A robust Kalman conjecture for first-order plants

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

StandardStandard

A robust Kalman conjecture for first-order plants. / Alli-Oke, R.; Carrasco, J.; Heath, W.P. et al.
Yn: IFAC Proceedings Volumes (IFAC-PapersOnline), Cyfrol 45, Rhif 13, 24.06.2012, t. 27-32.

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

HarvardHarvard

Alli-Oke, R, Carrasco, J, Heath, WP & Lanzon, A 2012, 'A robust Kalman conjecture for first-order plants', IFAC Proceedings Volumes (IFAC-PapersOnline), cyfrol. 45, rhif 13, tt. 27-32. https://doi.org/10.3182/20120620-3-DK-2025.00161

APA

Alli-Oke, R., Carrasco, J., Heath, W. P., & Lanzon, A. (2012). A robust Kalman conjecture for first-order plants. IFAC Proceedings Volumes (IFAC-PapersOnline), 45(13), 27-32. https://doi.org/10.3182/20120620-3-DK-2025.00161

CBE

Alli-Oke R, Carrasco J, Heath WP, Lanzon A. 2012. A robust Kalman conjecture for first-order plants. IFAC Proceedings Volumes (IFAC-PapersOnline). 45(13):27-32. https://doi.org/10.3182/20120620-3-DK-2025.00161

MLA

Alli-Oke, R. et al. "A robust Kalman conjecture for first-order plants". IFAC Proceedings Volumes (IFAC-PapersOnline). 2012, 45(13). 27-32. https://doi.org/10.3182/20120620-3-DK-2025.00161

VancouverVancouver

Alli-Oke R, Carrasco J, Heath WP, Lanzon A. A robust Kalman conjecture for first-order plants. IFAC Proceedings Volumes (IFAC-PapersOnline). 2012 Meh 24;45(13):27-32. doi: 10.3182/20120620-3-DK-2025.00161

Author

Alli-Oke, R. ; Carrasco, J. ; Heath, W.P. et al. / A robust Kalman conjecture for first-order plants. Yn: IFAC Proceedings Volumes (IFAC-PapersOnline). 2012 ; Cyfrol 45, Rhif 13. tt. 27-32.

RIS

TY - JOUR

T1 - A robust Kalman conjecture for first-order plants

AU - Alli-Oke, R.

AU - Carrasco, J.

AU - Heath, W.P.

AU - Lanzon, A.

PY - 2012/6/24

Y1 - 2012/6/24

N2 - A robust Kalman conjecture is defined for the robust Lur'e problem. Specifically, it is conjectured that the nonlinearity's slope interval for which robust absolute stability is guaranteed corresponds to the robust interval of the uncertain plant. We verify this robust Kalman conjecture for first-order plants perturbed by various norm-bounded unstructured uncertainties. The analysis classifies the appropriate stability multipliers required for verification in these cases. Robust control of Lur'e-type nonlinear systems satisfying this novel conjecture can therefore be designed using linear robust control methods.

AB - A robust Kalman conjecture is defined for the robust Lur'e problem. Specifically, it is conjectured that the nonlinearity's slope interval for which robust absolute stability is guaranteed corresponds to the robust interval of the uncertain plant. We verify this robust Kalman conjecture for first-order plants perturbed by various norm-bounded unstructured uncertainties. The analysis classifies the appropriate stability multipliers required for verification in these cases. Robust control of Lur'e-type nonlinear systems satisfying this novel conjecture can therefore be designed using linear robust control methods.

U2 - 10.3182/20120620-3-DK-2025.00161

DO - 10.3182/20120620-3-DK-2025.00161

M3 - Erthygl

VL - 45

SP - 27

EP - 32

JO - IFAC Proceedings Volumes (IFAC-PapersOnline)

JF - IFAC Proceedings Volumes (IFAC-PapersOnline)

IS - 13

ER -