ± 2.7 yrs; 16 girls) performed six activities whilst wearing GENEActivs (both wrists) and ActiGraphs GT9X (both wrists and waist). Three supervised learning classifiers (K-Nearest Neighbour, Random Forest and eXtreme Gradient Boosted Decision Tree) were used to identify the input signal pattern for each PA type and intensity, with a 10-fold cross-validation utilized to assess the performance of the classifiers. ActiGraph GT9X on the dominant wrist and waist and GENEActiv on the dominant wrist failed to predict vigorous intensity PA activities. All other models, for activity type and intensities, exceeded 97% accuracy, with a sensitivity and specificity of greater than 95%, irrespective of accelerometer brand, placement or health condition.
Allweddeiriau
Iaith wreiddiol | Saesneg |
---|---|
Tudalennau (o-i) | 172-181 |
Cyfnodolyn | Measurement in Physical Education and Exercise Science |
Cyfrol | 28 |
Rhif y cyfnodolyn | 2 |
Dyddiad ar-lein cynnar | 24 Hyd 2023 |
Dynodwyr Gwrthrych Digidol (DOIs) | |
Statws | Cyhoeddwyd - Meh 2024 |
Cyfanswm lawlrlwytho
Nid oes data ar gael