A review of the UK and British Channel Islands practical tidal stream energy resource

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygl adolyguadolygiad gan gymheiriaid

StandardStandard

A review of the UK and British Channel Islands practical tidal stream energy resource. / Coles, Daniel; Angeloudis, Athanasios; Greaves, Deborah et al.
Yn: Proceedings of the Royal Society A , Cyfrol 477, Rhif 2255, 20210469, 24.11.2021.

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygl adolyguadolygiad gan gymheiriaid

HarvardHarvard

Coles, D, Angeloudis, A, Greaves, D, Hastie, G, Lewis, M, Mackie, L, McNaughton, J, Miles, J, Neill, S, Piggott, M, Risch, D, Scott, B, Sparling, C, Stallard, T, Thies, P, Walker, S, White, D, Willden, R & Williamson, BJ 2021, 'A review of the UK and British Channel Islands practical tidal stream energy resource', Proceedings of the Royal Society A , cyfrol. 477, rhif 2255, 20210469. https://doi.org/10.1098/rspa.2021.0469

APA

Coles, D., Angeloudis, A., Greaves, D., Hastie, G., Lewis, M., Mackie, L., McNaughton, J., Miles, J., Neill, S., Piggott, M., Risch, D., Scott, B., Sparling, C., Stallard, T., Thies, P., Walker, S., White, D., Willden, R., & Williamson, B. J. (2021). A review of the UK and British Channel Islands practical tidal stream energy resource. Proceedings of the Royal Society A , 477(2255), Erthygl 20210469. https://doi.org/10.1098/rspa.2021.0469

CBE

Coles D, Angeloudis A, Greaves D, Hastie G, Lewis M, Mackie L, McNaughton J, Miles J, Neill S, Piggott M, et al. 2021. A review of the UK and British Channel Islands practical tidal stream energy resource. Proceedings of the Royal Society A . 477(2255):Article 20210469. https://doi.org/10.1098/rspa.2021.0469

MLA

VancouverVancouver

Coles D, Angeloudis A, Greaves D, Hastie G, Lewis M, Mackie L et al. A review of the UK and British Channel Islands practical tidal stream energy resource. Proceedings of the Royal Society A . 2021 Tach 24;477(2255):20210469. Epub 2021 Tach 3. doi: 10.1098/rspa.2021.0469

Author

Coles, Daniel ; Angeloudis, Athanasios ; Greaves, Deborah et al. / A review of the UK and British Channel Islands practical tidal stream energy resource. Yn: Proceedings of the Royal Society A . 2021 ; Cyfrol 477, Rhif 2255.

RIS

TY - JOUR

T1 - A review of the UK and British Channel Islands practical tidal stream energy resource

AU - Coles, Daniel

AU - Angeloudis, Athanasios

AU - Greaves, Deborah

AU - Hastie, Gordon

AU - Lewis, Matthew

AU - Mackie, Lucas

AU - McNaughton, James

AU - Miles, Jon

AU - Neill, Simon

AU - Piggott, Matthew

AU - Risch, Denise

AU - Scott, Beth

AU - Sparling, Carol

AU - Stallard, Tim

AU - Thies, Philipp

AU - Walker, Stuart

AU - White, David

AU - Willden, Richard

AU - Williamson, Benjamin J.

PY - 2021/11/24

Y1 - 2021/11/24

N2 - This review provides a critical, multi-faceted assessment of the practical contribution tidal stream energy can make to the UK and British Channel Islands future energy mix. Evidence is presented that broadly supports the latest national-scale practical resource estimate, of 34 TWh/year, equivalent to 11% of the UK’s current annual electricity demand. The size of the practical resource depends in part on the economic competitiveness of projects. In the UK, 124 MW of prospective tidal stream capacity is currently eligible to bid for subsidy support (MeyGen 1C, 80 MW; PTEC, 30 MW; and Morlais, 14 MW). It is estimated that the installation of this 124 MW would serve to drive down the levelized cost of energy (LCoE), through learning, from its current level of around 240 £/MWh to below 150 £/MWh, based on a mid-range technology learning rate of 17%. Doing so would make tidal stream cost competitive with technologies such as combined cycle gas turbines, biomass and anaerobic digestion. Installing this 124 MW by 2031 would put tidal stream on a trajectory to install the estimated 11.5 GW needed to generate 34 TWh/year by 2050. The cyclic, predictable nature of tidal stream power shows potential to provide additional, whole-system cost benefits. These include reductions in balancing expenditure that are not considered in conventional LCoE estimates. The practical resource is also dependent on environmental constraints. To date, no collisions between animals and turbines have been detected, and only small changes in habitat have been measured. The impacts of large arrays on stratification and predator–prey interaction are projected to be an order of magnitude less than those from climate change, highlighting opportunities for risk retirement. Ongoing field measurements will be important as arrays scale up, given the uncertainty in some environmental and ecological impact models. Based on the findings presented in this review, we recommend that an updated national-scale practical resource study is undertaken that implements high-fidelity, site-specific modelling, with improved model validation from the wide range of field measurements that are now available from the major sites. Quantifying the sensitivity of the practical resource to constraints will be important to establish opportunities for constraint retirement. Quantification of whole-system benefits is necessary to fully understand the value of tidal stream in the energy system.

AB - This review provides a critical, multi-faceted assessment of the practical contribution tidal stream energy can make to the UK and British Channel Islands future energy mix. Evidence is presented that broadly supports the latest national-scale practical resource estimate, of 34 TWh/year, equivalent to 11% of the UK’s current annual electricity demand. The size of the practical resource depends in part on the economic competitiveness of projects. In the UK, 124 MW of prospective tidal stream capacity is currently eligible to bid for subsidy support (MeyGen 1C, 80 MW; PTEC, 30 MW; and Morlais, 14 MW). It is estimated that the installation of this 124 MW would serve to drive down the levelized cost of energy (LCoE), through learning, from its current level of around 240 £/MWh to below 150 £/MWh, based on a mid-range technology learning rate of 17%. Doing so would make tidal stream cost competitive with technologies such as combined cycle gas turbines, biomass and anaerobic digestion. Installing this 124 MW by 2031 would put tidal stream on a trajectory to install the estimated 11.5 GW needed to generate 34 TWh/year by 2050. The cyclic, predictable nature of tidal stream power shows potential to provide additional, whole-system cost benefits. These include reductions in balancing expenditure that are not considered in conventional LCoE estimates. The practical resource is also dependent on environmental constraints. To date, no collisions between animals and turbines have been detected, and only small changes in habitat have been measured. The impacts of large arrays on stratification and predator–prey interaction are projected to be an order of magnitude less than those from climate change, highlighting opportunities for risk retirement. Ongoing field measurements will be important as arrays scale up, given the uncertainty in some environmental and ecological impact models. Based on the findings presented in this review, we recommend that an updated national-scale practical resource study is undertaken that implements high-fidelity, site-specific modelling, with improved model validation from the wide range of field measurements that are now available from the major sites. Quantifying the sensitivity of the practical resource to constraints will be important to establish opportunities for constraint retirement. Quantification of whole-system benefits is necessary to fully understand the value of tidal stream in the energy system.

KW - Cost Of Energy

KW - Environmental impact

KW - Practical Resource

KW - System Integration

KW - Tidal Stream Energy

KW - Tidal Stream Power

U2 - 10.1098/rspa.2021.0469

DO - 10.1098/rspa.2021.0469

M3 - Review article

VL - 477

JO - Proceedings of the Royal Society A

JF - Proceedings of the Royal Society A

SN - 1364-5021

IS - 2255

M1 - 20210469

ER -