Accuracy when inferential statistics are used as measurement tools
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: BMC Research Notes, Cyfrol 9, 241, 26.04.2016, t. 487-489.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Accuracy when inferential statistics are used as measurement tools
AU - Bradley, Michael T
AU - Brand, Andrew
PY - 2016/4/26
Y1 - 2016/4/26
N2 - Background: Inferential statistical tests that approximate measurement are called acceptance procedures. The procedure includes type 1 error, falsely rejecting the null hypothesis, and type 2 error, failing to reject the null hypothesis when the alternative should be supported. This approach involves repeated sampling from a distribution with established parameters such that the probabilities of these errors can be ascertained. With low error probabilities the procedure has the potential to approximate measurement. How close this procedure approximates measurement was examined. Findings: A Monte Carlo procedure set the type 1 error at p = 0.05 and the type 2 error at either p = 0.20 or p = 0.10 for effect size values of d = 0.2, 0.5, and 0.8. The resultant values are approximately 15 and 6.25 % larger than the effect sizes entered into the analysis depending on a type 2 error rate of p < 0.20, or p < 0.10 respectively. Conclusions: Acceptance procedures approximate values wherein a decision could be made. In a health district a deviation at a particular level could signal a change in health. The approximations could be reasonable in some circumstances, but if more accurate measures are desired a deviation could be reduced by the percentage appropriate for the power. The tradeoff for such a procedure is an increase in type 1 error rate and a decrease in type 2 errors
AB - Background: Inferential statistical tests that approximate measurement are called acceptance procedures. The procedure includes type 1 error, falsely rejecting the null hypothesis, and type 2 error, failing to reject the null hypothesis when the alternative should be supported. This approach involves repeated sampling from a distribution with established parameters such that the probabilities of these errors can be ascertained. With low error probabilities the procedure has the potential to approximate measurement. How close this procedure approximates measurement was examined. Findings: A Monte Carlo procedure set the type 1 error at p = 0.05 and the type 2 error at either p = 0.20 or p = 0.10 for effect size values of d = 0.2, 0.5, and 0.8. The resultant values are approximately 15 and 6.25 % larger than the effect sizes entered into the analysis depending on a type 2 error rate of p < 0.20, or p < 0.10 respectively. Conclusions: Acceptance procedures approximate values wherein a decision could be made. In a health district a deviation at a particular level could signal a change in health. The approximations could be reasonable in some circumstances, but if more accurate measures are desired a deviation could be reduced by the percentage appropriate for the power. The tradeoff for such a procedure is an increase in type 1 error rate and a decrease in type 2 errors
M3 - Article
VL - 9
SP - 487
EP - 489
JO - BMC Research Notes
JF - BMC Research Notes
SN - 1756-0500
M1 - 241
ER -