Acute chloroquine poisoning: A comprehensive experimental toxicology assessment of the role of diazepam
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: British Journal of Pharmacology, Cyfrol 177, Rhif 21, 11.2020, t. 4975-4989.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Acute chloroquine poisoning: A comprehensive experimental toxicology assessment of the role of diazepam
AU - Hughes, Dyfrig
N1 - Wellcome Trust. Grant Number: 038570/Z/93/Z Health and Care Research Wales. Grant Number: SRL‐19‐18
PY - 2020/11
Y1 - 2020/11
N2 - BACKGROUND AND PURPOSE: Resurgence in the use of chloroquine as a potential treatment for COVID-19 has seen recent cases of fatal toxicity due to unintentional overdoses. Protocols for the management of poisoning recommend diazepam, although there are uncertainties in its pharmacology and efficacy in this context. The aim was to assess the effects of diazepam in experimental models of chloroquine cardiotoxicity.EXPERIMENTAL APPROACH: In vitro experiments involved cardiac tissues isolated from rats and incubated with chloroquine alone or in combination with diazepam. In vivo models of toxicity involved chloroquine administered intravenously to pentobarbitone-anaesthetised rats and rabbits. Randomised, controlled treatment studies in rats assessed diazepam, clonazepam and Ro5-4864 administered: (i) prior, (ii) during and (iii) after chloroquine and the effects of diazepam: (iv) at high dose, (v) in urethane-anaesthetised rats and (vi) co-administered with adrenaline.KEY RESULTS: Chloroquine decreased the developed tension of left atria, prolonged the effective refractory period of atria, ventricular tissue and right papillary muscles, and caused dose-dependent impairment of haemodynamic and electrocardiographic parameters. Cardiac arrhythmias indicated impairment of atrioventricular conduction. Studies (i), (ii) and (v) showed no differences between treatments and control. Diazepam increased heart rate in study (iv) and as with clonazepam also prolonged the QTc interval in study (iii). Combined administration of diazepam and adrenaline in study (vi) improved cardiac contractility but caused hypokalaemia.CONCLUSION AND IMPLICATIONS: Neither diazepam nor other ligands for benzodiazepine binding sites protect against or attenuate chloroquine cardiotoxicity. However, diazepam may augment the effects of positive inotropes in reducing chloroquine cardiotoxicity.LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
AB - BACKGROUND AND PURPOSE: Resurgence in the use of chloroquine as a potential treatment for COVID-19 has seen recent cases of fatal toxicity due to unintentional overdoses. Protocols for the management of poisoning recommend diazepam, although there are uncertainties in its pharmacology and efficacy in this context. The aim was to assess the effects of diazepam in experimental models of chloroquine cardiotoxicity.EXPERIMENTAL APPROACH: In vitro experiments involved cardiac tissues isolated from rats and incubated with chloroquine alone or in combination with diazepam. In vivo models of toxicity involved chloroquine administered intravenously to pentobarbitone-anaesthetised rats and rabbits. Randomised, controlled treatment studies in rats assessed diazepam, clonazepam and Ro5-4864 administered: (i) prior, (ii) during and (iii) after chloroquine and the effects of diazepam: (iv) at high dose, (v) in urethane-anaesthetised rats and (vi) co-administered with adrenaline.KEY RESULTS: Chloroquine decreased the developed tension of left atria, prolonged the effective refractory period of atria, ventricular tissue and right papillary muscles, and caused dose-dependent impairment of haemodynamic and electrocardiographic parameters. Cardiac arrhythmias indicated impairment of atrioventricular conduction. Studies (i), (ii) and (v) showed no differences between treatments and control. Diazepam increased heart rate in study (iv) and as with clonazepam also prolonged the QTc interval in study (iii). Combined administration of diazepam and adrenaline in study (vi) improved cardiac contractility but caused hypokalaemia.CONCLUSION AND IMPLICATIONS: Neither diazepam nor other ligands for benzodiazepine binding sites protect against or attenuate chloroquine cardiotoxicity. However, diazepam may augment the effects of positive inotropes in reducing chloroquine cardiotoxicity.LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
KW - Chloroquine
KW - diazepam
KW - poisoning
KW - drug overdose
KW - antidote
U2 - 10.1111/bph.15101
DO - 10.1111/bph.15101
M3 - Article
C2 - 32415690
VL - 177
SP - 4975
EP - 4989
JO - British Journal of Pharmacology
JF - British Journal of Pharmacology
SN - 0007-1188
IS - 21
ER -